JP2013247017A - Rolled copper foil for secondary battery negative electrode collector, negative electrode material for lithium ion secondary battery including the same, and lithium ion secondary battery - Google Patents

Rolled copper foil for secondary battery negative electrode collector, negative electrode material for lithium ion secondary battery including the same, and lithium ion secondary battery Download PDF

Info

Publication number
JP2013247017A
JP2013247017A JP2012120851A JP2012120851A JP2013247017A JP 2013247017 A JP2013247017 A JP 2013247017A JP 2012120851 A JP2012120851 A JP 2012120851A JP 2012120851 A JP2012120851 A JP 2012120851A JP 2013247017 A JP2013247017 A JP 2013247017A
Authority
JP
Japan
Prior art keywords
secondary battery
negative electrode
copper foil
lithium ion
rolled copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012120851A
Other languages
Japanese (ja)
Other versions
JP6058915B2 (en
Inventor
Ikuya Kurosaki
郁也 黒▲崎▼
Kazuki Kan
和樹 冠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2012120851A priority Critical patent/JP6058915B2/en
Publication of JP2013247017A publication Critical patent/JP2013247017A/en
Application granted granted Critical
Publication of JP6058915B2 publication Critical patent/JP6058915B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide: a rolled copper foil for a secondary battery negative electrode collector, successfully suppressing generation of cracks and fractures even after repeated charging and discharging, when used as a collector of a lithium ion secondary battery; a negative electrode material for a lithium ion secondary battery including the rolled copper foil; and a lithium ion secondary battery.SOLUTION: When thermal treatment at 180°C is performed for 30 minutes, a rolled copper foil for a secondary battery negative electrode collector has a cross section in which the fraction of an area A, where the crystal orientation is within the range of 10° from the (001) orientation as the center, is 10% or more.

Description

本発明は、二次電池負極集電体用圧延銅箔、それを用いたリチウムイオン二次電池用負極材及びリチウムイオン二次電池に関する。   The present invention relates to a rolled copper foil for a secondary battery negative electrode current collector, a negative electrode material for a lithium ion secondary battery using the rolled copper foil, and a lithium ion secondary battery.

リチウムイオン二次電池はエネルギー密度が高く、比較的高い電圧を得ることができるという特徴を有し、ノートパソコン、ビデオカメラ、デジタルカメラ、携帯電話等の小型電子機器に多用されている。また、リチウムイオン二次電池は、電気自動車や一般家庭の分散分配型電源といった大型機器の電源としても利用が始められており、ニッケル水素電池等の他の二次電池と比較して軽量でエネルギー密度が高いことから、各種の電源を必要とする機器で広く使用されている。   Lithium ion secondary batteries have a high energy density and can obtain a relatively high voltage, and are widely used in small electronic devices such as notebook computers, video cameras, digital cameras, and mobile phones. Lithium ion secondary batteries have also begun to be used as power sources for large equipment such as electric vehicles and general household distributed power sources, and are lighter and more energy efficient than other secondary batteries such as nickel metal hydride batteries. Due to its high density, it is widely used in devices that require various power sources.

リチウムイオン二次電池の電極体は一般に、巻回構造又は各電極を積層されたスタック構造を有している。リチウムイオン二次電池の正極は、アルミニウム箔製の集電体とその表面に設けられたLiCoO2、LiNiO2及びLiMn24等のリチウム複合酸化物を材料とする正極活物質から構成され、負極は銅箔製の集電体とその表面に設けられたカーボン等を材料とする負極活物質から構成されるのが一般的である。 An electrode body of a lithium ion secondary battery generally has a winding structure or a stack structure in which electrodes are stacked. The positive electrode of the lithium ion secondary battery is composed of a current collector made of aluminum foil and a positive electrode active material made of a lithium composite oxide such as LiCoO 2 , LiNiO 2 and LiMn 2 O 4 provided on the surface thereof, The negative electrode is generally composed of a negative electrode active material made of a copper foil current collector and carbon or the like provided on the surface thereof.

ところで、電極体を巻回する構造の電池では、充放電に伴う活物質の膨張、収縮により、特に曲率半径が小さくなる巻回構造の内周部近傍や、活物質の未塗工部分と塗工部分の境界近傍などに応力が集中することで、集電体にクラックが生じたり、破断が発生しやすくなり、電池のサイクル特性を劣化させる原因となる。このような不具合を回避する方法としては、負極集電体である銅箔の伸びを2〜15%に調整することで、破断を防止する方法が開示されている(特許文献1)。   By the way, in a battery having a structure in which an electrode body is wound, the active material expands and contracts due to charge / discharge, and particularly near the inner peripheral portion of the wound structure in which the radius of curvature becomes small, or with an uncoated portion of the active material. When stress is concentrated near the boundary of the work part, the current collector is easily cracked or ruptured, which deteriorates the cycle characteristics of the battery. As a method of avoiding such a problem, a method of preventing breakage by adjusting the elongation of a copper foil as a negative electrode current collector to 2 to 15% is disclosed (Patent Document 1).

特開2000−208149号公報JP 2000-208149 A

しかしながら、本発明者らが検討したところ、伸びの大きい銅箔を負極集電体に用いても、充放電によって銅箔にクラックや破断が発生する場合があることが判明した。詳細に調査した結果、充放電によって活物質が膨張、収縮することにより、集電体である銅箔が繰返し応力集中を受けて集電体が部分的に曲げ変形を起こすようになり、充放電によって曲げ変形が繰り返される。
曲げ変形は、活物質の膨張、収縮に伴うものであり、曲げ及び曲げ戻しが交互に繰り返される。このような過酷な条件では、集電体である銅箔にクラックや破断が発生し、通電抵抗が上昇して電池のサイクル特性が劣化する場合がある。
However, when the present inventors examined, even if it used the copper foil with large elongation for a negative electrode electrical power collector, it turned out that a crack and a fracture | rupture may occur in copper foil by charging / discharging. As a result of detailed investigation, the active material expands and contracts due to charge and discharge, and the current collector copper foil undergoes repeated stress concentration, causing the current collector to partially bend and deform. The bending deformation is repeated by.
Bending deformation is accompanied by expansion and contraction of the active material, and bending and unbending are repeated alternately. Under such harsh conditions, cracks and breaks may occur in the copper foil as a current collector, resulting in an increase in energization resistance and deterioration of the cycle characteristics of the battery.

そこで、本発明は、リチウムイオン二次電池の集電体として用いられたときに、充放電を繰り返してもクラックや破断の発生が良好に抑制されることで、サイクル特性に優れた二次電池負極集電体用圧延銅箔、それを用いたリチウムイオン二次電池用負極材及びリチウムイオン二次電池を提供することを課題とする。   Therefore, when the present invention is used as a current collector of a lithium ion secondary battery, a secondary battery excellent in cycle characteristics can be obtained by suppressing the occurrence of cracks and breaks even when charging and discharging are repeated. It is an object of the present invention to provide a rolled copper foil for a negative electrode current collector, a negative electrode material for a lithium ion secondary battery using the rolled copper foil, and a lithium ion secondary battery.

本発明は、リチウムイオン二次電池の集電体として用いられる銅箔につき、充放電によって生じる繰返し曲げによるクラックや破断の発生しやすさが、当該銅箔の断面において結晶方位が001方向を中心に10°の範囲にある面積の割合と関係があることを見出した。そして、このような知見に基づき銅箔断面において結晶方位が001方向を中心に10°の範囲にある面積の割合を制御することで、サイクル特性に優れた二次電池負極集電体用圧延銅箔を提供することができることを見出した。   The present invention relates to a copper foil used as a current collector of a lithium ion secondary battery, and is susceptible to cracking and breakage due to repeated bending caused by charging and discharging, and the crystal orientation is centered on the 001 direction in the cross section of the copper foil. Has been found to be related to the proportion of the area in the range of 10 °. And based on such knowledge, by controlling the ratio of the area in which the crystal orientation is in the range of 10 ° centered on the 001 direction in the copper foil cross section, the rolled copper for secondary battery negative electrode current collector excellent in cycle characteristics It has been found that a foil can be provided.

以上の知見を基礎として完成した本発明は一側面において、180℃で30分間の熱処理が行われたとき、結晶方位が001方位を中心に10°の範囲にある面積Aの割合が10%以上である断面を有する二次電池負極集電体用圧延銅箔である。   In one aspect of the present invention completed based on the above knowledge, when a heat treatment is performed at 180 ° C. for 30 minutes, the ratio of the area A in which the crystal orientation is in the range of 10 ° centering on the 001 orientation is 10% or more. It is the rolled copper foil for secondary battery negative electrode collectors which has the cross section which is.

本発明に係る二次電池負極集電体用圧延銅箔の一実施形態においては、前記断面における前記面積Aの割合が60%以上である。   In one Embodiment of the rolled copper foil for secondary battery negative electrode collectors which concerns on this invention, the ratio of the said area A in the said cross section is 60% or more.

本発明に係る二次電池負極集電体用圧延銅箔の別の一実施形態においては、JIS−H3100−C1100に規格するタフピッチ銅、又は、JIS−H3100−C1020に規格する無酸素銅を用いて形成されている。   In another embodiment of the rolled copper foil for a secondary battery negative electrode current collector according to the present invention, tough pitch copper standardized to JIS-H3100-C1100 or oxygen-free copper standardized to JIS-H3100-C1020 is used. Is formed.

本発明に係る二次電池負極集電体用圧延銅箔の更に別の一実施形態においては、Agを10〜500質量ppm含む。   In still another embodiment of the rolled copper foil for a secondary battery negative electrode current collector according to the present invention, 10 to 500 ppm by mass of Ag is contained.

本発明に係る二次電池負極集電体用圧延銅箔の更に別の実施形態においては、さらにSnを10〜100質量ppm含む、JIS−H3100−C1020に規格する無酸素銅を用いて形成されている。   In yet another embodiment of the rolled copper foil for a secondary battery negative electrode current collector according to the present invention, the rolled copper foil further comprises 10 to 100 mass ppm of Sn, and is formed using oxygen-free copper standardized to JIS-H3100-C1020. ing.

本発明に係る二次電池負極集電体用圧延銅箔の更に別の実施形態においては、不可避的不純物としてのP、Fe、Zr、Mg、S、Ge及びTiからなる群から選択された1種又は2種以上が合計で20質量ppm以下である。   In yet another embodiment of the rolled copper foil for a secondary battery negative electrode current collector according to the present invention, 1 selected from the group consisting of P, Fe, Zr, Mg, S, Ge and Ti as inevitable impurities A seed or 2 or more types is 20 mass ppm or less in total.

本発明に係る二次電池負極集電体用圧延銅箔の更に別の一実施形態においては、厚さが5〜20μmである。   In still another embodiment of the rolled copper foil for a secondary battery negative electrode current collector according to the present invention, the thickness is 5 to 20 μm.

本発明は別の一側面において、本発明に係る圧延銅箔を備えたリチウムイオン二次電池用負極材である。   Another aspect of the present invention is a negative electrode material for a lithium ion secondary battery including the rolled copper foil according to the present invention.

本発明は更に別の一側面において、本発明の負極材を備えたリチウムイオン二次電池である。   In still another aspect, the present invention is a lithium ion secondary battery including the negative electrode material of the present invention.

本発明によれば、リチウムイオン二次電池の集電体として用いられたときに、充放電を繰り返してもクラックや破断の発生が良好に抑制される二次電池負極集電体用圧延銅箔、それを用いたリチウムイオン二次電池用負極材及びリチウムイオン二次電池を提供することができる。   According to the present invention, when used as a current collector of a lithium ion secondary battery, the rolled copper foil for a secondary battery negative electrode current collector is satisfactorily suppressed from generating cracks and breaks even after repeated charge and discharge. A negative electrode material for a lithium ion secondary battery and a lithium ion secondary battery using the same can be provided.

(圧延銅箔の組成)
本発明の二次電池負極集電体用圧延銅箔の材料としては、JIS−H3100−C1100に規格するタフピッチ銅、又は、JIS−H3100−C1020に規格する無酸素銅が好ましい。これらの組成は純銅に近いため、銅箔の導電率が低下せず、集電体に適する。銅箔に含まれる酸素濃度は、タフピッチ銅の場合は0.01〜0.02質量%、無酸素銅の場合は0.001質量%以下である。
本発明に係る銅箔は、工業的に使用される銅で形成されており、不可避的不純物を含んでいる。この不可避的不純物としてのP、Fe、Zr、Mg、S、Ge及びTiは、微少量存在していても、銅箔の曲げ変形によって結晶方位が回転し易くなり、剪断帯も入り易く、集電体が曲げ変形を繰返した時にクラックや破断が発生しやすくなるため好ましくない。このため、本発明に係る銅箔は、不可避的不純物としてのP、Fe、Zr、Mg、S、Ge及びTiからなる群から選択された1種又は2種以上を合計で20質量ppm以下に制御することが好ましい。
また、材料の特性改善のためにAgを500質量ppm以下含んでもよく、Snを100質量ppm以下含んでもよい。銅箔にAg又はSnを添加すると、仕上げ圧延後の材料強度が高くなり、材料の取り扱い性が良好となるものの、Agの添加量が500質量ppm、Snの添加量が100質量ppmをそれぞれ超えると、導電率が低下すると共に再結晶温度が上昇し、銅合金の表面酸化を抑えつつ再結晶焼鈍することが困難、あるいは負極材の製造工程で、活物質塗工後の乾燥時に集電体である銅箔が再結晶し難くなることで、本発明の特性を発現できなくなる。従って、Agの添加量は500質量ppm以下、Snの添加量は100質量ppm以下がそれぞれ好ましい。なお、AgとSnの添加量の下限は特に限定されないが、通常、合計10ppm以上である。また、AgとSnを同時に添加しても良い。
ここで、AgはCuよりも酸化しにくいので、タフピッチ銅および無酸素銅のどちらの溶湯中でも添加可能である。ただし、酸素濃度については、500質量ppmを超えると酸化銅粒子が増大し、電池の充放電サイクル試験における銅箔の亀裂発生の起点となるなどの悪影響が考えられるため、500質量ppm以下に調整することが好ましい。
また、SnはCuよりも酸化しやすいので、銅箔中で酸化物を形成して電池の充放電サイクル試験における亀裂発生の起点となるなどの悪影響が考えられるため、無酸素銅の溶湯中に添加するのが一般的である。
なお、本明細書において用語「銅箔」を単独で用いたときには銅合金箔も含むものとし、「タフピッチ銅及び無酸素銅」を単独で用いたときにはタフピッチ銅及び無酸素銅をベースとした銅合金箔を含むものとする。
(Composition of rolled copper foil)
As a material of the rolled copper foil for secondary battery negative electrode current collector of the present invention, tough pitch copper standardized to JIS-H3100-C1100 or oxygen-free copper standardized to JIS-H3100-C1020 is preferable. Since these compositions are close to pure copper, the conductivity of the copper foil does not decrease and is suitable for a current collector. The oxygen concentration contained in the copper foil is 0.01 to 0.02% by mass in the case of tough pitch copper, and 0.001% by mass or less in the case of oxygen-free copper.
The copper foil according to the present invention is made of industrially used copper and contains inevitable impurities. Even if a small amount of P, Fe, Zr, Mg, S, Ge and Ti as inevitable impurities is present, the crystal orientation is likely to rotate due to bending deformation of the copper foil, and a shear band is likely to enter. It is not preferable because cracks and breaks are likely to occur when the electric body repeatedly undergoes bending deformation. For this reason, the copper foil which concerns on this invention makes 1 mass or 2 types or more selected from the group which consists of P, Fe, Zr, Mg, S, Ge, and Ti as an unavoidable impurity to 20 mass ppm or less in total It is preferable to control.
Further, Ag may be contained in an amount of 500 ppm by mass or less, and Sn may be contained in an amount of 100 ppm by mass or less in order to improve material properties. When Ag or Sn is added to the copper foil, the material strength after finish rolling is increased, and the handleability of the material is improved, but the addition amount of Ag exceeds 500 mass ppm and the addition amount of Sn exceeds 100 mass ppm. And the conductivity decreases and the recrystallization temperature rises, it is difficult to recrystallize and suppress the surface oxidation of the copper alloy, or the current collector is dried after the active material coating in the negative electrode material manufacturing process When the copper foil is difficult to recrystallize, the characteristics of the present invention cannot be expressed. Therefore, the addition amount of Ag is preferably 500 ppm by mass or less, and the addition amount of Sn is preferably 100 ppm by mass or less. In addition, although the minimum of the addition amount of Ag and Sn is not specifically limited, Usually, it is 10 ppm or more in total. Moreover, you may add Ag and Sn simultaneously.
Here, since Ag is harder to oxidize than Cu, it can be added in either a tough pitch copper or oxygen-free copper melt. However, when the oxygen concentration exceeds 500 mass ppm, the copper oxide particles increase, and adverse effects such as the starting point of cracking of the copper foil in the battery charge / discharge cycle test can be considered. It is preferable to do.
In addition, since Sn is easier to oxidize than Cu, adverse effects such as the formation of an oxide in the copper foil and starting cracks in the charge / discharge cycle test of the battery can be considered. It is common to add.
In addition, when the term “copper foil” is used alone in this specification, the copper alloy foil is also included. When “tough pitch copper and oxygen-free copper” is used alone, copper alloy based on tough pitch copper and oxygen-free copper is used. Includes foil.

(銅箔の製造方法)
本発明の実施形態に係る銅箔は、例えば以下のようにして製造することができる。規定の組成で鋳造したインゴットを熱間圧延後、表面研削で酸化物を除去し、冷間圧延、焼鈍、酸洗を繰返して所定の厚みまで加工することで銅箔を製造する。結晶方位である001方位を中心に10°の範囲の割合を厚み方向の断面に対して10%以上に制御するために、最終圧延加工において、圧延1パスの最小加工度を15%以上、圧延油の動粘度を5mm2/s以下、圧延の歪速度を30〜800/sとする。ここで、最終圧延加工とは、再結晶焼鈍後に製品厚みまで圧延する加工を示す。また、圧延では、一対のロール間に材料を繰り返し通過させて厚みを仕上げていくが、この時、ロール間に1回材料を通過させることを1パスという。
(Manufacturing method of copper foil)
The copper foil which concerns on embodiment of this invention can be manufactured as follows, for example. After hot rolling an ingot cast with a specified composition, the oxide is removed by surface grinding, and cold rolling, annealing, and pickling are repeated to process to a predetermined thickness to produce a copper foil. In order to control the ratio of the range of 10 ° centered on the 001 orientation which is the crystal orientation to 10% or more with respect to the cross section in the thickness direction, in the final rolling process, the minimum degree of processing in one pass of rolling is 15% or more. The kinematic viscosity of the oil is 5 mm 2 / s or less, and the rolling strain rate is 30 to 800 / s. Here, the final rolling process refers to a process of rolling to product thickness after recrystallization annealing. In rolling, the material is repeatedly passed between a pair of rolls to finish the thickness. At this time, passing the material once between the rolls is called one pass.

(圧延銅箔の厚さ)
本発明に用いることのできる圧延銅箔の厚さとしては、5〜20μmが好ましい。銅箔の厚さに特に下限は無いが、5μm未満であると銅箔のハンドリングが悪くなるため、5μm以上が好ましい。箔の厚さの上限も特に無いが、厚みが増すほど電池の単位重量あたりのエネルギー密度が低下し、さらに材料のコストも上昇するため、20μm以下が好ましい。
(Rolled copper foil thickness)
As thickness of the rolled copper foil which can be used for this invention, 5-20 micrometers is preferable. There is no particular lower limit to the thickness of the copper foil, but if it is less than 5 μm, the handling of the copper foil becomes worse, and therefore it is preferably 5 μm or more. The upper limit of the thickness of the foil is not particularly limited, but the thickness is preferably 20 μm or less because the energy density per unit weight of the battery decreases as the thickness increases and the cost of the material also increases.

本発明に係る銅箔は、例えば180℃で30分間の熱処理による再結晶後に、結晶方位が001方位を中心に10°の範囲にある面積Aの割合が10%以上である断面を有する。銅箔は、折り曲げを数回繰り返すと結晶方位が回転する。この結晶方位の回転が亀裂発生の原因となる。結晶の001方位が銅箔の厚さ方向の断面にあり、その断面に平行な方向が曲げ方向であると結晶方位が回転し難くなり、繰り返し曲げ性が向上する。また、亀裂の原因の一つである剪断帯も入り難くなり、繰り返し曲げ性が向上する。本発明に係る銅箔は、001方位を中心に10°の範囲にある面積Aの割合が10%以上であるためこの折り曲げ加工性が良好であり、充放電によって生じる繰り返し曲げによるクラックや破断が発生しにくい。断面における面積Aの割合は、より好ましくは60%以上である。結晶方位は、EBSD(Electron Back Scattering Diffraction)法により測定することができる。   The copper foil according to the present invention has a cross section in which the ratio of the area A in the range of 10 ° centered on the 001 orientation is 10% or more after recrystallization by heat treatment at 180 ° C. for 30 minutes, for example. The crystal orientation of the copper foil rotates when the bending is repeated several times. This rotation of crystal orientation causes cracking. If the 001 orientation of the crystal is in the cross section in the thickness direction of the copper foil and the direction parallel to the cross section is the bending direction, the crystal orientation becomes difficult to rotate, and the repeated bendability is improved. Moreover, it becomes difficult to enter a shear band which is one of the causes of cracks, and the bendability is improved repeatedly. The copper foil according to the present invention has good bending workability because the ratio of the area A in the range of 10 ° centered on the 001 orientation is 10% or more, and cracks and breaks due to repeated bending caused by charging and discharging are good. Hard to occur. The ratio of the area A in the cross section is more preferably 60% or more. The crystal orientation can be measured by an EBSD (Electron Back Scattering Diffraction) method.

以下、本発明の実施例を示すが、これらは本発明をより良く理解するために提供するものであり、本発明が限定されることを意図するものではない。   EXAMPLES Examples of the present invention will be described below, but these are provided for better understanding of the present invention and are not intended to limit the present invention.

実施例1〜18として、高純度電気銅(Cu濃度99.99%以上)に表1に記載の元素を添加してインゴットを作製した。また、このとき、坩堝、鋳型、耐火物からの不純物を混入させないように、さらに、脱酸素処理でP、Zr、Mgを混入させないようにすることで、不可避的不純物としてのP、Fe、Zr、Mg、S、Ge及びTiからなる群から選択された1種又は2種以上が、合計で20質量ppm以下となるように制御した。
続いて、このインゴットを熱間圧延で厚さ7mmの板に加工し、表面研削で酸化物を取り除いた後、冷間圧延、焼鈍、酸洗を繰り返し、最終圧延加工において、1パス当たりの最小加工度、歪速度、圧延油の動粘度につき、表1に示した条件で加工した。
As Examples 1 to 18, ingots were prepared by adding the elements shown in Table 1 to high-purity electrolytic copper (Cu concentration: 99.99% or more). At this time, P, Fe, and Zr as inevitable impurities are prevented by not mixing impurities from the crucible, the mold, and the refractory and further preventing P, Zr, and Mg from being mixed in the deoxidation treatment. , Mg, S, Ge and Ti were controlled so that one or more selected from the group consisting of Mg, S, Ge and Ti would be 20 ppm by mass or less in total.
Subsequently, this ingot is processed into a 7 mm thick plate by hot rolling, oxide is removed by surface grinding, and then cold rolling, annealing, and pickling are repeated, and in the final rolling process, the minimum per pass The degree of processing, strain rate, and kinematic viscosity of the rolling oil were processed under the conditions shown in Table 1.

一方、比較例1〜9として、高純度電気銅に表1に記載の元素を添加してインゴットを作製した。また、このとき、比較例1〜4については不可避的不純物の抑制は行わず、P、Fe、Zr、Mg、S、Ge及びTiからなる群から選択された1種又は2種以上が、合計で20質量ppm超となった。比較例5〜9は、実施例と同様にして不可避的不純物の抑制を行った。
比較例1〜9の上記インゴットの加工条件は実施例と同様であり、表1に示した条件で最終圧延加工を実施した。
On the other hand, as Comparative Examples 1 to 9, ingots were prepared by adding the elements shown in Table 1 to high-purity electrolytic copper. Further, at this time, inevitable impurities are not suppressed for Comparative Examples 1 to 4, and one or more selected from the group consisting of P, Fe, Zr, Mg, S, Ge, and Ti are combined. It became more than 20 mass ppm. In Comparative Examples 5 to 9, inevitable impurities were suppressed in the same manner as in Examples.
The processing conditions of the ingots of Comparative Examples 1 to 9 were the same as those of the example, and the final rolling process was performed under the conditions shown in Table 1.

このようにして作製した実施例1〜18及び比較例1〜9の供試材をAr雰囲気中で180℃で30分間熱処理した後に、CP法(クロスセッションポリッシャー法)を用いて圧延平行方向の厚み方向に切断し、銅箔断面を得た。その後、すぐに「表1に記載の銅箔厚み」×「300μm幅」の面積においてJEOL社製の電子顕微鏡FE−SEMを用い、EBSD法により結晶方位を測定し、TSL社製の解析ソフトを用いてKAM値を算出し、結晶方位が001方位を中心に10°の範囲にある面積Aの割合を算出した。   The specimens of Examples 1 to 18 and Comparative Examples 1 to 9 thus produced were heat-treated at 180 ° C. for 30 minutes in an Ar atmosphere, and then subjected to the rolling parallel direction using the CP method (cross session polisher method). Cut in the thickness direction to obtain a copper foil cross section. Immediately thereafter, the crystal orientation was measured by the EBSD method using the electron microscope FE-SEM manufactured by JEOL in an area of “copper foil thickness described in Table 1” × “300 μm width”, and analysis software manufactured by TSL was used. The KAM value was calculated by using this, and the ratio of the area A in which the crystal orientation was in the range of 10 ° around the 001 orientation was calculated.

続いて、実施例及び比較例で得られた銅箔を負極集電体に用い、定格容量が1Ahの18650サイズの円筒電池型リチウムイオン二次電池を以下の手順で作製し、充放電サイクル寿命を測定した。
負極活物質として平均粒径15μmの天然黒鉛、バインダーとしてPVDFを重量比92:8の比率でNMP(N−メチル−2−ピロリドン)に分散させてスラリーを調整した。このスラリーを銅箔上に塗布後、90℃で30分間乾燥させ、更に120℃で10分乾燥させた。これを銅箔の片面ずつ実施することで、銅箔両面に負極活物質層を形成した。更に、加圧プレスにより電極密度を調整した後に、水分を蒸発させる目的で、真空中にて180℃で30分間、負極材を乾燥した。
正極活物質としてコバルト酸リチウム(LiCoO2)、バインダーとしてPVDF、導電助剤としてアセチレンブラックを重量比92:4:4の比率でNMPに分散させてスラリーを調整した。このスラリーを厚み20μmのアルミ箔上に塗布後、120℃で30分乾燥させた。これをアルミ箔の片面ずつ実施することで、アルミ箔両面に正極活物質層を形成した。さらに、加圧プレスにより、活物質の密度3.2g/cm3、活物質の厚み75μmの電極を作製した。
以上のように作製した正極と負極の間に、厚さ20μmの多孔質ポリエチレンフィルムからなるセパレータを介在させた状態で巻回し、電池ケースに収納した。
上記電池ケースの蓋に、正極の電極リードを接続した後、溶媒としてエチレンカーボネートとジエチルカーボネートを体積比2:3、電解質として1mol/LのLiPF6を溶解した非水電解液を電池ケース内に注液し、電池缶の蓋をかしめて封口して円筒型リチウムイオン二次電池を作製した。
Subsequently, the copper foils obtained in the examples and comparative examples were used for the negative electrode current collector, and a 18650 size cylindrical battery type lithium ion secondary battery having a rated capacity of 1 Ah was prepared by the following procedure, and the charge / discharge cycle life was obtained. Was measured.
A slurry was prepared by dispersing natural graphite having an average particle diameter of 15 μm as a negative electrode active material and PVDF as a binder in NMP (N-methyl-2-pyrrolidone) at a weight ratio of 92: 8. The slurry was applied on a copper foil, dried at 90 ° C. for 30 minutes, and further dried at 120 ° C. for 10 minutes. By carrying out this for each side of the copper foil, negative electrode active material layers were formed on both sides of the copper foil. Furthermore, after adjusting the electrode density by a pressure press, the negative electrode material was dried at 180 ° C. for 30 minutes in a vacuum for the purpose of evaporating water.
A slurry was prepared by dispersing lithium cobaltate (LiCoO 2 ) as a positive electrode active material, PVDF as a binder, and acetylene black as a conductive additive in NMP at a weight ratio of 92: 4: 4. The slurry was applied on an aluminum foil having a thickness of 20 μm and then dried at 120 ° C. for 30 minutes. By carrying out this on each side of the aluminum foil, positive electrode active material layers were formed on both sides of the aluminum foil. Further, an electrode having an active material density of 3.2 g / cm 3 and an active material thickness of 75 μm was produced by a pressure press.
The battery was wound with a separator made of a porous polyethylene film having a thickness of 20 μm interposed between the positive electrode and the negative electrode produced as described above, and stored in a battery case.
After the positive electrode lead is connected to the lid of the battery case, a non-aqueous electrolyte solution in which ethylene carbonate and diethyl carbonate as a solvent are dissolved in a volume ratio of 2: 3 and 1 mol / L LiPF 6 as an electrolyte is dissolved in the battery case. The solution was poured, and the lid of the battery can was crimped and sealed to produce a cylindrical lithium ion secondary battery.

作製した18650サイズの円筒型電池につき、25℃の環境下で充電と放電のサイクルを繰返し、容量維持率を調べた。2回目の充放電を初期容量とし、初期容量に対して放電容量が80%以下に低下するまでの充放電サイクル数につき、100回未満を「×」、100〜300回を「△」、300回を超えたものを「○」としてサイクル特性を評価した。サイクル寿命の評価が○、△であれば実用上問題ない。
充放電条件は、1A定電流で4.2Vまで充電してから4.2Vの定電流で、充電時間が2時間となるまでとし、放電は1Aの定電流で3.0Vまでとした。
The produced 18650 size cylindrical battery was repeatedly charged and discharged in an environment of 25 ° C., and the capacity retention rate was examined. With the second charge / discharge as the initial capacity, the number of charge / discharge cycles until the discharge capacity is reduced to 80% or less of the initial capacity is less than 100 “x”, 100 to 300 times “Δ”, 300 The cycle characteristics were evaluated with “○” as the number exceeding the number of times. If the cycle life evaluation is ○ or Δ, there is no practical problem.
The charging / discharging conditions were a constant current of 4.2 A and a charging time of 2 hours after charging to 4.2 V with a constant current of 1 A, and a discharging of 3.0 V with a constant current of 1 A.

得られた結果を表1に示す。なお、表1の組成において、「OFC」及び「TPC」は、それぞれ無酸素銅(JIS−H3100−C1020)及びタフピッチ銅(JIS−H3100−C1100)を示し、例えば「Ag100ppmTPC」は、タフピッチ銅にAgを100重量ppm添加したものを示す。




























The obtained results are shown in Table 1. In the composition of Table 1, “OFC” and “TPC” represent oxygen-free copper (JIS-H3100-C1020) and tough pitch copper (JIS-H3100-C1100), respectively. This shows the addition of 100 ppm by weight of Ag.




























Figure 2013247017
Figure 2013247017

(評価)
実施例1〜18は、いずれも不可避的不純物としてのP、Fe、Zr、Mg、S、Ge及びTiからなる群から選択された1種又は2種以上が合計で20質量ppm以下であり、面積Aの割合は10%以上であり、リチウムイオン二次電池のサイクル寿命が良好であった。
比較例1〜4は、いずれも不可避的不純物としてのP、Fe、Zr、Mg、S、Ge及びTiからなる群から選択された1種又は2種以上が合計で20質量ppm超であり、面積Aの割合が10%未満であり、リチウムイオン二次電池のサイクル寿命が劣った。
比較例5は、Snの添加濃度が100質量ppmを超えており、180℃で30分間の熱処理では充分に再結晶が進んでおらず、面積Aの割合が10%未満であるため、リチウムイオン二次電池のサイクル寿命が劣った。
比較例6は、最終圧延における1パス加工度の最小値が15%未満となっており、再結晶後の面積Aの割合が10%未満であるため、リチウムイオン二次電池のサイクル寿命が劣った。
比較例7は、最終圧延における圧延油の動粘度が5.0mm2/sを超えており、再結晶後の面積Aの割合が10%未満であるため、リチウムイオン二次電池のサイクル寿命が劣った。
比較例8は、最終圧延における最終パスの歪速度が800/sを超えており、再結晶後の面積Aの割合が10%未満であるため、リチウムイオン二次電池のサイクル寿命が劣った。
比較例9は、最終圧延における1パス加工度の最小値及び圧延油の動粘度が規定値から外れており、再結晶後の面積Aの割合が10%未満であるため、リチウムイオン二次電池のサイクル寿命が劣った。
(Evaluation)
In Examples 1 to 18, one or more selected from the group consisting of P, Fe, Zr, Mg, S, Ge and Ti as inevitable impurities are 20 ppm by mass or less in total. The ratio of area A was 10% or more, and the cycle life of the lithium ion secondary battery was good.
In Comparative Examples 1 to 4, one or two or more selected from the group consisting of P, Fe, Zr, Mg, S, Ge and Ti as inevitable impurities are in total more than 20 mass ppm, The ratio of area A was less than 10%, and the cycle life of the lithium ion secondary battery was inferior.
In Comparative Example 5, the Sn addition concentration exceeds 100 ppm by mass, recrystallization does not proceed sufficiently in the heat treatment at 180 ° C. for 30 minutes, and the ratio of area A is less than 10%. The cycle life of the secondary battery was inferior.
In Comparative Example 6, the minimum value of the degree of one-pass processing in the final rolling is less than 15%, and the ratio of the area A after recrystallization is less than 10%. Therefore, the cycle life of the lithium ion secondary battery is inferior. It was.
In Comparative Example 7, since the kinematic viscosity of the rolling oil in the final rolling exceeds 5.0 mm 2 / s and the ratio of the area A after recrystallization is less than 10%, the cycle life of the lithium ion secondary battery is inferior.
In Comparative Example 8, the strain rate of the final pass in the final rolling exceeded 800 / s, and the ratio of the area A after recrystallization was less than 10%. Therefore, the cycle life of the lithium ion secondary battery was inferior.
In Comparative Example 9, the minimum value of the degree of one-pass processing in the final rolling and the kinematic viscosity of the rolling oil are out of the specified values, and the ratio of the area A after recrystallization is less than 10%. The cycle life of was poor.

Claims (9)

180℃で30分間の熱処理が行われたとき、結晶方位が001方位を中心に10°の範囲にある面積Aの割合が10%以上である断面を有する二次電池負極集電体用圧延銅箔。   Rolled copper for secondary battery negative electrode current collector having a cross section in which the ratio of area A in the range of 10 ° centered on 001 orientation is 10% or more when heat treatment is performed at 180 ° C. for 30 minutes Foil. 前記断面における前記面積Aの割合が60%以上である請求項1に記載の二次電池負極集電体用圧延銅箔。   The rolled copper foil for a secondary battery negative electrode current collector according to claim 1, wherein a ratio of the area A in the cross section is 60% or more. JIS−H3100−C1100に規格するタフピッチ銅、又は、JIS−H3100−C1020に規格する無酸素銅を用いて形成された請求項1又は2に記載の二次電池負極集電体用圧延銅箔。   The rolled copper foil for secondary battery negative electrode collectors of Claim 1 or 2 formed using the tough pitch copper specified to JIS-H3100-C1100, or the oxygen-free copper specified to JIS-H3100-C1020. Agを10〜500質量ppm含む請求項3に記載の二次電池負極集電体用圧延銅箔。   The rolled copper foil for secondary battery negative electrode collectors of Claim 3 containing 10-500 mass ppm of Ag. さらにSnを10〜100質量ppm含む、JIS−H3100−C1020に規格する無酸素銅を用いて形成された請求項1、2又は4に記載の二次電池負極集電体用圧延銅箔。   Furthermore, the rolled copper foil for secondary battery negative electrode collectors of Claim 1, 2 or 4 formed using the oxygen free copper which contains Sn in 10-100 mass ppm and standardizes to JIS-H3100-C1020. 不可避的不純物としてのP、Fe、Zr、Mg、S、Ge及びTiからなる群から選択された1種又は2種以上が合計で20質量ppm以下である請求項1〜5のいずれかに記載の二次電池負極集電体用圧延銅箔。   The total amount of one or more selected from the group consisting of P, Fe, Zr, Mg, S, Ge, and Ti as inevitable impurities is 20 mass ppm or less. Rolled copper foil for secondary battery negative electrode current collector. 厚さが5〜20μmである請求項1〜6のいずれかに記載の二次電池負極集電体用圧延銅箔。   The rolled copper foil for a secondary battery negative electrode current collector according to any one of claims 1 to 6, which has a thickness of 5 to 20 µm. 請求項1〜7のいずれかに記載の圧延銅箔を備えたリチウムイオン二次電池用負極材。   The negative electrode material for lithium ion secondary batteries provided with the rolled copper foil in any one of Claims 1-7. 請求項8に記載の負極材を備えたリチウムイオン二次電池。   A lithium ion secondary battery comprising the negative electrode material according to claim 8.
JP2012120851A 2012-05-28 2012-05-28 Rolled copper foil or rolled copper alloy foil for secondary battery negative electrode current collector, negative electrode material for lithium ion secondary battery and lithium ion secondary battery using the same Active JP6058915B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012120851A JP6058915B2 (en) 2012-05-28 2012-05-28 Rolled copper foil or rolled copper alloy foil for secondary battery negative electrode current collector, negative electrode material for lithium ion secondary battery and lithium ion secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012120851A JP6058915B2 (en) 2012-05-28 2012-05-28 Rolled copper foil or rolled copper alloy foil for secondary battery negative electrode current collector, negative electrode material for lithium ion secondary battery and lithium ion secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2013247017A true JP2013247017A (en) 2013-12-09
JP6058915B2 JP6058915B2 (en) 2017-01-11

Family

ID=49846625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012120851A Active JP6058915B2 (en) 2012-05-28 2012-05-28 Rolled copper foil or rolled copper alloy foil for secondary battery negative electrode current collector, negative electrode material for lithium ion secondary battery and lithium ion secondary battery using the same

Country Status (1)

Country Link
JP (1) JP6058915B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016176094A (en) * 2015-03-19 2016-10-06 Jx金属株式会社 Rolled copper foil, copper-clad laminate, and flexible printed board and electronic equipment
JP2018028120A (en) * 2016-08-16 2018-02-22 古河電気工業株式会社 Copper alloy foil
KR20190039206A (en) 2016-09-16 2019-04-10 가부시키가이샤 무라타 세이사쿠쇼 Negative electrode for lithium ion secondary battery, lithium ion secondary battery, battery pack, electric vehicle, electric power storage system, power tool and electronic device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006307288A (en) * 2005-04-28 2006-11-09 Nikko Kinzoku Kk Rolled copper foil with low gloss for copper-laminated substrate
JP2006326684A (en) * 2005-04-28 2006-12-07 Nikko Kinzoku Kk High-gloss rolled copper foil for copper-clad laminate substrate
JP2007107038A (en) * 2005-10-12 2007-04-26 Nikko Kinzoku Kk Copper or copper alloy foil for circuit
JP2008248331A (en) * 2007-03-30 2008-10-16 Nikko Kinzoku Kk Rolled copper foil
JP2009185376A (en) * 2008-01-08 2009-08-20 Hitachi Cable Ltd Rolled copper foil and manufacturing method therefor
JP2010150598A (en) * 2008-12-25 2010-07-08 Hitachi Cable Ltd Rolled copper foil
WO2011078259A1 (en) * 2009-12-25 2011-06-30 新日鐵化学株式会社 Flexible circuit board and structure of bend section of flexible circuit board

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006307288A (en) * 2005-04-28 2006-11-09 Nikko Kinzoku Kk Rolled copper foil with low gloss for copper-laminated substrate
JP2006326684A (en) * 2005-04-28 2006-12-07 Nikko Kinzoku Kk High-gloss rolled copper foil for copper-clad laminate substrate
JP2007107038A (en) * 2005-10-12 2007-04-26 Nikko Kinzoku Kk Copper or copper alloy foil for circuit
JP2008248331A (en) * 2007-03-30 2008-10-16 Nikko Kinzoku Kk Rolled copper foil
JP2009185376A (en) * 2008-01-08 2009-08-20 Hitachi Cable Ltd Rolled copper foil and manufacturing method therefor
JP2010150598A (en) * 2008-12-25 2010-07-08 Hitachi Cable Ltd Rolled copper foil
WO2011078259A1 (en) * 2009-12-25 2011-06-30 新日鐵化学株式会社 Flexible circuit board and structure of bend section of flexible circuit board

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016176094A (en) * 2015-03-19 2016-10-06 Jx金属株式会社 Rolled copper foil, copper-clad laminate, and flexible printed board and electronic equipment
JP2018028120A (en) * 2016-08-16 2018-02-22 古河電気工業株式会社 Copper alloy foil
WO2018034184A1 (en) * 2016-08-16 2018-02-22 古河電気工業株式会社 Copper alloy foil
CN109477165A (en) * 2016-08-16 2019-03-15 古河电气工业株式会社 Copper alloy foil
EP3502287A4 (en) * 2016-08-16 2020-03-25 Furukawa Electric Co., Ltd. Copper alloy foil
KR20190039206A (en) 2016-09-16 2019-04-10 가부시키가이샤 무라타 세이사쿠쇼 Negative electrode for lithium ion secondary battery, lithium ion secondary battery, battery pack, electric vehicle, electric power storage system, power tool and electronic device

Also Published As

Publication number Publication date
JP6058915B2 (en) 2017-01-11

Similar Documents

Publication Publication Date Title
JP5856076B2 (en) Aluminum alloy foil for electrode current collector and method for producing the same
JP5571616B2 (en) Rolled copper foil, and negative electrode current collector, negative electrode plate and secondary battery using the same
US9698426B2 (en) Aluminum alloy foil for electrode current collector, method for manufacturing same, and lithium ion secondary battery
JP6648088B2 (en) Rolled copper foil for negative electrode current collector of secondary battery, secondary battery negative electrode and secondary battery using the same, and method of producing rolled copper foil for negative electrode current collector of secondary battery
JP5490673B2 (en) Rolled copper foil, and negative electrode current collector, negative electrode plate and secondary battery using the same
WO2015060300A1 (en) Aluminum alloy foil for electrode current collector, and method for producing same
JP5329372B2 (en) Rolled copper foil, and negative electrode current collector, negative electrode plate and secondary battery using the same
WO2012086447A1 (en) Aluminum alloy foil for electrode current collectors and manufacturing method thereof
JP5345974B2 (en) Rolled copper alloy foil, and negative electrode current collector, negative electrode plate and secondary battery using the same
JP5496139B2 (en) Copper foil and secondary battery using the same
JP5416077B2 (en) Rolled copper foil, and negative electrode current collector, negative electrode plate and secondary battery using the same
JP2013001982A (en) Rolled copper foil
JP6058915B2 (en) Rolled copper foil or rolled copper alloy foil for secondary battery negative electrode current collector, negative electrode material for lithium ion secondary battery and lithium ion secondary battery using the same
TWI745864B (en) Rolled copper foil for secondary battery negative current collector, secondary battery negative current collector and secondary battery using the copper foil, and manufacturing method of rolled copper foil for secondary battery negative current collector
JP5143208B2 (en) Rolled copper foil, and negative electrode current collector, negative electrode plate and secondary battery using the same
JP5490761B2 (en) Rolled copper foil for secondary battery negative electrode current collector, negative electrode material for lithium ion secondary battery and lithium ion secondary battery using the same
JP5143923B2 (en) Rolled copper foil and secondary battery using the same
JP2013221160A (en) Copper alloy for negative electrode collector of secondary battery, copper alloy foil for negative electrode collector of secondary battery, and production method therefor
JP2023178071A (en) Rolled copper foil for secondary batteries, and secondary battery negative electrode and method for producing secondary battery using the same
JP2023178067A (en) Rolled copper foil for secondary batteries, and secondary battery negative electrode and method for producing secondary battery using the same
JP5555126B2 (en) Copper alloy foil, electrode for lithium ion secondary battery using the same, and method for producing copper alloy foil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161208

R150 Certificate of patent or registration of utility model

Ref document number: 6058915

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250