JP5246526B1 - Rolled copper foil - Google Patents

Rolled copper foil Download PDF

Info

Publication number
JP5246526B1
JP5246526B1 JP2012033437A JP2012033437A JP5246526B1 JP 5246526 B1 JP5246526 B1 JP 5246526B1 JP 2012033437 A JP2012033437 A JP 2012033437A JP 2012033437 A JP2012033437 A JP 2012033437A JP 5246526 B1 JP5246526 B1 JP 5246526B1
Authority
JP
Japan
Prior art keywords
plane
copper foil
rolled copper
crystal
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012033437A
Other languages
Japanese (ja)
Other versions
JP2013170277A (en
Inventor
岳海 室賀
聡至 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2012033437A priority Critical patent/JP5246526B1/en
Priority to CN2013100064494A priority patent/CN103255312A/en
Priority to KR1020130009644A priority patent/KR102001952B1/en
Application granted granted Critical
Publication of JP5246526B1 publication Critical patent/JP5246526B1/en
Publication of JP2013170277A publication Critical patent/JP2013170277A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/40Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling foils which present special problems, e.g. because of thinness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B2003/005Copper or its alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2261/00Product parameters
    • B21B2261/02Transverse dimensions
    • B21B2261/04Thickness, gauge

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Metal Rolling (AREA)

Abstract

【課題】高屈曲特性とともに優れた耐折り曲げ性を具備させる。
【解決手段】主表面に平行な複数の結晶面には{022}面、{002}面、{113}面、{111}面、及び{133}面が含まれ、主表面に対する2θ/θ法を用いたX線回折測定から求められ、合計値が100となるように換算された各結晶面の回折ピーク強度比をそれぞれI{022}、I{002}、I{113}、I{111}、及びI{133}としたとき、I{113}≦6.0であり、I{111}≦6.0であり、且つ、I{133}≦6.0である。
【選択図】図1
An object of the present invention is to provide excellent bending resistance as well as high bending characteristics.
A plurality of crystal planes parallel to the main surface include {022} plane, {002} plane, {113} plane, {111} plane, and {133} plane, and 2θ / θ with respect to the main surface. The diffraction peak intensity ratios of the crystal planes obtained from the X-ray diffraction measurement using the method and converted so that the total value becomes 100 are I {022} , I {002} , I {113} , I { 111} and I {133} , I {113} ≦ 6.0, I {111} ≦ 6.0, and I {133} ≦ 6.0.
[Selection] Figure 1

Description

本発明は、圧延銅箔に関し、特に、フレキシブルプリント配線板に用いられる圧延銅箔に関する。   The present invention relates to a rolled copper foil, and more particularly to a rolled copper foil used for a flexible printed wiring board.

フレキシブルプリント配線板(FPC:Flexible Printed Circuit)は、薄くて可撓性に優れることから、電子機器等への実装形態における自由度が高い。そのため、折り畳み式携帯電話の折り曲げ部やデジタルカメラ、プリンタヘッド等の可動部、ハードディスクドライブ(HDD:Hard Disk Drive)、デジタルバーサタイルディスク(DVD:Digital Versatile Disk)、コンパクトディスク(CD:Compact Disk)等のディスク関連機
器の可動部の配線等には、FPCが用いられることが多い。したがって、FPCやその配線材として用いられる圧延銅箔には、繰り返しの曲げに耐える優れた屈曲特性が要求されてきた。
A flexible printed circuit (FPC) is thin and excellent in flexibility, and thus has a high degree of freedom in mounting form on an electronic device or the like. Therefore, folding parts of folding cellular phones, movable parts such as digital cameras and printer heads, hard disk drives (HDD: Hard Disk Drive), digital versatile disks (DVDs), compact disks (CDs: Compact Disks), etc. In many cases, FPC is used for wiring of the movable part of the disk-related equipment. Therefore, the rolled copper foil used as FPC and its wiring material has been required to have excellent bending characteristics that can withstand repeated bending.

FPC用の圧延銅箔は、熱間圧延、冷間圧延等の工程を経て製造され、接着剤を介し或いは直接的に、ポリイミド等の樹脂からなるFPCのベースフィルム(基材)と加熱等により貼り合わされ、エッチング等の表面加工を施されて配線となる。圧延銅箔の屈曲特性は、冷間圧延後の加工硬化した硬質な状態より、焼鈍後の再結晶により軟化した状態の方が著しく向上する。そこで、例えば上述の製造工程においては、冷間圧延後の圧延銅箔を用いて伸びやしわ等の変形を避けつつ圧延銅箔を裁断し、基材上に重ね合わせた後に、圧延銅箔の再結晶焼鈍も兼ねて加熱することにより圧延銅箔と基材とを密着させ一体化する製造方法が採られる。   Rolled copper foil for FPC is manufactured through processes such as hot rolling, cold rolling, etc., and through an adhesive or directly by FPC base film (base material) made of resin such as polyimide and heating. They are bonded together and subjected to surface processing such as etching to form wiring. The bending property of the rolled copper foil is significantly improved in the softened state by recrystallization after annealing than in the work-hardened hard state after cold rolling. Therefore, for example, in the above-described manufacturing process, the rolled copper foil is cut using the rolled copper foil after cold rolling while avoiding deformation such as elongation and wrinkle, and after being superimposed on the base material, A heating method is also employed in which the rolled copper foil and the base material are brought into close contact with each other by heating together with recrystallization annealing.

上述のFPCの製造工程を前提として、屈曲特性に優れた圧延銅箔やその製造方法についてこれまでに種々の研究がなされ、圧延銅箔の表面に立方体方位である{002}面({200}面)が発達するほど屈曲特性が向上することが数多く報告されている。   On the premise of the FPC manufacturing process described above, various studies have been made so far on a rolled copper foil having excellent bending characteristics and a manufacturing method thereof, and the {002} plane ({200}) having a cubic orientation on the surface of the rolled copper foil. It has been reported many that the flexural properties improve as the surface) develops.

そこで、例えば、特許文献1では、最終冷間圧延の直前の焼鈍を、再結晶粒の平均粒径が5μm〜20μmになる条件下で行い、最終冷間圧延での圧延加工度を90%以上としている。これにより、再結晶組織に調質した状態において、圧延面のX線回折で求めた{200}面の強度Iが、微粉末銅のX線回折で求めた{200}面の強度Iに対し、I/I>20である立方体集合組織を得る。 Therefore, for example, in Patent Document 1, annealing immediately before the final cold rolling is performed under the condition that the average grain size of the recrystallized grains is 5 μm to 20 μm, and the degree of rolling in the final cold rolling is 90% or more. It is said. Thereby, in a state where the recrystallized structure is conditioned, the strength I of the {200} plane obtained by X-ray diffraction of the rolled surface becomes the strength I 0 of the {200} plane obtained by X-ray diffraction of fine powder copper. In contrast, a cubic texture with I / I 0 > 20 is obtained.

また、例えば、特許文献2では、最終冷間圧延前の立方体集合組織の発達度を高め、最終冷間圧延での加工度を93%以上とし、更に再結晶焼鈍を施すことにより、{200}面の積分強度がI/I≧40の、立方体集合組織が著しく発達した圧延銅箔を得る。 Further, for example, in Patent Document 2, {200} by increasing the degree of development of the cube texture before the final cold rolling, setting the degree of processing in the final cold rolling to 93% or more, and further performing recrystallization annealing. A rolled copper foil whose surface has an integrated strength of I / I 0 ≧ 40 and whose cubic texture is remarkably developed is obtained.

また、例えば、特許文献3では、最終冷間圧延工程における総加工度を94%以上とし、かつ1パスあたりの加工度を15%〜50%に制御する。これにより、再結晶焼鈍後には、X線回折極点図測定により得られる圧延面の{200}面に対する{111}面の面内配向度Δβが10°以下であり、かつ圧延面における立方体集合組織である{200}面の規格化した回折ピーク強度[a]と{200}面の双晶関係にある結晶領域の規格化した回折ピーク強度[b]との比が、[a]/[b]≧3である結晶粒配向状態を得る。   Further, for example, in Patent Document 3, the total work degree in the final cold rolling process is set to 94% or more, and the work degree per pass is controlled to 15% to 50%. Thereby, after recrystallization annealing, the in-plane orientation degree Δβ of the {111} plane with respect to the {200} plane of the rolled plane obtained by X-ray diffraction pole figure measurement is 10 ° or less, and the cubic texture on the rolled plane The ratio between the normalized diffraction peak intensity [a] of the {200} plane and the normalized diffraction peak intensity [b] of the crystal region in the twin relation of the {200} plane is [a] / [b ] A crystal grain orientation state of ≧ 3 is obtained.

このように、従来技術では、最終冷間圧延工程の総加工度を高くすることで、再結晶焼鈍工程後に圧延銅箔の立方体集合組織を発達させて屈曲特性の向上を図っている。   Thus, in the prior art, by increasing the total degree of work in the final cold rolling process, the cubic texture of the rolled copper foil is developed after the recrystallization annealing process to improve the bending characteristics.

特許第3009383号公報Japanese Patent No. 3009383 特許第3856616号公報Japanese Patent No. 3856616 特許第4285526号公報Japanese Patent No. 4285526

一方、近年では、電子機器の小型化や薄型化に伴い、小スペースへFPCを折り曲げて組み込むことが多くなってきている。特に、スマートフォン等のパネル部分では、配線の形成されたFPCが180°に折り曲げられて組み込まれることもあり、圧延銅箔に対し、小さな曲げ半径を許容する耐折り曲げ性の要求が高まってきている。   On the other hand, in recent years, with the downsizing and thinning of electronic devices, the FPC is often folded and incorporated in a small space. In particular, in a panel portion of a smartphone or the like, an FPC in which wiring is formed may be folded at 180 ° and incorporated, and there is an increasing demand for bending resistance that allows a small bending radius for a rolled copper foil. .

このように、用途等に応じて異なる、繰り返しの曲げに耐える高屈曲特性の要求と、小さな曲げ半径に耐える耐折り曲げ性の要求と、に応えるため、従来は、それぞれの用途ごとに、異なる特性の圧延銅箔を分けて製造していた。しかしながら、このような状況は生産性の面から効率的とはいえず、採算性が悪いという課題があった。   In this way, in order to meet the demands for high bending characteristics that can withstand repeated bending and bending resistance that can withstand a small bending radius, which differ depending on the application, etc., in the past, different characteristics have been used for each application. The rolled copper foil was manufactured separately. However, such a situation is not efficient in terms of productivity, and there is a problem that profitability is poor.

本発明の目的は、再結晶焼鈍工程後に、高屈曲特性とともに優れた耐折り曲げ性を具備させることが可能な圧延銅箔を提供することである。このように、両特性を兼ね備える圧延銅箔が実現可能となれば、高屈曲特性を重視する用途と耐折り曲げ性を重視する用途とのどちらへも適用可能となって、生産効率を著しく向上させることができる。   An object of the present invention is to provide a rolled copper foil that can have excellent bending resistance as well as high bending properties after the recrystallization annealing step. In this way, if a rolled copper foil that has both characteristics can be realized, it can be applied to both applications that emphasize high bending characteristics and applications that emphasize bending resistance, thereby significantly improving production efficiency. be able to.

本発明の第1の態様によれば、
主表面を備え、前記主表面に平行な複数の結晶面を有する最終冷間圧延工程後、再結晶焼鈍工程前の圧延銅箔であって、
前記複数の結晶面には{022}面、{002}面、{113}面、{111}面、及び{133}面が含まれ、
前記主表面に対する2θ/θ法を用いたX線回折測定から求められ、合計値が100となるように換算された前記各結晶面の回折ピーク強度比をそれぞれI{022}、I{002}、I{113}、I{111}、及びI{133}としたとき、
{113}≦6.0であり、
{111}≦6.0であり、且つ、
{133}≦6.0である
圧延銅箔が提供される。
According to a first aspect of the invention,
A rolled copper foil comprising a main surface, after a final cold rolling step having a plurality of crystal planes parallel to the main surface, and before a recrystallization annealing step,
The plurality of crystal planes include {022} plane, {002} plane, {113} plane, {111} plane, and {133} plane,
The diffraction peak intensity ratios of the crystal planes obtained by X-ray diffraction measurement using the 2θ / θ method with respect to the main surface and converted so that the total value becomes 100 are I {022} and I {002} , respectively . , I {113} , I {111} , and I {133} ,
I {113} ≦ 6.0,
I {111} ≦ 6.0, and
A rolled copper foil with I {133} ≦ 6.0 is provided.

本発明の第2の態様によれば、
{022}面、{002}面、{113}面、{111}面、及び{133}面を有する粉末銅についてのJCPDSカード又はICDDカードに記載の前記各結晶面の標準的な回折ピークの相対強度から求められ、合計値が100となるように換算された前記各結晶面の回折ピーク強度比をそれぞれI0{022}、I0{002}、I0{113}、I0{111}、及びI0{133}としたとき、
{113}/I0{113}≦0.70であり、
{111}/I0{111}≦0.12であり、且つ、
{133}/I0{133}≦1.3である
第1の態様に記載の圧延銅箔が提供される。
According to a second aspect of the invention,
Standard diffraction peaks of each crystal plane described in the JCPDS card or ICDD card for powdered copper having a {022} plane, a {002} plane, a {113} plane, a {111} plane, and a {133} plane The diffraction peak intensity ratios of the crystal planes calculated from the relative intensities and converted so that the total value becomes 100 are I 0 {022} , I 0 {002} , I 0 {113} , I 0 {111, respectively. } And I 0 {133} ,
I {113} / I0 {113} ≦ 0.70,
I {111} / I0 {111} ≦ 0.12, and
The rolled copper foil as described in the 1st aspect which is I {133} / I0 {133} <= 1.3 is provided.

本発明の第3の態様によれば、
{002}≧7.5である
第1又は第2の態様に記載の圧延銅箔が提供される。
According to a third aspect of the invention,
The rolled copper foil as described in the 1st or 2nd aspect which is I {002} > = 7.5 is provided.

本発明の第4の態様によれば、
{022}面、{002}面、{113}面、{111}面、及び{133}面を有する粉末銅についてのJCPDSカード又はICDDカードに記載の前記各結晶面の標準的な回折ピークの相対強度から求められ、合計値が100となるように換算された前記各結晶面の回折ピーク強度比をそれぞれI0{022}、I0{002}、I0{113}、I0{111}、及びI0{133}としたとき、
{002}/I0{002}≧0.30である
第1〜第3の態様のいずれかに記載の圧延銅箔が提供される。
According to a fourth aspect of the invention,
Standard diffraction peaks of each crystal plane described in the JCPDS card or ICDD card for powdered copper having a {022} plane, a {002} plane, a {113} plane, a {111} plane, and a {133} plane The diffraction peak intensity ratios of the crystal planes calculated from the relative intensities and converted so that the total value becomes 100 are I 0 {022} , I 0 {002} , I 0 {113} , I 0 {111, respectively. } And I 0 {133} ,
The rolled copper foil in any one of the 1st-3rd aspect which is I {002} / I0 {002} > = 0.30 is provided.

本発明の第5の態様によれば、
JIS C1020に規定の無酸素銅、又はJIS C1100に規定のタフピッチ銅を主成分とする
第1〜第4の態様のいずれかに記載の圧延銅箔が提供される。
According to a fifth aspect of the present invention,
The rolled copper foil in any one of the 1st-4th aspect which has an oxygen free copper prescribed | regulated to JIS C1020 or a tough pitch copper prescribed | regulated to JIS C1100 as a main component is provided.

本発明の第6の態様によれば、
銀、硼素、チタン、錫の少なくともいずれかが添加されている
第1〜第5の態様のいずれかに記載の圧延銅箔が提供される。
According to a sixth aspect of the present invention,
The rolled copper foil in any one of the 1st-5th aspect to which at least any one of silver, boron, titanium, and tin is added is provided.

本発明の第7の態様によれば、
総加工度が90%以上の前記最終冷間圧延工程により厚さが20μm以下となっている第1〜第6の態様のいずれかに記載の圧延銅箔が提供される。
According to a seventh aspect of the present invention,
The rolled copper foil in any one of the 1st-6th aspect by which the thickness is 20 micrometers or less by the said last cold rolling process whose total workability is 90% or more is provided.

本発明の第8の態様によれば、
フレキシブルプリント配線板用である
第1〜第7の態様のいずれかに記載の圧延銅箔が提供される。
According to an eighth aspect of the present invention,
The rolled copper foil in any one of the 1st-7th aspect which is an object for flexible printed wiring boards is provided.

本発明によれば、再結晶焼鈍工程後に、高屈曲特性とともに優れた耐折り曲げ性を具備させることが可能な圧延銅箔が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the rolled copper foil which can be equipped with the outstanding bending resistance with a high bending property after a recrystallization annealing process is provided.

本発明の一実施形態に係る圧延銅箔の製造工程を示すフロー図である。It is a flowchart which shows the manufacturing process of the rolled copper foil which concerns on one Embodiment of this invention. 2θ/θ法を用いたX線回折の測定結果であって、(a)本発明の実施例に係る圧延銅箔のX線回折チャートであり、(b)比較例に係る圧延銅箔のX線回折チャートである。It is a measurement result of X-ray diffraction using 2θ / θ method, and (a) is an X-ray diffraction chart of a rolled copper foil according to an example of the present invention, and (b) X of a rolled copper foil according to a comparative example. It is a line diffraction chart. 本発明の実施例に係る圧延銅箔の屈曲特性を測定する摺動屈曲試験装置の模式図である。It is a schematic diagram of the sliding bending test apparatus which measures the bending characteristic of the rolled copper foil which concerns on the Example of this invention. 本発明の実施例に係る圧延銅箔の耐折り曲げ性の試験方法の概要を示す図である。It is a figure which shows the outline | summary of the test method of the bending resistance of the rolled copper foil which concerns on the Example of this invention. 純銅型金属の逆極点図であって、(a)は引張変形による結晶回転方向を示す逆極点図であり、(b)は圧縮変形による結晶回転方向を示す逆極点図である。It is a reverse pole figure of a pure copper type metal, and (a) is a reverse pole figure showing a crystal rotation direction by tensile deformation, and (b) is a reverse pole figure showing a crystal rotation direction by compression deformation. 最終冷間圧延工程後、再結晶焼鈍工程前の圧延銅箔の結晶方位を示す逆極点図である。It is a reverse pole figure which shows the crystal orientation of the rolled copper foil after a final cold rolling process and before a recrystallization annealing process.

<本発明者等が得た知見>
上述のように、FPC用途で求められる屈曲特性の高い圧延銅箔を得るには、圧延面の立方体方位を発達させるほど良い。本発明者等も、立方体方位の占有率を増大させるべく
種々の実験を行ってきた。そして、それまでの実験結果から、最終冷間圧延工程後に存在していた{022}面が、その後の再結晶焼鈍工程によって再結晶に調質されると、{002}面、すなわち立方体方位となることを確認した。つまり、最終冷間圧延工程後、再結晶焼鈍工程前においては、{022}面が主方位となっていることが好ましい。
<Knowledge obtained by the present inventors>
As described above, in order to obtain a rolled copper foil having high bending characteristics required for FPC applications, it is better to develop the cube orientation of the rolled surface. The present inventors have also conducted various experiments in order to increase the occupation ratio of the cube orientation. And from the experimental results so far, when the {022} plane existing after the final cold rolling step is tempered to recrystallization by the subsequent recrystallization annealing step, the {002} plane, that is, the cube orientation and It was confirmed that That is, it is preferable that the {022} plane is the main orientation after the final cold rolling step and before the recrystallization annealing step.

一方、上記の特許文献1〜3や本発明者等が試みたように、立方体集合組織を多く発現させたとしても、多結晶構造をとる圧延銅箔において立方体集合組織である{002}面が100%を占めることはない。例えばこれが最終冷間圧延工程後の状態であれば、主方位である{022}面以外にも、{113}面、{111}面、{133}面等の副方位の結晶面が制御されることなく複数混在し、これらの複数の結晶面を有する結晶粒は、圧延銅箔の諸特性に種々の影響を及ぼすと考えられる。そこで、本発明者等は、これまで不要とされてきた副方位の結晶面に着目し、主方位の占有率を減少させることなく高い屈曲特性を維持しながら、これら副方位の結晶面によって新たな性能を付加できないかを検討してきた。   On the other hand, as described in Patent Documents 1 to 3 and the present inventors, even if a large amount of cube texture is expressed, the {002} plane which is a cube texture in a rolled copper foil having a polycrystalline structure is present. It does not occupy 100%. For example, if this is the state after the final cold rolling step, the sub-orientation crystal planes such as {113} plane, {111} plane and {133} plane are controlled in addition to the {022} plane which is the main orientation. It is considered that a plurality of crystal grains having a plurality of crystal planes without affecting the various characteristics of the rolled copper foil. Therefore, the present inventors have focused on the sub-orientation crystal planes that have been made unnecessary so far, while maintaining high bending characteristics without reducing the occupancy of the main orientation, Have been investigating whether it is possible to add new performance.

このような鋭意研究の結果、本発明者等は、{113}面、{111}面、{133}面等の副方位の結晶面の比率を制御することで、圧延銅箔に新たな付加価値として優れた耐折り曲げ性を付与できることを見いだした。   As a result of such earnest research, the present inventors added a new addition to the rolled copper foil by controlling the ratio of the sub-oriented crystal planes such as {113} plane, {111} plane, {133} plane, etc. It has been found that excellent bending resistance can be imparted as a value.

本発明は、発明者等が見いだした上記知見に基づくものである。   The present invention is based on the above findings found by the inventors.

<本発明の一実施形態>
(1)圧延銅箔の構成
まずは、本発明の一実施形態に係る圧延銅箔の結晶構造等の構成について説明する。
<One Embodiment of the Present Invention>
(1) Configuration of Rolled Copper Foil First, the configuration of the rolled copper foil according to an embodiment of the present invention, such as the crystal structure, will be described.

(圧延銅箔の概要)
本実施形態に係る圧延銅箔は、例えば主表面としての圧延面を備える板状に構成されている。この圧延銅箔は、例えば無酸素銅(OFC:Oxygen-Free Copper)やタフピッチ銅等の純銅を原材料とする鋳塊に、後述の熱間圧延工程や冷間圧延工程等を施し所定厚さとした、最終冷間圧延工程後、再結晶焼鈍工程前の圧延銅箔である。すなわち、本実施形態に係る圧延銅箔は、例えばFPCの可撓性の配線材用途に用いられるよう、総加工度が90%以上、より好ましくは94%以上の最終冷間圧延工程により厚さが20μm以下に構成されており、この後、上述のように、例えばFPCの基材との貼り合わせの工程を兼ねて再結晶焼鈍工程が施され、再結晶することにより優れた屈曲特性を具備させることが企図されている。
(Outline of rolled copper foil)
The rolled copper foil which concerns on this embodiment is comprised by the plate shape provided with the rolling surface as a main surface, for example. This rolled copper foil has a predetermined thickness by subjecting an ingot made of pure copper such as oxygen-free copper (OFC) or tough pitch copper to a hot rolling process or a cold rolling process, which will be described later. The rolled copper foil after the final cold rolling process and before the recrystallization annealing process. That is, the rolled copper foil according to this embodiment has a total workability of 90% or more, more preferably 94% or more in the final cold rolling step so as to be used for flexible wiring material applications such as FPC. After that, as described above, for example, a recrystallization annealing process is performed also as a bonding process with an FPC base material, and excellent reflex characteristics are obtained by recrystallization. It is intended to.

原材料となる無酸素銅は、例えばJIS C1020,H3100等に規定の純度が99.96%以上の銅材である。酸素含有量は完全にゼロでなくともよく、例えば数ppm程度の酸素が含まれていてもよい。また、タフピッチ銅は、例えばJIS C1100,H3100等に規定の純度が99.9%以上の銅材である。タフピッチ銅の場合、酸素含有量は例えば100ppm〜600ppm程度である。これらの銅材に銀(Ag)等の所定の添加材を微量に加えて希薄銅合金とし、耐熱性等の諸特性が調整された圧延銅箔とする場合もある。本実施形態に係る圧延銅箔には純銅と希薄銅合金との両方を含むことができ、原材料の銅材質や添加材による本実施形態の効果への影響はほとんど生じない。   The oxygen-free copper used as a raw material is a copper material having a purity specified in JIS C1020, H3100, etc. of 99.96% or more. The oxygen content may not be completely zero, and for example, oxygen of about several ppm may be included. Further, tough pitch copper is a copper material having a purity specified in, for example, JIS C1100, H3100, etc. of 99.9% or more. In the case of tough pitch copper, the oxygen content is, for example, about 100 ppm to 600 ppm. In some cases, a small amount of a predetermined additive such as silver (Ag) is added to these copper materials to form a diluted copper alloy, and a rolled copper foil in which various properties such as heat resistance are adjusted. The rolled copper foil according to the present embodiment can contain both pure copper and dilute copper alloy, and the influence of the present embodiment on the effect of the present embodiment by the copper material and the additive material hardly occurs.

最終冷間圧延工程における総加工度は、最終冷間圧延工程前の加工対象物(銅の板材)の厚さをTとし、最終冷間圧延工程後の加工対象物の厚さをTとすると、総加工度(%)=[(T−T)/T]×100で表わされる。総加工度を90%以上、より好ましくは94%以上とすることで、高い屈曲特性を有する圧延銅箔が得られる。 The total degree of work in the final cold rolling process is defined as T B is the thickness of the workpiece (copper plate material) before the final cold rolling process, and T A is the thickness of the workpiece after the final cold rolling process. Then, the total degree of processing (%) = [(T B −T A ) / T B ] × 100. By setting the total workability to 90% or more, more preferably 94% or more, a rolled copper foil having high bending properties can be obtained.

(圧延面の結晶構造)
上記圧延銅箔は、圧延面に平行な複数の結晶面を有している。具体的には、最終冷間圧延工程後、再結晶焼鈍工程前の状態で、複数の結晶面には、{022}面、{002}面、{113}面、{111}面、及び{133}面が含まれる。{022}面は圧延面における主方位となっており、その他の各結晶面は副方位である。このように、圧延面において、各結晶面はそれぞれが所定の占有率を有している。各結晶面の占有率は、圧延銅箔の圧延面に対するX線回折測定から求めることができる。
(Crystal structure of rolled surface)
The rolled copper foil has a plurality of crystal planes parallel to the rolled surface. Specifically, after the final cold rolling step and before the recrystallization annealing step, the plurality of crystal planes include {022} plane, {002} plane, {113} plane, {111} plane, and { 133} plane is included. The {022} plane is the main orientation in the rolling plane, and the other crystal planes are sub-azimuths. Thus, in the rolled surface, each crystal plane has a predetermined occupation ratio. The occupation ratio of each crystal plane can be obtained from X-ray diffraction measurement with respect to the rolled surface of the rolled copper foil.

すなわち、2θ/θ法を用いたX線回折により測定した上記5つの結晶面の回折ピーク強度を合計値が100となるような比に換算し、各結晶面の回折ピーク強度比を求める。係る回折ピーク強度比は、圧延面における各結晶面の占有率に略等しい。   That is, the diffraction peak intensities of the five crystal planes measured by X-ray diffraction using the 2θ / θ method are converted into a ratio such that the total value becomes 100, and the diffraction peak intensity ratio of each crystal plane is obtained. The diffraction peak intensity ratio is substantially equal to the occupancy ratio of each crystal plane on the rolled surface.

各結晶面の回折ピーク強度から、代表として{022}面の回折ピーク強度比を求める換算式(A)を以下に示す。ここで、各結晶面の回折ピーク強度比をそれぞれI{022}、I{002}、I{113}、I{111}、及びI{133}とし、各結晶面の回折ピーク強度をそれぞれI’{022}、I’{002}、I’{113}、I’{111}、及びI’{133}とする。 A conversion formula (A) for obtaining the diffraction peak intensity ratio of the {022} plane as a representative from the diffraction peak intensity of each crystal plane is shown below. Here, the diffraction peak intensity ratio of each crystal plane is set to I {022} , I {002} , I {113} , I {111} , and I {133} , respectively, and the diffraction peak intensity of each crystal plane is set to I Let {{022} , I ' {002} , I' {113} , I ' {111} , and I' {133} .

Figure 0005246526
Figure 0005246526

本実施形態に係る圧延銅箔において、各結晶面の回折ピーク強度比は、例えば以下の式(1)〜(3)が全て成り立つ関係にある。   In the rolled copper foil according to the present embodiment, the diffraction peak intensity ratio of each crystal plane has a relationship in which all of the following formulas (1) to (3) hold, for example.

{113}≦6.0・・・(1)
{111}≦6.0・・・(2)
{133}≦6.0・・・(3)
I {113} ≦ 6.0 (1)
I {111} ≦ 6.0 (2)
I {133} ≦ 6.0 (3)

また、各結晶面の回折ピーク強度比の値を、銅の標準的な回折ピーク強度比を基準に規定することもできる。銅の標準的な回折ピークとしては、例えば、{022}面、{002}面、{113}面、{111}面、及び{133}面を有する粉末銅の回折ピークが挙げられる。例えばJCPDS(Joint Committee for Powder Diffraction Standards)カード(カード番号:40836)、又はICDD(International Center for Diffraction Data)カードには、係る回折ピークの相対強度が記載されている。   Further, the value of the diffraction peak intensity ratio of each crystal plane can be defined based on the standard diffraction peak intensity ratio of copper. Examples of the standard diffraction peak of copper include a diffraction peak of powdered copper having a {022} plane, a {002} plane, a {113} plane, a {111} plane, and a {133} plane. For example, the JCPDS (Joint Committee for Powder Diffraction Standards) card (card number: 40836) or the ICDD (International Center for Diffraction Data) card describes the relative intensity of such diffraction peaks.

上記5つの結晶面の標準的な回折ピークの相対強度を合計値が100となるような比に換算し直し、粉末銅について各結晶面の回折ピーク強度比を求め、これを基準値とすることができる。   Convert the relative intensity of the standard diffraction peaks of the above five crystal planes into a ratio such that the total value is 100, and obtain the diffraction peak intensity ratio of each crystal plane for powdered copper, and use this as the reference value. Can do.

各結晶面の回折ピークの相対強度から、代表として{022}面の回折ピーク強度比を求める換算式(B)を以下に示す。ここで、粉末銅における各結晶面の回折ピーク強度比をそれぞれI0{022}、I0{002}、I0{113}、I0{111}、及びI0{133}とし、各結晶面の回折ピーク強度をそれぞれI{022}、I{002}、I{113}、I{111}、及びI{133}とする。 A conversion formula (B) for obtaining the diffraction peak intensity ratio of the {022} plane as a representative from the relative intensity of the diffraction peak of each crystal plane is shown below. Here, the diffraction peak intensity ratio of each crystal plane in powder copper is set to I 0 {022} , I 0 {002} , I 0 {113} , I 0 {111} , and I 0 {133} , respectively, The diffraction peak intensities of the surfaces are I 0{022} , I 0{002} , I 0{113} , I 0{111} , and I 0{133} , respectively.

Figure 0005246526
Figure 0005246526

本実施形態に係る圧延銅箔においては、上記の式(1)〜(3)に加え、好ましくは、上記粉末銅における各結晶面の回折ピーク強度比を基準値とする以下の式(4)〜(6)が全て成り立つ関係にある。   In the rolled copper foil according to the present embodiment, in addition to the above formulas (1) to (3), preferably, the following formula (4) using the diffraction peak intensity ratio of each crystal plane in the powdered copper as a reference value: The relations (6) to (6) are all satisfied.

{113}/I0{113}≦0.70・・・(4)
{111}/I0{111}≦0.12・・・(5)
{133}/I0{133}≦1.3・・・(6)
I {113} / I0 {113} ≦ 0.70 (4)
I {111} / I0 {111} ≦ 0.12 (5)
I {133} / I 0 {133} ≦ 1.3 (6)

また、本実施形態に係る圧延銅箔において、好ましくは以下の式(7)が成り立つ。   Moreover, in the rolled copper foil which concerns on this embodiment, Preferably the following formula | equation (7) is materialized.

{002}≧7.5・・・(7) I {002} ≧ 7.5 (7)

また、上記{002}面のピーク強度比I{002}についても、粉末銅における{002}面の回折ピーク強度比I0{002}を基準値とし、より好ましくは以下のように規定することができる。 The peak intensity ratio I {002} of the {002} plane is also defined as follows, with the diffraction peak intensity ratio I 0 {002} of the {002} plane in powdered copper as a reference value. Can do.

{002}/I0{002}≧0.30・・・(8) I {002} / I0 {002} ≧ 0.30 (8)

(結晶構造の作用)
以上により、本実施形態に係る圧延銅箔は、再結晶焼鈍工程後には、繰り返しの曲げに耐える高屈曲特性とともに、小さな曲げ半径に耐える優れた耐折り曲げ性を具備するよう構成される。
(Action of crystal structure)
As described above, the rolled copper foil according to the present embodiment is configured to have excellent bending resistance that can withstand a small bending radius as well as high bending characteristics that can withstand repeated bending after the recrystallization annealing step.

つまり、再結晶焼鈍工程前の{022}面は再結晶焼鈍工程後に{002}面へと変化し、再結晶焼鈍工程前の{002}面は再結晶焼鈍工程後もそのまま残存することで、圧延銅箔の屈曲特性を向上させる。これ以外の{113}面、{111}面、及び{133}面は、屈曲特性には寄与しない不要な結晶面である。よって、係る結晶面について、上記の式(1)〜(3)が成り立ち、好ましくは上記の式(4)〜(6)が成り立つとき、上記不要な結晶面が少なくなり、屈曲特性の向上に有利となる。   That is, the {022} plane before the recrystallization annealing process changes to the {002} plane after the recrystallization annealing process, and the {002} plane before the recrystallization annealing process remains as it is after the recrystallization annealing process. Improve the bending properties of the rolled copper foil. The other {113} plane, {111} plane, and {133} plane are unnecessary crystal planes that do not contribute to bending characteristics. Therefore, for the crystal plane, when the above formulas (1) to (3) are satisfied, and preferably when the above formulas (4) to (6) are satisfied, the unnecessary crystal plane is reduced and the bending characteristics are improved. It will be advantageous.

また、本発明者等は、係る結晶面について、上記の式(1)〜(3)が全て成り立つ関係にあり、好ましくは上記の式(4)〜(6)が全て成り立つ関係にあるとき、再結晶焼鈍工程後に優れた耐折り曲げ性が発揮されることを見いだした。つまり、各副方位のうち{113}面、{111}面、及び{133}面の全てが所定の比率より低くなると、耐折り曲げ性が向上する。   Further, the present inventors have a relationship in which all of the above formulas (1) to (3) are satisfied, and preferably in a relationship in which all the above formulas (4) to (6) are satisfied, It has been found that excellent bending resistance is exhibited after the recrystallization annealing process. That is, when all of the {113} plane, {111} plane, and {133} plane among the sub-azimuths are lower than a predetermined ratio, the bending resistance is improved.

また、本発明者等は、最終冷間圧延工程後、再結晶焼鈍工程前の圧延銅箔に存在する{002}面には、{022}面から{002}面への再結晶焼鈍工程による変化を促進させる働きがあることを見いだした。したがって、好ましくは上記の式(7)が成り立ち、より好ましくは上記の式(8)が成り立つことで、再結晶焼鈍工程後に{002}面が多く得られ、いっそう優れた屈曲特性を得ることができる。   In addition, the inventors of the present invention found that the {002} plane existing in the rolled copper foil after the final cold rolling process and before the recrystallization annealing process is based on the recrystallization annealing process from the {022} plane to the {002} plane. I found that there is a work to promote change. Therefore, preferably, the above formula (7) is satisfied, and more preferably, the above formula (8) is satisfied, so that many {002} planes can be obtained after the recrystallization annealing step, and more excellent bending characteristics can be obtained. it can.

このように、各結晶面の回折ピーク強度比、つまり、回折ピーク強度のバランスが、圧延銅箔の屈曲特性や折り曲げ性に多大な影響を及ぼす。係る各結晶面の回折ピーク強度のバランスは、後述するように、主に最終冷間圧延工程時の圧縮応力と引張応力との応力バ
ランスにより決まる。
Thus, the diffraction peak intensity ratio of each crystal plane, that is, the balance of the diffraction peak intensities has a great influence on the bending characteristics and bendability of the rolled copper foil. As will be described later, the balance of the diffraction peak intensity of each crystal plane is mainly determined by the stress balance between the compressive stress and the tensile stress during the final cold rolling process.

(2)圧延銅箔の製造方法
次に、本発明の一実施形態に係る圧延銅箔の製造方法について、図1を用いて説明する。図1は、本実施形態に係る圧延銅箔の製造工程を示すフロー図である。
(2) Manufacturing method of rolled copper foil Next, the manufacturing method of the rolled copper foil which concerns on one Embodiment of this invention is demonstrated using FIG. FIG. 1 is a flow chart showing the manufacturing process of the rolled copper foil according to this embodiment.

(鋳塊の準備工程S10)
図1に示すように、まずは、無酸素銅(OFC:Oxygen-Free Copper)やタフピッチ銅等の純銅を原材料として鋳造を行って鋳塊(インゴット)を準備する。鋳塊は、例えば所定厚さ、所定幅を備える板状に形成する。原材料となる無酸素銅やタフピッチ銅等の純銅は、圧延銅箔の諸特性を調整するため、所定の添加材が添加された希薄銅合金となっていてもよい。
(Ingot preparation step S10)
As shown in FIG. 1, first, casting is performed using pure copper such as oxygen-free copper (OFC) or tough pitch copper as a raw material to prepare an ingot. The ingot is formed in a plate shape having a predetermined thickness and a predetermined width, for example. Pure copper such as oxygen-free copper or tough pitch copper as a raw material may be a dilute copper alloy to which a predetermined additive is added in order to adjust various properties of the rolled copper foil.

添加材で調整可能な上記諸特性には、例えば耐熱性がある。上述のように、FPC用の圧延銅箔では、高屈曲特性を得るための再結晶焼鈍工程は、例えばFPCの基材との貼り合わせの工程を兼ねて行われる。貼り合わせの際の加熱温度は、例えばFPCの樹脂等からなる基材の硬化温度や、使用する接着剤の硬化温度等に併せて設定され、温度条件の範囲は広く多種多様である。このように設定された加熱温度に圧延銅箔の軟化温度を合わせるべく、圧延銅箔の耐熱性を調整可能な添加材が添加される場合がある。   The above-mentioned various characteristics that can be adjusted with the additive include, for example, heat resistance. As described above, in the rolled copper foil for FPC, the recrystallization annealing process for obtaining a high bending property is performed, for example, also as a bonding process with an FPC base material. The heating temperature at the time of bonding is set in accordance with, for example, the curing temperature of a base material made of an FPC resin or the like, the curing temperature of an adhesive to be used, and the range of temperature conditions is wide and diverse. In order to adjust the softening temperature of the rolled copper foil to the heating temperature set in this way, an additive capable of adjusting the heat resistance of the rolled copper foil may be added.

本実施形態に使用される鋳塊として、添加材が無添加の鋳塊や、幾種類かの添加材を添加した鋳塊を以下の表1に例示する。   As an ingot used in the present embodiment, an ingot having no additive added, and an ingot added with several kinds of additives are exemplified in Table 1 below.

Figure 0005246526
Figure 0005246526

また、上記の表1に示す添加材やその他の添加材として、耐熱性を上昇又は降下させる添加材の代表例には、例えば10ppm〜500ppm程度の硼素(B)、ニオブ(Nb)、チタン(Ti)、ニッケル(Ni)、ジルコニウム(Zr)、バナジウム(V)、マンガン(Mn)、ハフニウム(Hf)、タンタル(Ta)、及びカルシウム(Ca)のいずれか1つ又は複数の元素を添加した例がある。或いは、第1の添加元素としてAgを添加し、第2の添加元素として上記元素のいずれか1つ又は複数の元素を添加した例がある。そのほか、クロム(Cr)、亜鉛(Zn)、ガリウム(Ga)、ゲルマニウム(Ge)、砒素(As)、Cd(カドミウム)、インジウム(In)、錫(Sn)、アンチモン(Sb)、金(Au)等を微量添加することも可能である。   Moreover, as a representative example of the additive which raises or lowers the heat resistance as the additive shown in Table 1 and other additives, for example, boron (B), niobium (Nb), titanium (about 10 ppm to 500 ppm) One or more elements of Ti), nickel (Ni), zirconium (Zr), vanadium (V), manganese (Mn), hafnium (Hf), tantalum (Ta), and calcium (Ca) were added. There is an example. Alternatively, there is an example in which Ag is added as the first additive element and any one or more of the above elements are added as the second additive element. In addition, chromium (Cr), zinc (Zn), gallium (Ga), germanium (Ge), arsenic (As), Cd (cadmium), indium (In), tin (Sn), antimony (Sb), gold (Au) ) Etc. can also be added in small amounts.

なお、鋳塊の組成は、後述の最終冷間圧延工程S40を経た後の圧延銅箔においても略そのまま維持され、鋳塊中に添加材を加えた場合には、鋳塊と圧延銅箔とは略同じ添加材濃度となる。   Note that the composition of the ingot is maintained substantially as it is in the rolled copper foil after the final cold rolling step S40 described later, and when an additive is added to the ingot, the ingot and the rolled copper foil Have substantially the same additive concentration.

また、後述の焼鈍工程S32における温度条件は、銅材質や添加材による耐熱性に応じて適宜変更する。但し、上記銅材質や添加材、これに応じた焼鈍工程S32の温度条件の変更等は、本実施形態の効果に対してほとんど影響を与えない。   Moreover, the temperature conditions in the below-mentioned annealing process S32 are suitably changed according to the heat resistance by a copper material or an additive. However, the change of the temperature condition of the said copper material, an additive, and annealing process S32 according to this has little influence with respect to the effect of this embodiment.

(熱間圧延工程S20)
次に、準備した鋳塊に熱間圧延を施して、鋳造後の所定厚さよりも薄い板厚の板材とする。
(Hot rolling process S20)
Next, the prepared ingot is hot-rolled to obtain a plate material having a thickness smaller than a predetermined thickness after casting.

(繰り返し工程S30)
続いて、冷間圧延工程S31と焼鈍工程S32とを所定回数繰り返し実施する繰り返し工程S30を行う。すなわち、冷間圧延を施して加工硬化させた上記板材に、焼鈍処理を施して板材を焼き鈍すことにより加工硬化を緩和する。これを所定回数繰り返すことで、「生地」と称される銅条が得られる。銅材に耐熱性を調整する添加材等が加えられている場合は、銅材の耐熱性に応じて焼鈍処理の温度条件を適宜変更する。
(Repetition step S30)
Subsequently, a repeating step S30 is performed in which the cold rolling step S31 and the annealing step S32 are repeatedly performed a predetermined number of times. That is, work hardening is relieved by subjecting the plate material that has been cold-rolled and work hardened to an annealing treatment to anneal the plate material. By repeating this a predetermined number of times, a copper strip called “dough” is obtained. When an additive for adjusting heat resistance is added to the copper material, the temperature condition of the annealing treatment is appropriately changed according to the heat resistance of the copper material.

なお、繰り返し工程S30中、繰り返し途中の焼鈍工程S32を「中間焼鈍工程」と呼ぶ。また、繰り返しの最後、つまり、後述の最終冷間圧延工程S40の直前に行われる焼鈍工程S32を「最終焼鈍工程」又は「生地焼鈍工程」と呼ぶ。   In addition, in the repetition process S30, the annealing process S32 in the middle of the repetition is referred to as an “intermediate annealing process”. Further, the annealing step S32 performed at the end of the repetition, that is, immediately before the final cold rolling step S40 described later is referred to as a “final annealing step” or a “dough annealing step”.

繰り返しの最後に行われる生地焼鈍工程では、上記の銅条(生地)に生地焼鈍処理を施し、焼鈍生地を得る。生地焼鈍工程においても、銅材の耐熱性に応じて温度条件を適宜変更する。このとき、生地焼鈍工程は、上記の各工程に起因する加工歪みを充分に緩和することのできる温度条件、例えば完全焼鈍処理と略同等の温度条件で実施することが好ましい。   In the dough annealing process performed at the end of the repetition, the above-mentioned copper strip (fabric) is subjected to dough annealing treatment to obtain an annealed dough. Also in the dough annealing step, the temperature condition is appropriately changed according to the heat resistance of the copper material. At this time, it is preferable that the dough annealing step is performed under a temperature condition that can sufficiently relieve the processing distortion caused by each of the above steps, for example, a temperature condition substantially equivalent to a complete annealing treatment.

(最終冷間圧延工程S40)
次に、最終冷間圧延工程S40を実施する。最終冷間圧延は仕上げ冷間圧延とも呼ばれ、仕上げとなる冷間圧延を複数回に亘って焼鈍生地に施す。このとき、高い屈曲特性を有する圧延銅箔が得られるよう、総加工度を90%以上、より好ましくは、例えば特許文献3の技術を本実施形態に応用し、94%以上とする。これにより、再結晶焼鈍工程後において、いっそう高屈曲率が得られ易い圧延銅箔となる。
(Final cold rolling process S40)
Next, the final cold rolling step S40 is performed. The final cold rolling is also referred to as finish cold rolling, and cold rolling to be finished is applied to the annealed fabric a plurality of times. At this time, in order to obtain a rolled copper foil having high bending characteristics, the total workability is 90% or more, and more preferably, for example, the technique of Patent Document 3 is applied to this embodiment to 94% or more. Thereby, it becomes a rolled copper foil in which a higher bending rate is more easily obtained after the recrystallization annealing step.

また、冷間圧延を複数回繰り返すごとに焼鈍生地が薄くなるのに応じて、例えば特許文献3の技術を応用し、1回(1パス)あたりの加工度を徐々に小さくしていくことが好ましい。ここで、1パスあたりの加工度は、上記総加工度の例に倣い、nパス目の圧延前の加工対象物の厚さをTBnとし、圧延後の加工対象物の厚さをTAnとすると、1パスあたりの加工度(%)=[(TBn−TAn)/TBn]×100で表わされる。 Also, as the annealed dough becomes thinner each time cold rolling is repeated a plurality of times, for example, the technique of Patent Document 3 can be applied to gradually reduce the degree of processing per pass (one pass). preferable. Here, the degree of processing per pass follows the example of the total degree of processing, and the thickness of the workpiece before rolling of the n-th pass is T Bn, and the thickness of the workpiece after rolling is T An. Then, the degree of processing per pass (%) = [(T Bn −T An ) / T Bn ] × 100.

圧延加工時、焼鈍生地等の加工対象物は、例えば互いに対向する1対のロール間の間隙に引き込まれ、反対側に引き出されることで減厚される。加工対象物の速度は、ロールに引き込まれる前の入り口側ではロールの回転速度より遅く、ロールから引き出された後の出口側ではロールの回転速度より速い。したがって、加工対象物には、入り口側では圧縮応力が、出口側では引張応力がかかる。加工対象物を薄く加工するためには、圧縮応力>引張応力でなければならない。1パスあたりの加工度を調整することで、圧縮応力>引張応力であることを前提として、それぞれの応力成分(圧縮成分と引張成分)の比を調整することができる。これにより、上述のように、圧縮応力と引張応力との応力バランスが変わり、副方位の結晶面の比率を調整することができる。   At the time of rolling, an object to be processed such as annealed dough is reduced in thickness by, for example, being drawn into a gap between a pair of rolls facing each other and drawn to the opposite side. The speed of the workpiece is slower than the rotation speed of the roll on the entrance side before being drawn into the roll, and faster than the rotation speed of the roll on the exit side after being drawn out of the roll. Accordingly, the workpiece is subjected to compressive stress on the entrance side and tensile stress on the exit side. In order to thinly process a workpiece, compressive stress> tensile stress must be satisfied. By adjusting the degree of processing per pass, it is possible to adjust the ratio of each stress component (compression component and tensile component) on the premise that compression stress> tensile stress. Thereby, as mentioned above, the stress balance between the compressive stress and the tensile stress changes, and the ratio of the crystal planes in the sub-orientation can be adjusted.

また、最終冷間圧延工程S40では、冷間圧延を複数回繰り返すごとに、以下に説明す
る中立点の位置がロールの出口側へと移動していくよう制御することが好ましい。すなわち、上記のように、ロールの回転速度に対して入り口側と出口側とで大小関係が逆転する加工対象物の速度は、入り口側及び出口側の間のどこかの位置でロールの回転速度と等しくなる。この両者の速度が等しい位置を中立点といい、中立点では加工対象物にかかる圧力が最大となる。
In the final cold rolling step S40, it is preferable to control the position of the neutral point described below to move toward the outlet side of the roll every time cold rolling is repeated a plurality of times. That is, as described above, the speed of the workpiece whose magnitude relationship is reversed between the inlet side and the outlet side with respect to the rotational speed of the roll is the rotational speed of the roll at some position between the inlet side and the outlet side. Is equal to A position where both speeds are equal is called a neutral point, and the pressure applied to the workpiece is maximized at the neutral point.

中立点の位置は、前方張力、後方張力、圧延速度(ロールの回転速度)、ロール径、加工度、圧延荷重等の組み合わせを調整することで制御することができる。つまり、中立点の位置を制御することによっても、圧縮応力及び引張応力の比を調整することができ、副方位の結晶面の比率を調整することができる。   The position of the neutral point can be controlled by adjusting a combination of forward tension, backward tension, rolling speed (roll rotational speed), roll diameter, degree of processing, rolling load, and the like. That is, by controlling the position of the neutral point, the ratio between the compressive stress and the tensile stress can be adjusted, and the ratio of the crystal planes in the sub-orientation can be adjusted.

上述のように、各結晶面の回折ピーク強度のバランスは、圧延銅箔の屈曲特性や折り曲げ性に多大な影響を与え、係る各結晶面の回折ピーク強度のバランスは、主に最終冷間圧延工程時の圧縮応力と引張応力との応力バランスにより決まる。   As described above, the balance of the diffraction peak intensity of each crystal plane has a great influence on the bending characteristics and bendability of the rolled copper foil, and the balance of the diffraction peak intensity of each crystal plane is mainly the final cold rolling. It is determined by the stress balance between compressive stress and tensile stress during the process.

具体的には、最終冷間圧延工程S40等の圧延加工時、銅材中の銅結晶は、圧延工程時の応力により回転現象を起こし、いくつかの経路で{022}面へと変化する。圧縮応力が大きくなるほど{002}面や{113}面を経由し易く、引張応力が大きくなるほど{111}面や{133}面を経由し易く、それぞれ{022}面へと変化する。   Specifically, during the rolling process such as the final cold rolling step S40, the copper crystal in the copper material undergoes a rotation phenomenon due to the stress during the rolling step and changes to the {022} plane in several paths. The larger the compressive stress, the easier it is to go through the {002} plane and the {113} plane, and the higher the tensile stress, the easier it is to go through the {111} plane and the {133} plane, respectively changing to the {022} plane.

つまり、上記の式(2),(3)、或いは上記の式(5),(6)は、圧延銅箔中の{111}面や{133}面の比率が低く、引張応力が弱いことを示している。また、上記の式(1)或いは(4)だけをみると、圧縮応力が弱いことを示すともとれるが、上記の式(7)或いは(8)をみると、圧縮応力が強いことを示している。よって、これらを総合的に判断すると、上記の式(1)〜(8)は、全体として圧縮応力が強い状態を規定しているといえる。   In other words, the above formulas (2) and (3) or the above formulas (5) and (6) have a low ratio of {111} plane and {133} plane in the rolled copper foil and a weak tensile stress. Is shown. In addition, looking at the above formula (1) or (4) alone indicates that the compressive stress is weak, but looking at the above formula (7) or (8) shows that the compressive stress is strong. Yes. Therefore, if these are judged comprehensively, it can be said that said Formula (1)-(8) prescribes | regulates the state with a strong compressive stress as a whole.

このように、各パスにおける加工度の大きさ制御や中立点の位置制御等により、引張応力に比べて圧縮応力が優勢な状態で最終冷間圧延工程S40を施すことで、上記の式(1)〜(8)を満たす圧延銅箔を得ることができる。よって、再結晶焼鈍工程後には、繰り返しの曲げに耐える高屈曲特性とともに、小さな曲げ半径に耐える優れた耐折り曲げ性を具備する圧延銅箔が得られる。   Thus, by applying the final cold rolling step S40 in a state in which the compressive stress is superior to the tensile stress by controlling the degree of processing in each pass, the position control of the neutral point, and the like, the above formula (1 ) To (8), a rolled copper foil can be obtained. Therefore, after the recrystallization annealing step, a rolled copper foil having high bending characteristics that can withstand repeated bending and excellent bending resistance that can withstand a small bending radius can be obtained.

(表面処理工程S50)
以上の工程を経た銅条に所定の表面処理を施す。以上により、本実施形態に係る圧延銅箔が製造される。
(Surface treatment step S50)
A predetermined surface treatment is performed on the copper strip that has undergone the above steps. The rolled copper foil which concerns on this embodiment is manufactured by the above.

(3)フレキシブルプリント配線板の製造方法
次に、本発明の一実施形態に係る圧延銅箔を用いたフレキシブルプリント配線板(FPC)の製造方法について説明する。
(3) Manufacturing method of flexible printed wiring board Next, the manufacturing method of the flexible printed wiring board (FPC) using the rolled copper foil which concerns on one Embodiment of this invention is demonstrated.

(再結晶焼鈍工程(CCL工程))
まずは、本実施形態に係る圧延銅箔を所定のサイズに裁断し、例えばポリイミド等の樹脂からなるFPCの基材と貼り合わせてCCL(Copper Clad Laminate)を形成する。このとき、接着剤を介して貼り合わせを行う3層材CCLを形成する方法と、接着剤を介さず直接貼り合わせを行う2層材CCLを形成する方法のいずれを用いてもよい。接着剤を用いる場合には、加熱処理により接着剤を硬化させて圧延銅箔と基材とを密着させ一体化する。接着剤を用いない場合には、加熱・加圧により圧延銅箔と基材とを直接密着させる。加熱温度や時間は、接着剤や基材の硬化温度等に合わせて適宜選択することができ、例えば150℃以上400℃以下の温度で、1分以上120分以下とすることができる。
(Recrystallization annealing process (CCL process))
First, the rolled copper foil according to the present embodiment is cut into a predetermined size, and bonded to an FPC base material made of a resin such as polyimide to form a CCL (Copper Clad Laminate). At this time, either a method of forming a three-layer material CCL that is bonded using an adhesive or a method of forming a two-layer material CCL that is directly bonded without using an adhesive may be used. When an adhesive is used, the adhesive is cured by heat treatment, and the rolled copper foil and the base material are brought into close contact with each other to be integrated. When an adhesive is not used, the rolled copper foil and the substrate are brought into direct contact with each other by heating and pressing. The heating temperature and time can be appropriately selected according to the curing temperature of the adhesive and the base material, and can be set to 1 to 120 minutes at a temperature of 150 to 400 ° C., for example.

上述のように、圧延銅箔の耐熱性は、このときの加熱温度に合わせて調整されている。したがって、上記加熱により圧延銅箔が軟化し再結晶される。つまり、基材に圧延銅箔を貼り合わせるCCL工程が、圧延銅箔に対する再結晶焼鈍工程を兼ねている。圧延銅箔に対し再結晶焼鈍工程が施されることにより、再結晶組織を有する圧延銅箔が得られる。   As described above, the heat resistance of the rolled copper foil is adjusted according to the heating temperature at this time. Therefore, the rolled copper foil is softened and recrystallized by the heating. That is, the CCL process of bonding the rolled copper foil to the base material also serves as a recrystallization annealing process for the rolled copper foil. A rolled copper foil having a recrystallized structure is obtained by subjecting the rolled copper foil to a recrystallization annealing step.

具体的には、主方位である{022}面は{002}面へと変化する。よって、屈曲特性に優れた圧延銅箔を得ることができる。   Specifically, the {022} plane that is the main orientation changes to the {002} plane. Therefore, the rolled copper foil excellent in the bending characteristic can be obtained.

一方で、副方位である{002}面、{113}面、{111}面、及び{133}面については、圧延銅箔の製造工程における最終冷間圧延工程後の状態を保ったまま比率がほとんど変化することはない。よって、加工硬化によって硬質になっている圧延銅箔について、再結晶焼鈍工程により加工硬化の影響を取り除くことにより、すなわち、ひずみを解消させることにより、副方位の効果が最大限に近い形で発揮され、高屈曲特性とともに優れた耐折り曲げ性を備えた圧延銅箔となる。   On the other hand, the {002} plane, {113} plane, {111} plane, and {133} plane, which are sub-azimuths, are ratios while maintaining the state after the final cold rolling process in the rolled copper foil manufacturing process. Will hardly change. Therefore, for rolled copper foil that has become hard due to work hardening, the effect of sub-azimuth is demonstrated in a form that is almost maximal by removing the influence of work hardening by the recrystallization annealing process, that is, by eliminating strain. Thus, a rolled copper foil having high bending properties and excellent bending resistance is obtained.

このように、CCL工程が再結晶焼鈍工程を兼ねることで、圧延銅箔を基材に貼り合わせるまでの工程では、冷間圧延工程後の加工硬化した状態で圧延銅箔を取り扱うことができ、圧延銅箔を基材に貼り合わせる際の、伸び、しわ、折れ等の変形を起こり難くすることができる。   In this way, the CCL process also serves as a recrystallization annealing process, so that the rolled copper foil can be handled in the work-hardened state after the cold rolling process in the process until the rolled copper foil is bonded to the substrate. It is possible to prevent deformation such as elongation, wrinkling, and folding when the rolled copper foil is bonded to the base material.

また、上記のように、副方位の各結晶面は再結晶焼鈍工程前後でほとんど変化しない。したがって、高屈曲特性及び耐折り曲げ性を得るには、最終冷間圧延工程後、再結晶焼鈍工程前の圧延銅箔について、上記関係式を満たすように副方位を制御しておけばよい。   Further, as described above, each crystal plane in the sub-direction hardly changes before and after the recrystallization annealing process. Therefore, in order to obtain high bending characteristics and bending resistance, the sub-azimuth of the rolled copper foil after the final cold rolling process and before the recrystallization annealing process may be controlled so as to satisfy the above relational expression.

(表面加工工程)
次に、基材に貼り合わせた圧延銅箔に表面加工工程を施す。表面加工工程では、圧延銅箔に例えばエッチング等の手法を用いて銅配線等を形成する配線形成工程と、銅配線と他の電子部材との接続信頼性を向上させるためメッキ処理等の表面処理を施す表面処理工程と、銅配線等を保護するため銅配線上の一部を覆うようにソルダレジスト等の保護膜を形成する保護膜形成工程とを行う。
(Surface machining process)
Next, a surface processing step is performed on the rolled copper foil bonded to the base material. In the surface processing step, for example, a wiring forming step for forming copper wiring or the like on the rolled copper foil by using a technique such as etching, and surface treatment such as plating for improving the connection reliability between the copper wiring and other electronic members. And a protective film forming step of forming a protective film such as a solder resist so as to cover a part of the copper wiring in order to protect the copper wiring and the like.

以上により、本実施形態に係る圧延銅箔を用いたFPCが製造される。   As described above, the FPC using the rolled copper foil according to this embodiment is manufactured.

<本発明の他の実施形態>
以上、本発明の実施形態について具体的に説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
<Other Embodiments of the Present Invention>
As mentioned above, although embodiment of this invention was described concretely, this invention is not limited to the above-mentioned embodiment, It can change variously in the range which does not deviate from the summary.

例えば、上述の実施形態においては、圧延銅箔の耐熱性を調整する添加材として主にAgを用いることとしたが、添加材は、Agや上記代表例等に挙げたものに限られない。また、添加材により調整可能な諸特性は耐熱性に限られず、調整を必要とする諸特性に応じて添加材を適宜選択してもよい。   For example, in the above-described embodiment, Ag is mainly used as an additive for adjusting the heat resistance of the rolled copper foil. However, the additive is not limited to those listed in Ag and the representative examples. Moreover, the various characteristics that can be adjusted by the additive are not limited to heat resistance, and the additive may be appropriately selected according to the various characteristics that require adjustment.

また、上述の実施形態においては、FPCの製造工程におけるCCL工程は圧延銅箔に対する再結晶焼鈍工程を兼ねることとしたが、再結晶焼鈍工程は、CCL工程とは別工程として行ってもよい。   In the above-described embodiment, the CCL process in the FPC manufacturing process also serves as a recrystallization annealing process for the rolled copper foil. However, the recrystallization annealing process may be performed as a separate process from the CCL process.

また、上述の実施形態においては、圧延銅箔はFPC用途に用いられることとしたが、圧延銅箔の用途はこれに限られず、高屈曲特性及び耐折り曲げ性を必要とする用途に用いることができる。圧延銅箔の厚さについても、FPC用途をはじめとする各種用途に応じ
て20μm超などとしてもよい。
Moreover, in the above-mentioned embodiment, although rolled copper foil was used for FPC use, the use of rolled copper foil is not restricted to this, It is used for the use which requires a high bending characteristic and bending resistance. it can. The thickness of the rolled copper foil may be greater than 20 μm depending on various uses including FPC use.

また、上述の実施形態においては、最終冷間圧延工程S40での総加工度を90%以上などとし優れた屈曲特性を得ることとしたが、副方位の結晶面の調整により耐折り曲げ性を得る手法は、これとは独立して用いることができる。つまり、耐折り曲げ性が特に重要であって、ある程度の屈曲特性が得られていればよい場合等には、最終冷間圧延工程における総加工度を例えば85%、70%等の90%未満としてもよい。   Further, in the above-described embodiment, the total degree of work in the final cold rolling step S40 is set to 90% or more to obtain excellent bending characteristics, but bending resistance is obtained by adjusting the sub-oriented crystal plane. The technique can be used independently of this. In other words, when the bending resistance is particularly important and it is sufficient that a certain degree of bending property is obtained, the total degree of work in the final cold rolling process is set to less than 90% such as 85% and 70%, for example. Also good.

なお、本発明の効果を奏するために、上記に挙げた工程のすべてが必須であるとは限らない。上述の実施形態や後述の実施例で挙げる種々の条件もあくまで例示であって、適宜変更可能である。   In addition, in order to show the effect of this invention, not all the processes mentioned above are necessarily essential. The various conditions given in the above-described embodiment and examples described later are merely examples, and can be changed as appropriate.

次に、本発明に係る実施例について比較例とともに説明する。   Next, examples according to the present invention will be described together with comparative examples.

(1)無酸素銅を用いた圧延銅箔
まずは、無酸素銅を用いた実施例1〜7および比較例1〜7に係る圧延銅箔を以下のとおり製作し、それぞれについて各種評価を行った。
(1) Rolled copper foil using oxygen-free copper First, the rolled copper foil according to Examples 1 to 7 and Comparative Examples 1 to 7 using oxygen-free copper was manufactured as follows, and various evaluations were performed for each. .

(圧延銅箔の製作)
目標濃度を150ppmとするAgを添加した無酸素銅を用い、上述の実施形態と同様の手順及び手法で、実施例1〜7および比較例1〜7に係る圧延銅箔を製作した。但し、比較例1〜7については構成を外れる処理等が含まれる。
(Production of rolled copper foil)
The rolled copper foil which concerns on Examples 1-7 and Comparative Examples 1-7 was manufactured by the same procedure and method as the above-mentioned embodiment using the oxygen-free copper which added Ag which makes a target density | concentration 150 ppm. However, about the comparative examples 1-7, the process etc. which remove | deviate a structure are included.

具体的には、無酸素銅に所定量のAgを溶解して鋳造した厚さ150mm、幅500mmの鋳塊を準備した。以下の表2に、高周波誘導結合プラズマ(ICP:Inductively Coupled Plasma)発光分光分析法により分析した、鋳塊中のAg濃度の分析値を示す。   Specifically, an ingot having a thickness of 150 mm and a width of 500 mm prepared by dissolving a predetermined amount of Ag in oxygen-free copper and casting was prepared. Table 2 below shows analysis values of Ag concentration in the ingot, which were analyzed by an inductively coupled plasma (ICP) emission spectroscopic analysis method.

Figure 0005246526
Figure 0005246526

表2に示すように、目標濃度の150ppmに対し、分析値は137ppm〜165ppmと、いずれも150ppm±15ppm(10%)程度内のバラツキに抑えられている。Agは元々、主原材料である無酸素銅に不可避不純物として数ppm〜十数ppm程度含有されている場合があるほか、鋳塊を鋳造する際のバラツキ等の種々の原因により、±15ppm程度内のバラツキは金属材料分野では一般的なものである。   As shown in Table 2, with respect to the target concentration of 150 ppm, the analytical values are 137 ppm to 165 ppm, all of which are suppressed to variations within about 150 ppm ± 15 ppm (10%). Ag is originally contained in the oxygen-free copper, which is the main raw material, in the range of several ppm to several tens of ppm as an inevitable impurity, and within about ± 15 ppm due to various causes such as variations in casting an ingot. This variation is common in the metal material field.

次に、上述の実施形態と同様の手順及び手法で、熱間圧延工程にて厚さ8mmの板材を
得た後、冷間圧延工程と、700℃〜800℃の温度で約2分間保持する中間焼鈍工程とを繰り返し実施して銅条(生地)を製作し、約750℃の温度で約1分間保持する生地焼鈍工程にて焼鈍生地を得た。ここで、各焼鈍工程の温度条件等は、Agを137ppm〜165ppm含有する無酸素銅材の耐熱性に合わせた。なお、組成が同じ銅材に対して各焼鈍工程で異なる温度条件を用いたのは、銅材の厚さに応じて耐熱性が変化するためであり、銅材が薄いときは温度を下げることができる。
Next, after obtaining a plate material having a thickness of 8 mm in the hot rolling step by the same procedure and method as in the above embodiment, the cold rolling step and holding at a temperature of 700 ° C. to 800 ° C. for about 2 minutes. A copper strip (fabric) was produced by repeatedly performing the intermediate annealing step, and an annealed fabric was obtained in a fabric annealing step that was held at a temperature of about 750 ° C. for about 1 minute. Here, the temperature conditions of each annealing process were matched with the heat resistance of the oxygen-free copper material containing 137 ppm to 165 ppm of Ag. In addition, the reason why the different temperature conditions were used in each annealing process for copper materials with the same composition is that the heat resistance changes depending on the thickness of the copper material, and when the copper material is thin, the temperature should be lowered. Can do.

最後に、上述の実施形態と同様の手順及び手法で最終冷間圧延工程を行い、実施例1〜7および比較例1〜7に係る圧延銅箔を得た。最終冷間圧延工程での条件を以下の表3に示す。   Finally, the final cold rolling process was performed by the same procedure and method as the above-mentioned embodiment, and the rolled copper foil which concerns on Examples 1-7 and Comparative Examples 1-7 was obtained. The conditions in the final cold rolling process are shown in Table 3 below.

Figure 0005246526
Figure 0005246526

表3に示すように、上段から下段へと順次板厚が薄くなるのに応じて、右欄のように条件を切り替えて、最終冷間圧延を行った。つまり、厚さが240μm以下における冷間圧延加工の、1パスあたりの加工度と中立点の位置とを変化させた。右欄に示す中立点の位置(mm)は、ロールと加工対象物である焼鈍生地との接触面の出口側端部から中立点までの長さで示した。また、優れた屈曲特性を得るため、実施例1〜7および比較例1〜7の全てにおいて、最終冷間圧延工程での総加工度が95%となるように条件を設定した。以上により、厚さが12μmの実施例1〜7および比較例1〜7に係る圧延銅箔を製作した。   As shown in Table 3, the final cold rolling was performed by changing the conditions as shown in the right column in accordance with the reduction of the plate thickness sequentially from the upper stage to the lower stage. That is, the degree of processing per pass and the position of the neutral point of the cold rolling process with a thickness of 240 μm or less were changed. The position (mm) of the neutral point shown in the right column is indicated by the length from the end on the outlet side of the contact surface between the roll and the annealed material as the workpiece to the neutral point. Further, in order to obtain excellent bending characteristics, the conditions were set so that the total degree of work in the final cold rolling process was 95% in all of Examples 1 to 7 and Comparative Examples 1 to 7. By the above, the rolled copper foil which concerns on Examples 1-7 whose thickness is 12 micrometers and Comparative Examples 1-7 was manufactured.

次に、上記のように製作した各圧延銅箔について以下の評価を行った。   Next, the following evaluation was performed about each rolled copper foil manufactured as mentioned above.

(2θ/θ法によるX線回折測定)
まずは、実施例1〜7および比較例1〜7に係る圧延銅箔に対し、2θ/θ法によるX線回折測定を行った。係る測定は、株式会社リガク製のX線回折装置(型式:Ultima IV)を用い、以下の表4に示す条件で行った。代表として、図2(a)に実施例1のX線回折チャートを、図2(b)に比較例1のX線回折チャートをそれぞれ示す。
(X-ray diffraction measurement by 2θ / θ method)
First, X-ray diffraction measurement by the 2θ / θ method was performed on the rolled copper foils according to Examples 1 to 7 and Comparative Examples 1 to 7. The measurement concerned was performed on the conditions shown in the following Table 4 using the Rigaku Co., Ltd. X-ray-diffraction apparatus (model: Ultimate IV). As a representative, FIG. 2A shows the X-ray diffraction chart of Example 1, and FIG. 2B shows the X-ray diffraction chart of Comparative Example 1.

Figure 0005246526
Figure 0005246526

次に、2θ/θ法により測定した銅結晶の{022}面、{002}面、{113}面、{111}面、及び{133}面の回折ピーク強度を合計値が100となるような比に換算し、各結晶面の回折ピーク強度比を求めた。以下の表5に、実施例1〜7および比較例1〜7に係る圧延銅箔について、上記により求めた各結晶面の回折ピーク強度比I{022}、I{002}、I{113}、I{111}、及びI{133}の値を示す。 Next, the total value of diffraction peak intensities of the {022} plane, {002} plane, {113} plane, {111} plane, and {133} plane of the copper crystal measured by the 2θ / θ method is 100. In other words, the diffraction peak intensity ratio of each crystal plane was determined. In Table 5 below, for the rolled copper foils according to Examples 1 to 7 and Comparative Examples 1 to 7, the diffraction peak intensity ratios I {022} , I {002} , and I {113} of the respective crystal planes obtained as described above . , I {111} and I {133} .

Figure 0005246526
Figure 0005246526

また、粉末銅について、カード番号:40836のJCPDSカードの記載から、上記と同様の各結晶面の標準的な回折ピークの相対強度を取得した。すなわち、{111}面を100とする各結晶面{022}面、{002}面、{113}面、{133}面のそれぞれの相対強度20,46,17,9を得た。   For powdered copper, the relative intensities of standard diffraction peaks of each crystal plane were obtained from the description of the JCPDS card with card number: 40836. That is, the relative strengths 20, 46, 17, and 9 of each crystal plane {022} plane, {002} plane, {113} plane, and {133} plane with {111} plane as 100 were obtained.

係る5つの回折ピークの相対強度を合計値が100となるような比に換算し直し、粉末銅について各結晶面の回折ピーク強度比を求めた。   The relative intensity of the five diffraction peaks was converted to a ratio such that the total value was 100, and the diffraction peak intensity ratio of each crystal plane was determined for powdered copper.

さらに、表5に示す圧延銅箔に係る回折ピーク強度比と、上記の粉末銅に係る回折ピーク強度比とを用い、上記の式(4)〜(6)及び(8)に係る数値を求めた。以下の表6の上段に、粉末銅の各結晶面の回折ピーク強度比I0{022}、I0{002}、I0{113}、I0{111}、及びI0{133}の値を示す。また、下段に、上記により求めた上記の式(4)〜(6)及び(8)に係る数値を示す。 Furthermore, the numerical value which concerns on said Formula (4)-(6) and (8) is calculated | required using the diffraction peak intensity ratio which concerns on the rolled copper foil shown in Table 5, and the diffraction peak intensity ratio which concerns on said powdered copper. It was. In the upper part of Table 6 below, the diffraction peak intensity ratios I 0 {022} , I 0 {002} , I 0 {113} , I 0 {111} , and I 0 {133} of each crystal plane of the powdered copper are shown. Indicates the value. Moreover, the numerical value which concerns on said Formula (4)-(6) and (8) calculated | required by the above is shown in the lower stage.

Figure 0005246526
Figure 0005246526

上記のように、本実施例及び比較例では、最終冷間圧延工程での1パスあたりの加工度と中立点の位置とを変化させている。これにより、冷間圧延加工時に、加工対象物にかかる圧縮成分と引張成分との応力成分の比が変化する。その結果、各結晶面の比率が変わり、表5に示す各結晶面の回折ピーク強度比や、表6に示す式(4)〜(6)及び(8)に係る数値も変化している。   As described above, in this example and the comparative example, the degree of processing per pass and the position of the neutral point in the final cold rolling process are changed. Thereby, at the time of cold rolling, the ratio of the stress component between the compression component and the tensile component applied to the workpiece is changed. As a result, the ratio of each crystal plane is changed, and the diffraction peak intensity ratio of each crystal plane shown in Table 5 and the numerical values related to the equations (4) to (6) and (8) shown in Table 6 are also changed.

また、表5,6に示すように、実施例1〜7の各条件の組み合わせでは、式(1)〜(8)までの各値はいずれも上述の所定範囲内にあり、再結晶焼鈍工程後には、高屈曲特性とともに優れた耐折り曲げ性を具備させることが可能な圧延銅箔が得られていることがわかる。   Moreover, as shown in Tables 5 and 6, in the combinations of the conditions of Examples 1 to 7, all the values from Formulas (1) to (8) are within the above-described predetermined range, and the recrystallization annealing step Later, it can be seen that a rolled copper foil capable of having excellent bending resistance as well as high bending properties is obtained.

一方、比較例1〜7の各条件の組み合わせでは、いずれの圧延銅箔においても式(1)〜(8)までの各値のうち複数の値が上述の所定範囲外となっており、これらの圧延銅箔は、再結晶焼鈍工程を経ても優れた耐折り曲げ性を具備することはできないことがわかる。表5,6中、上述の所定範囲を外れた値を下線付きの太字で示した。   On the other hand, in the combination of the conditions of Comparative Examples 1 to 7, in any rolled copper foil, a plurality of values out of the respective values up to the formulas (1) to (8) are outside the above predetermined range. It can be seen that the rolled copper foil cannot have excellent bending resistance even after the recrystallization annealing step. In Tables 5 and 6, values outside the above-mentioned predetermined range are shown in bold with underline.

(屈曲疲労寿命試験)
次に、各圧延銅箔の屈曲特性を調べるため、各圧延銅箔が破断するまでの繰返し曲げ回
数(屈曲回数)を測定する屈曲疲労寿命試験を行った。係る試験は、信越エンジニアリング株式会社製のFPC高速屈曲試験機(型式:SEK−31B2S)を用い、IPC(米国プリント回路工業会)規格に準拠して行った。図3には、上記FPC高速屈曲試験機等も含む、一般的な摺動屈曲試験装置10の模式図を示す。
(Bending fatigue life test)
Next, in order to investigate the bending characteristics of each rolled copper foil, a bending fatigue life test was performed to measure the number of repeated bending (number of bendings) until each rolled copper foil broke. Such a test was performed using an FPC high-speed bending tester (model: SEK-31B2S) manufactured by Shin-Etsu Engineering Co., Ltd. in accordance with the IPC (American Printed Circuit Industry Association) standard. FIG. 3 shows a schematic diagram of a general sliding bending test apparatus 10 including the FPC high-speed bending tester and the like.

まずは、実施例1〜7および比較例1〜7に係る圧延銅箔を幅12.5mm、長さ220mmに切り取った、厚さが12μmの試料片Fに、上述の再結晶焼鈍工程と同様の手順及び手法で、300℃、60分間の再結晶焼鈍を施した。係る条件は、プリント配線板のCCL工程で、基材との密着の際に圧延銅箔が実際に受ける熱量の一例を模している。   First, the rolled copper foil according to Examples 1 to 7 and Comparative Examples 1 to 7 was cut to a width of 12.5 mm and a length of 220 mm, and a sample piece F having a thickness of 12 μm was similar to the above-described recrystallization annealing step. Recrystallization annealing was performed at 300 ° C. for 60 minutes by the procedure and method. Such a condition imitates an example of the amount of heat that the rolled copper foil actually receives in close contact with the substrate in the CCL process of the printed wiring board.

次に、図3に示すように、圧延銅箔の試料Fを、摺動屈曲試験装置10の試料固定板11にネジ12で固定した。続いて、試料片Fを振動伝達部13に接触させて貼り付け、発振駆動体14により振動伝達部13を上下方向に振動させて試料片Fに振動を伝達し、屈曲疲労寿命試験を実施した。屈曲疲労寿命の測定条件としては、曲げ半径Rを1.5mmとし、ストロークSを10mmとし、振幅数を25Hzとした。係る条件下、各圧延銅箔から切り取った試料片Fを5枚ずつ測定し、破断が発生するまでの屈曲回数の平均値を比較した。以下の表7に、結果を示す。   Next, as shown in FIG. 3, the rolled copper foil sample F was fixed to the sample fixing plate 11 of the sliding bending test apparatus 10 with screws 12. Subsequently, the specimen piece F was brought into contact with and attached to the vibration transmission section 13, and the vibration transmission section 13 was vibrated in the vertical direction by the oscillation driver 14 to transmit the vibration to the specimen piece F, and a bending fatigue life test was performed. . The measurement conditions for the bending fatigue life were a bending radius R of 1.5 mm, a stroke S of 10 mm, and an amplitude number of 25 Hz. Under such conditions, five sample pieces F cut from each rolled copper foil were measured, and the average values of the number of bendings until breakage occurred were compared. The results are shown in Table 7 below.

Figure 0005246526
Figure 0005246526

上記のように、各圧延銅箔は、総加工度を95%とする最終冷間圧延工程を経ており、表7に示すように、実施例1〜7および比較例1〜7のいずれにおいても、屈曲疲労寿命、すなわち、屈曲回数は100万回以上となり、優れた屈曲特性が得られた。   As described above, each rolled copper foil has undergone a final cold rolling process in which the total degree of work is 95%, and as shown in Table 7, in any of Examples 1 to 7 and Comparative Examples 1 to 7 The bending fatigue life, that is, the number of bendings was 1 million times or more, and excellent bending characteristics were obtained.

(耐折り曲げ性の評価)
続いて、各圧延銅箔の耐折り曲げ性を調査した。耐折り曲げ性についての一般的な試験の規格では、例えばFPC用途等で要求される180°の折り曲げについての標準化がな
されていない。そこで、図4に示す手法により、各圧延銅箔に割れが生じるまでの折り曲げ回数を測定する折り曲げ試験を行った。
(Evaluation of bending resistance)
Subsequently, the bending resistance of each rolled copper foil was investigated. In general test standards for bending resistance, standardization for bending at 180 °, which is required for FPC applications, for example, has not been made. Then, the bending test which measures the frequency | count of bending until a crack arises in each rolled copper foil with the method shown in FIG. 4 was done.

すなわち、まずは、実施例1〜7および比較例1〜7に係る圧延銅箔を圧延方向に対し、幅20mm、長さ40mmに切り取った試料片Fに、300℃、60分間の再結晶焼鈍を施した。次に、図4に示すように、厚さが0.15mmのスペーサ20を挟み込むように試料片Fを180°折り曲げ、この状態で折り曲げ部分を金属顕微鏡で観察して割れの有無を確認した。割れがなければ、圧延銅箔を折り曲げた状態から元の伸ばした状態に戻した。これを1サイクルとして、各圧延銅箔から切り取った試料片Fの5枚ずつについて、1サイクル毎に折り曲げ部分の観察をしつつ、割れが発生するまでサイクルを繰り返し、折り曲げ回数を測定した。以下の表8に、結果を示す。   That is, first, the sample copper F obtained by cutting the rolled copper foils according to Examples 1 to 7 and Comparative Examples 1 to 7 into a width of 20 mm and a length of 40 mm with respect to the rolling direction was subjected to recrystallization annealing at 300 ° C. for 60 minutes. gave. Next, as shown in FIG. 4, the sample piece F was bent 180 ° so as to sandwich the spacer 20 having a thickness of 0.15 mm, and in this state, the bent portion was observed with a metal microscope to check for cracks. If there was no crack, the rolled copper foil was returned from the folded state to the original stretched state. With this as one cycle, for each of the five sample pieces F cut out from each rolled copper foil, the cycle was repeated until the crack occurred while observing the bent portion every cycle, and the number of bending was measured. Table 8 below shows the results.

Figure 0005246526
Figure 0005246526

表8に示すように、実施例1〜7のいずれにおいても、折り曲げ回数は50回以上となり、優れた耐折り曲げ性が得られた。一方、比較例1〜7のいずれにおいても、折り曲げ回数は50回未満となり、充分な耐折り曲げ性は得られなかった。   As shown in Table 8, in any of Examples 1 to 7, the number of bendings was 50 times or more, and excellent bending resistance was obtained. On the other hand, in any of Comparative Examples 1 to 7, the number of bendings was less than 50, and sufficient bending resistance was not obtained.

(2)タフピッチ銅を用いた圧延銅箔
次に、目標濃度を200ppmとするAgを添加したタフピッチ銅を用い、上述の実施例と同様の手順及び手法で、厚さが12μmの実施例8および比較例8に係る圧延銅箔を製作した。但し、比較例8については構成を外れる処理等が含まれる。
(2) Rolled copper foil using tough pitch copper Next, using a tough pitch copper to which Ag with a target concentration of 200 ppm was added, and using a procedure and method similar to those of the above-described example, Example 8 having a thickness of 12 μm and A rolled copper foil according to Comparative Example 8 was produced. However, the comparative example 8 includes a process that deviates from the configuration.

実施例8および比較例8の鋳塊中におけるAg濃度は、IPC発光分光分析法により得た分析値で、それぞれ195ppmおよび205ppmであった。なお、係る濃度のAgを含有するタフピッチ銅材の耐熱性に合わせ、中間焼鈍工程および生地焼鈍工程では、上記とは異なる条件を用いた。具体的には、中間焼鈍工程では650℃〜750℃の温度で
約1分間保持し、生地焼鈍工程では約700℃の温度で約2分間保持した。
Ag concentrations in the ingots of Example 8 and Comparative Example 8 were analytical values obtained by IPC emission spectroscopic analysis, and were 195 ppm and 205 ppm, respectively. In addition, in accordance with the heat resistance of the tough pitch copper material containing Ag of such concentration, conditions different from the above were used in the intermediate annealing step and the dough annealing step. Specifically, the intermediate annealing step was held at a temperature of 650 ° C. to 750 ° C. for about 1 minute, and the dough annealing step was held at a temperature of about 700 ° C. for about 2 minutes.

上記のように製作した実施例8および比較例8に係る圧延銅箔について、上述の実施例と同様の手法及び手順で2θ/θ法によるX線回折測定を行った。その結果、実施例8に係る圧延銅箔については、各結晶面の回折ピーク強度の関係が式(1)〜(8)までの所定範囲内となった。一方、比較例8に係る圧延銅箔については、式(1),(2)に係る数値が6.0より大きくなり、所定範囲から外れた結果となった。また、式(4)では0.70より大きく、式(5)では0.12より大きくなって所定範囲外となってしまった。   About the rolled copper foil which concerns on Example 8 and Comparative Example 8 which were produced as mentioned above, the X-ray-diffraction measurement by 2 (theta) / (theta) method was performed with the method and procedure similar to the above-mentioned Example. As a result, for the rolled copper foil according to Example 8, the relationship between the diffraction peak intensities of the crystal planes was within a predetermined range from formulas (1) to (8). On the other hand, with respect to the rolled copper foil according to Comparative Example 8, the numerical values according to the expressions (1) and (2) were larger than 6.0, and the result was out of the predetermined range. Moreover, in Formula (4), it was larger than 0.70, and in Formula (5), it was larger than 0.12, and was outside the predetermined range.

また、実施例8および比較例8に係る圧延銅箔に対し、上述の実施例と同様の手法及び手順で屈曲疲労寿命試験を行った。その結果、各圧延銅箔は、総加工度を95%とする最終冷間圧延工程を経ており、実施例8および比較例8のいずれにおいても、100万回以上の優れた屈曲特性が得られた。   Moreover, the bending fatigue life test was done to the rolled copper foil which concerns on Example 8 and Comparative Example 8 with the method and procedure similar to the above-mentioned Example. As a result, each rolled copper foil has undergone a final cold rolling process in which the total degree of work is 95%, and excellent bending characteristics of 1 million times or more can be obtained in both Example 8 and Comparative Example 8. It was.

また、実施例8および比較例8に係る圧延銅箔に対し、上述の実施例と同様の手法及び手順で折り曲げ試験を行った。その結果、実施例8については折り曲げ回数が66回と良好であったのに対し、比較例8については折り曲げ回数が34回と不充分であった。   Moreover, the bending test was done to the rolled copper foil which concerns on Example 8 and Comparative Example 8 with the method and procedure similar to the above-mentioned Example. As a result, in Example 8, the number of folding was as good as 66, whereas in Comparative Example 8, the number of folding was 34, which was insufficient.

以上のことから、各結晶面が所定範囲内であれば、タフピッチ銅を主原材料とする圧延銅箔についても、良好な屈曲特性及び折り曲げ性が得られることがわかった。   From the above, it was found that if each crystal plane is within a predetermined range, good bending characteristics and bendability can be obtained also for a rolled copper foil mainly made of tough pitch copper.

(3)異なる添加材を用いた圧延銅箔
次に、目標濃度を120ppmとするAgおよび目標濃度を40ppmとするチタン(Ti)を添加材として加えた無酸素銅を用い、上述の実施例と同様の手順及び手法で、厚さが12μmの実施例9および比較例9に係る圧延銅箔を製作した。但し、比較例9については構成を外れる処理等が含まれる。
(3) Rolled copper foil using different additive materials Next, using oxygen-free copper added with Ag (target concentration of 120 ppm) and titanium (Ti) with target concentration of 40 ppm as an additive, The rolled copper foil which concerns on Example 9 and Comparative Example 9 whose thickness is 12 micrometers was manufactured with the same procedure and method. However, the comparative example 9 includes a process that deviates from the configuration.

実施例9および比較例9の鋳塊中におけるAg濃度は、IPC発光分光分析法により得た分析値で、それぞれ125ppmおよび124ppmであった。また、Ti濃度は、それぞれ41ppmおよび40ppmであった。全て±10%程度内のバラツキであって、金属材料の分野では一般的なものである。   The Ag concentrations in the ingots of Example 9 and Comparative Example 9 were 125 ppm and 124 ppm, respectively, as analytical values obtained by IPC emission spectroscopic analysis. Ti concentrations were 41 ppm and 40 ppm, respectively. The variations are all within ± 10%, and are common in the field of metal materials.

また、上記濃度のAgおよびTiを含有する無酸素銅材の耐熱性に合わせ、中間焼鈍工程および生地焼鈍工程には、上記とは異なる条件を用いた。具体的には、中間焼鈍工程では温度650℃〜700℃で約1分間保持し、生地焼鈍工程では約700℃の温度で約2分間保持した。   In addition, in accordance with the heat resistance of the oxygen-free copper material containing Ag and Ti at the above concentrations, conditions different from the above were used in the intermediate annealing process and the dough annealing process. Specifically, the intermediate annealing step was held at a temperature of 650 ° C. to 700 ° C. for about 1 minute, and the dough annealing step was held at a temperature of about 700 ° C. for about 2 minutes.

上記のように製作した実施例9および比較例9に係る圧延銅箔について、上述の実施例と同様の手法及び手順で2θ/θ法によるX線回折測定を行った。その結果、実施例9に係る圧延銅箔については、各結晶面の回折ピーク強度の関係が式(1)〜(8)までの所定範囲内となった。一方、比較例9に係る圧延銅箔については、式(2)に係る数値が6.0より大きくなり、所定範囲から外れた結果となった。また、式(5)では0.12より大きく、式(8)では0.30より小さくなって所定範囲外となってしまった。   About the rolled copper foil which concerns on Example 9 and Comparative Example 9 which were produced as mentioned above, the X-ray-diffraction measurement by 2 (theta) / (theta) method was performed with the method and procedure similar to the above-mentioned Example. As a result, regarding the rolled copper foil according to Example 9, the relationship between the diffraction peak intensities of the crystal planes was within a predetermined range from formulas (1) to (8). On the other hand, about the rolled copper foil which concerns on the comparative example 9, the numerical value which concerns on Formula (2) became larger than 6.0, and became the result of having remove | deviated from the predetermined range. Moreover, in Formula (5), it was larger than 0.12, and it was smaller than 0.30 in Formula (8), and it was out of the predetermined range.

また、実施例9および比較例9に係る圧延銅箔に対し、上述の実施例と同様の手法及び手順で屈曲疲労寿命試験を行った。その結果、各圧延銅箔は、総加工度を95%とする最終冷間圧延工程を経ており、実施例9および比較例9のいずれにおいても、100万回以上の優れた屈曲特性が得られた。   Moreover, the bending fatigue life test was done to the rolled copper foil which concerns on Example 9 and Comparative Example 9 with the method and procedure similar to the above-mentioned Example. As a result, each rolled copper foil has undergone a final cold rolling process in which the total degree of work is 95%. In both Example 9 and Comparative Example 9, excellent bending characteristics of 1 million times or more are obtained. It was.

また、実施例9および比較例9に係る圧延銅箔に対し、上述の実施例と同様の手法及び手順で折り曲げ試験を行った。その結果、実施例9については折り曲げ回数が71回と良好であったのに対し、比較例9については折り曲げ回数が35回と不充分であった。   Moreover, the bending test was done to the rolled copper foil which concerns on Example 9 and Comparative Example 9 with the method and procedure similar to the above-mentioned Example. As a result, in Example 9, the number of folding was as good as 71, whereas in Comparative Example 9, the number of folding was 35, which was insufficient.

以上のことから、各結晶面が所定範囲内であれば、AgとTiとのような異なる添加材を添加した圧延銅箔についても、良好な屈曲特性及び折り曲げ性が得られることがわかった。   From the above, it was found that if each crystal plane is within a predetermined range, good bending characteristics and bendability can be obtained even for a rolled copper foil to which different additives such as Ag and Ti are added.

<本発明者等による考察>
以上、述べてきたように、副方位の結晶面を制御することで圧延銅箔に耐折り曲げ性が付与される原理、及び、上述の圧延銅箔の製造工程における副方位の結晶面の制御の仕組みに対する本発明者等の考察について、以下に説明する。
<Discussion by the present inventors>
As described above, the principle that bending resistance is imparted to the rolled copper foil by controlling the sub-oriented crystal plane, and the control of the sub-oriented crystal plane in the manufacturing process of the rolled copper foil described above. The inventors' consideration on the mechanism will be described below.

(1)耐折り曲げ性付与の原理について
本発明者等は、結晶方位学の知見と金属学の知見とこれまでの実験経験とから、副方位の結晶面を制御することで耐折り曲げ性が得られる原理について以下の考察を行った。
(1) About the principle of imparting bending resistance From the knowledge of crystal orientation, knowledge of metallurgy, and previous experimental experience, the inventors obtained bending resistance by controlling the crystal plane in the sub-orientation. The following considerations were made on the principles that can be used.

本発明者等によれば、本発明にて得られる耐折り曲げ性には、再結晶焼鈍工程前後での主方位の変化と副方位の不変化とが関係していると考えられる。上述のように、再結晶焼鈍工程において、主方位である{022}面は再結晶後に{002}面となる。一方、副方位である{002}面、{113}面、{111}面、及び{133}面は、再結晶後も略変化しないままであり、これら副方位と、再結晶後の主方位の結晶面である{002}面とのなす角度が、耐折り曲げ性に関与していると考えられる。   According to the present inventors, it is considered that the bending resistance obtained in the present invention is related to the change in the main orientation and the non-change in the sub-direction before and after the recrystallization annealing process. As described above, in the recrystallization annealing step, the {022} plane that is the main orientation becomes the {002} plane after recrystallization. On the other hand, the {002} plane, {113} plane, {111} plane, and {133} plane, which are the sub-directions, remain substantially unchanged after recrystallization, and these sub-directions and the main direction after recrystallization The angle formed by the {002} plane, which is the crystal plane, is considered to be involved in the bending resistance.

再結晶{002}面∠{113}面 : 25.2°
再結晶{002}面∠{111}面 : 54.7°
再結晶{002}面∠{133}面 : 46.5°
Recrystallized {002} face {113} face: 25.2 °
Recrystallized {002} face {111} face: 54.7 °
Recrystallized {002} face {133} face: 46.5 °

本願に係る圧延銅箔が、最終冷間圧延工程後、再結晶焼鈍前の状態のとき、上記の式(1)〜(3)が所定範囲内にあるということは、これら3つの結晶面の比率がいずれも低く抑えられており、再結晶後においても{002}面となす角度が大きい結晶面が少ないことを意味する。中でもとりわけ、これら角度の大きい結晶面の比率が所定の数値以下になると、耐折り曲げ性を向上させる効果が表れてくることを意味する。   When the rolled copper foil according to the present application is in the state before the recrystallization annealing after the final cold rolling step, the above formulas (1) to (3) are within a predetermined range. All the ratios are kept low, meaning that there are few crystal planes with a large angle with the {002} plane even after recrystallization. Among other things, when the ratio of crystal faces having a large angle becomes a predetermined numerical value or less, it means that the effect of improving the bending resistance appears.

(2)副方位の結晶面の制御の仕組みについて
(結晶回転)
上述のように、最終冷間圧延工程等の圧延加工時、銅材には圧縮応力と、圧縮応力よりも弱い引張応力とがかかっている。圧延される銅材中の銅結晶は、圧延加工時の応力によって{022}面への回転現象を起こし、圧延加工の進展とともに、圧延面に平行な結晶面の方位が主に{022}面である圧延集合組織を形成する。このとき、上述のように、圧縮応力と引張応力との比により、{022}面へと向かって回転する経路が変わる。これについて、図5を用いて説明する。
(2) Mechanism of controlling the crystal plane in the sub-orientation (crystal rotation)
As described above, during the rolling process such as the final cold rolling process, the copper material is subjected to a compressive stress and a tensile stress that is weaker than the compressive stress. The copper crystal in the rolled copper material causes a rotation phenomenon to the {022} plane due to the stress during the rolling process, and with the progress of the rolling process, the orientation of the crystal plane parallel to the rolled plane is mainly the {022} plane. A rolling texture is formed. At this time, as described above, the path of rotation toward the {022} plane varies depending on the ratio of the compressive stress and the tensile stress. This will be described with reference to FIG.

図5は、下記の技術文献(イ)から引用した純銅型金属の逆極点図であって、(a)は引張変形による結晶回転方向を示す逆極点図であり、(b)は圧縮変形による結晶回転方向を示す逆極点図である。なお、逆極点図では、{002}面を{001}面と表記し、{022}面を{011}面と表記することになっている。つまり、{002}面は、{002}面に平行な面の最小数値である{001}面で表わし、{022}面は、{022}面に平行な面の最小数値である{011}面で表わす。   FIG. 5 is a reverse pole figure of a pure copper type metal quoted from the following technical document (A), (a) is a reverse pole figure showing a crystal rotation direction by tensile deformation, and (b) is by compression deformation. It is a reverse pole figure which shows a crystal rotation direction. In the inverted pole figure, the {002} plane is expressed as {001} plane and the {022} plane is expressed as {011} plane. That is, the {002} plane is represented by the {001} plane which is the minimum value of the plane parallel to the {002} plane, and the {022} plane is the minimum value of the plane parallel to the {022} plane. Express in terms of faces.

(イ)編著者 長嶋晋一、“集合組織”、丸善株式会社、昭和59年1月20日、p96の図2.52(a),(c)   (B) Editor Shinichi Nagashima, “Aggregate Organization”, Maruzen Co., Ltd., January 20, 1984, p. 96, Figures 2.52 (a) and (c)

図5に示すように、銅材中の銅結晶は、引張変形のみでは{111}面へと向かって回転し、圧縮変形のみでは{011}面へと向かって回転する。圧延加工では、圧縮成分と引張成分とが合わさった変形をするため、結晶回転方向はこれほど単純ではない。ただし、引張成分より圧縮成分が優勢となって変形し、圧延加工がされるので、総じて{011}面へと向かう結晶回転を起こしつつ、圧縮成分と引張成分との割合によって{111}面へも一部回転しようとする。このとき、圧縮成分の方が優勢であるので、{111}面へと回転しかけた結晶が{011}面へと戻される結晶回転も起きる。また、これとは逆に、{011}面へと向かって回転している結晶や{011}面に到達した結晶が、引張成分によって{133}面や{111}面へ向かって回転する場合もある。   As shown in FIG. 5, the copper crystal in the copper material rotates toward the {111} plane only by tensile deformation, and rotates toward the {011} plane only by compression deformation. In rolling, since the compression component and the tensile component are deformed, the crystal rotation direction is not so simple. However, since the compressive component prevails over the tensile component and deforms and is rolled, the crystal rotation toward the {011} plane generally takes place, and the {111} plane changes depending on the ratio of the compressive component and the tensile component. Also try to rotate partly. At this time, since the compression component is dominant, crystal rotation is also caused in which the crystal that has been rotated to the {111} plane returns to the {011} plane. On the contrary, when a crystal rotating toward the {011} plane or a crystal reaching the {011} plane rotates toward the {133} plane or the {111} plane due to the tensile component There is also.

このように、圧縮成分と引張成分とが、圧縮成分>引張成分の関係を保ちながら混在する中で結晶回転が起こると、最終的には図6の逆極点図に示すような主方位および副方位の結晶面の分布になると考えられる。圧縮成分>引張成分であるから、最終的な主方位の結晶面は{011}面となり、また、圧縮成分と引張成分との混合による結晶回転の結果、副方位の結晶面は、{001}面、{113}面、{111}面、{133}面になると考えられる。   Thus, when crystal rotation occurs while the compression component and the tensile component are mixed while maintaining the relationship of compression component> tensile component, the main orientation and sub-direction as shown in the reverse pole figure of FIG. It is thought that the orientation crystal plane distribution. Since the compression component> tensile component, the final main orientation crystal plane is the {011} plane, and as a result of crystal rotation by mixing the compression component and the tensile component, the sub-orientation crystal plane is {001} It is considered to be a plane, {113} plane, {111} plane, and {133} plane.

ここで、図6には、上記特定方位の結晶面のみが分布しているように示したが、これは以下の理由による。銅は面心立方構造の結晶なので、2θ/θ法によるX線回折測定では、{hkl}面のh,k,lが全て奇数値または全て偶数値でなければ回折ピークとして現れない。h,k,lが奇数値と偶数値との混在となっていると、消滅則によって回折ピークが消失し、測定できないためである。したがって、上述の実施形態等に係る圧延銅箔の構成を示すにあたっては、回折ピークとして現れる{001}面({002}面)、{113}面、{111}面、及び{133}面で規定した。上述の実施例等の結果からも本構成の効果は明白であるから、上記に挙げた副方位の結晶面を考えれば充分であるといえる。   Here, FIG. 6 shows that only the crystal planes of the specific orientation are distributed, but this is due to the following reason. Since copper has a face-centered cubic crystal, X-ray diffraction measurement by the 2θ / θ method does not appear as a diffraction peak unless h, k, and l on the {hkl} plane are all odd or even values. This is because if h, k, and l are a mixture of odd and even values, the diffraction peak disappears due to the extinction rule and measurement is impossible. Therefore, in showing the configuration of the rolled copper foil according to the above-described embodiment etc., the {001} plane ({002} plane), {113} plane, {111} plane, and {133} plane appearing as diffraction peaks. Stipulated. Since the effect of this configuration is obvious from the results of the above-described Examples and the like, it can be said that it is sufficient to consider the sub-oriented crystal planes listed above.

(加工度による制御)
以上のことから、圧縮応力>引張応力であることを前提として、圧縮成分と引張成分との比を調整すると、{022}面へと向かって回転する経路が変わる。具体的には、圧縮成分が大きくなるほど{002}面や{113}面を経由し易く、引張成分が大きくなるほど{111}面や{133}面を経由し易い。主な副方位の結晶面が{002}面、{113}面、{111}面、及び{133}面となるのは、{022}面へと回転しきれなかった上記結晶面が銅材中に残るためであり、最終冷間圧延工程での圧縮成分と引張成分との調整により、銅材中に残る各副方位の結晶面の割合を調整することができる。
(Control by processing degree)
From the above, assuming that compressive stress> tensile stress, adjusting the ratio of compressive component and tensile component changes the path of rotation toward the {022} plane. Specifically, the larger the compression component, the easier it is to pass through the {002} plane and {113} plane, and the greater the tensile component, the easier it is to pass through the {111} plane and {133} plane. The main sub-orientation crystal planes are {002} plane, {113} plane, {111} plane, and {133} plane because the crystal plane that could not be rotated to the {022} plane is a copper material. This is because the ratio of the crystal plane of each sub-orientation remaining in the copper material can be adjusted by adjusting the compression component and the tensile component in the final cold rolling step.

具体的には、圧縮成分と引張成分とは、圧延加工時の1パスあたりの圧延条件を変化させることで制御することができる。圧縮成分と引張成分とを制御する種々の制御パラメータを調整するにあたっては、上述の実施形態や実施例にて試みたように、例えば1パスあたりの加工度の変化に着目することができる。   Specifically, the compression component and the tensile component can be controlled by changing the rolling conditions per pass during the rolling process. In adjusting various control parameters for controlling the compression component and the tensile component, for example, attention can be paid to a change in the degree of processing per pass, as attempted in the above-described embodiments and examples.

1パスあたりの加工度を高くするには、例えば圧延荷重(ロール荷重)を大きくして圧延対象である銅材を押しつぶす方法があり、この場合、圧縮応力が大きくなる。よって、結晶の回転経路は{002}面や{113}面となって、{022}面へと向かって回転する。   In order to increase the degree of processing per pass, for example, there is a method of crushing the copper material to be rolled by increasing the rolling load (roll load). In this case, the compressive stress increases. Therefore, the crystal rotation path becomes {002} plane or {113} plane and rotates toward the {022} plane.

一方、圧縮応力>引張応力を前提として、引張成分を大きくして銅材を薄くすることで
加工度を高くする方法もある。引張成分を大きくしているので、結晶の回転経路は{111}面や{133}面となって、{022}面へと向かって回転する。なお、圧延後、銅材中に残る{133}面には、引張成分により結晶の回転途中で得られたものと、圧縮成分により一旦、{022}面へと到達した結晶が、引張成分により{133}面へと再び回転したものとが含まれると考えられる。また、引張応力による加工度の変化は、圧縮荷重を大きくした場合に比べると小さい。つまり、加工度への寄与は、圧縮応力の方が大きい。
On the other hand, on the premise of compressive stress> tensile stress, there is also a method of increasing the workability by increasing the tensile component and thinning the copper material. Since the tensile component is increased, the crystal rotation path is the {111} plane or {133} plane and rotates toward the {022} plane. Note that the {133} plane remaining in the copper material after rolling is obtained by the tensile component and the crystal once reached the {022} plane by the compression component due to the tensile component. It is considered that it has been rotated again to the {133} plane. Further, the change in the degree of processing due to the tensile stress is small compared to when the compressive load is increased. That is, the compressive stress has a larger contribution to the degree of processing.

なお、ここで注意しなければならないことは、それぞれの成分(圧縮応力と引張応力)のみでは材料形状が均一に加工できず、圧延はできないということである。つまり、圧縮応力と引張応力との両方によって、材料の厚さを薄くするのと同時に材料形状を制御している。   It should be noted that the material shape cannot be processed uniformly only by the respective components (compressive stress and tensile stress), and rolling cannot be performed. That is, the material shape is controlled at the same time as the thickness of the material is reduced by both compressive stress and tensile stress.

(中立点による制御)
上述の実施形態や実施例においては、最終冷間圧延工程における1パスあたりの加工度と併せ、中立点の位置制御も行っている。つまり、圧縮成分と引張成分との制御パラメータの調整にあたっては、例えば中立点の位置変化に着目することも可能である。
(Control by neutral point)
In the above-described embodiments and examples, the position control of the neutral point is also performed together with the degree of processing per pass in the final cold rolling process. That is, in adjusting the control parameters of the compression component and the tensile component, it is possible to pay attention to, for example, a change in the position of the neutral point.

上述のように、1パス毎に中立点の位置を制御する制御因子としては、前方張力、後方張力、圧延速度(ロールの回転速度)、ロール径、加工度、圧延荷重等がある。これらの制御因子を種々に組み合わせ、中立点の位置を変化させることができる。   As described above, the control factors that control the position of the neutral point for each pass include the front tension, the rear tension, the rolling speed (roll rotational speed), the roll diameter, the working degree, the rolling load, and the like. Various combinations of these control factors can be used to change the position of the neutral point.

係る中立点の位置は、いくつかの計測値から計算によって算出することができる。すなわち、まずは、下記の技術文献(ロ)を参考とする次式、
張力の成分+圧縮力の成分=2×剪断降伏応力・・・(C)
の関係において、圧縮力成分を張力成分より大きくし、さらに、圧延速度とロール径との条件バランス、すなわち、圧延加工時のロールと銅材との接触面における中立点の位置を、式(C)を用いて算出する。なお、中立点の詳細についても、下記技術文献(ロ)を参照した。
The position of such a neutral point can be calculated from some measured values. That is, first, the following equation with reference to the following technical literature (b):
Tension component + compressive force component = 2 × shear yield stress (C)
In this relation, the compressive force component is made larger than the tension component, and further, the condition balance between the rolling speed and the roll diameter, that is, the position of the neutral point on the contact surface between the roll and the copper material at the time of rolling is expressed by the formula (C ) To calculate. The details of the neutral point were also referred to the following technical literature (b).

(ロ)日本塑性加工学会編、“塑性加工技術シリーズ7 板圧延”、コロナ社、p14,p27 式(3.3),p28   (B) Edited by Japan Society for Technology of Plasticity, “Plastic Technology Series 7 Sheet Rolling”, Corona, p14, p27 formula (3.3), p28

上記の式(C)の計算時のパラメータは上記制御因子であるが、これらのうち、固定とするものと可変とするものとをどのように選択するかで、複数種類の制御方法が考えられる。上述の実施形態や実施例においては、加工度を可変の制御因子として中立点の位置を制御したが、加工度以外の制御因子を用いた制御も可能である。   The parameter at the time of calculation of the above formula (C) is the control factor, but among these, a plurality of types of control methods can be considered depending on how to select a fixed one or a variable one. . In the above-described embodiments and examples, the position of the neutral point is controlled using the degree of machining as a variable control factor, but control using a control factor other than the degree of machining is also possible.

また、上記制御因子は圧延機の構成に関わるところであり、中立点の位置制御は、圧延機の仕様に依存するところが大きい。具体的には、ロールの段数、ロールの総数、ロールの組み合わせ配置、各ロールの径や材質や表面状態(表面粗さ)等のロールの構成などの違いにより、銅材への圧縮応力のかかり方や摩擦係数等に違いが生じる。圧延機が異なれば、上述の実施例で挙げた条件に係る各制御因子もその絶対値が異なるため、圧延機ごとに適宜調整することができる。また、同じ圧延機においても、圧延ロールの表面状態や圧延ロールの材質が異なれば、各制御因子の絶対値が異なる。よって、同じ圧延機であっても、それぞれの状態に応じて適宜調整することができる。   The control factor is related to the configuration of the rolling mill, and the neutral point position control largely depends on the specifications of the rolling mill. Specifically, the compression stress is applied to the copper material due to differences in the number of rolls, the total number of rolls, the combination of rolls, and the roll configuration such as the diameter, material, and surface condition (surface roughness) of each roll. Difference in the direction and coefficient of friction. If the rolling mills are different, each control factor related to the conditions mentioned in the above embodiment also has different absolute values, and can be appropriately adjusted for each rolling mill. Further, even in the same rolling mill, the absolute value of each control factor is different if the surface state of the rolling roll and the material of the rolling roll are different. Therefore, even if it is the same rolling mill, it can adjust suitably according to each state.

10 摺動屈曲試験装置
11 試料固定板
12 ネジ
13 振動伝達部
14 発振駆動体
20 スペーサ
F 試料片
DESCRIPTION OF SYMBOLS 10 Sliding and bending test apparatus 11 Sample fixing plate 12 Screw 13 Vibration transmission part 14 Oscillation drive body 20 Spacer F Sample piece

Claims (8)

主表面を備え、前記主表面に平行な複数の結晶面を有する最終冷間圧延工程後、再結晶焼鈍工程前の圧延銅箔であって、
前記複数の結晶面には{022}面、{002}面、{113}面、{111}面、及び{133}面が含まれ、
前記主表面に対する2θ/θ法を用いたX線回折測定から求められ、合計値が100となるように換算された前記各結晶面の回折ピーク強度比をそれぞれI{022}、I{002}、I{113}、I{111}、及びI{133}としたとき、
{113}≦6.0であり、
{111}≦6.0であり、且つ、
{133}≦6.0である
ことを特徴とする圧延銅箔。
A rolled copper foil comprising a main surface, after a final cold rolling step having a plurality of crystal planes parallel to the main surface, and before a recrystallization annealing step,
The plurality of crystal planes include {022} plane, {002} plane, {113} plane, {111} plane, and {133} plane,
The diffraction peak intensity ratios of the crystal planes obtained by X-ray diffraction measurement using the 2θ / θ method with respect to the main surface and converted so that the total value becomes 100 are I {022} and I {002} , respectively . , I {113} , I {111} , and I {133} ,
I {113} ≦ 6.0,
I {111} ≦ 6.0, and
Rolled copper foil characterized by I {133} ≦ 6.0.
{022}面、{002}面、{113}面、{111}面、及び{133}面を有する粉末銅についてのJCPDSカード又はICDDカードに記載の前記各結晶面の標準的な回折ピークの相対強度から求められ、合計値が100となるように換算された前記各結晶面の回折ピーク強度比をそれぞれI0{022}、I0{002}、I0{113}、I0{111}、及びI0{133}としたとき、
{113}/I0{113}≦0.70であり、
{111}/I0{111}≦0.12であり、且つ、
{133}/I0{133}≦1.3である
ことを特徴とする請求項1に記載の圧延銅箔。
Standard diffraction peaks of each crystal plane described in the JCPDS card or ICDD card for powdered copper having a {022} plane, a {002} plane, a {113} plane, a {111} plane, and a {133} plane The diffraction peak intensity ratios of the crystal planes calculated from the relative intensities and converted so that the total value becomes 100 are I 0 {022} , I 0 {002} , I 0 {113} , I 0 {111, respectively. } And I 0 {133} ,
I {113} / I0 {113} ≦ 0.70,
I {111} / I0 {111} ≦ 0.12, and
It is I {133} / I0 {133} <= 1.3, The rolled copper foil of Claim 1 characterized by the above-mentioned.
{002}≧7.5である
ことを特徴とする請求項1又は2に記載の圧延銅箔。
The rolled copper foil according to claim 1, wherein I {002} ≧ 7.5.
{022}面、{002}面、{113}面、{111}面、及び{133}面を有する粉末銅についてのJCPDSカード又はICDDカードに記載の前記各結晶面の標準的な回折ピークの相対強度から求められ、合計値が100となるように換算された前記各結晶面の回折ピーク強度比をそれぞれI0{022}、I0{002}、I0{113}、I0{111}、及びI0{133}としたとき、
{002}/I0{002}≧0.30である
ことを特徴とする請求項1〜3のいずれかに記載の圧延銅箔。
Standard diffraction peaks of each crystal plane described in the JCPDS card or ICDD card for powdered copper having a {022} plane, a {002} plane, a {113} plane, a {111} plane, and a {133} plane The diffraction peak intensity ratios of the crystal planes calculated from the relative intensities and converted so that the total value becomes 100 are I 0 {022} , I 0 {002} , I 0 {113} , I 0 {111, respectively. } And I 0 {133} ,
It is I {002} / I0 {002} > = 0.30, The rolled copper foil in any one of Claims 1-3 characterized by the above-mentioned.
JIS C1020に規定の無酸素銅、又はJIS C1100に規定のタフピッチ銅を主成分とする
ことを特徴とする請求項1〜4に記載の圧延銅箔。
5. The rolled copper foil according to claim 1, comprising oxygen-free copper as defined in JIS C1020 or tough pitch copper as defined in JIS C1100 as a main component.
銀、硼素、チタン、錫の少なくともいずれかが添加されている
ことを特徴とする請求項1〜5のいずれかに記載の圧延銅箔。
The rolled copper foil according to any one of claims 1 to 5, wherein at least one of silver, boron, titanium, and tin is added.
総加工度が90%以上の前記最終冷間圧延工程により厚さが20μm以下となっていることを特徴とする請求項1〜6のいずれかに記載の圧延銅箔。   The rolled copper foil according to any one of claims 1 to 6, wherein a thickness is 20 µm or less by the final cold rolling step having a total workability of 90% or more. フレキシブルプリント配線板用である
ことを特徴とする請求項1〜7のいずれかに記載の圧延銅箔。
It is an object for flexible printed wiring boards, The rolled copper foil in any one of Claims 1-7 characterized by the above-mentioned.
JP2012033437A 2012-02-17 2012-02-17 Rolled copper foil Active JP5246526B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012033437A JP5246526B1 (en) 2012-02-17 2012-02-17 Rolled copper foil
CN2013100064494A CN103255312A (en) 2012-02-17 2013-01-08 Rolled copper foil
KR1020130009644A KR102001952B1 (en) 2012-02-17 2013-01-29 Rolled copper foil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012033437A JP5246526B1 (en) 2012-02-17 2012-02-17 Rolled copper foil

Publications (2)

Publication Number Publication Date
JP5246526B1 true JP5246526B1 (en) 2013-07-24
JP2013170277A JP2013170277A (en) 2013-09-02

Family

ID=48959515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012033437A Active JP5246526B1 (en) 2012-02-17 2012-02-17 Rolled copper foil

Country Status (3)

Country Link
JP (1) JP5246526B1 (en)
KR (1) KR102001952B1 (en)
CN (1) CN103255312A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6041779B2 (en) * 2013-09-20 2016-12-14 Jx金属株式会社 Copper alloy foil
JP7094151B2 (en) * 2017-06-07 2022-07-01 株式会社Shカッパープロダクツ Oxygen-free copper plate and ceramic wiring board

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3009383B2 (en) * 1998-03-31 2000-02-14 日鉱金属株式会社 Rolled copper foil and method for producing the same
JP3856582B2 (en) 1998-11-17 2006-12-13 日鉱金属株式会社 Rolled copper foil for flexible printed circuit board and method for producing the same
JP3856581B2 (en) * 1999-01-18 2006-12-13 日鉱金属株式会社 Rolled copper foil for flexible printed circuit board and method for producing the same
JP3856616B2 (en) * 2000-03-06 2006-12-13 日鉱金属株式会社 Rolled copper foil and method for producing the same
JP4285526B2 (en) * 2006-10-26 2009-06-24 日立電線株式会社 Rolled copper foil and method for producing the same
JP4466688B2 (en) * 2007-07-11 2010-05-26 日立電線株式会社 Rolled copper foil
JP5320638B2 (en) * 2008-01-08 2013-10-23 株式会社Shカッパープロダクツ Rolled copper foil and method for producing the same
US9060432B2 (en) 2008-06-30 2015-06-16 Nippon Steel & Sumikin Chemical Co., Ltd. Flexible circuit board and method for producing same and bend structure of flexible circuit board
KR101306181B1 (en) * 2008-11-12 2013-09-09 도요 고한 가부시키가이샤 Method for manufacturing metal laminated substrate for epitaxially grown film formation for semiconductor element formation and metal laminated substrate for epitaxially grown film formation for semiconductor element formation
JP5126436B1 (en) * 2012-02-17 2013-01-23 日立電線株式会社 Rolled copper foil

Also Published As

Publication number Publication date
CN103255312A (en) 2013-08-21
JP2013170277A (en) 2013-09-02
KR20130095203A (en) 2013-08-27
KR102001952B1 (en) 2019-07-19

Similar Documents

Publication Publication Date Title
JP4285526B2 (en) Rolled copper foil and method for producing the same
JP4215093B2 (en) Rolled copper foil and method for producing the same
WO2013027437A1 (en) Rolled copper foil
JP5126434B1 (en) Rolled copper foil
JP5126435B1 (en) Rolled copper foil
JP5373940B1 (en) Rolled copper foil
JP5373941B1 (en) Rolled copper foil
JP5126436B1 (en) Rolled copper foil
JP5246526B1 (en) Rolled copper foil
JP5201432B1 (en) Rolled copper foil
JP5273236B2 (en) Rolled copper foil
JP5201431B1 (en) Rolled copper foil
TW201418005A (en) Rolled copper foil having copper plating layer
JP5177268B2 (en) Rolled copper foil
JP2014139335A (en) Copper plating layer-clad rolled copper foil

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130327

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5246526

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250