JP3856616B2 - Rolled copper foil and method for producing the same - Google Patents

Rolled copper foil and method for producing the same Download PDF

Info

Publication number
JP3856616B2
JP3856616B2 JP2000090579A JP2000090579A JP3856616B2 JP 3856616 B2 JP3856616 B2 JP 3856616B2 JP 2000090579 A JP2000090579 A JP 2000090579A JP 2000090579 A JP2000090579 A JP 2000090579A JP 3856616 B2 JP3856616 B2 JP 3856616B2
Authority
JP
Japan
Prior art keywords
copper foil
rolled
rolling
copper
ray diffraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000090579A
Other languages
Japanese (ja)
Other versions
JP2001323354A (en
Inventor
隆紹 波多野
善雄 黒澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nippon Mining and Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Priority to JP2000090579A priority Critical patent/JP3856616B2/en
Publication of JP2001323354A publication Critical patent/JP2001323354A/en
Application granted granted Critical
Publication of JP3856616B2 publication Critical patent/JP3856616B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Metal Rolling (AREA)

Description

【0001】
【産業上の利用分野】
本発明は,再結晶焼鈍を行った際に,立方体集合組織が著しく発達する圧延銅箔の製造方法に関する。この銅箔は,高い屈曲性が要求されるフレキシブルプリント回路基板(Flexible printed circuit)等の可撓性配線部材の用途として好適である。
【0002】
【従来の技術】
圧延加工で製造した銅板あるいは銅箔を再結晶焼鈍すると,立方体集合組織((100)[001]方位)が発達する。立方体集合組織は,銅の諸特性に様々な影響を及ぼす。
立方体集合組織が発達した場合の利点として,低歪み/高サイクルの疲労特性(疲労寿命が104回以上)が向上することがあげられる。この観点から,特許第3009383号では,立方体集合組織を発達させた銅箔を,屈曲疲労特性が要求されるフレキシブルプリント回路基板(Flexible printed circuit,以下FPCとする)の素材に適用している。また,立方体集合組織を発達させる方策として,▲1▼最終圧延での加工度を90 %以上とし,▲2▼最終圧延前の焼鈍で得られる再結晶粒径を5〜20μmに調整することを提唱している。
【0003】
ところが昨今,立方体集合組織を従来以上に発達させることができる製造プロセスが望まれるようになった。例えば,FPC用の銅箔に関していえば,
▲1▼装置の小型化に伴い,FPCに与えられる屈曲変形がより厳しくなり,銅箔により優れた屈曲寿命が要求されるようになったこと,
▲2▼FPCに用いられる銅箔の厚みは,従来35μmが主流であったが,近年18μm,12μm,9μmと薄いものが用いられるようになった。銅箔が薄くなると,銅箔を同じプロセスで製造しても,立方体集合組織の発達度が低下すること,
等がその背景としてあげられる。
【0004】
【発明が解決しようとする課題】
本発明は,再結晶焼鈍を行った際に,立方体集合組織が著しく発達する圧延銅箔の製造方法を提供することを目的とする。
【0005】
【課題を改善するための手段】
本発明者は,極度に発達した立方体集合組織が安定して得られる製造プロセスについて鋭意研究を行った。この研究では,最終圧延加工度を93%以上とし,最終圧延前の組織(最終圧延前の焼鈍で得られる再結晶組織)が立方体集合組織の発達に及ぼす影響を検討した。その結果,最終圧延前の再結晶組織において立方体集合組織を発達させた方が,その後圧延し再結晶焼鈍したときに,より発達した立方体集合組織が得られることを見出した。
【0006】
これは,立方体集合組織が発達した銅を圧延すると,圧延後の加工組織のなかに立方体方位の帯状組織が高い頻度で形成され,その後焼鈍したときにこの帯状組織を起点として先鋭化した立方体集合組織が形成されるためであると推測した(福富洋志, 上城太一: 軽金属,Vol.47,No.2,pp.123-130)。なお,銅箔の立方体集合組織を発達させるためには,最終圧延前の結晶粒径が小さい方が好ましいということは従来より知られていたが(特許第3009383号),最終圧延前の立方体集合組織の発達度が重要な影響を及ぼすことは新たな知見であった。
【0007】
本発明は上記知見を基にして完成されたもので,再結晶焼鈍を行った際に立方体集合組織が著しく発達する圧延銅箔の製造方法を最適化した。即ち,発明1として,再結晶焼鈍を施すことにより,I
(200) /I 0(200) ≧40(I (200) :圧延面で測定した200面のX線回折積分強度,I 0(200) :微粉末銅で測定した200面のX線回折積分強度)なる立方体集合組織が発現することを特徴とする厚みが18μm以下の圧延銅箔。
【0008】
発明2として,フレキシブル回路基板用素材であることを特徴とする,発明1の圧延銅箔。発明3として,タフピッチ銅または無酸素銅のインゴットを熱間圧延した後,冷間圧延と焼鈍とを繰り返し,最後に冷間圧延で所定の厚さに仕上げる銅箔の製造プロセスにおいて,(1)最終冷間圧延の直前の焼鈍にて,再結晶粒の平均粒径が30μ m 以下,圧延面の(200),(220),(311)及び(111)面の回折強度を,
3≦I (200) /I 0(200) ≦10,I (220) /I 0(220) ≦1,I (311) /I 0(311) ≦1,I (111) /I 0(111) ≦1
(I (hkl) :圧延面で測定した(hkl)面のX線回折積分強度,I 0(hkl) :微粉末銅で測定した(hkl)面のX線回折積分強度)とし,
(2)次の最終冷間圧延において93%以上の加工度で冷間圧延を行うことを特徴とする発明1または2の圧延銅箔の製造方法。
【0009】
本発明は厚みが18μm以下の銅箔に対して有効である。これは,上述したように銅箔が薄くなると立方体集合組織の発達度が低下し,特に厚みが18μm以下となると,従来のプロセス(特許第3009383号)では立方体集合組織を所望のレベルまで発達させることが困難になるためである。上記方法を採用すると,厚さが18μm以下の銅箔においても,再結晶焼鈍後に,I (200)/I0 (200) ≧40のレベルの立方体集合組織を安定して得ることができる。
また,再結晶焼鈍後に立方体集合組織が著しく発達する圧延銅箔は,フレキシブルプリント回路基板用素材として特に好適である。
【0010】
【発明の実施の形態】
次に本発明において圧延銅箔の製造工程を規定した理由を以下に述べる。
(1)銅箔の素材:本発明は焼鈍の際に立方体集合組織を発達させることを主旨とするため,再結晶集合組織が立方体方位となる銅,すなわちタフピッチ銅(酸素濃度100〜500 wt ppm)および無酸素銅(酸素濃度10 wt ppm以下)が素材の対象となる。一方,多量の合金元素を含有する銅は,合金元素の作用により立方体方位の発達が阻害されるため,素材として適当ではない。ただし,
【0011】
▲1▼常温保管時の軟化を防止するため,微量のAg等を添加して軟化温度を適度な範囲に調整したタフピッチ銅(特願平11−9437)
▲2▼軟化温度を低下させることを目的とし,少量の合金元素を添加した無酸素銅(特許第1582981号,特開昭60-17040,特公昭62−47936,特許第1849316号,特開昭63−140052,特開昭63-45339,特開平1−319640,特許第2737954号)
▲3▼不純物量を調整することにより軟化温度を適度な範囲に調整した無酸素銅(特開平1−319641,特開平1−11932,特願平11−9332)
などの素材であれば用いることができる。これは,合金元素を含有しても,微量な濃度範囲(トータルで0.1 wt%以下)であれば,立方体集合組織の発達を阻害しないためである。
【0012】
(2)最終圧延加工度:加工度を93 %以上とした理由は,加工度が93 %未満であると,圧延前の焼鈍条件を調整しても,圧延後の焼鈍において立方体集合組織が所望のレベルまで発達しないためである。
(3)最終圧延前の焼鈍で得られる結晶粒径:再結晶粒の平均粒径が30μm以下とした理由は,結晶粒径が30μmを超えると,圧延前の結晶方位を制御し最終圧延加工度を93%以上としても,圧延後の焼鈍において立方体集合組織が所望のレベルまで発達しないためである。なお,同様の観点から特許第3009383号では再結晶粒の平均粒径を20μm以下に規定しているが,下記に述べるように立方体集合組織の発達度を調整すれば30μmの平均粒径まで許容できた。
【0013】
(4)最終圧延前の焼鈍で得られる立方体集合組織の発達度:I (200)/I0 (200)値を3以上に規定した理由は,この値が3以上になると圧延後の焼鈍において立方体集合組織が顕著に発達するためである。一方,I (200)/I0 (200)値が10を超えると,再結晶粒が異常成長して平均粒径が30μmを超え,圧延後の焼鈍における立方体集合組織の発達度が却って低下するためである。 I (220)/I0 (220),I (311)/I0 (311) およびI (111)/I0 (111) の各値を,1以下に規定した理由は,これら値が1を超えると,圧延後の焼鈍における立方体集合組織が発達度が低下するためである。
以上のようなI/I0値は,その前の圧延加工度ならびにその前の焼鈍条件を調整することによって得ることができる。すなわち,圧延加工度を大きくし焼鈍での結晶粒径を小さくすることで,I (200)/I0 (200)を上げ,I (220)/I0 (220),I (311)/I0 (311) およびI (111)/I0 (111) を下げることができる。
また,(3)(4)で規定した再結晶焼鈍を,熱間圧延で兼ねることも可能である。
【0014】
【実施例】
以下に本発明を実施例に基づき説明する。
実験の素材として,種々の結晶粒径および結晶方位を有する,厚さt0 mm,幅600 mmの再結晶焼鈍後のタフピッチ銅板(酸素含有量250 ppm)または無酸素銅板(酸素含有量2 ppm)を用いた。この銅板を厚さt mmまで冷間圧延した後,焼鈍して再結晶させた。ここで,冷間圧延での加工度dは,
d = (t0−t) / t0 × 100 (%) (ここでt0は冷間圧延前の厚さ)
で与えられる。なお,圧延後の銅箔を再結晶させるための焼鈍は,試料を半軟化温度より70℃高い温度で30分間加熱することによって実施した。ここで,半軟化温度とは,焼鈍後の引張り強さが,圧延上がりの引張り強さと完全に軟化した後の引張り強さとの中間の値になるときの焼鈍温度であり,焼鈍時間を30分間としてこの温度を最初に測定した。
【0015】
圧延前の銅箔の結晶粒径を,圧延方向に直角な断面において切断法(JISH0501)で測定した。また,圧延前の銅箔および圧延後に再結晶焼鈍した後の銅箔について,X線回折を行なった。さらに,本発明の銅箔がFPC用素材として用いられることを想定し屈曲寿命を評価した。X線回折および屈曲試験の方法の詳細を以下に示す。
【0016】
(1)X線回折
X線回折により圧延面における(200),(220),(311)および(111)の各面のX線強度を求めた。この値をあらかじめ測定しておいた微粉末銅での各面の積分強度で割り,I (200)/I0 (200),I (220)/I0 (220),I (311)/I0 (311) およびI (111)/I0 (111) の値を求めた。X線回折はCo管球を用いて行い,ピーク強度の積分値は,(200):2θ=57〜63°,(220):2θ=86〜91°,(311):2θ=107〜113°,(111):2θ=47〜55°(θは回折角度)の範囲で測定した。
【0017】
(2)屈曲試験
FPC用の銅箔として用いられることを想定し,上記条件で試料を再結晶焼鈍した後,図1に示す装置により,屈曲疲労寿命の測定を行った。この装置は,発振駆動体4に振動伝達部材3を結合した構造になっており,被試験銅箔1は,矢印で示したねじ2の部分と3の先端部の計4点で装置に固定される。振動部3が上下に駆動すると,銅箔1の中間部は,所定の曲率半径rでヘアピン状に屈曲される。本試験では,以下の条件下で屈曲を繰り返した時の破断までの回数を求めた。測定は同じ材料について5回行い,その平均値を求めた。
試験片幅12.7 mm,試験片長さ:200 mm,試験片採取方向:試験片の長さ方向が圧延方向と平行になるように採取,曲率半径r:2.5 mm,振動ストローク:25 mm,振動速度:1500回/分
【0018】
表1に評価した試料の加工履歴と特性を示す。
【0019】
【表1】

Figure 0003856616
【0020】
本発明に関わる圧延銅箔は,圧延後の再結晶焼鈍で,I (200)/I0 (200)≧40という著しく発達した立方体集合組織が得られている。
一方,比較例のNo.1は圧延前の焼鈍で得られるI (200)/I0 (200)値が3を下回るため,また比較例のNo.2は圧延前の焼鈍で得られるI (200)/I0 (200)値が10を超えたことにより再結晶粒が異常成長して,その粒径が30μmを超えているため,圧延後の再結晶焼鈍で得られるI (200)/I0 (200)値が低下している。比較例のNo.3およびNo.4は,圧延前の焼鈍で得られるI (220)/I0 (220)またはI (311)/I0 (311)が1を超えているため,圧延後の再結晶焼鈍で得られるI (200)/I0 (200)値が低下している。
比較例のNo.5は圧延加工度が93%を下回るため,また,比較例のNo.6は圧延前の焼鈍で得られる結晶粒径が30μmを超えるため,圧延後の再結晶焼鈍で得られるI (200)/I0 (200)値が低下している。
【0021】
図2にI (200)/I0 (200)値と屈曲寿命との関係を,データを銅箔の厚みで層別して示す。I (200)/I0 (200)値が高くなると,屈曲寿命が長くなることがわかる。なお,銅箔の厚みが薄くなると屈曲寿命が延びているが,曲げ部表面に与えられる歪みが小さくなるためである。
【0022】
【発明の効果】
圧延銅箔が薄くなると立方体集合組織の発達度が低下し,特に厚みが18μm以下となると,従来のプロセスでは立方体集合組織を所望のレベルまで発達させることが困難になるが本発明方法を採用すると,厚さが18μm以下の銅箔においても,再結晶焼鈍後に,I (200)/I0 (200) ≧40のレベルの立方体集合組織を安定して得ることができる。
また,再結晶焼鈍後に立方体集合組織が著しく発達する圧延銅箔は,フレキシブルプリント回路基板用素材として特に好適である。
【図面の簡単な説明】
【図1】屈曲疲労寿命の測定を行うために使用した屈曲試験の説明図である。
【図2】圧延後再結晶した後のI(200)/Io(200)と屈曲寿命の関係を示す図である。
【符号の説明】
1.銅箔
2.ねじ
3.振動伝達部材
4.発振駆動体[0001]
[Industrial application fields]
The present invention relates to a method for producing a rolled copper foil in which a cubic texture is remarkably developed when recrystallization annealing is performed. This copper foil is suitable for use as a flexible wiring member such as a flexible printed circuit board that requires high flexibility.
[0002]
[Prior art]
When a copper plate or copper foil produced by rolling is recrystallized and annealed, a cubic texture ((100) [001] orientation) develops. Cubic texture has various effects on various properties of copper.
As advantages of cubic texture is developed, it can be mentioned that the fatigue properties of the low distortion / high cycle (or 10 4 times the fatigue life) is improved. From this viewpoint, in Japanese Patent No. 3009383, a copper foil having a cubic texture is applied to a material of a flexible printed circuit board (hereinafter referred to as FPC) that requires bending fatigue characteristics. In addition, as a measure to develop the cubic texture, (1) the degree of work in final rolling should be 90% or more, and (2) the recrystallized grain size obtained by annealing before final rolling should be adjusted to 5-20μm. Advocated.
[0003]
However, recently, a manufacturing process capable of developing a cubic texture more than ever has been desired. For example, regarding copper foil for FPC,
(1) With the downsizing of the equipment, the bending deformation given to the FPC has become more severe, and the copper foil has been required to have an excellent bending life.
(2) The thickness of copper foil used for FPC has been 35μm in the past, but in recent years, thin ones of 18μm, 12μm and 9μm have been used. When the copper foil becomes thinner, the degree of development of the cube texture decreases even if the copper foil is manufactured by the same process.
Etc. are given as the background.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for producing a rolled copper foil in which a cubic texture is remarkably developed when recrystallization annealing is performed.
[0005]
[Means for improving the problem]
The present inventor has intensively studied a manufacturing process in which an extremely developed cubic texture can be stably obtained. In this study, the final rolling degree was set to 93% or more, and the effect of the structure before the final rolling (recrystallized structure obtained by annealing before the final rolling) on the development of the cube texture was examined. As a result, it was found that a more advanced cube texture can be obtained when the cube texture is developed in the recrystallized structure before the final rolling and then rolled and recrystallized and annealed.
[0006]
This is because when copper with a developed cubic texture is rolled, a cube-shaped band structure is formed at a high frequency in the processed structure after rolling, and the cube structure is sharpened starting from this band structure when annealed thereafter. It was speculated that this was due to the formation of an organization (Yoshi Fukutomi, Taichi Kamishiro: Light Metal, Vol. 47, No. 2, pp. 123-130). In order to develop a cube texture of copper foil, it has been conventionally known that a crystal grain size before final rolling is preferably small (Japanese Patent No. 3009383). It was a new finding that the degree of tissue development had an important influence.
[0007]
The present invention has been completed on the basis of the above knowledge, and has optimized a method for producing a rolled copper foil in which a cubic texture is remarkably developed when recrystallization annealing is performed. That is, as Invention 1, by performing recrystallization annealing,
(200) / I 0 (200) ≧ 40 (I (200) : X-ray diffraction integrated intensity of 200 planes measured on the rolling surface, I 0 (200) : X-ray diffraction integration of 200 planes measured with fine powder copper A rolled copper foil having a thickness of 18 μm or less, wherein a cubic texture of (strength) is developed.
[0008]
Invention 2 is a rolled copper foil according to Invention 1, which is a material for a flexible circuit board. Invention 3 is a copper foil manufacturing process in which a tough pitch copper or oxygen-free copper ingot is hot-rolled, then cold-rolled and annealed repeatedly, and finally finished to a predetermined thickness by cold-rolling. (1) at just before annealing in the final cold rolling, an average grain size of the recrystallized grains less 30.mu. m, the rolling surface (200), the (220) diffraction intensity of the (311) and (111) plane,
3 ≦ I (200) / I 0 (200) ≦ 10, I (220) / I 0 (220) ≦ 1, I (311) / I 0 (311) ≦ 1, I (111) / I 0 (111 ) ≦ 1
(I (hkl) : X-ray diffraction integrated intensity of (hkl) plane measured on the rolling surface, I 0 (hkl) : X-ray diffraction integrated intensity of (hkl) plane measured with fine copper)
(2) The method for producing a rolled copper foil according to invention 1 or 2, wherein cold rolling is performed at a workability of 93% or more in the next final cold rolling.
[0009]
The present invention is effective for a copper foil having a thickness of 18 μm or less. This is because, as described above, when the copper foil becomes thinner, the degree of development of the cube texture decreases, and particularly when the thickness is 18 μm or less, the conventional process (Japanese Patent No. 3009383) develops the cube texture to a desired level. This is because it becomes difficult. When the above method is adopted, a cube texture having a level of I (200) / I 0 (200) ≧ 40 can be stably obtained after recrystallization annealing even in a copper foil having a thickness of 18 μm or less.
Moreover, a rolled copper foil in which a cubic texture is remarkably developed after recrystallization annealing is particularly suitable as a material for a flexible printed circuit board.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Next, the reason why the manufacturing process of the rolled copper foil is defined in the present invention will be described below.
(1) Copper foil material : The main purpose of the present invention is to develop a cubic texture during annealing. Therefore, copper whose recrystallized texture is in a cubic orientation, that is, tough pitch copper (oxygen concentration of 100 to 500 wt ppm). ) And oxygen-free copper (oxygen concentration 10 wt ppm or less). On the other hand, copper containing a large amount of alloy elements is not suitable as a material because the action of the alloy elements hinders the development of cube orientation. However,
[0011]
(1) Tough pitch copper with a small amount of Ag added to adjust the softening temperature to an appropriate range to prevent softening during storage at room temperature (Japanese Patent Application No. 11-9437)
(2) Oxygen-free copper added with a small amount of alloying elements for the purpose of lowering the softening temperature (Japanese Patent No. 1559881, Japanese Patent Publication No. 60-17040, Japanese Patent Publication No. 62-47936, Japanese Patent No. 1849316, Japanese Patent Publication No. 63-140052, JP-A-63-45339, JP-A-1-319640, Japanese Patent No. 2737954)
(3) Oxygen-free copper whose softening temperature has been adjusted to an appropriate range by adjusting the amount of impurities (Japanese Patent Laid-Open Nos. 1-3199641, 1-111932, and Japanese Patent Application No. 11-9332)
Any material can be used. This is because even if alloy elements are contained, the development of the cube texture is not hindered in a very small concentration range (0.1 wt% or less in total).
[0012]
(2) Final rolling workability : The reason why the workability is 93% or more is that if the workability is less than 93%, the cube texture is desired in the annealing after rolling even if the annealing conditions before rolling are adjusted. It is because it does not develop to the level of.
(3) Crystal grain size obtained by annealing before final rolling : The average grain size of recrystallized grains is 30 μm or less. If the crystal grain size exceeds 30 μm, the crystal orientation before rolling is controlled and the final rolling process is performed. This is because even if the degree is 93% or more, the cube texture does not develop to a desired level in annealing after rolling. From the same viewpoint, Patent No. 3009383 regulates the average grain size of recrystallized grains to 20 μm or less. However, if the degree of development of the cube texture is adjusted as described below, an average grain size of 30 μm is allowed. did it.
[0013]
(4) Cubic texture development obtained by annealing before final rolling : The reason why I (200) / I 0 (200) is specified to be 3 or more is that when this value is 3 or more, annealing after rolling This is because the cube texture is remarkably developed. On the other hand, when the I (200) / I 0 (200) value exceeds 10, the recrystallized grains grow abnormally and the average grain size exceeds 30 μm, and the degree of development of the cube texture during annealing after rolling decreases. Because. The reason why each value of I (220) / I 0 (220) , I (311) / I 0 (311) and I (111) / I 0 (111) is defined as 1 or less is This is because the degree of development of the cube texture during annealing after rolling decreases.
The I / I 0 values as described above can be obtained by adjusting the previous rolling work degree and the previous annealing conditions. In other words, I (200) / I 0 (200) is increased by increasing the rolling degree and decreasing the grain size during annealing, and I (220) / I 0 (220) , I (311) / I 0 (311) and I (111) / I 0 (111) can be lowered.
In addition, the recrystallization annealing defined in (3) and (4) can also be performed by hot rolling.
[0014]
【Example】
The present invention will be described below based on examples.
The experimental materials are tough pitch copper plate (oxygen content 250 ppm) or oxygen-free copper plate (oxygen content 2 ppm) after recrystallization annealing with various crystal grain sizes and orientations, thickness t 0 mm and width 600 mm. ) Was used. This copper plate was cold-rolled to a thickness of t mm, and then annealed and recrystallized. Here, the working degree d in cold rolling is
d = (t 0 −t) / t 0 × 100 (%) (where t 0 is the thickness before cold rolling)
Given in. Annealing to recrystallize the rolled copper foil was performed by heating the sample for 30 minutes at a temperature 70 ° C higher than the semi-softening temperature. Here, the semi-softening temperature is the annealing temperature when the tensile strength after annealing becomes an intermediate value between the tensile strength after rolling and the tensile strength after complete softening, and the annealing time is 30 minutes. As this temperature was measured first.
[0015]
The crystal grain size of the copper foil before rolling was measured by a cutting method (JISH0501) in a cross section perpendicular to the rolling direction. X-ray diffraction was performed on the copper foil before rolling and the copper foil after recrystallization annealing after rolling. Furthermore, the bending life was evaluated assuming that the copper foil of the present invention was used as an FPC material. Details of the X-ray diffraction and bending test methods are shown below.
[0016]
(1) X-ray diffraction
The X-ray intensity of each surface of (200), (220), (311) and (111) on the rolled surface was determined by X-ray diffraction. Divide this value by the integrated intensity of each surface of finely powdered copper that has been measured in advance, and I (200) / I 0 (200) , I (220) / I 0 (220) , I (311) / I The values of 0 (311) and I (111) / I 0 (111) were determined. X-ray diffraction was performed using a Co tube, and the integrated values of peak intensities were (200): 2θ = 57 to 63 °, (220): 2θ = 86 to 91 °, (311): 2θ = 107 to 113 Measured in the range of °, (111): 2θ = 47 to 55 ° (θ is the diffraction angle).
[0017]
(2) Bending test
Assuming that it is used as a copper foil for FPC, after recrystallization annealing of the sample under the above conditions, the bending fatigue life was measured with the apparatus shown in FIG. This device has a structure in which a vibration transmitting member 3 is coupled to an oscillation driver 4, and a copper foil 1 to be tested is fixed to the device at a total of four points including a screw 2 portion indicated by an arrow and a tip portion of 3. Is done. When the vibration part 3 is driven up and down, the intermediate part of the copper foil 1 is bent into a hairpin shape with a predetermined radius of curvature r. In this test, the number of times to break when bending was repeated under the following conditions was obtained. The measurement was performed 5 times for the same material, and the average value was obtained.
Specimen width 12.7 mm, Specimen length: 200 mm, Specimen sampling direction: Specimen length direction is parallel to the rolling direction, Curvature radius r: 2.5 mm, Vibration stroke: 25 mm, Vibration speed : 1500 times / minute [0018]
Table 1 shows the processing history and characteristics of the evaluated samples.
[0019]
[Table 1]
Figure 0003856616
[0020]
The rolled copper foil according to the present invention has a remarkably developed cubic texture of I (200) / I 0 (200) ≧ 40 by recrystallization annealing after rolling.
On the other hand, No.1 of the comparative example below I (200) / I 0 ( 200) value is 3 obtained by annealing before rolling, and the No.2 of Comparative Example obtained in the annealing before rolling I ( 200) / I 0 (200) value exceeds 10, the recrystallized grains grow abnormally, and the grain size exceeds 30 μm, so I (200) / I 0 (200) value is decreasing. No. 3 and No. 4 in the comparative examples have I (220) / I 0 (220) or I (311) / I 0 (311) obtained by annealing before rolling exceeding 1, so after rolling The I (200) / I 0 (200) value obtained by recrystallization annealing is reduced.
The comparative example No. 5 has a rolling degree of less than 93%, and the comparative example No. 6 has a crystal grain size obtained by annealing before rolling exceeding 30 μm, so it can be obtained by recrystallization annealing after rolling. The I (200) / I 0 (200) value is decreased.
[0021]
Figure 2 shows the relationship between the I (200) / I 0 (200) value and the bending life, stratified by the copper foil thickness. It can be seen that the flex life increases as the I (200) / I 0 (200) value increases. In addition, although the bending life is extended when the thickness of the copper foil is reduced, the strain applied to the surface of the bent portion is reduced.
[0022]
【The invention's effect】
When the rolled copper foil becomes thinner, the degree of development of the cube texture decreases, and particularly when the thickness is 18 μm or less, it becomes difficult to develop the cube texture to a desired level in the conventional process. Even in a copper foil having a thickness of 18 μm or less, a cubic texture with a level of I (200) / I 0 (200) ≧ 40 can be stably obtained after recrystallization annealing.
Moreover, a rolled copper foil in which a cubic texture is remarkably developed after recrystallization annealing is particularly suitable as a material for a flexible printed circuit board.
[Brief description of the drawings]
FIG. 1 is an explanatory view of a bending test used for measuring a bending fatigue life.
FIG. 2 is a graph showing the relationship between I (200) / Io (200) and reflex life after recrystallization after rolling.
[Explanation of symbols]
1. 1. Copper foil Screw 3. 3. Vibration transmission member Oscillation driver

Claims (3)

再結晶焼鈍を施すことにより,IBy applying recrystallization annealing, I (200)(200) /I/ I 0(200)0 (200) ≧40(I≧ 40 (I (200)(200) :圧延面で測定した200面のX線回折積分強度,I: X-ray diffraction integrated intensity of 200 planes measured on the rolled surface, I 0(200)0 (200) :微粉末銅で測定した200面のX線回折積分強度)なる立方体集合組織が発現することを特徴とする厚みが18μm以下の圧延銅箔。: A rolled copper foil having a thickness of 18 μm or less, characterized in that a cubic texture expressed as (X-ray diffraction integrated intensity of 200 planes measured with fine powdered copper) appears. フレキシブル回路基板用素材であることを特徴とする,請求項1の圧延銅箔。The rolled copper foil according to claim 1, which is a material for a flexible circuit board. タフピッチ銅または無酸素銅のインゴットを熱間圧延した後,冷間圧延と焼鈍とを繰り返し,最後に冷間圧延で所定の厚さに仕上げる銅箔の製造プロセスにおいて,(1)最終冷間圧延の直前の焼鈍にて,再結晶粒の平均粒径が30μ(1) Final cold rolling in the copper foil manufacturing process in which tough pitch copper or oxygen-free copper ingots are hot rolled, then cold rolled and annealed repeatedly, and finally finished to a predetermined thickness by cold rolling. The average grain size of recrystallized grains was 30μ mm 以下,圧延面の(200),(220),(311)及び(111)面の回折強度を,Hereinafter, the diffraction intensity of the (200), (220), (311) and (111) planes of the rolled surface is
3≦I3 ≦ I (200)(200) /I/ I 0(200)0 (200) ≦10,I≦ 10, I (220)(220) /I/ I 0(220)0 (220) ≦1,I≦ 1, I (311)(311) /I/ I 0(311)0 (311) ≦1,I≦ 1, I (111)(111) /I/ I 0(111)0 (111) ≦1≦ 1
(I(I (hkl)(Hkl) :圧延面で測定した(hkl)面のX線回折積分強度,I: X-ray diffraction integrated intensity of (hkl) plane measured on rolled surface, I 0(hkl)0 (hkl) :微粉末銅で測定した(hkl)面のX線回折積分強度)とし,: X-ray diffraction integrated intensity of (hkl) plane measured with fine powder copper)
(2)次の最終冷間圧延において93%以上の加工度で冷間圧延を行うことを特徴とする請求項1または2の圧延銅箔の製造方法。(2) The method for producing a rolled copper foil according to claim 1 or 2, wherein cold rolling is performed at a workability of 93% or more in the next final cold rolling.
JP2000090579A 2000-03-06 2000-03-29 Rolled copper foil and method for producing the same Expired - Lifetime JP3856616B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000090579A JP3856616B2 (en) 2000-03-06 2000-03-29 Rolled copper foil and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-60973 2000-03-06
JP2000060973 2000-03-06
JP2000090579A JP3856616B2 (en) 2000-03-06 2000-03-29 Rolled copper foil and method for producing the same

Publications (2)

Publication Number Publication Date
JP2001323354A JP2001323354A (en) 2001-11-22
JP3856616B2 true JP3856616B2 (en) 2006-12-13

Family

ID=26586868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000090579A Expired - Lifetime JP3856616B2 (en) 2000-03-06 2000-03-29 Rolled copper foil and method for producing the same

Country Status (1)

Country Link
JP (1) JP3856616B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5126434B1 (en) * 2012-02-17 2013-01-23 日立電線株式会社 Rolled copper foil
JP5126436B1 (en) * 2012-02-17 2013-01-23 日立電線株式会社 Rolled copper foil
JP5126435B1 (en) * 2012-02-17 2013-01-23 日立電線株式会社 Rolled copper foil
KR20130095203A (en) 2012-02-17 2013-08-27 가부시키가이샤 에스에이치 카퍼프로덕츠 Rolled copper foil
KR20130129053A (en) 2012-05-17 2013-11-27 가부시키가이샤 에스에이치 카퍼프로덕츠 Rolled copper foil
KR20130129054A (en) 2012-05-17 2013-11-27 가부시키가이샤 에스에이치 카퍼프로덕츠 Rolled copper foil
KR20140010858A (en) 2012-07-17 2014-01-27 가부시키가이샤 에스에이치 카퍼프로덕츠 Rolled copper foil
KR20140010867A (en) 2012-07-17 2014-01-27 가부시키가이샤 에스에이치 카퍼프로덕츠 Rolled copper foil
KR20140125720A (en) 2013-04-18 2014-10-29 가부시키가이샤 에스에이치 카퍼프로덕츠 Rolled copper foil with copper plating layer
KR20160104598A (en) 2013-10-04 2016-09-05 제이엑스금속주식회사 Rolled copper foil, copper-clad laminate, printed wiring board and electronic device using the same, method for producing circuit connecting member, and circuit connecting member
CN108998692A (en) * 2017-06-07 2018-12-14 株式会社日立金属新材料 No-oxygen copper plate and ceramic wiring board

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008038169A (en) * 2006-08-03 2008-02-21 Sumitomo Kinzoku Kozan Shindo Kk Rolled copper foil
WO2008050584A1 (en) * 2006-10-24 2008-05-02 Nippon Mining & Metals Co., Ltd. Rolled copper foil excellent in bending resistance
US7789977B2 (en) 2006-10-26 2010-09-07 Hitachi Cable, Ltd. Rolled copper foil and manufacturing method thereof
JP5074083B2 (en) * 2007-04-17 2012-11-14 中部電力株式会社 Clad-oriented metal substrate for epitaxial thin film formation and manufacturing method thereof
JP5073386B2 (en) * 2007-07-05 2012-11-14 株式会社Neomaxマテリアル ELECTRODE WIRE FOR SOLAR CELL, ITS SUBSTRATE, AND METHOD FOR PRODUCING SUBSTRATE
JP4466688B2 (en) 2007-07-11 2010-05-26 日立電線株式会社 Rolled copper foil
JP5185066B2 (en) * 2008-10-23 2013-04-17 Jx日鉱日石金属株式会社 Copper foil excellent in flexibility, manufacturing method thereof, and flexible copper-clad laminate
JP5432201B2 (en) * 2011-03-30 2014-03-05 Jx日鉱日石金属株式会社 Copper alloy sheet with excellent heat dissipation and repeated bending workability
EP2695733B1 (en) * 2011-05-13 2020-09-16 JX Nippon Mining & Metals Corporation Copper foil composite, copper foil used for the same, formed product and method of producing the same
JP5273236B2 (en) * 2011-12-06 2013-08-28 日立電線株式会社 Rolled copper foil
KR101540508B1 (en) * 2012-02-28 2015-07-29 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Rolled copper foil
JP6643287B2 (en) * 2017-08-03 2020-02-12 Jx金属株式会社 Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101967714B1 (en) * 2012-02-17 2019-04-10 제이엑스금속주식회사 Rolled copper foil
JP5126436B1 (en) * 2012-02-17 2013-01-23 日立電線株式会社 Rolled copper foil
JP5126435B1 (en) * 2012-02-17 2013-01-23 日立電線株式会社 Rolled copper foil
KR20130095203A (en) 2012-02-17 2013-08-27 가부시키가이샤 에스에이치 카퍼프로덕츠 Rolled copper foil
KR20130095157A (en) 2012-02-17 2013-08-27 가부시키가이샤 에스에이치 카퍼프로덕츠 Rolled copper foil
KR20130095156A (en) 2012-02-17 2013-08-27 가부시키가이샤 에스에이치 카퍼프로덕츠 Rolled copper foil
KR20130095204A (en) 2012-02-17 2013-08-27 가부시키가이샤 에스에이치 카퍼프로덕츠 Rolled copper foil
JP2013170277A (en) * 2012-02-17 2013-09-02 Hitachi Cable Ltd Rolled copper foil
JP5126434B1 (en) * 2012-02-17 2013-01-23 日立電線株式会社 Rolled copper foil
KR20130129053A (en) 2012-05-17 2013-11-27 가부시키가이샤 에스에이치 카퍼프로덕츠 Rolled copper foil
KR20130129054A (en) 2012-05-17 2013-11-27 가부시키가이샤 에스에이치 카퍼프로덕츠 Rolled copper foil
KR20140010858A (en) 2012-07-17 2014-01-27 가부시키가이샤 에스에이치 카퍼프로덕츠 Rolled copper foil
KR20140010867A (en) 2012-07-17 2014-01-27 가부시키가이샤 에스에이치 카퍼프로덕츠 Rolled copper foil
KR20140125720A (en) 2013-04-18 2014-10-29 가부시키가이샤 에스에이치 카퍼프로덕츠 Rolled copper foil with copper plating layer
KR20160104598A (en) 2013-10-04 2016-09-05 제이엑스금속주식회사 Rolled copper foil, copper-clad laminate, printed wiring board and electronic device using the same, method for producing circuit connecting member, and circuit connecting member
CN108998692A (en) * 2017-06-07 2018-12-14 株式会社日立金属新材料 No-oxygen copper plate and ceramic wiring board

Also Published As

Publication number Publication date
JP2001323354A (en) 2001-11-22

Similar Documents

Publication Publication Date Title
JP3856616B2 (en) Rolled copper foil and method for producing the same
JP3009383B2 (en) Rolled copper foil and method for producing the same
JP3856582B2 (en) Rolled copper foil for flexible printed circuit board and method for producing the same
JP3856581B2 (en) Rolled copper foil for flexible printed circuit board and method for producing the same
JP5752536B2 (en) Rolled copper foil
US6531001B2 (en) Non-oriented magnetic steel sheet having low iron loss and high magnetic flux density and manufacturing method therefor
JP5189715B1 (en) Cu-Mg-P based copper alloy sheet having excellent fatigue resistance and method for producing the same
CN86102039A (en) Strengthen the method for lead-antimony alloy
JP3859384B2 (en) Rolled copper foil for flexible printed circuit board having excellent flexibility and manufacturing method thereof
JP4428715B2 (en) Copper alloy foil
JP3800279B2 (en) Copper alloy sheet with excellent press punchability
EP2607508A1 (en) Copper-cobalt-silicon alloy for electrode material
KR20090118404A (en) Manufacturing method of aluminum alloy having good dynamic deformation properties
JP4006468B1 (en) Copper alloy with high strength, high conductivity, and excellent bending workability
JP4006467B1 (en) Copper alloy with high strength, high conductivity, and excellent bending workability
JPH0920943A (en) Copper alloy for electronic and electrical parts and its production
JP2001262296A (en) Rolled copper foil and its manufacturing process
Chen et al. Microstructure and mechanical properties of mechanically alloyed, ingot metallurgy and powder metallurgy Al Li Cu Mg alloys
JP2012012631A (en) Titanium copper, wrought copper product, electronic component and connector
TWI625403B (en) Cu-Ni-Si series copper alloy bar and manufacturing method thereof
KR100388284B1 (en) Fe-Ni ALLOY SHADOW MASK BLANK WITH EXCELLENT ETCH PERFORATION PROPERTIES AND METHOD FOR MANUFACTURING THE SAME
JPH11106856A (en) Aluminum-magnesium-silicon series aluminum alloy sheet for forming
JPH10265873A (en) Copper alloy for electrical/electronic parts and its production
Kao Texture and earing behaviour of cold-rolled aluminium alloy 3004
CN110573635B (en) Copper alloy sheet and method for producing same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051017

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060912

R150 Certificate of patent or registration of utility model

Ref document number: 3856616

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term