WO2008050584A1 - Rolled copper foil excellent in bending resistance - Google Patents

Rolled copper foil excellent in bending resistance Download PDF

Info

Publication number
WO2008050584A1
WO2008050584A1 PCT/JP2007/069177 JP2007069177W WO2008050584A1 WO 2008050584 A1 WO2008050584 A1 WO 2008050584A1 JP 2007069177 W JP2007069177 W JP 2007069177W WO 2008050584 A1 WO2008050584 A1 WO 2008050584A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper foil
rolled copper
rolled
bending
foil
Prior art date
Application number
PCT/JP2007/069177
Other languages
French (fr)
Japanese (ja)
Inventor
Keisuke Yamanishi
Atsushi Miki
Original Assignee
Nippon Mining & Metals Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining & Metals Co., Ltd. filed Critical Nippon Mining & Metals Co., Ltd.
Priority to JP2008540930A priority Critical patent/JP4704474B2/en
Publication of WO2008050584A1 publication Critical patent/WO2008050584A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0393Flexible materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0355Metal foils

Definitions

  • the present invention relates to a rolled copper foil having excellent bending resistance that can be applied to a flexible printed circuit board (FPC).
  • FPC flexible printed circuit board
  • a printed wiring board is manufactured by etching a copper foil of a substrate to form various wiring patterns, and connecting and mounting electronic components with solder. Copper foils are classified into electrolytic copper foils and rolled copper foils because of their production methods, and copper foils with excellent bending resistance have been used favorably as copper foils for flexible substrates.
  • FPC Flexible printed wiring boards
  • FPC is required to be flexible. It is expected to improve workability and save space by making it easier to bend. Also, the softer the FPC inside the HDD, the easier it is to reduce the FPC driving force. As a result, power consumption can be reduced, which leads to HDD power saving. In LCD applications, etc., it can be expected to reduce failures due to springback when bent slightly. As the bend diameter narrows, the soft FPC The demand for is getting higher.
  • Patent Documents 2 and 3 A technique for making a cubic texture of 0 0 is disclosed (see Patent Documents 2 and 3). Since these technologies do not focus on the force slip band, which is an improvement in flex life, it has been found that this alone does not always provide the desired high flexibility. All of the above technologies are intended to improve the flexibility, but there is a problem that a great improvement in flexibility cannot be expected because there is no focus on the slip band described later.
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-323354
  • Patent Document 2 Japanese Unexamined Patent Publication No. 2000-212661
  • Patent Document 3 Japanese Patent No. 3009383
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a rolled copper foil excellent in bending resistance that can be applied to a flexible printed wiring board (FPC). It is to provide.
  • FPC flexible printed wiring board
  • a rolled copper foil with excellent bending resistance characterized by having a structure in which a slip band after bending the rolled copper foil is formed on the surface of the rolled copper foil by 50% or more! / .
  • the slip band must have a structure that forms 80% or more on the surface of the rolled copper foil.
  • the slip band must have a structure that forms 90% or more on the surface of the rolled copper foil. Is desirable.
  • the slip band structure formed at the time of bending is preferably uniformly distributed over the entire surface of the copper foil.
  • the present invention is that the slip band is an index that directly indicates the high flexibility of the rolled copper foil. As a result, the number of flexures can be greatly increased as will be described later.
  • the integrated intensity (I) of (200) plane obtained by X-ray diffraction of fine powder copper is o (200) (200) o (200) with I / ⁇ > 40, and the average grain size is 20 m It is an effective structure to obtain a rolled copper foil having excellent bending resistance. Thus, when the (200) plane having a large crystal grain size is highly oriented, a slip band appears remarkably. 5) 1 / ⁇ 65 in particular
  • the cube orientation is the orientation in which the crystal 002> direction is parallel to the rolling direction, the normal direction of the rolling surface, and the width direction. In this case, the ⁇ 200 ⁇ plane on the rolling surface (thinned surface) Are oriented. As the cube orientation develops, the abundance ratio of the crystal grains having the cube orientation increases. When the cube orientation is extremely developed, most of the crystal grains show the cube orientation.
  • each crystal grain is oriented in the same direction, it has a structure like a single crystal and the number of grain boundaries decreases. Therefore, in a copper foil having a developed cubic texture, the crystal grain size becomes large, and the force S can be obtained by obtaining a suitable condition that the number of grain boundaries can be reduced.
  • the rolled copper foil of the present invention having the above structure and excellent in bending resistance is: 7)
  • the number of times of bending in the IPC sliding bending test (bending radius: 1.5 mm) on the rolled copper foil 1811 m foil is 50000 times or more. Achieving power S.
  • the present invention includes all of these.
  • the slip band formed on the surface of the copper foil is also an index of bending resistance.
  • the rolled copper foil on which such a slip band is formed can greatly improve the bending resistance!
  • FIG. 1 is a diagram showing diversification of a hinge part of a mobile phone.
  • FIG. 2 is a diagram showing the IPC sliding bending test result when the bending radius is changed.
  • FIG. 3 is a diagram (SEM image) showing an observation result of a copper foil surface slip band after bending.
  • FIG. 4 is a diagram showing the results of an IPC sliding bending test on a two-layer copper-clad laminate.
  • FIG. 5 is a diagram showing the MIT refraction resistance test results of a two-layer copper-clad laminate.
  • FIG. 6 is a diagram showing the IPC sliding bending test result of a copper clad laminate when the circuit width is changed.
  • FIG. 7 is a diagram showing the distribution of the number of bendings when the type of copper foil is changed.
  • FIG. 8 A diagram showing the results of an MIT refraction test in which the influence of the rolling direction of the copper foil was examined.
  • FIG. 9 is a diagram showing the IPC sliding bending test result of copper foil at high temperature.
  • FIG. 10 is a diagram showing test results of loop stiffness of copper foil.
  • the rolled copper foils that are produced are FPC wiring materials that have a certain degree of bending reliability, but there is a demand for wiring materials that have even higher bending properties.
  • the bending radius if the bending radius is small, the force and strain are increased on the copper foil, and the flexibility is lowered. For this reason, for example, electrolytic copper foil has the lowest bendability, making it difficult to adapt to products with a small bending radius. Even in the conventional (current) rolled copper foil with high bendability, if the bend radius is reduced, the number of bends is drastically reduced and it becomes very severe.
  • Fig. 2 shows the test results of the number of bendings of the rolled copper foil of the present invention (the rolled foil of the present invention), the electrolytic copper foil, and the conventional (current) rolled copper foil.
  • the rolled copper foil of the present invention (the invention-invented rolled foil) has a significantly increased number of bending times compared to the electrolytic copper foil and the conventional rolled copper foil.
  • the slip band is an index that directly indicates the high flexibility of the rolled copper foil.
  • the integrated intensity (I) of the (200) plane is I / ⁇ > 40 and the average grain size is 20
  • the rolled copper foil copper whose recrystallized aggregate structure has a cubic orientation can be used.
  • Typical examples of this material include tough pitch copper and oxygen-free copper.
  • the present inventor researched and developed various types of rolled copper foils in order to provide flex resistance that can be applied to flexible printed circuit boards (FPC). It is a component that there is a phenomenon of. That is, a large amount of bent slip bands are generated on the surface of the rolled copper foil!
  • Fig. 3 shows the SEM image of the S-side of the copper foil circuit after bending the FPC of the rolled copper foil of the present invention (rolled foil of the present invention).
  • the streak pattern shown in this figure is the so-called “slip band”. This is a phenomenon peculiar to highly crystalline (single crystal) metals. In this case, slip bands occurred at 90% of the surface.
  • the slip band is generated in the rolled copper foil because the rolled copper foil is highly oriented in the (200) plane having high crystallinity like a single crystal.
  • a slip band is generated after repeated bending.
  • the rolled copper foil can have high flexibility. That is, if a large amount of slip bands can be generated after the copper foil is bent, the bending resistance of the rolled copper foil can be greatly improved.
  • the slip band after repeated bending should have a structure that forms 50% or more.
  • the slip band structure formed at the time of bending is uniformly distributed over the entire surface of the copper foil.
  • the rolled copper foil of the present invention (the present invention rolled foil) has a (200) plane orientation after recrystallization that is nearly 100% higher than that of the conventional rolled copper foil.
  • the rolled copper foil of the present invention (the rolled foil of the present invention) has a recrystallized crystal grain size that is significantly larger than that of a conventional rolled copper foil, the overall crystal grain boundary is also reduced.
  • the electrolytic copper foil made of fine crystals has remarkably many crystal grain boundaries.
  • the rolled foil of the present invention with few crystal grain boundaries has few starting points of crack generation, and as a result, high flexibility is considered to occur. This case is also effective for forming a slip band after bending.
  • slip bands are easily generated due to rolling, annealing, and crystal grain size. In repeated bending, the formation of this slip band is important. As mentioned above, the formation of slip bands alleviates bending fatigue, resulting in high flexibility.
  • the condition that a uniform slip band is formed after repeated bending that is, the condition that the slip band after bending the rolled copper foil is formed on the surface of the rolled copper foil by 50% or more. If it is, there will be no restriction
  • the grain size is adjusted to exceed 20 m and further to 30 m by annealing.
  • the I / Io value was measured by the X-ray diffraction (diffractometer) method (hereinafter the same).
  • R is defined by the following equation.
  • a tough pitch copper ingot containing 200 ppm of Ag was melted, and this ingot was 900.
  • the plate was hot-rolled from the same to obtain a 10 mm thick plate. Then, cold rolling and annealing were repeated, and finally cold rolled to 9 to 18 m thick copper foil.
  • the grain size is adjusted to the range of 20-100 ⁇ by annealing before the final cold rolling, and the degree of rolling (R) is changed variously in the final cold rolling. Changed the strength of the texture.
  • a slip band evaluation method will be described in advance.
  • Thermocompression bonding conditions 180 ° C, 60 minutes
  • Bending test condition Bending radius 2.0mm, bending speed 1000 times / min, stroke 20mm, copper foil side set inside
  • the rolled foil of the present invention showed more than twice as high flexibility as the conventional rolled copper foil. Furthermore, the rolled copper foil of the present invention having a thickness of 12 ⁇ 01 (the present invention rolled foil) exhibits the highest flexibility, which is about 3 times more excellent than the conventional rolled copper foil of 18 ⁇ . Had.
  • Fig. 5 shows the results of the bending resistance test at a bending radius of 0.8 mm. Similar to the IPC test results, the rolled foil of the 12 ⁇ 01 invention of the present application showed the highest flexibility.
  • the rolled copper foil of the present invention (the rolled foil of the present invention) is a high bending which is several times higher than the conventional rolled copper foil in the IPC sliding bending test and the MIT folding resistance test, which are general bending evaluation methods. Showing sex. The latest model of mobile phone hinges is required to have very high bendability, so this 12 invention rolled foil is optimal.
  • Fig. 6 shows the results of the sliding bending test in which the flexibility of the rolled copper foil of the present invention (the rolled foil of the present invention) and the conventional rolled copper foil was compared by changing the copper foil circuit width.
  • Figure 6 shows that the flexibility decreases when the circuit width is reduced from 1 mm to 0.5 mm. This is because when the circuit width is narrowed, the life from the crack to the disconnection is shortened.
  • the rolled copper foil of the present invention (rolled foil of the present invention) copper clad laminate (circuit width 0.5mm, left end) It can be seen that almost the same flexibility is obtained. That is, even if the circuit width is narrowed by making the circuit finer on the printed wiring board, the rolled foil of the present invention can maintain higher flexibility than the conventional rolled copper foil. In the above, it was carried out with 12 m foil, but even with 9 m foil, the bending resistance can be improved similarly.
  • the present invention rolled foil the present invention rolled foil
  • a more excellent number of bendings can be obtained and the bending reliability is guaranteed as compared with the conventional rolled copper foil.
  • both the conventional copper clad laminate of rolled copper foil and the copper clad laminate of the rolled copper foil of the present invention showed no difference in flexibility between MD and TD. The same flexibility was exhibited. This shows that the rolled copper foil of the present invention has high bending reliability not only in the MD direction but also in the TD direction.
  • the conventional rolled copper foil is about 20,000 times at 80 °, which is more than twice as flexible as the electrolytic copper foil about 10,000 times.
  • the rolled foil of the present invention has dramatically improved flexibility compared to the conventional rolled copper foil.
  • the number of bends exceeds 70,000 at 25 ° C and 80 ° C, and it is bent 80,000 times. It is close to the number of times. This is about 4 times the conventional rolled copper foil.
  • FIG. 10 shows the results of evaluation of the softness of the rolled copper foil using the loop stiffness test.
  • the rolled copper foil of the present invention (the rolled foil of the present invention) has a lower stiffness than the conventional rolled copper foil
  • the rolled copper foil of the present invention (the rolled foil of the present invention) is It can be said that it is softer than conventional rolled copper foil. Therefore, if the rolled foil of the present invention of the present invention is used, it becomes possible to produce an FPC that is softer than the conventional rolled copper foil, so that it is possible to expect power saving due to the ease of folding and the reduction of the driving force of the FPC. In fact, it has a remarkable advantage in applying to the rolled copper foil of the present invention (rolled foil of the present invention) in HDDs and optical pickups.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Abstract

A rolled copper foil excellent in bending resistance is characterized in that a texture having a bent slip band is formed by 50% or more on the surface of the rolled copper foil. The rolled copper foil excellent in bending resistance is characterized in that a texture has an average crystal particle size exceeding 20 μm and satisfies a relation I(200)/Io(200)>40, where I(200) is the integration strength of (200) face determined by X ray diffraction on the rolled surface of the rolled copper foil after recrytallization annealing, and Io(200) is the integration strength of (200) face of fine powder copper determined by X ray diffraction. In particular, a rolled copper foil for flexible printed wiring board (FPC) excellent in bending resistance is provided.

Description

明 細 書  Specification
耐屈曲性に優れた圧延銅箔  Rolled copper foil with excellent bending resistance
技術分野  Technical field
[0001] 本発明は、特にフレキシブルプリント配線板 (FPC)に対応できる耐屈曲性に優れた 圧延銅箔に関する。  TECHNICAL FIELD [0001] The present invention relates to a rolled copper foil having excellent bending resistance that can be applied to a flexible printed circuit board (FPC).
背景技術  Background art
[0002] プリント配線板は、基板の銅箔をエッチングして種々の配線パターンを形成し、電子 部品をハンダで接続して実装することにより製造される。銅箔はその製造方法から電 解銅箔と圧延銅箔に分類され、フレキシブル基板用銅箔には、耐屈曲性に優れる圧 延銅箔が好んで用いられてきた。  A printed wiring board is manufactured by etching a copper foil of a substrate to form various wiring patterns, and connecting and mounting electronic components with solder. Copper foils are classified into electrolytic copper foils and rolled copper foils because of their production methods, and copper foils with excellent bending resistance have been used favorably as copper foils for flexible substrates.
フレキシブルプリント配線板(以下、 FPC)は、薄く、折り曲げ性に優れるという特性か ら、電子機器の配線材料として採用されている。さらに電子機器の軽薄短小化、高機 能化に対応して、 FPC巿場は拡大成長を続けている。 FPCの用途分野も従来の HDD ,デジタルカメラなどから、近年では LCDや携帯電話において急速に拡大し、さらに は車載用としても開発が進んでいる  Flexible printed wiring boards (hereinafter referred to as FPC) are used as wiring materials for electronic devices because they are thin and have excellent bendability. Furthermore, the FPC plant continues to expand and grow as electronic devices become lighter, shorter, and more sophisticated. FPC application fields are also expanding rapidly from conventional HDDs, digital cameras, etc., in recent years to LCDs and mobile phones.
このように急速に進展する FPC巿場の要求に対応して、さらに耐屈曲性に優れた圧 延銅箔の開発が要求されている。  In response to the demands of the FPC plant that progresses rapidly like this, the development of a rolled copper foil with even higher bending resistance is required.
[0003] FPCの先端技術について見ると、まず折り曲げ径の狭小化という商品の要求がある 。すなわち、電子機器の軽薄短小化かつ高機能化から、折り曲げ径の狭小化が急速 に進行している。例えば、図 1に示すように、携帯電話ではヒンジ部が従来の αタイプ だけでなぐクランク、スライドタイプなどの新しい折り曲げも登場しており、従来以上 の厳しレ、折り曲げ性と屈曲信頼性が FPCに要求されて!/、る。 [0003] Looking at the advanced technology of FPC, first, there is a demand for products that narrow the bending diameter. In other words, as the electronic equipment becomes lighter, shorter, and more functional, the bending diameter is rapidly becoming narrower. For example, as shown in Fig. 1, new foldings such as cranks and slides that have hinges that are only available with the conventional α type have also appeared in mobile phones, and the FPC has higher tightness, bendability, and bending reliability than before. Requested! /
また、 FPCでは柔ら力、いことが要求されている。折り曲げ易くなることで作業性の向上 や省スペース化が期待できる。また HDD内部の FPCでは、柔らかいほど FPC駆動力 の低減が容易となる。結果的に電力消費を低減できることから HDDの省電力化に繋 がる。さらに LCD用途などでは、小さく折り曲げたときのスプリングバックによる故障の 低減も期待できる。このように折り曲げ径の狭小化が進むにつれて、柔らかい FPCへ の要求が高くなつている。 In addition, FPC is required to be flexible. It is expected to improve workability and save space by making it easier to bend. Also, the softer the FPC inside the HDD, the easier it is to reduce the FPC driving force. As a result, power consumption can be reduced, which leads to HDD power saving. In LCD applications, etc., it can be expected to reduce failures due to springback when bent slightly. As the bend diameter narrows, the soft FPC The demand for is getting higher.
[0004] 電子機器の高機能化、多機能化、モパイル化などにより FPCの配線密度( [0004] FPC wiring density (due to high functionality, multi-function, mopile etc.)
化が急速に進展して!/、る。最先端の 30 a mピッチはさらに 20 μ mピッチに向けて今後 もファイン化が進むと予想されている。 FPCのさらなる配線ファイン化においては、ポリ イミドゃ接着剤の開発だけでなぐ表面処理を含めた銅箔の開発も重要となってくる。 電子機器の小型化や鉛フリーはんだの影響から、 FPCの耐熱性要求が一段と増し ている。将来的な車載用 FPCを見据えて、耐熱性の要求レベルは今後も上昇してい くことが予想される。  Is progressing rapidly! The finest 30 am pitch is expected to be further refined toward a further 20 μm pitch. In the further refinement of FPC wiring, it is also important to develop copper foil including surface treatment that is not just the development of polyimide adhesive. Due to the downsizing of electronic equipment and the influence of lead-free solder, the heat resistance requirements of FPC are further increasing. Looking ahead to the future automotive FPC, the required level of heat resistance is expected to continue to rise.
以上が、市場からみた圧延銅箔の今後の要求特性の概要である力 特に上述した F PC技術動向から、圧延銅箔の屈曲の信頼性が問題となっている。  The above is the force that outlines the future required characteristics of rolled copper foil from the market perspective. In particular, due to the FPC technology trend described above, the reliability of bending of the rolled copper foil has become a problem.
[0005] 以下に、従来技術を紹介する。例えば、タフピッチ銅又は無酸素銅の圧延銅箔を製 造する際に、最終圧延直前の再結晶焼鈍において平均粒径を 30 以下とし、その 後圧延し、圧延面の X線回折で測定した (200), (220), (311), (111)面の回折強度を 3 ≤1 /1 ≤10,1 /1 ≤1, I /1 ≤1,1 /1 ≤1 (I :圧延面で測定し[0005] The following introduces the prior art. For example, when producing rolled copper foil of tough pitch copper or oxygen-free copper, the average grain size was set to 30 or less in recrystallization annealing immediately before the final rolling, and then rolled and measured by X-ray diffraction of the rolled surface ( 200), (220), (311), and (111) planes with diffraction intensities of 3 ≤1 / 1 ≤10,1 / 1 ≤1, I / 1 ≤1,1 / 1 ≤1 (I: Measure
(200) 0 (200) (220) 0 (220) (311) 0 (311) (111) 0 (111) (hkl) (200) 0 (200) (220) 0 (220) (311) 0 (311) (111) 0 (111) (hkl)
た (hkl)面の X線回折積分強度、 I :微粉末銅で測定した (hkl)面の X線回折積分強  X-ray diffraction integrated intensity of (hkl) plane, I: X-ray diffraction integrated intensity of (hkl) plane measured with fine copper powder
0 (hkl)  0 (hkl)
度の関係を満たす条件で行い、次!、で最終圧延加工度 93%以上で圧延した立方体 集合組織が発達した圧延銅箔の提案がある(例えば、特許文献 1参照)。これ自体は 、屈曲性を向上させる狙いがある力 必ずしもその効果は期待できず、折り曲げ回数 は十分でなレ、とレ、う問題がある。  There is a proposal of a rolled copper foil in which a cube texture developed under the condition satisfying the degree relationship and rolled at a final rolling degree of 93% or more in the following! (See, for example, Patent Document 1). This itself is a force aimed at improving the flexibility, but the effect is not necessarily expected, and there is a problem that the number of bending is sufficient.
[0006] また、フレキシブルプリント回路基板用圧延銅箔にお!/、て、圧延面の X線回折で求 めた (200)面の強度 Iが微粉末の X線回折で求めた (200)面の強度 Iに対して、 I/I〉20 [0006] Also, in rolled copper foil for flexible printed circuit boards! /, The strength I of the surface obtained by X-ray diffraction of the rolled surface (200) was obtained by X-ray diffraction of fine powder (200) For surface strength I, I / I> 20
0 0 である立方体集合組織とする技術が開示されている(特許文献 2、 3参照)。これらの 技術は屈曲寿命の改善を進めたものである力 スリップバンドへの着目がないため、 これだけでは必ずしも所望の高屈曲性が得られるとは限らないことが分かってきた。 以上の技術は、いずれも屈曲性の改善を意図するものであるが、後述するスリップ バンドへの着目がないため、大きな屈曲性の向上を期待できないという問題があった A technique for making a cubic texture of 0 0 is disclosed (see Patent Documents 2 and 3). Since these technologies do not focus on the force slip band, which is an improvement in flex life, it has been found that this alone does not always provide the desired high flexibility. All of the above technologies are intended to improve the flexibility, but there is a problem that a great improvement in flexibility cannot be expected because there is no focus on the slip band described later.
Yes
特許文献 1:特開 2001— 323354号公報 特許文献 2 :特開 2000— 212661号公報 Patent Document 1: Japanese Patent Laid-Open No. 2001-323354 Patent Document 2: Japanese Unexamined Patent Publication No. 2000-212661
特許文献 3:特許第 3009383号公報  Patent Document 3: Japanese Patent No. 3009383
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] 本発明は、上記のような問題点に鑑みてなされたものであり、その目的とするところ は、特にフレキシブルプリント配線板 (FPC)に対応できる耐屈曲性に優れた圧延銅 箔を提供することにある。  [0007] The present invention has been made in view of the above problems, and an object of the present invention is to provide a rolled copper foil excellent in bending resistance that can be applied to a flexible printed wiring board (FPC). It is to provide.
課題を解決するための手段  Means for solving the problem
[0008] 以上から、本願は以下の発明を提供する。  [0008] As described above, the present application provides the following inventions.
1)圧延銅箔を屈曲した後のスリップバンドが圧延銅箔の表面に 50%以上形成される 組織を備えて!/、ることを特徴とする耐屈曲性に優れた圧延銅箔を提供する。 2)この スリップバンドは圧延銅箔の表面に 80%以上形成される組織を備えていること、さらに は 3)スリップバンドが圧延銅箔の表面に 90%以上形成される組織を備えていることが 望ましい。また、この屈曲時に形成されるスリップバンド組織は銅箔の全面に均一に 分布しているのが好ましい。本願発明は、スリップバンドが圧延銅箔の高屈曲性を直 接示す指標であることを見出した点にある。これによつて、後述するように大幅な屈曲 回数の増大が可能となった。  1) Provide a rolled copper foil with excellent bending resistance characterized by having a structure in which a slip band after bending the rolled copper foil is formed on the surface of the rolled copper foil by 50% or more! / . 2) The slip band must have a structure that forms 80% or more on the surface of the rolled copper foil. 3) The slip band must have a structure that forms 90% or more on the surface of the rolled copper foil. Is desirable. Further, the slip band structure formed at the time of bending is preferably uniformly distributed over the entire surface of the copper foil. The present invention is that the slip band is an index that directly indicates the high flexibility of the rolled copper foil. As a result, the number of flexures can be greatly increased as will be described later.
[0009] 4)再結晶焼鈍後の圧延銅箔表面の X線回折で求めた (200)面の積分強度(I )が  [0009] 4) The integral strength (I) of the (200) plane obtained by X-ray diffraction on the surface of the rolled copper foil after recrystallization annealing is
(200) (200)
、微粉末銅の X線回折で求めた (200)面の積分強度(I )に対し、 I /\ 〉40で o(200) (200) o(200) あり、平均結晶粒径が 20 mを超える組織を備えていることが耐屈曲性に優れた圧 延銅箔を得るために有効な組織である。このように、結晶粒径が大きぐ(200)面が高 配向した場合にスリップバンドが顕著に現れる。特に、 5) 1 /\ 〉65であることが , The integrated intensity (I) of (200) plane obtained by X-ray diffraction of fine powder copper is o (200) (200) o (200) with I / \> 40, and the average grain size is 20 m It is an effective structure to obtain a rolled copper foil having excellent bending resistance. Thus, when the (200) plane having a large crystal grain size is highly oriented, a slip band appears remarkably. 5) 1 / \〉 65 in particular
(200) o(200)  (200) o (200)
望ましい。さらに、 6)平均結晶粒径が 30 m以上の組織を備えていることが、より有 効である。結晶粒が大きいと、それだけ結晶粒界が減少し、結晶方位の不整合を少 なくすること力 Sでさるカゝらである。  desirable. 6) It is more effective to have a structure with an average crystal grain size of 30 m or more. The larger the crystal grains, the more the grain boundaries are reduced, and the force S reduces the misalignment of crystal orientations.
[0010] 高!/、加工度で圧延した銅を再結晶焼鈍すると、その再結晶集合組織として、立方体 方位が発達する。立方体方位とは、結晶のく 002〉方向が圧延方向、圧延面法線方向 及び幅方向と平行になる方位であり、この場合、圧延面(減肉される面)には {200}面 が配向する。立方体方位が発達するに従い、立方体方位を有する結晶粒の存在比 率が大きくなり、立方体方位を極度に発達させると、ほとんどの結晶粒が立方体方位 を示すようになる。 [0010] When copper is rolled at a high degree of workability and is recrystallized, a cubic orientation develops as the recrystallized texture. The cube orientation is the orientation in which the crystal 002> direction is parallel to the rolling direction, the normal direction of the rolling surface, and the width direction. In this case, the {200} plane on the rolling surface (thinned surface) Are oriented. As the cube orientation develops, the abundance ratio of the crystal grains having the cube orientation increases. When the cube orientation is extremely developed, most of the crystal grains show the cube orientation.
この場合、各結晶粒が同じ方向に配向しているため、あたかも単結晶のような組織 構造を呈し、粒界の数が減少する。したがって、立方体集合組織が発達した銅箔で は、結晶粒径が大きくなり、粒界の数を減少させることができるという好適な条件を得 ること力 Sでさる。  In this case, since each crystal grain is oriented in the same direction, it has a structure like a single crystal and the number of grain boundaries decreases. Therefore, in a copper foil having a developed cubic texture, the crystal grain size becomes large, and the force S can be obtained by obtaining a suitable condition that the number of grain boundaries can be reduced.
[0011] 以上の組織を持つ本願発明の耐屈曲性に優れた圧延銅箔は、 7)圧延銅箔 1811 m 箔における IPC摺動屈曲試験(曲げ半径 1.5mm)の屈曲回数が 50000回以上を達成 すること力 Sできる。本願発明は、これらを全て包含する。  [0011] The rolled copper foil of the present invention having the above structure and excellent in bending resistance is: 7) The number of times of bending in the IPC sliding bending test (bending radius: 1.5 mm) on the rolled copper foil 1811 m foil is 50000 times or more. Achieving power S. The present invention includes all of these.
上記の通り、立方体集合組織を発達させたフレキシブル基板用銅箔を使用した場 合に、該銅箔面に形成されるスリップバンドは、耐屈曲性の指標となるものでもある。 このようなスリップバンドが形成される圧延銅箔が、耐屈曲性を大きく向上させること ができると!/、う従来技術は無!/、。  As described above, when a copper foil for a flexible substrate having a developed cubic texture is used, the slip band formed on the surface of the copper foil is also an index of bending resistance. The rolled copper foil on which such a slip band is formed can greatly improve the bending resistance!
発明の効果  The invention's effect
[0012] 本発明によって、工業的に受け入れられる製造コストの範囲で、特にフレキシブルプ リント配線板 (FPC)に対応できる耐屈曲性に優れた圧延銅箔が実現できるという優 れた効果が得られる。  [0012] According to the present invention, it is possible to obtain an excellent effect that a rolled copper foil excellent in bending resistance that can be applied to a flexible printed wiring board (FPC) can be realized within a range of industrially acceptable manufacturing costs. .
図面の簡単な説明  Brief Description of Drawings
[0013] [図 1]携帯電話のヒンジ部の多様化を示す図である。  FIG. 1 is a diagram showing diversification of a hinge part of a mobile phone.
[図 2]曲げ半径を変化させた場合の IPC摺動屈曲試験結果を示す図である。  FIG. 2 is a diagram showing the IPC sliding bending test result when the bending radius is changed.
[図 3]屈曲後の銅箔表面スリップバンドの観察結果を示す図(SEM画像)である。  FIG. 3 is a diagram (SEM image) showing an observation result of a copper foil surface slip band after bending.
[図 4]2層銅張積層板の IPC摺動屈曲試験結果を示す図である。  FIG. 4 is a diagram showing the results of an IPC sliding bending test on a two-layer copper-clad laminate.
[図 5]2層銅張積層板の MIT耐屈折試験結果を示す図である。  FIG. 5 is a diagram showing the MIT refraction resistance test results of a two-layer copper-clad laminate.
[図 6]回路幅を変化させた場合の銅張積層板の IPC摺動屈曲試験結果を示す図であ  FIG. 6 is a diagram showing the IPC sliding bending test result of a copper clad laminate when the circuit width is changed.
[図 7]銅箔の種類を変えた場合における屈曲回数の分布を示す図である。 FIG. 7 is a diagram showing the distribution of the number of bendings when the type of copper foil is changed.
[図 8]銅箔の圧延方向の影響を調べた MIT耐屈折試験結果を示す図である。 [図 9]高温における銅箔の IPC摺動屈曲試験結果を示す図である。 [Fig. 8] A diagram showing the results of an MIT refraction test in which the influence of the rolling direction of the copper foil was examined. FIG. 9 is a diagram showing the IPC sliding bending test result of copper foil at high temperature.
[図 10]銅箔のループスティフネスの試験結果を示す図である。  FIG. 10 is a diagram showing test results of loop stiffness of copper foil.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0014] 現在、生産されている圧延銅箔はある程度、屈曲信頼性が高い FPC用配線材料で はあるが、さらに高屈曲性を持つ配線材料が要求されている。 [0014] Currently, the rolled copper foils that are produced are FPC wiring materials that have a certain degree of bending reliability, but there is a demand for wiring materials that have even higher bending properties.
銅箔における曲げ半径と摺動屈曲回数の関係につ!/、ては、曲げ半径が小さくなると 銅箔に力、かる歪みが大きくなるため屈曲性が低下する。そのため、例えば電解銅箔 は最も屈曲性が低いので、曲げ半径の小さな製品への適応が困難となってくる。屈 曲性が高い従来 (現行)の圧延銅箔でも曲げ半径が小さくなると、屈曲回数が激減し 、非常に厳しくなつてくる。  Regarding the relationship between the bending radius and the number of sliding bends in the copper foil, if the bending radius is small, the force and strain are increased on the copper foil, and the flexibility is lowered. For this reason, for example, electrolytic copper foil has the lowest bendability, making it difficult to adapt to products with a small bending radius. Even in the conventional (current) rolled copper foil with high bendability, if the bend radius is reduced, the number of bends is drastically reduced and it becomes very severe.
図 2に、本発明の圧延銅箔 (本願発明圧延箔)と電解銅箔及び従来 (現行)の圧延 銅箔の屈曲回数の試験結果を示す。この図 2に示すように、本発明の圧延銅箔 (本 願発明圧延箔)は電解銅箔及び従来の圧延銅箔に比べて、曲げ回数が大幅に向上 すること力 S分力、る。スリップバンドは、圧延銅箔の高屈曲性を直接示す指標である。  Fig. 2 shows the test results of the number of bendings of the rolled copper foil of the present invention (the rolled foil of the present invention), the electrolytic copper foil, and the conventional (current) rolled copper foil. As shown in FIG. 2, the rolled copper foil of the present invention (the invention-invented rolled foil) has a significantly increased number of bending times compared to the electrolytic copper foil and the conventional rolled copper foil. The slip band is an index that directly indicates the high flexibility of the rolled copper foil.
[0015] 本発明の耐屈曲性に優れた圧延銅箔を製造するに際しては、再結晶焼鈍後の圧延 銅箔表面の X線回折で求めた (200)面の積分強度(I )が、微粉末銅の X線回折で [0015] When producing a rolled copper foil having excellent bending resistance according to the present invention, the integral strength (I) of the (200) plane obtained by X-ray diffraction of the surface of the rolled copper foil after recrystallization annealing is very small. X-ray diffraction of powder copper
(200)  (200)
求めた (200)面の積分強度(I )に対し、 I /\ 〉40であり、平均結晶粒径が 20  The integrated intensity (I) of the (200) plane is I / \> 40 and the average grain size is 20
o(200) (200) o(200)  o (200) (200) o (200)
11 mを超える組織とするの力 圧延銅箔を屈曲した後のスリップバンドを形成するの に有効である。圧延面に平行な (200)面の X線回折強度(I)と粉末銅 (ランダム方位) の (200)面の X線回折強度(Io)とを同一条件で測定すると、立方体集合組織の発達 の程度は、これら X線回折強度の比 I/Ioで評価することができる。  Strength to make the structure over 11 m Effective for forming a slip band after bending a rolled copper foil. When the X-ray diffraction intensity (I) of the (200) plane parallel to the rolling surface and the X-ray diffraction intensity (Io) of the (200) plane of powdered copper (random orientation) are measured under the same conditions, the development of the cube texture The degree of can be evaluated by the ratio I / Io of these X-ray diffraction intensities.
[0016] 立方体集合組織の発達は、最終冷間圧延率のみでなぐ最終冷間圧延に至る加工 •熱処理工程、最終焼鈍温度、素材銅の化学組成や不純物含有量等による。したが つて、 目標の I/Io値を得るには、使用する素材銅とその加工プロセスに即して最適な 最終冷間圧延率等を決める必要がある。 [0016] The development of the cube texture depends on the processing that leads to the final cold rolling not only by the final cold rolling rate, the heat treatment process, the final annealing temperature, the chemical composition of copper, the impurity content, and the like. Therefore, in order to obtain the target I / Io value, it is necessary to determine the optimum final cold rolling ratio in accordance with the material copper to be used and the processing process.
圧延銅箔としては、再結晶集合体組織が立方体方位となる銅を使用できる。この材 料の代表的なものとしては、タフピッチ銅及び無酸素銅がある。  As the rolled copper foil, copper whose recrystallized aggregate structure has a cubic orientation can be used. Typical examples of this material include tough pitch copper and oxygen-free copper.
一般に、合金元素を添加した銅は立方体方位の発達を阻害するので、適当でない 。しかし、 Ag等を添加して軟化温度を調整したタフピッチ銅等、 0. lwt%程度の微 量な合金元素の添加は、立方体方位の発達を阻害しないので、使用上特に問題が ない。 In general, copper added with alloying elements is not suitable because it inhibits the development of cube orientation. . However, the addition of a minute alloy element of about 0.1 wt%, such as tough pitch copper adjusted for softening temperature by adding Ag or the like, has no particular problem in use because it does not hinder the development of the cube orientation.
[0017] (圧延銅箔の高屈曲性メカニズム)  [0017] (High flexibility mechanism of rolled copper foil)
本発明者は、フレキシブルプリント配線板 (FPC)に対応できる耐屈曲性を持たせる ために、各種の圧延銅箔を研究'開発する中で、耐屈曲性に優れた圧延銅箔につい て、共通の現象があることが分力、つた。それは、屈曲後のスリップバンドが圧延銅箔の 表面に多量に発生して!/、ることである。  The present inventor researched and developed various types of rolled copper foils in order to provide flex resistance that can be applied to flexible printed circuit boards (FPC). It is a component that there is a phenomenon of. That is, a large amount of bent slip bands are generated on the surface of the rolled copper foil!
本発明の圧延銅箔 (本願発明圧延箔)の FPCを屈曲させた後に、銅箔回路の S面側 を SEM画像による観察した結果を図 3に示す。図 3の上段の組織(SEM画像)は、表 面の (200)配向力 9%であり、 I /\ =75の場合である。屈曲以外の部分と比較す ると、表面には微細なスジ模様が観察された。この図に示されているスジ模様はいわ ゆる「スリップバンド (すべり帯)」と呼ばれるものである。これは、結晶性の高い(単結 晶の)金属に特有な現象である。この場合、スリップバンドは表面の 90%で発生した。  Fig. 3 shows the SEM image of the S-side of the copper foil circuit after bending the FPC of the rolled copper foil of the present invention (rolled foil of the present invention). The upper structure (SEM image) in Fig. 3 shows a (200) orientation force of 9% on the surface and I / \ = 75. Compared with the part other than the bend, a fine streak pattern was observed on the surface. The streak pattern shown in this figure is the so-called “slip band”. This is a phenomenon peculiar to highly crystalline (single crystal) metals. In this case, slip bands occurred at 90% of the surface.
[0018] 単結晶の金属は繰り返し応力を受けると、結晶粒界に溜まる歪み (転位)を緩和しょう として金属表面にスリップバンドを生じる。図 3の中段の組織(SEM画像)は、表面の (2 00)配向力 0%であり、 I /\ =10の場合である。この図 3の中段の図では、部分的 にスリップバンドが発生しているのが観察できる。この場合、スリップバンドは表面の 3 5%で発生した。この場合は、スリップバンドが発生しているために、やや良好な耐屈 曲性を示す力 十分ではない。 [0018] When a single crystal metal is repeatedly subjected to stress, a slip band is generated on the metal surface in an attempt to relieve strain (dislocation) accumulated in the grain boundary. The middle structure (SEM image) in Fig. 3 shows the case where the (2 00) orientation force of the surface is 0% and I / \ = 10. In the middle figure of Fig. 3, it can be observed that a slip band is partially generated. In this case, slip bands occurred at 35% of the surface. In this case, since a slip band is generated, the force showing a slightly good bending resistance is not sufficient.
一方、図 3の下段の組織(SEM画像)は、表面の (200)配向力 ¾0%であり、 I /\ く On the other hand, in the lower structure (SEM image) in Fig. 3, the (200) orientation force of the surface is ¾0%, and I / \
3の場合である。これは電解銅箔の場合である力 電解銅箔は表面にスリップバンド が殆んど発生していない。この結果、前記圧延銅箔と同様に繰り返し応力をかけた場 合には、クラックすら発生しているのが分かる。 This is the case of 3. This is the force of electrolytic copper foil. The electrolytic copper foil has almost no slip band on the surface. As a result, it can be seen that even when repeated stress is applied as in the case of the rolled copper foil, even cracks are generated.
[0019] このように、圧延銅箔にスリップバンドが発生するのは、圧延銅箔は単結晶のように 結晶性が高ぐ(200)面で高配向しているためであり、圧延銅箔の繰り返し屈曲後にス リップバンドを生じるのである。 [0019] Thus, the slip band is generated in the rolled copper foil because the rolled copper foil is highly oriented in the (200) plane having high crystallinity like a single crystal. A slip band is generated after repeated bending.
これは屈曲における圧延銅箔内部の疲労蓄積を緩和する現象であることから、結果 的に圧延銅箔が高い屈曲性を保有させることが可能となる。すなわち、銅箔の屈曲 後にスリップバンドが均一に多量に発生させることができれば、圧延銅箔の耐屈曲性 を大幅に向上させることが可能となる。 This is a phenomenon that alleviates fatigue accumulation inside the rolled copper foil during bending. In particular, the rolled copper foil can have high flexibility. That is, if a large amount of slip bands can be generated after the copper foil is bent, the bending resistance of the rolled copper foil can be greatly improved.
繰り返し屈曲後のスリップバンドは 50%以上形成される組織を備えていることが望まし い。また、好ましくは 80%以上、さらには 90%以上形成される組織を備えていることが好 ましい。そして、この屈曲時に形成されるスリップバンド組織は銅箔の全面に均一に 分布していることが望ましい。  It is desirable that the slip band after repeated bending should have a structure that forms 50% or more. In addition, it is preferable to have a structure in which 80% or more, more preferably 90% or more is formed. And it is desirable that the slip band structure formed at the time of bending is uniformly distributed over the entire surface of the copper foil.
[0020] (本発明の圧延銅箔 (本願発明圧延箔)の高屈曲性のメカニズム) [0020] (Mechanism of high flexibility of rolled copper foil of the present invention (rolled foil of the present invention))
本発明の圧延銅箔 (本願発明圧延箔)が高屈曲性を保有する理由には、主として以 下の 3点が考えられる。  There are mainly three reasons why the rolled copper foil of the present invention (rolled foil of the present invention) possesses high flexibility.
(1)結晶の (200)面の高配向性  (1) High orientation of (200) plane of crystal
本発明の圧延銅箔 (本願発明圧延箔)は、再結晶後の (200)面配向性が従来の圧延 銅箔よりも高ぐほぼ 100%に近い配向をしている。そして、 I /\ 〉40であり、好ま  The rolled copper foil of the present invention (the present invention rolled foil) has a (200) plane orientation after recrystallization that is nearly 100% higher than that of the conventional rolled copper foil. And I / \〉 40
(200) o(200)  (200) o (200)
しくは I /\ 〉65が達成されている。これより結晶粒界に配向のミスマッチが極め I / \〉 65 has been achieved. From this, the orientation mismatch is extremely large at the grain boundary.
(200) o(200) (200) o (200)
て小さくなる。例えば、結晶がランダム配向の電解銅箔では、結晶粒界の配向性のミ スマッチが大きい。この結晶配向性のミスマッチは、結晶粒界への疲労 (転位)の蓄 積に影響を与える。したがって、ミスマッチが小さい本願発明圧延箔では結晶粒界へ の転位蓄積も小さくなり、結果的に高屈曲性を生じると考えられる。この様な組織をも つ場合には、屈曲した後のスリップバンドが圧延銅箔の表面に 50%以上形成するのに 有効である。  Become smaller. For example, in an electrolytic copper foil in which crystals are randomly oriented, there is a large mismatch in the orientation of crystal grain boundaries. This mismatch in crystal orientation affects the accumulation of fatigue (dislocations) at the grain boundaries. Therefore, in the rolled foil of the present invention having a small mismatch, the accumulation of dislocations at the grain boundaries is also reduced, and as a result, it is considered that high flexibility is produced. In the case of having such a structure, it is effective to form a slip band after bending at 50% or more on the surface of the rolled copper foil.
[0021] (2)結晶粒の大きさ [0021] (2) Grain size
本発明の圧延銅箔 (本願発明圧延箔)は、再結晶後の結晶粒サイズが従来の圧延 銅箔よりも著しく大きいため、全体的な結晶粒界も少なくなる。逆に、微細結晶からな る電解銅箔は、結晶粒界が著しく多くなる。また、屈曲におけるクラック発生 ·進展が、 結晶粒界に沿う場合、結晶粒界が少ない本願発明圧延箔はクラック発生の起点が少 なくなることから、結果的に高屈曲性を生じると考えられる。この場合も、屈曲した後 のスリップバンドを形成するのに有効である。  Since the rolled copper foil of the present invention (the rolled foil of the present invention) has a recrystallized crystal grain size that is significantly larger than that of a conventional rolled copper foil, the overall crystal grain boundary is also reduced. On the other hand, the electrolytic copper foil made of fine crystals has remarkably many crystal grain boundaries. In addition, when crack generation / development in bending is along the crystal grain boundary, the rolled foil of the present invention with few crystal grain boundaries has few starting points of crack generation, and as a result, high flexibility is considered to occur. This case is also effective for forming a slip band after bending.
(3)スリップバンドの生じ易さ 本願発明圧延箔は、圧延、焼鈍、結晶粒径によりスリップバンドの生じ易さが生じる。 繰り返し屈曲においては、このスリップバンドの形成が重要となる。上述したようにスリ ップバンドの形成により屈曲疲労が緩和され、結果的に高屈曲性を生じると考えられ (3) Ease of slip band In the rolled foil of the present invention, slip bands are easily generated due to rolling, annealing, and crystal grain size. In repeated bending, the formation of this slip band is important. As mentioned above, the formation of slip bands alleviates bending fatigue, resulting in high flexibility.
[0022] 圧延銅箔の製造については、繰り返し屈曲後に均一スリップバンドが形成される条 件、すなわち圧延銅箔を屈曲した後のスリップバンドが圧延銅箔の表面に 50%以上形 成される条件であれば、特に制限はないが、例えばタフピッチ銅及び無酸素銅の再 結晶集合体組織が立方体方位となる銅を使用できる。この銅インゴットを溶製し、この インゴットを 900° Cから熱間圧延し、その後、冷間圧延と焼鈍を繰り返し、最終的に、 所定の厚さ(例えば、 18 H m厚、 12 H m厚、 9 μ m厚)の銅箔に圧延する。 [0022] Regarding the production of the rolled copper foil, the condition that a uniform slip band is formed after repeated bending, that is, the condition that the slip band after bending the rolled copper foil is formed on the surface of the rolled copper foil by 50% or more. If it is, there will be no restriction | limiting in particular, For example, the copper whose recrystallized aggregate structure | tissue of tough pitch copper and an oxygen free copper becomes a cube orientation can be used. This copper ingot is melted, this ingot is hot-rolled from 900 ° C, then cold-rolling and annealing are repeated, and finally a predetermined thickness (for example, 18 Hm thickness, 12 Hm thickness) , 9 μm thick).
最終冷間圧延後、焼鈍により結晶粒径: 20 mを超え、さらには 30 mを超えるよう に調整する。結晶粒径は大きいほど好ましぐ 50 ^ m,さらには 100 m、 200 mを超 える結晶粒径とすることも可能である。  After the final cold rolling, the grain size is adjusted to exceed 20 m and further to 30 m by annealing. The larger the crystal grain size is, the more preferable it is to have a crystal grain size exceeding 50 ^ m, and even 100 m and 200 m.
前記最終冷間圧延では、圧延加工度 (R)を種々変化させ、立方体集合組織の量を 調整する。例えば、 R=90〜100% (未満)の範囲で調整する。そして、半軟化温度より 5 0° C高い温度で再結晶焼鈍して I /1 〉40、好ましくは I /\ 〉65を得る。な お、 I/Io値の測定は X線回折 (ディフラタトメーター)法によった(以下、同様)。  In the final cold rolling, the degree of cube texture is adjusted by changing the rolling degree (R) in various ways. For example, adjust in the range of R = 90-100% (less than). Then, recrystallization annealing is performed at a temperature higher by 50 ° C. than the semi-softening temperature to obtain I / 1> 40, preferably I / \> 65. The I / Io value was measured by the X-ray diffraction (diffractometer) method (hereinafter the same).
また、 Rは次式で定義するものである。  R is defined by the following equation.
R=(t— t)/t (t:圧延前の厚み、 t :圧延後の厚み)  R = (t—t) / t (t: thickness before rolling, t: thickness after rolling)
実施例  Example
[0023] 以下、実施例により本発明を説明する。なお、本実施例は好適な一例を示すもので 、本発明はこれらの実施例に限定されるものではない。したがって、本発明の技術思 想に含まれる変形、他の実施例又は態様は、全て本発明に含まれる。なお、本発明 との対比のために、必要に応じて、比較例を併記する。  Hereinafter, the present invention will be described with reference to examples. In addition, a present Example shows a suitable example, This invention is not limited to these Examples. Accordingly, all modifications and other examples or aspects included in the technical idea of the present invention are included in the present invention. For comparison with the present invention, comparative examples are also described as necessary.
[0024] 200ppmの Agを含むタフピッチ銅のインゴットを溶製し、このインゴットを 900。 じから 熱間圧延し、厚さ 10mmの板を得た。その後、冷間圧延と焼鈍を繰り返し、最終的に 9 〜 18 m厚の銅箔に冷間圧延した。最終冷間圧延前の焼鈍で結晶粒径を 20〜 100 πιの範囲に調整し、最終冷間圧延では、圧延加工度(R)を種々変化させ、立方体 集合組織の強さを変化させた。 [0024] A tough pitch copper ingot containing 200 ppm of Ag was melted, and this ingot was 900. The plate was hot-rolled from the same to obtain a 10 mm thick plate. Then, cold rolling and annealing were repeated, and finally cold rolled to 9 to 18 m thick copper foil. In the final cold rolling, the grain size is adjusted to the range of 20-100 πι by annealing before the final cold rolling, and the degree of rolling (R) is changed variously in the final cold rolling. Changed the strength of the texture.
下記の実施例では、 R=98.2%とし、半軟化温度より 50° C高い温度で再結晶焼鈍し て I/Io=40〜80の範囲で変化させた。なお、 I/Io値の測定は上記の通り、 X線回折(デ ィフラタトメーター)法によった。  In the following examples, R = 98.2%, recrystallization annealing was performed at a temperature 50 ° C. higher than the semi-softening temperature, and I / Io = 40-80. The I / Io value was measured by the X-ray diffraction (diffractometer) method as described above.
圧延銅箔用素材として無酸素銅 (HO材)を用いた場合にも、同様の結果が得られた 。実施例においては、特に圧延銅箔用素材の選択、圧延又は熱処理条件を限定す る必要はなぐ本願明細書に記載する範囲であれば、任意に選択できる。したがって 、以下の説明では、圧延工程及び熱処理工程の詳細は割愛した。  Similar results were obtained when oxygen-free copper (HO material) was used as the rolled copper foil material. In the examples, selection of the rolled copper foil material, rolling or heat treatment conditions are not particularly limited, and any range can be selected as long as it is within the range described in the present specification. Therefore, in the following description, details of the rolling process and the heat treatment process are omitted.
以下に、各種試験により、本願発明をより具体的に説明する。  Hereinafter, the present invention will be described more specifically by various tests.
[0025] (スリップバンド評価方法) [0025] (Slip band evaluation method)
予め、スリップバンドの評価方法について説明する。  A slip band evaluation method will be described in advance.
[試験サンプルの作製]  [Preparation of test sample]
(1)銅箔 (lS ^ m厚、 12 πι厚)と接着剤付ポリイミドシートを使用し、熱圧着により 3層 の銅張積層板(Copper Clad Laminates: CCL)を作製  (1) Using copper foil (lS ^ m thickness, 12 πι thickness) and polyimide sheet with adhesive, make a three-layered copper clad laminate (Copper Clad Laminates: CCL) by thermocompression bonding
熱圧着条件: 180° C、60分間  Thermocompression bonding conditions: 180 ° C, 60 minutes
(2) 3層銅張積層板に、エッチングにより JIS C5016の耐折性試験用パターンを形成 [屈曲試験]  (2) Forming a JIS C5016 folding test pattern on a 3-layer copper clad laminate by etching [Bend test]
試験サンプルで IPC摺動屈曲試験 30000回を実施  Conducted 30000 IPC sliding bending tests on test samples
屈曲試験条件:曲げ半径 2.0mm、屈曲速度 1000回/分、ストローク 20mm、銅箔側を 内側にセットして行う  Bending test condition: Bending radius 2.0mm, bending speed 1000 times / min, stroke 20mm, copper foil side set inside
[スリップバンドの観察]  [Observation of slip band]
試験サンプル表面を、 SEM( X 1500)の 60 m X 60 mの画面でスリップバンド形成 部の面積比を確認  Check the area ratio of the slip band formation area on the surface of the test sample on a 60 m x 60 m screen of SEM (X 1500)
[0026] (屈曲性の比較試験) [0026] (Comparison test of flexibility)
上記試験に使用した銅箔を使用し、本願実施例については、スリップバンド形成比 率 64-98%のものを使用し、比較例については、スリップバンド形成比率 25-35%のもの を使用した。本発明の圧延銅箔(図 4及び図 5では、「本願発明圧延箔」と表記する。 以下同様。)と従来の圧延箔(比較例)との屈曲性の比較評価を行った。曲げ半径 1. 5mmにおける IPC摺動屈曲試験結果を図 4に示す。 The copper foil used in the above test was used. For the examples of the present application, those having a slip band formation ratio of 64-98% were used, and for the comparative examples, those having a slip band formation ratio of 25-35% were used. . Comparative evaluation of the flexibility of the rolled copper foil of the present invention (in FIG. 4 and FIG. 5, expressed as “rolled foil of the present invention”, the same shall apply hereinafter) and the conventional rolled foil (comparative example) was performed. Bending radius 1. Figure 4 shows the IPC sliding bending test results at 5 mm.
図 4より、 18 厚の圧延箔の銅張積層板では、従来の圧延銅箔よりも本願発明圧 延箔は 2倍以上の高屈曲性を示した。さらに、 12 ^ 01厚の本発明の圧延銅箔 (本願発 明圧延箔)は、最も高い屈曲性を示し、 18 πιの従来の圧延銅箔と比較すると約 3倍 以上もの優れた屈曲性を有していた。また、曲げ半径 0.8mmにおける ΜΙΤ耐折試験 結果を図 5に示す。 IPC試験結果と同様に、 12 ^ 01本願発明圧延箔が最も高い屈曲 性を示していた。  As shown in FIG. 4, in the copper-clad laminate of 18-thick rolled foil, the rolled foil of the present invention showed more than twice as high flexibility as the conventional rolled copper foil. Furthermore, the rolled copper foil of the present invention having a thickness of 12 ^ 01 (the present invention rolled foil) exhibits the highest flexibility, which is about 3 times more excellent than the conventional rolled copper foil of 18πι. Had. In addition, Fig. 5 shows the results of the bending resistance test at a bending radius of 0.8 mm. Similar to the IPC test results, the rolled foil of the 12 ^ 01 invention of the present application showed the highest flexibility.
このように本発明の圧延銅箔 (本願発明圧延箔)は、一般的な屈曲評価方法である I PC摺動屈曲試験および MIT耐折試験について、従来の圧延銅箔の数倍以上の高 屈曲性を示している。最新機種の携帯電話ヒンジ部は、非常に高い折り曲げ性が要 求されるため、この 12 本願発明圧延箔が最適である。  As described above, the rolled copper foil of the present invention (the rolled foil of the present invention) is a high bending which is several times higher than the conventional rolled copper foil in the IPC sliding bending test and the MIT folding resistance test, which are general bending evaluation methods. Showing sex. The latest model of mobile phone hinges is required to have very high bendability, so this 12 invention rolled foil is optimal.
[0027] (回路幅が異なる屈曲性の比較試験) [0027] (Flexibility comparison test with different circuit widths)
本発明の圧延銅箔 (本願発明圧延箔)と従来の圧延銅箔について銅箔回路幅を変 化させて屈曲性の比較を行った摺動屈曲試験結果を図 6に示す。図 6より回路幅が 1 mmから 0.5mmに狭くなると、屈曲性も低下することが分かる。回路幅が狭くなると、ク ラックから断線までの寿命が短くなるためである。  Fig. 6 shows the results of the sliding bending test in which the flexibility of the rolled copper foil of the present invention (the rolled foil of the present invention) and the conventional rolled copper foil was compared by changing the copper foil circuit width. Figure 6 shows that the flexibility decreases when the circuit width is reduced from 1 mm to 0.5 mm. This is because when the circuit width is narrowed, the life from the crack to the disconnection is shortened.
図 6より、従来の圧延銅箔の銅張積層板 (回路幅 lmm,右端)に比べて、本発明の圧 延銅箔 (本願発明圧延箔)銅張積層板 (回路幅 0.5mm,左端)は、ほぼ同等の屈曲性 が得られていることが分かる。すなわちプリント配線板における回路のファイン化によ り回路幅が狭幅化しても、本願発明圧延箔は従来の圧延銅箔以上に高屈曲性を維 持できる。上記においては、 12 m箔で実施したが、さらに 9 m箔でも同様に耐屈曲 性を向上させることができる。  From Fig. 6, compared to the conventional rolled copper foil copper clad laminate (circuit width lmm, right end), the rolled copper foil of the present invention (rolled foil of the present invention) copper clad laminate (circuit width 0.5mm, left end) It can be seen that almost the same flexibility is obtained. That is, even if the circuit width is narrowed by making the circuit finer on the printed wiring board, the rolled foil of the present invention can maintain higher flexibility than the conventional rolled copper foil. In the above, it was carried out with 12 m foil, but even with 9 m foil, the bending resistance can be improved similarly.
[0028] (屈曲性のばらつきについて) [0028] (About variation in flexibility)
FPCの市場要求では、高屈曲性だけでなく屈曲信頼性についても、従来以上の高 い基準が必要とされる。そこで本発明の圧延銅箔 (本願発明圧延箔)、従来の圧延 銅箔、電解銅箔 (A, B)について屈曲信頼性の評価を行った。評価は 180°C, 1時間 熱処理後の銅箔単体サンプル 100個について、曲げ半径 1.5mmにて摺動屈曲試験 を行った。図 7にサンプル 100個の屈曲回数の度数分布を示す。 図 7より、従来の圧延銅箔は安定して高い屈曲性を示している。一方、特殊電解銅 箔は銅箔破断までの屈曲回数にばらつきがあり、安定した屈曲性では従来の圧延銅 箔よりも劣っている。これより、従来の電解銅箔に比べて、従来の圧延銅箔は、厳しい 折り曲げ条件に優れて!/、るのが分かる。 FPC market demands require higher standards than ever for flex reliability as well as high flexibility. Therefore, the bending reliability of the rolled copper foil of the present invention (rolled foil of the present invention), the conventional rolled copper foil, and the electrolytic copper foil (A, B) was evaluated. Evaluation was performed at a bending radius of 1.5 mm on 100 copper foil single samples after heat treatment at 180 ° C for 1 hour. Figure 7 shows the frequency distribution of the number of bendings for 100 samples. From Fig. 7, the conventional rolled copper foil shows stable and high flexibility. On the other hand, special electrolytic copper foils vary in the number of flexing times until the copper foil breaks, and are inferior to conventional rolled copper foils in stable bendability. From this, it can be seen that the conventional rolled copper foil is superior in severe bending conditions compared to the conventional electrolytic copper foil!
しかし、本発明の圧延銅箔 (本願発明圧延箔)の場合は、従来の圧延銅箔に比べて 、さらに優れた屈曲回数が得られ、屈曲信頼性が保証されることが分かる。  However, in the case of the rolled copper foil of the present invention (the present invention rolled foil), it can be seen that a more excellent number of bendings can be obtained and the bending reliability is guaranteed as compared with the conventional rolled copper foil.
[0029] (屈曲の方向信頼性について) [0029] (Bending direction reliability)
圧延銅箔は製造プロセスにおいて MD(Machine Direction)方向に圧延加工するため 、 MD方向と TD(Traversal Direction)方向では銅箔の屈曲性が異なると言われること がある。そこで本発明の圧延銅箔を用いた銅張積層板で MD 'TD方向の MIT耐折試 験を行った。その結果を図 8に示す。  Since rolled copper foil is rolled in the MD (Machine Direction) direction in the manufacturing process, it is sometimes said that the flexibility of the copper foil differs between the MD direction and the TD (Traversal Direction) direction. Therefore, an MIT folding test in the MD'TD direction was performed on a copper-clad laminate using the rolled copper foil of the present invention. The results are shown in Fig. 8.
図 8より、従来の圧延銅箔の銅張積層板,本発明の圧延銅箔 (本願発明圧延箔)の 銅張積層板ともに MD · TDにお!/、て屈曲性の差異は表れず、同等の屈曲性を示した 。これより本発明の圧延銅箔は MD方向だけでなぐ TD方向においても高い屈曲信 頼性を有することが分かる。  From Fig. 8, both the conventional copper clad laminate of rolled copper foil and the copper clad laminate of the rolled copper foil of the present invention (rolled foil of the present invention) showed no difference in flexibility between MD and TD. The same flexibility was exhibited. This shows that the rolled copper foil of the present invention has high bending reliability not only in the MD direction but also in the TD direction.
[0030] (高温屈曲性について) [0030] (About high temperature flexibility)
電子機器の軽薄短小技術により FPCへの熱負荷も増加しつつある。そこで FPC配 線材料である銅箔において高温雰囲気での屈曲評価を行った。 25° Cおよび 80° C における摺動屈曲試験結果を図 9に示す。  The heat load on the FPC is also increasing due to the light, thin and small technology of electronic equipment. Therefore, we evaluated the bending of copper foil, an FPC wiring material, in a high-temperature atmosphere. Figure 9 shows the results of the sliding bending test at 25 ° C and 80 ° C.
図 9より、従来の圧延銅箔は、 80° じで、約 2万回であり、電解銅箔の約 1万回と比較 して 2倍以上の屈曲性を有している。しかし、本願発明の圧延箔は、従来の圧延銅箔 に比べて、飛躍的に屈曲性が向上し、 25° Cおよび 80° Cにおいて、屈曲回数が 7 万回を超え、 8万回の屈曲回数に近くなつている。これは、従来の圧延銅箔の約 4倍 である。このように、従来の圧延銅箔と比べても著しい向上があり、 25° C (常温)だけ でなぐ 80° Cの高温でも高屈曲性が維持できているのが分かる。  From Fig. 9, the conventional rolled copper foil is about 20,000 times at 80 °, which is more than twice as flexible as the electrolytic copper foil about 10,000 times. However, the rolled foil of the present invention has dramatically improved flexibility compared to the conventional rolled copper foil. The number of bends exceeds 70,000 at 25 ° C and 80 ° C, and it is bent 80,000 times. It is close to the number of times. This is about 4 times the conventional rolled copper foil. Thus, it can be seen that there is a marked improvement over the conventional rolled copper foil, and that high flexibility can be maintained even at a high temperature of 80 ° C. as well as only at 25 ° C. (normal temperature).
[0031] (柔軟性について) [0031] (About flexibility)
より柔らかい FPCの巿場要求について、 FPCメーカーによるポリイミドゃ接着剤の開 発が行われている。当然、配線材料である銅箔においても柔らかさが要求されている 。そこで、ループスティフネス試験により圧延銅箔の柔らかさの評価を行った結果を、 図 10に示す。 FPC manufacturers are developing polyimide adhesives for softer FPC market requirements. Naturally, softness is also required for copper foil, which is a wiring material. . Figure 10 shows the results of evaluation of the softness of the rolled copper foil using the loop stiffness test.
図 10より、本発明の圧延銅箔 (本願発明圧延箔)は従来の圧延銅箔よりも約 35%ル 一ブスティフネス性が低いことから、本発明の圧延銅箔 (本願発明圧延箔)は従来の 圧延銅箔よりも柔らかいと言える。よって、本発明の本願発明圧延箔を使用すれば、 従来の従来の圧延銅箔よりも柔らかい FPCの作製が可能となるので、折り曲げ易さや FPCの駆動力低減にともなう省電力化が期待できる。実際に、 HDDや光ピックアップ における本発明の圧延銅箔 (本願発明圧延箔)への適用に著し!/、利点がある。  From FIG. 10, since the rolled copper foil of the present invention (the rolled foil of the present invention) has a lower stiffness than the conventional rolled copper foil, the rolled copper foil of the present invention (the rolled foil of the present invention) is It can be said that it is softer than conventional rolled copper foil. Therefore, if the rolled foil of the present invention of the present invention is used, it becomes possible to produce an FPC that is softer than the conventional rolled copper foil, so that it is possible to expect power saving due to the ease of folding and the reduction of the driving force of the FPC. In fact, it has a remarkable advantage in applying to the rolled copper foil of the present invention (rolled foil of the present invention) in HDDs and optical pickups.
産業上の利用可能性 Industrial applicability
本発明によって、工業的に受け入れられる製造コストの範囲で、耐屈曲性に優れた 圧延銅箔が実現できるとレ、う優れた効果が得られ、特にフレキシブルプリント配線板( FPC)の製造に際し、工業的に極めて有用である。  According to the present invention, when a rolled copper foil excellent in bending resistance can be realized within the range of industrially acceptable production costs, an excellent effect can be obtained. Particularly, in the production of a flexible printed wiring board (FPC), It is extremely useful industrially.

Claims

請求の範囲 The scope of the claims
[1] 圧延銅箔を屈曲した後のスリップバンドが圧延銅箔の表面に 50%以上形成される組 織を備えていることを特徴とする耐屈曲性に優れた圧延銅箔。  [1] A rolled copper foil having excellent bending resistance, characterized in that a slip band after bending the rolled copper foil has a structure in which 50% or more is formed on the surface of the rolled copper foil.
[2] スリップバンドが圧延銅箔の表面に 80%以上形成される組織を備えて!/、ることを特徴 とする請求項 1記載の耐屈曲性に優れた圧延銅箔。  [2] The rolled copper foil having excellent bending resistance according to [1], wherein the slip band has a structure in which 80% or more of the slip band is formed on the surface of the rolled copper foil!
[3] スリップバンドが圧延銅箔の表面に 90%以上形成される組織を備えて!/、ることを特徴 とする請求項 1記載の耐屈曲性に優れた圧延銅箔。  [3] The rolled copper foil having excellent bending resistance according to [1], wherein the slip band has a structure in which 90% or more of the slip band is formed on the surface of the rolled copper foil!
[4] 再結晶焼鈍後の圧延銅箔表面の X線回折で求めた (200)面の積分強度(I )が、微  [4] The integrated intensity (I) of the (200) plane obtained by X-ray diffraction on the surface of the rolled copper foil after recrystallization annealing is very small.
(200) 粉末銅の X線回折で求めた (200)面の積分強度(I )に対し、 I /\ 〉40であり、 o(200) (200) o(200) 平均結晶粒径が 20 mを超える組織を備えて!/、ることを特徴とする請求項 1〜3の!/、 ずれかに記載の耐屈曲性に優れた圧延銅箔。  (200) The integrated intensity (I) of the (200) plane determined by X-ray diffraction of powdered copper is I / \> 40, and o (200) (200) o (200) The average grain size is 20 The rolled copper foil having excellent bending resistance according to any one of claims 1 to 3, wherein the rolled copper foil has a structure exceeding m! /.
[5] I /\ 〉65であることを特徴とする請求項 4記載の耐屈曲性に優れた圧延銅箔。 [5] The rolled copper foil having excellent bending resistance according to claim 4, wherein I / \> 65.
(200) o(200)  (200) o (200)
[6] 平均結晶粒径が 30 m以上の組織を備えて!/、ることを特徴とする請求項 4又は 5記 載の耐屈曲性に優れた圧延銅箔。  [6] The rolled copper foil having excellent bending resistance according to claim 4 or 5, which has a structure with an average crystal grain size of 30 m or more! /.
[7] 圧延銅箔 18 ^ 01箔における IPC摺動屈曲試験(曲げ半径 1.5mm)の屈曲回数が 500[7] Rolled copper foil 18 ^ 01 Foil IPC sliding bend test (bending radius 1.5mm) is 500 times
00回以上を達成する組織を備えていることを特徴とする請求項 1〜6のいずれかに記 載の耐屈曲性に優れた圧延銅箔。 The rolled copper foil having excellent bending resistance according to any one of claims 1 to 6, wherein the rolled copper foil has a structure that achieves 00 times or more.
PCT/JP2007/069177 2006-10-24 2007-10-01 Rolled copper foil excellent in bending resistance WO2008050584A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008540930A JP4704474B2 (en) 2006-10-24 2007-10-01 Rolled copper foil with excellent bending resistance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006288176 2006-10-24
JP2006-288176 2006-10-24

Publications (1)

Publication Number Publication Date
WO2008050584A1 true WO2008050584A1 (en) 2008-05-02

Family

ID=39324390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/069177 WO2008050584A1 (en) 2006-10-24 2007-10-01 Rolled copper foil excellent in bending resistance

Country Status (2)

Country Link
JP (1) JP4704474B2 (en)
WO (1) WO2008050584A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010100887A (en) * 2008-10-23 2010-05-06 Nippon Mining & Metals Co Ltd Copper foil excellent in flexibility, and flexible copper clad laminated sheet
EP2306794A1 (en) * 2008-06-30 2011-04-06 Nippon Steel Chemical Co., Ltd. Flexible circuit board and method for producing same and bend structure of flexible circuit board
WO2012128098A1 (en) * 2011-03-24 2012-09-27 Jx日鉱日石金属株式会社 Rolled copper foil, process for producing same, and copper-clad laminate
JP2013067853A (en) * 2011-09-09 2013-04-18 Jx Nippon Mining & Metals Corp Rolled copper foil, copper-clad laminate, flexible printed wiring board and electronic device
JP2013167014A (en) * 2012-01-17 2013-08-29 Jx Nippon Mining & Metals Corp Rolled copper foil for flexible printed circuit board
JP2013211492A (en) * 2012-03-30 2013-10-10 Jx Nippon Mining & Metals Corp Rolled copper foil, copper clad laminate, flexible printed wiring board, and electronic apparatus
JP2013237576A (en) * 2012-05-14 2013-11-28 Jx Nippon Mining & Metals Corp Copper foil for graphene production, method for producing copper foil for graphene production, and method for producing graphene
CN103501997A (en) * 2011-05-13 2014-01-08 Jx日矿日石金属株式会社 Copper foil complex, copper foil used in copper foil complex, molded body, and method for producing molded body
US9549471B2 (en) 2010-07-15 2017-01-17 Jx Nippon Mining & Metals Corporation Copper foil composite
US9955574B2 (en) 2012-01-13 2018-04-24 Jx Nippon Mining & Metals Corporation Copper foil composite, formed product and method of producing the same
US9981450B2 (en) 2012-01-13 2018-05-29 Jx Nippon Mining & Metals Corporation Copper foil composite, formed product and method of producing the same
CN108998692A (en) * 2017-06-07 2018-12-14 株式会社日立金属新材料 No-oxygen copper plate and ceramic wiring board
WO2020230888A1 (en) * 2019-05-15 2020-11-19 住友電気工業株式会社 Printed wiring board
WO2021234875A1 (en) * 2020-05-20 2021-11-25 住友電気工業株式会社 Printed wiring board

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11286760A (en) * 1998-03-31 1999-10-19 Nippon Mining & Metals Co Ltd Rolled copper foil and its production
JP2000256765A (en) * 1999-03-08 2000-09-19 Nippon Mining & Metals Co Ltd Rolled copper foil for flexible printed circuit board, excellent in bendability, and its manufacture
JP2000263104A (en) * 1999-03-16 2000-09-26 Nippon Mining & Metals Co Ltd Copper and copper alloy foil having excellent joinability to resin
JP2001323354A (en) * 2000-03-06 2001-11-22 Nippon Mining & Metals Co Ltd Rolled copper foil and its manufacturing method
JP2003193211A (en) * 2001-12-27 2003-07-09 Nippon Mining & Metals Co Ltd Rolled copper foil for copper-clad laminate

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4672515B2 (en) * 2005-10-12 2011-04-20 Jx日鉱日石金属株式会社 Rolled copper alloy foil for bending

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11286760A (en) * 1998-03-31 1999-10-19 Nippon Mining & Metals Co Ltd Rolled copper foil and its production
JP2000256765A (en) * 1999-03-08 2000-09-19 Nippon Mining & Metals Co Ltd Rolled copper foil for flexible printed circuit board, excellent in bendability, and its manufacture
JP2000263104A (en) * 1999-03-16 2000-09-26 Nippon Mining & Metals Co Ltd Copper and copper alloy foil having excellent joinability to resin
JP2001323354A (en) * 2000-03-06 2001-11-22 Nippon Mining & Metals Co Ltd Rolled copper foil and its manufacturing method
JP2003193211A (en) * 2001-12-27 2003-07-09 Nippon Mining & Metals Co Ltd Rolled copper foil for copper-clad laminate

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YAMAGISHI K. ET AL.: "Atsuen Dohaku no Kukkyokusei ni Oyobosu Kessho Ryukei no Eikyo (The Influence of Grain Size on the Flex Fatigue Property of Rolled Copper Foil)", COPPER AND COPPER ALLOY, vol. 45, 1 August 2006 (2006-08-01), pages 27 - 30, XP003018755 *

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2747527A1 (en) * 2008-06-30 2014-06-25 Nippon Steel & Sumikin Chemical Co., Ltd. Flexible circuit board and bend structure and device comprising the flexible circuit board
EP2306794A1 (en) * 2008-06-30 2011-04-06 Nippon Steel Chemical Co., Ltd. Flexible circuit board and method for producing same and bend structure of flexible circuit board
EP2306794A4 (en) * 2008-06-30 2011-12-07 Nippon Steel Chemical Co Flexible circuit board and method for producing same and bend structure of flexible circuit board
US9060432B2 (en) 2008-06-30 2015-06-16 Nippon Steel & Sumikin Chemical Co., Ltd. Flexible circuit board and method for producing same and bend structure of flexible circuit board
JP2010100887A (en) * 2008-10-23 2010-05-06 Nippon Mining & Metals Co Ltd Copper foil excellent in flexibility, and flexible copper clad laminated sheet
US9549471B2 (en) 2010-07-15 2017-01-17 Jx Nippon Mining & Metals Corporation Copper foil composite
WO2012128098A1 (en) * 2011-03-24 2012-09-27 Jx日鉱日石金属株式会社 Rolled copper foil, process for producing same, and copper-clad laminate
JP2012211380A (en) * 2011-03-24 2012-11-01 Jx Nippon Mining & Metals Corp Rolled copper foil, method for producing the same, and copper laminated plate
US10178816B2 (en) 2011-05-13 2019-01-08 Jx Nippon Mining & Metals Corporation Copper foil composite, copper foil used for the same, formed product and method of producing the same
CN103501997A (en) * 2011-05-13 2014-01-08 Jx日矿日石金属株式会社 Copper foil complex, copper foil used in copper foil complex, molded body, and method for producing molded body
EP2695733A1 (en) * 2011-05-13 2014-02-12 JX Nippon Mining & Metals Corp. Copper foil complex, copper foil used in copper foil complex, molded body, and method for producing molded body
EP2695733A4 (en) * 2011-05-13 2014-11-19 Jx Nippon Mining & Metals Corp Copper foil complex, copper foil used in copper foil complex, molded body, and method for producing molded body
CN103501997B (en) * 2011-05-13 2015-11-25 Jx日矿日石金属株式会社 Copper foil composite and for its Copper Foil and formed body and manufacture method thereof
TWI572478B (en) * 2011-05-13 2017-03-01 Jx Nippon Mining & Metals Corp A copper foil composite body and a copper foil for the same, and a molded body and a method for producing the same
JP2013067853A (en) * 2011-09-09 2013-04-18 Jx Nippon Mining & Metals Corp Rolled copper foil, copper-clad laminate, flexible printed wiring board and electronic device
US9981450B2 (en) 2012-01-13 2018-05-29 Jx Nippon Mining & Metals Corporation Copper foil composite, formed product and method of producing the same
US9955574B2 (en) 2012-01-13 2018-04-24 Jx Nippon Mining & Metals Corporation Copper foil composite, formed product and method of producing the same
JP2013167014A (en) * 2012-01-17 2013-08-29 Jx Nippon Mining & Metals Corp Rolled copper foil for flexible printed circuit board
JP2013211492A (en) * 2012-03-30 2013-10-10 Jx Nippon Mining & Metals Corp Rolled copper foil, copper clad laminate, flexible printed wiring board, and electronic apparatus
JP2013237576A (en) * 2012-05-14 2013-11-28 Jx Nippon Mining & Metals Corp Copper foil for graphene production, method for producing copper foil for graphene production, and method for producing graphene
CN108998692A (en) * 2017-06-07 2018-12-14 株式会社日立金属新材料 No-oxygen copper plate and ceramic wiring board
WO2020230888A1 (en) * 2019-05-15 2020-11-19 住友電気工業株式会社 Printed wiring board
CN113811641A (en) * 2019-05-15 2021-12-17 住友电气工业株式会社 Printed wiring board
CN113811641B (en) * 2019-05-15 2023-12-05 住友电气工业株式会社 Printed wiring board
US11877397B2 (en) 2019-05-15 2024-01-16 Sumitomo Electric Industries, Ltd. Printed circuit board
JP7431227B2 (en) 2019-05-15 2024-02-14 住友電気工業株式会社 printed wiring board
WO2021234875A1 (en) * 2020-05-20 2021-11-25 住友電気工業株式会社 Printed wiring board
JP7427776B2 (en) 2020-05-20 2024-02-05 住友電気工業株式会社 printed wiring board

Also Published As

Publication number Publication date
JP4704474B2 (en) 2011-06-15
JPWO2008050584A1 (en) 2010-02-25

Similar Documents

Publication Publication Date Title
WO2008050584A1 (en) Rolled copper foil excellent in bending resistance
JP4672515B2 (en) Rolled copper alloy foil for bending
KR100333567B1 (en) Rolled Copper Foil for Flexible Printed Circuits and Process for Producing the Same
JP5124039B2 (en) Copper foil and copper-clad laminate using the same
JP3009383B2 (en) Rolled copper foil and method for producing the same
CN102655956B (en) Copper foil and copper-clad laminate plate using same
JP4916154B2 (en) Copper or copper alloy foil for circuit
JP4691573B2 (en) Printed wiring board, method for producing the printed wiring board, and electrolytic copper foil for copper-clad laminate used for producing the printed wiring board
JP4224086B2 (en) Wiring board and semiconductor device excellent in folding resistance
JP4662834B2 (en) Copper or copper alloy foil for circuit
WO2007125994A1 (en) Electrolytic copper foil, surface treated copper foil using the electrolytic copper foil, copper-clad laminated plate using the surface treated copper foil, and method for manufacturing the electrolytic copper foil
JP3962291B2 (en) Rolled copper foil for copper clad laminate and method for producing the same
JP5235080B2 (en) Copper alloy foil and flexible printed circuit board using the same
CN106011525B (en) Flexible printed board copper alloy foil uses copper clad layers stack, flexible printed board and electronic instrument made of it
JP3824593B2 (en) Rolled copper foil with high elongation
JP4162087B2 (en) Highly flexible rolled copper foil and method for producing the same
JP2001262296A (en) Rolled copper foil and its manufacturing process
TWI549575B (en) Flexible printed wiring board with copper foil, copper clad laminate, flexible printed wiring board and electronic equipment
JP2010280191A (en) Copper foil for heat treatment, manufacturing method thereof and flexible printed wiring board
JP3911173B2 (en) Rolled copper foil for copper clad laminate and method for producing the same (2)
JP5753115B2 (en) Rolled copper foil for printed wiring boards
JP2006283146A (en) Rolled copper foil and method for producing the same
KR20130095204A (en) Rolled copper foil
JP4430020B2 (en) Copper foil for flexible printed wiring board, manufacturing method thereof and flexible printed wiring board
TWI718025B (en) Copper foil for flexible printed circuit boards, copper-clad laminates, flexible printed circuit boards and electronic devices using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07828917

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2008540930

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07828917

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)