JP4704474B2 - Rolled copper foil with excellent bending resistance - Google Patents
Rolled copper foil with excellent bending resistance Download PDFInfo
- Publication number
- JP4704474B2 JP4704474B2 JP2008540930A JP2008540930A JP4704474B2 JP 4704474 B2 JP4704474 B2 JP 4704474B2 JP 2008540930 A JP2008540930 A JP 2008540930A JP 2008540930 A JP2008540930 A JP 2008540930A JP 4704474 B2 JP4704474 B2 JP 4704474B2
- Authority
- JP
- Japan
- Prior art keywords
- copper foil
- rolled copper
- rolled
- bending
- foil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims description 173
- 239000011889 copper foil Substances 0.000 title claims description 144
- 238000005452 bending Methods 0.000 title claims description 86
- 239000013078 crystal Substances 0.000 claims description 33
- 238000012360 testing method Methods 0.000 claims description 31
- 229910052802 copper Inorganic materials 0.000 claims description 30
- 239000010949 copper Substances 0.000 claims description 30
- 238000002441 X-ray diffraction Methods 0.000 claims description 16
- 238000000137 annealing Methods 0.000 claims description 12
- 238000001953 recrystallisation Methods 0.000 claims description 7
- 239000000843 powder Substances 0.000 claims description 5
- 230000010354 integration Effects 0.000 claims 1
- 239000011888 foil Substances 0.000 description 32
- 238000005096 rolling process Methods 0.000 description 15
- 238000005097 cold rolling Methods 0.000 description 10
- 239000000463 material Substances 0.000 description 8
- 238000011161 development Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 238000001878 scanning electron micrograph Methods 0.000 description 5
- 239000004642 Polyimide Substances 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 229920001721 polyimide Polymers 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 238000009826 distribution Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000010835 comparative analysis Methods 0.000 description 1
- 150000001879 copper Chemical class 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/09—Use of materials for the conductive, e.g. metallic pattern
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/08—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
- H05K1/0393—Flexible materials
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/03—Conductive materials
- H05K2201/0332—Structure of the conductor
- H05K2201/0335—Layered conductors or foils
- H05K2201/0355—Metal foils
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Parts Printed On Printed Circuit Boards (AREA)
Description
本発明は、特にフレキシブルプリント配線板(FPC)に対応できる耐屈曲性に優れた圧延銅箔に関する。 The present invention relates to a rolled copper foil excellent in bending resistance that can be used particularly for a flexible printed wiring board (FPC).
プリント配線板は、基板の銅箔をエッチングして種々の配線パターンを形成し、電子部品をハンダで接続して実装することにより製造される。銅箔はその製造方法から電解銅箔と圧延銅箔に分類され、フレキシブル基板用銅箔には、耐屈曲性に優れる圧延銅箔が好んで用いられてきた。
フレキシブルプリント配線板(以下、FPC)は、薄く、折り曲げ性に優れるという特性から、電子機器の配線材料として採用されている。さらに電子機器の軽薄短小化、高機能化に対応して、FPC市場は拡大成長を続けている。FPCの用途分野も従来のHDD,デジタルカメラなどから、近年ではLCDや携帯電話において急速に拡大し、さらには車載用としても開発が進んでいる
このように急速に進展するFPC市場の要求に対応して、さらに耐屈曲性に優れた圧延銅箔の開発が要求されている。A printed wiring board is manufactured by etching a copper foil of a substrate to form various wiring patterns, and connecting and mounting electronic components with solder. Copper foils are classified into electrolytic copper foils and rolled copper foils because of their production methods, and rolled copper foils having excellent bending resistance have been used favorably as copper foils for flexible substrates.
A flexible printed wiring board (hereinafter referred to as FPC) is used as a wiring material for electronic devices because it is thin and has excellent bendability. In addition, the FPC market continues to expand and grow in response to the downsizing, miniaturization and high functionality of electronic devices. FPC applications are expanding rapidly from conventional HDDs and digital cameras in recent years to LCDs and mobile phones, and are also being developed for automotive applications. Thus, there is a demand for the development of a rolled copper foil having further excellent bending resistance.
FPCの先端技術について見ると、まず折り曲げ径の狭小化という商品の要求がある。すなわち、電子機器の軽薄短小化かつ高機能化から、折り曲げ径の狭小化が急速に進行している。例えば、図1に示すように、携帯電話ではヒンジ部が従来のαタイプだけでなく、クランク、スライドタイプなどの新しい折り曲げも登場しており、従来以上の厳しい折り曲げ性と屈曲信頼性がFPCに要求されている。
また、FPCでは柔らかいことが要求されている。折り曲げ易くなることで作業性の向上や省スペース化が期待できる。またHDD内部のFPCでは、柔らかいほどFPC駆動力の低減が容易となる。結果的に電力消費を低減できることからHDDの省電力化に繋がる。さらにLCD用途などでは、小さく折り曲げたときのスプリングバックによる故障の低減も期待できる。このように折り曲げ径の狭小化が進むにつれて、柔らかいFPCへの要求が高くなっている。Looking at the advanced technology of FPC, first of all, there is a demand for products that narrow the bending diameter. In other words, the bending diameter has been rapidly reduced due to the reduction in size, height, and functionality of electronic devices. For example, as shown in Fig. 1, in mobile phones, not only the conventional α type hinges but also new foldings such as cranks and slide types have appeared, and FPCs require stricter bending and bending reliability than ever before. Has been.
FPC is required to be soft. Improvements in workability and space saving can be expected due to easy folding. Also, with FPC inside HDD, the softer the FPC driving force, the easier it is to reduce. As a result, power consumption can be reduced, which leads to power saving of HDD. Furthermore, in LCD applications, it can be expected to reduce failures due to springback when folded slightly. As the bending diameter becomes narrower in this way, the demand for soft FPC is increasing.
電子機器の高機能化、多機能化、モバイル化などによりFPCの配線密度のファイン化が急速に進展している。最先端の30μmピッチはさらに20μmピッチに向けて今後もファイン化が進むと予想されている。FPCのさらなる配線ファイン化においては、ポリイミドや接着剤の開発だけでなく、表面処理を含めた銅箔の開発も重要となってくる。
電子機器の小型化や鉛フリーはんだの影響から、FPCの耐熱性要求が一段と増している。将来的な車載用FPCを見据えて、耐熱性の要求レベルは今後も上昇していくことが予想される。
以上が、市場からみた圧延銅箔の今後の要求特性の概要であるが、特に上述したFPC技術動向から、圧延銅箔の屈曲の信頼性が問題となっている。The finer FPC wiring density is advancing rapidly as electronic devices become more functional, multifunctional, and mobile. It is expected that the latest 30μm pitch will continue to be refined toward a further 20μm pitch. In the further refinement of FPC wiring, not only the development of polyimide and adhesives, but also the development of copper foil including surface treatment becomes important.
Due to the downsizing of electronic equipment and the influence of lead-free solder, the heat resistance requirements of FPC are further increasing. Looking ahead to the future in-vehicle FPC, it is expected that the required level of heat resistance will continue to rise.
The above is an outline of the future required characteristics of the rolled copper foil from the market perspective. In particular, due to the above-mentioned FPC technology trend, the reliability of bending of the rolled copper foil is a problem.
以下に、従来技術を紹介する。例えば、タフピッチ銅又は無酸素銅の圧延銅箔を製造する際に、最終圧延直前の再結晶焼鈍において平均粒径を30μm以下とし、その後圧延し、圧延面のX線回折で測定した(200),(220),(311),(111)面の回折強度を3≦I(200)/I0(200)≦10,I(220)/I0(220)≦1, I(311)/I0(311)≦1,I(111)/I0(111)≦1 (I(hkl):圧延面で測定した(hkl)面のX線回折積分強度、I0(hkl):微粉末銅で測定した(hkl)面のX線回折積分強度の関係を満たす条件で行い、次いで最終圧延加工度93%以上で圧延した立方体集合組織が発達した圧延銅箔の提案がある(例えば、特許文献1参照)。これ自体は、屈曲性を向上させる狙いがあるが、必ずしもその効果は期待できず、折り曲げ回数は十分でないという問題がある。The following introduces the prior art. For example, when producing a rolled copper foil of tough pitch copper or oxygen-free copper, the average grain size was set to 30 μm or less in recrystallization annealing immediately before the final rolling, and then rolled and measured by X-ray diffraction of the rolled surface (200) , (220), (311), (111) plane diffraction intensity is 3 ≦ I (200) / I 0 (200) ≦ 10, I (220) / I 0 (220) ≦ 1, I (311) / I 0 (311) ≦ 1, I (111) / I 0 (111) ≦ 1 (I (hkl) : X-ray diffraction integrated intensity of (hkl) plane measured on the rolling surface, I 0 (hkl) : Fine powder There is a proposal for a rolled copper foil which has been developed under the condition that satisfies the relationship of the X-ray diffraction integral intensity of the (hkl) plane measured with copper, and then has developed a cubic texture rolled at a final rolling degree of 93% or more (for example, patents) Although this itself has the aim of improving the flexibility, the effect is not necessarily expected, and there is a problem that the number of bending is not sufficient.
また、フレキシブルプリント回路基板用圧延銅箔において、圧延面のX線回折で求めた(200)面の強度Iが微粉末のX線回折で求めた(200)面の強度I0に対して、I/I0>20である立方体集合組織とする技術が開示されている(特許文献2、3参照)。これらの技術は屈曲寿命の改善を進めたものであるが、スリップバンドへの着目がないため、これだけでは必ずしも所望の高屈曲性が得られるとは限らないことが分かってきた。
以上の技術は、いずれも屈曲性の改善を意図するものであるが、後述するスリップバンドへの着目がないため、大きな屈曲性の向上を期待できないという問題があった。
Each of the above techniques is intended to improve the flexibility, but there is a problem that a great improvement in flexibility cannot be expected because there is no attention to a slip band described later.
本発明は、上記のような問題点に鑑みてなされたものであり、その目的とするところは、特にフレキシブルプリント配線板(FPC)に対応できる耐屈曲性に優れた圧延銅箔を提供することにある。 This invention is made | formed in view of the above problems, The place made into the objective is providing the rolled copper foil excellent in the bending resistance which can respond to a flexible printed wiring board (FPC) especially. It is in.
以上から、本願は以下の発明を提供する。
1)圧延銅箔を屈曲した後のスリップバンドが圧延銅箔の表面に50%以上形成される組織を備えていることを特徴とする耐屈曲性に優れた圧延銅箔を提供する。2)このスリップバンドは圧延銅箔の表面に80%以上形成される組織を備えていること、さらには3)スリップバンドが圧延銅箔の表面に90%以上形成される組織を備えていることが望ましい。また、この屈曲時に形成されるスリップバンド組織は銅箔の全面に均一に分布しているのが好ましい。本願発明は、スリップバンドが圧延銅箔の高屈曲性を直接示す指標であることを見出した点にある。これによって、後述するように大幅な屈曲回数の増大が可能となった。As described above, the present application provides the following inventions.
1) Provided is a rolled copper foil having excellent bending resistance, characterized in that a slip band after bending the rolled copper foil has a structure in which 50% or more is formed on the surface of the rolled copper foil. 2) This slip band must have a structure that forms 80% or more on the surface of the rolled copper foil, and 3) it must have a structure that forms 90% or more of the slip band on the surface of the rolled copper foil. Is desirable. Moreover, it is preferable that the slip band structure formed at the time of bending is uniformly distributed over the entire surface of the copper foil. This invention exists in the point which discovered that a slip band was a parameter | index which shows the high flexibility of rolled copper foil directly. As a result, the number of flexures can be greatly increased as will be described later.
4)再結晶焼鈍後の圧延銅箔表面のX線回折で求めた(200)面の積分強度(I(200))が、微粉末銅のX線回折で求めた(200)面の積分強度(Io(200))に対し、I(200)/Io(200)>40であり、平均結晶粒径が20μmを超える組織を備えていることが耐屈曲性に優れた圧延銅箔を得るために有効な組織である。このように、結晶粒径が大きく、(200)面が高配向した場合にスリップバンドが顕著に現れる。特に、5)I(200)/Io(200)>65であることが望ましい。さらに、6)平均結晶粒径が30μm以上の組織を備えていることが、より有効である。結晶粒が大きいと、それだけ結晶粒界が減少し、結晶方位の不整合を少なくすることができるからである。4) The integrated intensity (I (200) ) of (200) plane obtained by X-ray diffraction on the surface of rolled copper foil after recrystallization annealing is the integrated intensity of (200) plane obtained by X-ray diffraction of fine powder copper. (I o (200) ), I (200) / I o (200) > 40, and a rolled copper foil having excellent bending resistance that has a structure with an average crystal grain size exceeding 20 μm It is an effective organization to obtain. Thus, when the crystal grain size is large and the (200) plane is highly oriented, a slip band appears remarkably. In particular, 5) I (200) / Io (200) > 65 is desirable. Further, 6) It is more effective to have a structure with an average crystal grain size of 30 μm or more. This is because the larger the crystal grains, the more the crystal grain boundaries are reduced and the crystal orientation mismatch can be reduced.
高い加工度で圧延した銅を再結晶焼鈍すると、その再結晶集合組織として、立方体方位が発達する。立方体方位とは、結晶の<002>方向が圧延方向、圧延面法線方向及び幅方向と平行になる方位であり、この場合、圧延面(減肉される面)には{200}面が配向する。立方体方位が発達するに従い、立方体方位を有する結晶粒の存在比率が大きくなり、立方体方位を極度に発達させると、ほとんどの結晶粒が立方体方位を示すようになる。
この場合、各結晶粒が同じ方向に配向しているため、あたかも単結晶のような組織構造を呈し、粒界の数が減少する。したがって、立方体集合組織が発達した銅箔では、結晶粒径が大きくなり、粒界の数を減少させることができるという好適な条件を得ることができる。When copper that has been rolled at a high workability is recrystallized and annealed, a cubic orientation develops as the recrystallized texture. The cube orientation is an orientation in which the <002> direction of the crystal is parallel to the rolling direction, the normal direction of the rolling surface, and the width direction. In this case, the {200} plane is present on the rolling surface (thinned surface). Orient. As the cube orientation develops, the existence ratio of the crystal grains having the cube orientation increases, and when the cube orientation is extremely developed, most crystal grains show the cube orientation.
In this case, since the crystal grains are oriented in the same direction, the structure is as if it were a single crystal, and the number of grain boundaries is reduced. Therefore, in the copper foil in which the cubic texture is developed, it is possible to obtain a suitable condition that the crystal grain size becomes large and the number of grain boundaries can be reduced.
以上の組織を持つ本願発明の耐屈曲性に優れた圧延銅箔は、7)圧延銅箔18μm箔におけるIPC摺動屈曲試験(曲げ半径1.5mm)の屈曲回数が50000回以上を達成することができる。本願発明は、これらを全て包含する。
上記の通り、立方体集合組織を発達させたフレキシブル基板用銅箔を使用した場合に、該銅箔面に形成されるスリップバンドは、耐屈曲性の指標となるものでもある。このようなスリップバンドが形成される圧延銅箔が、耐屈曲性を大きく向上させることができるという従来技術は無い。The rolled copper foil of the present invention having the above structure and excellent in bending resistance is capable of achieving a bending frequency of 70000 or more in the IPC sliding bending test (bending radius: 1.5 mm) in the rolled copper foil 18 μm foil. it can. The present invention includes all of these.
As described above, when a copper foil for a flexible substrate having a developed cubic texture is used, the slip band formed on the surface of the copper foil is also an index of bending resistance. There is no prior art that the rolled copper foil in which such a slip band is formed can greatly improve the bending resistance.
本発明によって、工業的に受け入れられる製造コストの範囲で、特にフレキシブルプリント配線板(FPC)に対応できる耐屈曲性に優れた圧延銅箔が実現できるという優れた効果が得られる。 According to the present invention, it is possible to obtain an excellent effect that a rolled copper foil having excellent bending resistance that can be applied to a flexible printed wiring board (FPC) can be realized within a range of industrially acceptable manufacturing costs.
現在、生産されている圧延銅箔はある程度、屈曲信頼性が高いFPC用配線材料ではあるが、さらに高屈曲性を持つ配線材料が要求されている。
銅箔における曲げ半径と摺動屈曲回数の関係については、曲げ半径が小さくなると銅箔にかかる歪みが大きくなるため屈曲性が低下する。そのため、例えば電解銅箔は最も屈曲性が低いので、曲げ半径の小さな製品への適応が困難となってくる。屈曲性が高い従来(現行)の圧延銅箔でも曲げ半径が小さくなると、屈曲回数が激減し、非常に厳しくなってくる。
図2に、本発明の圧延銅箔(本願発明圧延箔)と電解銅箔及び従来(現行)の圧延銅箔の屈曲回数の試験結果を示す。この図2に示すように、本発明の圧延銅箔(本願発明圧延箔)は電解銅箔及び従来の圧延銅箔に比べて、曲げ回数が大幅に向上することが分かる。スリップバンドは、圧延銅箔の高屈曲性を直接示す指標である。The rolled copper foil currently produced is a wiring material for FPC having a certain degree of bending reliability, but a wiring material having higher bending properties is required.
Regarding the relationship between the bending radius and the number of sliding bends in the copper foil, if the bend radius is decreased, the strain applied to the copper foil is increased, so that the flexibility is lowered. Therefore, for example, the electrolytic copper foil has the lowest bendability, so that it is difficult to adapt to a product having a small bending radius. Even in the conventional (current) rolled copper foil having high bendability, if the bend radius is reduced, the number of bends is drastically reduced and it becomes very severe.
In FIG. 2, the test result of the bending frequency of the rolled copper foil of this invention (this invention rolled foil), an electrolytic copper foil, and the conventional (current) rolled copper foil is shown. As shown in FIG. 2, it can be seen that the number of bendings of the rolled copper foil of the present invention (the rolled foil of the present invention) is greatly improved as compared with the electrolytic copper foil and the conventional rolled copper foil. The slip band is an index that directly indicates the high flexibility of the rolled copper foil.
本発明の耐屈曲性に優れた圧延銅箔を製造するに際しては、再結晶焼鈍後の圧延銅箔表面のX線回折で求めた(200)面の積分強度(I(200))が、微粉末銅のX線回折で求めた(200)面の積分強度(Io(200))に対し、I(200)/Io(200)>40であり、平均結晶粒径が20μmを超える組織とするのが、圧延銅箔を屈曲した後のスリップバンドを形成するのに有効である。圧延面に平行な(200)面のX線回折強度(I)と粉末銅(ランダム方位)の(200)面のX線回折強度(Io)とを同一条件で測定すると、立方体集合組織の発達の程度は、これらX線回折強度の比I/Ioで評価することができる。When producing a rolled copper foil having excellent bending resistance according to the present invention, the integral strength (I (200) ) of the (200) plane obtained by X-ray diffraction on the surface of the rolled copper foil after recrystallization annealing is very small. The integrated intensity (I o (200) ) of (200) plane determined by X-ray diffraction of powder copper is I (200) / I o (200) > 40, and the average crystal grain size exceeds 20 μm It is effective to form a slip band after bending the rolled copper foil. When the X-ray diffraction intensity (I) of the (200) plane parallel to the rolling surface and the X-ray diffraction intensity (Io) of the (200) plane of powdered copper (random orientation) are measured under the same conditions, the development of the cube texture Can be evaluated by the ratio I / Io of these X-ray diffraction intensities.
立方体集合組織の発達は、最終冷間圧延率のみでなく、最終冷間圧延に至る加工・熱処理工程、最終焼鈍温度、素材銅の化学組成や不純物含有量等による。したがって、目標のI/Io値を得るには、使用する素材銅とその加工プロセスに即して最適な最終冷間圧延率等を決める必要がある。
圧延銅箔としては、再結晶集合体組織が立方体方位となる銅を使用できる。この材料の代表的なものとしては、タフピッチ銅及び無酸素銅がある。
一般に、合金元素を添加した銅は立方体方位の発達を阻害するので、適当でない。しかし、Ag等を添加して軟化温度を調整したタフピッチ銅等、0.1wt%程度の微量な合金元素の添加は、立方体方位の発達を阻害しないので、使用上特に問題がない。The development of the cube texture depends not only on the final cold rolling rate but also on the processing and heat treatment steps leading to the final cold rolling, the final annealing temperature, the chemical composition of copper, the impurity content, and the like. Therefore, in order to obtain the target I / Io value, it is necessary to determine the optimum final cold rolling ratio and the like in accordance with the raw material copper to be used and the processing process.
As the rolled copper foil, copper whose recrystallized aggregate structure has a cubic orientation can be used. Typical examples of this material include tough pitch copper and oxygen-free copper.
In general, copper added with alloying elements is not suitable because it inhibits the development of the cubic orientation. However, the addition of a small amount of an alloy element of about 0.1 wt%, such as tough pitch copper whose softening temperature is adjusted by adding Ag or the like, has no particular problem in use because it does not inhibit the development of the cube orientation.
(圧延銅箔の高屈曲性メカニズム)
本発明者は、フレキシブルプリント配線板(FPC)に対応できる耐屈曲性を持たせるために、各種の圧延銅箔を研究・開発する中で、耐屈曲性に優れた圧延銅箔について、共通の現象があることが分かった。それは、屈曲後のスリップバンドが圧延銅箔の表面に多量に発生していることである。
本発明の圧延銅箔(本願発明圧延箔)のFPCを屈曲させた後に、銅箔回路のS面側をSEM画像による観察した結果を図3に示す。図3の上段の組織(SEM画像)は、表面の(200)配向が99%であり、I(200)/Io(200)=75の場合である。屈曲以外の部分と比較すると、表面には微細なスジ模様が観察された。この図に示されているスジ模様はいわゆる「スリップバンド(すべり帯)」と呼ばれるものである。これは、結晶性の高い(単結晶の)金属に特有な現象である。この場合、スリップバンドは表面の90%で発生した。(High flexibility mechanism of rolled copper foil)
The present inventor researched and developed various types of rolled copper foils in order to provide flex resistance that can be applied to flexible printed wiring boards (FPC). I found out there was a phenomenon. That is, a large amount of a bent slip band is generated on the surface of the rolled copper foil.
After bending the FPC of the rolled copper foil of the present invention (the present invention rolled foil), the result of observing the S-plane side of the copper foil circuit with an SEM image is shown in FIG. The upper structure (SEM image) in FIG. 3 is a case where the (200) orientation of the surface is 99% and I (200) / I o (200) = 75. A fine streak pattern was observed on the surface as compared with the portion other than the bent portion. The streak pattern shown in this figure is a so-called “slip band”. This is a phenomenon peculiar to a highly crystalline (single crystal) metal. In this case, slip bands occurred at 90% of the surface.
単結晶の金属は繰り返し応力を受けると、結晶粒界に溜まる歪み(転位)を緩和しようとして金属表面にスリップバンドを生じる。図3の中段の組織(SEM画像)は、表面の(200)配向が90%であり、I(200)/Io(200)=10の場合である。この図3の中段の図では、部分的にスリップバンドが発生しているのが観察できる。この場合、スリップバンドは表面の35%で発生した。この場合は、スリップバンドが発生しているために、やや良好な耐屈曲性を示すが、十分ではない。
一方、図3の下段の組織(SEM画像)は、表面の(200)配向が20%であり、I(200)/Io(200)<3の場合である。これは電解銅箔の場合であるが、電解銅箔は表面にスリップバンドが殆んど発生していない。この結果、前記圧延銅箔と同様に繰り返し応力をかけた場合には、クラックすら発生しているのが分かる。When a single crystal metal is repeatedly stressed, a slip band is generated on the metal surface in an attempt to alleviate the strain (dislocations) accumulated at the grain boundaries. The middle structure (SEM image) in FIG. 3 shows a case where the (200) orientation of the surface is 90% and I (200) / I o (200) = 10. In the middle diagram of FIG. 3, it can be observed that a slip band is partially generated. In this case, a slip band occurred at 35% of the surface. In this case, since a slip band is generated, slightly good bending resistance is shown, but it is not sufficient.
On the other hand, the lower structure (SEM image) in FIG. 3 is the case where the (200) orientation of the surface is 20% and I (200) / I o (200) <3. This is the case of the electrolytic copper foil, but the electrolytic copper foil hardly generates slip bands on the surface. As a result, it can be seen that even when repeated stress is applied in the same manner as the rolled copper foil, even cracks are generated.
このように、圧延銅箔にスリップバンドが発生するのは、圧延銅箔は単結晶のように結晶性が高く、(200)面で高配向しているためであり、圧延銅箔の繰り返し屈曲後にスリップバンドを生じるのである。
これは屈曲における圧延銅箔内部の疲労蓄積を緩和する現象であることから、結果的に圧延銅箔が高い屈曲性を保有させることが可能となる。すなわち、銅箔の屈曲後にスリップバンドが均一に多量に発生させることができれば、圧延銅箔の耐屈曲性を大幅に向上させることが可能となる。
繰り返し屈曲後のスリップバンドは50%以上形成される組織を備えていることが望ましい。また、好ましくは80%以上、さらには90%以上形成される組織を備えていることが好ましい。そして、この屈曲時に形成されるスリップバンド組織は銅箔の全面に均一に分布していることが望ましい。Thus, the slip band occurs in the rolled copper foil because the rolled copper foil has high crystallinity like a single crystal and is highly oriented in the (200) plane. A slip band is produced later.
This is a phenomenon that alleviates fatigue accumulation inside the rolled copper foil during bending, and as a result, the rolled copper foil can have high flexibility. That is, if the slip band can be generated uniformly and in large quantities after the copper foil is bent, the bending resistance of the rolled copper foil can be greatly improved.
It is desirable that the slip band after repeated bending has a structure in which 50% or more is formed. Further, it is preferable to have a structure in which 80% or more, more preferably 90% or more is formed. And it is desirable that the slip band structure formed at the time of bending is uniformly distributed over the entire surface of the copper foil.
(本発明の圧延銅箔(本願発明圧延箔)の高屈曲性のメカニズム)
本発明の圧延銅箔(本願発明圧延箔)が高屈曲性を保有する理由には、主として以下の3点が考えられる。
(1)結晶の(200)面の高配向性
本発明の圧延銅箔(本願発明圧延箔)は、再結晶後の(200)面配向性が従来の圧延銅箔よりも高く、ほぼ100%に近い配向をしている。そして、I(200)/Io(200)>40であり、好ましくはI(200)/Io(200)>65が達成されている。これより結晶粒界に配向のミスマッチが極めて小さくなる。例えば、結晶がランダム配向の電解銅箔では、結晶粒界の配向性のミスマッチが大きい。この結晶配向性のミスマッチは、結晶粒界への疲労(転位)の蓄積に影響を与える。したがって、ミスマッチが小さい本願発明圧延箔では結晶粒界への転位蓄積も小さくなり、結果的に高屈曲性を生じると考えられる。この様な組織をもつ場合には、屈曲した後のスリップバンドが圧延銅箔の表面に50%以上形成するのに有効である。(Highly flexible mechanism of the rolled copper foil of the present invention (rolled foil of the present invention))
The reason why the rolled copper foil of the present invention (rolled foil of the present invention) has high flexibility is mainly considered to be the following three points.
(1) High orientation of crystal (200) plane The rolled copper foil of the present invention (rolled foil of the present invention) has a higher (200) plane orientation after recrystallization than the conventional rolled copper foil, almost 100%. The orientation is close to. I (200) / Io (200) > 40, preferably I (200) / Io (200) > 65. As a result, the orientation mismatch at the grain boundary becomes extremely small. For example, in an electrolytic copper foil in which crystals are randomly oriented, the crystal grain boundary orientation mismatch is large. This mismatch in crystal orientation affects the accumulation of fatigue (dislocations) at the grain boundaries. Therefore, it is considered that in the rolled foil of the present invention having a small mismatch, the accumulation of dislocations at the grain boundaries is also reduced, resulting in high flexibility. In the case of having such a structure, it is effective for the slip band after bending to form 50% or more on the surface of the rolled copper foil.
(2)結晶粒の大きさ
本発明の圧延銅箔(本願発明圧延箔)は、再結晶後の結晶粒サイズが従来の圧延銅箔よりも著しく大きいため、全体的な結晶粒界も少なくなる。逆に、微細結晶からなる電解銅箔は、結晶粒界が著しく多くなる。また、屈曲におけるクラック発生・進展が、結晶粒界に沿う場合、結晶粒界が少ない本願発明圧延箔はクラック発生の起点が少なくなることから、結果的に高屈曲性を生じると考えられる。この場合も、屈曲した後のスリップバンドを形成するのに有効である。
(3)スリップバンドの生じ易さ
本願発明圧延箔は、圧延、焼鈍、結晶粒径によりスリップバンドの生じ易さが生じる。繰り返し屈曲においては、このスリップバンドの形成が重要となる。上述したようにスリップバンドの形成により屈曲疲労が緩和され、結果的に高屈曲性を生じると考えられる。(2) Size of crystal grains Since the rolled copper foil of the present invention (rolled foil of the present invention) has a recrystallized crystal grain size that is significantly larger than that of a conventional rolled copper foil, the overall grain boundary is also reduced. . On the contrary, the electrolytic copper foil made of fine crystals has remarkably many crystal grain boundaries. In addition, when crack generation / progress in bending is along the crystal grain boundary, the rolled foil of the present invention having few crystal grain boundaries is less likely to generate cracks, and as a result, is considered to have high flexibility. This case is also effective for forming a slip band after bending.
(3) Ease of occurrence of slip band In the rolled foil of the present invention, slip band is easily generated by rolling, annealing, and crystal grain size. In repeated bending, the formation of this slip band is important. As described above, it is considered that the bending fatigue is relieved by the formation of the slip band, resulting in high flexibility.
圧延銅箔の製造については、繰り返し屈曲後に均一スリップバンドが形成される条件、すなわち圧延銅箔を屈曲した後のスリップバンドが圧延銅箔の表面に50%以上形成される条件であれば、特に制限はないが、例えばタフピッチ銅及び無酸素銅の再結晶集合体組織が立方体方位となる銅を使用できる。この銅インゴットを溶製し、このインゴットを900°Cから熱間圧延し、その後、冷間圧延と焼鈍を繰り返し、最終的に、所定の厚さ(例えば、18μm厚、12μm厚、9μm厚)の銅箔に圧延する。
最終冷間圧延後、焼鈍により結晶粒径:20μmを超え、さらには30μmを超えるように調整する。結晶粒径は大きいほど好ましく、50μm、さらには100μm、200μmを超える結晶粒径とすることも可能である。
前記最終冷間圧延では、圧延加工度(R)を種々変化させ、立方体集合組織の量を調整する。例えば、R=90〜100%(未満)の範囲で調整する。そして、半軟化温度より50°C高い温度で再結晶焼鈍してI(200)/Io(200)>40、好ましくはI(200)/Io(200)>65を得る。なお、I/Io値の測定はX線回折(ディフラクトメーター)法によった(以下、同様)。
また、Rは次式で定義するものである。
R=(to−t)/to (to:圧延前の厚み、t:圧延後の厚み)For the production of the rolled copper foil, particularly if it is a condition that a uniform slip band is formed after repeated bending, that is, a condition that the slip band after bending the rolled copper foil is formed on the surface of the rolled copper foil by 50% or more. Although there is no limitation, for example, copper whose recrystallized aggregate structure of tough pitch copper and oxygen-free copper has a cubic orientation can be used. This copper ingot is melted, this ingot is hot-rolled from 900 ° C, then cold rolling and annealing are repeated, and finally a predetermined thickness (for example, 18 μm thickness, 12 μm thickness, 9 μm thickness) Roll to copper foil.
After the final cold rolling, the crystal grain size is adjusted to exceed 20 μm by annealing, and further adjusted to exceed 30 μm. The larger the crystal grain size is, the more preferable, and it is possible to make the crystal grain size exceeding 50 μm, further 100 μm and 200 μm.
In the final cold rolling, the degree of cube texture is adjusted by variously changing the rolling degree (R). For example, the adjustment is performed in the range of R = 90 to 100% (less than). Then, recrystallization annealing is performed at a temperature 50 ° C. higher than the semi-softening temperature to obtain I (200) / I o (200) > 40, preferably I (200) / I o (200) > 65. The I / Io value was measured by the X-ray diffraction (diffractometer) method (hereinafter the same).
R is defined by the following equation.
R = (t o −t) / t o (t o : thickness before rolling, t: thickness after rolling)
以下、実施例により本発明を説明する。なお、本実施例は好適な一例を示すもので、本発明はこれらの実施例に限定されるものではない。したがって、本発明の技術思想に含まれる変形、他の実施例又は態様は、全て本発明に含まれる。なお、本発明との対比のために、必要に応じて、比較例を併記する。 Hereinafter, the present invention will be described by way of examples. In addition, a present Example shows a suitable example, This invention is not limited to these Examples. Accordingly, all modifications and other examples or aspects included in the technical idea of the present invention are included in the present invention. For comparison with the present invention, comparative examples will be described as necessary.
200ppmのAgを含むタフピッチ銅のインゴットを溶製し、このインゴットを900°Cから熱間圧延し、厚さ10mmの板を得た。その後、冷間圧延と焼鈍を繰り返し、最終的に9〜18μm厚の銅箔に冷間圧延した。最終冷間圧延前の焼鈍で結晶粒径を20〜100μmの範囲に調整し、最終冷間圧延では、圧延加工度(R)を種々変化させ、立方体集合組織の強さを変化させた。
下記の実施例では、R=98.2%とし、半軟化温度より50°C高い温度で再結晶焼鈍してI/Io=40〜80の範囲で変化させた。なお、I/Io値の測定は上記の通り、X線回折(ディフラクトメーター)法によった。
圧延銅箔用素材として無酸素銅(HO材)を用いた場合にも、同様の結果が得られた。実施例においては、特に圧延銅箔用素材の選択、圧延又は熱処理条件を限定する必要はなく、本願明細書に記載する範囲であれば、任意に選択できる。したがって、以下の説明では、圧延工程及び熱処理工程の詳細は割愛した。
以下に、各種試験により、本願発明をより具体的に説明する。A tough pitch copper ingot containing 200 ppm of Ag was melted, and the ingot was hot-rolled from 900 ° C. to obtain a 10 mm thick plate. Thereafter, cold rolling and annealing were repeated, and finally, cold rolling was performed to a copper foil having a thickness of 9 to 18 μm. The crystal grain size was adjusted to the range of 20-100 μm by annealing before the final cold rolling, and in the final cold rolling, the rolling degree (R) was variously changed and the strength of the cube texture was changed.
In the following examples, R = 98.2%, recrystallization annealing was performed at a temperature 50 ° C. higher than the semi-softening temperature, and I / Io = 40-80. The I / Io value was measured by the X-ray diffraction (diffractometer) method as described above.
Similar results were obtained when oxygen-free copper (HO material) was used as the rolled copper foil material. In an Example, it is not necessary to limit especially selection of the raw material for rolled copper foil, rolling, or heat processing conditions, and if it is the range described in this-application specification, it can select arbitrarily. Therefore, in the following description, details of the rolling process and the heat treatment process are omitted.
Hereinafter, the present invention will be described more specifically by various tests.
(スリップバンド評価方法)
予め、スリップバンドの評価方法について説明する。
[試験サンプルの作製]
(1) 銅箔(18μm厚、12μm厚)と接着剤付ポリイミドシートを使用し、熱圧着により3層の銅張積層板(Copper Clad Laminates : CCL)を作製
熱圧着条件:180°C、60分間
(2) 3層銅張積層板に、エッチングによりJIS C5016の耐折性試験用パターンを形成
[屈曲試験]
試験サンプルでIPC摺動屈曲試験30000回を実施
屈曲試験条件:曲げ半径2.0mm、屈曲速度1000回/分、ストローク20mm、銅箔側を内側にセットして行う
[スリップバンドの観察]
試験サンプル表面を、SEM(×1500)の60μm×60μmの画面でスリップバンド形成部の面積比を確認(Slip band evaluation method)
A slip band evaluation method will be described in advance.
[Preparation of test sample]
(1) Using copper foil (18μm thickness, 12μm thickness) and a polyimide sheet with adhesive, a copper clad laminate (CCL) with 3 layers is produced by thermocompression bonding
Thermocompression bonding conditions: 180 ° C, 60 minutes
(2) Forming a JIS C5016 folding test pattern on a 3-layer copper clad laminate by etching [Bend test]
Conducted IPC sliding
Check the area ratio of the slip band formation part on the surface of the test sample on the 60μm × 60μm screen of SEM (× 1500)
(屈曲性の比較試験)
上記試験に使用した銅箔を使用し、本願実施例については、スリップバンド形成比率64-98%のものを使用し、比較例については、スリップバンド形成比率25-35%のものを使用した。本発明の圧延銅箔(図4及び図5では、「本願発明圧延箔」と表記する。以下同様。)と従来の圧延箔(比較例)との屈曲性の比較評価を行った。曲げ半径1.5mmにおけるIPC摺動屈曲試験結果を図4に示す。
図4より、18μm厚の圧延箔の銅張積層板では、従来の圧延銅箔よりも本願発明圧延箔は2倍以上の高屈曲性を示した。さらに、12μm厚の本発明の圧延銅箔(本願発明圧延箔)は、最も高い屈曲性を示し、18μmの従来の圧延銅箔と比較すると約3倍以上もの優れた屈曲性を有していた。また、曲げ半径0.8mmにおけるMIT耐折試験結果を図5に示す。IPC試験結果と同様に、12μm 本願発明圧延箔が最も高い屈曲性を示していた。
このように本発明の圧延銅箔(本願発明圧延箔)は、一般的な屈曲評価方法であるIPC摺動屈曲試験およびMIT耐折試験について、従来の圧延銅箔の数倍以上の高屈曲性を示している。最新機種の携帯電話ヒンジ部は、非常に高い折り曲げ性が要求されるため、この12μm 本願発明圧延箔が最適である。(Flexibility comparison test)
The copper foil used in the above test was used. For the examples of the present application, those having a slip band formation ratio of 64-98% were used, and for the comparative examples, those having a slip band formation ratio of 25-35% were used. Comparative evaluation of flexibility was performed between the rolled copper foil of the present invention (in FIG. 4 and FIG. 5, expressed as “rolled foil of the present invention”, the same applies hereinafter) and the conventional rolled foil (comparative example). FIG. 4 shows the IPC sliding bending test result at a bending radius of 1.5 mm.
As shown in FIG. 4, in the copper clad laminate of rolled foil having a thickness of 18 μm, the rolled foil of the present invention showed twice or more high flexibility than the conventional rolled copper foil. Furthermore, the rolled copper foil of the present invention having a thickness of 12 μm (rolled foil of the present invention) exhibited the highest flexibility, and had an excellent flexibility of about 3 times or more compared to the conventional rolled copper foil of 18 μm. . Further, FIG. 5 shows the results of the MIT folding resistance test at a bending radius of 0.8 mm. Similar to the IPC test results, the 12 μm invention invention rolled foil showed the highest flexibility.
As described above, the rolled copper foil of the present invention (rolled foil of the present invention) has a high bending property that is several times higher than that of the conventional rolled copper foil in the IPC sliding bending test and the MIT folding resistance test, which are general bending evaluation methods. Is shown. The latest model mobile phone hinge part is required to have a very high bendability, so this 12 μm invention invention rolled foil is optimal.
(回路幅が異なる屈曲性の比較試験)
本発明の圧延銅箔(本願発明圧延箔)と従来の圧延銅箔について銅箔回路幅を変化させて屈曲性の比較を行った摺動屈曲試験結果を図6に示す。図6より回路幅が1mmから0.5mmに狭くなると、屈曲性も低下することが分かる。回路幅が狭くなると、クラックから断線までの寿命が短くなるためである。
図6より、従来の圧延銅箔の銅張積層板(回路幅1mm,右端)に比べて、本発明の圧延銅箔(本願発明圧延箔)銅張積層板(回路幅0.5mm,左端)は、ほぼ同等の屈曲性が得られていることが分かる。すなわちプリント配線板における回路のファイン化により回路幅が狭幅化しても、本願発明圧延箔は従来の圧延銅箔以上に高屈曲性を維持できる。上記においては、12μm箔で実施したが、さらに9μm箔でも同様に耐屈曲性を向上させることができる。(Comparison test of flexibility with different circuit widths)
FIG. 6 shows the results of a sliding bending test in which the flexibility of the rolled copper foil of the present invention (rolled foil of the present invention) and the conventional rolled copper foil was changed by changing the copper foil circuit width. From FIG. 6, it can be seen that the flexibility decreases when the circuit width is reduced from 1 mm to 0.5 mm. This is because when the circuit width is narrowed, the life from crack to disconnection is shortened.
From FIG. 6, compared with the conventional copper clad laminate of rolled copper foil (
(屈曲性のばらつきについて)
FPCの市場要求では、高屈曲性だけでなく屈曲信頼性についても、従来以上の高い基準が必要とされる。そこで本発明の圧延銅箔(本願発明圧延箔)、従来の圧延銅箔、電解銅箔(A,B)について屈曲信頼性の評価を行った。評価は180℃,1時間熱処理後の銅箔単体サンプル100個について、曲げ半径1.5mmにて摺動屈曲試験を行った。図7にサンプル100個の屈曲回数の度数分布を示す。
図7より、従来の圧延銅箔は安定して高い屈曲性を示している。一方、特殊電解銅箔は銅箔破断までの屈曲回数にばらつきがあり、安定した屈曲性では従来の圧延銅箔よりも劣っている。これより、従来の電解銅箔に比べて、従来の圧延銅箔は、厳しい折り曲げ条件に優れているのが分かる。
しかし、本発明の圧延銅箔(本願発明圧延箔)の場合は、従来の圧延銅箔に比べて、さらに優れた屈曲回数が得られ、屈曲信頼性が保証されることが分かる。(About variation in flexibility)
FPC market demands require higher standards than ever for flex reliability as well as high flexibility. Therefore, the bending reliability of the rolled copper foil of the present invention (the present invention rolled foil), the conventional rolled copper foil, and the electrolytic copper foil (A, B) was evaluated. For evaluation, 100 pieces of copper foil single sample after heat treatment at 180 ° C. for 1 hour was subjected to a sliding bending test at a bending radius of 1.5 mm. FIG. 7 shows a frequency distribution of the number of bendings of 100 samples.
From FIG. 7, the conventional rolled copper foil shows the high flexibility stably. On the other hand, the special electrolytic copper foil has a variation in the number of bending until the copper foil breaks, and is inferior to the conventional rolled copper foil in stable bendability. From this, it can be seen that the conventional rolled copper foil is superior in severe bending conditions as compared with the conventional electrolytic copper foil.
However, in the case of the rolled copper foil of the present invention (the rolled foil of the present invention), it can be seen that a more excellent number of bendings can be obtained and the bending reliability is guaranteed as compared with the conventional rolled copper foil.
(屈曲の方向信頼性について)
圧延銅箔は製造プロセスにおいてMD(Machine Direction)方向に圧延加工するため、MD方向とTD(Traversal Direction)方向では銅箔の屈曲性が異なると言われることがある。そこで本発明の圧延銅箔を用いた銅張積層板でMD・TD方向のMIT耐折試験を行った。その結果を図8に示す。
図8より、従来の圧延銅箔の銅張積層板,本発明の圧延銅箔(本願発明圧延箔)の銅張積層板ともにMD・TDにおいて屈曲性の差異は表れず、同等の屈曲性を示した。これより本発明の圧延銅箔はMD方向だけでなく、TD方向においても高い屈曲信頼性を有することが分かる。(Bend direction reliability)
Since the rolled copper foil is rolled in the MD (Machine Direction) direction in the manufacturing process, it is sometimes said that the flexibility of the copper foil differs between the MD direction and the TD (Traversal Direction) direction. Therefore, the MIT folding resistance test in the MD / TD direction was performed on the copper clad laminate using the rolled copper foil of the present invention. The result is shown in FIG.
From FIG. 8, there is no difference in flexibility between MD and TD in the conventional copper-clad laminate of rolled copper foil and the copper-clad laminate of the rolled copper foil of the present invention (rolled foil of the present invention). Indicated. This shows that the rolled copper foil of the present invention has high bending reliability not only in the MD direction but also in the TD direction.
(高温屈曲性について)
電子機器の軽薄短小技術によりFPCへの熱負荷も増加しつつある。そこでFPC配線材料である銅箔において高温雰囲気での屈曲評価を行った。25°Cおよび80°Cにおける摺動屈曲試験結果を図9に示す。
図9より、従来の圧延銅箔は、80°Cで、約2万回であり、電解銅箔の約1万回と比較して2倍以上の屈曲性を有している。しかし、本願発明の圧延箔は、従来の圧延銅箔に比べて、飛躍的に屈曲性が向上し、25°Cおよび80°Cにおいて、屈曲回数が7万回を超え、8万回の屈曲回数に近くなっている。これは、従来の圧延銅箔の約4倍である。このように、従来の圧延銅箔と比べても著しい向上があり、25°C(常温)だけでなく、80°Cの高温でも高屈曲性が維持できているのが分かる。(About high temperature flexibility)
The heat load on the FPC is also increasing due to the light, thin and small technology of electronic equipment. Therefore, bending evaluation in a high-temperature atmosphere was performed on copper foil, which is an FPC wiring material. The sliding bending test results at 25 ° C. and 80 ° C. are shown in FIG.
From FIG. 9, the conventional rolled copper foil is about 20,000 times at 80 ° C., and has a bendability that is twice or more compared to about 10,000 times of the electrolytic copper foil. However, the rolled foil of the present invention has dramatically improved bendability compared to the conventional rolled copper foil, and the number of bending exceeds 25,000 at 25 ° C and 80 ° C, with 80,000 bending. It is close to the number of times. This is about 4 times the conventional rolled copper foil. Thus, it can be seen that there is a marked improvement over the conventional rolled copper foil, and that high flexibility can be maintained not only at 25 ° C. (room temperature) but also at a high temperature of 80 ° C.
(柔軟性について)
より柔らかいFPCの市場要求について、FPCメーカーによるポリイミドや接着剤の開発が行われている。当然、配線材料である銅箔においても柔らかさが要求されている。そこで、ループスティフネス試験により圧延銅箔の柔らかさの評価を行った結果を、図10に示す。
図10より、本発明の圧延銅箔(本願発明圧延箔)は従来の圧延銅箔よりも約35%ループスティフネス性が低いことから、本発明の圧延銅箔(本願発明圧延箔)は従来の圧延銅箔よりも柔らかいと言える。よって、本発明の本願発明圧延箔を使用すれば、従来の従来の圧延銅箔よりも柔らかいFPCの作製が可能となるので、折り曲げ易さやFPCの駆動力低減にともなう省電力化が期待できる。実際に、HDDや光ピックアップにおける本発明の圧延銅箔(本願発明圧延箔)への適用に著しい利点がある。(About flexibility)
FPC manufacturers are developing polyimides and adhesives for softer FPC market requirements. Naturally, softness is also required for copper foil as a wiring material. Then, the result of having evaluated the softness of the rolled copper foil by the loop stiffness test is shown in FIG.
From FIG. 10, since the rolled copper foil of the present invention (the present invention rolled foil) has a loop stiffness of about 35% lower than that of the conventional rolled copper foil, the rolled copper foil of the present invention (the present invention rolled foil) is a conventional one. It can be said that it is softer than rolled copper foil. Therefore, if the rolled foil of the present invention of the present invention is used, it becomes possible to produce an FPC that is softer than the conventional rolled copper foil, so that it is possible to expect power saving due to the ease of folding and the reduction of the driving force of the FPC. Actually, there is a significant advantage in application to the rolled copper foil of the present invention (rolled foil of the present invention) in HDDs and optical pickups.
本発明によって、工業的に受け入れられる製造コストの範囲で、耐屈曲性に優れた圧延銅箔が実現できるという優れた効果が得られ、特にフレキシブルプリント配線板(FPC)の製造に際し、工業的に極めて有用である。 According to the present invention, an excellent effect that a rolled copper foil having excellent bending resistance can be realized within the range of industrially acceptable production costs, particularly in the production of flexible printed wiring boards (FPC), industrially. Very useful.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008540930A JP4704474B2 (en) | 2006-10-24 | 2007-10-01 | Rolled copper foil with excellent bending resistance |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006288176 | 2006-10-24 | ||
JP2006288176 | 2006-10-24 | ||
JP2008540930A JP4704474B2 (en) | 2006-10-24 | 2007-10-01 | Rolled copper foil with excellent bending resistance |
PCT/JP2007/069177 WO2008050584A1 (en) | 2006-10-24 | 2007-10-01 | Rolled copper foil excellent in bending resistance |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2008050584A1 JPWO2008050584A1 (en) | 2010-02-25 |
JP4704474B2 true JP4704474B2 (en) | 2011-06-15 |
Family
ID=39324390
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008540930A Active JP4704474B2 (en) | 2006-10-24 | 2007-10-01 | Rolled copper foil with excellent bending resistance |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP4704474B2 (en) |
WO (1) | WO2008050584A1 (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2306794B1 (en) * | 2008-06-30 | 2015-08-05 | Nippon Steel & Sumikin Chemical Co., Ltd. | Method for producing flexible circuit board |
JP5185066B2 (en) * | 2008-10-23 | 2013-04-17 | Jx日鉱日石金属株式会社 | Copper foil excellent in flexibility, manufacturing method thereof, and flexible copper-clad laminate |
JP5325175B2 (en) | 2010-07-15 | 2013-10-23 | Jx日鉱日石金属株式会社 | Copper foil composite and method for producing molded body |
JP5778460B2 (en) * | 2011-03-24 | 2015-09-16 | Jx日鉱日石金属株式会社 | Rolled copper foil, method for producing the same, and copper-clad laminate |
JP5705311B2 (en) | 2011-05-13 | 2015-04-22 | Jx日鉱日石金属株式会社 | Copper foil composite, copper foil used therefor, molded body and method for producing the same |
JP2013067853A (en) * | 2011-09-09 | 2013-04-18 | Jx Nippon Mining & Metals Corp | Rolled copper foil, copper-clad laminate, flexible printed wiring board and electronic device |
JP5822838B2 (en) | 2012-01-13 | 2015-11-24 | Jx日鉱日石金属株式会社 | Copper foil composite, molded body and method for producing the same |
JP5822842B2 (en) | 2012-01-13 | 2015-11-24 | Jx日鉱日石金属株式会社 | Copper foil composite, molded body and method for producing the same |
JP6360654B2 (en) * | 2012-01-17 | 2018-07-18 | Jx金属株式会社 | Rolled copper foil for flexible printed wiring boards |
JP6030325B2 (en) * | 2012-03-30 | 2016-11-24 | Jx金属株式会社 | Rolled copper foil, copper-clad laminate, flexible printed wiring board, and electronic equipment |
JP5918010B2 (en) * | 2012-05-14 | 2016-05-18 | Jx金属株式会社 | Copper foil for producing graphene, method for producing copper foil for producing graphene, and method for producing graphene |
JP7094151B2 (en) * | 2017-06-07 | 2022-07-01 | 株式会社Shカッパープロダクツ | Oxygen-free copper plate and ceramic wiring board |
US11877397B2 (en) | 2019-05-15 | 2024-01-16 | Sumitomo Electric Industries, Ltd. | Printed circuit board |
WO2021234875A1 (en) * | 2020-05-20 | 2021-11-25 | 住友電気工業株式会社 | Printed wiring board |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11286760A (en) * | 1998-03-31 | 1999-10-19 | Nippon Mining & Metals Co Ltd | Rolled copper foil and its production |
JP2000256765A (en) * | 1999-03-08 | 2000-09-19 | Nippon Mining & Metals Co Ltd | Rolled copper foil for flexible printed circuit board, excellent in bendability, and its manufacture |
JP2000263104A (en) * | 1999-03-16 | 2000-09-26 | Nippon Mining & Metals Co Ltd | Copper and copper alloy foil having excellent joinability to resin |
JP2001323354A (en) * | 2000-03-06 | 2001-11-22 | Nippon Mining & Metals Co Ltd | Rolled copper foil and its manufacturing method |
JP2003193211A (en) * | 2001-12-27 | 2003-07-09 | Nippon Mining & Metals Co Ltd | Rolled copper foil for copper-clad laminate |
JP2007107036A (en) * | 2005-10-12 | 2007-04-26 | Nikko Kinzoku Kk | Rolled copper alloy foil to be bent |
-
2007
- 2007-10-01 WO PCT/JP2007/069177 patent/WO2008050584A1/en active Search and Examination
- 2007-10-01 JP JP2008540930A patent/JP4704474B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11286760A (en) * | 1998-03-31 | 1999-10-19 | Nippon Mining & Metals Co Ltd | Rolled copper foil and its production |
JP2000256765A (en) * | 1999-03-08 | 2000-09-19 | Nippon Mining & Metals Co Ltd | Rolled copper foil for flexible printed circuit board, excellent in bendability, and its manufacture |
JP2000263104A (en) * | 1999-03-16 | 2000-09-26 | Nippon Mining & Metals Co Ltd | Copper and copper alloy foil having excellent joinability to resin |
JP2001323354A (en) * | 2000-03-06 | 2001-11-22 | Nippon Mining & Metals Co Ltd | Rolled copper foil and its manufacturing method |
JP2003193211A (en) * | 2001-12-27 | 2003-07-09 | Nippon Mining & Metals Co Ltd | Rolled copper foil for copper-clad laminate |
JP2007107036A (en) * | 2005-10-12 | 2007-04-26 | Nikko Kinzoku Kk | Rolled copper alloy foil to be bent |
Also Published As
Publication number | Publication date |
---|---|
JPWO2008050584A1 (en) | 2010-02-25 |
WO2008050584A1 (en) | 2008-05-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4704474B2 (en) | Rolled copper foil with excellent bending resistance | |
JP4672515B2 (en) | Rolled copper alloy foil for bending | |
TWI491325B (en) | A rolled copper foil, a copper clad laminate, a flexible printed wiring board, and a method of manufacturing the same | |
JP5124039B2 (en) | Copper foil and copper-clad laminate using the same | |
JP4691573B2 (en) | Printed wiring board, method for producing the printed wiring board, and electrolytic copper foil for copper-clad laminate used for producing the printed wiring board | |
JP5235080B2 (en) | Copper alloy foil and flexible printed circuit board using the same | |
JP3824593B2 (en) | Rolled copper foil with high elongation | |
CN106011525B (en) | Flexible printed board copper alloy foil uses copper clad layers stack, flexible printed board and electronic instrument made of it | |
JP6617313B2 (en) | Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device | |
JP4162087B2 (en) | Highly flexible rolled copper foil and method for producing the same | |
JP2014214376A (en) | Rolled copper foil, flexible copper-clad laminated plate, and flexible printed wiring board | |
JP6643287B2 (en) | Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device | |
JP6793138B2 (en) | Copper foil for flexible printed circuit boards, copper-clad laminates using it, flexible printed circuit boards, and electronic devices | |
JP2010280191A (en) | Copper foil for heat treatment, manufacturing method thereof and flexible printed wiring board | |
JP6348621B1 (en) | Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device | |
JP5753115B2 (en) | Rolled copper foil for printed wiring boards | |
TWI718025B (en) | Copper foil for flexible printed circuit boards, copper-clad laminates, flexible printed circuit boards and electronic devices using the same | |
JP4888586B2 (en) | Rolled copper foil | |
JP6647253B2 (en) | Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device | |
JP2005279660A (en) | Rolled copper foil and method for manufacturing it | |
TWI717998B (en) | Rolled copper foil for flexible printed circuit board, flexible copper clad laminate and flexible printed circuit board | |
JP6712561B2 (en) | Rolled copper foil for flexible printed circuit board, copper clad laminate using the same, flexible printed circuit board, and electronic device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100817 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20100820 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101013 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101105 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110308 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110309 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4704474 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |