JP6360654B2 - Rolled copper foil for flexible printed wiring boards - Google Patents

Rolled copper foil for flexible printed wiring boards Download PDF

Info

Publication number
JP6360654B2
JP6360654B2 JP2012288851A JP2012288851A JP6360654B2 JP 6360654 B2 JP6360654 B2 JP 6360654B2 JP 2012288851 A JP2012288851 A JP 2012288851A JP 2012288851 A JP2012288851 A JP 2012288851A JP 6360654 B2 JP6360654 B2 JP 6360654B2
Authority
JP
Japan
Prior art keywords
copper foil
mass
concentration
less
rolled copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012288851A
Other languages
Japanese (ja)
Other versions
JP2013167014A (en
Inventor
達也 山路
達也 山路
喜寛 千葉
喜寛 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2012288851A priority Critical patent/JP6360654B2/en
Publication of JP2013167014A publication Critical patent/JP2013167014A/en
Application granted granted Critical
Publication of JP6360654B2 publication Critical patent/JP6360654B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明はフレキシブルプリント配線板用圧延銅箔に関し、特に車載用のフレキシブルプリント配線板に用いられる銅箔に関する。   The present invention relates to a rolled copper foil for a flexible printed wiring board, and more particularly to a copper foil used for an in-vehicle flexible printed wiring board.

フレキシブルプリント配線板(FPC)は、導電層である金属と樹脂フィルムに代表される柔軟性絶縁基板とが接合されたものである。一般に導電層には銅箔が用いられ、特に屈曲性が求められる用途には、屈曲性に優れる圧延銅箔が用いられている。   A flexible printed wiring board (FPC) is obtained by bonding a metal as a conductive layer and a flexible insulating substrate typified by a resin film. In general, a copper foil is used for the conductive layer, and a rolled copper foil having excellent flexibility is used particularly for applications that require flexibility.

一般的なFPC製造工程は以下のようなものである。まず銅箔を樹脂フィルムと接合する。接合には、銅箔上に塗布したワニスに熱処理を加えることでイミド化する方法や、接着剤付きの樹脂フィルムと銅箔とを重ねてラミネートする方法がある。これらの工程によって接合された樹脂フィルム付き銅箔をCCL(銅張積層板)と呼ぶ。その後、エッチングにより配線を形成し、FPCが完成する。   A general FPC manufacturing process is as follows. First, the copper foil is bonded to the resin film. For joining, there are a method of imidizing by applying heat treatment to a varnish applied on a copper foil, and a method of laminating a resin film with an adhesive and a copper foil. The copper foil with a resin film joined by these steps is referred to as CCL (copper-clad laminate). Thereafter, wiring is formed by etching to complete the FPC.

FPC用の圧延銅箔に要求される屈曲性は、電子機器の軽薄短小化及び高機能化に従って厳しくなっており、屈曲性に関連した特性の改良も種々の観点でなされている。例えば、結晶粒径に着目した先行技術として、特開2010−280191号公報(特許文献1)が挙げられ、ここでは、FPCを折り曲げた箇所において、曲げ変形を加えても形状が元に戻ってしまうというスプリングバックの問題を抑制することのできる圧延銅箔が開示されている。   Flexibility required for rolled copper foil for FPC is becoming stricter as electronic devices become lighter, shorter, and more functional, and improvements in properties related to flexibility have been made from various viewpoints. For example, JP 2010-280191 A (Patent Document 1) is given as a prior art that focuses on the crystal grain size, and here, the shape is restored to the original shape even when bending deformation is applied at the location where the FPC is bent. A rolled copper foil that can suppress the problem of springback is disclosed.

特許文献1では、「銅箔内における結晶の密度が低ければ低いほど、すなわち平均結晶粒径が大きければ大きいほど、銅箔が屈曲することにより変形する際、結晶中のひずみが移動しやすくなる。そのため、銅箔内における結晶の密度が低いと、引張強度が低くなるという傾向があり、ひいてはスプリングバックを抑制する傾向がある。」という知見に基づき、樹脂との熱圧着のために熱処理する際に、150℃以上400℃以下で1分間以上加熱され、熱処理後の平均結晶粒径が100μm以上であり、引張強度が150N/mm2未満である圧延銅箔が提案されている。 In Patent Document 1, “the lower the density of crystals in the copper foil, that is, the larger the average crystal grain size, the easier the strain in the crystal moves when the copper foil is deformed by bending. Therefore, if the density of crystals in the copper foil is low, the tensile strength tends to be low, and thus there is a tendency to suppress springback. ”Heat treatment is performed for thermocompression bonding with the resin. In this case, a rolled copper foil that is heated at 150 ° C. or higher and 400 ° C. or lower for 1 minute or longer, has an average crystal grain size of 100 μm or more after heat treatment, and has a tensile strength of less than 150 N / mm 2 has been proposed.

特許文献1には、当該圧延銅箔は、銅箔素材を熱間圧延によって加工し、熱間圧延後はできるだけ急速に冷却する。次に、前記熱間圧延した銅箔素材に対して、焼鈍と冷間圧延を繰り返し、所望の厚みまで加工することにより製造されることが記載されている。そして、樹脂との熱圧着の際に、150℃以上400℃以下で1分間以上加熱することにより、銅箔内の結晶が再結晶化され、平均結晶粒径が100μm以上となり、さらに熱圧着後の引張強度が150N/mm2未満となるとされている。 In Patent Document 1, the rolled copper foil is obtained by processing a copper foil material by hot rolling and cooling it as quickly as possible after hot rolling. Next, it is described that the hot-rolled copper foil material is manufactured by repeating annealing and cold rolling and processing to a desired thickness. And in thermocompression bonding with the resin, by heating at 150 ° C. or more and 400 ° C. or less for 1 minute or more, the crystals in the copper foil are recrystallized, the average crystal grain size becomes 100 μm or more, and after thermocompression bonding The tensile strength of is less than 150 N / mm 2 .

また、当該銅箔を得るには、銅箔を圧延加工によって製造した後において、前記銅箔を樹脂フィルムに熱圧着する際にのみ、150℃以上400℃以下で1分間以上加熱することや、最終焼鈍後に行われる最終圧延加工における加工度を94%以上と大きくすることが重要である旨が記載されている。   Moreover, in order to obtain the said copper foil, after manufacturing copper foil by rolling, only when heat-pressing the said copper foil to a resin film, it heats at 150 degreeC or more and 400 degrees C or less for 1 minute or more, It is described that it is important to increase the degree of processing in the final rolling process performed after the final annealing to 94% or more.

また、特開2009−292090号公報(特許文献2)では、二層フレキシブル銅貼積層板に積層加工後の銅箔の結晶方位と組織とを制御することにより高屈曲性の二層フレキシブル銅貼積層板を得ている。具体的には、基体樹脂と銅箔とを積層してなる二層フレキシブル銅貼積層板であって、積層後の前記銅箔の断面の平均結晶粒径が20μm以上であることを特徴とする二層フレキシブル銅貼積層板が記載されている。当該二層フレキシブル銅貼積層板を製造するための方法として、基体樹脂と銅箔との積層時の加熱条件を制御することが記載されており、一例として、銅箔として、200℃に達するまでに4秒以上かけて加熱し、さらに200℃で30分保持した後に室温まで冷却したとき、室温で測定した200面のX線回折強度比I/I0が40以上になるような銅箔を使用し、前記銅箔と前記基体樹脂とを積層加熱した後に、さらに350℃以上の温度で30分以上の後加熱を行うことを特徴とする二層フレキシブル銅貼積層板の製造方法が記載されている。 In JP 2009-292090 A (Patent Document 2), a highly flexible two-layer flexible copper paste is applied to a two-layer flexible copper paste laminate by controlling the crystal orientation and structure of the copper foil after lamination processing. A laminated board is obtained. Specifically, it is a two-layer flexible copper-clad laminate obtained by laminating a base resin and a copper foil, wherein the average crystal grain size of the cross-section of the copper foil after lamination is 20 μm or more. A two-layer flexible copper-clad laminate is described. As a method for producing the two-layer flexible copper-clad laminate, it is described that the heating conditions at the time of laminating the base resin and the copper foil are controlled. As an example, the copper foil reaches 200 ° C. When the copper foil is heated for 4 seconds or more, further kept at 200 ° C. for 30 minutes, and then cooled to room temperature, the 200-plane X-ray diffraction intensity ratio I / I 0 measured at room temperature is 40 or more. A method for producing a two-layer flexible copper-clad laminate is described in which, after using and laminating and heating the copper foil and the base resin, post-heating is further performed at a temperature of 350 ° C. or more for 30 minutes or more. ing.

特開2010−280191号公報JP 2010-280191 A 特開2009−292090号公報JP 2009-292090 A

このように、圧延銅箔の屈曲性に関連した特性の改良は従来行われてきた。しかしながら、例えば車載用のFPCなどでは耐振動性も要求され、振動によって導電性の低下しにくい圧延銅箔が求められているところ、従来の圧延銅箔では十分な耐振動性が得られていない。   Thus, the improvement of the characteristic regarding the flexibility of a rolled copper foil has been performed conventionally. However, for example, in a vehicle-mounted FPC, vibration resistance is also required, and there is a demand for a rolled copper foil that is less likely to have a decrease in conductivity due to vibration. However, a conventional rolled copper foil does not have sufficient vibration resistance. .

そこで、本発明は耐屈曲性に加えて耐振動性にも優れた圧延銅箔を提供することを課題の一つとする。また、本発明はそのような圧延銅箔を備えたFPCを提供することを別の課題の一つとする。   Then, this invention makes it one subject to provide the rolled copper foil which was excellent also in vibration resistance in addition to bending resistance. Moreover, this invention makes it another subject to provide FPC provided with such a rolled copper foil.

本発明者は上記課題を解決するために鋭意検討したところ、所定の製造方法で得られた圧延銅箔は、400℃で1時間の熱処理を行うと結晶粒径が100μm以上に成長し、このような特性をもつ銅箔は耐振動性に有利であることを見出した、また、当該圧延銅箔に対して振動試験を行うと振動部の表面全体にわたって微細な亀裂が生じ、これが応力集中を和らげる効果をもたらすことを見出した。   The present inventor has intensively studied to solve the above problems, and the rolled copper foil obtained by a predetermined manufacturing method grows to a crystal grain size of 100 μm or more when heat-treated at 400 ° C. for 1 hour. It was found that a copper foil having such characteristics is advantageous in vibration resistance. Further, when a vibration test is performed on the rolled copper foil, a fine crack is generated over the entire surface of the vibration part, which causes stress concentration. It has been found that it has a soothing effect.

本発明は上記知見に基づいて完成したものであり、第一の側面において、400℃で1時間の熱処理を行うと、圧延方向に平行な断面の平均結晶粒径が100μm以上となるという特性をもつ圧延銅箔である。   The present invention has been completed based on the above findings. In the first aspect, when heat treatment is performed at 400 ° C. for 1 hour, the average crystal grain size of the cross section parallel to the rolling direction is 100 μm or more. It is a rolled copper foil.

本発明は第二の側面において、圧延方向に平行な断面の平均結晶粒径が100μm以上である圧延銅箔である。   In the second aspect, the present invention is a rolled copper foil having an average crystal grain size of 100 μm or more in a cross section parallel to the rolling direction.

本発明は第三の側面において、明細書中で定義される“振動試験A”後の振動部表面にシェアバンドが形成されるという特性をもつ圧延銅箔である。   In the third aspect, the present invention is a rolled copper foil having a characteristic that a shear band is formed on the surface of the vibration part after the “vibration test A” defined in the specification.

本発明の第三の側面に係る圧延銅箔の一実施形態においては、明細書中で定義される“振動試験A”後の振動部表面に、10μm×10μmの正方形の観察視野当たり、縦方向及び横方向にそれぞれ10〜30本のシェアバンドが形成されるという特性をもつ。   In one embodiment of the rolled copper foil according to the third aspect of the present invention, the surface of the vibration part after the “vibration test A” defined in the specification is applied to the observation field of 10 μm × 10 μm square in the vertical direction. And 10 to 30 share bands are formed in the lateral direction.

本発明の第一、第二及び第三の側面に係る圧延銅箔の一実施形態においては、銅箔の厚みが50〜300μmである。   In one embodiment of the rolled copper foil according to the first, second and third aspects of the present invention, the thickness of the copper foil is 50 to 300 μm.

本発明の第一、第二及び第三の側面に係る圧延銅箔の一実施形態においては、Cu濃度が99.8質量%以上、酸素濃度が0.05質量%以下、且つ、Ag、Sn、B、Zr及びTiの合計濃度が0.003〜0.03質量%の組成を有する。   In one embodiment of the rolled copper foil according to the first, second and third aspects of the present invention, the Cu concentration is 99.8% by mass or more, the oxygen concentration is 0.05% by mass or less, and Ag, Sn , B, Zr, and Ti have a composition with a total concentration of 0.003 to 0.03% by mass.

本発明の第一、第二及び第三の側面に係る圧延銅箔の一実施形態においては、Cu濃度が99.9質量%以上、酸素濃度が0.01質量%未満、且つ、Ag、Sn、B、Zr及びTiの合計濃度が0〜0.03質量%の組成を有する。   In one embodiment of the rolled copper foil according to the first, second and third aspects of the present invention, the Cu concentration is 99.9% by mass or more, the oxygen concentration is less than 0.01% by mass, and Ag, Sn , B, Zr, and Ti have a composition with a total concentration of 0 to 0.03% by mass.

本発明の第一、第二及び第三の側面に係る圧延銅箔の一実施形態においては、フレキシブルプリント配線板の導体材料として使用される。   In one embodiment of the rolled copper foil according to the first, second and third aspects of the present invention, it is used as a conductor material for a flexible printed wiring board.

本発明の第一、第二及び第三の側面に係る圧延銅箔の一実施形態においては、前記フレキシブルプリント配線板が車載用である。   In one embodiment of the rolled copper foil according to the first, second and third aspects of the present invention, the flexible printed wiring board is for vehicle use.

本発明は第四の側面において、本発明に係る銅箔を備えたフレキシブル銅張積層板である。   This invention is a flexible copper clad laminated board provided with the copper foil which concerns on this invention in the 4th side surface.

本発明は第五の側面において、本発明に係るフレキシブル銅張積層板を加工して得られたフレキシブルプリント配線板である。   In the fifth aspect, the present invention is a flexible printed wiring board obtained by processing the flexible copper-clad laminate according to the present invention.

本発明によれば、耐屈曲性に加えて耐振動性にも優れた圧延銅箔が提供される。本発明に係る圧延銅箔は例えば車載用FPCの導体層として特に有用である。   According to the present invention, a rolled copper foil excellent in vibration resistance in addition to flex resistance is provided. The rolled copper foil according to the present invention is particularly useful as a conductor layer of, for example, an in-vehicle FPC.

本発明に係る圧延銅箔の一例について、振動試験Aを実施した後の振動部の表面に形成されたシェアバンドを写したSEM写真である。It is a SEM photograph which copied the shear band formed on the surface of the vibration part after carrying out vibration test A about an example of rolled copper foil concerning the present invention. 図1のSEM写真にシェアバンドの本数を数えるための縦方向及び横方向の線を例示的に書き記したものである。The vertical and horizontal lines for counting the number of share bands are exemplarily written on the SEM photograph of FIG. 振動試験を行う際のループ状試験片の取付状態を示す写真である。It is a photograph which shows the attachment state of the loop-shaped test piece at the time of performing a vibration test.

本発明において使用する銅箔基材は圧延銅箔である。圧延銅箔は、強度が高く、振動が継続的に発生する環境に対応でき、耐屈曲性が高い点で電解銅箔よりも優れている。本発明において、「銅箔」には銅合金箔も含まれるものとする。銅箔の材料としては、特に制限はなく、用途や要求特性に応じて適宜選択すればよい。銅箔中のCu濃度は結晶粒の成長や高導電性確保の理由により99.8質量%以上であることが好ましく、99.85質量%以上であることがより好ましく、99.9質量%以上であることが更により好ましい。但し、Cu濃度が高すぎてもコスト増加につながるため、99.999質量%以下が好ましく、99.995質量%以下がより好ましい。銅箔中の酸素濃度は亜酸化銅増加すると、シェアバンドの形成に悪影響を与える他、圧延の際のピンホール発生につながるという理由により0.01質量%未満であることが好ましく、0.005質量%以下であることが好ましく、例えば0.0001質量%以上0.01質量%未満とすることができる。このような条件を満たす銅箔として、例えば、JIS-H3510若しくはJIS−H3100に規格する無酸素銅(OFC)を用いることができる。   The copper foil base material used in the present invention is a rolled copper foil. The rolled copper foil is superior to the electrolytic copper foil in that it has high strength, can cope with an environment in which vibration continuously occurs, and has high bending resistance. In the present invention, “copper foil” includes copper alloy foil. There is no restriction | limiting in particular as a material of copper foil, What is necessary is just to select suitably according to a use or a required characteristic. The Cu concentration in the copper foil is preferably 99.8% by mass or more, more preferably 99.85% by mass or more, and more preferably 99.9% by mass or more for reasons of crystal grain growth and ensuring high conductivity. Even more preferably. However, even if the Cu concentration is too high, it leads to an increase in cost, so 99.999% by mass or less is preferable, and 99.995% by mass or less is more preferable. The oxygen concentration in the copper foil is preferably less than 0.01% by mass because, when cuprous oxide increases, it adversely affects the formation of the shear band and leads to the generation of pinholes during rolling. It is preferable that it is mass% or less, for example, can be 0.0001 mass% or more and less than 0.01 mass%. As a copper foil satisfying such conditions, for example, oxygen-free copper (OFC) standardized in JIS-H3510 or JIS-H3100 can be used.

また、無酸素銅に対して、Sn、Ag、B、Zr、Ti、Fe、In、Te、Zn等を添加した銅合金、Ni、Si等を添加したCu−Ni−Si系銅合金、Cr、Zr等を添加したCu−Zr系、Cu−Cr−Zr系銅合金のような銅合金も使用することができる。中でも、Ag、Sn、B、Zr及びTiの群から選ばれる1種以上の元素を合計で0.03質量%以下添加することが、結晶粒の成長のしやすさ、銅箔の強度及び伸びの観点から好ましい。Ag、Sn、B、Zr及びTiの含有量が合計で0.03質量%を超えると強度は更に向上するものの、伸びが低下して加工性が悪化する場合がある。より好ましくはAg、Sn、B、Zr及びTiの含有量が合計で0.02質量%以下である。Ag、Sn、B、Zr及びTiを合計した含有量の下限は特に制限されないが、例えば0.001質量%を下限とすることができる。Ag、Sn、B、Zr及びTiの含有量が合計で0.001質量%未満であると、所望の効果を得られなくなる他、含有量が小さいためその含有量を制御することが困難になる場合がある。好ましくは、Ag、Sn、B、Zr及びTiを合計した量の下限値は0.003質量%以上、更に好ましくは0.004質量%以上、最も好ましくは0.005質量%以上である。   Also, copper alloys with addition of Sn, Ag, B, Zr, Ti, Fe, In, Te, Zn, etc., Cu—Ni—Si based copper alloys with addition of Ni, Si, etc. to oxygen-free copper, Cr Copper alloys such as Cu-Zr-based and Cu-Cr-Zr-based copper alloys to which Zr and the like are added can also be used. In particular, it is easy to grow crystal grains, strength and elongation of copper foil by adding one or more elements selected from the group consisting of Ag, Sn, B, Zr and Ti in total of 0.03% by mass or less. From the viewpoint of If the total content of Ag, Sn, B, Zr, and Ti exceeds 0.03% by mass, the strength is further improved, but the elongation is lowered and the workability may be deteriorated. More preferably, the total content of Ag, Sn, B, Zr and Ti is 0.02% by mass or less. The lower limit of the total content of Ag, Sn, B, Zr and Ti is not particularly limited, but for example, 0.001% by mass can be set as the lower limit. If the total content of Ag, Sn, B, Zr and Ti is less than 0.001% by mass, the desired effect cannot be obtained, and the content is too small to control the content. There is a case. Preferably, the lower limit of the total amount of Ag, Sn, B, Zr and Ti is 0.003% by mass or more, more preferably 0.004% by mass or more, and most preferably 0.005% by mass or more.

本願の発明に係る銅箔に上述の銅合金を用いた場合にも同様に、銅箔中の酸素濃度は0.01質量%未満であることが好ましく、0.005質量%以下であることがより好ましいが、銅合金を使用する場合には、銅箔中の酸素濃度が多少高いことも許容される。具体的には、酸素濃度が0.05質量%以下であれば許容され、典型的には0.01〜0.03質量%とすることができる。このため、銅原料として例えばJIS−H3100に規定するタフピッチ銅を使用することもできる。   Similarly, when the above copper alloy is used for the copper foil according to the invention of the present application, the oxygen concentration in the copper foil is preferably less than 0.01% by mass, and preferably 0.005% by mass or less. More preferably, when a copper alloy is used, it is acceptable that the oxygen concentration in the copper foil is somewhat high. Specifically, the oxygen concentration is allowed to be 0.05% by mass or less, and typically 0.01 to 0.03% by mass. For this reason, the tough pitch copper prescribed | regulated to JIS-H3100, for example can also be used as a copper raw material.

銅箔の厚みは特に制限はなく、要求特性に応じて適宜選択すればよい。一般的には1〜300μmであるが、フレキシブルプリント配線板の導体層として使用する場合、銅箔を薄肉化した方がより高い屈曲性や耐振動性を得ることができる。そのような観点から、銅箔の厚みは一般には2〜50μm、典型的には5〜20μm程度である。但し、車載用など、大電流が流れ、通電による発熱が特に嫌われる用途の場合は、導電性及び放熱性を確保しつつ、断線せずに電気信号を確実に伝達する観点から、銅箔は比較的厚くするべきであるので、そのような場合には、50μm以上とすることが好ましく、70μm以上とすることがより好ましい。ただし、過度に厚くすると、導体層のエッチング除去がし難くなる場合があるので、300μm以下とするのが好ましく、150μm以下とするのがより好ましい。   There is no restriction | limiting in particular in the thickness of copper foil, What is necessary is just to select suitably according to a required characteristic. Generally, it is 1 to 300 μm, but when used as a conductor layer of a flexible printed wiring board, it is possible to obtain higher flexibility and vibration resistance when the copper foil is thinned. From such a viewpoint, the thickness of the copper foil is generally 2 to 50 μm, typically about 5 to 20 μm. However, for applications such as in-vehicle use where large current flows and heat generation due to energization is particularly disliked, copper foil is used from the viewpoint of reliably transmitting electrical signals without disconnection while ensuring conductivity and heat dissipation. Since it should be relatively thick, in such a case, the thickness is preferably 50 μm or more, and more preferably 70 μm or more. However, if the thickness is excessively large, it may be difficult to remove the conductor layer by etching. Therefore, the thickness is preferably 300 μm or less, and more preferably 150 μm or less.

本発明に係る圧延銅箔は一側面において、400℃で1時間加熱処理することによって、圧延方向に平行な断面の結晶粒径が100μm以上、好ましくは110μm以上、より好ましくは120μm以上、更により好ましくは130μm以上となることができるという特性をもつ。但し、極端に結晶粒径を大きくする必要はなく、加熱処理後の結晶粒径は180μm以下であるのが通常である。   In one aspect, the rolled copper foil according to the present invention is heated at 400 ° C. for 1 hour, so that the crystal grain size of the cross section parallel to the rolling direction is 100 μm or more, preferably 110 μm or more, more preferably 120 μm or more, and even more. Preferably, it has a characteristic that it can be 130 μm or more. However, it is not necessary to extremely increase the crystal grain size, and the crystal grain size after the heat treatment is usually 180 μm or less.

本発明においては、圧延方向に平行な断面の平均結晶粒径は以下のようにして測定される。FIB(集束イオンビーム)又はCP(Cross-Section Polisher)により圧延方向長さ50μm以上を箔厚全てが観察できるように切断する。その後、SEM観察を行ってJIS H0501の切断法により、平均結晶粒径を測定する。   In the present invention, the average crystal grain size of the cross section parallel to the rolling direction is measured as follows. The film is cut by FIB (focused ion beam) or CP (Cross-Section Polisher) so that the entire thickness of the foil can be observed with a length of 50 μm or more in the rolling direction. Thereafter, SEM observation is performed, and the average crystal grain size is measured by the cutting method of JIS H0501.

本発明に係る圧延銅箔は別の一側面において、以下で定義される“振動試験A”後の振動部表面にシェアバンドが形成されるという特性をもつ。シェアバンドは、10μm×10μmの正方形の観察視野当たり、縦方向及び横方向にそれぞれ10〜30本形成されるのが好ましく、20〜26本形成されるのがより好ましい。振動部とは、FPC試験片をセットした際のループ状になった部分を指す。   In another aspect, the rolled copper foil according to the present invention has a characteristic that a shear band is formed on the surface of the vibration part after the “vibration test A” defined below. It is preferable that 10 to 30 shear bands are formed in the vertical direction and the horizontal direction, respectively, and more preferably 20 to 26 are formed per 10 μm × 10 μm square observation visual field. The vibrating part refers to a looped part when the FPC test piece is set.

シェアバンドは、SEMで観察すると図1に示すように圧延方向に対して約45°方向に入る格子状のスジ模様である。本発明においては、図2に例示するように、圧延方向に対して約45°右方向のスジを縦方向のシェアバンドとし、圧延方向に対して約45°左方向のスジを横方向のシェアバンドとする。図2においては、10μm×10μmの正方形の観察視野中に、縦方向25本、横方向26本のシェアバンドが観察されている。   When the shear band is observed with an SEM, as shown in FIG. 1, the shear band is a grid-like streak pattern that enters a direction of about 45 ° with respect to the rolling direction. In the present invention, as illustrated in FIG. 2, a stripe in the right direction of about 45 ° with respect to the rolling direction is used as a vertical shear band, and a stripe in the left direction of about 45 ° with respect to the rolling direction is used as a shear in the horizontal direction. A band. In FIG. 2, 25 shear bands and 26 shear bands are observed in a 10 μm × 10 μm square observation field of view.

“振動試験A”は以下の手順で実施される。圧延銅箔の表裏に180℃の温度で2時間熱プレスするラミネート条件で厚み50μmのポリイミドフィルムを表裏に積層し、両面FCCLを作製する。その後、長さ120mmでラインアンドスペース0.3mm×0.3mmの回路エッチングを8本形成し、最後に厚み50μmのポリイミドのカバーレイフィルムを両面に180℃の温度で1時間熱プレスすることにより積層して、長さ150mm×幅15mmのFPCの試験片を作製する。
得られたFPC試験片について、振動試験をJIS−D1601掃引振動耐久試験に基づいて実施する。具体的には、ループ寸法L=20mmのループ状にして両端を固定し、周波数5〜170Hz/5min、振幅幅0.6mm、振動加速度45m/s2、試験温度−35〜115℃において振動試験を行い、試験片に定電流(1.0mA)を通電しての試験片の抵抗増加率を記録し、試験片の抵抗増加率が20%に到達するまでの時間を測定する。試験温度は室温(20℃)で10分保持後、1.5時間かけて−30℃に徐々に低下させ、−30℃で10分保持後、1.5時間かけて115℃に上昇させ、115℃で10分保持後、1時間かけて室温(20℃)まで低下させるというサイクルを繰り返す。振動試験は、それぞれ試験片の抵抗増加率が20%に到達した時点で終了する。
なお、ループ寸法とは図3に示すように、試験片の固定箇所から試験片の先端までの距離を指す。
“Vibration test A” is performed according to the following procedure. A polyimide film having a thickness of 50 μm is laminated on the front and back of the rolled copper foil under the lamination condition of hot pressing at 180 ° C. for 2 hours to prepare a double-sided FCCL. Then, eight circuit etchings with a length of 120 mm and a line and space of 0.3 mm × 0.3 mm were formed, and finally, a 50 μm-thick polyimide coverlay film was hot-pressed on both sides at a temperature of 180 ° C. for 1 hour. Lamination is performed to prepare an FPC test piece having a length of 150 mm and a width of 15 mm.
About the obtained FPC test piece, a vibration test is implemented based on a JIS-D1601 sweep vibration endurance test. Specifically, both ends are fixed in a loop shape with a loop dimension L = 20 mm, and a vibration test is performed at a frequency of 5 to 170 Hz / 5 min, an amplitude width of 0.6 mm, a vibration acceleration of 45 m / s 2 , and a test temperature of −35 to 115 ° C. The resistance increase rate of the test piece when a constant current (1.0 mA) is applied to the test piece is recorded, and the time until the resistance increase rate of the test piece reaches 20% is measured. The test temperature was maintained at room temperature (20 ° C.) for 10 minutes, then gradually decreased to −30 ° C. over 1.5 hours, held at −30 ° C. for 10 minutes, and then increased to 115 ° C. over 1.5 hours. The cycle of holding at 115 ° C. for 10 minutes and lowering to room temperature (20 ° C.) over 1 hour is repeated. The vibration test is completed when the resistance increase rate of each test piece reaches 20%.
In addition, as shown in FIG. 3, a loop dimension refers to the distance from the fixed location of a test piece to the tip of a test piece.

本発明に係る銅箔は、例えば、以下のようにして製造することができる。まず、電気銅無酸素銅、タフピッチ銅等の純銅原料を溶解し、必要に応じて合金元素を添加した後、この溶湯を鋳造し、厚みが100〜300mm程度のインゴットを製造する。溶解工程での酸素濃度の調整は、溶湯のカーボンシール、大気解放等の当業者公知の技術により行うことができる。その後、熱間圧延を行った後、焼鈍と冷間圧延を繰り返し、最終冷間圧延上がりの銅箔基材を得る。ここでの圧下率は高い方が次の焼鈍によって結晶粒が成長しやすい。よって、最終冷間圧延の圧下率度は80%以上、より好ましくは90%以上、更により好ましくは95%以上である。なお、厚みが大きな銅箔を製造する場合、最終冷間圧延における圧下率を大きく確保できなくなる傾向にある(板厚が厚い状態での焼鈍等が困難であるため)。そのため、最終冷間圧延後の板厚が35μm以上の銅箔では、実際の製造しやすさを考慮すると、最終冷間圧延の圧下率は96%以下とすることが好ましく、95%以下とすることが更に好ましく、93%以下とすることが更に好ましい。   The copper foil which concerns on this invention can be manufactured as follows, for example. First, after pure copper raw materials such as electrolytic copper oxygen-free copper and tough pitch copper are melted and an alloy element is added as necessary, the molten metal is cast to produce an ingot having a thickness of about 100 to 300 mm. Adjustment of the oxygen concentration in the melting step can be performed by techniques known to those skilled in the art, such as carbon sealing of the molten metal and release to the atmosphere. Then, after performing hot rolling, annealing and cold rolling are repeated, and the copper foil base material after final cold rolling is obtained. The higher the rolling reduction here, the easier the crystal grains grow by the subsequent annealing. Therefore, the degree of rolling reduction in the final cold rolling is 80% or more, more preferably 90% or more, and still more preferably 95% or more. In addition, when manufacturing copper foil with large thickness, it exists in the tendency which cannot secure a large reduction rate in final cold rolling (because it is difficult to anneal in a state where plate thickness is thick). Therefore, in the case of a copper foil having a thickness of 35 μm or more after the final cold rolling, considering the ease of actual production, the reduction ratio of the final cold rolling is preferably 96% or less, and 95% or less. Is more preferable, and it is further more preferable to set it as 93% or less.

次に、この銅箔基材を400〜500℃で1時間以上焼鈍する。焼鈍は窒素又はAr等の不活性ガス雰囲気中で行うことが酸化防止の理由により好ましい。また、真空中で焼鈍することも可能である。400℃以上で1時間以上焼鈍することにより銅箔の結晶粒を十分に成長させることが可能となり、また、振動を加えたときにシェアバンドの形成がされやすい銅箔が得られる(本発明では、これをシェバンドの核が形成されやすいと呼ぶ。)。厚みの大きな銅箔の場合は、内部における結晶粒の制御が難しいので、このような高温・長時間の焼鈍が特に必要である。また、焼鈍温度は高すぎても不都合であり、450℃以下とすることにより結晶粒径を必要以上に粗大化させないという効果を得ることができる。焼鈍時間は長い方が結晶粒の適度な成長やシェアバンドの核形成に有利であり、1時間以上焼鈍することが好ましい。但し、過度に焼鈍する必要はなく、生産効率も低下するので、2時間以下とするのが好ましく、1.5時間以下とするのがより好ましい。   Next, this copper foil base material is annealed at 400 to 500 ° C. for 1 hour or longer. Annealing is preferably performed in an inert gas atmosphere such as nitrogen or Ar for the reason of preventing oxidation. It is also possible to anneal in a vacuum. By annealing at 400 ° C. or higher for 1 hour or longer, it is possible to sufficiently grow crystal grains of the copper foil, and a copper foil in which a shear band is easily formed when vibration is applied is obtained (in the present invention). This is referred to as the formation of a Shebandan nucleus.) In the case of a copper foil having a large thickness, it is difficult to control the crystal grains inside, and thus such high temperature and long time annealing is particularly necessary. Moreover, even if the annealing temperature is too high, it is inconvenient, and by setting it to 450 ° C. or less, an effect that the crystal grain size is not coarsened more than necessary can be obtained. A longer annealing time is advantageous for appropriate growth of crystal grains and nucleation of shear bands, and it is preferable to anneal for 1 hour or longer. However, it is not necessary to anneal excessively, and the production efficiency is also lowered, so that it is preferably 2 hours or less, and more preferably 1.5 hours or less.

焼鈍後の圧延銅箔を、ポリエステルやポリイミド等を材料とする柔軟性絶縁基板の片面又は両面に積層し、接着することで、フレキシブル銅張積層板(FCCL)を製造することができる。接着方法としては、エポキシ等の熱硬化性樹脂からなる接着剤を用いて、銅箔とポリイミド樹脂フィルムを貼り合わせて、加熱処理を行う方法や、ポリイミド樹脂の前駆体であるポリアミック酸を含むワニスを、銅箔上に塗布して加熱硬化させ、銅箔上にポリイミド被膜を形成する方法がある。両面に銅箔を積層する場合は、片面銅張積層板を形成後、銅箔層を熱プレスにより圧着する方法や、2枚の銅箔層間にポリイミドフィルムを挟み、熱プレスにより圧着する方法がある。これらの加熱処理は一般に100〜250℃で30〜150分の条件で実施される。銅箔と樹脂の積層を、熱処理工程を経ずに接着剤によって行う方法もある。   A flexible copper-clad laminate (FCCL) can be manufactured by laminating and bonding the rolled copper foil after annealing on one or both sides of a flexible insulating substrate made of polyester, polyimide, or the like. As an adhesion method, an adhesive made of a thermosetting resin such as epoxy is used, and a copper foil and a polyimide resin film are bonded to each other and heat treatment is performed, or a varnish containing polyamic acid which is a precursor of a polyimide resin Is coated on a copper foil and cured by heating to form a polyimide film on the copper foil. When laminating copper foil on both sides, after forming a single-sided copper clad laminate, there are a method of crimping the copper foil layer by hot pressing, and a method of sandwiching a polyimide film between two copper foil layers and crimping by hot pressing. is there. These heat treatments are generally carried out at 100 to 250 ° C. for 30 to 150 minutes. There is also a method of laminating a copper foil and a resin with an adhesive without going through a heat treatment step.

このように、FCCLの製造工程では絶縁基板と銅箔の接着のために加熱処理を行うことが多いので、上述した最終冷間圧延後の焼鈍工程を当該加熱処理で兼ねることも可能である。但し、上述した接着時の一般的な加熱処理条件では本発明が目的とする特性をもつ銅箔を得ることは難しいので、接着時の加熱処理を上述した400〜500℃で1時間以上の条件に変更することで、本発明に係る特性をもつ銅箔の作り込みと絶縁基板への接着を同時に行うこともできる。   As described above, in the FCCL manufacturing process, heat treatment is often performed for bonding the insulating substrate and the copper foil. Therefore, the annealing process after the final cold rolling described above can be used as the heat treatment. However, since it is difficult to obtain a copper foil having the intended characteristics of the present invention under the general heat treatment conditions at the time of bonding described above, the heat treatment at the time of bonding is performed at 400 to 500 ° C. for one hour or longer. By changing to, the copper foil having the characteristics according to the present invention and the adhesion to the insulating substrate can be simultaneously performed.

本発明に係るFCCLを材料として公知の手順に従って配線を形成し、フレキシブルプリント配線板(FPC)を製造することが可能である。例えばエッチングレジストをFCCLの銅箔面に導体パターンとしての必要部分だけに塗布し、エッチング液を銅箔面に噴射することで不要銅箔を除去して導体パターンを形成し、次いでエッチングレジストを剥離・除去して導体パターンを露出する方法が挙げられる。導体パターン形成後は、保護用のカバーレイフィルムを貼ることが一般的である。このようなFPCは、電子・電気機器においてハードディスク内の可動部、携帯電話のヒンジ部やスライド摺動部、プリンターのヘッド部、光ピックアップ部、ノートPCの可動部等に使用されるFPCが該当する。とりわけ、本発明に係るFPCは、比較的大きな厚みの銅箔が使用され、耐震動性も要求される車載用(特にトランスミッションやエンジン周りに使用されるFPC)や自動機制御機(自動搬送ライン等レール上を移動する機器の制御)用のFPCとして好適である。   It is possible to manufacture a flexible printed wiring board (FPC) by forming wiring according to a known procedure using the FCCL according to the present invention as a material. For example, apply an etching resist to the copper foil surface of the FCCL only on the necessary part as the conductor pattern, spray the etching solution onto the copper foil surface to remove the unnecessary copper foil, form the conductor pattern, and then peel off the etching resist -The method of removing and exposing a conductor pattern is mentioned. After forming the conductor pattern, it is common to apply a protective coverlay film. Such FPCs are FPCs used for movable parts in hard disks, hinge parts and slide sliding parts of mobile phones, printer head parts, optical pickup parts, movable parts of notebook PCs, etc. in electronic and electrical equipment. To do. In particular, the FPC according to the present invention uses a relatively large thickness of copper foil and is required to have vibration resistance, especially for in-vehicle use (particularly FPC used around transmissions and engines) and automatic machine controllers (automatic transfer lines). It is suitable as an FPC for control of equipment moving on an equal rail.

以下、本発明の実施例を示すが、これらは本発明をより良く理解するために提供するものであり、本発明が限定されることを意図するものではない。   EXAMPLES Examples of the present invention will be described below, but these are provided for better understanding of the present invention and are not intended to limit the present invention.

<圧延銅箔の製造>
タフピッチ銅(TPC)又は無酸素銅(OFC)に所定の元素を添加した表1に記載の各組成をもつインゴットを溶解鋳造した。これを熱間圧延した後、焼鈍と冷間圧延を繰り返し、最終冷間圧延を表1に記載の圧下率で行い、表1に記載の厚みに調整した。最後に、焼鈍をAr雰囲気で表1に記載の条件で行い各銅箔を得た。なお、比較例3では、厚み35μmの特殊電解銅箔(EDC)を用い、焼鈍をAr雰囲気で400℃×1時間の条件で行った。
<Manufacture of rolled copper foil>
Ingots having respective compositions shown in Table 1 in which predetermined elements were added to tough pitch copper (TPC) or oxygen-free copper (OFC) were melt cast. After this was hot-rolled, annealing and cold rolling were repeated, and the final cold rolling was performed at the rolling reduction shown in Table 1 and adjusted to the thickness shown in Table 1. Finally, annealing was performed under the conditions described in Table 1 in an Ar atmosphere to obtain each copper foil. In Comparative Example 3, special electrolytic copper foil (EDC) having a thickness of 35 μm was used, and annealing was performed in an Ar atmosphere at 400 ° C. for 1 hour.

<FPCの製造>
得られた各圧延銅箔の表裏に厚み50μmで電着銅粒子による粗化処理を行った後、180℃の温度で2時間熱プレスするラミネート条件で厚み50μmのポリイミドフィルムを表裏に積層し、両面FCCLを作製した。その後、長さ120mmでラインアンドスペース0.3mm×0.3mmの回路エッチングを8本形成し、最後に厚み50μmのポリイミド製のカバーレイフィルムを両面に180℃の温度で1時間熱プレスすることにより積層して、長さ150mm×幅15mmのFPCの各試験片を作製した。
<Manufacture of FPC>
After performing roughening treatment with electrodeposited copper particles at a thickness of 50 μm on the front and back of each obtained rolled copper foil, a polyimide film with a thickness of 50 μm is laminated on the front and back under lamination conditions of hot pressing at a temperature of 180 ° C. for 2 hours, A double-sided FCCL was made. Then, eight circuit etches with a length of 120 mm and a line and space of 0.3 mm × 0.3 mm are formed, and finally, a polyimide coverlay film with a thickness of 50 μm is hot-pressed on both sides at a temperature of 180 ° C. for 1 hour. Thus, each test piece of FPC having a length of 150 mm and a width of 15 mm was produced.

<結晶粒径>
銅箔の圧延方向に平行な断面の平均結晶粒径は、FPC作製後、先述した手順によりSEM観察を行ってJIS H0501の切断法により測定した。
銅箔表面の平均結晶粒径は、FPC作製後、測定部分のポリイミドフィルムをアルカリ系溶液及び有機溶剤を使用して剥離し銅箔表面を露出させた後、電解研磨により表面を研磨し、SEM観察を行ってJIS H0501の切断法により測定した。
<Crystal grain size>
The average crystal grain size of the cross section parallel to the rolling direction of the copper foil was measured by the JIS H0501 cutting method by performing SEM observation according to the procedure described above after the FPC was produced.
The average crystal grain size on the surface of the copper foil was determined by peeling the polyimide film of the measurement part using an alkaline solution and an organic solvent to expose the copper foil surface after the FPC was produced, and then polishing the surface by electropolishing. Observation was performed and measurement was performed by the cutting method of JIS H0501.

<振動試験>
得られた各FPC試験片について、振動試験をJIS−D1601掃引振動耐久試験に基づいて実施した。先述した試験片をループ寸法L=20mmのループ状にして両端を固定し、周波数5〜170Hz/5min、振幅幅0.6mm、振動加速度45m/s2、試験温度−35〜115℃において振動試験を行い、試験片に定電流(1.0mA)を通電しての試験片の抵抗増加率を記録し、試験片の抵抗増加率が20%に到達するまでの時間を測定した。試験温度は室温(20℃)で10分保持後、1.5時間かけて−30℃に徐々に低下させ、−30℃で10分保持後、1.5時間かけて115℃に上昇させ、115℃で10分保持後、1時間かけて室温(20℃)まで低下させるというサイクルを繰り返した。試験装置は新日本測器株式会社製F−400BM−E04全自動振動試験装置とエミック株式会社製温湿度試験装置VC−500DAR(33)M3C3Rを使用した。振動試験は、それぞれ試験片の抵抗増加率が20%に到達した時点で終了した。
<Vibration test>
About each obtained FPC test piece, the vibration test was implemented based on the JIS-D1601 sweep vibration endurance test. The above-mentioned test piece is looped with a loop dimension L = 20 mm, and both ends are fixed, and a vibration test is performed at a frequency of 5 to 170 Hz / 5 min, an amplitude width of 0.6 mm, a vibration acceleration of 45 m / s 2 , and a test temperature of 35 to 115 ° C. The resistance increase rate of the test piece when a constant current (1.0 mA) was applied to the test piece was recorded, and the time until the resistance increase rate of the test piece reached 20% was measured. The test temperature was maintained at room temperature (20 ° C.) for 10 minutes, then gradually decreased to −30 ° C. over 1.5 hours, held at −30 ° C. for 10 minutes, and then increased to 115 ° C. over 1.5 hours. The cycle of holding at 115 ° C. for 10 minutes and then lowering to room temperature (20 ° C.) over 1 hour was repeated. The test apparatus used F-400BM-E04 fully automatic vibration test apparatus by Shin-Nippon Sokki Co., Ltd. and temperature-humidity test apparatus VC-500DAR (33) M3C3R by Emic Co., Ltd. were used. The vibration test was terminated when the resistance increase rate of each test piece reached 20%.

<通電評価>
振動試験後の試験片の導通をテスターにより測定した。導通があった場合を○、導通がなかった場合を×とした。×という評価がついたものは、抵抗増加率20%に到達した直後に断線したものと考えられる。
<Electrical evaluation>
The continuity of the test piece after the vibration test was measured with a tester. The case where there was continuity was indicated as ◯, and the case where there was no continuity was indicated as x. Those with an evaluation of x are considered to have been disconnected immediately after reaching a resistance increase rate of 20%.

<シェアバンド>
振動試験後のFPC試験片からポリイミドフィルムをアルカリ系溶液及び有機溶剤を使用して剥離し振動部銅箔表面をSEM観察し、単位面積(10μm×10μm)当りの縦方向及び横方向のシェアバンドの本数を測定した。測定は2回行い、平均値を測定値とした。
<Share band>
The polyimide film is peeled off from the FPC test piece after the vibration test using an alkaline solution and an organic solvent, the surface of the vibrating copper foil is observed with an SEM, and the vertical and horizontal shear bands per unit area (10 μm × 10 μm) are observed. Was measured. The measurement was performed twice, and the average value was taken as the measured value.

結果を表1に示す。   The results are shown in Table 1.

結果を表1に示す。実施例1〜16では400℃で1時間の熱処理を行うと、圧延方向に平行な断面の平均結晶粒径が100μm以上となったことから、同じ箔厚の比較例と比べて長い耐振動時間を得ることができた。そして、実施例1〜16では、振動試験後にシェアバンドが観察された。   The results are shown in Table 1. In Examples 1 to 16, when heat treatment was performed at 400 ° C. for 1 hour, the average crystal grain size of the cross section parallel to the rolling direction was 100 μm or more, so that the vibration resistance time was longer than that of the comparative example having the same foil thickness. Could get. And in Examples 1-16, the shear band was observed after the vibration test.

比較例1〜3は、タフピッチ銅を材料としたが、酸素濃度が高すぎたために結晶粒が十分に発達しなかった。
比較例4〜6は、焼鈍条件が不適切であり、結晶粒が十分に発達しなかった。但し、これらは焼鈍条件を400℃×1時間としたときは、平均断面結晶粒径は100μmを超えた。
比較例7は、特殊電解銅箔を材料としたが、結晶粒が十分に発達しなかった。
In Comparative Examples 1 to 3, tough pitch copper was used as a material, but the crystal concentration was not sufficiently developed because the oxygen concentration was too high.
In Comparative Examples 4 to 6, the annealing conditions were inappropriate, and the crystal grains did not develop sufficiently. However, when the annealing conditions were 400 ° C. × 1 hour, the average cross-sectional grain size exceeded 100 μm.
Although the comparative example 7 made the special electrolytic copper foil as a material, the crystal grain did not fully develop.

Claims (7)

400℃で1時間の熱処理を行うと、圧延方向に平行な断面の平均結晶粒径が100μ
m以上となるという特性をもち、厚みが50〜300μmであって、以下(1)〜(3)のいずれかである圧延銅箔。
(1)無酸素銅
(2)Cu濃度が99.8質量%以上、酸素濃度が0.05質量%以下、且つ、Ag、Sn、B、Zr及びTiの合計濃度が0.003〜0.03質量%の組成を有する銅箔
(3)Cu濃度が99.9質量%以上、酸素濃度が0.01質量%未満、且つ、Ag、Sn、B、Zr及びTiの合計濃度が0〜0.03質量%の組成を有する銅箔
When heat treatment is performed at 400 ° C. for 1 hour, the average crystal grain size of the cross section parallel to the rolling direction is 100 μm.
The rolled copper foil which has the characteristic of becoming more than m, is 50-300 micrometers in thickness, and is any one of (1)-(3) below.
(1) Oxygen-free copper (2) Cu concentration is 99.8% by mass or more, oxygen concentration is 0.05% by mass or less, and the total concentration of Ag, Sn, B, Zr and Ti is 0.003 to 0.003. Copper foil having a composition of 03% by mass (3) Cu concentration is 99.9% by mass or more, oxygen concentration is less than 0.01% by mass, and the total concentration of Ag, Sn, B, Zr and Ti is 0-0 Copper foil having a composition of 0.03% by mass
圧延方向に平行な断面の平均結晶粒径が100μm以上であり、厚みが50〜300μmであって、以下(1)〜(3)のいずれかである圧延銅箔。
(1)無酸素銅
(2)Cu濃度が99.8質量%以上、酸素濃度が0.05質量%以下、且つ、Ag、Sn、B、Zr及びTiの合計濃度が0.003〜0.03質量%の組成を有する銅箔
(3)Cu濃度が99.9質量%以上、酸素濃度が0.01質量%未満、且つ、Ag、Sn、B、Zr及びTiの合計濃度が0〜0.03質量%の組成を有する銅箔
The rolled copper foil whose average crystal grain diameter of a cross section parallel to a rolling direction is 100 micrometers or more, thickness is 50-300 micrometers, and is any one of (1)-(3) below.
(1) Oxygen-free copper (2) Cu concentration is 99.8% by mass or more, oxygen concentration is 0.05% by mass or less, and the total concentration of Ag, Sn, B, Zr and Ti is 0.003 to 0.003. Copper foil having a composition of 03% by mass (3) Cu concentration is 99.9% by mass or more, oxygen concentration is less than 0.01% by mass, and the total concentration of Ag, Sn, B, Zr and Ti is 0-0 Copper foil having a composition of 0.03% by mass
明細書中で定義される“振動試験A”後の振動部表面に、10μm×10μmの正方形
の観察視野当たり、縦方向及び横方向にそれぞれ10〜30本のシェアバンドが形成され
るという特性をもち、厚みが50〜300μmであって、以下(1)〜(3)のいずれかである圧延銅箔。
(1)無酸素銅
(2)Cu濃度が99.8質量%以上、酸素濃度が0.05質量%以下、且つ、Ag、Sn、B、Zr及びTiの合計濃度が0.003〜0.03質量%の組成を有する銅箔
(3)Cu濃度が99.9質量%以上、酸素濃度が0.01質量%未満、且つ、Ag、Sn、B、Zr及びTiの合計濃度が0〜0.03質量%の組成を有する銅箔
The characteristic is that 10-30 shear bands are formed in the vertical and horizontal directions per 10 μm × 10 μm square observation field on the surface of the vibration part after the “vibration test A” defined in the specification. A rolled copper foil having a thickness of 50 to 300 μm and any one of (1) to (3) below.
(1) Oxygen-free copper (2) Cu concentration is 99.8% by mass or more, oxygen concentration is 0.05% by mass or less, and the total concentration of Ag, Sn, B, Zr and Ti is 0.003 to 0.003. Copper foil having a composition of 03% by mass (3) Cu concentration is 99.9% by mass or more, oxygen concentration is less than 0.01% by mass, and the total concentration of Ag, Sn, B, Zr and Ti is 0-0 Copper foil having a composition of 0.03% by mass
フレキシブルプリント配線板の導体材料として使用される請求項1〜3の何れか一項に
記載の圧延銅箔。
The rolled copper foil as described in any one of Claims 1-3 used as a conductor material of a flexible printed wiring board.
フレキシブルプリント配線板が車載用である請求項4に記載の圧延銅箔。   The rolled copper foil according to claim 4, wherein the flexible printed wiring board is for in-vehicle use. 請求項1〜5の何れか一項に記載の圧延銅箔を備えたフレキシブル銅張積層板。   The flexible copper clad laminated board provided with the rolled copper foil as described in any one of Claims 1-5. 請求項6に記載のフレキシブル銅張積層板を加工して得られたフレキシブルプリント
配線板。
A flexible printed wiring board obtained by processing the flexible copper-clad laminate according to claim 6.
JP2012288851A 2012-01-17 2012-12-28 Rolled copper foil for flexible printed wiring boards Active JP6360654B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012288851A JP6360654B2 (en) 2012-01-17 2012-12-28 Rolled copper foil for flexible printed wiring boards

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012007565 2012-01-17
JP2012007565 2012-01-17
JP2012288851A JP6360654B2 (en) 2012-01-17 2012-12-28 Rolled copper foil for flexible printed wiring boards

Publications (2)

Publication Number Publication Date
JP2013167014A JP2013167014A (en) 2013-08-29
JP6360654B2 true JP6360654B2 (en) 2018-07-18

Family

ID=49177622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012288851A Active JP6360654B2 (en) 2012-01-17 2012-12-28 Rolled copper foil for flexible printed wiring boards

Country Status (1)

Country Link
JP (1) JP6360654B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112018071126B1 (en) * 2016-04-13 2022-12-27 Jfe Steel Corporation METHOD FOR ANALYZING SLAG AND METHOD FOR REFINING MOLTEN IRON
JPWO2018180920A1 (en) 2017-03-30 2019-12-12 Jx金属株式会社 Rolled copper foil
JP6793138B2 (en) * 2018-01-22 2020-12-02 Jx金属株式会社 Copper foil for flexible printed circuit boards, copper-clad laminates using it, flexible printed circuit boards, and electronic devices
CN111112332A (en) * 2018-10-31 2020-05-08 中铝华中铜业有限公司 Processing technology of rolled copper foil blank

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004060018A (en) * 2002-07-30 2004-02-26 Hitachi Cable Ltd Copper foil for electronic part
WO2008050584A1 (en) * 2006-10-24 2008-05-02 Nippon Mining & Metals Co., Ltd. Rolled copper foil excellent in bending resistance
JP2009292090A (en) * 2008-06-06 2009-12-17 Nippon Mining & Metals Co Ltd Two-layer flexible copper-clad laminated sheet excellent in flexibility and method for manufacturing it

Also Published As

Publication number Publication date
JP2013167014A (en) 2013-08-29

Similar Documents

Publication Publication Date Title
JP4662834B2 (en) Copper or copper alloy foil for circuit
KR20130115140A (en) Rolled copper foil, copper clad laminate, flexible printed wiring board and method of manufacturing the same
JP6360654B2 (en) Rolled copper foil for flexible printed wiring boards
KR102470725B1 (en) Copper foil for flexible printed circuit, and copper clad laminate, flexible printed circuit and electronic device using copper foil
CN109392242B (en) Copper foil for flexible printed board, copper-clad laminate using same, flexible printed board, and electronic device
TWI663270B (en) Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
WO2018180920A1 (en) Rolled copper foil
JP2008088492A (en) Copper alloy foil and copper-resin organic matter flexible laminate
JP5694094B2 (en) Copper foil for flexible printed wiring board, copper-clad laminate, flexible printed wiring board, and electronic device
JP6348621B1 (en) Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
JP2013167013A (en) Rolled copper foil for flexible printed circuit board
CN107046763B (en) Copper foil for flexible printed board and copper-clad laminate using same
JP5933943B2 (en) Rolled copper foil for flexible printed wiring boards, copper-clad laminates, flexible printed wiring boards, and electronic equipment
JP5329491B2 (en) Copper foil for flexible printed wiring board and method for producing the same
JP6774457B2 (en) Copper foil for flexible printed circuit boards, copper-clad laminates using it, flexible printed circuit boards, and electronic devices
JP2016139680A (en) Rolled copper foil for mounting electronic component, copper-clad laminate, printed wiring board and electronic component mounting structure
KR102115086B1 (en) Copper foil for flexible printed circuit, copper clad laminate using the same, flexible printed circuit and electronic device
JP2001073186A (en) Production of parts for wiring laminated with insulating film
JP2016191091A (en) Rolled copper foil for flexible printed wiring board
JP2019194358A (en) Rolled copper foil for flexible printed wiring board
JP6944963B2 (en) Rolled copper foil for flexible printed circuit boards, flexible copper-clad laminates and flexible printed circuit boards
JP6712561B2 (en) Rolled copper foil for flexible printed circuit board, copper clad laminate using the same, flexible printed circuit board, and electronic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180625

R150 Certificate of patent or registration of utility model

Ref document number: 6360654

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250