JP2013167013A - Rolled copper foil for flexible printed circuit board - Google Patents

Rolled copper foil for flexible printed circuit board Download PDF

Info

Publication number
JP2013167013A
JP2013167013A JP2012288834A JP2012288834A JP2013167013A JP 2013167013 A JP2013167013 A JP 2013167013A JP 2012288834 A JP2012288834 A JP 2012288834A JP 2012288834 A JP2012288834 A JP 2012288834A JP 2013167013 A JP2013167013 A JP 2013167013A
Authority
JP
Japan
Prior art keywords
copper foil
rolled copper
mass
plane
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012288834A
Other languages
Japanese (ja)
Inventor
Tatsuya Yamaji
達也 山路
Yoshihiro Chiba
喜寛 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2012288834A priority Critical patent/JP2013167013A/en
Publication of JP2013167013A publication Critical patent/JP2013167013A/en
Pending legal-status Critical Current

Links

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a rolled copper foil having excellent vibration resistance in addition to excellent flexibility.SOLUTION: A rolled copper foil has a cross-sectional occupancy at a (200) surface of 70% or more in a cross-section parallel to a rolling direction.

Description

本発明はフレキシブルプリント配線板用圧延銅箔に関し、特に車載用のフレキシブルプリント配線板に用いられる銅箔に関する。   The present invention relates to a rolled copper foil for a flexible printed wiring board, and more particularly to a copper foil used for an in-vehicle flexible printed wiring board.

フレキシブルプリント配線板(FPC)は、導電層である金属と樹脂フィルムに代表される柔軟性絶縁基板とが接合されたものである。一般に導電層には銅箔が用いられ、特に屈曲性が求められる用途には、屈曲性に優れる圧延銅箔が用いられている。   A flexible printed wiring board (FPC) is obtained by bonding a metal as a conductive layer and a flexible insulating substrate typified by a resin film. In general, a copper foil is used for the conductive layer, and a rolled copper foil having excellent flexibility is used particularly for applications that require flexibility.

一般的なFPC製造工程は以下のようなものである。まず銅箔を樹脂フィルムと接合する。接合には、銅箔上に塗布したワニスに熱処理を加えることでイミド化する方法や、接着剤付きの樹脂フィルムと銅箔とを重ねてラミネートする方法がある。これらの工程によって接合された樹脂フィルム付き銅箔をCCL(銅張積層板)と呼ぶ。その後、エッチングにより配線を形成し、FPCが完成する。   A general FPC manufacturing process is as follows. First, the copper foil is bonded to the resin film. For joining, there are a method of imidizing by applying heat treatment to a varnish applied on a copper foil, and a method of laminating a resin film with an adhesive and a copper foil. The copper foil with a resin film joined by these steps is referred to as CCL (copper-clad laminate). Thereafter, wiring is formed by etching to complete the FPC.

FPC用の圧延銅箔に要求される屈曲性は、電子機器の軽薄短小化及び高機能化に従って厳しくなっており、耐屈曲性に優れた圧延銅箔を得るための種々の改良が提案されている。圧延銅箔の耐屈曲性を向上する手段としては、銅箔の立方体集合組織(キューブ方位)を発達させる方法が提案されている。例えば、特開平11−286760号公報(特許文献1)、特開2000−212661号公報(特許文献2)、特開2001−323354号公報(特許文献3)、WO2008/050584号(特許文献4)、特開2009−292090号公報(特許文献5)等には、圧延面のX線回折で求めた200面の強度(I)の微粉末銅のX線回折で求めた200面の強度(I0)に対する比を特定することがなされている。 Flexibility required for rolled copper foil for FPC has become strict as electronic devices become lighter, shorter, and more functional, and various improvements have been proposed for obtaining rolled copper foil with excellent flex resistance. Yes. As a means for improving the bending resistance of the rolled copper foil, a method of developing a cube texture (cube orientation) of the copper foil has been proposed. For example, JP-A-11-286760 (Patent Document 1), JP-A 2000-212661 (Patent Document 2), JP-A-2001-323354 (Patent Document 3), WO2008 / 050584 (Patent Document 4). JP-A-2009-292090 (Patent Document 5) and the like describe the strength (I) of 200 planes determined by X-ray diffraction of fine powdered copper having the strength (I) of 200 planes determined by X-ray diffraction of the rolled surface. 0 )) to determine the ratio.

特開平11−286760号公報Japanese Patent Laid-Open No. 11-286760 特開2000−212661号公報JP 2000-212661 A 特開2001−323354号公報JP 2001-323354 A 国際公開第2008/050584号International Publication No. 2008/050585 特開2009−292090号公報JP 2009-292090 A

圧延面の立方体集合組織を発達させることにより、圧延銅箔の耐屈曲性は確かに向上する。しかしながら、例えば車載用のFPCなどでは耐振動性も要求され、振動によって導電性の低下しにくい圧延銅箔が求められているところ、従来の圧延銅箔では十分な耐振動性が得られていない。   By developing the cube texture of the rolled surface, the bending resistance of the rolled copper foil is certainly improved. However, for example, in a vehicle-mounted FPC, vibration resistance is also required, and there is a demand for a rolled copper foil that is less likely to have a decrease in conductivity due to vibration. However, a conventional rolled copper foil does not have sufficient vibration resistance. .

そこで、本発明は耐屈曲性に加えて耐振動性にも優れた圧延銅箔を提供することを課題の一つとする。また、本発明はそのような圧延銅箔を備えたFPCを提供することを別の課題の一つとする。   Then, this invention makes it one subject to provide the rolled copper foil which was excellent also in vibration resistance in addition to bending resistance. Moreover, this invention makes it another subject to provide FPC provided with such a rolled copper foil.

本発明者は上記課題を解決するために鋭意検討したところ、これまでは圧延面の立方体集合組織、すなわち銅箔の最表面における結晶粒の配向を制御しているに過ぎないことに問題点があることを見出した。すなわち、銅箔は一定の厚みをもっているが、表面の結晶配向が制御されていたとしても、銅箔内部の結晶粒の配向まで考慮した銅箔の作り込みを行っていないと、高い耐振動性は得られないのである。本発明者は当該知見を基礎として更に検討を続けたところ、銅箔の圧延方向に平行な断面において、(200)面の占有率を70%以上とすることによって、耐屈曲性及び耐振動性の両方に優れた圧延銅箔が得られることを見出した。   The present inventor has intensively studied to solve the above-mentioned problems, and until now, there has been a problem that the cubic texture of the rolling surface, that is, only controlling the orientation of crystal grains on the outermost surface of the copper foil. I found out. In other words, even though the copper foil has a certain thickness, even if the crystal orientation of the surface is controlled, if the copper foil is not taken into consideration even in the orientation of crystal grains inside the copper foil, high vibration resistance Cannot be obtained. As a result of further investigation based on the above knowledge, the present inventor has made the (200) plane occupancy ratio 70% or more in the cross section parallel to the rolling direction of the copper foil, thereby providing bending resistance and vibration resistance. It has been found that a rolled copper foil excellent in both of the above can be obtained.

従って、本発明は第一の側面において、圧延方向に平行な断面において、(200)面の占有率が70%以上である圧延銅箔である。   Accordingly, in the first aspect, the present invention is a rolled copper foil having a (200) plane occupancy of 70% or more in a cross section parallel to the rolling direction.

本発明は第二の側面において、400℃で1時間加熱処理することによって、圧延方向に平行な断面において、(200)面の占有率が70%以上となる特性をもつ圧延銅箔である。   In the second aspect, the present invention is a rolled copper foil having a characteristic that the occupancy of the (200) plane is 70% or more in a cross section parallel to the rolling direction by heat treatment at 400 ° C. for 1 hour.

本発明の第一又は第二の側面に係る圧延銅箔の一実施形態においては、銅箔の厚みが50〜300μmである。   In one embodiment of the rolled copper foil according to the first or second aspect of the present invention, the thickness of the copper foil is 50 to 300 μm.

本発明の第一の側面に係る圧延銅箔の一実施形態においては、圧延方向に平行な断面において、(200)面の占有率が95%以上である。   In one embodiment of the rolled copper foil according to the first aspect of the present invention, the occupation ratio of the (200) plane is 95% or more in the cross section parallel to the rolling direction.

本発明の第二の側面に係る圧延銅箔の一実施形態においては、400℃で1時間の加熱処理を行うことによって、圧延方向に平行な断面組織において、(200)面の占有率が95%以上となる特性をもつ。   In one embodiment of the rolled copper foil according to the second aspect of the present invention, by performing heat treatment at 400 ° C. for 1 hour, the occupation ratio of the (200) plane is 95 in the cross-sectional structure parallel to the rolling direction. % Or more.

本発明の第一又は第二の側面に係る圧延銅箔の一実施形態においては、Cu濃度が99.8質量%以上、酸素濃度が0.05質量%以下、且つ、Ag、Sn、B、Zr及びTiの合計濃度が0.003〜0.03質量%の組成を有する。   In one embodiment of the rolled copper foil according to the first or second aspect of the present invention, the Cu concentration is 99.8% by mass or more, the oxygen concentration is 0.05% by mass or less, and Ag, Sn, B, The total concentration of Zr and Ti has a composition of 0.003 to 0.03% by mass.

本発明の第一又は第二の側面に係る圧延銅箔の一実施形態においては、Cu濃度が99.9質量%以上、酸素濃度が0.01質量%未満、且つ、Ag、Sn、B、Zr及びTiの合計濃度が0〜0.03質量%の組成を有する。   In one embodiment of the rolled copper foil according to the first or second aspect of the present invention, the Cu concentration is 99.9% by mass or more, the oxygen concentration is less than 0.01% by mass, and Ag, Sn, B, The total concentration of Zr and Ti has a composition of 0 to 0.03% by mass.

本発明の第一又は第二の側面に係る圧延銅箔の一実施形態においては、フレキシブルプリント配線板の導体材料として使用される。   In one Embodiment of the rolled copper foil which concerns on the 1st or 2nd side surface of this invention, it is used as a conductor material of a flexible printed wiring board.

本発明の第一又は第二の側面に係る圧延銅箔の一実施形態においては、上記フレキシブルプリント配線板は車載用である。   In one embodiment of the rolled copper foil according to the first or second aspect of the present invention, the flexible printed wiring board is for vehicle use.

本発明は第三の側面において、本発明に係る銅箔を備えたフレキシブル銅張積層板である。   This invention is a flexible copper clad laminated board provided with the copper foil which concerns on this invention in the 3rd side surface.

本発明は第四の側面において、本発明に係るフレキシブル銅張積層板を加工して得られたフレキシブルプリント配線板である。   This invention is a flexible printed wiring board obtained by processing the flexible copper clad laminated board which concerns on this invention in the 4th side surface.

本発明によれば、耐屈曲性に加えて耐振動性にも優れた圧延銅箔が提供される。本発明に係る圧延銅箔は例えば車載用FPCの導体層として特に有用である。   According to the present invention, a rolled copper foil excellent in vibration resistance in addition to flex resistance is provided. The rolled copper foil according to the present invention is particularly useful as a conductor layer of, for example, an in-vehicle FPC.

振動試験を行う際のループ状試験片の取付状態を示す写真である。It is a photograph which shows the attachment state of the loop-shaped test piece at the time of performing a vibration test.

本発明において使用する銅箔基材は圧延銅箔である。圧延銅箔は、強度が高く、振動が継続的に発生する環境に対応でき、耐屈曲性が高い点で電解銅箔よりも優れている。本発明において、「銅箔」には銅合金箔も含まれるものとする。銅箔の材料としては、特に制限はなく、用途や要求特性に応じて適宜選択すればよい。銅箔中のCu濃度は高導電性確保の理由により99.8質量%以上であることが好ましく、99.85質量%以上であることがより好ましく、99.9質量%以上であることが更により好ましい。但し、Cu濃度が高すぎてもコスト増加につながるため、99.999質量%以下が好ましく、99.995質量%以下がより好ましい。銅箔中の酸素濃度は亜酸化銅増加につながり、立方体方位の発達を抑制することにつながることから0.01質量%未満であることが好ましく、0.005質量%以下であることが好ましく、例えば0.0001質量%以上0.01質量%未満とすることができる。このような条件を満たす銅箔として、例えば、JIS−H3510若しくはJIS−H3100に規格する無酸素銅(OFC)を用いることができる。   The copper foil base material used in the present invention is a rolled copper foil. The rolled copper foil is superior to the electrolytic copper foil in that it has high strength, can cope with an environment in which vibration continuously occurs, and has high bending resistance. In the present invention, “copper foil” includes copper alloy foil. There is no restriction | limiting in particular as a material of copper foil, What is necessary is just to select suitably according to a use or a required characteristic. The Cu concentration in the copper foil is preferably 99.8% by mass or more, more preferably 99.85% by mass or more, and more preferably 99.9% by mass or more for reasons of ensuring high conductivity. Is more preferable. However, even if the Cu concentration is too high, it leads to an increase in cost, so 99.999 mass% or less is preferable, and 99.995 mass% or less is more preferable. Since the oxygen concentration in the copper foil leads to an increase in cuprous oxide and leads to the suppression of the development of the cube orientation, it is preferably less than 0.01% by mass, preferably 0.005% by mass or less, For example, it can be 0.0001 mass% or more and less than 0.01 mass%. As a copper foil satisfying such conditions, for example, oxygen-free copper (OFC) standardized in JIS-H3510 or JIS-H3100 can be used.

また、無酸素銅に対して、Sn、Ag、B、Zr、Ti、Fe、In、Te、Zn等を添加した銅合金、Ni、Si等を添加したCu−Ni−Si系銅合金、Cr、Zr等を添加したCu−Zr系、Cu−Cr−Zr系銅合金のような銅合金も使用することができる。中でも、Ag、Sn、B、Zr及びTiの群から選ばれる1種以上の元素を合計で0.03質量%以下添加することが、(200)面の占有率上昇、銅箔の強度及び伸びの観点から好ましい。Ag、Sn、B、Zr及びTiの含有量が合計で0.03質量%を超えると強度は更に向上するものの、伸びが低下して加工性が悪化する場合がある。より好ましくはAg、Sn、B、Zr及びTiの含有量が合計で0.02質量%以下である。Ag、Sn、B、Zr及びTiを合計した含有量の下限は特に制限されないが、例えば0.001質量%を下限とすることができる。Ag、Sn、B、Zr及びTiの含有量が合計で0.001質量%未満であると、所望の効果を得られなくなる他、含有量が小さいためその含有量を制御することが困難になる場合がある。好ましくは、Ag、Sn、B、Zr及びTiを合計した量の下限値は0.003質量%以上、更に好ましくは0.004質量%以上、最も好ましくは0.005質量%以上である。   Also, copper alloys with addition of Sn, Ag, B, Zr, Ti, Fe, In, Te, Zn, etc., Cu—Ni—Si based copper alloys with addition of Ni, Si, etc. to oxygen-free copper, Cr Copper alloys such as Cu-Zr-based and Cu-Cr-Zr-based copper alloys to which Zr and the like are added can also be used. Among these, adding one or more elements selected from the group consisting of Ag, Sn, B, Zr, and Ti in total of 0.03 mass% or less can increase the (200) plane occupancy, the strength and elongation of the copper foil. From the viewpoint of If the total content of Ag, Sn, B, Zr, and Ti exceeds 0.03% by mass, the strength is further improved, but the elongation is lowered and the workability may be deteriorated. More preferably, the total content of Ag, Sn, B, Zr and Ti is 0.02% by mass or less. The lower limit of the total content of Ag, Sn, B, Zr and Ti is not particularly limited, but for example, 0.001% by mass can be set as the lower limit. If the total content of Ag, Sn, B, Zr and Ti is less than 0.001% by mass, the desired effect cannot be obtained, and the content is too small to control the content. There is a case. Preferably, the lower limit of the total amount of Ag, Sn, B, Zr and Ti is 0.003% by mass or more, more preferably 0.004% by mass or more, and most preferably 0.005% by mass or more.

本願の発明に係る銅箔に上述の銅合金を用いた場合にも同様に、銅箔中の酸素濃度は0.01質量%未満であることが好ましく、0.005質量%以下であることがより好ましいが、銅合金を使用する場合には、銅箔中の酸素濃度が多少高いことも許容される。具体的には、酸素濃度が0.05質量%以下であれば許容され、典型的には0.01〜0.03質量%とすることができる。このため、銅原料として例えばJIS−H3100に規定するタフピッチ銅を使用することもできる。   Similarly, when the above copper alloy is used for the copper foil according to the invention of the present application, the oxygen concentration in the copper foil is preferably less than 0.01% by mass, and preferably 0.005% by mass or less. More preferably, when a copper alloy is used, it is acceptable that the oxygen concentration in the copper foil is somewhat high. Specifically, the oxygen concentration is allowed to be 0.05% by mass or less, and typically 0.01 to 0.03% by mass. For this reason, the tough pitch copper prescribed | regulated to JIS-H3100, for example can also be used as a copper raw material.

銅箔の厚みは特に制限はなく、要求特性に応じて適宜選択すればよい。一般的には1〜300μmであるが、フレキシブルプリント配線板の導体層として使用する場合、銅箔を薄肉化した方がより高い屈曲性や耐振動性を得ることができる。そのような観点から、銅箔の厚みは一般には2〜50μm、典型的には5〜20μm程度である。但し、車載用など、大電流が流れ、通電による発熱が特に嫌われる用途の場合は、導電性及び放熱性を確保しつつ、断線せずに電気信号を確実に伝達する観点から、銅箔は比較的厚くするべきであるので、そのような場合には、50μm以上とすることが好ましく、70μm以上とすることがより好ましい。ただし、過度に厚くすると、導体層のエッチング除去がし難くなる場合があるので、300μm以下とするのが好ましく、150μm以下とするのがより好ましい。   There is no restriction | limiting in particular in the thickness of copper foil, What is necessary is just to select suitably according to a required characteristic. Generally, it is 1 to 300 μm, but when used as a conductor layer of a flexible printed wiring board, it is possible to obtain higher flexibility and vibration resistance when the copper foil is thinned. From such a viewpoint, the thickness of the copper foil is generally 2 to 50 μm, typically about 5 to 20 μm. However, for applications such as in-vehicle use where large current flows and heat generation due to energization is particularly disliked, copper foil is used from the viewpoint of reliably transmitting electrical signals without disconnection while ensuring conductivity and heat dissipation. Since it should be relatively thick, in such a case, the thickness is preferably 50 μm or more, and more preferably 70 μm or more. However, if the thickness is excessively large, it may be difficult to remove the conductor layer by etching. Therefore, the thickness is preferably 300 μm or less, and more preferably 150 μm or less.

本発明に係る銅箔は一側面において、圧延方向に平行な断面における(200)面の占有率で規定される。当該占有率は高い方が耐屈曲性及び耐振動性に有利であり、本発明に係る圧延銅箔の一実施形態においては、圧延方向に平行な断面における(200)面の占有率が70%以上であり、好ましくは80%以上であり、より好ましくは90%以上であり、更により好ましくは95%以上であり、例えば80〜99%とすることができる。   The copper foil which concerns on this invention is prescribed | regulated by the occupation rate of the (200) plane in the cross section parallel to a rolling direction in one side. A higher occupancy ratio is advantageous in bending resistance and vibration resistance. In one embodiment of the rolled copper foil according to the present invention, the occupancy ratio of the (200) plane in the cross section parallel to the rolling direction is 70%. Or more, preferably 80% or more, more preferably 90% or more, and even more preferably 95% or more, for example, 80 to 99%.

本発明においては、銅箔断面における(200)面の占有率について規定している点が、圧延面の結晶方位を規定した従来の圧延銅箔とは異なる。本発明によれば、銅箔の厚み全体における結晶の方位が制御されることになるので、特に厚みの大きな銅箔の場合に、表面の結晶方位を規定した圧延銅箔と比較したときの特性の差が顕著に現れる。そのため、本発明に係る圧延銅箔は、比較的大きな厚みの銅箔が使用され、耐震動性も要求される車載用(特にトランスミッションやエンジン周りに使用されるFPC)や自動機制御(自動搬送ライン等レール上を移動する機器の制御)用のFPCに使用される導体材料として特に好適である。   In this invention, the point which has prescribed | regulated about the occupation rate of the (200) plane in a copper foil cross section differs from the conventional rolled copper foil which prescribed | regulated the crystal orientation of the rolling surface. According to the present invention, since the orientation of the crystal in the entire thickness of the copper foil is controlled, particularly in the case of a copper foil having a large thickness, the characteristics when compared with the rolled copper foil that defines the crystal orientation of the surface The difference of Therefore, the rolled copper foil according to the present invention uses a relatively large thickness copper foil, and is required to have vibration resistance, especially for in-vehicle use (particularly FPC used around transmissions and engines) and automatic machine control (automatic conveyance). It is particularly suitable as a conductor material used for FPC for control of equipment moving on rails such as lines.

圧延方向に平行な断面における(200)面の占有率は、同断面をFIB(集束イオンビーム)やCP(Cross-Section Polisher)によりFPC断面を露出させた後、EBSP(電子後方散乱解析像法)により方位解析して、単位面積当りに占める(200)面の面積率を算出することで測定可能である。   The occupancy ratio of the (200) plane in the cross section parallel to the rolling direction is determined by EBSP (electron backscattering analysis image method) after exposing the FPC cross section with FIB (focused ion beam) or CP (cross-section polisher). ) To calculate the area ratio of the (200) plane per unit area.

本発明に係る銅箔は、例えば、以下のようにして製造することができる。まず、電気銅、無酸素銅、タフピッチ銅等の銅原料を溶解し、必要に応じて合金元素を添加した後、この溶湯を鋳造し、厚みが100〜300mm程度のインゴットを製造する。溶解工程での酸素濃度の調整は、溶湯のカーボンシール、大気解放等の当業者公知の技術により行うことができる。その後、熱間圧延を行った後、焼鈍と冷間圧延を繰り返し、最終冷間圧延上がりの銅箔基材を得る。ここでの圧下率は高い方が次の焼鈍によって(200)面が発達しやすい。よって、最終冷間圧延の圧下度は85%以上、より好ましくは90%以上、更により好ましくは95%以上である。厚みが大きな銅箔を製造する場合、最終冷間圧延における圧下率を大きく確保できなくなる傾向にある(板厚が厚い状態での焼鈍等が困難であるため)。そのため、最終冷間圧延後の板厚が35μm以上の銅箔では、実際の製造しやすさを考慮すると、最終冷間圧延の圧下率は96%以下とすることが好ましく、95%以下とすることが更に好ましく、93%以下とすることが更に好ましい。   The copper foil which concerns on this invention can be manufactured as follows, for example. First, a copper raw material such as electrolytic copper, oxygen-free copper, tough pitch copper or the like is melted, and an alloy element is added as necessary, and then the molten metal is cast to produce an ingot having a thickness of about 100 to 300 mm. Adjustment of the oxygen concentration in the melting step can be performed by techniques known to those skilled in the art, such as carbon sealing of the molten metal and release to the atmosphere. Then, after performing hot rolling, annealing and cold rolling are repeated, and the copper foil base material after final cold rolling is obtained. The higher the rolling reduction here, the easier the (200) plane develops by the subsequent annealing. Therefore, the degree of reduction in the final cold rolling is 85% or more, more preferably 90% or more, and still more preferably 95% or more. When manufacturing a copper foil having a large thickness, it tends to be impossible to ensure a large reduction ratio in the final cold rolling (because it is difficult to perform annealing in a state where the plate thickness is thick). Therefore, in the case of a copper foil having a thickness of 35 μm or more after the final cold rolling, considering the ease of actual production, the reduction ratio of the final cold rolling is preferably 96% or less, and 95% or less. Is more preferable, and it is further more preferable to set it as 93% or less.

次に、この銅箔基材を400〜500℃で1時間以上焼鈍する。焼鈍は窒素又はAr等の不活性ガス雰囲気中で行うことが酸化防止の理由により好ましい。また、真空中で焼鈍することも可能である。400℃以上で1時間以上焼鈍とすることにより銅箔の内部における結晶方位まで制御することが可能となる。厚みの大きな銅箔の場合は、内部における結晶方位の制御が難しいので、このような高温・長時間の焼鈍が特に必要である。焼鈍温度は高すぎても不都合であり、450℃以下とすることにより方位占有率が向上するという効果を得ることができる。焼鈍時間は長い方が(200)面の発達に有利であり、1時間以上焼鈍することが好ましい。但し、過度に焼鈍する必要はなく、生産効率も低下するので、2時間以下とするのが好ましく、1.5時間以下とするのがより好ましい。   Next, this copper foil base material is annealed at 400 to 500 ° C. for 1 hour or longer. Annealing is preferably performed in an inert gas atmosphere such as nitrogen or Ar for the reason of preventing oxidation. It is also possible to anneal in a vacuum. By annealing at 400 ° C. or higher for 1 hour or longer, it is possible to control the crystal orientation in the copper foil. In the case of a copper foil having a large thickness, it is difficult to control the crystal orientation inside, and thus such high temperature and long time annealing is particularly necessary. Even if the annealing temperature is too high, it is inconvenient, and the effect of improving the azimuth occupancy can be obtained by setting it to 450 ° C. or less. A longer annealing time is advantageous for the development of the (200) plane, and it is preferable to anneal for 1 hour or longer. However, it is not necessary to anneal excessively, and the production efficiency is also lowered, so that it is preferably 2 hours or less, and more preferably 1.5 hours or less.

見方を変えれば、本発明に係る圧延銅箔は一側面において、最終冷間圧延上がりの状態であり、400℃で1時間加熱処理することによって、圧延方向に平行な断面において、(200)面の占有率が70%以上、好ましくは80%以上、より好ましくは90%以上、更により好ましくは95%以上、例えば80〜99%となることができるという特性をもつ銅箔であるということもできる。   In other words, the rolled copper foil according to the present invention is in a state after final cold rolling on one side surface, and is (200) plane in a cross section parallel to the rolling direction by heat treatment at 400 ° C. for 1 hour. It is also said that the copper foil has a characteristic that the occupancy ratio can be 70% or more, preferably 80% or more, more preferably 90% or more, still more preferably 95% or more, for example, 80 to 99%. it can.

焼鈍後の圧延銅箔を、ポリエステルやポリイミド等を材料とする柔軟性絶縁基板の片面又は両面に積層し、接着することで、フレキシブル銅張積層板(FCCL)を製造することができる。接着方法としては、エポキシ等の熱硬化性樹脂からなる接着剤を用いて、銅箔とポリイミド樹脂フィルムを貼り合わせて、加熱処理を行う方法や、ポリイミド樹脂の前駆体であるポリアミック酸を含むワニスを、銅箔上に塗布して加熱硬化させ、銅箔上にポリイミド被膜を形成する方法がある。両面に銅箔を積層する場合は、片面銅張積層板を形成後、銅箔層を熱プレスにより圧着する方法や、2枚の銅箔層間にポリイミドフィルムを挟み、熱プレスにより圧着する方法がある。これらの加熱処理は一般に100〜250℃で30〜150分の条件で実施される。銅箔と樹脂の積層を、熱処理工程を経ずに接着剤によって行う方法もある。   A flexible copper-clad laminate (FCCL) can be manufactured by laminating and bonding the rolled copper foil after annealing on one or both sides of a flexible insulating substrate made of polyester, polyimide, or the like. As an adhesion method, an adhesive made of a thermosetting resin such as epoxy is used, and a copper foil and a polyimide resin film are bonded to each other and heat treatment is performed, or a varnish containing polyamic acid which is a precursor of a polyimide resin Is coated on a copper foil and cured by heating to form a polyimide film on the copper foil. When laminating copper foil on both sides, after forming a single-sided copper clad laminate, there are a method of crimping the copper foil layer by hot pressing, and a method of sandwiching a polyimide film between two copper foil layers and crimping by hot pressing. is there. These heat treatments are generally carried out at 100 to 250 ° C. for 30 to 150 minutes. There is also a method of laminating a copper foil and a resin with an adhesive without going through a heat treatment step.

このように、FCCLの製造工程では絶縁基板と銅箔の接着のために加熱処理を行うことが多いので、上述した最終冷間圧延後の焼鈍工程を当該加熱処理で兼ねることも可能である。但し、上述した接着時の一般的な加熱処理条件では銅箔内部の結晶方位まで十分に制御することは難しいので、接着時の加熱処理を上述した400〜500℃で1時間以上の条件に変更することで、本発明に係る特性をもつ銅箔の作り込みと絶縁基板への接着を同時に行うこともできる。   As described above, in the FCCL manufacturing process, heat treatment is often performed for bonding the insulating substrate and the copper foil. Therefore, the annealing process after the final cold rolling described above can be used as the heat treatment. However, since it is difficult to sufficiently control the crystal orientation inside the copper foil under the general heat treatment conditions at the time of bonding described above, the heat treatment at the time of bonding is changed to the above conditions at 400 to 500 ° C. for 1 hour or more. By doing so, it is possible to simultaneously fabricate the copper foil having the characteristics according to the present invention and adhere it to the insulating substrate.

本発明に係るFCCLを材料として公知の手順に従って配線を形成し、フレキシブルプリント配線板(FPC)を製造することが可能である。例えばエッチングレジストをFCCLの銅箔面に導体パターンとしての必要部分だけに塗布し、エッチング液を銅箔面に噴射することで不要銅箔を除去して導体パターンを形成し、次いでエッチングレジストを剥離・除去して導体パターンを露出する方法が挙げられる。導体パターン形成後は、保護用のカバーレイフィルムを貼ることが一般的である。このようなFPCは、電子・電気機器においてハードディスク内の可動部、携帯電話のヒンジ部やスライド摺動部、プリンターのヘッド部、光ピックアップ部、ノートPCの可動部等に使用されるFPCが該当する。とりわけ、本発明に係るFPCは、比較的大きな厚みの銅箔が使用され、耐震動性も要求される車載用や自動機制御用のFPCとして好適である。   It is possible to manufacture a flexible printed wiring board (FPC) by forming wiring according to a known procedure using the FCCL according to the present invention as a material. For example, apply an etching resist to the copper foil surface of the FCCL only on the necessary part as the conductor pattern, spray the etching solution onto the copper foil surface to remove the unnecessary copper foil, form the conductor pattern, and then peel off the etching resist -The method of removing and exposing a conductor pattern is mentioned. After forming the conductor pattern, it is common to apply a protective coverlay film. Such FPCs are FPCs used for movable parts in hard disks, hinge parts and slide sliding parts of mobile phones, printer head parts, optical pickup parts, movable parts of notebook PCs, etc. in electronic and electrical equipment. To do. In particular, the FPC according to the present invention is suitable as a vehicle-mounted or automatic machine control FPC that uses a relatively large thickness of copper foil and also requires vibration resistance.

以下、本発明の実施例を示すが、これらは本発明をより良く理解するために提供するものであり、本発明が限定されることを意図するものではない。   EXAMPLES Examples of the present invention will be described below, but these are provided for better understanding of the present invention and are not intended to limit the present invention.

<圧延銅箔の製造>
タフピッチ銅(TPC)又は無酸素銅(OFC)に所定の元素を添加した表1に記載の各組成をもつインゴットを溶解鋳造した。
これを熱間圧延した後、焼鈍と冷間圧延を繰り返し、最終冷間圧延を表1に記載の圧下率で行い、表1に記載の厚みに調整した。最後に、焼鈍をAr雰囲気で、200℃×1時間、300×1時間、又は400℃×1時間のいずれかの焼鈍条件で行い、各圧延銅箔を得た。
なお、比較例4では、厚み35μmの特殊電解銅箔(EDC)を用い、焼鈍をAr雰囲気で、200℃×1時間、300×1時間、又は400℃×1時間の条件で行い、銅箔を得た。また、実施例10については、焼鈍をAr雰囲気で、400℃×0.5時間の条件でも行った。
<Manufacture of rolled copper foil>
Ingots having respective compositions shown in Table 1 in which predetermined elements were added to tough pitch copper (TPC) or oxygen-free copper (OFC) were melt cast.
After this was hot-rolled, annealing and cold rolling were repeated, and the final cold rolling was performed at the rolling reduction shown in Table 1 and adjusted to the thickness shown in Table 1. Finally, annealing was performed in an Ar atmosphere under annealing conditions of 200 ° C. × 1 hour, 300 × 1 hour, or 400 ° C. × 1 hour to obtain each rolled copper foil.
In Comparative Example 4, a special electrolytic copper foil (EDC) having a thickness of 35 μm was used, and annealing was performed in an Ar atmosphere at 200 ° C. × 1 hour, 300 × 1 hour, or 400 ° C. × 1 hour. Got. Moreover, about Example 10, annealing was also performed on condition of 400 degreeC x 0.5 hour by Ar atmosphere.

<FPCの製造>
得られた各圧延銅箔の表裏に厚み50μmで電着銅粒子による粗化処理を行った後、180℃の温度で2時間熱プレスするラミネート条件で厚み50μmのポリイミドフィルムを表裏に積層し、両面FCCLを作製した。その後、長さ120mmでラインアンドスペース0.3mm×0.3mmの回路エッチングを8本形成し、最後に厚み50μmのポリイミド製カバーレイフィルムを両面に180℃の温度で1時間熱プレスすることにより積層して、長さ150mm×幅15mmのFPCの各試験片を作製した。
<Manufacture of FPC>
After performing roughening treatment with electrodeposited copper particles at a thickness of 50 μm on the front and back of each obtained rolled copper foil, a polyimide film with a thickness of 50 μm is laminated on the front and back under lamination conditions of hot pressing at a temperature of 180 ° C. for 2 hours, A double-sided FCCL was made. Thereafter, eight circuit etchings of 120 mm in length and line and space of 0.3 mm × 0.3 mm were formed, and finally a polyimide coverlay film having a thickness of 50 μm was hot-pressed on both sides at a temperature of 180 ° C. for 1 hour. By laminating, each test piece of FPC having a length of 150 mm and a width of 15 mm was produced.

<200占有率(%)>
圧延方向に平行な断面における(200)面の占有率(“200占有率(%)”)は、は先述した手順で測定した。すなわち、FPCの圧延方向に平行な断面組織を露出させた後、EBSP(日本電子社製型式JXA8500F)において方位解析して、単位面積(銅箔の厚み×幅150μm)当りに占める(200)面から10°以内である領域の面積率を(200)面の占有率として算出した。測定は2回行い、その平均値を測定値とした。
<200 share (%)>
The occupancy ratio of the (200) plane in the cross section parallel to the rolling direction (“200 occupancy ratio (%)”) was measured by the procedure described above. That is, after exposing a cross-sectional structure parallel to the rolling direction of FPC, orientation analysis is performed in EBSP (JEOL Ltd. model JXA8500F), and (200) plane occupies per unit area (thickness of copper foil × 150 μm width) The area ratio of the region within 10 ° from the angle was calculated as the occupation ratio of the (200) plane. The measurement was performed twice, and the average value was taken as the measured value.

<耐振動時間(h)>
得られた各FPC試験片について、振動試験をJIS−D1601掃引振動耐久試験に基づいて実施した。先述した試験片をループ寸法L=20mmのループ状にして両端を固定し、周波数5〜170Hz/5min、振幅幅0.6mm、振動加速度45m/s2、試験温度−35〜115℃において振動試験を行い、試験片に定電流(1.0mA)を通電しての試験片の抵抗増加率を記録し、試験片の抵抗増加率が20%に到達するまでの時間を測定した。試験温度は室温(20℃)で10分保持後、1.5時間かけて−30℃に徐々に低下させ、−30℃で10分保持後、1.5時間かけて115℃に上昇させ、115℃で10分保持後、1時間かけて室温(20℃)まで低下させるというサイクルを繰り返した。試験装置は新日本測器株式会社製F−400BM−E04全自動振動試験装置とエミック株式会社製温湿度試験装置VC−500DAR(33)M3C3Rを使用した。
なお、ループ寸法とは図1に示すように、試験片の固定箇所から試験片の先端までの距離を指す。
<Vibration resistance time (h)>
About each obtained FPC test piece, the vibration test was implemented based on the JIS-D1601 sweep vibration endurance test. The above-mentioned test piece is looped with a loop dimension L = 20 mm, and both ends are fixed, and a vibration test is performed at a frequency of 5 to 170 Hz / 5 min, an amplitude width of 0.6 mm, a vibration acceleration of 45 m / s 2 , and a test temperature of 35 to 115 ° C. The resistance increase rate of the test piece when a constant current (1.0 mA) was applied to the test piece was recorded, and the time until the resistance increase rate of the test piece reached 20% was measured. The test temperature was maintained at room temperature (20 ° C.) for 10 minutes, then gradually decreased to −30 ° C. over 1.5 hours, held at −30 ° C. for 10 minutes, and then increased to 115 ° C. over 1.5 hours. The cycle of holding at 115 ° C. for 10 minutes and then lowering to room temperature (20 ° C.) over 1 hour was repeated. The test apparatus used F-400BM-E04 fully automatic vibration test apparatus by Shin-Nippon Sokki Co., Ltd. and temperature-humidity test apparatus VC-500DAR (33) M3C3R by Emic Co., Ltd.
In addition, as shown in FIG. 1, a loop dimension refers to the distance from the fixed location of a test piece to the front-end | tip of a test piece.

<通電発熱>
400℃で1時間焼鈍した銅箔を用いた各FPC試験片に通電して表面の発熱温度を接触温度計により測定し、発熱特性を調べた。具体的には、室温下、30Aで30分通電したときの試験片の表面温度を測定して、以下の基準により評価した。
×=40℃以上
△=35℃〜40℃未満
○=30℃〜35℃未満
◎=30℃未満
<Electric heat generation>
Each FPC test piece using a copper foil annealed at 400 ° C. for 1 hour was energized, the surface heat generation temperature was measured with a contact thermometer, and the heat generation characteristics were examined. Specifically, the surface temperature of the test piece when energized at 30 A for 30 minutes at room temperature was measured and evaluated according to the following criteria.
× = 40 ° C. or more Δ = 35 ° C. to less than 40 ° C. ○ = 30 ° C. to less than 35 ° C. ◎ = less than 30 ° C.

<MIT屈曲試験>
400℃で1時間焼鈍した銅箔を用いた各FPC試験片について、JIS−P8115MIT試験機法に基づいて実施した。先述した試験片をMIT試験装置にセットし、箔厚50μm以下は荷重(テンション)250g、箔厚70μm以上は荷重(テンション)500g、曲げ装置先端Rは2.0mm、折り曲げ速度175cpm、折り曲げ角度左右135度で試験を行った。試験装置は株式会社東洋精機製作所製形式Dを使用した。
屈曲性は、以下の基準で評価した。
○=破断までの屈曲回数5000回以上
×=破断までの屈曲回数5000回未満
<MIT flex test>
About each FPC test piece using the copper foil annealed at 400 degreeC for 1 hour, it implemented based on the JIS-P8115MIT testing machine method. The above-mentioned test piece is set in the MIT test apparatus. When the foil thickness is 50 μm or less, the load (tension) is 250 g. When the foil thickness is 70 μm or more, the load (tension) is 500 g. The test was conducted at 135 degrees. The test apparatus used was a model D manufactured by Toyo Seiki Seisakusho.
Flexibility was evaluated according to the following criteria.
○ = Number of flexing times to break 5000 times or more × = Number of flexing times to break less than 5000 times

結果を表1に示す。実施例1〜18では(200)面の占有率(%)が70%以上であったことから、同じ箔厚の比較例と比べて長い耐振動時間を得ることができた。そして、(200)面の占有率(%)が高くなればなるほど耐振動時間も長くなる傾向にあることが理解できる。また、箔厚の大きな試験片ほど、通電発熱が抑えられることも理解できる。更に、実施例1〜18では高い屈曲性を示した。なお、実施例10において400℃で0.5時間加熱した場合の銅箔で上述の評価を行ったところ、(200)面の占有率(%)は68%であり、耐振動時間は13時間であった。   The results are shown in Table 1. In Examples 1 to 18, since the occupation ratio (%) of the (200) plane was 70% or more, it was possible to obtain a long vibration resistance time as compared with the comparative example having the same foil thickness. And it can be understood that the higher the (200) plane occupancy (%), the longer the anti-vibration time tends to be. It can also be understood that a test piece having a larger foil thickness suppresses energization heat generation. Furthermore, in Examples 1-18, the high flexibility was shown. In addition, when the above-mentioned evaluation was performed on the copper foil when heated at 400 ° C. for 0.5 hour in Example 10, the (200) plane occupancy (%) was 68%, and the vibration resistance time was 13 hours. Met.

比較例1は、タフピッチ銅を材料としたが、組成が不適切であり、また、圧延集合組織が発達していないことにより、(200)面の占有率(%)が十分に上昇しなかった。最終圧下率が小さいため熱処理後の再結晶組織の発達が不十分であることにより屈曲性も悪かった。
比較例2は最終圧下率が大きくなったため屈曲性には優れているものの、依然として(200)面の占有率が十分に上昇しなかった。
箔厚の大きな比較例3では比較例2に比べて更に最終冷間圧延時の圧下率を高めたものの、組成が不適切であったため(200)面の占有率が400℃で1時間加熱後もほとんど上昇しなかった。熱処理後の再結晶組織の発達が不適切であることにより屈曲性も悪かった。
比較例4は、特殊電解銅箔を材料としたが、電着集合組織である(111)面が発達することにより、200占有率(%)が十分に上昇しなかった。熱処理後の再結晶組織の発達が不適切であることにより屈曲性も悪かった。
比較例5は、無酸素銅にSnを400質量ppm添加した材料を使用したが、Snの添加量が多いため積層欠陥が多くなり、200占有率(%)が十分に上昇しなかった。熱処理後の再結晶組織の発達が不適切であることにより屈曲性も悪かった。
比較例6は、タフピッチ銅にAgを400質量ppm添加した材料を使用したが、Agの添加量が多いため積層欠陥が多くなり、200占有率(%)が十分に上昇しなかった。熱処理後の再結晶組織の発達が不適切であることにより屈曲性も悪かった。
In Comparative Example 1, tough pitch copper was used as the material, but the composition was inappropriate, and the rolling texture was not developed, so the (200) plane occupancy (%) did not rise sufficiently. . Since the final rolling reduction was small, the flexibility was poor due to insufficient development of the recrystallized structure after heat treatment.
In Comparative Example 2, the final reduction ratio was large and the flexibility was excellent, but the occupancy ratio of the (200) plane was not sufficiently increased.
In Comparative Example 3 having a large foil thickness, although the reduction ratio during the final cold rolling was further increased as compared with Comparative Example 2, the composition was inappropriate, and therefore the (200) plane occupation ratio was 400 ° C. after heating for 1 hour. There was little rise. Flexibility was also poor due to inappropriate development of recrystallized structure after heat treatment.
In Comparative Example 4, a special electrolytic copper foil was used as the material, but the 200 occupancy (%) did not rise sufficiently due to the development of the (111) plane, which is an electrodeposited texture. Flexibility was also poor due to inappropriate development of recrystallized structure after heat treatment.
In Comparative Example 5, a material obtained by adding 400 mass ppm of Sn to oxygen-free copper was used. However, since the amount of Sn added was large, stacking faults increased, and the occupancy rate (%) did not increase sufficiently. Flexibility was also poor due to inappropriate development of recrystallized structure after heat treatment.
In Comparative Example 6, a material obtained by adding 400 mass ppm of Ag to tough pitch copper was used. However, since the amount of Ag added was large, stacking faults increased, and the occupancy rate (%) did not increase sufficiently. Flexibility was also poor due to inappropriate development of recrystallized structure after heat treatment.

Claims (11)

圧延方向に平行な断面において、(200)面の占有率が70%以上である圧延銅箔。   A rolled copper foil having a (200) plane occupancy of 70% or more in a cross section parallel to the rolling direction. 400℃で1時間加熱処理することによって、圧延方向に平行な断面において、(200)面の占有率が70%以上となる特性をもつ圧延銅箔。   A rolled copper foil having a characteristic that the occupancy of the (200) plane is 70% or more in a cross section parallel to the rolling direction by heat treatment at 400 ° C. for 1 hour. 銅箔の厚みが50〜300μmである請求項1又は2に記載の圧延銅箔。   The rolled copper foil according to claim 1 or 2, wherein the copper foil has a thickness of 50 to 300 µm. 圧延方向に平行な断面において、(200)面の占有率が95%以上である請求項1又は3に記載の圧延銅箔。   The rolled copper foil according to claim 1 or 3, wherein an occupancy ratio of the (200) plane is 95% or more in a cross section parallel to the rolling direction. 400℃で1時間の加熱処理を行うことによって、圧延方向に平行な断面組織において、(200)面の占有率が95%以上となる特性をもつ請求項2又は3に記載の圧延銅箔。   The rolled copper foil according to claim 2 or 3, which has a characteristic that the occupancy of the (200) plane is 95% or more in a cross-sectional structure parallel to the rolling direction by performing a heat treatment at 400 ° C for 1 hour. Cu濃度が99.8質量%以上、酸素濃度が0.05質量%以下、且つ、Ag、Sn、B、Zr及びTiの合計濃度が0.003〜0.03質量%の組成を有する請求項1〜5の何れか一項に記載の圧延銅箔。   The Cu concentration is 99.8% by mass or more, the oxygen concentration is 0.05% by mass or less, and the total concentration of Ag, Sn, B, Zr and Ti is 0.003 to 0.03% by mass. The rolled copper foil as described in any one of 1-5. Cu濃度が99.9質量%以上、酸素濃度が0.01質量%未満、且つ、Ag、Sn、B、Zr及びTiの合計濃度が0〜0.03質量%の組成を有する請求項1〜5の何れか一項に記載の圧延銅箔。   The Cu concentration is 99.9 mass% or more, the oxygen concentration is less than 0.01 mass%, and the total concentration of Ag, Sn, B, Zr and Ti has a composition of 0 to 0.03 mass%. The rolled copper foil as described in any one of 5. フレキシブルプリント配線板の導体材料として使用される請求項1〜7何れか一項に記載の圧延銅箔。   The rolled copper foil as described in any one of Claims 1-7 used as a conductor material of a flexible printed wiring board. フレキシブルプリント配線板が車載用である請求項8に記載の圧延銅箔。   The rolled copper foil according to claim 8, wherein the flexible printed wiring board is for vehicle use. 請求項1〜9の何れか一項に記載の圧延銅箔を備えたフレキシブル銅張積層板。   The flexible copper clad laminated board provided with the rolled copper foil as described in any one of Claims 1-9. 請求項10に記載のフレキシブル銅張積層板を加工して得られたフレキシブルプリント配線板。   The flexible printed wiring board obtained by processing the flexible copper clad laminated board of Claim 10.
JP2012288834A 2012-01-17 2012-12-28 Rolled copper foil for flexible printed circuit board Pending JP2013167013A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012288834A JP2013167013A (en) 2012-01-17 2012-12-28 Rolled copper foil for flexible printed circuit board

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012007555 2012-01-17
JP2012007555 2012-01-17
JP2012288834A JP2013167013A (en) 2012-01-17 2012-12-28 Rolled copper foil for flexible printed circuit board

Publications (1)

Publication Number Publication Date
JP2013167013A true JP2013167013A (en) 2013-08-29

Family

ID=49177621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012288834A Pending JP2013167013A (en) 2012-01-17 2012-12-28 Rolled copper foil for flexible printed circuit board

Country Status (1)

Country Link
JP (1) JP2013167013A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015203148A (en) * 2014-04-16 2015-11-16 株式会社Shカッパープロダクツ Copper alloy material, ceramic wiring board and production method of ceramic wiring board
KR20190133736A (en) 2017-03-30 2019-12-03 제이엑스금속주식회사 Rolled copper foil
JP2023024926A (en) * 2021-08-09 2023-02-21 ▲き▼邦科技股▲分▼有限公司 Flexible circuit board and heat sink thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015203148A (en) * 2014-04-16 2015-11-16 株式会社Shカッパープロダクツ Copper alloy material, ceramic wiring board and production method of ceramic wiring board
KR20190133736A (en) 2017-03-30 2019-12-03 제이엑스금속주식회사 Rolled copper foil
JP2023024926A (en) * 2021-08-09 2023-02-21 ▲き▼邦科技股▲分▼有限公司 Flexible circuit board and heat sink thereof

Similar Documents

Publication Publication Date Title
KR102470725B1 (en) Copper foil for flexible printed circuit, and copper clad laminate, flexible printed circuit and electronic device using copper foil
KR102098479B1 (en) Copper foil for flexible printed circuit, copper clad laminate using the same, flexible printed circuit and electronic device
JP6360654B2 (en) Rolled copper foil for flexible printed wiring boards
WO2018180920A1 (en) Rolled copper foil
CN109385554B (en) Copper foil for flexible printed board, copper-clad laminate using same, flexible printed board, and electronic device
JP2013167013A (en) Rolled copper foil for flexible printed circuit board
JP6348621B1 (en) Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
JP5329491B2 (en) Copper foil for flexible printed wiring board and method for producing the same
TWI731247B (en) Copper foil for flexible printed circuit boards, copper-clad laminates using the same, flexible printed circuit boards and electronic devices
CN110505755B (en) Copper foil for flexible printed board, copper-clad laminate using same, flexible printed board, and electronic device
JP2016191091A (en) Rolled copper foil for flexible printed wiring board
JP2019194358A (en) Rolled copper foil for flexible printed wiring board
JP6712561B2 (en) Rolled copper foil for flexible printed circuit board, copper clad laminate using the same, flexible printed circuit board, and electronic device
JP2019143229A (en) Copper foil for flexible printed circuit board, and copper clad laminate, flexible printed circuit board and electronic device using the same
JP2011066431A (en) Method of manufacturing copper-clad laminate