JP2016191091A - Rolled copper foil for flexible printed wiring board - Google Patents

Rolled copper foil for flexible printed wiring board Download PDF

Info

Publication number
JP2016191091A
JP2016191091A JP2015070188A JP2015070188A JP2016191091A JP 2016191091 A JP2016191091 A JP 2016191091A JP 2015070188 A JP2015070188 A JP 2015070188A JP 2015070188 A JP2015070188 A JP 2015070188A JP 2016191091 A JP2016191091 A JP 2016191091A
Authority
JP
Japan
Prior art keywords
copper foil
rolled
rolled copper
plane
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015070188A
Other languages
Japanese (ja)
Inventor
達也 山路
Tatsuya Yamaji
達也 山路
和樹 冠
Kazuki Kan
和樹 冠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2015070188A priority Critical patent/JP2016191091A/en
Publication of JP2016191091A publication Critical patent/JP2016191091A/en
Pending legal-status Critical Current

Links

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide rolled copper foil excellent in flexibility as well as vibration resistance.SOLUTION: In rolled copper foil, a proportion S/Sof an area S in a rolled surface crystal of grains having a {100} plane within 10° from the rolled surface is 0.2 or higher, with regard to a measurement area Sof the rolled surface, and a proportion S/S of an area Sin the rolled surface of crystal grains having a {811} plane within 3° from the rolled surface is within a range of 0-0.05, with regard to the S.SELECTED DRAWING: None

Description

本発明はフレキシブルプリント配線板用圧延銅箔に関し、特に車載用のフレキシブルプリント配線板に用いられる圧延銅箔に関する。   The present invention relates to a rolled copper foil for a flexible printed wiring board, and more particularly to a rolled copper foil used for an in-vehicle flexible printed wiring board.

フレキシブルプリント配線板(FPC)は、導電層である金属と樹脂フィルムに代表される柔軟性絶縁基板とが接合されたものである。一般に導電層には銅箔が用いられ、特に屈曲性が求められる用途には、屈曲性に優れる圧延銅箔が用いられている。   A flexible printed wiring board (FPC) is obtained by bonding a metal as a conductive layer and a flexible insulating substrate typified by a resin film. In general, a copper foil is used for the conductive layer, and a rolled copper foil having excellent flexibility is used particularly for applications that require flexibility.

一般的なFPC製造工程は以下のようなものである。まず銅箔を樹脂フィルムと接合する。接合には、銅箔上に塗布したワニスに熱処理を加えることでイミド化する方法や、接着剤付きの樹脂フィルムと銅箔とを重ねてラミネートする方法がある。これらの工程によって接合された樹脂フィルム付き銅箔をCCL(銅張積層板)と呼ぶ。その後、エッチングにより配線を形成し、FPCが完成する。   A general FPC manufacturing process is as follows. First, the copper foil is bonded to the resin film. For joining, there are a method of imidizing by applying heat treatment to a varnish applied on a copper foil, and a method of laminating a resin film with an adhesive and a copper foil. The copper foil with a resin film joined by these steps is referred to as CCL (copper-clad laminate). Thereafter, wiring is formed by etching to complete the FPC.

FPC用の圧延銅箔に要求される屈曲性は、電子機器の軽薄短小化及び高機能化に従って厳しくなっている。圧延した純銅を再結晶させると{100}<001>再結晶集合組織(Cube再結晶集合組織)が発達することがわかっており(例えば、古林英一著「再結晶と材料組織」、内田老鶴圃、2000年)、Cube再結晶集合組織を利用して圧延銅箔の屈曲性の向上を図ろうとする技術が過去に提案されている。特開平11−286760号公報(特許文献1)には、圧延面のX線回折で求めた(200)面の強度(I)の微粉末銅のX線回折で求めた(200)面の強度(I0)に対する比をI/I0>20にすることが提案されている。特許文献1においては、当該圧延銅箔の製造方法として、最終冷間圧延の直前の焼鈍を、この焼鈍で得られる再結晶粒の平均粒径が5〜20μmになる条件下で行い、次の最終冷間圧延での圧延加工度を90%以上とすることが記載されている。 Flexibility required for rolled copper foil for FPC is becoming strict as electronic devices become lighter, shorter, and more functional. It is known that {100} <001> recrystallized texture (Cube recrystallized texture) develops when recrystallized rolled pure copper (for example, Eiichi Furubayashi “Recrystallization and Material Texture” Tsuruho, 2000), a technique for improving the flexibility of rolled copper foil using a Cube recrystallized texture has been proposed in the past. In JP-A-11-286760 (Patent Document 1), the strength of the (200) surface obtained by X-ray diffraction of fine powder copper having the strength (I) of (200) surface obtained by X-ray diffraction of the rolled surface. It has been proposed that the ratio to (I 0 ) be I / I 0 > 20. In Patent Document 1, as a method for producing the rolled copper foil, annealing immediately before the final cold rolling is performed under the condition that the average grain size of the recrystallized grains obtained by this annealing is 5 to 20 μm. It is described that the degree of rolling in the final cold rolling is 90% or more.

また、圧延銅箔を焼鈍した状態の銅箔の断面組織において、銅箔の両表面の間を板厚方向に貫通した結晶粒の断面積が全体の断面積に対して占める比率(断面面積率)を大きくすることで銅箔の屈曲性を改善する技術も知られている。特開2009−275290号公報(特許文献2)では、圧延銅箔を焼鈍した状態の銅箔の断面組織において、銅箔の両表面の間を板厚方向に貫通した結晶粒の断面積が全体の断面積に対して占める比率(断面面積率)を高める技術が開示されている。このような圧延銅箔を製造するために、タフピッチ銅又は無酸素銅の鋳塊を熱間圧延して厚さ18mmとし、更に冷間圧延によって厚さ2.0mmにまで薄くして中間焼純した後、引き続き冷間圧延と焼鈍を繰り返して厚さ1.4〜0.14mmとし、最終圧延によって厚さ10〜33μmの最終板厚としてから、130〜200℃で30分最終焼鈍する方法が開示されている。   Moreover, in the cross-sectional structure of the copper foil in the state where the rolled copper foil is annealed, the ratio (cross-sectional area ratio) of the cross-sectional area of crystal grains penetrating between both surfaces of the copper foil in the thickness direction occupies the entire cross-sectional area. ) Is also known to improve the flexibility of the copper foil. In JP 2009-275290 A (Patent Document 2), in the cross-sectional structure of the copper foil in a state where the rolled copper foil is annealed, the cross-sectional area of the crystal grains penetrating between both surfaces of the copper foil in the plate thickness direction is the whole. A technique for increasing the ratio (cross-sectional area ratio) to the cross-sectional area is disclosed. In order to manufacture such a rolled copper foil, an ingot of tough pitch copper or oxygen-free copper is hot-rolled to a thickness of 18 mm, and further thinned to a thickness of 2.0 mm by cold rolling, and an intermediate sintered Thereafter, cold rolling and annealing are repeated to obtain a thickness of 1.4 to 0.14 mm, and a final sheet thickness of 10 to 33 μm is obtained by final rolling, followed by a final annealing at 130 to 200 ° C. for 30 minutes. It is disclosed.

特開平11−286760号公報Japanese Patent Laid-Open No. 11-286760 特開2009−275290号公報JP 2009-275290 A

古林英一著「再結晶と材料組織」、内田老鶴圃、2000年Eiichi Furubayashi, “Recrystallization and Material Structure”, Uchida Otsukuru, 2000

車載用途等、頻繁に振動を受ける環境で使用されるFPCにおいては銅箔が疲労して導電層に亀裂が入りやすい。亀裂の発生及び伝搬によってFPCの電気的特性が低下してしまうことから、FPCを搭載した電子・電気機器の長期間にわたる使用に耐えることができるように、振動環境下でも容易に亀裂が入らない耐疲労特性に優れた銅箔が望まれる。従来技術にて提案されている圧延銅箔は、FPCの屈曲寿命を向上させることに対しては効果が見られるものの、振動下での耐疲労特性(以下、「耐振動性」という。)については未だ改善の余地が残されている。   In an FPC used in an environment subject to frequent vibrations such as in-vehicle applications, the copper foil is fatigued and the conductive layer is easily cracked. Since the electrical characteristics of the FPC deteriorate due to the occurrence and propagation of cracks, cracks do not easily occur even in vibration environments so that they can withstand long-term use of electronic and electrical equipment equipped with FPCs. A copper foil having excellent fatigue resistance is desired. Although the rolled copper foil proposed in the prior art is effective for improving the flex life of the FPC, the fatigue resistance under vibration (hereinafter referred to as “vibration resistance”). There is still room for improvement.

そこで、本発明は屈曲性に加えて耐振動性にも優れた圧延銅箔を提供することを課題の一つとする。また、本発明はそのような圧延銅箔を備えたFPCを提供することを別の課題の一つとする。   Therefore, an object of the present invention is to provide a rolled copper foil that is excellent in vibration resistance in addition to flexibility. Moreover, this invention makes it another subject to provide FPC provided with such a rolled copper foil.

金属表面の亀裂発生原因については以下の知見がある。金属に対して繰り返し変形を与えると、金属表面には突き出し及び入り込みが形成される。そして、この突き出し及び入り込みは断面から表面の凹凸として観察される。この凹凸を起点に亀裂が生じる(例えば「材料強度の原子論」、講座・現代の金属学、材料編3、日本金属学会)。そこで、本発明者は振動環境下において銅箔表面に鋭い突き出しや入り込みが形成されないようにすることが耐振動性を高める上で重要であると考え、その解決策を鋭意検討した。   Regarding the cause of cracks on the metal surface, there is the following knowledge. When the metal is repeatedly deformed, protrusions and penetrations are formed on the metal surface. And this protrusion and penetration | invasion are observed as a surface unevenness | corrugation from a cross section. Cracks originate from this unevenness (for example, “Atomology of Material Strength”, lecture / modern metallurgy, material edition 3, Japan Institute of Metals). In view of this, the present inventor considered that it is important to prevent the formation of sharp protrusions or intrusions on the surface of the copper foil in a vibration environment, and studied the solutions for the problem.

その結果、銅箔表面における突き出し及び入り込みの形成は結晶方位の影響が大きく、特許文献2のように結晶粒を大きくするという手法では耐振動性は向上しないことが分かった。また、特許文献1のように(200)面の回折ピーク強度を高くすると、突き出し及び入り込みの幅が広くなるので耐振動性はある程度向上するが、板面が{100}面近傍であっても振動試験後に鋭い突き出し及び入り込みを形成している場所があり、そこから亀裂が発生することがあった。本発明者はこの亀裂発生の原因について調査したところ、板面が{100}面近傍であっても多少なりとも結晶回転を含んだ結晶粒が存在し、それが{100}面から特定の方向に回転していると、鋭い突き出し及び入り込みが形成されやすいことを見出した。そして、板面を{100}面近傍に制御しながら、更に特定の方向への結晶粒の回転を抑制することで、有意に耐振動特性が向上することを突き止めた。本発明は当該知見に基づいて創作されたものである。   As a result, it has been found that the formation of protrusions and penetrations on the surface of the copper foil is greatly influenced by the crystal orientation, and the vibration resistance is not improved by the technique of increasing the crystal grains as in Patent Document 2. In addition, when the diffraction peak intensity on the (200) plane is increased as in Patent Document 1, the width of protrusion and penetration is increased, so that the vibration resistance is improved to some extent, but even if the plate surface is near the {100} plane. There were places where sharp protrusions and intrusions were formed after the vibration test, and cracks sometimes occurred therefrom. The present inventor has investigated the cause of the occurrence of cracks. As a result, even when the plate surface is in the vicinity of the {100} plane, there are some crystal grains containing crystal rotation, which are in a specific direction from the {100} plane. It has been found that sharp protrusions and intrusions are likely to be formed when it is rotated. And it was found that the vibration resistance is significantly improved by controlling the rotation of crystal grains in a specific direction while controlling the plate surface in the vicinity of the {100} plane. The present invention has been created based on this finding.

本発明は一側面において、圧延面の測定面積S0に対する{100}面が圧延面から10°以内にある結晶粒が占める圧延面の面積Sの比S/S0が0.2以上であり、且つ、Sに対する{811}面が圧延面から3°以内にある結晶粒が占める圧延面の面積S1の比S1/Sが0〜0.05の範囲にある圧延銅箔である。 In one aspect of the present invention, the ratio S / S 0 of the rolling surface area S occupied by crystal grains in which the {100} plane is within 10 ° of the rolling surface with respect to the measurement area S 0 of the rolling surface is 0.2 or more. and, the ratio S 1 / S of the area S 1 of the rolling surface of {811} plane to the S crystal grains occupy is within 3 ° from the rolling surface is rolled copper foil in the range of 0 to 0.05.

本発明に係る圧延銅箔は一実施形態において、前記Sに対する{811}面が圧延面から5°以内にある結晶粒が占める圧延面の面積S2の比S2/Sが0〜0.05の範囲にある。 In one embodiment of the rolled copper foil according to the present invention, the ratio S 2 / S of the rolled surface area S 2 occupied by the crystal grains in which the {811} surface with respect to S is within 5 ° from the rolled surface is 0 to 0.00. It is in the range of 05.

本発明に係る圧延銅箔は別の一実施形態において、Ag、Sn、Zn、Zr、Cr、Fe、Mg、Si、Ti、Ni及びPよりなる群から選択される元素の一種又は二種以上を合計で1〜500質量ppm含有する。   In another embodiment, the rolled copper foil according to the present invention is one or more elements selected from the group consisting of Ag, Sn, Zn, Zr, Cr, Fe, Mg, Si, Ti, Ni and P. In a total of 1 to 500 ppm by mass.

本発明に係る圧延銅箔は更に別の一実施形態において、表面にNi、Co、Cu、Zn、Sn及びCrよりなる群から選択される元素の一種又は二種以上を含むめっきが施されている。   In yet another embodiment, the rolled copper foil according to the present invention has a surface plated with one or more elements selected from the group consisting of Ni, Co, Cu, Zn, Sn, and Cr. Yes.

本発明に係る圧延銅箔は更に別の一実施形態において、フレキシブルプリント配線板の導体材料として使用される。   In yet another embodiment, the rolled copper foil according to the present invention is used as a conductor material for a flexible printed wiring board.

本発明に係る圧延銅箔は更に別の一実施形態において、フレキシブルプリント配線板が車載用である。   In another embodiment of the rolled copper foil according to the present invention, the flexible printed wiring board is for vehicle use.

本発明は別の一側面において、本発明に係る圧延銅箔を備えたフレキシブル銅張積層板である。   In another aspect, the present invention is a flexible copper clad laminate provided with the rolled copper foil according to the present invention.

本発明は更に別の一側面において、本発明に係るフレキシブル銅張積層板を加工して得られたフレキシブルプリント配線板である。   In still another aspect, the present invention is a flexible printed wiring board obtained by processing the flexible copper clad laminate according to the present invention.

本発明は更に別の一側面において、再結晶前の圧延銅箔であって、200℃〜400℃×30minの何れかの条件で再結晶させたときに本発明に係る何れかの圧延銅箔の要件を満たす再結晶前の圧延銅箔である。   In another aspect of the present invention, the rolled copper foil before recrystallization is any one of the rolled copper foils according to the present invention when recrystallized under any condition of 200 ° C. to 400 ° C. × 30 min. It is the rolled copper foil before recrystallization which satisfy | fills these requirements.

本発明によれば、屈曲性に加えて耐振動性にも優れた圧延銅箔が提供される。本発明に係る圧延銅箔は例えば車載用FPCの導体層として特に有用である。   According to the present invention, a rolled copper foil excellent in vibration resistance in addition to flexibility is provided. The rolled copper foil according to the present invention is particularly useful as a conductor layer of, for example, an in-vehicle FPC.

FPC試験片に対して振動試験を行う際の試験片の治具への装着状態を示す模式図である。It is a schematic diagram which shows the mounting state to the jig | tool of the test piece at the time of performing a vibration test with respect to an FPC test piece.

本発明において使用する銅箔基材は圧延銅箔である。圧延銅箔は、強度が高く、振動が継続的に発生する環境に対応でき、屈曲性が高い点で電解銅箔よりも優れている。本発明において、「銅箔」には銅合金箔も含まれるものとする。銅箔の材料としては、特に制限はなく、用途や要求特性に応じて適宜選択すればよい。銅箔中のCu濃度は高導電性確保の理由により99.8質量%以上であることが好ましく、99.85質量%以上であることがより好ましく、99.9質量%以上であることが更により好ましい。但し、Cu濃度が高すぎてもコスト増加につながるため、99.999質量%以下が好ましく、99.995質量%以下がより好ましい。銅箔中の酸素濃度は亜酸化銅増加につながり、立方体方位の発達を抑制することにつながることから0.01質量%未満であることが好ましく、0.005質量%以下であることが好ましく、例えば0.0001質量%以上0.01質量%未満とすることができる。このような条件を満たす銅箔として、例えば、JIS−H3510若しくはJIS−H3100に規格する無酸素銅(OFC)を用いることができる。   The copper foil base material used in the present invention is a rolled copper foil. The rolled copper foil is superior to the electrolytic copper foil in that it has high strength, can cope with an environment in which vibration continuously occurs, and has high flexibility. In the present invention, “copper foil” includes copper alloy foil. There is no restriction | limiting in particular as a material of copper foil, What is necessary is just to select suitably according to a use or a required characteristic. The Cu concentration in the copper foil is preferably 99.8% by mass or more, more preferably 99.85% by mass or more, and more preferably 99.9% by mass or more for reasons of ensuring high conductivity. Is more preferable. However, even if the Cu concentration is too high, it leads to an increase in cost, so 99.999 mass% or less is preferable, and 99.995 mass% or less is more preferable. Since the oxygen concentration in the copper foil leads to an increase in cuprous oxide and leads to the suppression of the development of the cube orientation, it is preferably less than 0.01% by mass, preferably 0.005% by mass or less, For example, it can be 0.0001 mass% or more and less than 0.01 mass%. As a copper foil satisfying such conditions, for example, oxygen-free copper (OFC) standardized in JIS-H3510 or JIS-H3100 can be used.

また、銅箔には、Ag、Sn、Zn、Zr、Cr、Fe、Mg、Si、Ti、Ni及びPよりなる群から選択される1種又は2種以上の元素を添加することができる。これによって、S/S0を上昇させる効果が得られる。理論によって本発明が限定されることを意図するものではないが、これは銅箔の純度が高いと動的再結晶が起きるために{100}<001>再結晶集合組織が発達し難くなるのに対して、これらの元素を添加すると動的再結晶が抑えられ、{100}<001>再結晶集合組織が発達しやすいからと考えられる。強度向上効果やS/S0上昇効果を有意に発揮するためには、これらの元素の合計濃度を1質量ppm以上とすることが好ましく、5質量ppm以上とすることがより好ましく、10質量ppm以上とすることが更により好ましく、50質量ppm以上とすることが更により好ましく、100質量ppm以上とすることが更により好ましい。一方で、これらの元素の合計濃度が高くなりすぎると伸び性や加工性が悪化する場合があるため、これらの元素の合計濃度は500質量ppm以下とすることが好ましく、400質量ppm以下とすることがより好ましく、300質量ppm以下とすることが更により好ましい。 In addition, one or more elements selected from the group consisting of Ag, Sn, Zn, Zr, Cr, Fe, Mg, Si, Ti, Ni, and P can be added to the copper foil. As a result, an effect of increasing S / S 0 is obtained. Although it is not intended that the present invention be limited by theory, it is difficult to develop a {100} <001> recrystallization texture because dynamic recrystallization occurs when the purity of the copper foil is high. On the other hand, it is considered that when these elements are added, dynamic recrystallization is suppressed and a {100} <001> recrystallization texture is easily developed. In order to exhibit the strength improvement effect and the S / S 0 increase effect significantly, the total concentration of these elements is preferably 1 mass ppm or more, more preferably 5 mass ppm or more, and more preferably 10 mass ppm. More preferably, it is more preferably 50 ppm by mass or more, still more preferably 100 ppm by mass or more. On the other hand, if the total concentration of these elements becomes too high, the extensibility and workability may deteriorate, so the total concentration of these elements is preferably 500 mass ppm or less, and 400 mass ppm or less. Is more preferable, and it is still more preferable to set it as 300 mass ppm or less.

例示的には、Sn、Ag、Zr、Ti、Fe、Zn、Ni、Si、Cr、Zr等を添加した銅合金を使用することができる。中でも、Ag、Sn、Zr及びTiの群から選ばれる1種以上の元素を合計で500質量ppm以下の含有量となるように添加することが、S/S0を上昇させるという観点から好ましい。Ag、Sn、Zr及びTiの含有量が合計で500質量ppmを超えると強度は更に向上するものの、伸びが低下して加工性が悪化する場合がある。より好ましくはAg、Sn、Zr及びTiの含有量が合計で300質量ppm以下である。Ag、Sn、Zr及びTiを合計した含有量の下限は特に制限されないが、例えば10質量ppmを下限とすることができる。Ag、Sn、Zr及びTiの含有量が合計で10質量ppm未満であると、効果が小さくなる他、含有量が小さいためその含有量を制御することが困難になる場合がある。好ましくは、Ag、Sn、Zr及びTiを合計した量は30質量ppm以上であり、更に好ましくは40質量ppm以上であり、最も好ましくは50質量ppm以上である。 Illustratively, a copper alloy to which Sn, Ag, Zr, Ti, Fe, Zn, Ni, Si, Cr, Zr, or the like is added can be used. Among them, Ag, Sn, be added in an amount of Zr and the content below 500 ppm by weight in total of one or more elements selected from the group of Ti is preferred from the viewpoint of increasing the S / S 0. When the content of Ag, Sn, Zr and Ti exceeds 500 mass ppm in total, the strength is further improved, but the elongation is lowered and the workability may be deteriorated. More preferably, the total content of Ag, Sn, Zr and Ti is 300 ppm by mass or less. The lower limit of the total content of Ag, Sn, Zr and Ti is not particularly limited, but for example, 10 mass ppm can be set as the lower limit. If the total content of Ag, Sn, Zr, and Ti is less than 10 ppm by mass, the effect may be reduced, and it may be difficult to control the content because the content is small. Preferably, the total amount of Ag, Sn, Zr and Ti is 30 ppm by mass or more, more preferably 40 ppm by mass or more, and most preferably 50 ppm by mass or more.

本発明に係る銅箔として上述した銅合金を用いた場合にも同様に、銅箔中の酸素濃度は0.01質量%未満であることが好ましく、0.005質量%以下であることがより好ましいが、銅合金を使用する場合には、銅箔中の酸素濃度が多少高いことも許容される。具体的には、酸素濃度が0.05質量%以下であれば許容され、典型的には0.01〜0.03質量%とすることができる。このため、銅原料として例えばJIS−H3100に規定するタフピッチ銅を使用することもできる。   Similarly, when the copper alloy described above is used as the copper foil according to the present invention, the oxygen concentration in the copper foil is preferably less than 0.01% by mass, more preferably 0.005% by mass or less. Although a copper alloy is used, it is acceptable that the oxygen concentration in the copper foil is somewhat high. Specifically, the oxygen concentration is allowed to be 0.05% by mass or less, and typically 0.01 to 0.03% by mass. For this reason, the tough pitch copper prescribed | regulated to JIS-H3100, for example can also be used as a copper raw material.

銅箔の厚みは特に制限はなく、要求特性に応じて適宜選択すればよい。一般的には1〜300μmであるが、フレキシブルプリント配線板の導体層として使用する場合、銅箔を薄肉化した方がより高い屈曲性や耐振動性を得ることができる。そのような観点から、銅箔の厚みは一般には2〜50μm、典型的には5〜35μm程度である。但し、車載用など、大電流が流れ、通電による発熱が特に嫌われる用途の場合は、導電性及び放熱性を確保しつつ、断線せずに通電する観点から、銅箔は比較的厚くするべきであるので、そのような場合には、35μm以上とすることが好ましい。ただし、過度に厚くすると、導体層のエッチング除去がし難くなる場合があるので、300μm以下とするのが好ましく、150μm以下とするのがより好ましい。   There is no restriction | limiting in particular in the thickness of copper foil, What is necessary is just to select suitably according to a required characteristic. Generally, it is 1 to 300 μm, but when used as a conductor layer of a flexible printed wiring board, it is possible to obtain higher flexibility and vibration resistance when the copper foil is thinned. From such a viewpoint, the thickness of the copper foil is generally 2 to 50 μm, typically about 5 to 35 μm. However, in applications where large current flows and heat generation due to energization is particularly hated, such as in-vehicle use, the copper foil should be relatively thick from the viewpoint of energizing without disconnection while ensuring conductivity and heat dissipation. Therefore, in such a case, the thickness is preferably 35 μm or more. However, if the thickness is excessively large, it may be difficult to remove the conductor layer by etching. Therefore, the thickness is preferably 300 μm or less, and more preferably 150 μm or less.

本発明に係る圧延銅箔は一実施形態において、圧延面の測定面積S0に対する{100}面が圧延面から10°以内にある結晶粒が占める圧延面の面積Sの比S/S0が0.2以上であるという結晶配向性を有する。S0は結晶粒径が大きくても精度良く算出できるように1mm2以上とする。このように、{100}面が圧延面から10°以内にある結晶粒の比率を高めることで、屈曲性の向上を図ることができる。S/S0は好ましくは0.3以上であり、より好ましくは0.4以上であり、更により好ましくは0.5以上であり、更により好ましくは0.6以上であり、更により好ましくは0.7以上であり、更により好ましくは0.8以上であり、例えば0.2〜0.9に制御することができる。 In one embodiment, the rolled copper foil according to the present invention has a ratio S / S 0 of the area S of the rolled surface occupied by crystal grains whose {100} plane is within 10 ° from the rolled surface with respect to the measured area S 0 of the rolled surface. It has a crystal orientation of 0.2 or more. S 0 is set to 1 mm 2 or more so that it can be calculated accurately even if the crystal grain size is large. Thus, the flexibility can be improved by increasing the ratio of the crystal grains whose {100} plane is within 10 ° from the rolling plane. S / S 0 is preferably 0.3 or more, more preferably 0.4 or more, even more preferably 0.5 or more, still more preferably 0.6 or more, and even more preferably It is 0.7 or more, still more preferably 0.8 or more, and can be controlled to 0.2 to 0.9, for example.

{100}面が圧延面から10°以内にある結晶粒の比率が高い方が屈曲性は向上するが、優れた耐振動性をも兼備するためには、10°以内であっても結晶粒が特定の方向に回転しないことが重要である。具体的には、結晶粒が<011>方位と垂直な方向に回転する(<011>を回転軸にして回転する)と耐振動性を劣化させる傾向が強い。そして、回転の角度が大きい(10°に近い)ほど屈曲性を劣化させる。<011>を回転軸に<100>方位からおよそ10°回転すると<811>方位となる。そのため、{100}面が圧延面から10°以内にある結晶粒が占める圧延面の面積Sに対して、{811}面が圧延面から3°以内にある結晶粒の比率をできるだけ低くすることにより、耐振動性を有意に向上させることができる。   The higher the ratio of crystal grains whose {100} plane is within 10 ° from the rolling surface, the better the flexibility. However, in order to combine excellent vibration resistance, the crystal grains can be within 10 °. It is important that does not rotate in a particular direction. Specifically, when the crystal grains are rotated in a direction perpendicular to the <011> orientation (rotating with <011> as the rotation axis), the vibration resistance tends to be deteriorated. And the flexibility becomes worse as the angle of rotation is larger (closer to 10 °). When <011> is rotated about 10 ° from the <100> orientation about the rotation axis, the <811> orientation is obtained. Therefore, the ratio of the grains having the {811} plane within 3 ° from the rolling plane should be as low as possible with respect to the area S of the rolling plane occupied by the grains having the {100} plane within 10 ° from the rolling plane. Thus, vibration resistance can be significantly improved.

従って、本発明に係る圧延銅箔は一実施形態において、前記Sに対する{811}面が圧延面から3°以内にある結晶粒が占める圧延面の面積S1の比S1/Sが0〜0.05の範囲にあるという結晶配向性を有する。S1/Sは好ましくは0.04以下であり、より好ましくは0.03以下であり、更により好ましくは0.02以下であり、更により好ましくは0.01以下であり、更により好ましくは0.005以下であり、例えば0.001〜0.05に制御することができる。 Therefore, in one embodiment of the rolled copper foil according to the present invention, the ratio S 1 / S of the area S 1 of the rolled surface occupied by the crystal grains having the {811} plane with respect to S within 3 ° from the rolled surface is 0 to 0. The crystal orientation is in the range of 0.05. S 1 / S is preferably 0.04 or less, more preferably 0.03 or less, even more preferably 0.02 or less, even more preferably 0.01 or less, and even more preferably It is 0.005 or less, and can be controlled to 0.001 to 0.05, for example.

耐振動性を向上させる観点からは、{811}面が圧延面から3°以内にある結晶粒の比率のみならず、{811}面が圧延面から5°以内にある結晶粒の比率までも低下させるほうが更に望ましい。従って、本発明に係る圧延銅箔は一実施形態において、前記Sに対する{811}面が圧延面から5°以内にある結晶粒が占める圧延面の面積S2の比S2/Sが0〜0.05の範囲にあるという結晶配向性を有する。S2/Sは好ましくは0.04以下であり、より好ましくは0.03以下であり、更により好ましくは0.02以下であり、更により好ましくは0.01以下であり、更により好ましくは0.005以下であり、例えば0.001〜0.05に制御することができる。 From the viewpoint of improving the vibration resistance, not only the ratio of crystal grains whose {811} plane is within 3 ° from the rolling plane, but also the ratio of crystal grains whose {811} plane is within 5 ° from the rolling plane. It is more desirable to reduce it. Accordingly, in one embodiment, the rolled copper foil according to the present invention has a ratio S 2 / S of the area S 2 of the rolled surface occupied by crystal grains in which the {811} plane with respect to S is within 5 ° from the rolled surface is 0 to 0. The crystal orientation is in the range of 0.05. S 2 / S is preferably 0.04 or less, more preferably 0.03 or less, even more preferably 0.02 or less, even more preferably 0.01 or less, and even more preferably It is 0.005 or less, and can be controlled to 0.001 to 0.05, for example.

尚、厳密には{811}面が圧延面から3°以内又は5°以内の結晶粒の中には{100}面が圧延面から10°以内に入っていない結晶粒も存在し得るが、これを考慮しても{811}面が圧延面から3°以内又は5°以内の結晶粒は少ない方が好ましいので、本発明ではS1/SやS2/Sという面積比で規定することとしている。 Strictly speaking, among the crystal grains whose {811} plane is within 3 ° or within 5 ° from the rolling plane, there may be crystal grains whose {100} plane is not within 10 ° from the rolling plane, Considering this, since it is preferable that the {811} plane has less crystal grains within 3 ° or 5 ° from the rolling surface, in the present invention, the area ratio is defined as S 1 / S or S 2 / S. It is said.

本発明において、{100}面が圧延面から10°以内にある結晶粒が占める圧延面の面積S、{811}面が圧延面から3°以内にある結晶粒が占める圧延面の面積S1、及び{811}面が圧延面から5°以内にある結晶粒が占める圧延面の面積S2はそれぞれ、圧延面を電解研磨して洗浄した後、OIMソフトウェアを用いたEBSD法(電子線後方散乱解析法)により結晶方位解析して算出可能である。 In the present invention, the area S of the rolling surface occupied by crystal grains whose {100} plane is within 10 ° from the rolling surface, and the area S 1 of the rolling surface occupied by crystal grains whose {811} plane is within 3 ° from the rolling surface. , And the area S 2 of the rolled surface occupied by the crystal grains whose {811} plane is within 5 ° from the rolled surface, respectively, after the rolled surface is electropolished and washed, then the EBSD method (backward electron beam) using OIM software is used. The crystal orientation can be calculated by a scattering analysis method).

本発明に係る銅箔は、例えば、以下のようにして製造することができる。まず、電気銅、無酸素銅、タフピッチ銅等の銅原料を溶解し、必要に応じて合金元素を添加した後、この溶湯を鋳造し、厚みが100〜300mm程度のインゴットを製造する。溶解工程での酸素濃度の調整は、溶湯のカーボンシール、大気解放等の当業者公知の技術により行うことができる。その後、熱間圧延を行った後、冷間圧延と焼鈍を繰り返し、最終冷間圧延上がりの銅箔基材を得る。最終冷間圧延の圧下率は高い方が次の再結晶焼鈍によって{100}面が発達しやすい。よって、最終冷間圧延の圧下度は93%以上、より好ましくは95%以上である。厚みが大きな銅箔を製造する場合、最終冷間圧延における圧下率を大きく確保できなくなる傾向にある(板厚が厚い状態での焼鈍等が困難であるため)。そのため、最終冷間圧延後の板厚が35μm以上の銅箔では、実際の製造しやすさを考慮すると、最終冷間圧延の圧下率は98%以下とすることが好ましい。   The copper foil which concerns on this invention can be manufactured as follows, for example. First, a copper raw material such as electrolytic copper, oxygen-free copper, tough pitch copper or the like is melted, and an alloy element is added as necessary, and then the molten metal is cast to produce an ingot having a thickness of about 100 to 300 mm. Adjustment of the oxygen concentration in the melting step can be performed by techniques known to those skilled in the art, such as carbon sealing of the molten metal and release to the atmosphere. Then, after performing hot rolling, cold rolling and annealing are repeated to obtain a copper foil base material after final cold rolling. The higher the rolling reduction of the final cold rolling, the easier the {100} plane develops by the subsequent recrystallization annealing. Therefore, the reduction degree of the final cold rolling is 93% or more, more preferably 95% or more. When manufacturing a copper foil having a large thickness, it tends to be impossible to ensure a large reduction ratio in the final cold rolling (because it is difficult to perform annealing in a state where the plate thickness is thick). Therefore, in the case of a copper foil having a thickness of 35 μm or more after the final cold rolling, it is preferable that the reduction ratio of the final cold rolling is 98% or less in consideration of actual ease of manufacture.

但し、最終冷間圧延時の圧下率を高くしてもS1及びS2を下げることはできない。S1、S2の値を下げるにはせん断変形を低下させる必要がある.一般的にせん断変形は圧延中の銅箔表面の摩擦によるもの及び表面と内部の行路差によるものがある。 However, S 1 and S 2 cannot be lowered even if the rolling reduction during the final cold rolling is increased. To lower the values of S 1 and S 2 , it is necessary to reduce the shear deformation. In general, the shear deformation is caused by friction on the surface of the copper foil during rolling and due to a difference in path between the surface and the inside.

最終冷間圧延の加工度を高くするには、比較的厚さの大きい銅板から圧延することが必要になる。この際、板厚が大きい段階で径の小さなロールを使用すると内部と表面の行路差が大きくなるため、行路差を小さくするにはロールの径を大きくすることが有効である。一方、板厚が小さいときに径の大きなロールを使用するとロールと銅板表面の接触面積が大きくなり、表面摩擦を大きくするためせん断が起きやすくなる。そこで、S1及びS2を小さくするために、板厚に応じてロール径を段階的に変更して、せん断変形を抑制することが好ましい。具体的にはロール通過前の板厚が1mm以上では100mmΦ超、ロール通過前の板厚が0.1mm以上1mm未満では60mmΦ超100mmΦ以下、ロール通過前の板厚が0.1mm未満では30mmΦ以上60mmΦ以下のロールを使用することが好ましく、ロール通過前の板厚が1mm以上では105mmΦ以上130mmΦ以下、ロール通過前の板厚が0.1mm以上1mm未満では80mmΦ以上100mmΦ以下、ロール通過前の板厚が0.1mm未満では30mmΦ以上50mmΦ以下のロールを使用することがより好ましい。また、ロール通過前の板厚が1mm以上のときに使用するロール径、ロール通過前の板厚が0.1mm以上1mm未満のときに使用するロール径、及びロール通過前の板厚が0.1mm未満のときに使用するロール径はそれぞれ10mm以上の差があることが好ましく、20mm以上の差があることがより好ましい。 In order to increase the workability of the final cold rolling, it is necessary to roll from a copper plate having a relatively large thickness. At this time, if a roll having a small diameter is used at a stage where the plate thickness is large, the path difference between the inside and the surface becomes large. Therefore, in order to reduce the path difference, it is effective to increase the diameter of the roll. On the other hand, when a roll having a large diameter is used when the plate thickness is small, the contact area between the roll and the surface of the copper plate is increased, and the surface friction is increased so that shearing easily occurs. Therefore, in order to reduce S 1 and S 2 , it is preferable to suppress shear deformation by changing the roll diameter stepwise according to the plate thickness. Specifically, when the plate thickness before passing through the roll is 1 mm or more, it exceeds 100 mmΦ, when the plate thickness before passing through the roll is 0.1 mm or more and less than 1 mm, it exceeds 60 mmΦ or less than 100 mmΦ, and when the plate thickness before passing through the roll is less than 0.1 mm, it is 30 mmΦ or more. It is preferable to use a roll having a diameter of 60 mm or less. When the plate thickness before passing through the roll is 1 mm or more, it is 105 mm to 130 mmΦ, and when the plate thickness before passing through the roll is 0.1 mm or more and less than 1 mm, it is 80 mm to 100 mmΦ. If the thickness is less than 0.1 mm, it is more preferable to use a roll of 30 mmΦ to 50 mmΦ. The roll diameter used when the plate thickness before passing through the roll is 1 mm or more, the roll diameter used when the plate thickness before passing through the roll is 0.1 mm or more and less than 1 mm, and the plate thickness before passing through the roll is 0.00. The roll diameter used when the diameter is less than 1 mm preferably has a difference of 10 mm or more, and more preferably has a difference of 20 mm or more.

次に、この銅箔基材を再結晶焼鈍することで上述したS/S0及びS1/S、好ましくは更にS2/Sを満たす本発明に係る圧延銅箔が得られる。好ましい焼鈍条件としては、15〜120分間200〜400℃に加熱する条件が挙げられる。焼鈍は窒素又はAr等の不活性ガス雰囲気中で行うことが酸化防止の理由により好ましい。また、真空中で焼鈍することも可能である。200℃以上で30分間以上焼鈍することにより有意にSを上げることが可能となる。焼鈍温度は高すぎても不都合であり、400℃以下とすることによりS1、S2を下げる効果を得ることができる。焼鈍時間は長い方が{100}面の発達に有利であり、0.5時間以上焼鈍することが好ましい。但し、過度に焼鈍する必要はなく、生産効率も低下するので、2時間以下とするのが好ましく、1時間以下とするのがより好ましい。 Next, the rolled copper foil according to the present invention satisfying the above-described S / S 0 and S 1 / S, and preferably S 2 / S is obtained by recrystallization annealing of the copper foil base material. Preferable annealing conditions include conditions of heating to 200 to 400 ° C. for 15 to 120 minutes. Annealing is preferably performed in an inert gas atmosphere such as nitrogen or Ar for the reason of preventing oxidation. It is also possible to anneal in a vacuum. It becomes possible to raise S significantly by annealing at 200 degreeC or more for 30 minutes or more. Even if the annealing temperature is too high, it is inconvenient, and the effect of lowering S 1 and S 2 can be obtained by setting it to 400 ° C. or lower. A longer annealing time is advantageous for the development of the {100} plane, and it is preferable to anneal for 0.5 hour or longer. However, it is not necessary to anneal excessively, and the production efficiency is also lowered. Therefore, it is preferably 2 hours or less, and more preferably 1 hour or less.

見方を変えれば、本発明によれば、再結晶前の状態(最終冷間圧延上がりの状態)であり、200〜400℃で30分間加熱処理することによって、S/S0及びS1/S、望ましくは更にS2/Sが上述した好ましい範囲を満たす本発明に係る再結晶後の圧延銅箔となることができるという特性をもつ銅箔が提供される。 In other words, according to the present invention, it is the state before recrystallization (the state after final cold rolling), and heat treatment is performed at 200 to 400 ° C. for 30 minutes, so that S / S 0 and S 1 / S Further, a copper foil having the property that, desirably, S 2 / S can be a rolled copper foil after recrystallization according to the present invention satisfying the preferred range described above is provided.

本発明に係る圧延銅箔の表面には、ポリイミドなどの樹脂接着させるために、表面にNi、Co、Cu、Zn、Sn及びCrよりなる群から選択される元素の一種又は二種以上を含むめっきが施されていてもよい。当該めっきは一般に粗化処理と呼ばれており、Cuめっき、Cu−Ni合金めっき、Cu−Co合金めっき、Ni−Co−Cu合金めっき、Ni−Sn合金めっき、Ni−Co−Cu−Zn合金めっき等が例示的に挙げられる。   The surface of the rolled copper foil according to the present invention includes one or more elements selected from the group consisting of Ni, Co, Cu, Zn, Sn and Cr on the surface in order to adhere a resin such as polyimide. Plating may be performed. The plating is generally called a roughening treatment, and includes Cu plating, Cu—Ni alloy plating, Cu—Co alloy plating, Ni—Co—Cu alloy plating, Ni—Sn alloy plating, Ni—Co—Cu—Zn alloy. An example is plating.

本発明に係る圧延銅箔を、ポリエステルやポリイミド等を材料とする柔軟性絶縁基板の片面又は両面に積層し、接着することで、フレキシブル銅張積層板(FCCL)を製造することができる。接着方法としては、エポキシ等の熱硬化性樹脂からなる接着剤を用いて、銅箔とポリイミド樹脂フィルムを貼り合わせて、加熱処理を行う方法や、ポリイミド樹脂の前駆体であるポリアミック酸を含むワニスを、銅箔上に塗布して加熱硬化させ、銅箔上にポリイミド被膜を形成する方法がある。両面に銅箔を積層する場合は、片面銅張積層板を形成後、銅箔層を熱プレスにより圧着する方法や、2枚の銅箔層間にポリイミドフィルムを挟み、熱プレスにより圧着する方法がある。これらの加熱処理は一般に200〜450℃で1〜150分の条件で実施される。銅箔と樹脂の積層を、熱処理工程を経ずに接着剤によって行う方法もある。   A flexible copper clad laminate (FCCL) can be produced by laminating and bonding the rolled copper foil according to the present invention on one or both sides of a flexible insulating substrate made of polyester, polyimide, or the like. As an adhesion method, an adhesive made of a thermosetting resin such as epoxy is used, and a copper foil and a polyimide resin film are bonded to each other and heat treatment is performed, or a varnish containing polyamic acid which is a precursor of a polyimide resin Is coated on a copper foil and cured by heating to form a polyimide film on the copper foil. When laminating copper foil on both sides, after forming a single-sided copper clad laminate, there are a method of crimping the copper foil layer by hot pressing, and a method of sandwiching a polyimide film between two copper foil layers and crimping by hot pressing. is there. These heat treatments are generally carried out at 200 to 450 ° C. for 1 to 150 minutes. There is also a method of laminating a copper foil and a resin with an adhesive without going through a heat treatment step.

このように、FCCLの製造工程では絶縁基板と銅箔の接着のために加熱処理を行うことが多いので、上述した最終冷間圧延後の再結晶焼鈍工程を当該加熱処理で兼ねることも可能であり、FCCLの製造工程での加熱処理が銅箔の再結晶焼鈍工程として適していない場合はFCCLを作製する前に再結晶焼鈍を行うと良い。一度再結晶した後は、再結晶焼鈍後に加熱処理を行っても結晶組織は変化しない。   As described above, in the FCCL manufacturing process, heat treatment is often performed for bonding the insulating substrate and the copper foil. Therefore, the recrystallization annealing process after the final cold rolling described above can also be used as the heat treatment. Yes, if the heat treatment in the manufacturing process of FCCL is not suitable as the recrystallization annealing process of copper foil, it is preferable to perform recrystallization annealing before producing FCCL. Once recrystallized, the crystal structure does not change even if heat treatment is performed after recrystallization annealing.

本発明に係るFCCLを材料として公知の手順に従って配線を形成し、フレキシブルプリント配線板(FPC)を製造することが可能である。例えばエッチングレジストをFCCLの銅箔面に導体パターンとしての必要部分だけに塗布し、エッチング液を銅箔面に噴射することで不要銅箔を除去して導体パターンを形成し、次いでエッチングレジストを剥離・除去して導体パターンを露出する方法が挙げられる。導体パターン形成後は、保護用のカバーレイフィルムを貼ることが一般的である。このようなFPCは、電子・電気機器においてハードディスク内の可動部、携帯電話のヒンジ部やスライド摺動部、プリンターのヘッド部、光ピックアップ部、ノートPCの可動部等に使用されるFPCが該当する。とりわけ、本発明に係るFPCは、過酷な繰り返し変形を受け、耐振動性を必要とする車載用、ウェアラブルデバイス用及び自動機制御用のFPCとして好適である。   It is possible to manufacture a flexible printed wiring board (FPC) by forming wiring according to a known procedure using the FCCL according to the present invention as a material. For example, apply an etching resist to the copper foil surface of the FCCL only on the necessary part as the conductor pattern, spray the etching solution onto the copper foil surface to remove the unnecessary copper foil, form the conductor pattern, and then peel off the etching resist -The method of removing and exposing a conductor pattern is mentioned. After forming the conductor pattern, it is common to apply a protective coverlay film. Such FPCs are FPCs used for movable parts in hard disks, hinge parts and slide sliding parts of mobile phones, printer head parts, optical pickup parts, movable parts of notebook PCs, etc. in electronic and electrical equipment. To do. In particular, the FPC according to the present invention is suitable as a vehicle-mounted, wearable device, and automatic machine control FPC that is subjected to severe repeated deformation and requires vibration resistance.

以下、本発明の実施例を示すが、これらは本発明をより良く理解するために提供するものであり、本発明が限定されることを意図するものではない。   EXAMPLES Examples of the present invention will be described below, but these are provided for better understanding of the present invention and are not intended to limit the present invention.

<圧延銅箔の製造>
実施例1、3〜5、9〜23及び比較例1、3〜4は、電気銅及び表1に記載の試験番号に応じた合金元素を真空溶解した後、不活性雰囲気下で鋳造して表1に記載の各組成を持つ銅及び銅合金のインゴットを作製した。実施例2、6〜8及び比較例2は電気銅及び表1に試験番号に応じた合金元素を大気溶解した後、大気雰囲気下で鋳造して表1に記載の各組成を持つ銅及び銅合金のインゴットを作製した。大気溶解したものはタフピッチ銅に相当する数百質量ppmの酸素を含有し、真空溶解したものの酸素含有量は無酸素銅に相当する10質量ppm未満であった。
<Manufacture of rolled copper foil>
In Examples 1, 3 to 5, 9 to 23 and Comparative Examples 1 to 3 to 4, electrolytic copper and an alloy element corresponding to the test number shown in Table 1 were vacuum-melted and then cast in an inert atmosphere. Copper and copper alloy ingots having the compositions shown in Table 1 were prepared. In Examples 2, 6 to 8 and Comparative Example 2, electrolytic copper and an alloy element corresponding to the test number in Table 1 were dissolved in the air, and then cast in an air atmosphere to have the compositions shown in Table 1 and copper. An alloy ingot was prepared. Those dissolved in the atmosphere contained several hundred ppm by mass of oxygen corresponding to tough pitch copper, and those dissolved in vacuum had an oxygen content of less than 10 ppm by mass corresponding to oxygen-free copper.

次いで、各インゴットを熱間圧延した後、冷間圧延と焼鈍を繰り返し、最終冷間圧延を表1に記載の圧下率で行い、厚み35μmに調整した。最終冷間圧延においては、ロール通過前の板厚に応じて圧延に使用するロール径を表1に記載の通り変更した。最後に、再結晶焼鈍を窒素雰囲気下で、表1に記載の各温度で30分間行い、各圧延銅箔を得た。   Subsequently, after each ingot was hot-rolled, cold rolling and annealing were repeated, and the final cold rolling was performed at the rolling reduction shown in Table 1 to adjust the thickness to 35 μm. In the final cold rolling, the roll diameter used for rolling was changed as shown in Table 1 according to the plate thickness before passing through the roll. Finally, recrystallization annealing was performed for 30 minutes at each temperature shown in Table 1 under a nitrogen atmosphere to obtain each rolled copper foil.

<FCCLの製造及び結晶方位解析>
得られた各圧延銅箔について、所定の大きさに2枚ずつ切り出し、片面に厚み50μmで粗化処理を行った後、粗化処理面が貼り合わせ面になるようにして、280℃の温度で1時間熱プレスするラミネート条件で厚み50μmのポリイミドフィルムの表裏に積層し、両面FCCLを作製した。各試験例における粗化処理時のめっき組成は表1に記載の通りとした。その後、片面の銅箔をエッチングで全て取り除いて片面FCCLにし、得られた片面FCCLの圧延面を電解研磨により表面洗浄した後、OIMソフトウェア(TSLソリューションズ社)を用いたEBSD法(日本電子社製 型式JXA8500F)による結晶方位解析を行い、先述したS、S1及びS2を測定し、S/S0、S1/S及びS2/Sをそれぞれ求めた。圧延面の測定面積S0は1mm2(1mm×1mm)とした。測定は2回行い、その平均値を測定値とした。
<Manufacture of FCCL and crystal orientation analysis>
For each of the obtained rolled copper foils, two pieces were cut into a predetermined size and subjected to a roughening treatment with a thickness of 50 μm on one side, and then the temperature of 280 ° C. was set so that the roughened surface became a bonding surface. Were laminated on the front and back of a polyimide film having a thickness of 50 μm under the lamination condition of hot pressing for 1 hour to prepare a double-sided FCCL. The plating composition during the roughening treatment in each test example was as shown in Table 1. Thereafter, all the copper foil on one side is removed by etching to form a single side FCCL, and the rolled surface of the obtained single side FCCL is subjected to surface cleaning by electrolytic polishing, and then the EBSD method using OIM software (TSL Solutions) (manufactured by JEOL Ltd.) Crystal orientation analysis was performed by JXA8500F), S, S 1 and S 2 described above were measured, and S / S 0 , S 1 / S and S 2 / S were obtained, respectively. The measurement area S 0 of the rolled surface was 1 mm 2 (1 mm × 1 mm). The measurement was performed twice, and the average value was taken as the measured value.

<FPCの製造>
得られた各圧延銅箔を用いて、先と同様の手順で片面FCCLを製造し、次いで、長さ120mmでラインアンドスペース0.3mm×0.3mmの直線回路をエッチングで5本形成し、最後に厚み50μmのポリイミド製カバーレイフィルムを両面に180℃の温度で1時間熱プレスすることにより積層して、長さ110mm×幅12mmのFPCの各試験片を作製した。
<Manufacture of FPC>
Using each of the obtained rolled copper foils, a single-sided FCCL was manufactured in the same procedure as described above, and then 5 lines and spaces of 0.3 mm × 0.3 mm linear circuits were formed by etching with a length of 120 mm, Finally, a polyimide coverlay film having a thickness of 50 μm was laminated on both surfaces by hot pressing at a temperature of 180 ° C. for 1 hour to prepare FPC test pieces each having a length of 110 mm and a width of 12 mm.

<IPC屈曲試験>
上記で得られた各FPC試験片に対し、信越エンジニアリング株式会社製IPC屈曲試験機を用い屈曲性を評価した。屈曲部稜線が配線方向と直交するようにFPCを固定し、屈曲半径:2.5mm、ストローク:20mm、屈曲速度:900rpm、試験温度:25℃の条件で繰り返しスライドさせた。屈曲試験中、電気抵抗の増加で銅箔回路の疲労クラックの進展度合いをモニタリングし、回路の電気抵抗が初期値よりも10%上昇するまでの屈曲回数を測定した。
屈曲性は、以下の基準で評価した。
◎=すべての回路で抵抗の上昇率が100,000回超でも10%以下
○=一つ以上の回路で抵抗の上昇率が50,000回超100,000回以下で10%を超える
△=一つの回路のみが50,000回以下で抵抗の上昇率が10%を超える
×=二つ以上の回路が50,000回以下で抵抗の上昇率が10%を超える
<IPC bending test>
The flexibility of each FPC test piece obtained above was evaluated using an IPC bending tester manufactured by Shin-Etsu Engineering Co., Ltd. The FPC was fixed so that the ridge line of the bent portion was orthogonal to the wiring direction, and the slide was repeatedly slid under the conditions of a bending radius: 2.5 mm, a stroke: 20 mm, a bending speed: 900 rpm, and a test temperature: 25 ° C. During the bending test, the progress of fatigue cracks in the copper foil circuit was monitored by increasing the electric resistance, and the number of bendings until the electric resistance of the circuit increased by 10% from the initial value was measured.
Flexibility was evaluated according to the following criteria.
◎ = In all circuits, the rate of increase in resistance is over 10% even if it exceeds 100,000 times. ○ = In the case of one or more circuits, the rate of increase in resistance exceeds 10% in the case of more than 50,000 times and less than 100,000 times. Only one circuit is less than 50,000 times and the resistance increase rate exceeds 10%. X = Two or more circuits are 50,000 times or less and the resistance increase rate exceeds 10%.

<振動試験>
同様に、上記と同様の手順で得られた各FPC試験片を、図1に示すように、曲率半径(r)1mmをもつ固定治具で、試験片が固定治具から長手方向(直線回路の方向と同じ)に20mmはみ出るように挟んでセットした。次いで、IEC−60068−2−53に沿ってFPCの厚み方向に振動を与えた。振動条件及び温度サイクル条件は以下とした。振動試験中、電気抵抗の増加で銅箔回路の疲労クラックの進展度合いをモニタリングし、回路の電気抵抗が初期値よりも10%上昇するまでの時間を測定した。
(振動条件)
・振幅1mm
・周波数:5〜170Hzの範囲で周期的に周波数を変化(5分を1周期とする正弦波振動)
・振動時間:200時間
(温度サイクル条件)
25℃で1時間保持→降温→−30℃で2時間保持→昇温→85℃で2時間保持→降温の6工程を1サイクルとして、1サイクル8時間で繰り返す。
耐振動性は、以下の基準で評価した。
◎=200時間超(200時間ではすべての回路の電気抵抗が初期値よりも10%上昇するには至らなかった。)
○=150時間以上200時間以下(150〜200時間で少なくとも1本の回路の電気抵抗が初期値よりも10%上昇する。)
△=150時間未満(一つの回路のみが150時間未満で電気抵抗が初期値よりも10%上昇する。)
×=150時間未満(二つ以上の回路が150時間未満で電気抵抗が初期値よりも10%上昇する。)
<Vibration test>
Similarly, as shown in FIG. 1, each FPC test piece obtained by the same procedure as described above is a fixing jig having a radius of curvature (r) of 1 mm, and the test piece is moved from the fixing jig in the longitudinal direction (linear circuit). (Same as the direction of) was set so as to protrude 20 mm. Next, vibration was applied in the thickness direction of the FPC along IEC-60068-2-53. The vibration conditions and temperature cycle conditions were as follows. During the vibration test, the progress of fatigue cracks in the copper foil circuit was monitored by increasing the electrical resistance, and the time until the electrical resistance of the circuit increased by 10% from the initial value was measured.
(Vibration conditions)
・ Amplitude 1mm
・ Frequency: Frequency changes periodically in the range of 5 to 170 Hz (sinusoidal vibration with 5 minutes as one cycle)
・ Vibration time: 200 hours (temperature cycle conditions)
6 steps of holding at 25 ° C. for 1 hour → temperature reduction → −30 ° C. for 2 hours → temperature increase → 85 ° C. for 2 hours → temperature reduction are repeated in 8 hours per cycle.
Vibration resistance was evaluated according to the following criteria.
A: More than 200 hours (In 200 hours, the electrical resistance of all circuits did not increase by 10% from the initial value.)
○ = 150 hours to 200 hours (The electric resistance of at least one circuit increases by 10% from the initial value in 150 to 200 hours)
Δ = less than 150 hours (only one circuit has less than 150 hours and the electric resistance increases by 10% from the initial value)
X = less than 150 hours (two or more circuits are less than 150 hours, and the electric resistance increases by 10% from the initial value)

以上の試験結果を表1に示す。比較例1は最終圧延の総加工度が低い製造条件であったためにCube再結晶集合組織が発達せず、S/S0が小さくなったことから、屈曲性及び耐振動性が共に悪かった。比較例2〜4は最終圧延の総加工度が高い製造条件に改善したことから、Cube再結晶集合組織は発達したが、最終冷間圧延時に生じた結晶回転により{811}面が圧延面から3°以内及び5°以内にある結晶粒が多くなってS1/S及びS2/Sが高かった。このため、屈曲性及び耐振動性は比較例1よりも向上したがその効果は限定的であった。 The test results are shown in Table 1. In Comparative Example 1, since the total refining degree of the final rolling was a manufacturing condition, the Cube recrystallization texture did not develop, and S / S 0 became small. Therefore, both flexibility and vibration resistance were poor. Since Comparative Examples 2 to 4 were improved to production conditions with a high total workability of the final rolling, the Cube recrystallized texture developed, but the {811} plane was removed from the rolled surface by the crystal rotation that occurred during the final cold rolling. The number of crystal grains within 3 ° and within 5 ° increased, and S 1 / S and S 2 / S were high. For this reason, the flexibility and vibration resistance were improved as compared with Comparative Example 1, but the effects were limited.

これに対して、実施例1〜23は最終圧延の総加工度が十分に高く、更に最終圧延のロール径を表1に示す製造条件としたことから、Cube再結晶集合組織の発達に加えて、最終冷間圧延時に結晶回転が抑制されてS1/Sが小さくなり、屈曲性及び耐振動性が有意に向上した。特に、S2/Sも小さく制御された実施例1〜16及び21は屈曲性及び耐振動性の向上が顕著であった。これは、本発明に係る圧延銅箔では、銅箔表面に鋭い突き出し及び入り込みが形成されにくい一方で、幅の広い突き出し及び入り込みが全体的に形成されたことによると推察される。 On the other hand, in Examples 1 to 23, the total degree of work of the final rolling was sufficiently high, and the roll diameter of the final rolling was set to the manufacturing conditions shown in Table 1, so that in addition to the development of the Cube recrystallization texture In the final cold rolling, crystal rotation was suppressed, S 1 / S was reduced, and the flexibility and vibration resistance were significantly improved. In particular, in Examples 1 to 16 and 21 in which S 2 / S was also controlled to be small, the improvement in flexibility and vibration resistance was remarkable. This is presumably because the rolled copper foil according to the present invention is difficult to form sharp protrusions and intrusions on the surface of the copper foil, while wide protrusions and intrusions are formed overall.

Claims (9)

圧延面の測定面積S0に対する{100}面が圧延面から10°以内にある結晶粒が占める圧延面の面積Sの比S/S0が0.2以上であり、且つ、Sに対する{811}面が圧延面から3°以内にある結晶粒が占める圧延面の面積S1の比S1/Sが0〜0.05の範囲にある圧延銅箔。 The ratio S / S 0 of the area S of the rolled surface occupied by the crystal grains whose {100} plane is within 10 ° of the rolled surface with respect to the measured area S 0 of the rolled surface is 0.2 or more, and {811 relative to S } The rolled copper foil in which the ratio S 1 / S of the area S 1 of the rolled surface occupied by crystal grains whose surface is within 3 ° from the rolled surface is in the range of 0 to 0.05. 前記Sに対する{811}面が圧延面から5°以内にある結晶粒が占める圧延面の面積S2の比S2/Sが0〜0.05の範囲にある請求項1に記載の圧延銅箔。 2. The rolled copper according to claim 1, wherein the ratio S 2 / S of the area S 2 of the rolled surface occupied by the crystal grains whose {811} plane with respect to S is within 5 ° from the rolled surface is in the range of 0 to 0.05. Foil. Ag、Sn、Zn、Zr、Cr、Fe、Mg、Si、Ti、Ni及びPよりなる群から選択される元素の一種又は二種以上を合計で1〜500質量ppm含有する請求項1又は2に記載の圧延銅箔。   1 or 500 ppm in total containing one or more elements selected from the group consisting of Ag, Sn, Zn, Zr, Cr, Fe, Mg, Si, Ti, Ni and P The rolled copper foil described in 1. 表面にNi、Co、Cu、Zn、Sn及びCrよりなる群から選択される元素の一種又は二種以上を含むめっきが施された請求項1〜3の何れか一項に記載の圧延銅箔。   The rolled copper foil according to any one of claims 1 to 3, wherein the surface is plated with one or more elements selected from the group consisting of Ni, Co, Cu, Zn, Sn and Cr. . フレキシブルプリント配線板の導体材料として使用される請求項1〜4の何れか一項に記載の圧延銅箔。   The rolled copper foil as described in any one of Claims 1-4 used as a conductor material of a flexible printed wiring board. フレキシブルプリント配線板が車載用である請求項5に記載の圧延銅箔。   The rolled copper foil according to claim 5, wherein the flexible printed wiring board is for vehicle use. 請求項1〜6の何れか一項に記載の圧延銅箔を備えたフレキシブル銅張積層板。   The flexible copper clad laminated board provided with the rolled copper foil as described in any one of Claims 1-6. 請求項7に記載のフレキシブル銅張積層板を加工して得られたフレキシブルプリント配線板。   A flexible printed wiring board obtained by processing the flexible copper-clad laminate according to claim 7. 再結晶前の圧延銅箔であって、200℃〜400℃×30minの何れかの条件で再結晶させたときに請求項1〜6の何れか一項に記載の圧延銅箔の要件を満たす再結晶前の圧延銅箔。   It is the rolled copper foil before recrystallization, Comprising: When it recrystallizes on the conditions in any one of 200 to 400 degreeC * 30min, the requirements for the rolled copper foil as described in any one of Claims 1-6 are satisfy | filled. Rolled copper foil before recrystallization.
JP2015070188A 2015-03-30 2015-03-30 Rolled copper foil for flexible printed wiring board Pending JP2016191091A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015070188A JP2016191091A (en) 2015-03-30 2015-03-30 Rolled copper foil for flexible printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015070188A JP2016191091A (en) 2015-03-30 2015-03-30 Rolled copper foil for flexible printed wiring board

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019116762A Division JP2019194358A (en) 2019-06-24 2019-06-24 Rolled copper foil for flexible printed wiring board

Publications (1)

Publication Number Publication Date
JP2016191091A true JP2016191091A (en) 2016-11-10

Family

ID=57246554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015070188A Pending JP2016191091A (en) 2015-03-30 2015-03-30 Rolled copper foil for flexible printed wiring board

Country Status (1)

Country Link
JP (1) JP2016191091A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110144491A (en) * 2019-06-25 2019-08-20 太原晋西春雷铜业有限公司 A kind of ingot casting preparation method reducing Cu-Ni-Sn alloy casting subcrack

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006326684A (en) * 2005-04-28 2006-12-07 Nikko Kinzoku Kk High-gloss rolled copper foil for copper-clad laminate substrate
JP2008248331A (en) * 2007-03-30 2008-10-16 Nikko Kinzoku Kk Rolled copper foil
JP2012129136A (en) * 2010-12-17 2012-07-05 Hitachi Cable Ltd Lithium ion secondary battery copper foil and manufacturing method thereof
JP2013055163A (en) * 2011-09-01 2013-03-21 Jx Nippon Mining & Metals Corp Copper foil for flexible printed wiring board, copper-clad laminate, flexible printed wiring board, and electronic apparatus
JP2013170278A (en) * 2012-02-17 2013-09-02 Hitachi Cable Ltd Rolled copper foil
US20160168746A1 (en) * 2014-12-11 2016-06-16 National Chaio Tung University Copper film with large grains, copper clad laminate having the same and manufacturing method of copper clad laminate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006326684A (en) * 2005-04-28 2006-12-07 Nikko Kinzoku Kk High-gloss rolled copper foil for copper-clad laminate substrate
JP2008248331A (en) * 2007-03-30 2008-10-16 Nikko Kinzoku Kk Rolled copper foil
JP2012129136A (en) * 2010-12-17 2012-07-05 Hitachi Cable Ltd Lithium ion secondary battery copper foil and manufacturing method thereof
JP2013055163A (en) * 2011-09-01 2013-03-21 Jx Nippon Mining & Metals Corp Copper foil for flexible printed wiring board, copper-clad laminate, flexible printed wiring board, and electronic apparatus
JP2013170278A (en) * 2012-02-17 2013-09-02 Hitachi Cable Ltd Rolled copper foil
US20160168746A1 (en) * 2014-12-11 2016-06-16 National Chaio Tung University Copper film with large grains, copper clad laminate having the same and manufacturing method of copper clad laminate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110144491A (en) * 2019-06-25 2019-08-20 太原晋西春雷铜业有限公司 A kind of ingot casting preparation method reducing Cu-Ni-Sn alloy casting subcrack

Similar Documents

Publication Publication Date Title
JP4662834B2 (en) Copper or copper alloy foil for circuit
JP4716520B2 (en) Rolled copper foil
JP4672515B2 (en) Rolled copper alloy foil for bending
JP2007107037A (en) Copper or copper-alloy foil for circuit
CN109392242B (en) Copper foil for flexible printed board, copper-clad laminate using same, flexible printed board, and electronic device
KR20200141427A (en) Copper foil for flexible printed circuit, and copper clad laminate, flexible printed circuit and electronic device using copper foil
JP2006212659A (en) Clad material and its manufacturing method
TWI663270B (en) Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
WO2018180920A1 (en) Rolled copper foil
JP6663712B2 (en) Rolled copper foil, copper-clad laminate using the same, flexible printed circuit board, and electronic device
JP6360654B2 (en) Rolled copper foil for flexible printed wiring boards
JP2008088492A (en) Copper alloy foil and copper-resin organic matter flexible laminate
JP4538375B2 (en) Metal materials for printed wiring boards
JP5329491B2 (en) Copper foil for flexible printed wiring board and method for producing the same
JP2013167013A (en) Rolled copper foil for flexible printed circuit board
JP2016191091A (en) Rolled copper foil for flexible printed wiring board
JP2019194358A (en) Rolled copper foil for flexible printed wiring board
JP6774457B2 (en) Copper foil for flexible printed circuit boards, copper-clad laminates using it, flexible printed circuit boards, and electronic devices
KR102115086B1 (en) Copper foil for flexible printed circuit, copper clad laminate using the same, flexible printed circuit and electronic device
TW202041721A (en) Copper foil for flexible printed board, copper-clad laminate using the same, flexible printed board and electronic machine having excellent flexibility after formation of a fine circuit
JP4539960B2 (en) Metal materials for printed wiring boards
JP2008124048A (en) Conductor for flexible board, its production process and flexible board
JP6030325B2 (en) Rolled copper foil, copper-clad laminate, flexible printed wiring board, and electronic equipment
JP2013067853A (en) Rolled copper foil, copper-clad laminate, flexible printed wiring board and electronic device
JP2010121154A (en) Method for producing rolled copper foil and rolled copper foil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181002

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190402

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20190624

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20200310

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20200908

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20201215

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20210202

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20210202