JP2012129136A - Lithium ion secondary battery copper foil and manufacturing method thereof - Google Patents

Lithium ion secondary battery copper foil and manufacturing method thereof Download PDF

Info

Publication number
JP2012129136A
JP2012129136A JP2010281364A JP2010281364A JP2012129136A JP 2012129136 A JP2012129136 A JP 2012129136A JP 2010281364 A JP2010281364 A JP 2010281364A JP 2010281364 A JP2010281364 A JP 2010281364A JP 2012129136 A JP2012129136 A JP 2012129136A
Authority
JP
Japan
Prior art keywords
copper foil
copper
lithium ion
ion secondary
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010281364A
Other languages
Japanese (ja)
Other versions
JP5575632B2 (en
Inventor
Yasuyuki Ito
保之 伊藤
keiichiro Kasahara
慶一郎 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2010281364A priority Critical patent/JP5575632B2/en
Priority to TW100127768A priority patent/TW201228079A/en
Priority to CN2011102267297A priority patent/CN102569745A/en
Publication of JP2012129136A publication Critical patent/JP2012129136A/en
Application granted granted Critical
Publication of JP5575632B2 publication Critical patent/JP5575632B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lithium ion secondary battery copper foil which would not be broken by repetitive stresses at charging and discharging time and therefore exhibits improved reliability and can be manufactured easily and a manufacturing method for the same.SOLUTION: A lithium ion secondary battery copper foil constitutes an anode which is wound round via a separator between it and a cathode. The copper foil has crystal grains having a crystal orientation of within 15 degrees from (200) crystal orientation present therein by 50 to 100% as an area ratio viewed from the copper foil surface. The lithium ion secondary battery copper foil used is made by hot-rolling a copper ingot to a predetermined thickness and then cold-rolling and annealing, for strain removal, the hot-rolled material repeatedly until copper plate in a prescribed thickness is formed, which is then cold-rolled, after being annealed, to obtain copper foil. The copper foil is subjected to heat treatment in a nitrogen, or inert gas, atmosphere before being manufactured with a roll working degree of 91 to 99%.

Description

本発明はリチウムイオン二次電池用銅箔及びその製造方法に係り、特にリチウムイオンニ次電池の負極に用いて充放電時に破断する恐れのないリチウムイオン二次電池用銅箔及びその製造方法に関する。   The present invention relates to a copper foil for a lithium ion secondary battery and a method for producing the same, and more particularly to a copper foil for a lithium ion secondary battery that is used for a negative electrode of a lithium ion secondary battery and that does not break at the time of charge / discharge.

近年の携帯電話やパーソナルコンピュータ等の情報機器の普及は目覚しいものがあり、小型で高容量の二次電池に対する要求が高くなっている。二次電池のうちリチウムイオンニ次電池は、軽量で高いエネルギー密度を有していることから、最近では情報機器ばかりでなく電気自動車の分野でも注目されている。   In recent years, there has been a remarkable spread of information devices such as mobile phones and personal computers, and there is an increasing demand for small and high-capacity secondary batteries. Among secondary batteries, lithium ion secondary batteries are lightweight and have a high energy density, and thus have recently attracted attention not only in information equipment but also in the field of electric vehicles.

リチウムイオンニ次電池は、例えば図3に示すようにシート状の正極1と負極2を、各々の間にセパレータ3を介在して巻き合わせる構成している。リチウムイオンニ次電池の負極2には、一般には銅箔が使用され、この種の銅箔は製造方法によって大きく二つに分けることができる。一つには、鋳造で製造した素材に圧延加工を施して製造する圧延銅箔、他の一つには、硫酸銅を主とする溶液から銅を電解析出させて製造する電解銅箔がある。   For example, as shown in FIG. 3, the lithium ion secondary battery has a configuration in which a sheet-like positive electrode 1 and a negative electrode 2 are wound with a separator 3 interposed therebetween. Generally, a copper foil is used for the negative electrode 2 of the lithium ion secondary battery, and this type of copper foil can be roughly divided into two according to the production method. One is a rolled copper foil produced by rolling a material produced by casting, and the other is an electrolytic copper foil produced by electrolytic deposition of copper from a solution mainly composed of copper sulfate. is there.

リチウムイオンニ次電池に使用する銅箔は、電池の高容量化と小型化の進展に伴い、厚み10μm以下が多く使われるようになってきており、銅箔破断の発生等の製造ラインでの通板性が悪化している。特に圧延銅箔においては、加工後の強度が高くて伸びが小さいため、製造ラインで銅箔にカーボンを塗布する作業時等の際、銅箔に与える微妙な張力変動によって破断が発生し易くなっている。   Copper foils used in lithium ion secondary batteries are increasingly used with a thickness of 10 μm or less as the capacity of batteries increases and miniaturization progresses. The plate property has deteriorated. In particular, in rolled copper foil, the strength after processing is high and the elongation is small, so breakage is likely to occur due to subtle fluctuations in tension applied to the copper foil during the operation of applying carbon to the copper foil in the production line. ing.

このため、リチウムイオンニ次電池に圧延銅箔を用いる場合は、圧延後に一定の温度条件で銅箔を加熱して軟化させることにより、予め銅箔の伸びを回復させた状態にし、リチウムイオンニ次電池の負極の製造ラインに投入することが行われている。   For this reason, when using a rolled copper foil for a lithium ion secondary battery, the copper foil is heated and softened under a certain temperature condition after rolling, so that the elongation of the copper foil is recovered in advance. To the negative electrode production line.

しかし、リチウムイオンニ次電池の高容量化に伴って、この充放電時に銅箔が破断することが多く見られるようになってきている。銅箔に生ずる破断の現象は、これまでは銅箔の伸びによって支配されていると考えられてきた。   However, with the increase in capacity of lithium ion secondary batteries, it is becoming increasingly common for copper foils to break during this charge / discharge. Until now, it has been considered that the phenomenon of fracture occurring in copper foil is governed by the elongation of copper foil.

ところが、電池が高容量化するにつれて、電解銅箔及び伸びの十分に回復した圧延銅箔でも、銅箔の破断が顕著に発生するようになっている。銅箔の破断の原因を検討すると、リチウムイオンニ次電池では、充電時にはリチウムイオンが正極から負極に移動し、放電時に再びリチウムイオンが負極から正極に移動する。リチウムイオンの移動に伴って負極材が膨張収縮するから、集電体として用いられる銅箔は充放電によって繰り返しの応力変動が働くため、銅箔は疲労変形してしまい、最終的に破断に至ることが判明している。   However, as the capacity of the battery increases, breakage of the copper foil is remarkably generated even in the electrolytic copper foil and the rolled copper foil whose elongation is sufficiently recovered. Examining the cause of the copper foil breakage, in the lithium ion secondary battery, lithium ions move from the positive electrode to the negative electrode during charging, and lithium ions move again from the negative electrode to the positive electrode during discharging. Since the negative electrode material expands and contracts with the movement of lithium ions, the copper foil used as a current collector undergoes repeated stress fluctuations due to charge and discharge, so the copper foil undergoes fatigue deformation and eventually breaks. It has been found.

リチウムイオンニ次電池の負極に使用する銅箔の強度と延性を向上させるため、例えばCrが0.05〜0.4質量%、Zrが0.01〜0.25質量%を含有し、残部が銅及び不可避不純物である銅合金を、圧延方向に走査したときの最大山高さRzと板厚tとの比であるRz/tが0.2未満で、かつ長径1μm以上の介在物の個数が100個/mm以下であり、板厚20 μm以下にする析出硬化型銅合金箔が提案されている(特許文献1参照)。 In order to improve the strength and ductility of the copper foil used for the negative electrode of the lithium ion secondary battery, for example, Cr contains 0.05 to 0.4 mass%, Zr contains 0.01 to 0.25 mass%, and the balance is The number of inclusions with Rz / t, which is the ratio of the maximum peak height Rz and the plate thickness t when scanning copper and an inevitable impurity copper alloy in the rolling direction, is less than 0.2 and whose major axis is 1 μm or more. A precipitation hardening type copper alloy foil having a thickness of 100 pieces / mm 2 or less and a thickness of 20 μm or less has been proposed (see Patent Document 1).

また、充放電サイクル寿命の優れたリチウムイオン2次電池用負極を安価な製造するため、Niが1.0質量%以上で5質量%以下、Siが0.2質量%以上で1.2質量%以下を含有し、残部が銅及び不可避不純物とした銅合金箔に、錫鍍金を施してリチウムイオン2次電池用負極とするとき、錫鍍金の皮膜中にSn−Ni平衡状態図における金属間化合物を形成することも提案されている(特許文献2参照)。   Moreover, in order to produce a negative electrode for a lithium ion secondary battery having an excellent charge / discharge cycle life at low cost, Ni is 1.0 mass% or more and 5 mass% or less, and Si is 0.2 mass% or more and 1.2 mass. % When the copper alloy foil containing copper and the remainder made of copper and inevitable impurities is subjected to tin plating to form a negative electrode for a lithium ion secondary battery, the tin-plating film contains an intermetallic metal in the Sn-Ni equilibrium diagram. It has also been proposed to form a compound (see Patent Document 2).

特開2009−79282号公報JP 2009-79282 A 特開2003−257417号公報JP 2003-257417 A

しかし、上記特許文献1及び2に記載されてようにいるように、銅母材中に種々の元素を添加する合金箔では、添加元素の種類が多くしかも濃度高く、銅箔の品質管理や製造コストの面で得策ではないという問題があった。   However, as described in the above Patent Documents 1 and 2, in the alloy foil in which various elements are added to the copper base material, there are many kinds of additive elements and the concentration is high. There was a problem that it was not a good idea in terms of cost.

本発明の目的は、充放電時の繰返し応力で破断する恐れがなくて信頼性を向上でき、容易に製造できるリチウムイオン二次電池用銅箔及びその製造方法を提供することにある。   An object of the present invention is to provide a copper foil for a lithium ion secondary battery that can be easily manufactured without fear of breaking due to repeated stress during charge and discharge, and a method for manufacturing the same.

本発明のリチウムイオン二次電池用銅箔は、正極との間にセパレータを介在させて巻回する負極となる銅箔であり、前記銅箔は(200)結晶配向から15度以内の結晶配向を持つ結晶粒が、銅箔表面から見た面積の割合で50〜100%存在していることを特徴としている。   The copper foil for a lithium ion secondary battery of the present invention is a copper foil that becomes a negative electrode that is wound with a separator interposed between the positive electrode and the copper foil having a crystal orientation within 15 degrees from the (200) crystal orientation. It is characterized in that 50 to 100% of crystal grains having a ratio of area as viewed from the copper foil surface is present.

好ましくは、前記銅箔は最終冷間圧延前の平均結晶粒径は50μm以下であることを特徴としており、また前記銅箔は少なくとも片面に表面処理を施したことを特徴としており、更に前記銅箔は7μm〜20μmの厚みを有することを特徴としており、また前記銅箔はSnを添加した合金箔であることを特徴としており、更にまた前記銅箔はこの表面に塗布したカーボンを有することを特徴としている。   Preferably, the copper foil is characterized in that an average crystal grain size before final cold rolling is 50 μm or less, the copper foil is characterized in that at least one surface is subjected to surface treatment, and the copper foil is further characterized in that The foil is characterized by having a thickness of 7 μm to 20 μm, and the copper foil is characterized by being an alloy foil to which Sn is added, and further, the copper foil has carbon applied to this surface. It is a feature.

また、本発明のリチウムイオン二次電池用銅箔の製造方法は、溶解鋳造により作成した銅鋳塊を熱間圧延して予め定めた厚みに圧延し、前記熱間圧延材を冷間圧延と歪取り焼鈍を繰り返し行って所定の厚みの銅板を形成し、前記銅板を焼鈍後に冷間圧延して銅箔を得、前記銅箔を窒素雰囲気中において加熱する熱処理を施し、圧延加工度91〜99%で、かつ(200)結晶配向から15度以内の結晶粒が表面の面積の50〜100%割合存在する銅箔を得ることを特徴としている。   The method for producing a copper foil for a lithium ion secondary battery according to the present invention includes hot rolling a copper ingot created by melt casting to a predetermined thickness, and cold rolling the hot rolled material. A copper plate having a predetermined thickness is formed by repeatedly performing strain relief annealing, and after the copper plate is annealed, it is cold-rolled to obtain a copper foil, subjected to a heat treatment in which the copper foil is heated in a nitrogen atmosphere, and a rolling degree of 91- It is characterized by obtaining a copper foil in which 99% of the crystal grains within 15 degrees from the (200) crystal orientation are present in a proportion of 50 to 100% of the surface area.

好ましくは、前記銅鋳塊はタフピッチ銅であって、圧延加工度91〜95%で圧延加工したことを特徴としており、また前記銅鋳塊は無酸素銅に0.001〜0.009質量%の錫を添加し、圧延加工度91〜99%で圧延加工したことを特徴としている。   Preferably, the copper ingot is tough pitch copper and is rolled at a rolling work degree of 91 to 95%, and the copper ingot is 0.001 to 0.009 mass% in oxygen-free copper. The tin is added and rolled at a rolling degree of 91 to 99%.

本発明のリチウムイオン二次電池用銅箔によれば、リチウムイオン二次電池の充放電時の繰返し応力で銅箔の破断の発生を大幅に減少できるから、二次電池の信頼性を一層向上させることができる。   According to the copper foil for a lithium ion secondary battery of the present invention, the occurrence of copper foil breakage can be significantly reduced by repeated stress during charging and discharging of the lithium ion secondary battery, further improving the reliability of the secondary battery. Can be made.

また、本発明のリチウムイオン二次電池用銅箔の製造方法によれば、銅箔を容易に製造できてしかも品質管理が確実に行え、リチウムイオン二次電池用銅箔の製造コストを改善できる利点がある。   Moreover, according to the manufacturing method of the copper foil for lithium ion secondary batteries of this invention, copper foil can be manufactured easily and quality control can be performed reliably, and the manufacturing cost of the copper foil for lithium ion secondary batteries can be improved. There are advantages.

(a)から(c)は、本発明のリチウムイオン二次電池用銅箔の(200)結晶配向から15度以内の銅の結晶格子を示す模式図である。(A)-(c) is a schematic diagram which shows the crystal lattice of copper within 15 degree | times from the (200) crystal orientation of the copper foil for lithium ion secondary batteries of this invention. (a)は本発明のリチウムイオン二次電池用銅箔のIPFフルカラーマップ写真に基づいて作成したグレーマップ写真、(b)は(a)のグレースケール図、(c)は(a)の二値化写真である。(A) is a gray map photograph created based on the IPF full-color map photograph of the copper foil for lithium ion secondary batteries of this invention, (b) is a gray scale figure of (a), (c) is two of (a). It is a price photograph. リチウムイオンニ次電池の構造を示す概略図である。It is the schematic which shows the structure of a lithium ion secondary battery.

以下、本発明のリチウムイオン二次電池用銅箔及びその製造方法を、図1及び図2を用いて説明する。本発明者らは、リチウムイオン二次電池用銅箔について種々検討を重ねた結果、充放電時の繰返し応力に対して十分耐え得ることを見出した。本発明者らの検討によると、リチウムイオン二次電池用銅箔は、銅の結晶粒が(200)結晶配向から15度以内の結晶配向を持ち、しかも銅箔表面からみた面積の割合として50〜100%存在させるよう制御すれば、望ましい銅箔とすることができる。   Hereinafter, the copper foil for lithium ion secondary batteries of this invention and its manufacturing method are demonstrated using FIG.1 and FIG.2. As a result of various studies on the copper foil for lithium ion secondary batteries, the present inventors have found that the copper foil can sufficiently withstand the repeated stress during charging and discharging. According to the study by the present inventors, the copper foil for a lithium ion secondary battery has a crystal orientation in which the copper crystal grains are within 15 degrees from the (200) crystal orientation, and the ratio of the area viewed from the copper foil surface is 50. If it controls so that it may exist -100%, it can be set as a desirable copper foil.

なお、本発明において、銅の結晶粒が(200)結晶配向から15度以内とは、銅の結晶格子において、(200)面の法線ベクトルが銅箔の垂直方向を向いている状態を0度とした場合、図1(a)、(b)、(c)に示すような各結晶の(200)面の法線ベクトルが成す角度が、15度以内であることを指している。ここで、(200)面、即ち、(200)面と一致するものも含まれることに注意されたい。   In the present invention, the copper crystal grains within 15 degrees from the (200) crystal orientation means that the normal vector of the (200) plane faces the vertical direction of the copper foil in the copper crystal lattice. In this case, the angle formed by the normal vector of the (200) plane of each crystal as shown in FIGS. 1A, 1B, and 1C is within 15 degrees. Here, it should be noted that the (200) plane, that is, the one matching the (200) plane is also included.

本発明のリチウムイオン二次電池用銅箔は、例えば以下のような手順によって製造する。即ち、銅箔の製造は、(200)結晶配向から15度以内の結晶粒が50〜100%にするため、まず溶解鋳造により銅鋳塊を作成し、この銅鋳塊を熱間圧延により、厚み13mmまで圧延して銅板を作成する。   The copper foil for lithium ion secondary batteries of this invention is manufactured, for example with the following procedures. That is, in the manufacture of the copper foil, since the crystal grains within 15 degrees from the (200) crystal orientation are 50 to 100%, first, a copper ingot is created by melt casting, and this copper ingot is hot-rolled. A copper plate is prepared by rolling to a thickness of 13 mm.

次に、作成した厚み13mmの銅板を、冷間圧延と歪取り焼鈍を繰り返し、厚み0.2mmの銅板とした。更に、この0.2mmの銅板を、温度800℃で30秒焼鈍し、この時の平均結晶粒径を50μm以下になるよう調整した。その後、厚み10μmまで冷間圧延した。ここまでの銅箔の製造段階で、圧延加工度は95%になる。なお、銅箔の加工度は、純銅や銅合金の如く使用する銅材料によって異なるが、圧延加工度91%〜99%の範囲である。   Next, the produced copper plate having a thickness of 13 mm was repeatedly subjected to cold rolling and strain relief annealing to obtain a copper plate having a thickness of 0.2 mm. Furthermore, this 0.2 mm copper plate was annealed at a temperature of 800 ° C. for 30 seconds, and the average crystal grain size at this time was adjusted to 50 μm or less. Then, it cold-rolled to thickness 10micrometer. At the copper foil manufacturing stage so far, the rolling degree is 95%. In addition, although the processing degree of copper foil changes with copper materials used like pure copper or a copper alloy, it is the range of 91%-99% of rolling processing.

この製造した銅箔は、(200)結晶配向を成長させるため、不活性ガスである窒素雰囲気中において、170℃で30分の加熱処理を施している。この圧延後の加熱処理の条件としては、170℃〜300℃の温度で、30分〜10時間保持する処理を、対象銅箔によって処理条件を選択して実施する。この加熱処理により、銅箔は結晶粒を(200)結晶配向から15度以内の結晶配向を持ち、かつ表面の面積の割合で50〜100%存在する所望のリチウムイオン二次電池用銅箔とすることができる。   This manufactured copper foil is subjected to a heat treatment at 170 ° C. for 30 minutes in a nitrogen atmosphere as an inert gas in order to grow (200) crystal orientation. As the conditions for the heat treatment after rolling, a treatment for holding for 30 minutes to 10 hours at a temperature of 170 ° C. to 300 ° C. is performed by selecting the treatment conditions depending on the target copper foil. By this heat treatment, the copper foil has a crystal orientation within 15 degrees from the (200) crystal orientation, and a desired copper foil for a lithium ion secondary battery having a surface area ratio of 50 to 100%. can do.

上記した如く圧延銅箔を用いる場合、(200)結晶配向を持つ結晶粒は、圧延で与えられる加工歪を駆動力として、加熱処理時に再結晶粒として発生し、成長する。このとき、与えた加工歪が少ないと、(200)結晶配向を持つ結晶粒は十分に成長することができない。逆に、与えた加工歪が過剰であると、圧延加工中に自らの歪を駆動力として再結晶を発生させてしまい、結果として加熱処理後の再結晶粒は(200)結晶配向とは異なるものになる。   When a rolled copper foil is used as described above, crystal grains having a (200) crystal orientation are generated and grown as recrystallized grains during heat treatment using the processing strain given by rolling as a driving force. At this time, if the applied processing strain is small, crystal grains having the (200) crystal orientation cannot be sufficiently grown. On the other hand, if the applied strain is excessive, recrystallization occurs during rolling by using the strain as a driving force, and as a result, the recrystallized grains after the heat treatment are different from the (200) crystal orientation. Become a thing.

与える加工歪の量は、銅箔に使用する材質や耐熱性によって、その適切な範囲は異なっており、また加工歪の量は、圧延加工時の圧延加工度によって制御される。なお、銅箔の圧延加工度は、次の式で表される。
圧延加工度(%)=(圧延前の厚み一圧延後の厚み)/(圧延前の厚み)×100
The amount of processing strain to be applied varies depending on the material used for the copper foil and the heat resistance, and the appropriate range varies. The amount of processing strain is controlled by the degree of rolling during rolling. In addition, the rolling degree of copper foil is represented by the following formula.
Rolling degree (%) = (Thickness before rolling—Thickness after rolling) / (Thickness before rolling) × 100

圧延銅箔に用いる材質として、CuO酸化銅の状態で酸素を0.02〜0.05%含んだ銅99.90%以上のタフピッチ銅は、電気や熱の伝導性に優れ、展延性及び絞り加工性が良好であるから、これを用いる場合、その圧延加工度は91〜95%であることが望ましい。この範囲とするのは、タフピッチ銅では圧延加工度91%未満では圧延後の加熱処理において(200)結晶配向が十分に成長せず、圧延加工度95%を超えると(200)結晶配向とは異なる配向を持つ再結晶粒が発生してしまうためである。 As the material used for the rolled copper foil, 99.90% or more tough pitch copper containing 0.02 to 0.05% oxygen in the state of Cu 2 O copper oxide is excellent in electrical and thermal conductivity, and is malleable. And, since the drawing workability is good, when this is used, the rolling work degree is desirably 91 to 95%. In this range, with tough pitch copper, if the degree of rolling is less than 91%, the (200) crystal orientation does not grow sufficiently in the heat treatment after rolling, and if the degree of rolling exceeds 95%, the (200) crystal orientation is This is because recrystallized grains having different orientations are generated.

また、圧延銅箔の材質として、無酸素銅に0.001〜0.009質量%の錫(Sn)を添加した銅合金を用いることができる。この錫添加の銅合金を用いる場合、タフピッチ銅と比べて軟化温度が10〜50℃高くなるため、より高い圧延加工度を与えても(200)結晶配向は成長することができる。このため、望ましい圧延加工度の範囲は、91〜99%である。   Moreover, the copper alloy which added 0.001-0.009 mass% tin (Sn) to oxygen-free copper can be used as a material of rolled copper foil. When this tin-added copper alloy is used, the softening temperature is 10 to 50 ° C. higher than that of tough pitch copper, so that (200) crystal orientation can grow even when a higher degree of rolling work is given. For this reason, the range of a desirable rolling work degree is 91-99%.

圧延銅箔の場合は、(200)結晶配向を持つ結晶粒の割合は、加熱処理の温度や時間によっても変化する。加熱処理の熱量が不足した場合は圧延組織が残留し、逆に加熱処理の熱量が過剰な場合は、二次的な再結晶により(200)結晶配向とは異なる結晶配向を持った結晶粒が発生する。圧延銅箔の最適な加熱処理条件は、銅箔の材質、加熱時の雰囲気、炉の加熱方法などの条件によって異なってくる。   In the case of a rolled copper foil, the proportion of crystal grains having a (200) crystal orientation also changes depending on the temperature and time of the heat treatment. When the heat amount of the heat treatment is insufficient, the rolled structure remains, and conversely, when the heat amount of the heat treatment is excessive, secondary recrystallization causes crystal grains having a crystal orientation different from (200) crystal orientation. appear. The optimum heat treatment conditions for the rolled copper foil vary depending on the conditions such as the material of the copper foil, the atmosphere during heating, and the heating method of the furnace.

本発明のリチウムイオン二次電池用銅箔の製造には、上記の圧延銅箔ばかりでなく、電解銅箔のいずれでも用いることができる。圧延銅箔を用いる場合は、前述の如く圧延加工後に(200)結晶配向を成長させるために、銅箔に対して加熱処理を実施する。   In the production of the copper foil for a lithium ion secondary battery of the present invention, not only the rolled copper foil but also any electrolytic copper foil can be used. In the case of using a rolled copper foil, the copper foil is subjected to a heat treatment in order to grow the (200) crystal orientation after the rolling process as described above.

上記した本発明のリチウムイオン二次電池用銅箔では、(200)結晶配向性を高めることによって、充放電時における銅箔の疲労特性は向上するので、銅箔は破断しにくくなるから、充放電時のサイクル特性を改善することができる。   In the above-described copper foil for a lithium ion secondary battery according to the present invention, since the fatigue characteristics of the copper foil at the time of charge / discharge are improved by increasing the (200) crystal orientation, the copper foil is difficult to break. Cycle characteristics during discharge can be improved.

更に、最終冷間圧延前における結晶粒の平均結晶粒径を50μm以下とすることが望ましい。平均結晶粒径の測定方法としては、ラインインターセプト法を用いる。試料の圧延方向の断面組織および幅方向の断面組織について測定を行い、その平均値を平均結晶粒径として用いる。最終冷間圧延前における平均結晶粒径を50μm以下とすることにより、その後の冷間圧延時に圧延集合組織を形成しやすくなり、その結果、再結晶粒の(200)結晶配向性を高めることが可能になる。   Furthermore, it is desirable that the average crystal grain size of the crystal grains before final cold rolling be 50 μm or less. A line intercept method is used as a method for measuring the average crystal grain size. The sample is measured for the cross-sectional structure in the rolling direction and the cross-sectional structure in the width direction, and the average value is used as the average crystal grain size. By setting the average grain size before the final cold rolling to 50 μm or less, it becomes easier to form a rolling texture during the subsequent cold rolling, and as a result, the (200) crystal orientation of the recrystallized grains can be improved. It becomes possible.

本発明のリチウムイオン二次電池用銅箔は、純銅(含有成分が銅及び不可避不純物)を用いて製造しても良いし、例えばAg、Sn、Ni、Co、Fe、P、Si、Zn、Cr、Zr、Al、Mnのうち1種以上が添加された合金箔を用いて製造することもできる。この場合は、添加材料及びその量によって銅箔の軟化温度が変化するため、添加材料及びその量に応じて、加熱時間や加熱温度等の熱処理条件を調整することで上述の結晶配向をもつ結晶粒を有する銅箔を得ることができる。   The copper foil for a lithium ion secondary battery of the present invention may be manufactured using pure copper (containing components are copper and inevitable impurities), for example, Ag, Sn, Ni, Co, Fe, P, Si, Zn, It can also be manufactured using an alloy foil to which one or more of Cr, Zr, Al, and Mn are added. In this case, since the softening temperature of the copper foil changes depending on the additive material and the amount thereof, the crystal having the above crystal orientation can be obtained by adjusting the heat treatment conditions such as the heating time and the heating temperature according to the additive material and the amount thereof. A copper foil having grains can be obtained.

また、本発明のリチウムイオン二次電池用銅箔は、加熱処理された銅箔に例えば下記のようにしてカーボンを塗工し、リチウムイオン二次電池を組み立てることもできる。銅箔の面へのカーボンの塗工は、グラファイト90%に対して、バインダ10%の割合としたものを用いて行い、プレスによって塗工物質の厚みを100μmにする。なお、バインダとしては、一般的なポリビニルデンフルオライド(PVdF)+Nメチルピロリドン(MNP)を用い、またカーボンの塗工時にMNPを揮発除去するため、80℃で10分間程度の乾燥を実施する。 Moreover, the copper foil for lithium ion secondary batteries of this invention can also apply | coat carbon to the heat-treated copper foil as follows, for example, and can also assemble a lithium ion secondary battery. The coating of carbon on the surface of the copper foil is performed using a ratio of 10% of binder to 90% of graphite, and the thickness of the coating substance is set to 100 μm by pressing. As the binder, typically polyvinyl Den fluoride (PVdF) + N - using methyl pyrrolidone (MNP), and in order to volatilize removing MNP when carbon coating, to implement the drying of about 10 minutes at 80 ° C. .

しかも、本発明のリチウムイオン二次電池用銅箔は、あらゆる表面処理と組み合わせても使用できる。例えば、負極括物質との密着性を向上させるために、銅箔の片面又は両面を粗化し、或いは酸化等による銅箔の表面の変質を防ぐために、Ni鍍金やクロメート処理やベンゾトリアゾール処理を施すこともできる。銅箔の表面処理の時機は、圧延銅箔の場合は圧延加工後でも、また加熱処理後のいずれでも何ら構わない。   And the copper foil for lithium ion secondary batteries of this invention can be used even if it combines with all surface treatments. For example, in order to improve the adhesion with the negative electrode binding material, one side or both sides of the copper foil are roughened, or Ni plating, chromate treatment or benzotriazole treatment is performed to prevent the copper foil surface from being altered by oxidation or the like. You can also. The timing of the surface treatment of the copper foil may be any after the rolling process or after the heat treatment in the case of the rolled copper foil.

また更に、本発明のリチウムイオン二次電池用銅箔の厚みは20μm以下であって、望ましくは18μm〜10μmである。最適な銅箔の厚みは、対象のリチウムイオン二次電池の構成によって異なっており、一般的には厚みが薄いと活物質を多く乗せられることから、電池容量的に有利にできる。   Furthermore, the thickness of the copper foil for lithium ion secondary batteries of this invention is 20 micrometers or less, Preferably it is 18 micrometers-10 micrometers. The optimal thickness of the copper foil varies depending on the configuration of the target lithium ion secondary battery. Generally, when the thickness is small, a large amount of active material can be loaded, which can be advantageous in terms of battery capacity.

次に、本発明のリチウムイオン二次電池用銅箔である実施例1から4、及び比較例1から4について順に説明する。下記の各実施例及び各比較例では、銅箔の結晶配向性は、いずれもSEM−EBSP解析法(Scanning Electron Microscope−Electron BackScatteing diffaction Pattern:走査型電子顕微鏡による背面反射電子像解析法)にて測定した。   Next, Examples 1 to 4 and Comparative Examples 1 to 4 which are copper foils for lithium ion secondary batteries of the present invention will be described in order. In each of the following Examples and Comparative Examples, the crystal orientation of the copper foil is determined by SEM-EBSP analysis (Scanning Electron Microscope-Electron Backscattering diffraction Pattern: back reflection electron image analysis using a scanning electron microscope). It was measured.

測定にあたっては、対象の銅箔を所定の大きさに切り出し、イオンスパッタで銅箔表面の酸化物を除去した後、これをFE-SEMに投入し、EBSP解析を実施した。測定時の倍率は200倍、EBSP解析範囲は視野中の400μm四方とし、測定ピッチ2μmで測定を行った。   In the measurement, the target copper foil was cut into a predetermined size, and the oxide on the surface of the copper foil was removed by ion sputtering. Then, this was put into an FE-SEM, and EBSP analysis was performed. The magnification at the time of measurement was 200 times, the EBSP analysis range was 400 μm square in the visual field, and measurement was performed at a measurement pitch of 2 μm.

測定したデータより、各結晶粒の結晶配向を解析して、結晶配向によって色分けがされたIPF(Inverse Pole Figure:逆極点図)フルカラーマップ写真を基にして図2(a)に示すIPFグレーマップ写真を作成した。このIPFグレーマップ写真は、図2(b)に示すグレースケールで結晶配向を判別できるが、対象の結晶粒及びそれ以外のものとの判別を更に容易にするため、IPFグレーマップ写真を二値化した図2(c)に示す二値化写真を活用し、黒色箇所の対象の粒を特定する。実際の結晶粒特定作業は、コンピュータを活用し、(200)結晶配向から15度以内の結晶配向を持つ結晶粒を特定し、測定面積内での面積率を求めた。これを(200)面積率とする。   From the measured data, the crystal orientation of each crystal grain is analyzed, and the IPF gray map shown in FIG. 2 (a) is based on an IPF (Inverse Pole Figure) full color map photograph that is color-coded according to the crystal orientation. Created a photo. In this IPF gray map photograph, the crystal orientation can be discriminated on the gray scale shown in FIG. 2B. However, in order to further easily discriminate the target crystal grain from the other, the IPF gray map photograph is binary. The binarized photograph shown in FIG. 2C is used to identify the target grain in the black portion. In the actual crystal grain identification work, a computer was used to identify crystal grains having a crystal orientation within 15 degrees from the (200) crystal orientation, and the area ratio within the measurement area was obtained. This is the (200) area ratio.

実施例1
タフピッチ銅(「TPC」と表記)を用いて、加熱条件800℃15秒の焼鈍によって平均結晶粒径を30μmに調整した後、冷間圧延にて圧延加工度91%で厚み10μmの銅箔を作製した。この銅箔を表面の圧延油を洗浄除去したのち、シートの状態に切り出し、所望の結晶粒を得るため不活性ガスである窒素雰囲気中において、170℃で30分間加熱した。
Example 1
After adjusting the average crystal grain size to 30 μm by annealing at 800 ° C. for 15 seconds using a tough pitch copper (indicated as “TPC”), a copper foil having a rolling work degree of 91% and a thickness of 10 μm is obtained by cold rolling. Produced. The copper foil was washed and removed from the rolling oil on the surface, then cut into a sheet state, and heated at 170 ° C. for 30 minutes in a nitrogen atmosphere as an inert gas in order to obtain desired crystal grains.

実施例2
タフピッチ銅(TPC)を用いて、加熱条件800℃15秒の焼鈍によって平均結晶粒径を30μmに調整した後、冷間圧延にて圧延加工度95%で厚み10μmの銅箔を作製した。この銅箔を表面の圧延油を洗浄除去したのち、シートの状態に切り出し、同様に窒素雰囲気中において170で℃30分間加熱した。
Example 2
After adjusting the average crystal grain size to 30 μm by annealing at 800 ° C. for 15 seconds using tough pitch copper (TPC), a copper foil having a rolling degree of 95% and a thickness of 10 μm was produced by cold rolling. This copper foil was washed and removed from the rolling oil on the surface, then cut into a sheet state and similarly heated at 170 ° C. for 30 minutes in a nitrogen atmosphere.

実施例3
タフピッチ銅(TPC)を用いて、加熱条件800℃40秒の焼鈍によって平均結晶粒径を45μmに調整した後、冷間圧延にて圧延加工度95%で厚み10μmの銅箔を作製した。この銅箔を表面の圧延油を洗浄除去したのち、シートの状態に切り出し、同様に窒素雰囲気中において170で℃30分間加熱した。
Example 3
After adjusting the average crystal grain size to 45 μm by annealing at 800 ° C. for 40 seconds using tough pitch copper (TPC), a copper foil having a rolling degree of 95% and a thickness of 10 μm was produced by cold rolling. This copper foil was washed and removed from the rolling oil on the surface, then cut into a sheet state and similarly heated at 170 ° C. for 30 minutes in a nitrogen atmosphere.

実施例4
無酸素銅に錫(Sn)を0.001〜0.009質量%添加し、鋳造した銅合金(「HX」と表記)を用いて、加熱条件800℃35秒の焼鈍によって平均結晶粒径を30μmに調整した後、冷間圧延にて圧延加工度91%で厚み10μmの銅箔を作製した。この銅箔を表面の圧延油を洗浄除去したのち、シートの状態に切り出し、窒素雰囲気中において250℃で1時間加熱した。添加する錫は、純銅または無酸素銅を高周波溶解炉で溶解するときに必要量を加え、得られた溶湯を鋳型に流し込み、連続的に冷却することで鋳造を行い、上述したように圧延して銅合金から銅箔を製造する。
Example 4
0.001 to 0.009 mass% of tin (Sn) is added to oxygen-free copper, and a cast copper alloy (indicated as “HX N ”) is used to anneal the average crystal grain size by annealing at 800 ° C. for 35 seconds. Was adjusted to 30 μm, and then a cold-rolled copper foil having a rolling degree of 91% and a thickness of 10 μm was produced. This copper foil was washed and removed from the rolling oil on the surface, then cut into a sheet and heated at 250 ° C. for 1 hour in a nitrogen atmosphere. The tin to be added is added in a necessary amount when pure copper or oxygen-free copper is melted in a high-frequency melting furnace, the obtained molten metal is poured into a mold, continuously cooled, cast, and rolled as described above. A copper foil is manufactured from the copper alloy.

実施例5
無酸素銅に錫(Sn)を0.001〜0.009質量%添加し、鋳造した銅合金(HX)を用いて、加熱条件800℃35秒の焼鈍によって平均結晶粒径を30μmに調整した後、冷間圧延にて圧延加工度99%で厚み1μmの銅箔を作製した。この銅箔を表面の圧延油を洗浄除去したのち、シートの状態に切り出し、同様に窒素雰囲気中において250℃で1時間加熱した。
Example 5
Add 0.001 to 0.009 mass% of tin (Sn) to oxygen-free copper, and adjust the average grain size to 30 μm by annealing at 800 ° C. for 35 seconds using a cast copper alloy (HX N ). Then, a cold-rolled copper foil having a rolling degree of 99% and a thickness of 1 μm was produced. This copper foil was washed and removed from the rolling oil on the surface, cut into a sheet, and similarly heated at 250 ° C. for 1 hour in a nitrogen atmosphere.

比較例1
タフピッチ銅(TPC)を用いて、加熱条件800℃15秒の焼鈍によって平均結晶粒径を30μmに調整した後、冷間圧延にて圧延加工度90%で厚み10μmの銅箔を作製した。この銅箔を表面の圧延油を洗浄除去したのち、シートの状態に切り出し、窒素雰囲気中において170℃で30分間加熱した。
Comparative Example 1
After adjusting the average crystal grain size to 30 μm by annealing at 800 ° C. for 15 seconds using tough pitch copper (TPC), a copper foil having a rolling degree of 90% and a thickness of 10 μm was produced by cold rolling. This copper foil was washed and removed from the rolling oil on the surface, cut into a sheet, and heated at 170 ° C. for 30 minutes in a nitrogen atmosphere.

比較例2
タフピッチ銅(TPC)を用いて、加熱条件800℃15秒の焼鈍によって平均結晶粒径を30μmに調整した後、冷間圧延にて圧延加工度96%で厚み10μmの銅箔を作製した。この銅箔を表面の圧延油を洗浄除去したのち、シートの状態に切り出し、窒素雰囲気中において170℃30分間加熱した。
Comparative Example 2
An average crystal grain size was adjusted to 30 μm by annealing at 800 ° C. for 15 seconds using tough pitch copper (TPC), and then a copper foil having a rolling degree of 96% and a thickness of 10 μm was produced by cold rolling. This copper foil was washed and removed from the rolling oil on the surface, then cut into a sheet and heated at 170 ° C. for 30 minutes in a nitrogen atmosphere.

比較例3
タフピッチ銅(TPC)を用いて、加熱条件800℃50秒の焼鈍によって平均結晶粒径を60μmに調整した後、冷間圧延にて圧延加工度95%で厚み10μmの銅箔を作製した。この銅箔を表面の圧延油を洗浄除去したのち、シートの状態に切り出し、窒素雰囲気中において170℃30分間加熱した。
Comparative Example 3
After adjusting the average crystal grain size to 60 μm by annealing at 800 ° C. for 50 seconds using tough pitch copper (TPC), a copper foil having a rolling degree of 95% and a thickness of 10 μm was produced by cold rolling. This copper foil was washed and removed from the rolling oil on the surface, then cut into a sheet and heated at 170 ° C. for 30 minutes in a nitrogen atmosphere.

比較例4
無酸素銅に錫(Sn)を0.001〜0.009質量%添加し、鋳造した銅合金(HX)を用いて平均結晶粒径を30μmにし、圧延にて圧延加工度90%で厚み10μmの銅箔を作製した。この銅箔を表面の圧延油を洗浄除去したのち、シートの状態に切り出し、窒素雰囲気中において250℃で1時間加熱した。
Comparative Example 4
0.001 to 0.009 mass% of tin (Sn) is added to oxygen-free copper, the average crystal grain size is made 30 μm using a cast copper alloy (HX N ), and the thickness is reduced to 90% by rolling. A 10 μm copper foil was prepared. This copper foil was washed and removed from the rolling oil on the surface, then cut into a sheet and heated at 250 ° C. for 1 hour in a nitrogen atmosphere.

比較例5
無酸素銅に錫(Sn)を0.001〜0.009質量%添加し、鋳造した銅合金(HX)を用いて、加熱条件800℃35秒の焼鈍によって平均結晶粒径を30μmに調整した後、冷間圧延にて圧延加工度99・5%で厚み10μmの銅箔を作製した。この銅箔を表面の圧延油を洗浄除去したのち、シートの状態に切り出し、窒素雰囲気中において250℃で1時間加熱した。
Comparative Example 5
Add 0.001 to 0.009 mass% of tin (Sn) to oxygen-free copper, and adjust the average grain size to 30 μm by annealing at 800 ° C. for 35 seconds using a cast copper alloy (HX N ). After that, a copper foil having a rolling degree of 99.5% and a thickness of 10 μm was produced by cold rolling. This copper foil was washed and removed from the rolling oil on the surface, then cut into a sheet and heated at 250 ° C. for 1 hour in a nitrogen atmosphere.

上記した実施例1〜5及び比較例1〜5で得られた銅箔について、それぞれ(200)面積率、及びサイクル特性を測定して、良好な銅箔を○印にし、不良の銅箔を×印にして評価した。評価結果を表1に示している。   For the copper foils obtained in Examples 1 to 5 and Comparative Examples 1 to 5 described above, the (200) area ratio and the cycle characteristics were measured, and a good copper foil was marked with a circle. The evaluation was made with crosses. The evaluation results are shown in Table 1.

Figure 2012129136
Figure 2012129136

実施例1と2及び比較例1〜3は、材質としてタフピッチ銅(TPC)を使用し、異なる厚みから10μmまで圧延することにより、圧延加工度を変化させたものである。表1に示しているように、比較例1は圧延加工度90%で(200)面積率が45%であったのに対し、実施例1の如く圧延加工度91%とすることで50%、実施例2の如く加工度95%で(200)面積率67%まで増加した。しかし、比較例2の如く圧延加工度を96%まで高くすると、(200)面積率は大きく減少する。これは、圧延中に再結晶が発生することで最終的に銅箔に与えられる加工歪量が減少し、(200)結晶配向を持った再結晶粒が成長しにくくなったためである。   Examples 1 and 2 and Comparative Examples 1 to 3 use tough pitch copper (TPC) as a material and change the rolling degree by rolling from different thicknesses to 10 μm. As shown in Table 1, Comparative Example 1 had a rolling degree of 90% and a (200) area ratio of 45%, whereas it was 50% by setting the rolling degree to 91% as in Example 1. As in Example 2, the degree of processing increased to 95% (200) and the area ratio to 67%. However, when the rolling degree is increased to 96% as in Comparative Example 2, the (200) area ratio is greatly reduced. This is because recrystallization occurs during rolling, which ultimately reduces the amount of processing strain imparted to the copper foil, making it difficult for recrystallized grains having a (200) crystal orientation to grow.

また、(200)面積率が50%未満であった比較例1、2は、サイクル特性においても断線が認められた。これは鋳造した銅合金を用いた実施例4、5及び比較例4、5の場合でも同様である。ただし、鋳造した銅合金(HX)は、錫(Sn)を添加しているためにタフピッチ銅と比べて軟化温度が高い。即ち、再結晶を発生させるためのエネルギー障壁が高いことから、タフピッチ銅と比べて高い圧延加工度まで(200)面積率は維持する。 Further, in Comparative Examples 1 and 2 in which the (200) area ratio was less than 50%, disconnection was recognized also in the cycle characteristics. The same applies to Examples 4 and 5 and Comparative Examples 4 and 5 using a cast copper alloy. However, the cast copper alloy (HX N ) has a softening temperature higher than that of tough pitch copper because tin (Sn) is added. That is, since the energy barrier for generating recrystallization is high, the (200) area ratio is maintained up to a higher degree of rolling than that of tough pitch copper.

実施例2、3および比較例3は、冷間圧延前の焼鈍条件を変えることにより、冷間圧延前の平均結晶粒径を変化させたものである。実施例2は平均結晶粒径が30μmだったのに対し、実施例3では45μm、比較例3では60μmとなっている。これによって実施例3は(200)面積率が55%、比較例3では48%まで低下し、比較例3ではサイクル特性においても不良の結果となった。   In Examples 2, 3 and Comparative Example 3, the average crystal grain size before cold rolling was changed by changing the annealing conditions before cold rolling. In Example 2, the average crystal grain size was 30 μm, whereas in Example 3, it was 45 μm, and in Comparative Example 3, it was 60 μm. As a result, in Example 3, the (200) area ratio decreased to 55%, and in Comparative Example 3, it decreased to 48%. In Comparative Example 3, the cycle characteristics were poor.

リチウムイオン二次電池用銅箔は、充放電試験によって、負極括物質は膨張収縮を繰り返し、銅箔は繰り返しの変形応力を受ける。この変形は銅箔が大きく塑性変形するほどではなく、弾性変形に近い変形の繰り返し、即ち疲労変形に近いものとなる。このような変形が与えられたとき、銅箔は与えられた歪を結晶すべりによって解消しようとする。それ故、(200)結晶配向に近い配向を持つ結晶粒が多く存在すると、この結晶すべりが結晶粒界を超えて伝播しやすくなり、結晶粒界に歪が蓄積することは無くなる。そのため、本発明のリチウムイオン二次電池用銅箔のように、(200)結晶配向に近い配向を持った結晶組織を持つことで、充放電試験時に銅箔に歪が蓄積しないから、銅箔の破断も起こらなくなる。   In the copper foil for a lithium ion secondary battery, the negative electrode binder repeatedly expands and contracts, and the copper foil is subjected to repeated deformation stress by a charge / discharge test. This deformation is not so much that the copper foil is plastically deformed, but it is a repetition of deformation close to elastic deformation, that is, close to fatigue deformation. When such deformation is applied, the copper foil tries to eliminate the applied strain by crystal slip. Therefore, when there are many crystal grains having an orientation close to the (200) crystal orientation, this crystal slip is likely to propagate beyond the crystal grain boundary, and no strain is accumulated in the crystal grain boundary. Therefore, as the copper foil for lithium ion secondary batteries of the present invention has a crystal structure having an orientation close to (200) crystal orientation, strain does not accumulate in the copper foil during the charge / discharge test. No breakage occurs.

1…正極、2…負極、3…セパレータ。 DESCRIPTION OF SYMBOLS 1 ... Positive electrode, 2 ... Negative electrode, 3 ... Separator.

Claims (9)

正極との間にセパレータを介在させて巻回する負極となるリチウムイオン二次電池用銅箔において、前記銅箔は(200)結晶配向から15度以内の結晶配向を持つ結晶粒が、銅箔表面から見た面積の割合で50〜100%存在していることを特徴とするリチウムイオン二次電池用銅箔。   In the copper foil for a lithium ion secondary battery that becomes a negative electrode wound with a separator interposed between the positive electrode and the positive electrode, the copper foil has a crystal grain having a crystal orientation within 15 degrees from the (200) crystal orientation. A copper foil for a lithium ion secondary battery, wherein the copper foil is present in an area ratio of 50 to 100% as viewed from the surface. 請求項1において、前記銅箔は最終冷間圧延前の平均結晶粒径は50μm以下であることを特徴とするリチウムイオン二次電池用銅箔。   2. The copper foil for a lithium ion secondary battery according to claim 1, wherein the copper foil has an average crystal grain size of 50 μm or less before final cold rolling. 請求項1から2のいずれかにおいて、前記銅箔は少なくとも片面に表面処理を施したことを特徴とするリチウムイオン二次電池用銅箔。   3. The copper foil for a lithium ion secondary battery according to claim 1, wherein the copper foil is subjected to a surface treatment on at least one surface. 請求項1から3のいずれかにおいて、前記銅箔は7μm〜20μmの厚みを有することを特徴とするリチウムイオン二次電池用銅箔。   4. The copper foil for a lithium ion secondary battery according to claim 1, wherein the copper foil has a thickness of 7 μm to 20 μm. 請求項1から4のいずれかにおいて、前記銅箔はSnを添加した合金箔であることを特徴とするリチウムイオン二次電池用銅箔。   5. The copper foil for a lithium ion secondary battery according to claim 1, wherein the copper foil is an alloy foil to which Sn is added. 請求項1から5のいずれかにおいて、前記銅箔はこの表面に塗布したカーボンを有することを特徴とするリチウムイオン二次電池用銅箔。   6. The copper foil for a lithium ion secondary battery according to claim 1, wherein the copper foil has carbon applied to the surface. 溶解鋳造により作成した銅鋳塊を熱間圧延して予め定めた厚みに圧延し、前記熱間圧延材を冷間圧延と歪取り焼鈍を繰り返し行って所定の厚みの銅板を形成し、前記銅板を焼鈍後に冷間圧延して銅箔を得、前記銅箔を窒素雰囲気中において加熱する熱処理を施し、圧延加工度91〜99%で、かつ(200)結晶配向から15度以内の結晶粒が表面面積の50〜100%割合存在する銅箔を得ることを特徴とするリチウムイオン二次電池用銅箔の製造方法。   A copper ingot created by melt casting is hot-rolled and rolled to a predetermined thickness, and the hot-rolled material is repeatedly subjected to cold rolling and strain relief annealing to form a copper plate having a predetermined thickness, and the copper plate Is annealed to obtain a copper foil, and the copper foil is subjected to heat treatment in a nitrogen atmosphere to obtain a rolling degree of 91 to 99% and (200) crystal grains within 15 degrees from the crystal orientation. The manufacturing method of the copper foil for lithium ion secondary batteries characterized by obtaining the copper foil which exists in 50 to 100% of surface area. 請求項7において、前記銅鋳塊はタフピッチ銅であって、圧延加工度91〜95%で圧延加工したことを特徴とするリチウムイオン二次電池用銅箔の製造方法。   8. The method for producing a copper foil for a lithium ion secondary battery according to claim 7, wherein the copper ingot is tough pitch copper and is rolled at a rolling degree of 91 to 95%. 請求項7において、前記銅鋳塊は無酸素銅に0.001〜0.009質量%の錫を添加し、圧延加工度91〜99%で圧延加工したことを特徴とするリチウムイオン二次電池用銅箔の製造方法。   8. The lithium ion secondary battery according to claim 7, wherein the copper ingot is formed by adding 0.001 to 0.009% by mass of tin to oxygen-free copper and rolling at a rolling degree of 91 to 99%. Method for producing copper foil.
JP2010281364A 2010-12-17 2010-12-17 Method for producing copper foil for lithium ion secondary battery Active JP5575632B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010281364A JP5575632B2 (en) 2010-12-17 2010-12-17 Method for producing copper foil for lithium ion secondary battery
TW100127768A TW201228079A (en) 2010-12-17 2011-08-04 Copper foil used in rechargeable lithium-ion battery and manufacturing method thereof
CN2011102267297A CN102569745A (en) 2010-12-17 2011-08-04 Copper foil for lithium ion secondary battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010281364A JP5575632B2 (en) 2010-12-17 2010-12-17 Method for producing copper foil for lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2012129136A true JP2012129136A (en) 2012-07-05
JP5575632B2 JP5575632B2 (en) 2014-08-20

Family

ID=46414625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010281364A Active JP5575632B2 (en) 2010-12-17 2010-12-17 Method for producing copper foil for lithium ion secondary battery

Country Status (3)

Country Link
JP (1) JP5575632B2 (en)
CN (1) CN102569745A (en)
TW (1) TW201228079A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012201965A (en) * 2011-03-28 2012-10-22 Jx Nippon Mining & Metals Corp Copper foil and secondary battery using the same
JP2013241662A (en) * 2012-05-22 2013-12-05 Furukawa Electric Co Ltd:The Rolled copper foil for collector of secondary battery and method for producing the same
JP2014218730A (en) * 2013-05-10 2014-11-20 古河電気工業株式会社 Rolled copper foil and method of producing rolled copper foil
JP2016191091A (en) * 2015-03-30 2016-11-10 Jx金属株式会社 Rolled copper foil for flexible printed wiring board
WO2019160338A1 (en) * 2018-02-13 2019-08-22 주식회사 엘지화학 Anode current collector for lithium metal battery, secondary battery including same, and method for manufacturing anode current collector for lithium metal battery
CN112993261A (en) * 2019-12-12 2021-06-18 陕西铭硕新能源科技有限公司 Method for processing conductive current collector of ultra-low temperature battery with high specific energy
CN113518832A (en) * 2019-03-04 2021-10-19 Jx金属株式会社 Rolled copper foil for secondary battery negative electrode collector, secondary battery negative electrode collector and secondary battery using same, and method for producing rolled copper foil for secondary battery negative electrode collector

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104801542A (en) * 2015-05-06 2015-07-29 无锡丰元新材料科技有限公司 High-precision rolled copper foil for high-energy environment-friendly battery
CN113540409B (en) * 2021-07-15 2022-10-18 四川启睿克科技有限公司 Adjustable lithium-free negative electrode and preparation method thereof
CN114976037A (en) * 2022-06-23 2022-08-30 华星先进科学技术应用研究(天津)有限公司 Aluminum-based negative electrode plate for lithium ion battery and lithium ion secondary battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11310864A (en) * 1998-04-28 1999-11-09 Kobe Steel Ltd Copper foil excellent in adhesive property to coating layer
JP2006063431A (en) * 2004-08-30 2006-03-09 Dowa Mining Co Ltd Copper alloy and its production method
JP2010150597A (en) * 2008-12-25 2010-07-08 Hitachi Cable Ltd Rolled copper foil

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4285526B2 (en) * 2006-10-26 2009-06-24 日立電線株式会社 Rolled copper foil and method for producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11310864A (en) * 1998-04-28 1999-11-09 Kobe Steel Ltd Copper foil excellent in adhesive property to coating layer
JP2006063431A (en) * 2004-08-30 2006-03-09 Dowa Mining Co Ltd Copper alloy and its production method
JP2010150597A (en) * 2008-12-25 2010-07-08 Hitachi Cable Ltd Rolled copper foil

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012201965A (en) * 2011-03-28 2012-10-22 Jx Nippon Mining & Metals Corp Copper foil and secondary battery using the same
JP2013241662A (en) * 2012-05-22 2013-12-05 Furukawa Electric Co Ltd:The Rolled copper foil for collector of secondary battery and method for producing the same
JP2014218730A (en) * 2013-05-10 2014-11-20 古河電気工業株式会社 Rolled copper foil and method of producing rolled copper foil
JP2016191091A (en) * 2015-03-30 2016-11-10 Jx金属株式会社 Rolled copper foil for flexible printed wiring board
WO2019160338A1 (en) * 2018-02-13 2019-08-22 주식회사 엘지화학 Anode current collector for lithium metal battery, secondary battery including same, and method for manufacturing anode current collector for lithium metal battery
JP2021506083A (en) * 2018-02-13 2021-02-18 エルジー・ケム・リミテッド A method for manufacturing a negative electrode current collector for a lithium metal battery, a secondary battery including the negative electrode current collector, and a negative electrode current collector for the lithium metal battery.
JP7086443B2 (en) 2018-02-13 2022-06-20 エルジー エナジー ソリューション リミテッド A method for manufacturing a negative electrode current collector for a lithium metal battery, a secondary battery including the negative electrode current collector, and a negative electrode current collector for the lithium metal battery.
CN113518832A (en) * 2019-03-04 2021-10-19 Jx金属株式会社 Rolled copper foil for secondary battery negative electrode collector, secondary battery negative electrode collector and secondary battery using same, and method for producing rolled copper foil for secondary battery negative electrode collector
CN112993261A (en) * 2019-12-12 2021-06-18 陕西铭硕新能源科技有限公司 Method for processing conductive current collector of ultra-low temperature battery with high specific energy

Also Published As

Publication number Publication date
TW201228079A (en) 2012-07-01
JP5575632B2 (en) 2014-08-20
CN102569745A (en) 2012-07-11

Similar Documents

Publication Publication Date Title
JP5575632B2 (en) Method for producing copper foil for lithium ion secondary battery
JP5639398B2 (en) Aluminum hard foil for battery current collector
US10201953B2 (en) Steel foil and method for manufacturing the same
JP5927614B2 (en) Aluminum hard foil for battery current collector
KR102426287B1 (en) Rolled copper foil for negative electrode cureent collector of secondary battery, negative electrode of secondary battery and secondary battery using the rolled copper, and method for manufacturing rolled copper foil for negative electrode current collector of secondary battery
WO2011125555A1 (en) Cu-zn alloy strip for tab material for connecting cells
WO2013150627A1 (en) Cu-mg-p-based copper alloy plate having excellent fatigue resistance, and method for manufacturing same
KR20140057584A (en) Rolled copper foil for secondary battery collector and production method therefor
JP5495649B2 (en) Aluminum alloy foil for lithium ion secondary battery and method for producing the same
JP2012224927A (en) Aluminum alloy foil for positive electrode current collector of lithium ion battery, and method for manufacturing the same
WO2013176038A1 (en) Aluminum alloy foil for electrode collector, method for manufacturing same, and electrode material
JP2000328159A (en) Copper alloy foil
JP2013032564A (en) Cu-Co-Si-BASED ALLOY EXCELLENT IN BENDABILITY
JP2002266041A (en) Rolled copper alloy foil and production method therefor
JP5316938B2 (en) Pure nickel sheet and method for producing pure nickel sheet
JP6182372B2 (en) Copper alloy rolled foil for secondary battery current collector and method for producing the same
JP2012241232A (en) Rolled copper alloy foil and current collector for secondary battery using the same
TWI608109B (en) Rolled copper foil and lithium ion secondary battery and lithium ion capacitor using the same
JP2015017302A (en) Secondary battery current collector copper alloy rolled foil and method for producing the same
JP2015120968A (en) Aluminum alloy for hard foil, aluminum alloy hard foil, aluminum alloy foil for lithium ion secondary battery positive collector and manufacturing method for aluminum alloy hard foil
JP2013204109A (en) Cu-Zn-Sn BASED COPPER ALLOY STRIP
JP7042961B1 (en) Rolled copper foil for secondary batteries, and secondary battery negative electrodes and secondary batteries using it
JP6162512B2 (en) Copper alloy rolled foil for secondary battery current collector and method for producing the same
CN109565054B (en) Coating material for negative electrode collector of secondary battery and method for producing same
JP2021143350A (en) Aluminum alloy foil and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130215

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130926

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140702

R150 Certificate of patent or registration of utility model

Ref document number: 5575632

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250