JP2013204109A - Cu-Zn-Sn BASED COPPER ALLOY STRIP - Google Patents

Cu-Zn-Sn BASED COPPER ALLOY STRIP Download PDF

Info

Publication number
JP2013204109A
JP2013204109A JP2012075874A JP2012075874A JP2013204109A JP 2013204109 A JP2013204109 A JP 2013204109A JP 2012075874 A JP2012075874 A JP 2012075874A JP 2012075874 A JP2012075874 A JP 2012075874A JP 2013204109 A JP2013204109 A JP 2013204109A
Authority
JP
Japan
Prior art keywords
copper alloy
alloy strip
ray diffraction
plane
based copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012075874A
Other languages
Japanese (ja)
Other versions
JP5130406B1 (en
Inventor
Akihiro Kakitani
明宏 柿谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2012075874A priority Critical patent/JP5130406B1/en
Application granted granted Critical
Publication of JP5130406B1 publication Critical patent/JP5130406B1/en
Priority to TW102106159A priority patent/TWI507550B/en
Priority to CN201310104222.3A priority patent/CN103361511B/en
Publication of JP2013204109A publication Critical patent/JP2013204109A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Connection Of Batteries Or Terminals (AREA)
  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a Cu-Zn-Sn based copper alloy strip having satisfactory repeated bendability and fatigue resistance.SOLUTION: A Cu-Zn-Sn based copper alloy strip includes, by mass, 2.0 to 12.0% Zn and 0.1 to 1.0% Sn, and the balance copper with inevitable impurities, and, in the surface, provided that X-ray diffraction intensity from the {200} face is defined as I{200}, the X-ray diffraction intensity from the {311} face is defined as I{311}, and the X-ray diffraction intensity from the {220} face is defined as I{220}, and also, provided that the X-ray diffraction intensities from the (200), (220) and (311) faces of a pure copper powder standard sample are defined as I{200}, I{220} and I{311}, respectively, 2.5≤[I{220}/I{220}]≤3.5, 2.2≤[I{200}/I{200}+I{311}/I{311}] and also 1.5≤I{311}/I{200} are satisfied.

Description

本発明は、電池接続タブ材等の繰り返し曲げ性が要求される用途に好適に用いられる銅合金条に関する。   The present invention relates to a copper alloy strip suitably used for applications requiring repeated bendability such as a battery connection tab material.

ビデオカメラ等の携帯用電子機器にはニッカド電池やリチウム電池等の充電式電池が用いられる。また、近年の環境負荷低減の動きを受け、電気自動車やハイブリッド自動車の需要も増加し、車載用リチウムイオン二次電池の開発も進んでいる。これら充電式電池は必要な電気容量を確保するため、複数個の単体構造の電池を複数本互いに近接した状態で電気的に接続して使用される。電池の接続に用いられる金属部品は、集電タブまたはタブと呼ばれ、確実な接続を図るために、電気抵抗による発熱を利用した抵抗溶接により電池の電極と溶着されることが多い(特許文献1)。
電極にタブが溶接された複数個の電池をケース内にコンパクトに収納するため、タブには厳しい曲げ加工が施される。そのため、タブに使用される材料には電極との良好な溶接性と、繰返し曲げ性が要求される。
A rechargeable battery such as a nickel cadmium battery or a lithium battery is used for a portable electronic device such as a video camera. In addition, demand for electric vehicles and hybrid vehicles has increased in response to the recent trend of reducing environmental impact, and the development of in-vehicle lithium-ion secondary batteries is also progressing. These rechargeable batteries are used by electrically connecting a plurality of single-structure batteries in a state of being close to each other in order to ensure a necessary electric capacity. Metal parts used for battery connection are called current collecting tabs or tabs, and are often welded to battery electrodes by resistance welding using heat generated by electric resistance in order to achieve reliable connection (Patent Documents). 1).
In order to house a plurality of batteries in which the tabs are welded to the electrodes in a compact manner, the tabs are subjected to severe bending. Therefore, the material used for the tab is required to have good weldability with the electrode and repeated bendability.

シリーズ型の抵抗溶接機を用い、電極を構成するステンレス板や軟鋼板とタブとを接続する際、タブの導電率が高すぎると、タブに過大な電流が流れて溶損に至る。このため、従来のタブには、ニッケルや比較的導電率が低い銅合金等が使用されていた。   When connecting a stainless steel plate or mild steel plate constituting an electrode and a tab using a series resistance welding machine, if the conductivity of the tab is too high, an excessive current flows through the tab, resulting in melting damage. For this reason, nickel or a copper alloy having a relatively low conductivity has been used for the conventional tab.

特許公開2004−134197Patent Publication 2004-134197

しかしながら、近年のニッケル価格の高騰を受け、コストダウンのためにニッケルから銅合金にタブ材料を変更する動きが出ている。タブ材料として適した銅合金としては、Cu−Ni−Sn系合金が挙げられるが、Cu−Ni−Sn系合金は溶接性及び繰返し曲げ性が十分でなく、これら特性の改善が望まれていた。
従って、本発明は、良好な繰返し曲げ性と耐疲労特性を有するCu-Zn-Sn系銅合金条の提供を目的とする。
However, in response to the recent rise in nickel prices, there is a move to change the tab material from nickel to copper alloy to reduce costs. A copper alloy suitable as a tab material includes a Cu—Ni—Sn alloy, but the Cu—Ni—Sn alloy has insufficient weldability and repeated bendability, and improvement of these characteristics has been desired. .
Accordingly, an object of the present invention is to provide a Cu—Zn—Sn based copper alloy strip having good repeated bendability and fatigue resistance.

本発明者は、{220}面の割合を少なくし、さらに{200}面及び{311}面の割合を多くすることで、良好な繰り返し曲げ性と強度を両立できることを見出した。
本発明のCu-Zn-Sn系銅合金条は、2.0〜12.0質量%のZn、0.1〜1.0質量%のSnを含有し、残部が銅および不可避的不純物からなり、表面における{200}面からのX線回折強度をI{200}とし、{311}面からのX線回折強度をI{311}とし、{220}面からのX線回折強度をI{220}とし、かつ、純銅粉末標準試料の(200)、(220)、(311)面からのX解回折強度をそれぞれI{200}、I{220}、I{311}としたとき、2.5≦[I{220}/I{220}]≦3.5、2.2≦[I{200}/I{200}+I{311}/I{311}]かつ1.5≦I{311}/I{200}を満たす。
The present inventor has found that good repeatability and strength can be achieved by reducing the ratio of {220} plane and increasing the ratio of {200} plane and {311} plane.
The Cu—Zn—Sn-based copper alloy strip of the present invention contains 2.0 to 12.0% by mass of Zn and 0.1 to 1.0% by mass of Sn, with the balance being copper and inevitable impurities. , The X-ray diffraction intensity from the {200} plane on the surface is I {200}, the X-ray diffraction intensity from the {311} plane is I {311}, and the X-ray diffraction intensity from the {220} plane is I { 220}, and the X-resolved diffraction intensities from the (200), (220), (311) planes of the pure copper powder standard sample were I 0 {200}, I 0 {220}, I 0 {311}, respectively. Then, 2.5 ≦ [I {220} / I 0 {220}] ≦ 3.5, 2.2 ≦ [I {200} / I 0 {200} + I {311} / I 0 {311}] And 1.5 ≦ I {311} / I {200}.

更にNi,Mg,Fe,P,Mn及びCrの群から選ばれる一種以上を合計で0.005〜0.8質量%含有することが好ましい。
切断法によって求めた結晶粒径が15μm以下であることが好ましい。
表面にリフローSnめっき層を有することが好ましい。
Furthermore, it is preferable to contain 0.005-0.8 mass% in total of 1 or more types chosen from the group of Ni, Mg, Fe, P, Mn, and Cr.
The crystal grain size determined by the cutting method is preferably 15 μm or less.
It is preferable to have a reflow Sn plating layer on the surface.

本発明によれば、良好な繰返し曲げ性と耐疲労特性を有するCu-Zn-Sn系銅合金条が得られる。   According to the present invention, a Cu—Zn—Sn based copper alloy strip having good repeated bendability and fatigue resistance can be obtained.

本発明の合金条を用いたタブ片を単体電池の電極と抵抗溶接した状態を示す図である。It is a figure which shows the state which carried out resistance welding of the tab piece using the alloy strip of this invention with the electrode of a single battery. 耐国連試験(疲労試験)の方法を示す図である。It is a figure which shows the method of a UN-proof test (fatigue test).

以下、本発明の実施形態に係るCu-Zn-Sn系銅合金条について説明する。なお、本発明において%とは、特に断らない限り、質量%を示すものとする。
図1に示すように、本発明の銅合金条は、例えば短冊状のタブ片10に切断され、単体電池20の電極20aと抵抗溶接により接続(溶着)される。図1では、各単体電池20の極性の異なる電極同士がタブ片10で電気的に接続され、直列に接続されている。
Hereinafter, the Cu—Zn—Sn based copper alloy strip according to the embodiment of the present invention will be described. In the present invention, “%” means “% by mass” unless otherwise specified.
As shown in FIG. 1, the copper alloy strip of the present invention is cut into, for example, a strip-shaped tab piece 10 and connected (welded) to the electrode 20a of the unit cell 20 by resistance welding. In FIG. 1, electrodes having different polarities of the individual batteries 20 are electrically connected by a tab piece 10 and connected in series.

まず、銅合金条の組成の限定理由について説明する。
(Zn)
Zn含有量を2.0〜12.0質量%とし、好ましくは2.0〜9.0質量%とする。Znが2.0%未満であると、タブとして必要な強度が不充分になると共に、導電率が高くなりすぎて溶接時にタブが溶損したり、電極側のステンレス板や軟鋼板に電流が流れにくくなるため溶接性が劣化する。Znが12.0%を超えると、溶接時にZnが気化して材料が脆化して溶接性が劣化するだけでなく、導電率が低くなり電池の高性能化が達成しにくい。
(Sn)
Sn含有量を0.1〜1.0質量%とし、好ましくは0.1〜0.5質量%とする。Snが0.1%未満であると、十分な強度が得られない。Snが1.0%を超えると、導電率が低下する。
(上記以外の添加元素)
上記合金条には、合金の強度、耐熱性、耐応力緩和性等を改善する目的で、更にNi,Mg,Fe,P,Mn,及びCrの群から選ばれる一種以上を合計で0.005〜0.8質量%含有することができる。これら元素の総量が0.005%未満では所望の特性が得られず、総量が0.8%を超えると所望の特性は得られるものの、導電性や曲げ加工性が低下する。
First, the reasons for limiting the composition of the copper alloy strip will be described.
(Zn)
The Zn content is set to 2.0 to 12.0 mass%, preferably 2.0 to 9.0 mass%. If the Zn content is less than 2.0%, the strength required for the tab will be insufficient, the electrical conductivity will be too high, and the tab will melt during welding, or current will flow through the stainless steel plate or mild steel plate on the electrode side. Since it becomes difficult, weldability deteriorates. If Zn exceeds 12.0%, not only does Zn vaporize during welding, the material becomes brittle and weldability deteriorates, but also the conductivity becomes low and it is difficult to achieve high performance of the battery.
(Sn)
The Sn content is 0.1 to 1.0% by mass, preferably 0.1 to 0.5% by mass. If Sn is less than 0.1%, sufficient strength cannot be obtained. When Sn exceeds 1.0%, the electrical conductivity decreases.
(Additive elements other than the above)
For the purpose of improving the strength, heat resistance, stress relaxation resistance, etc. of the alloy, the above alloy strip further contains at least 0.005 in total selected from the group consisting of Ni, Mg, Fe, P, Mn, and Cr. It can contain -0.8 mass%. If the total amount of these elements is less than 0.005%, the desired characteristics cannot be obtained. If the total amount exceeds 0.8%, the desired characteristics can be obtained, but the conductivity and bending workability deteriorate.

次に、銅合金条の集合組織の規定について説明する。本発明者らは、Cu-Zn-Sn系銅合金条を種々の条件で製造したときの各結晶面の集積度と、繰返し曲げ性との関係を調査、解析した結果、以下の知見を得た。
まず、Cu-Zn-Sn系銅合金条は、通常、熱間圧延及び面削後、冷間圧延と焼鈍を数回(通常、2回程度)繰り返し、最後に仕上げ圧延して製造されるが、繰り返し曲げ性は最後の焼鈍上がりが最も良好であり、仕上げ冷間圧延の加工度の増加と共に繰り返し曲げ性が低下する。一方、銅合金条の強度は仕上げ冷間圧延の加工度の増加と共に向上する。
そこで、良好な繰り返し曲げ性と強度を両立させるためには、仕上げ冷間圧延の加工度を高くし過ぎないようにする必要がある。そして、仕上げ圧延加工度の増加と共にI(220)が増加し、かつI(200)とI(311)が減少することから、以下のように、{220}面の割合を少なくし、さらに{200}面及び{311}面の割合を多くする。仕上げ圧延の加工度を15〜50%とするとよい。
また、焼鈍時の昇温速度を高くすると、{200}面に比べて正し粒である{311}面がより多く成長し、合金条内の歪が少なくなることで繰り返し曲げ性および耐疲労特性が向上する。
なお、Cu-Zn-Sn系銅合金条の強度(引張強さ)は、また、上記のように集合組織を制御し、後述する耐国連試験を合格すれば320MPa以上の引張強さであれば問題ない。特に、400MPa以上であれば好ましい。
Next, the rules for the texture of the copper alloy strip will be described. As a result of investigating and analyzing the relationship between the degree of integration of each crystal plane and repeated bendability when the Cu—Zn—Sn based copper alloy strip is produced under various conditions, the following knowledge has been obtained. It was.
First, Cu—Zn—Sn-based copper alloy strips are usually manufactured by repeating cold rolling and annealing several times (usually about twice) after hot rolling and chamfering, and finally finish rolling. The repeated bendability is best at the final annealing, and the repeatability decreases with an increase in the degree of finish cold rolling. On the other hand, the strength of the copper alloy strip is improved with an increase in the degree of finish cold rolling.
Therefore, in order to achieve both good repeatability and strength, it is necessary not to make the degree of finish cold rolling too high. And since I (220) increases and I (200) and I (311) decrease with the increase in the finish rolling work degree, the ratio of {220} plane is reduced as follows, and { The ratio of the 200} plane and the {311} plane is increased. The degree of finish rolling is preferably 15 to 50%.
Further, when the temperature rising rate during annealing is increased, more {311} planes, which are correct grains, are grown compared to {200} planes, and distortion in the alloy strip is reduced, so that repeated bendability and fatigue resistance are increased. Improved characteristics.
In addition, if the strength (tensile strength) of the Cu—Zn—Sn-based copper alloy strip is controlled to the texture as described above and passes the UN resistance test described later, the tensile strength is 320 MPa or more. no problem. In particular, 400 MPa or more is preferable.

つまり、表面における{200}面からのX線回折強度をI{200}とし、{311}面からのX線回折強度をI{311}とし、{220}面からのX線回折強度をI{220}とし、かつ、純銅粉末標準試料の(200)、(220)、(311)面からのX解回折強度をそれぞれI{200}、I{220}、I{311}としたとき、
本発明のCu-Zn-Sn系銅合金条は、2.5≦[I{220}/I{220}]≦3.5、2.2≦[I{200}/I{200}+I{311}/I{311}]、かつ1.5≦I{311}/I{200}を満たすように集合組織が制御される。
That is, the X-ray diffraction intensity from the {200} plane on the surface is I {200}, the X-ray diffraction intensity from the {311} plane is I {311}, and the X-ray diffraction intensity from the {220} plane is I {220}, and X solution diffraction intensities from the (200), (220), (311) planes of the pure copper powder standard sample are I 0 {200}, I 0 {220}, I 0 {311}, respectively. When
The Cu—Zn—Sn based copper alloy strip of the present invention has 2.5 ≦ [I {220} / I 0 {220}] ≦ 3.5, 2.2 ≦ [I {200} / I 0 {200}. The texture is controlled to satisfy + I {311} / I 0 {311}] and 1.5 ≦ I {311} / I {200}.

[I{220}/I{220}]が2.5未満である場合には、仕上げ冷間圧延の加工度が十分でなく、銅合金条の強度が低下する。[I{220}/I{220}]が3.5を超える場合には、仕上げ冷間圧延の加工度が高くなり過ぎ、繰り返し曲げ性が低下する。
[I{200}/I{200}+I{311}/I{311}]が2.2未満である場合には、仕上げ冷間圧延の加工度が高くなり過ぎ、繰り返し曲げ性が低下する。なお、[I{200}/I{200}+I{311}/I{311}]の上限は例えば、製造上、4.0程度が上限である。
When [I {220} / I 0 {220}] is less than 2.5, the workability of finish cold rolling is not sufficient, and the strength of the copper alloy strip is lowered. When [I {220} / I 0 {220}] exceeds 3.5, the workability of finish cold rolling becomes too high, and the repeated bendability decreases.
When [I {200} / I 0 {200} + I {311} / I 0 {311}] is less than 2.2, the degree of finish cold rolling becomes too high, and repeated bendability is increased. descend. In addition, the upper limit of [I {200} / I 0 {200} + I {311} / I 0 {311}] is, for example, about 4.0 due to manufacturing.

又、上記したように、Cu-Zn-Sn系銅合金条を製造するには、熱間圧延及び面削後、冷間圧延と焼鈍を数回繰り返すが、焼鈍時の昇温速度を高くすると、{200}面に比べて整粒である{311}面がより多く成長し、合金条内の歪が少なくなって繰り返し曲げ性および耐疲労特性がさらに向上する。そして、1.5≦I{311}/I{200}であれば、集合組織中の{311}面の割合が十分多くなるので好ましい。なお、1.5≦I{311}/I{200}とするためには、焼鈍時の昇温速度を例えば20℃/sec以上とするとよい。なお、従来、焼鈍時の昇温速度は5〜15℃/secが通常であった。   In addition, as described above, in order to produce a Cu-Zn-Sn-based copper alloy strip, after hot rolling and chamfering, cold rolling and annealing are repeated several times. , The {311} plane that is sized is grown more than the {200} plane, the strain in the alloy strip is reduced, and the repeated bendability and fatigue resistance are further improved. If 1.5 ≦ I {311} / I {200}, the ratio of {311} planes in the texture is sufficiently large, which is preferable. In order to satisfy 1.5 ≦ I {311} / I {200}, the temperature rising rate during annealing is preferably set to 20 ° C./sec or more, for example. Conventionally, the temperature increase rate during annealing is usually 5 to 15 ° C./sec.

本発明のCu-Zn-Sn系銅合金条の厚みは特に制限はないが、0.4mm以下であると、電池タブ用途等に用いた場合に軽量化が図られると共に、繰り返し曲げ性がさらに向上するので好ましい。
又、本発明のCu-Zn-Sn系銅合金条の片面又は両面に厚み5μm以下のリフローSnめっき層を設けてもよい。リフローSnめっき層は、Cu-Zn-Sn系銅合金条の表面に公知の電気Snめっきを施すか、または0.1〜1.0μmのCu下地めっきの上に上記の電気Snめっきを施した後、Snの溶融温度以上に保つリフロー処理で形成することができる。厚み5μm以下のリフロー処理を行っても上記した銅合金条の集合組織の集積度(I{220}等)および繰り返し曲げ性は変わらない。
The thickness of the Cu—Zn—Sn copper alloy strip of the present invention is not particularly limited, but if it is 0.4 mm or less, the weight can be reduced when it is used for battery tabs and the like, and the repeated bendability is further increased. Since it improves, it is preferable.
In addition, a reflow Sn plating layer having a thickness of 5 μm or less may be provided on one side or both sides of the Cu—Zn—Sn copper alloy strip of the present invention. For the reflow Sn plating layer, the surface of the Cu—Zn—Sn-based copper alloy strip is subjected to a known electric Sn plating, or the above-mentioned electric Sn plating is applied on a 0.1 to 1.0 μm Cu base plating. Thereafter, it can be formed by a reflow process that maintains the melting temperature of Sn or higher. Even when a reflow treatment with a thickness of 5 μm or less is performed, the degree of texture accumulation (I {220}, etc.) and repeated bendability of the copper alloy strip described above do not change.

本発明のCu-Zn-Sn系銅合金条は、通常、熱間圧延及び面削後、冷間圧延と焼鈍を数回(通常、2回程度)繰り返し、最後に仕上げ圧延して製造することができる。繰り返し曲げ性は最後の焼鈍上がりが最も良好であり、仕上げ冷間圧延の加工度の増加と共に繰り返し曲げ性が低下する。
さらに、上記したように、1.5≦I{311}/I{200}とするためには、焼鈍時の昇温速度を20℃/sec以上とするとよい。焼鈍時の昇温速度の上限は特に指定はないが、例えば35℃/sec程度である。
なお、熱間圧延終了時の温度を例えば600〜750℃とするのが好ましい。
又、熱間圧延後に行う上記した焼鈍時の材料の最高到達温度を900℃以下とすることが好ましい。焼鈍時の材料の最高到達温度が900℃を超えると、切断法によって求めた結晶粒径が15μmを超え、I{311}/I{200}が1.5未満となって繰り返し曲げ性が劣る場合がある。
The Cu—Zn—Sn-based copper alloy strip of the present invention is usually manufactured by repeatedly rolling cold rolling and annealing several times (usually about twice) after hot rolling and chamfering, and finally finish rolling. Can do. The repeat bendability is best at the final annealing, and the repeat bendability decreases as the workability of finish cold rolling increases.
Furthermore, as described above, in order to satisfy 1.5 ≦ I {311} / I {200}, the temperature increase rate during annealing is preferably set to 20 ° C./sec or more. The upper limit of the rate of temperature increase during annealing is not particularly specified, but is, for example, about 35 ° C./sec.
In addition, it is preferable that the temperature at the time of completion | finish of hot rolling shall be 600-750 degreeC, for example.
Moreover, it is preferable that the highest temperature of the material at the time of annealing described above after hot rolling is 900 ° C. or less. When the maximum temperature of the material during annealing exceeds 900 ° C., the crystal grain size obtained by the cutting method exceeds 15 μm, and I {311} / I {200} is less than 1.5, resulting in poor repeatability. There is a case.

各実施例及び比較例の試料を、以下のように作製した。
電気銅を原料とし、大気溶解炉を用いて表1に示す組成の銅合金を溶製し、インゴットに鋳造した。このインゴットを板厚10mmまで600〜750℃で熱間圧延を行った後、面削し、冷間圧延と焼鈍を複数回繰り返し、最後に仕上げ圧延を行い、実施例16は仕上圧延後の板厚を0.4mmとし、それ以外は仕上圧延後の板厚を0.15mmとして試料を製造した。また、焼鈍時の炉温は650〜1000℃、焼鈍時間は15〜110secとした。焼鈍時の昇温速度を遅くする場合は炉温を低くし、焼鈍時間を長くした。反対に焼鈍時の昇温速度を早くする場合は炉温を高くし、焼鈍時間を短くした。また、炉に試料を投入する時は、K熱電対を試料に接触させ、焼鈍時の材料の最高到達温度を測定した。
冷間圧延の総加工度を98%とし、仕上げ圧延の加工度、焼鈍時の昇温速度を表1の通りとした。
Samples of Examples and Comparative Examples were prepared as follows.
Using copper as a raw material, a copper alloy having the composition shown in Table 1 was melted using an atmospheric melting furnace and cast into an ingot. This ingot was hot-rolled to a plate thickness of 10 mm at 600 to 750 ° C., then face chamfered, cold rolling and annealing were repeated a plurality of times, and finally finished rolling was performed. Example 16 is a plate after finish rolling. Samples were manufactured with a thickness of 0.4 mm, and a thickness of 0.15 mm after finish rolling. The furnace temperature during annealing was set to 650 to 1000 ° C., and the annealing time was set to 15 to 110 seconds. When slowing the rate of temperature rise during annealing, the furnace temperature was lowered and the annealing time was lengthened. On the other hand, when increasing the heating rate during annealing, the furnace temperature was increased and the annealing time was shortened. In addition, when the sample was put into the furnace, a K thermocouple was brought into contact with the sample, and the highest temperature of the material during annealing was measured.
The total workability of cold rolling was 98%, and the workability of finish rolling and the rate of temperature increase during annealing were as shown in Table 1.

さらに、実施例17については、得られた試料の両面に対し、以下の方法で、前処理、Cu下地めっき(厚み0.5μm)、及びSnめっき(厚み1.5μm)をこの順で施し、次いでSnめっき層をリフロー処理した。
前処理;試料を10質量%硫酸−1質量%過酸化水素溶液により酸洗し、表面酸化膜を除去した。アルカリ水溶液中で試料をカソードとして電解脱脂を行った(電流密度:7.5A/dm、脱脂剤:水酸化ナトリウム10g/L、炭酸ナトリウム30g/L、メタ珪酸ナトリウム7g/L、残部水、温度:80℃、時間60秒)。次に、10質量%硫酸水溶液を用いて酸洗した。
Cuめっき;浴組成:硫酸60g/L、硫酸銅200g/L、残部水、めっき浴温度:25℃、電流密度:5.0A/dm
Snめっき;浴組成:硫酸第1すず40g/L、硫酸60g/L、クレゾールスルホン酸40g/L、ゼラチン2g/L、β‐ナフトール1g/L、残部水、めっき浴温度:20℃、電流密度:1.5A/dm
Cuめっき厚みおよびSnめっき厚みの測定;めっき電解時間(電解時間2分間の場合、リフロー処理前のCu層の厚みは0.8μm、Sn層の厚みは約1μm)により調整した。
リフロー処理;温度を400℃、雰囲気ガスを窒素(酸素1vol%以下)に調整した加熱炉中に、Snめっき後の試料を5〜30秒間挿入し水冷した。
Furthermore, for Example 17, both sides of the obtained sample were subjected to pretreatment, Cu base plating (thickness 0.5 μm), and Sn plating (thickness 1.5 μm) in this order by the following method. Next, the Sn plating layer was reflowed.
Pretreatment: The sample was pickled with a 10% by mass sulfuric acid-1% by mass hydrogen peroxide solution to remove the surface oxide film. Electrolytic degreasing was performed using a sample as a cathode in an alkaline aqueous solution (current density: 7.5 A / dm 2 , degreasing agent: sodium hydroxide 10 g / L, sodium carbonate 30 g / L, sodium metasilicate 7 g / L, remaining water, Temperature: 80 ° C., time 60 seconds). Next, it pickled using 10 mass% sulfuric acid aqueous solution.
Cu plating; bath composition: sulfuric acid 60 g / L, copper sulfate 200 g / L, remaining water, plating bath temperature: 25 ° C., current density: 5.0 A / dm 2
Sn plating; bath composition: sulfuric acid first tin 40 g / L, sulfuric acid 60 g / L, cresol sulfonic acid 40 g / L, gelatin 2 g / L, β-naphthol 1 g / L, remaining water, plating bath temperature: 20 ° C., current density : 1.5 A / dm 2
Measurement of Cu plating thickness and Sn plating thickness; plating electrolysis time (in the case of electrolysis time of 2 minutes, the thickness of the Cu layer before reflow treatment was 0.8 μm, and the thickness of the Sn layer was about 1 μm).
Reflow treatment: The sample after Sn plating was inserted into a heating furnace adjusted to 400 ° C. and the atmosphere gas to nitrogen (oxygen 1 vol% or less) for 5 to 30 seconds and cooled with water.

<X線回折強度>
得られた試料の表面の{200}、{311}、{220}面のX線回折強度Iをそれぞれ測定した。測定は、リガク製RINT2500を使用し、X線照射条件はCo管球を使用し、管電圧25KV、管電流20mAとした。同様にして、純銅粉末標準試料の{200}、{311}、面のX線回折強度Iをそれぞれ測定した。
<結晶粒径>
JIS-H0501に規定する切断法によって圧延平行断面の結晶粒径を求めた。
<引張強さ(TS)>
引張試験機により、JIS−Z2241に従い、圧延方向と平行な方向における引張強さ(TS)をそれぞれ測定した。圧延方向と平行な方向についてそれぞれ測定した引張強さを平均した値を表1に示す。
<X-ray diffraction intensity>
The X-ray diffraction intensity I of the {200}, {311}, and {220} planes of the surface of the obtained sample was measured. For the measurement, RINT 2500 made by Rigaku was used, the X-ray irradiation conditions were a Co tube, tube voltage 25 KV, tube current 20 mA. Similarly, {200} of the pure copper powder standard sample, {311}, the X-ray diffraction intensity I 0 of the surface were measured.
<Crystal grain size>
The crystal grain size of the rolled parallel section was determined by the cutting method specified in JIS-H0501.
<Tensile strength (TS)>
The tensile strength (TS) in a direction parallel to the rolling direction was measured by a tensile tester according to JIS-Z2241. Table 1 shows values obtained by averaging the tensile strengths measured in the direction parallel to the rolling direction.

<耐国連試験(耐疲労特性)>
図2に示す方法で耐国連試験を行い、耐疲労特性を評価した。耐国連試験は、疲労試験の一種であり、図2に示すように単体電池20を3列(直列)×2段(並列)で配置し、電極20aに試料(タブ片)10を溶接した後、最外側のタブ片10を回路基板30に半田付け32する。回路基板30はコネクタ40に接続され、全体がケース50に収容される。そして、ケース50をX方向(単体電池20の直列接続方向)、Y方向(単体電池20の並列接続方向)、及びZ方向(X−Y方向に垂直な方向)に、それぞれ振幅:0.8mm、振動数:7.0〜200Hz、掃引き時間:7.5min×12サイクル(合計90min)で振動させる。振動方向はX,Y,Zの各方向の一方のみとし、複数方向に同時に振動させず、振動数は、時間に比例し振動数を上記範囲内で増減させる。
このようにして試験を行い、以下の基準で評価した。評価が○であれば良い。
○:試験後にタブの破断または亀裂が無い
×:試験後にタブの破断または亀裂が有る
<UN resistance test (fatigue resistance)>
A UN resistance test was conducted by the method shown in FIG. 2 to evaluate fatigue resistance. The UN resistance test is a type of fatigue test. After the unit cells 20 are arranged in three rows (in series) × two steps (in parallel) and the sample (tab piece) 10 is welded to the electrode 20a as shown in FIG. The outermost tab piece 10 is soldered 32 to the circuit board 30. The circuit board 30 is connected to the connector 40, and the whole is accommodated in the case 50. The case 50 has an amplitude of 0.8 mm in the X direction (the direction in which the unit cells 20 are connected in series), the Y direction (the direction in which the unit cells 20 are connected in parallel), and the Z direction (the direction perpendicular to the XY direction). Vibration frequency: 7.0 to 200 Hz, sweep time: 7.5 min × 12 cycles (total 90 min). The vibration direction is only one of the X, Y, and Z directions, and the vibration frequency is not simultaneously vibrated in a plurality of directions. The vibration frequency is proportional to time, and the vibration frequency is increased or decreased within the above range.
Thus, the test was conducted and evaluated according to the following criteria. If evaluation is (circle), it is good.
○: No tab break or crack after test ×: Tab break or crack after test

<繰返し曲げ性>
長手方向が圧延方向に平行となるように、厚さ0.15mm、幅10mm、長さ40mmの試験片を4個作製し、試験片の長手方向に直角な方向を曲げ軸として、180°曲げを行なった後、曲げ戻した。これを1回として、試料が破断するまで繰返し曲げを行い、試料4個の平均破断(繰返し曲げ)回数を求めた。以下の基準で評価した。評価が◎〜△であれば実用上問題ない。
◎:繰返し曲げ回数が3回を超える
○:繰返し曲げ回数が2回以上3回未満
△:繰返し曲げ回数が2回
×:繰返し曲げ回数が2回未満
<Repeatability>
Four test pieces having a thickness of 0.15 mm, a width of 10 mm, and a length of 40 mm are prepared so that the longitudinal direction is parallel to the rolling direction, and the test piece is bent 180 ° with the direction perpendicular to the longitudinal direction of the test piece as the bending axis. After performing, it was bent back. This was taken as one time and repeated bending until the sample broke, and the average number of times of breaking (repeating bending) of four samples was determined. Evaluation was made according to the following criteria. If the evaluation is で あ れ ば to △, there is no practical problem.
A: The number of repeated bending exceeds 3 times
○: The number of repeated bending is 2 times or more and less than 3 times
Δ: The number of repeated bendings is 2 ×: The number of repeated bendings is less than 2

得られた結果を表1に示す。   The obtained results are shown in Table 1.

表1から明らかなように、2.5≦[I{220}/I{220}]≦3.5、2.2≦[I{200}/I{200}+I{311}/I{311}]かつ1.5≦I{311}/I{200}を満たす各実施例の場合、耐疲労特性及び繰り返し曲げ性が共に優れていた。 As is apparent from Table 1, 2.5 ≦ [I {220} / I 0 {220}] ≦ 3.5, 2.2 ≦ [I {200} / I 0 {200} + I {311} / In each example satisfying I 0 {311} and 1.5 ≦ I {311} / I {200}, both fatigue resistance and repeated bendability were excellent.

一方、仕上げ冷間圧延の加工度が50%を超えた比較例1,5,6の場合、[I{200}/I{200}+I{311}/I{311}]が2.2未満となり、繰り返し曲げ性が低下した。
焼鈍時の昇温速度が20℃/sec未満である比較例2、3の場合、I{311}/I{200}が1.5未満となり、耐疲労特性が低下した。
仕上げ冷間圧延を行わなかった比較例4の場合、及び仕上げ冷間圧延の加工度が15%未満である比較例7の場合、[I{220}/I{220}]が2.5未満となり、耐疲労特性が劣った。
焼鈍時の昇温速度が20℃/sec未満で、かつ仕上げ冷間圧延の加工度が15%未満である比較例8の場合、I{311}/I{200}が1.5未満となると共に、[I{220}/I{220}]が2.5未満となり、耐疲労特性及び繰り返し曲げ性の両方が劣った。
焼鈍時の材料の最高到達温度が900℃を超えた比較例9の場合、仕上圧延後の結晶粒径が15μmを超えて粗大化し、I{311}/I{200}が1.5未満となって繰り返し曲げ性が劣った。
On the other hand, in the case of Comparative Examples 1, 5, and 6 in which the degree of finish cold rolling exceeds 50%, [I {200} / I 0 {200} + I {311} / I 0 {311}] is 2 Less than 2 and the bendability repeatedly decreased.
In Comparative Examples 2 and 3 in which the temperature rising rate during annealing was less than 20 ° C./sec, I {311} / I {200} was less than 1.5, and the fatigue resistance was deteriorated.
In the case of Comparative Example 4 where the finish cold rolling was not performed and in the case of Comparative Example 7 where the degree of finish cold rolling was less than 15%, [I {220} / I 0 {220}] was 2.5. The fatigue resistance was inferior.
In the case of Comparative Example 8 where the rate of temperature increase during annealing is less than 20 ° C./sec and the degree of finish cold rolling is less than 15%, I {311} / I {200} is less than 1.5, [I {220} / I 0 {220}] was less than 2.5, and both fatigue resistance and repeated bendability were inferior.
In the case of Comparative Example 9 in which the maximum temperature of the material during annealing exceeded 900 ° C., the crystal grain size after finish rolling was larger than 15 μm, and I {311} / I {200} was less than 1.5. The repeated bendability was poor.

10 タブ片
20 単体電池
20a 電極
10 Tab piece 20 Single battery 20a Electrode

本発明者は、{220}面の割合を少なくし、さらに{200}面及び{311}面の割合を多くすることで、良好な繰り返し曲げ性と強度を両立できることを見出した。
本発明のCu-Zn-Sn系銅合金条は、2.0〜12.0質量%のZn、0.1〜1.0質量%のSnを含有し、残部が銅および不可避的不純物からなり、切断法によって求めた結晶粒径が15μm以下であり、表面における{200}面からのX線回折強度をI{200}とし、{311}面からのX線回折強度をI{311}とし、{220}面からのX線回折強度をI{220}とし、かつ、純銅粉末標準試料の(200)、(220)、(311)面からのX解回折強度をそれぞれI{200}、I{220}、I{311}としたとき、2.5≦[I{220}/I{220}]≦3.5、2.2≦[I{200}/I{200}+I{311}/I{311}]かつ1.5≦I{311}/I{200}を満たす。
The present inventor has found that good repeatability and strength can be achieved by reducing the ratio of {220} plane and increasing the ratio of {200} plane and {311} plane.
The Cu—Zn—Sn-based copper alloy strip of the present invention contains 2.0 to 12.0% by mass of Zn and 0.1 to 1.0% by mass of Sn, with the balance being copper and inevitable impurities. The crystal grain size determined by the cutting method is 15 μm or less, the X-ray diffraction intensity from the {200} plane on the surface is I {200}, and the X-ray diffraction intensity from the {311} plane is I {311} X-ray diffraction intensity from the {220} plane is I {220}, and X solution diffraction intensity from the (200), (220), (311) plane of the pure copper powder standard sample is I 0 {200}, respectively. , I 0 {220}, I 0 {311}, 2.5 ≦ [I {220} / I 0 {220}] ≦ 3.5, 2.2 ≦ [I {200} / I 0 { 200} + I {311} / I 0 {311}] and 1.5 ≦ I {311} / I {200}.

更にNi,Mg,Fe,P,Mn及びCrの群から選ばれる一種以上を合計で0.005〜0.8質量%含有することが好ましい
表面にリフローSnめっき層を有することが好ましい。

Furthermore, it is preferable to contain 0.005-0.8 mass% in total of 1 or more types chosen from the group of Ni, Mg, Fe, P, Mn, and Cr .
It is preferable to have a reflow Sn plating layer on the surface.

Claims (4)

2.0〜12.0質量%のZn、0.1〜1.0質量%のSnを含有し、残部が銅および不可避的不純物からなり、
表面における{200}面からのX線回折強度をI{200}とし、{311}面からのX線回折強度をI{311}とし、{220}面からのX線回折強度をI{220}とし、かつ、純銅粉末標準試料の(200)、(220)、(311)面からのX解回折強度をそれぞれI{200}、I{220}、I{311}としたとき、
2.5≦[I{220}/I{220}]≦3.5、2.2≦[I{200}/I{200}+I{311}/I{311}]かつ1.5≦I{311}/I{200}を満たすCu-Zn-Sn系銅合金条。
Containing 2.0-12.0 mass% Zn, 0.1-1.0 mass% Sn, the balance consisting of copper and inevitable impurities,
The X-ray diffraction intensity from the {200} plane on the surface is I {200}, the X-ray diffraction intensity from the {311} plane is I {311}, and the X-ray diffraction intensity from the {220} plane is I {220 } And the X-resolved diffraction intensities from the (200), (220), (311) planes of the pure copper powder standard sample are I 0 {200}, I 0 {220}, I 0 {311}, respectively. ,
2.5 ≦ [I {220} / I 0 {220}] ≦ 3.5, 2.2 ≦ [I {200} / I 0 {200} + I {311} / I 0 {311}] and 1 Cu—Zn—Sn based copper alloy strip satisfying 5 ≦ I {311} / I {200}.
更にNi,Mg,Fe,P,Mn及びCrの群から選ばれる一種以上を合計で0.005〜0.8質量%含有する請求項1記載のCu-Zn-Sn系銅合金条。 The Cu-Zn-Sn based copper alloy strip according to claim 1, further comprising 0.005 to 0.8 mass% in total of at least one selected from the group consisting of Ni, Mg, Fe, P, Mn and Cr. 切断法によって求めた結晶粒径が15μm以下である請求項1又は2記載のCu-Zn-Sn系銅合金条。 The Cu-Zn-Sn-based copper alloy strip according to claim 1 or 2, wherein the crystal grain size determined by a cutting method is 15 µm or less. 表面にリフローSnめっき層を有する請求項1〜3のいずれか記載のCu-Zn-Sn系銅合金条。 The Cu—Zn—Sn-based copper alloy strip according to claim 1, which has a reflow Sn plating layer on a surface thereof.
JP2012075874A 2012-03-29 2012-03-29 Cu-Zn-Sn copper alloy strip Active JP5130406B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012075874A JP5130406B1 (en) 2012-03-29 2012-03-29 Cu-Zn-Sn copper alloy strip
TW102106159A TWI507550B (en) 2012-03-29 2013-02-22 Copper - zinc - tin - based copper alloy
CN201310104222.3A CN103361511B (en) 2012-03-29 2013-03-28 Cu-Zn-Sn series copper alloy strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012075874A JP5130406B1 (en) 2012-03-29 2012-03-29 Cu-Zn-Sn copper alloy strip

Publications (2)

Publication Number Publication Date
JP5130406B1 JP5130406B1 (en) 2013-01-30
JP2013204109A true JP2013204109A (en) 2013-10-07

Family

ID=47693003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012075874A Active JP5130406B1 (en) 2012-03-29 2012-03-29 Cu-Zn-Sn copper alloy strip

Country Status (3)

Country Link
JP (1) JP5130406B1 (en)
CN (1) CN103361511B (en)
TW (1) TWI507550B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11473172B2 (en) 2017-03-24 2022-10-18 Ihi Corporation Wear-resistant copper-zinc alloy and mechanical device using same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109022898A (en) * 2018-09-11 2018-12-18 安徽楚江科技新材料股份有限公司 A kind of production technology of automotive connector one-ton brass band

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4522972B2 (en) * 2005-04-28 2010-08-11 日鉱金属株式会社 High gloss rolled copper foil for copper-clad laminates
JP4444245B2 (en) * 2005-07-15 2010-03-31 日鉱金属株式会社 Cu-Zn-Sn alloy for electrical and electronic equipment
KR100792653B1 (en) * 2005-07-15 2008-01-09 닛코킨조쿠 가부시키가이샤 Copper alloy for electronic and electric machinery and tools, and manufacturing method thereof
JP5191725B2 (en) * 2007-08-13 2013-05-08 Dowaメタルテック株式会社 Cu-Zn-Sn based copper alloy sheet, manufacturing method thereof, and connector
JP5339995B2 (en) * 2009-04-01 2013-11-13 Jx日鉱日石金属株式会社 Cu-Zn-Sn alloy plate and Cu-Zn-Sn alloy Sn plating strip
JP5490594B2 (en) * 2010-03-31 2014-05-14 Jx日鉱日石金属株式会社 Cu-Zn alloy strip for battery connection tab material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11473172B2 (en) 2017-03-24 2022-10-18 Ihi Corporation Wear-resistant copper-zinc alloy and mechanical device using same

Also Published As

Publication number Publication date
CN103361511A (en) 2013-10-23
CN103361511B (en) 2016-01-20
JP5130406B1 (en) 2013-01-30
TWI507550B (en) 2015-11-11
TW201348468A (en) 2013-12-01

Similar Documents

Publication Publication Date Title
JP5490594B2 (en) Cu-Zn alloy strip for battery connection tab material
JP6023513B2 (en) Surface-treated steel sheet for battery container, battery container and battery
KR102426287B1 (en) Rolled copper foil for negative electrode cureent collector of secondary battery, negative electrode of secondary battery and secondary battery using the rolled copper, and method for manufacturing rolled copper foil for negative electrode current collector of secondary battery
JP6124801B2 (en) Steel foil for negative electrode current collector of non-aqueous electrolyte secondary battery and manufacturing method thereof
KR20140057584A (en) Rolled copper foil for secondary battery collector and production method therefor
JP5495649B2 (en) Aluminum alloy foil for lithium ion secondary battery and method for producing the same
JP2012224927A (en) Aluminum alloy foil for positive electrode current collector of lithium ion battery, and method for manufacturing the same
JP2012129136A (en) Lithium ion secondary battery copper foil and manufacturing method thereof
JP5140171B2 (en) Copper alloy strip used for battery tab material for charging
JP5130406B1 (en) Cu-Zn-Sn copper alloy strip
WO2020179515A1 (en) Rolled copper foil for secondary battery negative electrode current collectors, secondary battery negative electrode current collector and secondary battery each using same, and method for manufacturing rolled copper foil for secondary battery negative electrode current collectors
JP2014029016A (en) Copper alloy sheet excellent in conductivity and stress relaxation property
WO2021200506A1 (en) Ni-PLATED STEEL FOIL FOR NICKEL HYDROGEN SECONDARY BATTERY COLLECTORS, NICKEL HYDROGEN SECONDARY BATTERY COLLECTOR, AND NICKEL HYDROGEN SECONDARY BATTERY
JP2021163639A (en) Nickel plating steel foil for nickel-hydrogen secondary battery current collector, nickel-hydrogen secondary battery current collector, and nickel-hydrogen secondary battery
CN109216591A (en) Battery Ni material, cathode and battery shell material
JP5904840B2 (en) Rolled copper foil
KR101971415B1 (en) Clad material for anode current collector of secondary battery and manufacturing method thereof
JP2023178067A (en) Rolled copper foil for secondary batteries, and secondary battery negative electrode and method for producing secondary battery using the same
JP2023178071A (en) Rolled copper foil for secondary batteries, and secondary battery negative electrode and method for producing secondary battery using the same
JP2024044548A (en) Aluminum alloy rolled material and its manufacturing method, and aluminum alloy conductor
JP2012211376A (en) Copper alloy strip for battery connection tab

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121009

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121105

R150 Certificate of patent or registration of utility model

Ref document number: 5130406

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250