WO2018180920A1 - Rolled copper foil - Google Patents

Rolled copper foil Download PDF

Info

Publication number
WO2018180920A1
WO2018180920A1 PCT/JP2018/011507 JP2018011507W WO2018180920A1 WO 2018180920 A1 WO2018180920 A1 WO 2018180920A1 JP 2018011507 W JP2018011507 W JP 2018011507W WO 2018180920 A1 WO2018180920 A1 WO 2018180920A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper foil
rolled copper
less
annealing
flexible
Prior art date
Application number
PCT/JP2018/011507
Other languages
French (fr)
Japanese (ja)
Inventor
一貴 青島
Original Assignee
Jx金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx金属株式会社 filed Critical Jx金属株式会社
Priority to CN201880022645.1A priority Critical patent/CN110475883A/en
Priority to KR1020197031827A priority patent/KR20190133736A/en
Priority to JP2019509677A priority patent/JPWO2018180920A1/en
Publication of WO2018180920A1 publication Critical patent/WO2018180920A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working

Definitions

  • the present invention relates to a rolled copper foil and the like, and more particularly to a copper foil used for a flexible printed wiring board having excellent vibration resistance.
  • the flexible printed wiring board is obtained by bonding a metal which is a conductive layer and a flexible insulating substrate typified by a resin film.
  • a metal which is a conductive layer and a flexible insulating substrate typified by a resin film.
  • a copper foil is used for the conductive layer, and a rolled copper foil having excellent flexibility is used particularly for applications that require flexibility.
  • General FPC manufacturing process is as follows. First, the copper foil is bonded to the resin film. For joining, there are a method of imidizing by applying heat treatment to a varnish applied on a copper foil, and a method of laminating a resin film with an adhesive and a copper foil. The copper foil with a resin film joined by these steps is referred to as CCL (copper-clad laminate). Thereafter, wiring is formed by etching to complete the FPC.
  • CCL copper-clad laminate
  • Flexibility required for rolled copper foil for FPC has become strict as electronic devices become lighter, shorter, and more functional, and various improvements have been proposed for obtaining rolled copper foil with excellent flex resistance. Yes.
  • Patent Document 1 discloses a copper foil having a specific softening temperature and a thickness of 50 ⁇ m or less.
  • Patent Documents 2 to 3 disclose a rolled copper foil having a thickness of 50 ⁇ m to 300 ⁇ m that is excellent in vibration resistance in addition to bending resistance.
  • Patent Documents 2 to 3 may not be able to be tolerated by the resin of a flexible printed wiring board used in vehicles (eg, polyimide (PI) ), Polyethylene terephthalate (PET), polyethylene naphthalate (PEN)).
  • PI polyimide
  • PET Polyethylene terephthalate
  • PEN polyethylene naphthalate
  • an object of the present invention is to provide a copper foil with few non-recrystallized portions.
  • invention 1 A copper foil having a thickness of 50 ⁇ m or more and an unrecrystallized crystal grain of 10% or less.
  • invention 2 A copper foil having a thickness of 50 ⁇ m or more and a non-recrystallized crystal grain of 10% or less in a metal structure after heating at 180 ° C. for 1 hour.
  • invention 3 A rolled copper foil according to invention 1 or 2, wherein the semi-softening temperature is 150 ° C or lower.
  • invention 4 The rolled copper foil according to invention 1 or 2, wherein the semi-softening temperature is 110 to 150 ° C.
  • invention 5 A rolled copper foil according to any one of inventions 1 to 4, Cu concentration is 99.8% by mass or more, The oxygen concentration is 0.05% by weight or less, and The total concentration of Ag, Sn, B, Zr, Ti, In and P is 0 to 0.03 mass%, Copper foil.
  • invention 6 A flexible copper clad laminate (CCL) comprising the rolled copper foil of any one of inventions 1 to 5.
  • Invention 7) Invention 6 A flexible printed wiring board (FPC) comprising a flexible copper clad laminate.
  • invention 8) An electronic component comprising the flexible printed wiring board of the seventh invention.
  • (Invention 9) A method for producing rolled copper foil, A step of performing recrystallization annealing at 450 to 800 ° C .; The method comprising a step of performing aging precipitation annealing at a temperature lower by 150 to 300 ° C. than a temperature of the recrystallization annealing, and a step of performing cold rolling so that the thickness becomes 50 ⁇ m or more.
  • (Invention 10) It is a manufacturing method of a flexible laminated board, Comprising: This method including the process of laminating
  • (Invention 11) It is a manufacturing method of a flexible printed wiring board, Comprising: The method which includes the process of forming a circuit in the flexible copper clad laminated board obtained by the method of invention 10.
  • the copper foil of the present invention has an unrecrystallized portion of 10% or less. Thereby, the vibration resistance of a flexible printed wiring board can be improved.
  • the copper foil of the present invention has an unrecrystallized portion of 10% or less in the metal structure after heating at 180 ° C. for 1 hour. Thereby, the vibration resistance of the flexible printed wiring board manufactured by heat-processing and forming CCL can be improved.
  • the copper foil may be composed of pure Cu. In another embodiment, the copper foil may contain Cu and other additive elements.
  • the Cu concentration in the copper foil is not particularly specified, but is preferably 99.8% by mass or more, more preferably 99.85% by mass or more, and 99.9% by mass or more for reasons of ensuring high conductivity. Even more preferably. However, even if the Cu concentration is too high, it leads to an increase in cost, so 99.999 mass% or less is preferable, and 99.995 mass% or less is more preferable.
  • the additive element other than Cu may be at least one selected from Ag, Sn, B, Zr, Ti, In, and P. These are preferable from the viewpoint of the flexibility and vibration of the copper foil.
  • the total concentration of Ag, Sn, B, Zr, Ti, In, and P may be 0.03% by mass or less (more preferably 0.02% by mass or less). If it exceeds 0.03 mass%, the strength is further improved, but there are cases where the conductivity is lowered and the softening temperature is raised. Although it does not specifically limit about a lower limit, 0 mass% or more may be sufficient.
  • oxygen concentration in the copper foil leads to an increase in cuprous oxide and leads to the suppression of the development of the cube orientation, it is preferably 0.05% by mass or less, and 0.005% by mass or less. For example, it can be 0.0001 mass% or more and less than 0.01 mass%.
  • oxygen-free copper (OFC) or tough pitch copper specified in JIS-H3510 or JIS-H3100 can be used.
  • the copper foil base material used in the present invention is a rolled copper foil.
  • Rolled copper foil is superior to electrolytic copper foil in that it can cope with an environment in which vibration continuously occurs and has high bending resistance.
  • the thickness should preferably be 50 ⁇ m or more, and more preferably 70 ⁇ m or more. However, if the thickness is excessively large, it may be difficult to remove the conductor layer by etching. Therefore, the thickness is preferably 300 ⁇ m or less, and more preferably 150 ⁇ m or less.
  • the copper foil of the present invention may have a suitable range of softening temperatures.
  • the semi-softening temperature here is defined as follows.
  • the tensile strength (A) after annealing for 60 minutes at various temperatures is measured.
  • the tensile strength (B) after rolling and the tensile strength (C) after annealing at 300 ° C. for 60 minutes and completely softening are measured.
  • the annealing temperature when the tensile strength (A) after annealing becomes an intermediate value between (B) and (C) is defined as a semi-softening temperature.
  • the copper foil of the present invention may have a semi-softening temperature of 150 ° C. or lower, more preferably 110 to 150 ° C. When the temperature is less than 110 ° C., softening at room temperature is likely. If it exceeds 150 ° C., it becomes difficult to soften by heat treatment in the production process of the copper clad laminate.
  • the copper foil of the present invention may have an amount of non-recrystallized particles of 10% or less (more preferably 5% or less, 1% or less, or 0%). If it exceeds 10%, the vibration resistance deteriorates.
  • the lower limit value is not particularly defined, but is typically 0% or more.
  • the amount of unrecrystallized particles can be calculated by the following method. First, a microstructure photograph of a cross section in the rolling direction is taken with a scanning electron microscope (the size of the field of view is not particularly limited, but is typically 100 ⁇ m ⁇ 200 ⁇ m). Next, 100 or more lattice points are written on the photographed photograph, and it is confirmed whether the lattice point is a recrystallized grain or an unrecrystallized part. The two can be identified on the basis of a post-rolling structure (rolling structure) photograph before heating and a structure photograph (completely recrystallized structure) after heating at 300 ° C. ⁇ 1 h. And it calculates from the ratio of the number of all the lattice points, and the number of the lattice points of an unrecrystallized part.
  • the copper foil of the present invention has an amount of unrecrystallized particles of 10% or less in a state after being heated at 180 ° C. for 1 hour. (More preferably 5% or less, 1% or less, or 0%) may be used.
  • the copper foil may finally be 10% or less. As described above, if it exceeds 10%, the vibration resistance deteriorates.
  • the lower limit value is not particularly defined, but is typically 0% or more.
  • the copper foil which concerns on this invention can be manufactured as follows, for example. First, a copper raw material such as electrolytic copper, oxygen-free copper, tough pitch copper or the like is melted, and an alloy element is added as necessary, and then the molten metal is cast to produce an ingot having a thickness of about 100 to 300 mm. Adjustment of the oxygen concentration in the melting step can be performed by techniques known to those skilled in the art, such as carbon sealing of the molten metal and release to the atmosphere. Then, after performing hot rolling, annealing and cold rolling are repeated.
  • a copper raw material such as electrolytic copper, oxygen-free copper, tough pitch copper or the like is melted, and an alloy element is added as necessary, and then the molten metal is cast to produce an ingot having a thickness of about 100 to 300 mm. Adjustment of the oxygen concentration in the melting step can be performed by techniques known to those skilled in the art, such as carbon sealing of the molten metal and release to the atmosphere. Then, after performing hot rolling, annealing and cold rolling
  • Recrystallization annealing and aging precipitation annealing can be performed before final cold rolling (more preferably, immediately before final cold rolling). Recrystallization annealing is performed under conditions of a high temperature and a short time (for example, in a continuous annealing line).
  • the temperature may be 450 to 800 ° C. (more preferably 550 to 700 ° C.), and the time may be 5 seconds to 300 seconds (more preferably 10 seconds to 200 seconds).
  • Aging precipitation annealing can be performed at a temperature lower by 150 to 300 ° C. than the recrystallization annealing described above.
  • the aging precipitation annealing may be 350 ° C. to 500 ° C.
  • the aging precipitation annealing time may be 300 times or more of the residence time in the heating furnace in the recrystallization annealing (continuous annealing line) (for example, 5 to 50 h, more preferably 5 to 20 h).
  • final cold rolling is performed.
  • the degree of reduction in the final cold rolling is 90% or more, more preferably 95% or more, and still more preferably 98% or more. And it can finish to the copper foil of the thickness described in said "(2) Rolled copper foil".
  • the flexible copper-clad laminate of the present invention includes the copper foil described above.
  • the flexible copper clad laminated board of this invention is equipped with the resin layer other than the said copper foil.
  • Several techniques can be employed to provide the resin layer. For example, a method of performing heat treatment by bonding a copper foil and a polyimide resin film using an adhesive made of a thermosetting resin such as epoxy can be used. Or the varnish containing the polyamic acid which is a precursor of a polyimide resin is apply
  • the heat treatment is often performed for bonding the insulating substrate and the copper foil. Therefore, the annealing process after the final cold rolling described above is performed by the heat treatment. It can also be combined.
  • the copper foil having the characteristics according to the present invention can be formed by setting the heat treatment during bonding at 150 to 250 ° C. (preferably 180 ° C. or more) for 0.5 to 3 hours (preferably 1 hour or more). Can be simultaneously bonded to the insulating substrate.
  • a roughening process can be performed with respect to copper foil.
  • the adhesive strength of resin and copper foil can be improved.
  • the roughening process can be performed under the following conditions. Liquid composition: Cu 10-20 g / L, Co 1-10 g / L, Ni 1-15 g / L pH: 1 to 4 Temperature: 30-50 ° C Current density (Dk): 20 to 50 A / dm 2 Time: 1-5 seconds
  • the flexible printed wiring board of the present invention includes the above-described flexible copper-clad laminate. Moreover, it is possible to manufacture a flexible printed wiring board (FPC) by forming a wiring according to a known procedure using the FCCL according to the present invention as a material. For example, apply an etching resist to the copper foil surface of the FCCL only on the necessary part as the conductor pattern, spray the etching solution onto the copper foil surface to remove the unnecessary copper foil, form the conductor pattern, and then peel off the etching resist -The method of removing and exposing a conductor pattern is mentioned. After forming the conductor pattern, it is common to apply a protective coverlay film.
  • FPC flexible printed wiring board
  • the flexible printed wiring board of the present invention can have excellent vibration resistance.
  • the vibration resistance time specified in JIS-D1601 may be 10 hours or more, more preferably 100 hours or more.
  • FPCs are used in electronic and electrical equipment for movable parts in hard disks, mobile phone hinges and sliding parts, printer heads, optical pickups, notebook PCs, etc. This corresponds to FPC.
  • the FPC according to the present invention is suitable as a vehicle-mounted or automatic machine control FPC that uses a relatively large thickness of copper foil and also requires vibration resistance.
  • a polyimide film having a thickness of 50 ⁇ m was laminated on the roughened surface under the condition of hot pressing at a temperature of 180 ° C. for 1 hour to produce a single-sided FCCL. Then, eight circuit etches with a length of 120 mm and a line and space of 0.3 mm / 0.3 mm were formed, and finally, a polyimide coverlay film with a thickness of 50 ⁇ m was hot-pressed on both sides at a temperature of 180 ° C. for 1 hour. By laminating, each test piece of FPC having a length of 150 mm and a width of 15 mm was produced.
  • a loop dimension refers to the distance from the fixed location of a test piece to the front-end
  • the vibration resistance time of vibration resistance was evaluated according to the following criteria. ⁇ : Less than 10 to 100 ⁇ : Less than 10 hours ⁇ : More than 100 hours
  • ⁇ Measurement of the amount of unrecrystallized> First, a microstructure photograph of a cross section in the rolling direction was taken with a scanning electron microscope (the size of the field of view is not particularly limited, but is typically 100 ⁇ m ⁇ 200 ⁇ m). Next, 100 or more lattice points were written on the photograph taken, and it was confirmed whether the lattice points were crystal grains or non-recrystallized portions. And it computed from the ratio of the number of all the lattice points, and the number of the lattice points of a non-recrystallized part.
  • the temperature of aging precipitation annealing was 350 ° C. lower than the recrystallization annealing temperature (that is, not 150 to 300 ° C. lower), so that many unrecrystallized crystals remained. . Therefore, vibration resistance was inferior. Moreover, the semi-softening temperature became high.
  • the description “or” or “or” includes a case where only one of the options is satisfied or a case where all the options are satisfied.
  • the description “A or B” or “A or B” it includes both the case where A is satisfied and B is not satisfied, the case where B is satisfied and A is not satisfied, and the case where A is satisfied and B is satisfied I intend to.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Abstract

The purpose of the present invention is to provide rolled copper foil having excellent vibration resistance. This copper foil is rolled copper foil having a thickness of at least 50 µm and no more than 10% non-recrystallized crystal grains.

Description

圧延銅箔Rolled copper foil
 本発明は圧延銅箔等に関し、特に耐振動性に優れたフレキシブルプリント配線板に用いられる銅箔に関する。 The present invention relates to a rolled copper foil and the like, and more particularly to a copper foil used for a flexible printed wiring board having excellent vibration resistance.
 フレキシブルプリント配線板(FPC)は、導電層である金属と樹脂フィルムに代表される柔軟性絶縁基板とが接合されたものである。一般に導電層には銅箔が用いられ、特に屈曲性が求められる用途には、屈曲性に優れる圧延銅箔が用いられている。 The flexible printed wiring board (FPC) is obtained by bonding a metal which is a conductive layer and a flexible insulating substrate typified by a resin film. In general, a copper foil is used for the conductive layer, and a rolled copper foil having excellent flexibility is used particularly for applications that require flexibility.
 一般的なFPC製造工程は以下のようなものである。まず銅箔を樹脂フィルムと接合する。接合には、銅箔上に塗布したワニスに熱処理を加えることでイミド化する方法や、接着剤付きの樹脂フィルムと銅箔とを重ねてラミネートする方法がある。これらの工程によって接合された樹脂フィルム付き銅箔をCCL(銅張積層板)と呼ぶ。その後、エッチングにより配線を形成し、FPCが完成する。 General FPC manufacturing process is as follows. First, the copper foil is bonded to the resin film. For joining, there are a method of imidizing by applying heat treatment to a varnish applied on a copper foil, and a method of laminating a resin film with an adhesive and a copper foil. The copper foil with a resin film joined by these steps is referred to as CCL (copper-clad laminate). Thereafter, wiring is formed by etching to complete the FPC.
 FPC用の圧延銅箔に要求される屈曲性は、電子機器の軽薄短小化及び高機能化に従って厳しくなっており、耐屈曲性に優れた圧延銅箔を得るための種々の改良が提案されている。 Flexibility required for rolled copper foil for FPC has become strict as electronic devices become lighter, shorter, and more functional, and various improvements have been proposed for obtaining rolled copper foil with excellent flex resistance. Yes.
 特許文献1では、特定の軟化温度を有する厚さ50μm以下の銅箔を開示している。特許文献2~3では、耐屈曲性に加えて耐振動性にも優れた厚さ50μm~300μmの圧延銅箔を開示している。 Patent Document 1 discloses a copper foil having a specific softening temperature and a thickness of 50 μm or less. Patent Documents 2 to 3 disclose a rolled copper foil having a thickness of 50 μm to 300 μm that is excellent in vibration resistance in addition to bending resistance.
特開2000-192172号公報JP 2000-192172 A 特開2013-167013号公報JP 2013-167013 A 特開2013-167014号公報JP 2013-167014 JP
 銅張積層板を製造する際には、熱処理を行う必要がある。この際に、圧延銅箔中に残存する未再結晶部分が減少する。しかし、銅箔の厚さが一定上となると、未再結晶部の残存量が多くなる。そして、未再結晶部の残存量が多くなると、振動試験の際にクラックが発生する頻度が高くなる。 When manufacturing a copper clad laminate, it is necessary to perform heat treatment. At this time, the non-recrystallized portion remaining in the rolled copper foil is reduced. However, when the thickness of the copper foil is constant, the remaining amount of the non-recrystallized portion increases. When the remaining amount of the non-recrystallized portion increases, the frequency of occurrence of cracks during the vibration test increases.
 さらに言えば、特許文献2~3のような高い温度(400℃で一時間)という処理は、車載などで用いられるフレキシブルプリント配線板の樹脂では耐えきれない可能性がある(例:ポリイミド(PI),ポリエチレンテレフタレート(PET),ポリエチレンナフタレート(PEN))。 Furthermore, the processing of high temperature (for 1 hour at 400 ° C.) as in Patent Documents 2 to 3 may not be able to be tolerated by the resin of a flexible printed wiring board used in vehicles (eg, polyimide (PI) ), Polyethylene terephthalate (PET), polyethylene naphthalate (PEN)).
 以上の事情に鑑み、本発明は、未再結晶部分が少ない銅箔を提供することを目的とする。 In view of the above circumstances, an object of the present invention is to provide a copper foil with few non-recrystallized portions.
 本発明者が鋭意研究した結果、冷間圧延前において、特定の条件で、再結晶焼鈍及び時効析出焼鈍を施すことで、銅中の不純物元素が析出しやすくなることを見出した。その結果、組織内の銅の純度が上がり、再結晶しやすくなることを見出した。 As a result of intensive studies by the present inventors, it has been found that impurity elements in copper are likely to precipitate by performing recrystallization annealing and aging precipitation annealing under specific conditions before cold rolling. As a result, it has been found that the purity of copper in the structure is increased and recrystallization is facilitated.
 上記知見に基づき、本発明は以下のように特定される。
(発明1)
圧延銅箔であって、厚さが50μm以上であり、未再結晶の結晶粒が10%以下である、銅箔。
(発明2)
圧延銅箔であって、厚さが50μm以上であり、180℃×1時間加熱後の金属組織において未再結晶の結晶粒が10%以下である、銅箔。
(発明3)
 発明1又は2に記載の圧延銅箔であって、半軟化温度が150℃以下である、銅箔。
(発明4)
 発明1又は2に記載の圧延銅箔であって、半軟化温度が110~150℃である、銅箔
(発明5)
 発明1~4のいずれか1つの圧延銅箔であって、
Cu濃度が99.8質量%以上であり、
酸素濃度が0.05質量%以下であり、並びに、
Ag,Sn,B,Zr,Ti,In及びPの合計濃度が0~0.03質量%である、
銅箔。
(発明6)
 発明1~5のいずれか1項の圧延銅箔を備えるフレキシブル銅張積層板(CCL)。
(発明7)
 発明6フレキシブル銅張積層板を備えるフレキシブルプリント配線板(FPC)。
(発明8)
 発明7のフレキシブルプリント配線板を備える電子部品。
(発明9)
 圧延銅箔の製造方法であって、
450~800℃で再結晶焼鈍を行う工程と、
 前記再結晶焼鈍の温度よりも、150~300℃低い温度で時効析出焼鈍を行う工程と
 厚さが50μm以上となるよう冷間圧延を行う工程と
を含む、該方法。
(発明10)
 フレキシブル積層板の製造方法であって、発明9に記載の方法で得られた圧延銅箔と樹脂とを積層させる工程を含む、該方法。
(発明11)
 フレキシブルプリント配線板の製造方法であって、発明10に記載の方法で得られたフレキシブル銅張積層板において、回路を形成する工程を含む、該方法。
Based on the above findings, the present invention is specified as follows.
(Invention 1)
A copper foil having a thickness of 50 μm or more and an unrecrystallized crystal grain of 10% or less.
(Invention 2)
A copper foil having a thickness of 50 μm or more and a non-recrystallized crystal grain of 10% or less in a metal structure after heating at 180 ° C. for 1 hour.
(Invention 3)
A rolled copper foil according to invention 1 or 2, wherein the semi-softening temperature is 150 ° C or lower.
(Invention 4)
The rolled copper foil according to invention 1 or 2, wherein the semi-softening temperature is 110 to 150 ° C. (invention 5)
A rolled copper foil according to any one of inventions 1 to 4,
Cu concentration is 99.8% by mass or more,
The oxygen concentration is 0.05% by weight or less, and
The total concentration of Ag, Sn, B, Zr, Ti, In and P is 0 to 0.03 mass%,
Copper foil.
(Invention 6)
A flexible copper clad laminate (CCL) comprising the rolled copper foil of any one of inventions 1 to 5.
(Invention 7)
Invention 6 A flexible printed wiring board (FPC) comprising a flexible copper clad laminate.
(Invention 8)
An electronic component comprising the flexible printed wiring board of the seventh invention.
(Invention 9)
A method for producing rolled copper foil,
A step of performing recrystallization annealing at 450 to 800 ° C .;
The method comprising a step of performing aging precipitation annealing at a temperature lower by 150 to 300 ° C. than a temperature of the recrystallization annealing, and a step of performing cold rolling so that the thickness becomes 50 μm or more.
(Invention 10)
It is a manufacturing method of a flexible laminated board, Comprising: This method including the process of laminating | stacking the rolled copper foil obtained by the method of invention 9, and resin.
(Invention 11)
It is a manufacturing method of a flexible printed wiring board, Comprising: The method which includes the process of forming a circuit in the flexible copper clad laminated board obtained by the method of invention 10.
 一側面において、本発明の銅箔は、未再結晶部分が10%以下である。これにより、フレキシブルプリント配線板の耐振動性を向上させることができる。 In one aspect, the copper foil of the present invention has an unrecrystallized portion of 10% or less. Thereby, the vibration resistance of a flexible printed wiring board can be improved.
 一側面において、本発明の銅箔は、180℃×1時間加熱後の金属組織において未再結晶部分が10%以下である。これにより、熱処理してCCLを形成させることにより製造されるフレキシブルプリント配線板の耐振動性を向上させることができる。 In one aspect, the copper foil of the present invention has an unrecrystallized portion of 10% or less in the metal structure after heating at 180 ° C. for 1 hour. Thereby, the vibration resistance of the flexible printed wiring board manufactured by heat-processing and forming CCL can be improved.
振動試験を行う際のループ状試験片の取付状態を示す写真である。It is a photograph which shows the attachment state of the loop-shaped test piece at the time of performing a vibration test.
 以下、本発明を実施するための具体的な実施形態について説明する。以下の説明は、本発明の理解を促進するためのものである。即ち、本発明の範囲を限定することを意図するものではない。 Hereinafter, specific embodiments for carrying out the present invention will be described. The following description is intended to facilitate an understanding of the present invention. That is, it is not intended to limit the scope of the present invention.
1.銅箔
(1)元素
 一実施形態において、銅箔は、純Cuから構成されてもよい。別の一実施形態において、銅箔は、Cuと、それ以外の添加元素を含むことができる。
1. Copper Foil (1) Element In one embodiment, the copper foil may be composed of pure Cu. In another embodiment, the copper foil may contain Cu and other additive elements.
(1-1)Cu
 銅箔中のCu濃度は特に規定されないが、高導電性確保の理由により99.8質量%以上であることが好ましく、99.85質量%以上であることがより好ましく、99.9質量%以上であることが更により好ましい。但し、Cu濃度が高すぎてもコスト増加につながるため、99.999質量%以下が好ましく、99.995質量%以下がより好ましい。
(1-1) Cu
The Cu concentration in the copper foil is not particularly specified, but is preferably 99.8% by mass or more, more preferably 99.85% by mass or more, and 99.9% by mass or more for reasons of ensuring high conductivity. Even more preferably. However, even if the Cu concentration is too high, it leads to an increase in cost, so 99.999 mass% or less is preferable, and 99.995 mass% or less is more preferable.
(1-2)添加元素
 Cu以外の添加元素は、Ag,Sn,B,Zr,Ti,In及びPから選択される少なくとも1種以上であってもよい。これらは、添加元素は、銅箔の屈曲性や振動性の観点から好ましい。
(1-2) Additive Element The additive element other than Cu may be at least one selected from Ag, Sn, B, Zr, Ti, In, and P. These are preferable from the viewpoint of the flexibility and vibration of the copper foil.
 Ag,Sn,B,Zr,Ti,In及びPの合計濃度は、0.03質量%以下(より好ましくは0.02質量%以下)であってもよい。0.03質量%を超えると強度は更に向上するものの、導電率の低下や軟化温度の上昇が起こる場合がある。下限値については、特に限定されないが、0質量%以上であってもよい。 The total concentration of Ag, Sn, B, Zr, Ti, In, and P may be 0.03% by mass or less (more preferably 0.02% by mass or less). If it exceeds 0.03 mass%, the strength is further improved, but there are cases where the conductivity is lowered and the softening temperature is raised. Although it does not specifically limit about a lower limit, 0 mass% or more may be sufficient.
(1-3)酸素
 銅箔中の酸素濃度は亜酸化銅増加につながり、立方体方位の発達を抑制することにつながることから0.05質量%以下であることが好ましく、0.005質量%以下であることが好ましく、例えば0.0001質量%以上0.01質量%未満とすることができる。このような条件を満たす銅箔として、例えば、JIS-H3510若しくはJIS-H3100に規格する無酸素銅(OFC)やタフピッチ銅を用いることができる。
(1-3) Oxygen Since the oxygen concentration in the copper foil leads to an increase in cuprous oxide and leads to the suppression of the development of the cube orientation, it is preferably 0.05% by mass or less, and 0.005% by mass or less. For example, it can be 0.0001 mass% or more and less than 0.01 mass%. As the copper foil satisfying such conditions, for example, oxygen-free copper (OFC) or tough pitch copper specified in JIS-H3510 or JIS-H3100 can be used.
(2)圧延銅箔
 本発明において使用する銅箔基材は圧延銅箔である。圧延銅箔は、振動が継続的に発生する環境に対応でき、耐屈曲性が高い点で電解銅箔よりも優れている。
(2) Rolled copper foil The copper foil base material used in the present invention is a rolled copper foil. Rolled copper foil is superior to electrolytic copper foil in that it can cope with an environment in which vibration continuously occurs and has high bending resistance.
 車載用など、大電流が流れ、通電による発熱が特に嫌われる用途の場合は、導電性及び放熱性を確保しつつ、断線せずに電気信号を確実に伝達する観点から、銅箔は比較的厚くするべきであるので、そのような場合には、50μm以上とすることが好ましく、70μm以上とすることがより好ましい。ただし、過度に厚くすると、導体層のエッチング除去がし難くなる場合があるので、300μm以下とするのが好ましく、150μm以下とするのがより好ましい。 For applications such as in-vehicle use where large current flows and heat generation due to energization is particularly disliked, copper foil is relatively easy to secure electric conductivity and heat transmission without disconnection. In such a case, the thickness should preferably be 50 μm or more, and more preferably 70 μm or more. However, if the thickness is excessively large, it may be difficult to remove the conductor layer by etching. Therefore, the thickness is preferably 300 μm or less, and more preferably 150 μm or less.
(3)半軟化温度
 一実施形態において、本発明の銅箔は、適切な範囲の軟化温度を有することができる。ここでいう半軟化温度とは、以下のように定義される。
(3) Semi-softening temperature In one embodiment, the copper foil of the present invention may have a suitable range of softening temperatures. The semi-softening temperature here is defined as follows.
まず、種々の温度で60分間の焼鈍を行なった後の引張り強さ(A)を測定する。次に、圧延上がりの引張り強さ(B)と300℃で60分間焼鈍し完全に軟化させた後の引張り強さ(C)を測定する。最後に、焼鈍後の引張り強さ(A)が、(B)と(C)の中間の値になるときの焼鈍温度を半軟化温度とする。 First, the tensile strength (A) after annealing for 60 minutes at various temperatures is measured. Next, the tensile strength (B) after rolling and the tensile strength (C) after annealing at 300 ° C. for 60 minutes and completely softening are measured. Finally, the annealing temperature when the tensile strength (A) after annealing becomes an intermediate value between (B) and (C) is defined as a semi-softening temperature.
 一実施形態において、本発明の銅箔は、半軟化温度が150℃以下、より好ましくは、110~150℃であってもよい。110℃未満であると常温軟化しやすくなる。150℃超であると、銅張積層板の製造工程の熱処理で軟化しにくくなる。 In one embodiment, the copper foil of the present invention may have a semi-softening temperature of 150 ° C. or lower, more preferably 110 to 150 ° C. When the temperature is less than 110 ° C., softening at room temperature is likely. If it exceeds 150 ° C., it becomes difficult to soften by heat treatment in the production process of the copper clad laminate.
(4)未再結晶の量 
 一実施形態において、本発明の銅箔は、未再結晶の粒子の量が10%以下(より好ましくは5%以下、1%以下、又は0%)であってもよい。10%を超えると、耐振動性が悪化する。下限値については、特に規定されないが、典型的には、0%以上である。
(4) Amount of unrecrystallized
In one embodiment, the copper foil of the present invention may have an amount of non-recrystallized particles of 10% or less (more preferably 5% or less, 1% or less, or 0%). If it exceeds 10%, the vibration resistance deteriorates. The lower limit value is not particularly defined, but is typically 0% or more.
 なお、未再結晶の粒子の量は、以下の方法で算出することができる。まず、圧延方向断面のミクロ組織写真を走査型電子顕微鏡で撮影する(撮影視野の大きさは特に限定されないが、典型的には100μm×200μmである)。次に、撮影した写真に100点以上の格子点を書き、その格子点が再結晶粒か未再結晶部かを確認する。両者の識別は、加熱前の圧延後組織(圧延組織)写真と300℃×1h加熱後の組織写真(完全再結晶組織)を基準に行うことができる。そして、全格子点の数と未再結晶部の格子点の数の比率から算出する。 The amount of unrecrystallized particles can be calculated by the following method. First, a microstructure photograph of a cross section in the rolling direction is taken with a scanning electron microscope (the size of the field of view is not particularly limited, but is typically 100 μm × 200 μm). Next, 100 or more lattice points are written on the photographed photograph, and it is confirmed whether the lattice point is a recrystallized grain or an unrecrystallized part. The two can be identified on the basis of a post-rolling structure (rolling structure) photograph before heating and a structure photograph (completely recrystallized structure) after heating at 300 ° C. × 1 h. And it calculates from the ratio of the number of all the lattice points, and the number of the lattice points of an unrecrystallized part.
(5)180℃×1時間加熱後の未再結晶の量
 一実施形態において、本発明の銅箔は、180℃×1時間加熱後の状態で、未再結晶の粒子の量が10%以下(より好ましくは5%以下、1%以下、又は0%)であってもよい。例えば、銅箔を製品として出荷した時点で、未再結晶の粒子の量が10%を超えたとしても、銅張積層板を形成する時の熱処理で未再結晶の粒子の量が減少し、最終的に10%以下となるような銅箔であってもよい。上述したように、10%を超えると、耐振動性が悪化する。下限値については、特に規定されないが、典型的には、0%以上である。
(5) Amount of unrecrystallized after heating at 180 ° C. for 1 hour In one embodiment, the copper foil of the present invention has an amount of unrecrystallized particles of 10% or less in a state after being heated at 180 ° C. for 1 hour. (More preferably 5% or less, 1% or less, or 0%) may be used. For example, when the copper foil is shipped as a product, even if the amount of unrecrystallized particles exceeds 10%, the amount of unrecrystallized particles is reduced by heat treatment when forming a copper-clad laminate, The copper foil may finally be 10% or less. As described above, if it exceeds 10%, the vibration resistance deteriorates. The lower limit value is not particularly defined, but is typically 0% or more.
2.銅箔の製造方法
 本発明に係る銅箔は、例えば、以下のようにして製造することができる。まず、電気銅、無酸素銅、タフピッチ銅等の銅原料を溶解し、必要に応じて合金元素を添加した後、この溶湯を鋳造し、厚みが100~300mm程度のインゴットを製造する。溶解工程での酸素濃度の調整は、溶湯のカーボンシール、大気解放等の当業者公知の技術により行うことができる。その後、熱間圧延を行った後、焼鈍と冷間圧延を繰り返す。
2. Manufacturing method of copper foil The copper foil which concerns on this invention can be manufactured as follows, for example. First, a copper raw material such as electrolytic copper, oxygen-free copper, tough pitch copper or the like is melted, and an alloy element is added as necessary, and then the molten metal is cast to produce an ingot having a thickness of about 100 to 300 mm. Adjustment of the oxygen concentration in the melting step can be performed by techniques known to those skilled in the art, such as carbon sealing of the molten metal and release to the atmosphere. Then, after performing hot rolling, annealing and cold rolling are repeated.
 最終冷間圧延を行う前(より好ましくは、最終冷間圧延を行う直前)、再結晶焼鈍と時効析出焼鈍を行うことができる。再結晶焼鈍は、高温短時間の条件で行う(例えば、連続焼鈍ラインにて)。例えば、温度は、450~800℃(より好ましくは、550~700℃)であってもよく、時間は、5秒~300秒(より好ましくは10秒~200秒)であってもよい。 Recrystallization annealing and aging precipitation annealing can be performed before final cold rolling (more preferably, immediately before final cold rolling). Recrystallization annealing is performed under conditions of a high temperature and a short time (for example, in a continuous annealing line). For example, the temperature may be 450 to 800 ° C. (more preferably 550 to 700 ° C.), and the time may be 5 seconds to 300 seconds (more preferably 10 seconds to 200 seconds).
 時効析出焼鈍は、上述した再結晶焼鈍よりも、150~300℃低い温度で行うことができる。例えば、再結晶焼鈍を650℃で実施した場合には、時効析出焼鈍は、350℃~500℃であってもよい。また、時効析出焼鈍の時間は、再結晶焼鈍(連続焼鈍ライン)における加熱炉内滞留時間の300倍以上の時間であってもよい(例えば、5~50h、より好ましくは5~20h)。 Aging precipitation annealing can be performed at a temperature lower by 150 to 300 ° C. than the recrystallization annealing described above. For example, when the recrystallization annealing is performed at 650 ° C., the aging precipitation annealing may be 350 ° C. to 500 ° C. Further, the aging precipitation annealing time may be 300 times or more of the residence time in the heating furnace in the recrystallization annealing (continuous annealing line) (for example, 5 to 50 h, more preferably 5 to 20 h).
 再結晶焼鈍条件と、時効析出焼鈍を行った後は、最終冷間圧延を行う。最終冷間圧延の圧下度は90%以上、より好ましくは95%以上、更により好ましくは98%以上である。そして、上記「(2)圧延銅箔」において記載した厚さの銅箔に仕上げることができる。 After recrystallization annealing conditions and aging precipitation annealing, final cold rolling is performed. The degree of reduction in the final cold rolling is 90% or more, more preferably 95% or more, and still more preferably 98% or more. And it can finish to the copper foil of the thickness described in said "(2) Rolled copper foil".
3.銅張積層板
 一実施形態において、本発明のフレキシブル銅張積層板は、上述した銅箔を含む。また、本発明のフレキシブル銅張積層板は、上記銅箔のほかに、樹脂層を備える。樹脂層を設けるために、幾つかの手法を採用することができる。例えば、エポキシ等の熱硬化性樹脂からなる接着剤を用いて、銅箔とポリイミド樹脂フィルムを貼り合わせて、加熱処理を行う方法を用いることができる。あるいは、ポリイミド樹脂の前駆体であるポリアミック酸を含むワニスを、銅箔上に塗布して加熱硬化させ、銅箔上にポリイミド被膜を形成する方法を用いることができる。両面に銅箔を積層する場合は、片面銅張積層板を形成後、銅箔層を熱プレスにより圧着する方法や、2枚の銅箔層間にポリイミドフィルムを挟み、熱プレスにより圧着する方法がある。これらの加熱処理は一般に125~250℃で60~400分の条件で実施される。銅箔と樹脂の積層を、熱処理工程を経ずに接着剤によって行う方法もある。樹脂層の材料としては、ポリエステル、ポリイミド、ポリエチレンテレフタレート、ポリエチレンナフタレートなどがあげられるがこれらに限定されない。
3. In one embodiment of the copper-clad laminate , the flexible copper-clad laminate of the present invention includes the copper foil described above. Moreover, the flexible copper clad laminated board of this invention is equipped with the resin layer other than the said copper foil. Several techniques can be employed to provide the resin layer. For example, a method of performing heat treatment by bonding a copper foil and a polyimide resin film using an adhesive made of a thermosetting resin such as epoxy can be used. Or the varnish containing the polyamic acid which is a precursor of a polyimide resin is apply | coated on copper foil, it heat-hardens, and the method of forming a polyimide film on copper foil can be used. When laminating copper foil on both sides, after forming a single-sided copper clad laminate, there are a method of crimping the copper foil layer by hot pressing, and a method of sandwiching a polyimide film between two copper foil layers and crimping by hot pressing. is there. These heat treatments are generally carried out at 125 to 250 ° C. for 60 to 400 minutes. There is also a method of laminating a copper foil and a resin with an adhesive without going through a heat treatment step. Examples of the material for the resin layer include, but are not limited to, polyester, polyimide, polyethylene terephthalate, and polyethylene naphthalate.
 このように、フレキシブル銅張積層板(FCCL)の製造工程では絶縁基板と銅箔の接着のために加熱処理を行うことが多いので、上述した最終冷間圧延後の焼鈍工程を当該加熱処理で兼ねることも可能である。接着時の加熱処理を150~250℃(好ましくは180℃以上)で0.5~3時間(好ましくは1時間以上)の条件にすることで、本発明に係る特性をもつ銅箔の作り込みと絶縁基板への接着を同時に行うこともできる。 As described above, in the manufacturing process of the flexible copper clad laminate (FCCL), the heat treatment is often performed for bonding the insulating substrate and the copper foil. Therefore, the annealing process after the final cold rolling described above is performed by the heat treatment. It can also be combined. The copper foil having the characteristics according to the present invention can be formed by setting the heat treatment during bonding at 150 to 250 ° C. (preferably 180 ° C. or more) for 0.5 to 3 hours (preferably 1 hour or more). Can be simultaneously bonded to the insulating substrate.
 また、銅箔と樹脂層を積層させる前に、銅箔に対して粗化処理を行うことができる。これにより樹脂と銅箔との接着強度を向上させることができる。例えば、以下の条件で粗化処理を行うことができる。
液組成:Cu10~20g/L、Co1~10g/L、Ni1~15g/L
pH:1~4
温度:30~50℃
電流密度(Dk):20~50A/dm2
時間:1~5秒
Moreover, before laminating | stacking copper foil and a resin layer, a roughening process can be performed with respect to copper foil. Thereby, the adhesive strength of resin and copper foil can be improved. For example, the roughening process can be performed under the following conditions.
Liquid composition: Cu 10-20 g / L, Co 1-10 g / L, Ni 1-15 g / L
pH: 1 to 4
Temperature: 30-50 ° C
Current density (Dk): 20 to 50 A / dm 2
Time: 1-5 seconds
4.フレキシブルプリント配線板
(1)フレキシブルプリント配線板及びその製法
 一実施形態において、本発明のフレキシブルプリント配線板は、上述した、フレキシブル銅張積層板を備える。また、本発明に係るFCCLを材料として公知の手順に従って配線を形成し、フレキシブルプリント配線板(FPC)を製造することが可能である。例えばエッチングレジストをFCCLの銅箔面に導体パターンとしての必要部分だけに塗布し、エッチング液を銅箔面に噴射することで不要銅箔を除去して導体パターンを形成し、次いでエッチングレジストを剥離・除去して導体パターンを露出する方法が挙げられる。導体パターン形成後は、保護用のカバーレイフィルムを貼ることが一般的である。
4). Flexible printed wiring board (1) Flexible printed wiring board and method for producing the same In one embodiment, the flexible printed wiring board of the present invention includes the above-described flexible copper-clad laminate. Moreover, it is possible to manufacture a flexible printed wiring board (FPC) by forming a wiring according to a known procedure using the FCCL according to the present invention as a material. For example, apply an etching resist to the copper foil surface of the FCCL only on the necessary part as the conductor pattern, spray the etching solution onto the copper foil surface to remove the unnecessary copper foil, form the conductor pattern, and then peel off the etching resist -The method of removing and exposing a conductor pattern is mentioned. After forming the conductor pattern, it is common to apply a protective coverlay film.
(2)耐振動性
 一実施形態において、本発明のフレキシブルプリント配線板は、優れた耐振動性を有することができる。例えば、JIS-D1601に規定する耐振動時間が、10時間以上、より好ましくは100時間以上であってもよい。
(2) Vibration resistance In one embodiment, the flexible printed wiring board of the present invention can have excellent vibration resistance. For example, the vibration resistance time specified in JIS-D1601 may be 10 hours or more, more preferably 100 hours or more.
(3)用途
 このようなFPCは、電子・電気機器においてハードディスク内の可動部、携帯電話のヒンジ部やスライド摺動部、プリンターのヘッド部、光ピックアップ部、ノートPCの可動部等に使用されるFPCが該当する。とりわけ、本発明に係るFPCは、比較的大きな厚みの銅箔が使用され、耐震動性も要求される車載用や自動機制御用のFPCとして好適である。
(3) Applications Such FPCs are used in electronic and electrical equipment for movable parts in hard disks, mobile phone hinges and sliding parts, printer heads, optical pickups, notebook PCs, etc. This corresponds to FPC. In particular, the FPC according to the present invention is suitable as a vehicle-mounted or automatic machine control FPC that uses a relatively large thickness of copper foil and also requires vibration resistance.
<圧延銅箔の製造>
 タフピッチ銅(TPC)又は無酸素銅(OFC)に所定の元素を添加した表1に記載の各組成をもつインゴットを溶解鋳造した。
 これを熱間圧延した後、焼鈍と冷間圧延を繰り返した。そして、最終冷間圧延の直前に、表1に記載の条件で、再結晶焼鈍(60秒)と時効析出焼鈍を行った。次に、最終冷間圧延を行い、表1に記載の厚みに調整した。
<Manufacture of rolled copper foil>
Ingots having respective compositions shown in Table 1 in which predetermined elements were added to tough pitch copper (TPC) or oxygen-free copper (OFC) were melt cast.
After this was hot rolled, annealing and cold rolling were repeated. Then, immediately before the final cold rolling, recrystallization annealing (60 seconds) and aging precipitation annealing were performed under the conditions described in Table 1. Next, final cold rolling was performed, and the thicknesses shown in Table 1 were adjusted.
<FPCの製造>
 得られた各圧延銅箔の片面に電着銅粒子による粗化処理を行った。
・めっき浴組成:Cu15g/L、Co8.5g/L、Ni8.6g/L
・処理液pH:2.5
・処理温度:38℃
・電流密度:20A/dm2
・めっき時間:2.0秒
<Manufacture of FPC>
One side of each obtained rolled copper foil was subjected to a roughening treatment with electrodeposited copper particles.
-Plating bath composition: Cu 15 g / L, Co 8.5 g / L, Ni 8.6 g / L
-Treatment solution pH: 2.5
・ Processing temperature: 38 ℃
・ Current density: 20 A / dm 2
・ Plating time: 2.0 seconds
 その後、180℃の温度で1時間熱プレスする条件で厚み50μmのポリイミドフィルムを粗化処理面に積層し、片面FCCLを作製した。その後、長さ120mmでラインアンドスペース0.3mm/0.3mmの回路エッチングを8本形成し、最後に厚み50μmのポリイミド製カバーレイフィルムを両面に180℃の温度で1時間熱プレスすることにより積層して、長さ150mm×幅15mmのFPCの各試験片を作製した。 Thereafter, a polyimide film having a thickness of 50 μm was laminated on the roughened surface under the condition of hot pressing at a temperature of 180 ° C. for 1 hour to produce a single-sided FCCL. Then, eight circuit etches with a length of 120 mm and a line and space of 0.3 mm / 0.3 mm were formed, and finally, a polyimide coverlay film with a thickness of 50 μm was hot-pressed on both sides at a temperature of 180 ° C. for 1 hour. By laminating, each test piece of FPC having a length of 150 mm and a width of 15 mm was produced.
<耐振動時間(h)>
 得られた各FPC試験片について、振動試験をJIS-D1601掃引振動耐久試験に基づいて実施した。先述した試験片をループ寸法L=20mmのループ状にして両端を固定し、周波数5~170Hz/5min、振幅幅0.6mm、振動加速度45m/s2、試験温度-35~85℃において振動試験を行い、試験片に定電流(1.0mA)を通電しての試験片の抵抗増加率を記録し、試験片の抵抗増加率が20%に到達するまでの時間を測定した。試験温度は室温(25℃)で60分保持後、60分かけて-30℃に徐々に低下させ、-30℃で120分保持後、1.5時間かけて85℃に上昇させ、85℃で120分保持後、30分かけて室温(25℃)まで低下させるというサイクルを繰り返した。試験装置はエミック株式会社F-400BM-E04全自動振動試験装置とエミック株式会社製温湿度試験装置VC-500BAR(33)M3C3Rを使用した。
 なお、ループ寸法とは図1に示すように、試験片の固定箇所から試験片の先端までの距離を指す。
<Vibration resistance time (h)>
For each of the obtained FPC test pieces, a vibration test was performed based on a JIS-D1601 sweep vibration durability test. Both ends were fixed by a previously described test specimens in a loop of the loop dimensions L = 20 mm, vibration test frequency 5 ~ 170Hz / 5min, amplitude width 0.6 mm, vibration acceleration 45 m / s 2, at test temperatures -35 ~ 85 ° C. The resistance increase rate of the test piece when a constant current (1.0 mA) was applied to the test piece was recorded, and the time until the resistance increase rate of the test piece reached 20% was measured. The test temperature was maintained at room temperature (25 ° C.) for 60 minutes, then gradually decreased to −30 ° C. over 60 minutes, held at −30 ° C. for 120 minutes, and then increased to 85 ° C. over 1.5 hours. The cycle of holding for 120 minutes and then lowering to room temperature (25 ° C.) over 30 minutes was repeated. The test equipment used was Emic Co., Ltd. F-400BM-E04 fully automatic vibration test equipment and Emic Co., Ltd. temperature and humidity test equipment VC-500BAR (33) M3C3R.
In addition, as shown in FIG. 1, a loop dimension refers to the distance from the fixed location of a test piece to the front-end | tip of a test piece.
 耐振動性の耐振動時間を、以下の基準で評価した。
○:10~100未満
×:10時間未満
◎:100時間以上
The vibration resistance time of vibration resistance was evaluated according to the following criteria.
○: Less than 10 to 100 ×: Less than 10 hours ◎: More than 100 hours
<未再結晶の量の測定>
 まず、圧延方向断面のミクロ組織写真を走査型電子顕微鏡で撮影した(撮影視野の大きさは特に限定されないが、典型的には100μm×200μmである)。次に、撮影した写真に100点以上の格子点を書き、その格子点が結晶粒か未再結晶部かを確認した。 そして、全格子点の数と未再結晶部の格子点の数の比率から算出した。
<Measurement of the amount of unrecrystallized>
First, a microstructure photograph of a cross section in the rolling direction was taken with a scanning electron microscope (the size of the field of view is not particularly limited, but is typically 100 μm × 200 μm). Next, 100 or more lattice points were written on the photograph taken, and it was confirmed whether the lattice points were crystal grains or non-recrystallized portions. And it computed from the ratio of the number of all the lattice points, and the number of the lattice points of a non-recrystallized part.
<半軟化温度の測定>
 まず、種々の温度で60分間の焼鈍を行なった後の引張り強さ(A)を測定した。次に、圧延上がりの引張り強さ(B)と300℃で60分間焼鈍し完全に軟化させた後の引張り強さ(C)を測定した。最後に、焼鈍後の引張り強さ(A)が、(B)と(C)の中間の値になるときの焼鈍温度を半軟化温度とした。
<Measurement of semi-softening temperature>
First, the tensile strength (A) after annealing at various temperatures for 60 minutes was measured. Next, the tensile strength (B) after rolling and the tensile strength (C) after annealing at 300 ° C. for 60 minutes and completely softening were measured. Finally, the annealing temperature when the tensile strength (A) after annealing becomes an intermediate value between (B) and (C) was defined as a semi-softening temperature.
 結果を以下の表1に示す。
Figure JPOXMLDOC01-appb-T000001
The results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
 発明例1~9の結果から、未再結晶の量が10%以下であると、優れた耐振動性が得られることが示された。また、純Cuから構成される銅箔、Ag,Sn,B,Zr,Ti,In及びPのうちいずれか1つを添加した銅箔において優れた耐振動性が得られることが示された。また、半軟化温度も適切な範囲に調整された。 From the results of Invention Examples 1 to 9, it was shown that excellent vibration resistance can be obtained when the amount of unrecrystallized is 10% or less. In addition, it was shown that excellent vibration resistance was obtained in a copper foil composed of pure Cu and a copper foil to which any one of Ag, Sn, B, Zr, Ti, In and P was added. In addition, the semi-softening temperature was adjusted to an appropriate range.
 また、比較例1は、再結晶焼鈍の温度に比べて、時効析出焼鈍の温度が、350℃低いため(即ち、150~300℃低い温度ではないため)、未再結晶が多く残存していた。そのため、耐振動性が劣っていた。また、半軟化温度が高くなってしまった。 Further, in Comparative Example 1, the temperature of aging precipitation annealing was 350 ° C. lower than the recrystallization annealing temperature (that is, not 150 to 300 ° C. lower), so that many unrecrystallized crystals remained. . Therefore, vibration resistance was inferior. Moreover, the semi-softening temperature became high.
 また、比較例2~3は、再結晶焼鈍の温度に比べて、時効析出焼鈍の温度の差が、150℃未満であるため(即ち、150~300℃低い温度ではないため)、未再結晶が多く残存していた。そのため、耐振動性が劣っていた。また、半軟化温度が高くなってしまった。 In Comparative Examples 2 to 3, the difference in the aging precipitation annealing temperature is less than 150 ° C. compared to the recrystallization annealing temperature (that is, the temperature is not lower by 150 to 300 ° C.). Many remained. Therefore, vibration resistance was inferior. Moreover, the semi-softening temperature became high.
 比較例4は、時効析出焼鈍を行っていないため、未再結晶が多く残存していた。そのため、耐振動性が劣っていた。また、半軟化温度が高くなってしまった。 In Comparative Example 4, since aging precipitation annealing was not performed, a large amount of unrecrystallized remained. Therefore, vibration resistance was inferior. Moreover, the semi-softening temperature became high.
 本明細書において、「又は」や「若しくは」という記載は、選択肢のいずれか1つのみを満たす場合や、全ての選択肢を満たす場合を含む。例えば、「A又はB」「A若しくはB」という記載の場合、Aを満たしBを満たさない場合と、Bを満たしAを満たさない場合と、Aを満たし且つBを満たす場合のいずれも包含することを意図する。 In this specification, the description “or” or “or” includes a case where only one of the options is satisfied or a case where all the options are satisfied. For example, in the case of the description “A or B” or “A or B”, it includes both the case where A is satisfied and B is not satisfied, the case where B is satisfied and A is not satisfied, and the case where A is satisfied and B is satisfied I intend to.
 以上、本発明の具体的な実施形態について説明してきた。上記実施形態は、本発明の具体例に過ぎず、本発明は上記実施形態に限定されない。例えば、上述の実施形態の1つに開示された技術的特徴は、他の実施形態に提供することができる。また、特定の方法については、一部の工程を他の工程の順序と入れ替えることも可能であり、特定の2つの工程の間に更なる工程を追加してもよい。本発明の範囲は、特許請求の範囲によって規定される。 The specific embodiment of the present invention has been described above. The said embodiment is only a specific example of this invention, and this invention is not limited to the said embodiment. For example, the technical features disclosed in one of the above embodiments can be provided in other embodiments. Moreover, about a specific method, it is also possible to replace a part process with the order of another process, and you may add an additional process between two specific processes. The scope of the invention is defined by the claims.

Claims (11)

  1. 圧延銅箔であって、厚さが50μm以上であり、未再結晶の結晶粒が10%以下である、銅箔。 A copper foil having a thickness of 50 μm or more and an unrecrystallized crystal grain of 10% or less.
  2. 圧延銅箔であって、厚さが50μm以上であり、180℃×1時間加熱後の金属組織において未再結晶の結晶粒が10%以下である、銅箔。 A copper foil having a thickness of 50 μm or more and a non-recrystallized crystal grain of 10% or less in a metal structure after heating at 180 ° C. for 1 hour.
  3.  請求項1又は2に記載の圧延銅箔であって、半軟化温度が150℃以下である、銅箔。 A rolled copper foil according to claim 1 or 2, wherein the semi-softening temperature is 150 ° C or lower.
  4.  請求項1又は2に記載の圧延銅箔であって、半軟化温度が110~150℃である、銅箔 The rolled copper foil according to claim 1 or 2, wherein the semi-softening temperature is 110 to 150 ° C.
  5.  請求項1~4のいずれか1項の圧延銅箔であって、
    Cu濃度が99.8質量%以上であり、
    酸素濃度が0.05質量%以下であり、並びに、
    Ag,Sn,B,Zr,Ti,In及びPの合計濃度が0~0.03質量%である、
    銅箔。
    The rolled copper foil according to any one of claims 1 to 4,
    Cu concentration is 99.8% by mass or more,
    The oxygen concentration is 0.05% by weight or less, and
    The total concentration of Ag, Sn, B, Zr, Ti, In and P is 0 to 0.03 mass%,
    Copper foil.
  6.  請求項1~5のいずれか1項の圧延銅箔を備えるフレキシブル銅張積層板(CCL)。 A flexible copper clad laminate (CCL) comprising the rolled copper foil according to any one of claims 1 to 5.
  7.  請求項6フレキシブル銅張積層板を備えるフレキシブルプリント配線板(FPC)。 6. A flexible printed wiring board (FPC) comprising a flexible copper clad laminate.
  8.  請求項7のフレキシブルプリント配線板を備える電子部品。 An electronic component comprising the flexible printed wiring board according to claim 7.
  9.  圧延銅箔の製造方法であって、
    450~800℃で再結晶焼鈍を行う工程と、
     前記再結晶焼鈍の温度よりも、150~300℃低い温度で時効析出焼鈍を行う工程と
     厚さが50μm以上となるよう冷間圧延を行う工程と
    を含む、該方法。
    A method for producing rolled copper foil,
    A step of performing recrystallization annealing at 450 to 800 ° C .;
    The method comprising a step of performing aging precipitation annealing at a temperature lower by 150 to 300 ° C. than a temperature of the recrystallization annealing, and a step of performing cold rolling so that the thickness becomes 50 μm or more.
  10.  フレキシブル銅張積層板の製造方法であって、請求項9に記載の方法で得られた圧延銅箔と樹脂とを積層させる工程を含む、該方法。 It is a manufacturing method of a flexible copper clad laminated board, Comprising: This method including the process of laminating | stacking the rolled copper foil and resin obtained by the method of Claim 9.
  11.  フレキシブルプリント配線板の製造方法であって、請求項10に記載の方法で得られたフレキシブル銅張積層板において、回路を形成する工程を含む、該方法。 A method for producing a flexible printed wiring board, comprising the step of forming a circuit in the flexible copper-clad laminate obtained by the method according to claim 10.
PCT/JP2018/011507 2017-03-30 2018-03-22 Rolled copper foil WO2018180920A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880022645.1A CN110475883A (en) 2017-03-30 2018-03-22 Rolled copper foil
KR1020197031827A KR20190133736A (en) 2017-03-30 2018-03-22 Rolled copper foil
JP2019509677A JPWO2018180920A1 (en) 2017-03-30 2018-03-22 Rolled copper foil

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017068797 2017-03-30
JP2017-068797 2017-03-30

Publications (1)

Publication Number Publication Date
WO2018180920A1 true WO2018180920A1 (en) 2018-10-04

Family

ID=63675753

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/011507 WO2018180920A1 (en) 2017-03-30 2018-03-22 Rolled copper foil

Country Status (5)

Country Link
JP (1) JPWO2018180920A1 (en)
KR (1) KR20190133736A (en)
CN (1) CN110475883A (en)
TW (1) TW201840869A (en)
WO (1) WO2018180920A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220279279A1 (en) * 2019-08-19 2022-09-01 Goertek Inc. Conductive film for sound producing apparatus and sound producing apparatus
CN115537595A (en) * 2022-09-30 2022-12-30 宁波金田铜业(集团)股份有限公司 Copper foil and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112187975A (en) * 2020-09-17 2021-01-05 淮安维嘉益集成科技有限公司 Application of WOFC2 material in manufacturing of FPC (flexible printed circuit) substrate of camera module

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000192172A (en) * 1998-12-28 2000-07-11 Nippon Mining & Metals Co Ltd Rolled copper foil flexible printed circuit board and its production
JP2001144391A (en) * 1999-11-16 2001-05-25 Nippon Mining & Metals Co Ltd Rolled copper foil for printed circuit board and manufacturing method therefor
JP2008248274A (en) * 2007-03-29 2008-10-16 Nikko Kinzoku Kk Rolled copper foil
WO2011115305A1 (en) * 2010-03-17 2011-09-22 新日本製鐵株式会社 Metal tape material, and interconnector for solar cell collector
JP2013235796A (en) * 2012-05-11 2013-11-21 Jx Nippon Mining & Metals Corp Rolled copper foil for forming superconducting film
JP2014077182A (en) * 2012-10-12 2014-05-01 Sh Copper Products Corp Rolled copper foil
JP2014162930A (en) * 2013-02-21 2014-09-08 Jx Nippon Mining & Metals Corp Copper foil, copper-clad laminate, flexible wiring board and three-dimensional molded body

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3856582B2 (en) * 1998-11-17 2006-12-13 日鉱金属株式会社 Rolled copper foil for flexible printed circuit board and method for producing the same
JP3856581B2 (en) * 1999-01-18 2006-12-13 日鉱金属株式会社 Rolled copper foil for flexible printed circuit board and method for producing the same
JP2001262296A (en) * 2000-03-17 2001-09-26 Nippon Mining & Metals Co Ltd Rolled copper foil and its manufacturing process
JP2003193211A (en) * 2001-12-27 2003-07-09 Nippon Mining & Metals Co Ltd Rolled copper foil for copper-clad laminate
JP5426936B2 (en) * 2009-06-18 2014-02-26 株式会社Shカッパープロダクツ Copper alloy manufacturing method and copper alloy
KR101376037B1 (en) * 2010-10-28 2014-03-19 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Rolled copper foil
JP2013167013A (en) 2012-01-17 2013-08-29 Jx Nippon Mining & Metals Corp Rolled copper foil for flexible printed circuit board
JP6360654B2 (en) 2012-01-17 2018-07-18 Jx金属株式会社 Rolled copper foil for flexible printed wiring boards
US9883588B2 (en) * 2014-12-12 2018-01-30 Nippon Steel & Sumitomo Metal Corporation Oriented copper plate, copper-clad laminate, flexible circuit board, and electronic device
JP6446007B2 (en) * 2015-12-25 2018-12-26 株式会社神戸製鋼所 Copper alloy plate for heat dissipation parts

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000192172A (en) * 1998-12-28 2000-07-11 Nippon Mining & Metals Co Ltd Rolled copper foil flexible printed circuit board and its production
JP2001144391A (en) * 1999-11-16 2001-05-25 Nippon Mining & Metals Co Ltd Rolled copper foil for printed circuit board and manufacturing method therefor
JP2008248274A (en) * 2007-03-29 2008-10-16 Nikko Kinzoku Kk Rolled copper foil
WO2011115305A1 (en) * 2010-03-17 2011-09-22 新日本製鐵株式会社 Metal tape material, and interconnector for solar cell collector
JP2013235796A (en) * 2012-05-11 2013-11-21 Jx Nippon Mining & Metals Corp Rolled copper foil for forming superconducting film
JP2014077182A (en) * 2012-10-12 2014-05-01 Sh Copper Products Corp Rolled copper foil
JP2014162930A (en) * 2013-02-21 2014-09-08 Jx Nippon Mining & Metals Corp Copper foil, copper-clad laminate, flexible wiring board and three-dimensional molded body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220279279A1 (en) * 2019-08-19 2022-09-01 Goertek Inc. Conductive film for sound producing apparatus and sound producing apparatus
CN115537595A (en) * 2022-09-30 2022-12-30 宁波金田铜业(集团)股份有限公司 Copper foil and preparation method thereof

Also Published As

Publication number Publication date
JPWO2018180920A1 (en) 2019-12-12
TW201840869A (en) 2018-11-16
KR20190133736A (en) 2019-12-03
CN110475883A (en) 2019-11-19

Similar Documents

Publication Publication Date Title
JP4662834B2 (en) Copper or copper alloy foil for circuit
TWI633195B (en) Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
KR102470725B1 (en) Copper foil for flexible printed circuit, and copper clad laminate, flexible printed circuit and electronic device using copper foil
WO2018180920A1 (en) Rolled copper foil
CN109392242B (en) Copper foil for flexible printed board, copper-clad laminate using same, flexible printed board, and electronic device
JP6360654B2 (en) Rolled copper foil for flexible printed wiring boards
CN109385554B (en) Copper foil for flexible printed board, copper-clad laminate using same, flexible printed board, and electronic device
JP2008088492A (en) Copper alloy foil and copper-resin organic matter flexible laminate
JP6348621B1 (en) Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
JP5889443B2 (en) Copper foil for printed circuit boards
CN107046763B (en) Copper foil for flexible printed board and copper-clad laminate using same
JP5933943B2 (en) Rolled copper foil for flexible printed wiring boards, copper-clad laminates, flexible printed wiring boards, and electronic equipment
JP2013167013A (en) Rolled copper foil for flexible printed circuit board
KR102115086B1 (en) Copper foil for flexible printed circuit, copper clad laminate using the same, flexible printed circuit and electronic device
CN110505755B (en) Copper foil for flexible printed board, copper-clad laminate using same, flexible printed board, and electronic device
CN111757599A (en) Copper foil for flexible printed board, copper-clad laminate using same, flexible printed board, and electronic device
JP4816870B2 (en) Rolled copper alloy foil and copper clad laminate produced using the rolled copper alloy foil
JP6712561B2 (en) Rolled copper foil for flexible printed circuit board, copper clad laminate using the same, flexible printed circuit board, and electronic device
JP2016191091A (en) Rolled copper foil for flexible printed wiring board
JP2019194358A (en) Rolled copper foil for flexible printed wiring board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18777961

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019509677

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197031827

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18777961

Country of ref document: EP

Kind code of ref document: A1