JP2013235796A - Rolled copper foil for forming superconducting film - Google Patents

Rolled copper foil for forming superconducting film Download PDF

Info

Publication number
JP2013235796A
JP2013235796A JP2012109165A JP2012109165A JP2013235796A JP 2013235796 A JP2013235796 A JP 2013235796A JP 2012109165 A JP2012109165 A JP 2012109165A JP 2012109165 A JP2012109165 A JP 2012109165A JP 2013235796 A JP2013235796 A JP 2013235796A
Authority
JP
Japan
Prior art keywords
copper foil
superconducting film
annealing
rolled copper
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012109165A
Other languages
Japanese (ja)
Other versions
JP5904869B2 (en
Inventor
Kaichiro Nakamuro
嘉一郎 中室
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2012109165A priority Critical patent/JP5904869B2/en
Publication of JP2013235796A publication Critical patent/JP2013235796A/en
Application granted granted Critical
Publication of JP5904869B2 publication Critical patent/JP5904869B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PROBLEM TO BE SOLVED: To provide a rolled copper foil for forming a superconducting material, with which characteristics of a superconducting film formed on a surface thereof is improved.SOLUTION: In a rolled copper foil for forming a superconducting film, a film of a superconducting material is formed on a surface of the rolled copper foil. When a peak intensity in each of regions where 0°≤β<90°, 90°≤β<180, 180°≤β<270° and 270°≤β<360° are satisfied respectively is plotted relative to α on the (111) normal pole figure (where, α represents an axis which is perpendicular to the rotation axis of a goniometer for diffraction defined in the Schultz method, and β represents a rotation axis in parallel with the ND direction of a sample), the average half-width of each peak is 7.5 or less.

Description

本発明は、自身の表面に直接又は間接的に超電導物質の膜を形成させる超電導膜形成用圧延銅箔に関する。   The present invention relates to a rolled copper foil for forming a superconducting film in which a film of a superconducting material is directly or indirectly formed on its surface.

高温超電導物質が開発されるに伴って、超電導物質を基板上に成膜して線材等に加工することが検討されている(特許文献1)。ここで、優れた高温超電導線材を得るためには、配向性の高い超電導膜を形成する必要があり、特許文献1記載の技術では、金属原子が2軸配向した基板(例えば、Cu箔)を用い、基板上に中間層(例えば、Ni膜)をエピタキシャル成長させ、さらに中間層の上に超電導膜をエピタキシャル成長させている。
また、前記配向性基板として、95%以上の高加工度で冷間圧延し、200℃以上でかつ銅の融点以下で配向加熱処理を行い、立方体集合組織を付与した銅箔を用いることが推奨されている。さらに、この配向性基板をステンレス等の支持体にクラッド接合する技術が開発されている(特許文献2)。
With the development of high-temperature superconducting materials, it has been studied to form a superconducting material on a substrate and process it into a wire or the like (Patent Document 1). Here, in order to obtain an excellent high-temperature superconducting wire, it is necessary to form a highly conductive superconducting film. In the technique described in Patent Document 1, a substrate (for example, Cu foil) in which metal atoms are biaxially oriented is used. The intermediate layer (for example, Ni film) is epitaxially grown on the substrate, and the superconducting film is epitaxially grown on the intermediate layer.
In addition, it is recommended to use a copper foil that is cold rolled at a high workability of 95% or more, subjected to orientation heat treatment at 200 ° C. or higher and below the melting point of copper, and has a cubic texture as the orientation substrate. Has been. Furthermore, a technique for clad bonding the orientation substrate to a support such as stainless steel has been developed (Patent Document 2).

特開2006−127847号公報JP 2006-127847 A 特開2008−266686号公報JP 2008-266686A

しかしながら、自身の表面に直接又は間接的に超電導膜を形成させるための銅箔の表面性状についての検討は、未だ十分とはいえず、超電導膜の特性(臨界電流密度等)の向上も十分でないという問題がある。
本発明は上記の課題を解決するためになされたものであり、銅箔の立方体方位への配向度を改善しつつ銅箔の表面性状をも改善し、その表面に形成される超電導膜の特性が向上し、支持体との密着性にも優れる超電導膜形成用圧延銅箔の提供を目的とする。
However, the investigation of the surface properties of the copper foil for forming a superconducting film directly or indirectly on its surface is not yet sufficient, and the characteristics of the superconducting film (critical current density, etc.) are not sufficiently improved. There is a problem.
The present invention has been made to solve the above-described problems, and improves the surface properties of the copper foil while improving the degree of orientation of the copper foil in the cubic direction, and the characteristics of the superconducting film formed on the surface. An object of the present invention is to provide a rolled copper foil for forming a superconducting film that is improved and has excellent adhesion to a support.

本発明者らは種々検討した結果、銅箔の(111)正極点図において、立方体方位に対応した4本のピークの強度をαに対してプロットしたとき、各ピークの半価幅が小さくなると、立方体方位への配向度が改善され、銅箔表面に形成される超電導膜の特性が向上することを見出した。
上記の目的を達成するために、本発明の超電導膜形成用圧延銅箔は、自身の表面に超電導物質の膜を形成させる超電導膜形成用圧延銅箔であって、(111)正極点図において、0°≦β<90°、90°≦β<180、180°≦β<270°、270°≦β<360°のそれぞれの領域のピークの強度をα(但し、α:シュルツ法に規定する回折用ゴニオメータの回転軸に垂直な軸、β:試料のND方向に平行な回転軸)に対してプロットしたとき、各ピークの半価幅の平均値が7.5以下である。
As a result of various studies, the inventors have plotted the intensity of the four peaks corresponding to the cube orientation in the (111) positive electrode dot diagram of the copper foil, and when the half-value width of each peak is reduced, The present inventors have found that the degree of orientation in the cubic direction is improved and the characteristics of the superconducting film formed on the surface of the copper foil are improved.
In order to achieve the above object, a rolled copper foil for forming a superconducting film according to the present invention is a rolled copper foil for forming a superconducting film on its surface, and is a (111) positive electrode dot diagram. , 0 ° ≦ β <90 °, 90 ° ≦ β <180, 180 ° ≦ β <270 °, 270 ° ≦ β <360 °, and the peak intensity in each region is α (where α is defined by the Schulz method) When plotted against an axis perpendicular to the rotation axis of the diffraction goniometer, β: a rotation axis parallel to the ND direction of the sample, the average value of the half width of each peak is 7.5 or less.

200〜1000℃で1分以上再結晶焼鈍して再結晶組織に調質してなることが好ましい。
前記再結晶焼鈍が一次焼鈍及びそれに続く二次焼鈍の二段階で行われ、前記一次焼鈍後に表面の20〜80%が再結晶し、前記二次焼鈍が200〜1000℃で1分以上行われることが好ましい。
前記一次焼鈍が150〜250℃で行われることが好ましい。
鋳塊を熱間圧延後、冷間圧延と焼鈍とを繰り返し、最後に最終冷間圧延を行って製造され、当該最終冷間圧延工程の総加工度が95.0〜99.5%であることが好ましい。
鋳塊を熱間圧延後、冷間圧延と焼鈍とを繰り返し、最後に最終冷間圧延を行って製造され、当該最終冷間圧延工程において、最終パスの1パス前の段階の銅箔表面において、圧延平行方向にJIS−Z8741に従って測定した60°光沢度G60 RDが200を超えることが好ましい。
It is preferable that recrystallization annealing is performed at 200 to 1000 ° C. for 1 minute or longer to temper the recrystallization structure.
The recrystallization annealing is performed in two stages of primary annealing and subsequent secondary annealing. After the primary annealing, 20 to 80% of the surface is recrystallized, and the secondary annealing is performed at 200 to 1000 ° C. for 1 minute or more. It is preferable.
The primary annealing is preferably performed at 150 to 250 ° C.
After the ingot is hot-rolled, it is manufactured by repeating cold rolling and annealing, and finally performing the final cold rolling, and the total workability of the final cold rolling process is 95.0 to 99.5%. It is preferable.
After the ingot is hot-rolled, cold rolling and annealing are repeated, and finally the final cold-rolling is performed. In the final cold-rolling process, on the surface of the copper foil one stage before the final pass The 60 ° gloss G60 RD measured according to JIS-Z8741 in the rolling parallel direction is preferably more than 200.

本発明によれば、銅箔の立方体方位への配向度を改善しつつ銅箔の表面性状をも改善し、その表面に形成される超電導膜の特性が向上し、支持体との密着性にも優れる超電導膜形成用圧延銅箔が得られる。   According to the present invention, the surface property of the copper foil is improved while improving the degree of orientation of the copper foil in the cubic orientation, the characteristics of the superconducting film formed on the surface are improved, and the adhesion to the support is improved. An excellent rolled copper foil for forming a superconducting film can be obtained.

超電導膜形成用圧延銅箔を支持体に積層してなる超電導膜形成用配向板、及び超電導膜形成用配向板の表面に超電導膜を形成してなる超電導材を示す図である。It is a figure which shows the superconducting material formed by forming the superconducting film on the surface of the orientation board for superconducting film formation formed by laminating | stacking the rolled copper foil for superconducting film formation on a support body, and the orientation plate for superconducting film formation. 実施例1の(111)正極点図を示す図である。3 is a diagram showing a (111) positive electrode diagram of Example 1. FIG. ピークの半価幅が、ND方向とX線入射方向とを含む面Aと、試料面Bとの交線Xを軸としたND方向からの結晶方位のズレを表す状態を示す図である。FIG. 4 is a diagram showing a state in which a half width of a peak represents a deviation of crystal orientation from an ND direction with an axis of intersection X between a surface A including an ND direction and an X-ray incident direction and a sample surface B as an axis. 実施例1について、上記ピークの強度をαに対してプロットしたチャートの例を示す図である。It is a figure which shows the example of the chart which plotted the intensity | strength of the said peak with respect to (alpha) about Example 1. FIG. 図4のピークの半価幅(半価全幅、FWHM)を示した図である。It is the figure which showed the half-value width (half-value full width, FWHM) of the peak of FIG.

以下、本発明の実施形態に係る超電導膜形成用圧延銅箔について説明する。なお、本発明において%とは、特に断らない限り、質量%を示すものとする。   Hereinafter, the rolled copper foil for superconducting film formation which concerns on embodiment of this invention is demonstrated. In the present invention, “%” means “% by mass” unless otherwise specified.

図1は、本発明の実施形態に係る超電導膜形成用圧延銅箔4を支持体2に積層してなる超電導膜形成用配向板10、及び超電導膜形成用配向板10の表面(超電導膜形成用圧延銅箔4側の面)に超電導膜8を形成してなる超電導材100を示す。
支持体2は、超電導膜形成用配向板10の強度を確保するためのものであり、非磁性金属材料(例えば、ステンレス鋼、ニッケル合金)が好ましい。
圧延銅箔4には再結晶焼鈍が施され、その際に立方体方位が発達する。再結晶焼鈍の好ましい条件については後述する。銅箔4の再結晶焼鈍は、銅箔4を支持体2に積層する前に行っても良いし、銅箔4を支持体2に積層した後に行っても良い。
圧延銅箔4を支持体2に積層する方法としては、両者の接合面を乾式エッチングによって清浄化した後、両者を無加圧又は加圧して積層し、表面の原子間力によって接合する「表面活性化接合」を用いることができる(特許文献2参照)。
FIG. 1 shows a superconducting film forming orientation plate 10 formed by laminating a rolled copper foil 4 for forming a superconducting film according to an embodiment of the present invention on a support 2, and a surface of the superconducting film forming orientation plate 10 (superconducting film formation). A superconducting material 100 formed by forming a superconducting film 8 on the rolled copper foil 4 side) is shown.
The support 2 is for ensuring the strength of the superconducting film-forming alignment plate 10 and is preferably a nonmagnetic metal material (for example, stainless steel or nickel alloy).
The rolled copper foil 4 is subjected to recrystallization annealing, and the cube orientation develops at that time. Preferred conditions for recrystallization annealing will be described later. The recrystallization annealing of the copper foil 4 may be performed before the copper foil 4 is laminated on the support 2 or after the copper foil 4 is laminated on the support 2.
As a method of laminating the rolled copper foil 4 on the support 2, both surfaces are cleaned by dry etching, then both are laminated with no pressure or pressure, and the surfaces are joined by atomic force on the surface. "Activated bonding" can be used (see Patent Document 2).

超電導膜8を構成する超電導物質とは、その物質が特定の温度(臨界温度)以下に冷やされた時に電気抵抗が0になる物質をいう。特に、実用上の観点から、臨界温度が液体窒素の沸点(−196℃)以上である高温超電導物質が好ましい。高温超電導物質としては、例えば、イットリウム系超電導体(YBCO、Y123)、希土類元素系酸化物超電導体(R123)、銅酸化物高温超電導体が挙げられるがこれらに限定されない。
なお、図1の例では、超電導膜形成用圧延銅箔4の表面に、Niめっき層等からなるバリア層6が形成されている。これは、超電導膜形成用圧延銅箔4の表面に超電導膜8を直接形成すると、成膜時に超電導膜8の成分(酸化物等)が銅箔4側へ拡散して酸化銅を形成したり、成膜時の高温によって銅箔4が酸化し易いからである。従って、超電導膜形成用圧延銅箔4の表面にバリア層6を形成することが好ましい。バリア層6としては、ニッケル又はニッケル合金が好適に用いられる。
又、図1の例では、支持体2の片面に超電導膜形成用圧延銅箔4を形成しているが、支持体2の両面にそれぞれ超電導膜形成用圧延銅箔4を形成してもよい。
The superconducting substance constituting the superconducting film 8 is a substance that has an electric resistance of 0 when the substance is cooled below a specific temperature (critical temperature). In particular, a high temperature superconducting material having a critical temperature not lower than the boiling point of liquid nitrogen (−196 ° C.) is preferable from a practical viewpoint. Examples of the high-temperature superconducting material include, but are not limited to, an yttrium-based superconductor (YBCO, Y123), a rare earth element-based oxide superconductor (R123), and a copper oxide high-temperature superconductor.
In the example of FIG. 1, a barrier layer 6 made of a Ni plating layer or the like is formed on the surface of the rolled copper foil 4 for forming a superconducting film. This is because when the superconducting film 8 is directly formed on the surface of the rolled copper foil 4 for forming a superconducting film, components (oxides, etc.) of the superconducting film 8 are diffused to the copper foil 4 side during the film formation to form copper oxide. This is because the copper foil 4 is easily oxidized by the high temperature during film formation. Therefore, it is preferable to form the barrier layer 6 on the surface of the rolled copper foil 4 for forming a superconducting film. As the barrier layer 6, nickel or a nickel alloy is preferably used.
In the example of FIG. 1, the rolled copper foil 4 for forming a superconducting film is formed on one side of the support 2, but the rolled copper foil 4 for forming a superconducting film may be formed on both sides of the supporting body 2. .

次に、本発明の圧延銅箔の規定及び組成について説明する。
(1)銅箔の立方体方位への配向度
超導電膜の基板として用いられる銅箔には、再結晶焼鈍後に、立方体方位が発達することが求められる。立方体方位を評価する指標として、本発明の実施形態に係る超電導膜形成用圧延銅箔は、(111)正極点図において、0°≦β<90°、90°≦β<180、180°≦β<270°、270°≦β<360°のそれぞれの領域のピーク(このピーク(極大値)は立方体方位に対応したピークである)をα(但し、α:シュルツ法に規定する回折用ゴニオメータの回転軸に垂直な軸、β:試料のND方向に平行な回転軸)に対してプロットしたとき、各ピークの半価幅の平均値が7.5以下である。半価幅の平均値は好ましくは7以下であり、より好ましくは6.5以下であり、さらに好ましくは6以下である。
図2は、後述する実施例1の(111)正極点図を示す。正極点図はX線回折(X線ディフラクトメータ)によるものであり、板(塊)状の試料の測定に用いられる。又、図2のRDは試料の圧延方向を、TDは試料の横方向(圧延方向と圧延面法線とに垂直な方向)を示す。回折用ゴニオメータは、Bragg反射が(111)面からのみ生じるように調整する測器であり、(111)面からBragg反射が生じる角度に回折用ゴニオメータを調整した後に回折用ゴニオメータを固定する。次に、試料を回折用ゴニオメータの回転軸に垂直なα軸と、試料のND方向に平行なβ軸とにそれぞれ回転させながら、(111)面のX線回折強度を測定する。X線回折の方法(シュルツ法)は、例えば文献(古林英一著、「金属の機能性を引きだす材料学シリーズ」、内田老鶴圃社(2002年12月発行)に記載されている。
図2において、集合組織のピークは4個あり、これらは上記した4つの領域にそれぞれ存在する。
Next, the rule and composition of the rolled copper foil of the present invention will be described.
(1) Orientation degree of copper foil in cube orientation Copper foil used as a substrate of a superconductive film is required to develop a cube orientation after recrystallization annealing. As an index for evaluating the cube orientation, the rolled copper foil for forming a superconducting film according to an embodiment of the present invention has a 0111 ≦ β <90 °, 90 ° ≦ β <180, 180 ° ≦ 180 (111) positive electrode diagram. A peak in each region of β <270 °, 270 ° ≦ β <360 ° (this peak (maximum value) is a peak corresponding to the cube orientation) is α (where α is a diffraction goniometer defined in the Schulz method) When plotted against an axis perpendicular to the rotation axis, β: a rotation axis parallel to the ND direction of the sample), the average value of the half width of each peak is 7.5 or less. The average half width is preferably 7 or less, more preferably 6.5 or less, and even more preferably 6 or less.
FIG. 2 shows a (111) positive electrode dot diagram of Example 1 described later. The positive electrode dot diagram is based on X-ray diffraction (X-ray diffractometer), and is used for measurement of a plate-shaped sample. In addition, RD in FIG. 2 indicates the rolling direction of the sample, and TD indicates the horizontal direction of the sample (direction perpendicular to the rolling direction and the normal to the rolling surface). The diffraction goniometer is a measuring device that adjusts so that Bragg reflection occurs only from the (111) plane. The diffraction goniometer is fixed after the diffraction goniometer is adjusted to an angle at which Bragg reflection occurs from the (111) plane. Next, the X-ray diffraction intensity of the (111) plane is measured while rotating the sample about the α axis perpendicular to the rotation axis of the diffraction goniometer and the β axis parallel to the ND direction of the sample. The X-ray diffraction method (Schulz method) is described in, for example, literature (Eiichi Furubayashi, “Materials series that draws out the functionality of metals”, Uchida Otsukurakusha, published in December 2002).
In FIG. 2, there are four texture peaks, which are present in the four regions described above.

ここで、図3に示すように、αは、試料に対するX線の入射方向を軸とした回転に対応している。そして、上記ピークの半価幅は、ND方向からの結晶方位のズレの分布を表し、この分布が小さいほど結晶毎の方位のばらつきが小さく、銅箔の立方体(Cube)方位への配向度(集積度)が高くなる。
図4は、後述する実施例1について、上記ピークの強度をαに対してプロットしたチャートを示す図である。図5は図4のピーク(但し、0°≦β<90°)の半価幅を示した例である。半価幅(半値全幅)を符号FWHMで表す。
Here, as shown in FIG. 3, α corresponds to rotation about the incident direction of the X-ray with respect to the sample. The half width of the peak represents the distribution of deviation in crystal orientation from the ND direction. The smaller this distribution, the smaller the variation in orientation from crystal to crystal, and the degree of orientation of the copper foil in the cube (Cube) orientation ( (Accumulation degree) becomes high.
FIG. 4 is a diagram showing a chart in which the peak intensity is plotted with respect to α in Example 1 to be described later. FIG. 5 is an example showing the half width of the peak in FIG. 4 (where 0 ° ≦ β <90 °). The full width at half maximum (full width at half maximum) is represented by the symbol FWHM.

上記した半価幅の平均値を7.5以下に制御する方法として、再結晶焼鈍の条件を200〜1000℃で1分以上とすることが好ましく、より好ましくは5分以上とする。再結晶焼鈍の条件が200℃未満または1分未満であると、十分な配向組織が得られない場合がある。一方、再結晶焼鈍温度が1000℃を超えると、結晶粒界が溝状にくぼむため、超電導膜形成用途には適さない。再結晶焼鈍時間の上限値は再結晶焼鈍温度によって異なり、結晶粒界が溝状にくぼまない範囲で任意に選択できるが、典型的には10時間以内、より典型的には2時間以内である。
再結晶焼鈍を一次焼鈍及びそれに続く二次焼鈍の二段階で行い、一次焼鈍後に銅箔表面の20〜80%が再結晶するように制御し、二次焼鈍を200〜1000℃で1分以上行うことによって、半価幅の平均値をより小さく制御できる。再結晶率が20%未満の場合、焼鈍を2段階で行う効果が発現しない。一方、再結晶率が80%を超える場合、再結晶集合組織の駆動力となる加工ひずみが過度に除去されるため、二次焼鈍後に立方体方位が十分発達しない。
一次焼鈍は150〜250℃で行うことが好ましい。一次焼鈍の温度が150℃未満の場合、再結晶率が20%未満となることがある。一方、一次焼鈍の温度が250℃を越えると、再結晶率が80%を超えることがある。一次焼鈍の時間は、再結晶率が20〜80%となる範囲で任意に選択できるが、典型的には1分〜10時間、より典型的には5分〜2時間である。時間が短すぎると再結晶率が材料内でばらつくことがあり、時間が長すぎると効率が低下する。
二次焼鈍の温度が1000℃を超えると、結晶粒界が溝状にくぼむため、超電導膜形成用途には適さない。二次焼鈍の時間の上限値は焼鈍温度によって異なり、結晶粒界が溝状にくぼまない範囲で任意に選択できるが、典型的には10時間以内、より典型的には2時間以内である。
As a method for controlling the above average value of the half width to 7.5 or less, the recrystallization annealing condition is preferably set to 200 to 1000 ° C. for 1 minute or more, more preferably 5 minutes or more. If the recrystallization annealing condition is less than 200 ° C. or less than 1 minute, a sufficient orientation structure may not be obtained. On the other hand, when the recrystallization annealing temperature exceeds 1000 ° C., the crystal grain boundaries are recessed in a groove shape, which is not suitable for superconducting film formation. The upper limit of the recrystallization annealing time varies depending on the recrystallization annealing temperature, and can be arbitrarily selected within a range in which the crystal grain boundaries do not dent in a groove shape, but is typically within 10 hours, more typically within 2 hours. .
Recrystallization annealing is performed in two stages of primary annealing and subsequent secondary annealing, and is controlled so that 20 to 80% of the copper foil surface is recrystallized after the primary annealing, and the secondary annealing is performed at 200 to 1000 ° C. for 1 minute or more. By doing so, the average value of the half width can be controlled to be smaller. When the recrystallization rate is less than 20%, the effect of performing annealing in two stages is not exhibited. On the other hand, when the recrystallization rate exceeds 80%, the processing strain that becomes the driving force of the recrystallization texture is excessively removed, so that the cube orientation is not sufficiently developed after the secondary annealing.
The primary annealing is preferably performed at 150 to 250 ° C. When the temperature of primary annealing is less than 150 ° C., the recrystallization rate may be less than 20%. On the other hand, when the primary annealing temperature exceeds 250 ° C., the recrystallization rate may exceed 80%. The primary annealing time can be arbitrarily selected within a range where the recrystallization ratio is 20 to 80%, but is typically 1 minute to 10 hours, more typically 5 minutes to 2 hours. If the time is too short, the recrystallization rate may vary in the material, and if the time is too long, the efficiency decreases.
When the secondary annealing temperature exceeds 1000 ° C., the crystal grain boundaries are recessed in a groove shape, which is not suitable for the superconducting film formation application. The upper limit of the secondary annealing time varies depending on the annealing temperature, and can be arbitrarily selected within a range in which the crystal grain boundaries do not dent in a groove shape, but is typically within 10 hours, more typically within 2 hours.

なお、一次焼鈍により銅箔表面の20〜80%が再結晶するが、この一次焼鈍を複数回に分けて行ってもよい。この場合、例えば複数回の焼鈍で温度を階段状に昇温させることが挙げられる。
又、二次焼鈍によって銅箔表面が100%再結晶し、立方体方位が成長するが、この二次焼鈍を複数回に分けて行ってもよい。
In addition, although 20 to 80% of the copper foil surface is recrystallized by the primary annealing, the primary annealing may be performed in a plurality of times. In this case, for example, the temperature may be raised stepwise by annealing multiple times.
Further, the surface of the copper foil is 100% recrystallized by the secondary annealing, and the cubic orientation grows, but this secondary annealing may be performed in a plurality of times.

(2)組成
銅箔としては、純度99.9質量%以上のタフピッチ銅、無酸素銅を用いることができ、又、要求される強度や導電性に応じて公知の銅合金を用いることができる。無酸素銅はJIS−H3510(合金番号C1011)、JIS−H3100(合金番号C1020)に規格され、タフピッチ銅はJIS−H3100(合金番号C1100)に規格されている。
公知の銅合金としては、例えば、0.001〜0.3質量%の錫入り銅合金(より好ましくは0.001〜0.02質量%の錫入り銅合金);0.01〜0.05質量%の銀入り銅合金;0.005〜0.02質量%のインジウム入り銅合金;0.005〜0.02質量%のクロム入り銅合金;0.005〜0.02質量%のチタン入り銅合金;錫、銀、インジウム、及びクロムの群から選ばれる一種以上を合計で0.05質量%以下含む銅合金等が挙げられ、中でも、導電性に優れたものとして0.02質量%銀添加銅がよく用いられる。
(2) Composition As copper foil, tough pitch copper or oxygen-free copper having a purity of 99.9% by mass or more can be used, and a known copper alloy can be used depending on required strength and conductivity. . Oxygen-free copper is standardized by JIS-H3510 (alloy number C1011) and JIS-H3100 (alloy number C1020), and tough pitch copper is standardized by JIS-H3100 (alloy number C1100).
As a known copper alloy, for example, 0.001 to 0.3% by mass of tin-containing copper alloy (more preferably 0.001 to 0.02% by mass of tin-containing copper alloy); 0.01 to 0.05% Mass% silver-containing copper alloy; 0.005-0.02 mass% indium-containing copper alloy; 0.005-0.02 mass% chromium-containing copper alloy; 0.005-0.02 mass% titanium Copper alloy; copper alloy containing 0.05% by mass or less in total of one or more selected from the group consisting of tin, silver, indium, and chromium is mentioned. Among them, 0.02% by mass silver is excellent in conductivity. Additive copper is often used.

(3)銅箔の厚み
銅箔の厚みは特に限定されないが、箔厚が極度に薄い場合には再結晶時の結晶粒成長が箔厚により制限されるため、10μm以上がよい。銅箔の厚みはより好ましくは15μm以上、さらに好ましくは17μm以上である。一方、銅箔が過度に厚くても特性上の利点はなく、コストやハンドリングで不都合があるため、銅箔厚みは好ましくは100μm以下、より好ましくは75μm以下である。
(3) Thickness of the copper foil The thickness of the copper foil is not particularly limited, but when the foil thickness is extremely thin, crystal grain growth during recrystallization is limited by the foil thickness, and is preferably 10 μm or more. The thickness of the copper foil is more preferably 15 μm or more, and further preferably 17 μm or more. On the other hand, even if the copper foil is excessively thick, there is no advantage in characteristics, and there are disadvantages in cost and handling. Therefore, the copper foil thickness is preferably 100 μm or less, more preferably 75 μm or less.

(4)銅箔の製造方法
次に、本発明の圧延銅箔の製造方法の一例について説明する。まず、銅及び必要な合金元素、さらに不可避不純物からなる鋳塊を熱間圧延後、冷間圧延と焼鈍とを繰り返し、最後に最終冷間圧延で所定厚みに仕上げる。
最終冷間圧延では、材料を繰り返し圧延機に通板(パス)することで所定の厚みに仕上げる。最終冷間圧延での総加工度を95.0%以上とすることで、再結晶焼鈍後に上記半価幅の平均値を確実に7.5以下とすることができる。
最終冷間圧延の総加工度は99.5%以下とすることが好ましく、より好ましくは99.0%以下であり、さらに好ましくは98.0%以下である。総加工度を低くすることで、オイルピットの深さを抑制できる。
(4) Manufacturing method of copper foil Next, an example of the manufacturing method of the rolled copper foil of this invention is demonstrated. First, an ingot made of copper, necessary alloy elements, and inevitable impurities is hot-rolled, and then cold-rolling and annealing are repeated, and finally, it is finished to a predetermined thickness by final cold-rolling.
In the final cold rolling, the material is finished to a predetermined thickness by repeatedly passing (passing) the material through a rolling mill. By setting the total degree of work in the final cold rolling to 95.0% or more, the average value of the half width after the recrystallization annealing can be surely made 7.5 or less.
The total degree of work in the final cold rolling is preferably 99.5% or less, more preferably 99.0% or less, and still more preferably 98.0% or less. By reducing the total processing degree, the depth of the oil pit can be suppressed.

最終冷間圧延工程において、最終パスの1パス前の段階の銅箔表面において、圧延平行方向にJIS−Z8741に従って測定した60°光沢度G60 RDが200を超えるよう、圧延条件を制御することが好ましい。
この場合、最終冷間圧延において、最終パス以前のパスでせん断帯の発達を抑制する、つまり最終パス以前のパスで、圧延後の材料表面が平滑になる。また、最終冷間圧延の最終パスでは、圧延後の材料表面が粗くなる条件で圧延し、最終的に得られる銅箔表面を粗くしてもよい。
In the final cold rolling step, the rolling conditions can be controlled so that the 60 ° gloss G60 RD measured in accordance with JIS-Z8741 in the rolling parallel direction exceeds 200 on the copper foil surface in the stage one pass before the final pass. preferable.
In this case, in the final cold rolling, the development of the shear band is suppressed in the pass before the final pass, that is, the material surface after rolling becomes smooth in the pass before the final pass. Further, in the final pass of the final cold rolling, rolling may be performed under the condition that the material surface after rolling becomes rough, and the finally obtained copper foil surface may be roughened.

具体的には、最終冷間圧延では、銅箔の表面をあまり粗くしないよう、粗さが比較的小さいロール(表面粗さRaが例えば0.05μm以下)を用いて圧延したり、最終冷間圧延における1パス加工度を大きくして圧延すればよい。ただし最終冷間圧延の最終パスでは、粗さが比較的大きいロール(表面粗さRaが例えば0.06μm以上)を用いて圧延したり、粘度の高い圧延油を用いて圧延し、最終的に得られる銅箔表面を粗くして、表面形状を整えてもよい。
なお、上記では最終1パスのみで銅箔表面を粗く仕上げる方法を例示したが、最終2パスで、上記したように粗いロールを用いたり粘度の高い圧延油を用いて圧延したりすることで、銅箔表面を粗く仕上げることも可能である。ただし、調整のしやすさから、最終パスのみの圧延条件を調整することが好ましい。一方、最終冷間圧延の最終3パス以前からロールの粗さを粗くすると、せん断変形帯が発達し、再結晶焼鈍後に上記半価幅の平均値が7.5以下とならない。
Specifically, in the final cold rolling, rolling is performed using a roll having a relatively small roughness (surface roughness Ra is, for example, 0.05 μm or less) or the final cold rolling so that the surface of the copper foil is not too rough. What is necessary is just to enlarge and roll the 1 pass processing degree in rolling. However, in the final pass of the final cold rolling, rolling is performed using a roll having a relatively large roughness (surface roughness Ra is, for example, 0.06 μm or more), or rolling is performed using a highly viscous rolling oil. The obtained copper foil surface may be roughened to adjust the surface shape.
In the above, the method of rough finishing the copper foil surface only in the final 1 pass is exemplified, but in the final 2 passes, by using a rough roll or rolling with a high viscosity rolling oil as described above, It is also possible to finish the copper foil surface roughly. However, for ease of adjustment, it is preferable to adjust the rolling conditions for the final pass only. On the other hand, when the roughness of the roll is made rough before the final three passes of the final cold rolling, a shear deformation band develops, and the average value of the half width does not become 7.5 or less after the recrystallization annealing.

これに対し、最終冷間圧延の最終パスの手前で銅箔表面を粗くし、最終冷間圧延の最終パスで銅箔の表面を平滑にすると、オイルピットにはせん断帯が発達してしまい、最終パス後にもせん断帯を伴う深いオイルピットが残留するので好ましくない。
最終冷間圧延のすべてのパスにおいて、銅箔表面を粗く仕上げると、深いオイルピットが生成し、再結晶焼鈍後に上記半価幅の平均値が7.5以下とならない。
On the other hand, when the copper foil surface is roughened before the final pass of the final cold rolling and the surface of the copper foil is smoothed by the final pass of the final cold rolling, a shear band develops in the oil pit, It is not preferable because a deep oil pit with a shear band remains even after the final pass.
In all the passes of final cold rolling, if the copper foil surface is finished rough, deep oil pits are generated, and the average value of the half width is not 7.5 or less after recrystallization annealing.

表1に示す組成の元素を添加したタフピッチ銅又は無酸素銅を原料としてインゴットを鋳造し、800〜900℃で厚さ10mmまで熱間圧延を行い、表面の酸化スケールを面削した後、冷間圧延と焼鈍とを繰り返し、最後に最終冷間圧延で表1に記載の厚みに仕上げた。さらに、最終冷間圧延後に表1に示す条件で再結晶焼鈍した。
なお、表1の組成の欄において、例えば「0.02%Ag添加TPC」は、JIS−H3100(合金番号C1100)のタフピッチ銅(TPC)に0.02質量%のAgを添加したことを意味し、「0.01%Ag0.005%Sn添加OFC」はJIS−H3100(合金番号C1020)の無酸素銅(OFC)に0.01質量%のAg及び0.005質量%のSnを添加したことを意味する。但し、実施例6のみ無酸素銅としてJIS−H3510(合金番号C1011)に規格されている無酸素銅(OFC)を用い、実施例4、5、8、9、比較例7、8は無酸素銅としてJIS−H3100(合金番号C1020)に規格されている無酸素銅(OFC)を用いた。
After casting an ingot using tough pitch copper or oxygen-free copper added with the elements shown in Table 1 as a raw material, hot rolling to 800 mm in thickness to 10 mm, chamfering the surface oxide scale, The hot rolling and annealing were repeated, and finally the final cold rolling was performed to the thicknesses shown in Table 1. Further, after the final cold rolling, recrystallization annealing was performed under the conditions shown in Table 1.
In the column of composition in Table 1, for example, “0.02% Ag added TPC” means that 0.02 mass% Ag was added to tough pitch copper (TPC) of JIS-H3100 (Alloy No. C1100). “0.01% Ag 0.005% Sn-added OFC” was obtained by adding 0.01 mass% Ag and 0.005 mass% Sn to oxygen-free copper (OFC) of JIS-H3100 (Alloy No. C1020). Means that. However, oxygen free copper (OFC) standardized in JIS-H3510 (alloy number C1011) is used as oxygen free copper only in Example 6, and Examples 4, 5, 8, 9 and Comparative Examples 7 and 8 are oxygen free. As the copper, oxygen-free copper (OFC) standardized in JIS-H3100 (alloy number C1020) was used.

このようにして得られた各銅箔試料について、諸特性の評価を行った。
(1)光沢度
最終冷間圧延の最終パスの1パス前の段階において、圧延平行方向RDに沿って銅箔表面の光沢度G60 RDをJIS−Z8741に従って測定した。
(2)立方体集合組織
得られた銅箔を、支持体との接合熱処理を模した窒素雰囲気中で、表1に示す条件で加熱した。その後、シュルツの回折法を用いて銅箔の(111)正極点図を測定し、立方体方位に由来する回折ピークの半価幅を求めた。測定装置にはRINT2500(株式会社リガク製)を用い、X線源にはCoを用いた。測定ステップはα角を1°、β角を2°とした。これよりも粗いステップで測定してもよいが、ピークの形状を正確に測定できない場合があるため好ましくない。
Various characteristics of each copper foil sample thus obtained were evaluated.
(1) Glossiness At a stage one pass before the final pass of the final cold rolling, the glossiness G60 RD of the copper foil surface was measured according to JIS-Z8741 along the rolling parallel direction RD.
(2) Cubic texture The obtained copper foil was heated on the conditions shown in Table 1 in the nitrogen atmosphere which imitated joining heat processing with a support body. Thereafter, the (111) positive electrode diagram of the copper foil was measured using Schulz's diffraction method, and the half-value width of the diffraction peak derived from the cube orientation was determined. RINT2500 (manufactured by Rigaku Corporation) was used as the measurement apparatus, and Co was used as the X-ray source. In the measurement step, the α angle was 1 ° and the β angle was 2 °. Although the measurement may be performed in steps coarser than this, it is not preferable because the peak shape may not be measured accurately.

(3)超電導膜の特性(臨界電流密度Jc)
上記(4)で得られた超電導膜形成用配向板の銅箔面に、バリア層としてNiめっき層を2μm電気めっきし、バリア層上にTFA−MOD(Metal Organic Deposition using Trifluoroacetates)法により、YBCO膜からなる超電導膜を形成した。そして、77K、自己磁界中で直流4端子法により、1μV/cmの電圧基準で臨界電流密度Jcを測定した。
なお、Jcが100000A/cmを超える場合を◎、10000A/cmを超えて100000 A/cm以下の場合を○、100 A/cmを超えて10000 A/cm以下の場合を△、100 A/cm以下の場合を×として表した。評価が△〜◎であれば実用上問題ない。
(3) Characteristics of superconducting film (critical current density Jc)
On the copper foil surface of the superconducting film-forming alignment plate obtained in (4) above, a 2 μm Ni plating layer is electroplated as a barrier layer. A superconducting film made of a film was formed. Then, the critical current density Jc was measured at a voltage reference of 1 μV / cm by a direct current four-terminal method in a self-magnetic field at 77K.
In addition, a case in which Jc is more than 100000A / cm 2 ◎, 10000A / cm 2 Beyond ○ the case of 100000 A / cm 2 or less, 100 more than the A / cm 2 10000 A / cm 2 or less of the case △ The case of 100 A / cm 2 or less was expressed as x. If the evaluation is Δ to ◎, there is no practical problem.

得られた結果を表1に示す。   The obtained results are shown in Table 1.

各実施例では、半価幅の平均値が7.5以下となって超電導膜の特性(臨界電流密度)が向上した。又、各実施例では、最終冷間圧延の総加工度を95.0〜99.5%に調整した。また、実施例16を除き最終パスの1パス前の圧延平行方向の60°光沢度G60RDは200以上であった。
特に、再結晶焼鈍を一次焼鈍及びそれに続く二次焼鈍の二段階で行い、かつ一次焼鈍を150〜250℃で行った実施例17〜20の場合、他の実施例に比べて超電導膜の特性がさらに向上した。
なお、光沢度G60RDが200未満である実施例16の場合、他の実施例に比べて超電導膜の特性が若干劣ったが実用上問題はない。
In each example, the average value of the half width was 7.5 or less, and the characteristics (critical current density) of the superconducting film were improved. Moreover, in each Example, the total workability of the final cold rolling was adjusted to 95.0-99.5%. Further, except for Example 16, the 60 ° glossiness G60 RD in the rolling parallel direction one pass before the final pass was 200 or more.
In particular, in Examples 17 to 20 in which recrystallization annealing is performed in two stages of primary annealing and subsequent secondary annealing and primary annealing is performed at 150 to 250 ° C., the characteristics of the superconducting film as compared with the other examples Improved further.
In the case of Example 16 where the glossiness G60 RD is less than 200, the characteristics of the superconducting film are slightly inferior to those of the other examples, but there is no practical problem.

一方、再結晶焼鈍の温度が200℃未満である比較例1の場合、半価幅の平均値が7.5を超え、超電導膜の特性(臨界電流密度)が低下した。
最終冷間圧延の総加工度が95.0%未満である比較例2〜6の場合、再結晶焼鈍の条件によらず半価幅が7.5を超え、超電導膜の特性(臨界電流密度)が低下した。特に最終冷間圧延の総加工度が95.0%未満で、かつ光沢度が200未満の比較例2及び3の場合、半価幅の平均値が最も大きい値となった。
On the other hand, in the case of Comparative Example 1 in which the recrystallization annealing temperature is less than 200 ° C., the average value of the half width exceeds 7.5, and the characteristics (critical current density) of the superconducting film are lowered.
In the case of Comparative Examples 2 to 6 in which the total degree of work of the final cold rolling is less than 95.0%, the half width exceeds 7.5 regardless of the recrystallization annealing conditions, and the characteristics of the superconducting film (critical current density) ) Decreased. In particular, in the case of Comparative Examples 2 and 3 in which the total work degree of final cold rolling was less than 95.0% and the glossiness was less than 200, the average value of the half width was the largest value.

Claims (6)

自身の表面に超電導物質の膜を形成させる超電導膜形成用圧延銅箔であって、
(111)正極点図において、0°≦β<90°、90°≦β<180、180°≦β<270°、270°≦β<360°のそれぞれの領域のピークの強度をα(但し、α:シュルツ法に規定する回折用ゴニオメータの回転軸に垂直な軸、β:試料のND方向に平行な回転軸)に対してプロットしたとき、各ピークの半価幅の平均値が7.5以下である超電導膜形成用圧延銅箔。
A rolled copper foil for forming a superconducting film that forms a film of a superconducting material on its surface,
(111) In the positive pole figure, the peak intensity in each region of 0 ° ≦ β <90 °, 90 ° ≦ β <180, 180 ° ≦ β <270 °, 270 ° ≦ β <360 ° is expressed as α (however, , Α: axis perpendicular to the rotation axis of the diffraction goniometer specified in the Schulz method, β: rotation axis parallel to the ND direction of the sample), the average value of the half width of each peak is 7. The rolled copper foil for superconducting film formation which is 5 or less.
200〜1000℃で1分以上再結晶焼鈍して再結晶組織に調質してなる請求項1に記載の超電導膜形成用圧延銅箔。   The rolled copper foil for forming a superconducting film according to claim 1, wherein the rolled copper foil is formed by recrystallization annealing at 200 to 1000 ° C. for 1 minute or longer and tempering the recrystallized structure. 前記再結晶焼鈍が一次焼鈍及びそれに続く二次焼鈍の二段階で行われ、前記一次焼鈍後に表面の20〜80%が再結晶し、前記二次焼鈍が200〜1000℃で1分以上行われる請求項2に記載の超電導膜形成用圧延銅箔。   The recrystallization annealing is performed in two stages of primary annealing and subsequent secondary annealing. After the primary annealing, 20 to 80% of the surface is recrystallized, and the secondary annealing is performed at 200 to 1000 ° C. for 1 minute or more. The rolled copper foil for forming a superconducting film according to claim 2. 前記一次焼鈍が150〜250℃で行われる請求項3に記載の超電導膜形成用圧延銅箔。   The rolled copper foil for forming a superconducting film according to claim 3, wherein the primary annealing is performed at 150 to 250 ° C. 鋳塊を熱間圧延後、冷間圧延と焼鈍とを繰り返し、最後に最終冷間圧延を行って製造され、当該最終冷間圧延工程の総加工度が95.0〜99.5%である、請求項1〜4のいずれかに記載の超電導膜形成用圧延銅箔。   After the ingot is hot-rolled, it is manufactured by repeating cold rolling and annealing, and finally performing the final cold rolling, and the total workability of the final cold rolling process is 95.0 to 99.5%. The rolled copper foil for superconducting film formation in any one of Claims 1-4. 鋳塊を熱間圧延後、冷間圧延と焼鈍とを繰り返し、最後に最終冷間圧延を行って製造され、当該最終冷間圧延工程において、最終パスの1パス前の段階の銅箔表面において、圧延平行方向にJIS−Z8741に従って測定した60°光沢度G60 RDが200を超える、請求項1〜5のいずれか記載の超電導膜形成用圧延銅箔。 After the ingot is hot-rolled, cold rolling and annealing are repeated, and finally the final cold-rolling is performed. In the final cold-rolling process, on the surface of the copper foil one stage before the final pass The rolled copper foil for forming a superconducting film according to any one of claims 1 to 5, wherein the 60 ° gloss G60 RD measured according to JIS-Z8741 in the rolling parallel direction exceeds 200.
JP2012109165A 2012-05-11 2012-05-11 Method for producing rolled copper foil for superconducting film formation Active JP5904869B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012109165A JP5904869B2 (en) 2012-05-11 2012-05-11 Method for producing rolled copper foil for superconducting film formation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012109165A JP5904869B2 (en) 2012-05-11 2012-05-11 Method for producing rolled copper foil for superconducting film formation

Publications (2)

Publication Number Publication Date
JP2013235796A true JP2013235796A (en) 2013-11-21
JP5904869B2 JP5904869B2 (en) 2016-04-20

Family

ID=49761751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012109165A Active JP5904869B2 (en) 2012-05-11 2012-05-11 Method for producing rolled copper foil for superconducting film formation

Country Status (1)

Country Link
JP (1) JP5904869B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108602097A (en) * 2015-12-28 2018-09-28 株式会社豊山 For automobile and the Cu alloy material and its production method of electric and electronic component
WO2018180920A1 (en) * 2017-03-30 2018-10-04 Jx金属株式会社 Rolled copper foil

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009046734A (en) * 2007-08-21 2009-03-05 Chubu Electric Power Co Inc Textured substrate for epitaxial film formation and surface improving method of textured substrate for epitaxial film formation
JP2010118246A (en) * 2008-11-12 2010-05-27 Toyo Kohan Co Ltd Manufacturing method of metal laminated base plate for oxide superconductive wire rod and oxide superconductive wire rod using this metal laminated base plate
WO2011007527A1 (en) * 2009-07-17 2011-01-20 東洋鋼鈑株式会社 Metal laminated substrate for use as an oxide superconducting wire material, and manufacturing method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009046734A (en) * 2007-08-21 2009-03-05 Chubu Electric Power Co Inc Textured substrate for epitaxial film formation and surface improving method of textured substrate for epitaxial film formation
JP2010118246A (en) * 2008-11-12 2010-05-27 Toyo Kohan Co Ltd Manufacturing method of metal laminated base plate for oxide superconductive wire rod and oxide superconductive wire rod using this metal laminated base plate
WO2011007527A1 (en) * 2009-07-17 2011-01-20 東洋鋼鈑株式会社 Metal laminated substrate for use as an oxide superconducting wire material, and manufacturing method therefor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108602097A (en) * 2015-12-28 2018-09-28 株式会社豊山 For automobile and the Cu alloy material and its production method of electric and electronic component
CN108602097B (en) * 2015-12-28 2020-02-11 株式会社豊山 Copper alloy material for automobile and electric and electronic components and production method thereof
US11091827B2 (en) 2015-12-28 2021-08-17 Poongsan Corporation Copper alloy material for automobile and electrical and electronic components and method of producing the same
WO2018180920A1 (en) * 2017-03-30 2018-10-04 Jx金属株式会社 Rolled copper foil
JPWO2018180920A1 (en) * 2017-03-30 2019-12-12 Jx金属株式会社 Rolled copper foil

Also Published As

Publication number Publication date
JP5904869B2 (en) 2016-04-20

Similar Documents

Publication Publication Date Title
EP2455949B1 (en) Metal laminated substrate for use as an oxide superconducting wire material, and manufacturing method therefor
WO2010055651A1 (en) Method for producing metal laminated substrate for oxide superconducting wire, and oxide superconducting wire using the substrate
JP6388925B2 (en) Metal foil manufacturing method
US10748678B2 (en) Substrate for superconducting wire, production method therefor, and superconducting wire
JP5904869B2 (en) Method for producing rolled copper foil for superconducting film formation
JP5705107B2 (en) Rolled copper foil for superconducting film formation
US10115501B2 (en) Substrate for superconducting wire, method for manufacturing the same, and superconducting wire
JP5330725B2 (en) Superconducting wire substrate and manufacturing method thereof
Nekkanti et al. Development of nickel alloy substrates for Y-Ba-Cu-O coated conductor applications
Ma et al. Study on fabrication of Ni-5 at.% W tapes for coated conductors from cylinder ingots
JP5650099B2 (en) Rolled copper foil for superconducting film formation
RU2624564C2 (en) Manufacture method of biaxial textured support plate from triple alloy on copper-nickel basis
KR101975252B1 (en) Substrate for epitaxial growth, manufacturing method therefor, and substrate for superconductor wire
Yu et al. Intermediate annealing and strong cube texture of Ni8W/Ni12W/Ni8W composite substrates
JP5323444B2 (en) Composite substrate for oxide superconducting wire, manufacturing method thereof, and superconducting wire
Khlebnikova et al. Creation of a sharp cube texture in ribbon substrates of Cu–40% Ni–M (M= Fe, Cr, V) ternary alloys for high-temperature second generation superconductors
RU2481674C1 (en) Method to manufacture substrate for high-temperature thin-film superconductors and substrate
JP6537131B2 (en) Iron plate and method of manufacturing the same
JP5650098B2 (en) Rolled copper foil for superconducting film formation
RU2451766C1 (en) Method for biaxial textured substrate production from binary alloy on basis of nickel for epitaxial application of buffer and high-temperature superconductive layers for ribbon superconductors to substrate
RU2759146C1 (en) Method for manufacturing biaxially textured substrate in the form of copper-nickel-based triple alloy tape for epitaxial deposition of buffer and high-temperature superconducting layers on it
JP6948621B2 (en) Epitaxial growth substrate and its manufacturing method
JP6074527B2 (en) Epitaxial growth substrate, manufacturing method thereof, and substrate for superconducting wire
WO2020064505A1 (en) Process for producing highly oriented metal tapes
Bhattacharjee et al. Effect of ultrahigh straining on the evolution of cube texture ({100}< 100>) in high purity nickel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160315

R150 Certificate of patent or registration of utility model

Ref document number: 5904869

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250