JP6793138B2 - Copper foil for flexible printed circuit boards, copper-clad laminates using it, flexible printed circuit boards, and electronic devices - Google Patents
Copper foil for flexible printed circuit boards, copper-clad laminates using it, flexible printed circuit boards, and electronic devices Download PDFInfo
- Publication number
- JP6793138B2 JP6793138B2 JP2018008117A JP2018008117A JP6793138B2 JP 6793138 B2 JP6793138 B2 JP 6793138B2 JP 2018008117 A JP2018008117 A JP 2018008117A JP 2018008117 A JP2018008117 A JP 2018008117A JP 6793138 B2 JP6793138 B2 JP 6793138B2
- Authority
- JP
- Japan
- Prior art keywords
- copper foil
- flexible printed
- printed circuit
- copper
- etching
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/01—Alloys based on copper with aluminium as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/02—Alloys based on copper with tin as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/04—Alloys based on copper with zinc as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/10—Alloys based on copper with silicon as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/08—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/09—Use of materials for the conductive, e.g. metallic pattern
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/03—Conductive materials
- H05K2201/0332—Structure of the conductor
- H05K2201/0335—Layered conductors or foils
- H05K2201/0355—Metal foils
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Parts Printed On Printed Circuit Boards (AREA)
- Structure Of Printed Boards (AREA)
Description
本発明はフレキシブルプリント基板等の配線部材に用いて好適な銅箔、それを用いた銅張積層体、フレキシブル配線板、及び電子機器に関する。 The present invention relates to a copper foil suitable for use in a wiring member such as a flexible printed circuit board, a copper-clad laminate using the copper foil, a flexible wiring board, and an electronic device.
フレキシブルプリント基板(フレキシブル配線板、以下、「FPC」と称する)はフレキシブル性を有するため、電子回路の折り曲げ部や可動部に広く使用されている。例えば、HDDやDVD及びCD−ROM等のディスク関連機器の可動部や、折りたたみ式携帯電話機の折り曲げ部等にFPCが用いられている。
FPCは銅箔と樹脂とを積層したCopper Clad Laminate(銅張積層体、以下CCLと称する)をエッチングすることで配線を形成し、その上をカバーレイと呼ばれる樹脂層によって被覆したものである。カバーレイを積層する前段階で、銅箔とカバーレイとの密着性を向上するための表面改質工程の一環として、銅箔表面のエッチングが行われる。また、銅箔の厚みを低減して屈曲性を向上させるため、減肉エッチングを行う場合もある。
Since a flexible printed circuit board (flexible wiring board, hereinafter referred to as "FPC") has flexibility, it is widely used for bent parts and movable parts of electronic circuits. For example, FPCs are used for moving parts of disc-related devices such as HDDs, DVDs, and CD-ROMs, and bent parts of foldable mobile phones.
FPC is formed by etching Copper Clad Laminate (copper-clad laminate, hereinafter referred to as CCL) in which copper foil and resin are laminated to form wiring, and coating the wiring with a resin layer called a coverlay. Before laminating the coverlay, the surface of the copper foil is etched as part of the surface modification step for improving the adhesion between the copper foil and the coverlay. Further, in order to reduce the thickness of the copper foil and improve the flexibility, thinning etching may be performed.
ところで、電子機器の小型、薄型、高性能化に伴い、FPCの回路幅、スペース幅の微細化(例えば、20〜30μm程度)が要求されている。FPCの回路が微細化すると、エッチングにより回路を形成する時にエッチングファクタや回路直線性が劣化し易くなるという問題がある(特許文献1,2)。 By the way, as electronic devices become smaller, thinner, and have higher performance, miniaturization of FPC circuit width and space width (for example, about 20 to 30 μm) is required. When the FPC circuit is miniaturized, there is a problem that the etching factor and the circuit linearity tend to deteriorate when the circuit is formed by etching (Patent Documents 1 and 2).
しかしながら、従来の技術では、エッチング性を改善する方策として平均結晶粒径などを最適化することが行われているが、微細回路の形成におけるエッチング性に改善の余地がある。
本発明は上記の課題を解決するためになされたものであり、エッチング性に優れたフレキシブルプリント基板用銅箔、それを用いた銅張積層体、フレキシブルプリント基板、及び電子機器の提供を目的とする。
However, in the conventional technique, although the average crystal grain size and the like are optimized as a measure for improving the etching property, there is room for improvement in the etching property in the formation of a fine circuit.
The present invention has been made to solve the above problems, and an object of the present invention is to provide a copper foil for a flexible printed circuit board having excellent etching properties, a copper-clad laminate using the same, a flexible printed circuit board, and an electronic device. To do.
本発明者らは種々検討した結果、〈220〉方位のエッチング速度が大きいことを見出した。特に、塩化第二銅エッチャントでのエッチングでは方位によるエッチング速度の差が存在しないとされてきた。そこで〈220〉方位の結晶粒を多くすることでエッチング性(特にソフトエッチング性およびエッチングファクタ)をさらに向上させることに成功した。 As a result of various studies, the present inventors have found that the etching rate in the <220> direction is high. In particular, it has been said that there is no difference in etching rate depending on the orientation in etching with a cupric chloride etchant. Therefore, we succeeded in further improving the etching property (particularly the soft etching property and the etching factor) by increasing the number of crystal grains in the <220> orientation.
すなわち、本発明のフレキシブルプリント基板用銅箔は、99.0質量%以上のCu、残部不可避的不純物からなる圧延銅箔であって、300℃×30min焼鈍(但し、昇温速度100℃/min〜300℃/min)したときに、平均結晶粒径が0.5〜 4.0μ mの再結晶粒を有し、銅箔表面のX線回折強度I(220)/I0(220)で表示される集合度が1.3以上7.0未満、導電率が80%以上である。 That is, the copper foil for a flexible printed substrate of the present invention is a rolled copper foil composed of 99.0% by mass or more of Cu and unavoidable impurities in the balance, and is annealed at 300 ° C. × 30 min (however, the heating rate is 100 ° C./min to 300 ° C.). At ° C / min), it has recrystallized grains with an average crystal grain size of 0.5 to 4.0 μm , and the degree of aggregation indicated by the X-ray diffraction intensity I (220) / I 0 (220) on the surface of the copper foil. Is 1.3 or more and less than 7.0, and the conductivity is 80% or more.
本発明のフレキシブルプリント基板用銅箔は、JIS−H3100(C1100)に規格するタフピッチ銅又はJIS−H3100(C1020)の無酸素銅からなることが好ましい。
本発明のフレキシブルプリント基板用銅箔は、さらに、添加元素として、P、Ag、Si、Ge、Al、Ga、Zn、SnおよびSbからなる群から選ばれる少なくとも1種又は2種以上を合計で0.7質量%以下含有してなることが好ましい。
The copper foil for a flexible printed circuit board of the present invention is preferably made of tough pitch copper specified in JIS-H3100 (C1100) or oxygen-free copper of JIS-H3100 (C1020).
The copper foil for a flexible printed circuit board of the present invention further contains at least one or a total of two or more selected as additive elements from the group consisting of P, Ag, Si, Ge, Al, Ga, Zn, Sn and Sb. It is preferably contained in an amount of 0.7% by mass or less .
本発明の銅張積層体は、前記フレキシブルプリント基板用銅箔と、樹脂層とを積層してなる。 The copper-clad laminate of the present invention is formed by laminating the copper foil for a flexible printed circuit board and a resin layer.
本発明のフレキシブルプリント基板は、前記銅張積層体における前記銅箔に回路を形成してなる。 The flexible printed circuit board of the present invention is formed by forming a circuit on the copper foil in the copper-clad laminate.
本発明の電子機器は、前記フレキシブルプリント基板を用いてなる。 The electronic device of the present invention uses the flexible printed circuit board.
本発明によれば、エッチング性(特にソフトエッチング性およびエッチングファクタ)に優れたフレキシブルプリント基板用銅箔が得られる。 According to the present invention, a copper foil for a flexible printed circuit board having excellent etching properties (particularly soft etching properties and etching factors) can be obtained.
以下、本発明に係る銅箔の実施の形態について説明する。なお、本発明において%は特に断らない限り、質量%を示すものとする。
まず、エッチング性におけるソフトエッチング性とエッチングファクタEFについて説明する。
ソフトエッチング性は、銅箔表面とレジストとの密着性に起因したエッチングによる回路の精度を示す指標で、レジストの密着性が良くレジストが銅箔表面を追従するほど、両者間にエッチング液が侵入して回路の一部が欠ける不具合が抑制され、銅箔全面に均一な回路パターンが得られて歩留まりが向上する。
エッチングファクタEFはエッチングで形成した回路の断面形状の指標であり、EFが高いほど、エッチングで形成した回路の断面がシャープになるので、回路を微細化した際に回路パターンの精度が向上する。
Hereinafter, embodiments of the copper foil according to the present invention will be described. In the present invention,% means mass% unless otherwise specified.
First, the soft etching property and the etching factor EF in the etching property will be described.
Soft etching property is an index showing the accuracy of the circuit due to etching due to the adhesion between the copper foil surface and the resist. The better the adhesion of the resist and the more the resist follows the copper foil surface, the more the etching solution penetrates between them. As a result, the problem of a part of the circuit being chipped is suppressed, a uniform circuit pattern is obtained over the entire surface of the copper foil, and the yield is improved.
The etching factor EF is an index of the cross-sectional shape of the circuit formed by etching, and the higher the EF, the sharper the cross section of the circuit formed by etching, so that the accuracy of the circuit pattern is improved when the circuit is miniaturized.
ソフトエッチング性が良好であっても、エッチングファクタEFが劣る場合、銅箔全面に均一な回路パターンが得られて歩留まりが向上するが、回路を微細化した際に回路パターンの精度が低下する。
逆に、エッチングファクタEFが良好であっても、ソフトエッチング性が劣る場合、回路を微細化した際に回路パターンの精度が向上するが、(銅箔表面とレジスト間にエッチング液が侵入しやすいため)回路の一部が欠ける不具合が生じ、銅箔全面に均一な回路パターンが得られず歩留まりが低下する。
Even if the soft etching property is good, if the etching factor EF is inferior, a uniform circuit pattern is obtained on the entire surface of the copper foil and the yield is improved, but the accuracy of the circuit pattern is lowered when the circuit is miniaturized.
On the contrary, even if the etching factor EF is good, if the soft etching property is inferior, the accuracy of the circuit pattern is improved when the circuit is miniaturized, but (the etching solution easily penetrates between the copper foil surface and the resist). Therefore, a problem occurs in which a part of the circuit is chipped, and a uniform circuit pattern cannot be obtained on the entire surface of the copper foil, resulting in a decrease in yield.
<組成>
本発明に係る銅箔は、99.0質量%以上のCu、残部不可避的不純物からなる。
本発明の実施例では、銅箔の最終冷間圧延前の結晶粒径を微細化することにより、冷間圧延中に銅箔の転位の蓄積が促進され、再結晶時には再結晶粒が微細になる。また、冷間圧延の最終パスにおいてひずみ速度を極端に高くすると、再結晶時には再結晶粒が特定の方位に配向し、すなわち{200}面集合度が抑制され、かつ、{220}面集合度を高くすることができエッチング性が向上する。
<Composition>
The copper foil according to the present invention is composed of 99.0% by mass or more of Cu and unavoidable impurities in the balance.
In the examples of the present invention, by refining the crystal grain size of the copper foil before the final cold rolling, the accumulation of dislocations of the copper foil is promoted during the cold rolling, and the recrystallized grains become fine during recrystallization. Become. Further, when the strain rate is extremely high in the final pass of cold rolling, the recrystallized grains are oriented in a specific direction at the time of recrystallization, that is, the {200} plane aggregation is suppressed and the {220} plane aggregation is suppressed. Can be increased and the etchability is improved.
又、銅箔の再結晶後における結晶粒を微細化するためには、焼鈍と圧延を繰り返す工程全体の中で、最終焼鈍後に行う最終冷間圧延前の結晶粒径を5μm以上20μm以下とすると好ましい。
具体的には、最終焼鈍の温度、及び、最終焼鈍前の冷間圧延の加工度を調整すると、上記粒径を制御できる。最終焼鈍の温度は銅箔の製造条件によっても変わり、限定されないが、例えば300〜400℃とすればよい。又、最終焼鈍前の冷間圧延の加工度も限定されないが、例えば加工度ηを1.6〜3.0とすればよい。
加工度ηは、最終焼鈍前の冷間圧延直前の材料の厚みをA0、最終焼鈍前の冷間圧延直後の材料の厚みをA1とし、η=ln(A0/A1)で表す。
Further, in order to refine the crystal grains after recrystallization of the copper foil, the crystal grain size before the final cold rolling performed after the final annealing in the entire process of repeating annealing and rolling is set to 5 μm or more and 20 μm or less. preferable.
Specifically, the particle size can be controlled by adjusting the temperature of the final annealing and the workability of cold rolling before the final annealing. The final annealing temperature varies depending on the manufacturing conditions of the copper foil and is not limited, but may be, for example, 300 to 400 ° C. Further, the workability of cold rolling before final annealing is not limited, but for example, the workability η may be 1.6 to 3.0.
The workability η is represented by η = ln (A0 / A1), where the thickness of the material immediately before cold rolling before final annealing is A0 and the thickness of the material immediately after cold rolling before final annealing is A1.
最終冷間圧延前の結晶粒径が20μm超の場合、加工時の転位の絡み合いが小さくなり、ひずみの蓄積が少なくなるため、再結晶後にひずみが解放されず結晶粒の微細化が不十分となる傾向にある。最終冷間圧延前の結晶粒径が5μmより小さい場合は、加工時の転位の絡み合いが銅箔のほぼ全領域で生じてこれ以上の絡み合いができず、銅箔の再結晶時に再結晶粒が微細化する効果が飽和する。したがって最終冷間圧延前の結晶粒径の下限を5μmとした。 When the crystal grain size before the final cold rolling is more than 20 μm, the entanglement of dislocations during processing becomes small and the strain accumulation becomes small, so the strain is not released after recrystallization and the grain refinement is insufficient. It tends to be. If the crystal grain size before the final cold rolling is smaller than 5 μm, dislocation entanglement during processing occurs in almost the entire region of the copper foil and no further entanglement is possible, and recrystallized grains are formed during recrystallization of the copper foil. The effect of miniaturization is saturated. Therefore, the lower limit of the crystal grain size before the final cold rolling was set to 5 μm.
又、添加元素として、上記組成に対し、P、Ag、Si、Ge、Al、Ga、Zn、SnおよびSbからなる群から選ばれる少なくとも1種又は2種以上を合計で0.7質量%以下含有すると、再結晶粒を微細化することができる。
上記添加元素は、冷間圧延時に転位の絡み合いの頻度を増加させるので、再結晶粒が微細化することができる。
上記添加元素を合計で0.7質量%を超えて含有させると、導電率が低下し、フレキシブル基板用銅箔として適さない場合があるので、0.7質量%を上限とした。上記添加元素の含有量の下限は特に制限されないが、例えば各元素につき0.0005質量%より小さく制御することは工業的に難しいので、各元素の含有量の下限を0.0005質量%とするとよい。
Further, as the additive element, at least one or two or more selected from the group consisting of P, Ag, Si, Ge, Al, Ga, Zn, Sn and Sb are added to the above composition in a total of 0.7% by mass or less. When it is contained, the recrystallized grains can be made finer.
Since the additive element increases the frequency of dislocation entanglement during cold rolling, the recrystallized grains can be made finer.
If the above additive elements are contained in excess of 0.7% by mass in total, the conductivity is lowered and the copper foil for a flexible substrate may not be suitable. Therefore, the upper limit is 0.7% by mass. The lower limit of the content of the additive element is not particularly limited, but for example, it is industrially difficult to control each element to be smaller than 0.0005% by mass, so the lower limit of the content of each element is preferably 0.0005% by mass.
本発明に係る銅箔を、JIS−H3100(C1100)に規格するタフピッチ銅(TPC)又はJIS−H3100(C1020)の無酸素銅(OFC)からなる組成としてもよい。
又、上記TPC又はOFCに対し、Pを含有させてなる組成としてもよい。
The copper foil according to the present invention may be composed of tough pitch copper (TPC) standardized for JIS-H3100 (C1100) or oxygen-free copper (OFC) of JIS-H3100 (C1020).
Further, the composition may be such that P is contained in the TPC or OFC.
<平均結晶粒径>
銅箔の平均結晶粒径が0.5〜 4.0μ mである。平均結晶粒径が0.5μ m未満であると、強度が高くなり過ぎて曲げ剛性が大きくなり、スプリングバックが大きくなってフレキシブルプリント基板用途に適さない。平均結晶粒径が4.0μ mを超えると、ソフトエッチング性が劣化する。
平均結晶粒径の測定は、誤差を避けるため、箔表面を100μ m× 100μ mの視野で3視野以上を観察して行う。箔表面の観察は、SIM ( Scanning Ion Microscope)またはSEM( Scanning Electron Microscope)を用い、JIS-H0501に基づいて平均結晶粒径を求めることができる。ただし、双晶は、別々の結晶粒とみなして測定する。
<Average crystal grain size>
The average crystal grain size of the copper foil is 0.5-4.0 μm. If the average crystal grain size is less than 0.5 μm, the strength becomes too high, the bending rigidity becomes large, and the springback becomes large, which is not suitable for flexible printed circuit board applications. If the average crystal grain size exceeds 4.0 μm, the soft etchability deteriorates.
The average crystal grain size is measured by observing the foil surface in a field of view of 100 μm × 100 μm in three or more fields of view to avoid errors. For the observation of the foil surface, SIM (Scanning Ion Microscope) or SEM (Scanning Electron Microscope) can be used, and the average crystal grain size can be determined based on JIS-H0501. However, twins are measured as separate crystal grains.
<集合度>
銅箔表面のX線回折強度I(220)/I0(220)で表示される集合度が1.3以上7.0未満である。
集合度が1.3未満であると、厚み方向のエッチング速度が小さくなり、銅箔の後述するエッチングファクタが低下する。集合度が7.0以上となるひずみ速度の場合、エッチングファクタは良好であるものの、圧延銅箔の形状が悪くなりFPC用銅箔として使用しにくくなる場合がある。
<Aggregation>
The degree of aggregation represented by the X-ray diffraction intensity I (220) / I 0 (220) on the surface of the copper foil is 1.3 or more and less than 7.0.
When the degree of aggregation is less than 1.3, the etching rate in the thickness direction becomes low, and the etching factor described later for the copper foil decreases. When the strain rate is 7.0 or more, the etching factor is good, but the shape of the rolled copper foil is deteriorated, which may make it difficult to use as a copper foil for FPC.
集合度は以下のように測定する。まず、銅箔の圧延面について{220}面のX線回折強度を測定し、I(220)とする。
また、同一の条件にて、純銅粉末(325mesh(JIS Z8801、純度99.5%),水素気流中で300℃で1時間加熱してから使用)について{220}面のX線回折強度を測定し、I0(220)とする。
The degree of aggregation is measured as follows. First, the X-ray diffraction intensity of the {220} plane of the rolled surface of the copper foil is measured and designated as I (220).
Further, under the same conditions, the X-ray diffraction intensity of the {220} plane was measured for pure copper powder (325 mesh (JIS Z8801, purity 99.5%), used after heating at 300 ° C. for 1 hour in a hydrogen stream). Then, I 0 (220).
そして、次のように規格化する。
・{220}面集合度:I(220)/I0(220)
X線回折の測定条件は、つぎのとおりである。
・入射X線源:Co、
・加速電圧:25kV、
・管電流:20mA、
・発散スリット:1度、
・散乱スリット:1度、
・受光スリット:0.3mm、
・発散縦制限スリット:10mm、
・モノクロ受光スリット0.8mm
Then, it is standardized as follows.
-{220} surface aggregation degree: I (220) / I 0 (220)
The measurement conditions for X-ray diffraction are as follows.
・ Incident X-ray source: Co,
・ Acceleration voltage: 25kV,
・ Tube current: 20mA,
・ Divergence slit: 1 degree,
・ Scattering slit: 1 degree,
・ Light receiving slit: 0.3 mm,
・ Divergence vertical restriction slit: 10 mm,
・ Monochrome light receiving slit 0.8mm
<300℃で30分間の熱処理>
本発明に係る銅箔はフレキシブルプリント基板に用いられ、その際、銅箔と樹脂とを積層したCCLは、200〜400℃で樹脂を硬化させるための熱処理を行うため、平均結晶粒径、及びI(220)/I0(220)で表示される集合度が変化する。
従って、樹脂と積層する前後で、平均結晶粒径、及び集合度が変わる。そこで、本願の請求項1に係るフレキシブルプリント基板用銅箔は、樹脂と積層後の銅張積層体になった際の熱処理を受けた状態の銅箔を規定している。つまり、既に熱処理を受けているから、新たな熱処理を行わない状態の銅箔である。
一方、本願の請求項4に係るフレキシブルプリント基板用銅箔は、樹脂と積層する前の銅箔に上記熱処理を行ったときの状態(例えば、熱処理前の銅箔コイルがCCLの製造工場に納入されてCCLに積層されるときの加熱された状態)を規定している。この300℃で30分間の熱処理は、CCLの積層時に樹脂を硬化熱処理させる温度条件を模したものである。なお、熱処理による銅箔表面の酸化を防止するため、熱処理の雰囲気は、還元性又は非酸化性の雰囲気が好ましく、例えば、真空雰囲気、又は、アルゴン、窒素、水素、一酸化炭素等若しくはこれらの混合ガスからなる雰囲気などとすればよい。昇温速度は100〜300℃/minの間であればよい。
<Heat treatment at 300 ° C for 30 minutes>
The copper foil according to the present invention is used for a flexible printed circuit board, and at that time, the CCL in which the copper foil and the resin are laminated is subjected to a heat treatment for curing the resin at 200 to 400 ° C. The degree of aggregation displayed by I (220) / I 0 (220) changes.
Therefore, the average crystal grain size and the degree of aggregation change before and after laminating with the resin. Therefore, the copper foil for a flexible printed circuit board according to claim 1 of the present application defines a copper foil in a state of being heat-treated when it becomes a copper-clad laminate after being laminated with a resin. That is, since it has already been heat-treated, it is a copper foil in a state where no new heat treatment is performed.
On the other hand, the copper foil for a flexible printed circuit board according to claim 4 of the present application is in a state when the copper foil before being laminated with the resin is subjected to the above heat treatment (for example, the copper foil coil before the heat treatment is delivered to the CCL manufacturing factory. The heated state when laminated on the CCL) is specified. This heat treatment at 300 ° C. for 30 minutes imitates the temperature conditions for curing and heat-treating the resin during lamination of CCL. In order to prevent oxidation of the copper foil surface due to the heat treatment, the heat treatment atmosphere is preferably a reducing or non-oxidizing atmosphere, for example, a vacuum atmosphere, argon, nitrogen, hydrogen, carbon monoxide, etc., or these. The atmosphere may be a mixed gas. The heating rate may be between 100 and 300 ° C./min.
本発明の銅箔は、例えば以下のようにして製造することができる。まず、銅インゴットを溶解、鋳造した後、熱間圧延し、冷間圧延と焼鈍を行い、好ましくは冷間圧延時の初期に再結晶焼鈍を行うと共に、最終再結晶焼鈍及び最終冷間圧延を行うことにより箔を製造することができる。
最終冷間圧延の総加工度η、最終冷間圧延前かつ最終再結晶焼鈍後の平均結晶粒径、及び最終冷間圧延の最終パスのひずみ速度を調整することにより、平均結晶粒径、及び集合度を制御できる。
The copper foil of the present invention can be produced, for example, as follows. First, the copper ingot is melted and cast, then hot-rolled, cold-rolled and annealed.Preferably, recrystallization annealing is performed at the initial stage of cold rolling, and final recrystallization annealing and final cold rolling are performed. By doing so, the foil can be produced.
The total working ratio in the final cold rolling eta, before final cold rolling and the average grain size after final recrystallization annealing, and by adjusting the strain rate of the final pass of the final cold rolling, the average crystal grain size, and You can control the degree of aggregation.
最終冷間圧延の総加工度ηを6.10以上とすると、I(220)/I0(220)で表示される集合度をより確実に増やすことができる。
最終冷間圧延前かつ最終再結晶焼鈍後の平均結晶粒径を5〜20μmとすると、製品の平均結晶粒径を確実に0.5〜 4.0μ mにすることができる。
最終冷間圧延の最終パスのひずみ速度を1000(/秒)以上とすると、集合度をより確実に増やすことができる。
When the total workability η of the final cold rolling is 6.10 or more, the degree of aggregation displayed by I (220) / I 0 (220) can be increased more reliably.
Assuming that the average crystal grain size before the final cold rolling and after the final recrystallization annealing is 5 to 20 μm, the average crystal grain size of the product can be surely set to 0.5 to 4.0 μm.
When the strain rate of the final pass of the final cold rolling is 1000 (/ sec) or more, the degree of aggregation can be increased more reliably.
<銅張積層体及びフレキシブルプリント基板>
又、本発明の銅箔に(1)樹脂前駆体(例えばワニスと呼ばれるポリイミド前駆体)をキャスティングして熱をかけて重合させること、(2)ベースフィルムと同種の熱可塑性接着剤を用いてベースフィルムを本発明の銅箔にラミネートすること、により、銅箔と樹脂基材の2層からなる銅張積層体(CCL)が得られる。又、本発明の銅箔に接着剤を塗着したベースフィルムをラミネートすることにより、銅箔と樹脂基材とその間の接着層の3層からなる銅張積層体(CCL)が得られる。これらのCCL製造時に銅箔が熱処理されて再結晶化する。
これらにフォトリソグラフィー技術を用いて回路を形成し、必要に応じて回路にめっきを施し、カバーレイフィルムをラミネートすることでフレキシブルプリント基板(フレキシブル配線板)が得られる。
<Copper-clad laminate and flexible printed circuit board>
Further, (1) a resin precursor (for example, a polyimide precursor called varnish) is cast on the copper foil of the present invention and polymerized by applying heat, and (2) using the same type of thermoplastic adhesive as the base film. By laminating the base film on the copper foil of the present invention, a copper-clad laminate (CCL) composed of two layers of the copper foil and a resin base material can be obtained. Further, by laminating a base film coated with an adhesive on the copper foil of the present invention, a copper-clad laminate (CCL) composed of three layers of a copper foil, a resin base material, and an adhesive layer between them can be obtained. During the production of these CCLs, the copper foil is heat treated and recrystallized.
A flexible printed circuit board (flexible wiring board) can be obtained by forming a circuit on these using photolithography technology, plating the circuit as necessary, and laminating a coverlay film.
従って、本発明の銅張積層体は、銅箔と樹脂層とを積層してなる。又、本発明のフレキシブルプリント基板は、銅張積層体の銅箔に回路を形成してなる。
樹脂層としては、PET(ポリエチレンテレフタレート)、PI(ポリイミド)、LCP(液晶ポリマー)、PEN(ポリエチレンナフタレート)が挙げられるがこれに限定されない。また、樹脂層として、これらの樹脂フィルムを用いてもよい。
樹脂層と銅箔との積層方法としては、銅箔の表面に樹脂層となる材料を塗布して加熱成膜してもよい。又、樹脂層として樹脂フィルムを用い、樹脂フィルムと銅箔との間に以下の接着剤を用いてもよく、接着剤を用いずに樹脂フィルムを銅箔に熱圧着してもよい。但し、樹脂フィルムに余分な熱を加えないという点からは、接着剤を用いることが好ましい。
Therefore, the copper-clad laminate of the present invention is formed by laminating a copper foil and a resin layer. Further, the flexible printed circuit board of the present invention is formed by forming a circuit on a copper foil of a copper-clad laminate.
Examples of the resin layer include, but are not limited to, PET (polyethylene terephthalate), PI (polyimide), LCP (liquid crystal polymer), and PEN (polyethylene naphthalate). Moreover, you may use these resin films as a resin layer.
As a method of laminating the resin layer and the copper foil, a material to be a resin layer may be applied to the surface of the copper foil to form a heat film. Further, a resin film may be used as the resin layer, and the following adhesive may be used between the resin film and the copper foil, or the resin film may be thermocompression bonded to the copper foil without using the adhesive. However, it is preferable to use an adhesive from the viewpoint of not applying extra heat to the resin film.
樹脂層としてフィルムを用いた場合、このフィルムを、接着剤層を介して銅箔に積層するとよい。この場合、フィルムと同成分の接着剤を用いることが好ましい。例えば、樹脂層としてポリイミドフィルムを用いる場合は、接着剤層もポリイミド系接着剤を用いることが好ましい。尚、ここでいうポリイミド接着剤とはイミド結合を含む接着剤を指し、ポリエーテルイミド等も含む。 When a film is used as the resin layer, this film may be laminated on the copper foil via the adhesive layer. In this case, it is preferable to use an adhesive having the same composition as the film. For example, when a polyimide film is used as the resin layer, it is preferable to use a polyimide-based adhesive as the adhesive layer. The polyimide adhesive referred to here refers to an adhesive containing an imide bond, and also includes polyetherimide and the like.
なお、本発明は、上記実施形態に限定されない。又、本発明の作用効果を奏する限り、上記実施形態における銅合金がその他の成分を含有してもよい。また、電解銅箔でも良い。
例えば、銅箔の表面に、粗化処理、防錆処理、耐熱処理、またはこれらの組み合わせによる表面処理を施してもよい。
The present invention is not limited to the above embodiment. Further, the copper alloy in the above-described embodiment may contain other components as long as the effects of the present invention are exhibited. Further, electrolytic copper foil may be used.
For example, the surface of the copper foil may be roughened, rust-proofed, heat-resistant, or surface-treated by a combination thereof.
次に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。電気銅に、表1に示す元素をそれぞれ添加して表1に示す組成とし、Ar雰囲気で鋳造して鋳塊を得た。鋳塊中の酸素含有量は15ppm未満であった。この鋳塊を900℃で均質化焼鈍後、熱間圧延した後、冷間圧延および再結晶焼鈍を繰り返し、さらに最終再結晶焼鈍及び最終冷間圧延を行って圧延銅箔を得た。
得られた圧延銅箔にアルゴン雰囲気において300℃×30分の熱処理を加え、銅箔サンプルを得た。熱処理後の銅箔は、CCLの積層時に熱処理を受けた状態を模している。
Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto. The elements shown in Table 1 were added to the electrolytic copper to obtain the composition shown in Table 1, and casting was performed in an Ar atmosphere to obtain an ingot. The oxygen content in the ingot was less than 15 ppm. The ingot was homogenized and annealed at 900 ° C., hot-rolled, then cold-rolled and recrystallized annealed repeatedly, and finally recrystallized and finally cold-rolled to obtain rolled copper foil.
The obtained rolled copper foil was heat-treated at 300 ° C. for 30 minutes in an argon atmosphere to obtain a copper foil sample. The copper foil after the heat treatment imitates the state of being heat-treated at the time of laminating the CCL.
<銅箔サンプルの評価>
1.導電率
上記熱処理後の各銅箔サンプルについて、JIS H 0505に基づいて4端子法により、25℃の導電率(%IACS)を測定した。
導電率が80%IACSより大きければ導電性が良好である。
2.集合度
上記熱処理後の各銅箔サンプルについて、X線回折装置(RINT−2500:理学電機製)を用い、上述の方法で集合度を測定した。なお、I(220)/I0(220)で表示される集合度の他、{200}面のX線回折強度を同様に測定し、I(200)/I0(200)も求めた。
<Evaluation of copper foil sample>
1. 1. Conductivity For each copper foil sample after the above heat treatment, the conductivity (% IACS) at 25 ° C. was measured by the 4-terminal method based on JIS H 0505.
If the conductivity is greater than 80% IACS, the conductivity is good.
2. 2. Aggregation degree For each copper foil sample after the above heat treatment, the aggregation degree was measured by the above-mentioned method using an X-ray diffractometer (RINT-2500: manufactured by Rigaku Denki). In addition to the degree of aggregation indicated by I (220) / I 0 (220), the X-ray diffraction intensity of the {200} plane was measured in the same manner, and I (200) / I 0 (200) was also determined.
3.エッチングファクタEF
銅箔と樹脂を張り合わせ、その後ドライフィルムレジストを銅箔表面にラミネートし、レジストに短冊状(L/S=25/25)の回路パターンを形成した。塩化第二銅エッチャントのスプレーエッチングでエッチング時間を変化させて、エッチングを実施した。
3. 3. Etching factor EF
A copper foil and a resin were laminated, and then a dry film resist was laminated on the surface of the copper foil to form a strip-shaped (L / S = 25/25) circuit pattern on the resist. Etching was carried out by changing the etching time by spray etching of cupric chloride etchant.
EFの測定方法は種々存在するが、本発明では、エッチングファクタEFの求め方として最も一般的な、幅方向に対する深さ方向のエッチング速度で評価する。本発明では、図1、図2に示すようにして測定を行う。なお、下記の式(1)は、深さ方向と幅方向のエッチング速度のみに着目しており、斜め方向のエッチング速度は考慮しない。
EFは、図1に示すように、回路1本の断面の幅方向及び深さ方向のエッチング速度から、以下の式(1)で求める。
EF=深さ方向のエッチング速度/幅方向のエッチング速度 (1)
There are various methods for measuring EF, but in the present invention, the etching factor EF is evaluated by the etching rate in the depth direction with respect to the width direction, which is the most common method for obtaining the etching factor EF. In the present invention, the measurement is performed as shown in FIGS. 1 and 2. The following equation (1) focuses only on the etching rates in the depth direction and the width direction, and does not consider the etching rates in the oblique direction.
As shown in FIG. 1, the EF is obtained by the following equation (1) from the etching rates in the width direction and the depth direction of the cross section of one circuit.
EF = etching rate in the depth direction / etching rate in the width direction (1)
ただし、エッチング速度そのものを測定するのは困難であるので、それぞれエッチング時間を変化させたときの回路の幅と深さを測定する。そして、図2に示すように、横軸を回路の幅、縦軸を回路の深さとして各データをプロットし、以下の式(2)で近似的に求める。つまり、図2のグラフの傾きを最小二乗法による一次の近似式から求めてEFとする。
EF≒深さの時間変化/(幅の時間変化/2)=2×深さの時間変化/幅の時間変化 (2)
ここで、式(2)の係数「2」は、幅方向のエッチングが図1の左右両側に進行するため、半分にする必要があるためである。
However, since it is difficult to measure the etching rate itself, the width and depth of the circuit when the etching time is changed are measured. Then, as shown in FIG. 2, each data is plotted with the horizontal axis as the width of the circuit and the vertical axis as the depth of the circuit, and approximately obtained by the following equation (2). That is, the slope of the graph in FIG. 2 is obtained from a linear approximation formula by the least squares method and used as EF.
EF ≒ time change of depth / (time change of width / 2) = 2 × time change of depth / time change of width (2)
Here, the coefficient "2" in the equation (2) needs to be halved because the etching in the width direction proceeds to both the left and right sides of FIG.
そして、EFの値に応じて以下の指標で評価した。評価が◎、○であれば良好である。
◎:EFが1.4以上
×:EFが1.1以上1.4未満
×:EFが1.1未満
Then, it was evaluated by the following indexes according to the value of EF. If the evaluation is ◎ or ○, it is good.
⊚: EF is 1.4 or more ×: EF is 1.1 or more and less than 1.4 ×: EF is less than 1.1
4.ソフトエッチング性
上記熱処理後の各銅箔サンプルについて、表面を以下の条件でソフトエッチングした。ソフトエッチング性を評価する指標として、ソフトエッチング後の銅箔表面のJIS-B0601(2001)に基づく算術平均粗さRaを測定した。
ソフトエッチング条件としては、銅箔とレジストとの密着性を付与するためのソフトエッチングを模擬し、過硫酸ナトリウム濃度100g/L、過酸化水素濃度35g/Lの水溶液( 液温25℃ )に420秒銅箔を浸漬するものとした。算術平均粗さRaが0.2μm以下の場合をソフトエッチング性が良好(○)、算術平均粗さRaが0.2μmを超える場合をソフトエッチング性が不良(×)とした。
4. Soft etching property The surface of each copper foil sample after the above heat treatment was soft-etched under the following conditions. As an index for evaluating the soft etching property, the arithmetic mean roughness Ra based on JIS-B0601 (2001) of the copper foil surface after the soft etching was measured.
As the soft etching conditions, soft etching for imparting adhesion between the copper foil and the resist is simulated, and 420 in an aqueous solution (liquid temperature 25 ° C) with a sodium persulfate concentration of 100 g / L and a hydrogen peroxide concentration of 35 g / L. The second copper foil was to be immersed. When the arithmetic mean roughness Ra was 0.2 μm or less, the soft etching property was good (◯), and when the arithmetic average roughness Ra was more than 0.2 μm, the soft etching property was poor (x).
ソフトエッチング後にレジストが銅箔表面に良く追従すれば密着性に優れ、回路パターンの精度が向上し、ソフトエッチング性が良好となる。Raが0.2μmを超えると、レジストが銅箔表面を追従しにくく、レジストと銅箔表面間に隙間が発生し易くなる。そして、その隙間にエッチング液が侵入することで回路パターンの形成時の精度が低下する。 If the resist follows the copper foil surface well after soft etching, the adhesion is excellent, the accuracy of the circuit pattern is improved, and the soft etching property is good. When Ra exceeds 0.2 μm, it is difficult for the resist to follow the copper foil surface, and a gap is likely to be generated between the resist and the copper foil surface. Then, the etching solution invades the gap, and the accuracy at the time of forming the circuit pattern is lowered.
5.結晶粒径
上記熱処理後の各銅箔サンプルについて、圧延面をSEM(Scanning Electron Microscope)を用いて観察し、JIS H 0501に基づいて平均粒径を求めた。ただし、双晶は、別々の結晶粒とみなして測定を行った。測定領域は、圧延方向に平行な断面の400μm ×400μmとした。
5. Crystal grain size For each copper foil sample after the heat treatment, the rolled surface was observed using an SEM (Scanning Electron Microscope), and the average particle size was determined based on JIS H 0501. However, twins were measured as separate crystal grains. The measurement area was 400 μm × 400 μm with a cross section parallel to the rolling direction.
得られた結果を表1、表2に示す。 The obtained results are shown in Tables 1 and 2.
表1、表2から明らかなように、結晶粒径が0.5〜 4.0μ mであり、かつ、I(220)/I0(220)で表示される集合度が1.3以上7.0未満である各実施例の場合、エッチングファクタおよびソフトエッチング性がともに優れていた。これにより、銅箔全面に均一な回路パターンが得られて歩留まりが向上し、さらに回路を微細化した際に回路パターンの精度が向上する。 As is clear from Tables 1 and 2, the grain size is 0.5 to 4.0 μm, and the degree of aggregation indicated by I (220) / I 0 (220) is 1.3 or more and less than 7.0. In the case of each of the examples, both the etching factor and the soft etching property were excellent. As a result, a uniform circuit pattern is obtained on the entire surface of the copper foil, the yield is improved, and the accuracy of the circuit pattern is improved when the circuit is further miniaturized.
最終冷間圧延の最終パスのひずみ速度が1000(s-1)未満である比較例1〜4の場合、集合度が1.3未満となり、ソフトエッチング性は良好なもののエッチングファクタが低下した。従って、回路を微細化した際に回路パターンの精度が低下する。
最終冷間圧延前かつ最終再結晶焼鈍後の平均結晶粒径が20μmを超えた比較例5の場合、製品の平均結晶粒径が4.0μ mを超え、エッチングファクタは良好なものの、ソフトエッチング性が劣った。従って、銅箔全面に均一な回路パターンが得られず歩留まりが低下する。
最終冷間圧延の総加工度が6.10未満の比較例6の場合、集合度が1.3未満となり、エッチングファクタが低下した。
添加元素の合計含有量が0.7質量%を超えた比較例7の場合、導電率が80%未満となり導電性が劣った。
In the cases of Comparative Examples 1 to 4 in which the strain rate of the final pass of the final cold rolling was less than 1000 (s -1 ), the degree of aggregation was less than 1.3, the soft etching property was good, but the etching factor was lowered. Therefore, when the circuit is miniaturized, the accuracy of the circuit pattern is lowered.
In the case of Comparative Example 5 in which the average crystal grain size before the final cold rolling and after the final recrystallization annealing exceeded 20 μm, the average crystal grain size of the product exceeded 4.0 μm, and the etching factor was good, but the soft etching property was obtained. Was inferior. Therefore, a uniform circuit pattern cannot be obtained on the entire surface of the copper foil, and the yield is lowered.
In the case of Comparative Example 6 in which the total workability of the final cold rolling was less than 6.10, the degree of aggregation was less than 1.3, and the etching factor was lowered.
In the case of Comparative Example 7 in which the total content of the added elements exceeded 0.7% by mass, the conductivity was less than 80% and the conductivity was inferior.
Claims (6)
300℃×30min焼鈍(但し、昇温速度100℃/min〜300℃/min)したときに、平均結晶粒径が0.5〜 4.0μ mの再結晶粒を有し、銅箔表面のX線回折強度I(220)/I0(220)で表示される集合度が1.3以上7.0未満、
導電率が80%以上であるフレキシブルプリント基板用銅箔。 A rolled copper foil consisting of 99.0% by mass or more of Cu and unavoidable impurities in the balance.
300 ° C. × 30min annealing (however, heating rate 100 ℃ / min~300 ℃ / min) when the average crystal grain size has a recrystallized grains of 0.5~ 4.0μ m, X-ray diffraction of the copper foil surface The degree of aggregation displayed by the intensity I (220) / I 0 (220) is 1.3 or more and less than 7.0.
Copper foil for flexible printed circuit boards with conductivity of 80% or more.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018008117A JP6793138B2 (en) | 2018-01-22 | 2018-01-22 | Copper foil for flexible printed circuit boards, copper-clad laminates using it, flexible printed circuit boards, and electronic devices |
TW107147630A TWI730280B (en) | 2018-01-22 | 2018-12-28 | Copper foil for flexible printed circuit boards, copper-clad laminates using the same, flexible printed circuit boards and electronic devices |
KR1020190003924A KR20190089732A (en) | 2018-01-22 | 2019-01-11 | Copper foil for flexible printed circuit, and copper clad laminate, flexible printed circuit and electronic device using copper foil |
CN201910043638.6A CN110072333B (en) | 2018-01-22 | 2019-01-17 | Copper foil for flexible printed board, copper-clad laminate using same, flexible printed board, and electronic device |
KR1020200171634A KR102470725B1 (en) | 2018-01-22 | 2020-12-09 | Copper foil for flexible printed circuit, and copper clad laminate, flexible printed circuit and electronic device using copper foil |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018008117A JP6793138B2 (en) | 2018-01-22 | 2018-01-22 | Copper foil for flexible printed circuit boards, copper-clad laminates using it, flexible printed circuit boards, and electronic devices |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019127603A JP2019127603A (en) | 2019-08-01 |
JP6793138B2 true JP6793138B2 (en) | 2020-12-02 |
Family
ID=67365929
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018008117A Active JP6793138B2 (en) | 2018-01-22 | 2018-01-22 | Copper foil for flexible printed circuit boards, copper-clad laminates using it, flexible printed circuit boards, and electronic devices |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6793138B2 (en) |
KR (2) | KR20190089732A (en) |
CN (1) | CN110072333B (en) |
TW (1) | TWI730280B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6856688B2 (en) * | 2019-03-26 | 2021-04-07 | Jx金属株式会社 | Copper foil for flexible printed circuit boards, copper-clad laminates using it, flexible printed circuit boards, and electronic devices |
JP7164752B1 (en) * | 2022-07-14 | 2022-11-01 | Jx金属株式会社 | Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic equipment |
JP7194857B1 (en) | 2022-07-14 | 2022-12-22 | Jx金属株式会社 | Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic equipment |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3962291B2 (en) * | 2001-07-17 | 2007-08-22 | 日鉱金属株式会社 | Rolled copper foil for copper clad laminate and method for producing the same |
JP3824593B2 (en) * | 2003-02-27 | 2006-09-20 | 日鉱金属株式会社 | Rolled copper foil with high elongation |
JP5055088B2 (en) * | 2007-10-31 | 2012-10-24 | Jx日鉱日石金属株式会社 | Copper foil and flexible printed circuit board using the same |
JP2013142162A (en) * | 2012-01-10 | 2013-07-22 | Mitsubishi Shindoh Co Ltd | Copper or copper alloy plate for base plate with excellent warp workability, and method for producing the same |
JP6360654B2 (en) * | 2012-01-17 | 2018-07-18 | Jx金属株式会社 | Rolled copper foil for flexible printed wiring boards |
JP6294257B2 (en) * | 2015-03-30 | 2018-03-14 | Jx金属株式会社 | Copper alloy foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device |
US20170208680A1 (en) * | 2016-01-15 | 2017-07-20 | Jx Nippon Mining & Metals Corporation | Copper Foil, Copper-Clad Laminate Board, Method For Producing Printed Wiring Board, Method For Producing Electronic Apparauts, Method For Producing Transmission Channel, And Method For Producing Antenna |
JP6294376B2 (en) * | 2016-02-05 | 2018-03-14 | Jx金属株式会社 | Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device |
JP6392268B2 (en) * | 2016-02-05 | 2018-09-19 | Jx金属株式会社 | Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device |
JP6328679B2 (en) * | 2016-03-28 | 2018-05-23 | Jx金属株式会社 | Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device |
JP7133904B2 (en) * | 2016-03-31 | 2022-09-09 | 住友化学株式会社 | LAMINATED FILM AND METHOD FOR MANUFACTURING THE SAME |
-
2018
- 2018-01-22 JP JP2018008117A patent/JP6793138B2/en active Active
- 2018-12-28 TW TW107147630A patent/TWI730280B/en active
-
2019
- 2019-01-11 KR KR1020190003924A patent/KR20190089732A/en active Application Filing
- 2019-01-17 CN CN201910043638.6A patent/CN110072333B/en active Active
-
2020
- 2020-12-09 KR KR1020200171634A patent/KR102470725B1/en active IP Right Grant
Also Published As
Publication number | Publication date |
---|---|
CN110072333A (en) | 2019-07-30 |
TWI730280B (en) | 2021-06-11 |
KR20190089732A (en) | 2019-07-31 |
KR102470725B1 (en) | 2022-11-25 |
JP2019127603A (en) | 2019-08-01 |
KR20200141427A (en) | 2020-12-18 |
TW201934767A (en) | 2019-09-01 |
CN110072333B (en) | 2022-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102470725B1 (en) | Copper foil for flexible printed circuit, and copper clad laminate, flexible printed circuit and electronic device using copper foil | |
JP4662834B2 (en) | Copper or copper alloy foil for circuit | |
CN109392242B (en) | Copper foil for flexible printed board, copper-clad laminate using same, flexible printed board, and electronic device | |
JP6781562B2 (en) | Copper foil for flexible printed circuit boards, copper-clad laminates using it, flexible printed circuit boards, and electronic devices | |
CN109385554B (en) | Copper foil for flexible printed board, copper-clad laminate using same, flexible printed board, and electronic device | |
JP6328679B2 (en) | Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device | |
JP6348621B1 (en) | Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device | |
JP5933943B2 (en) | Rolled copper foil for flexible printed wiring boards, copper-clad laminates, flexible printed wiring boards, and electronic equipment | |
JP6774457B2 (en) | Copper foil for flexible printed circuit boards, copper-clad laminates using it, flexible printed circuit boards, and electronic devices | |
JP6647253B2 (en) | Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device | |
JP6926013B2 (en) | Copper foil for flexible printed circuit, products for sale of copper foil for flexible printed circuit, copper-clad laminate using it, flexible printed circuit, and electronic equipment | |
JP2019194360A (en) | Copper foil for flexible printed wiring board, and copper clad laminate, flexible printed wiring board and electronic device using the same | |
JP6712561B2 (en) | Rolled copper foil for flexible printed circuit board, copper clad laminate using the same, flexible printed circuit board, and electronic device | |
JP2022100207A (en) | Surface-treated copper foil, copper-clad laminate, and printed wiring board |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20181212 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200106 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200228 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20200615 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200831 |
|
C60 | Trial request (containing other claim documents, opposition documents) |
Free format text: JAPANESE INTERMEDIATE CODE: C60 Effective date: 20200831 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20200901 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20200923 |
|
C21 | Notice of transfer of a case for reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C21 Effective date: 20200928 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20201102 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20201109 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6793138 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |