JP5055088B2 - Copper foil and flexible printed circuit board using the same - Google Patents

Copper foil and flexible printed circuit board using the same Download PDF

Info

Publication number
JP5055088B2
JP5055088B2 JP2007282690A JP2007282690A JP5055088B2 JP 5055088 B2 JP5055088 B2 JP 5055088B2 JP 2007282690 A JP2007282690 A JP 2007282690A JP 2007282690 A JP2007282690 A JP 2007282690A JP 5055088 B2 JP5055088 B2 JP 5055088B2
Authority
JP
Japan
Prior art keywords
copper foil
young
modulus
heat treatment
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007282690A
Other languages
Japanese (ja)
Other versions
JP2009108376A (en
Inventor
嘉一郎 中室
俊之 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2007282690A priority Critical patent/JP5055088B2/en
Publication of JP2009108376A publication Critical patent/JP2009108376A/en
Application granted granted Critical
Publication of JP5055088B2 publication Critical patent/JP5055088B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明はフレキシブルプリント基板等の配線部材に用いて好適な圧延銅箔及びそれを用いたフレキシブルプリント基板に関する。   The present invention relates to a rolled copper foil suitable for use in a wiring member such as a flexible printed circuit board and a flexible printed circuit board using the rolled copper foil.

フレキシブルプリント基板(以下、「FPC」と称する)はフレキシブル性を有するため、電子回路の折り曲げ部や可動部に広く使用されている。例えば、HDDやDVD及びCD−ROM等のディスク関連機器の可動部や、折りたたみ式携帯電話機の折り曲げ部等にFPCが用いられている。
FPCは一般に、基材フィルムに回路となる銅箔を張り合わせて加熱することにより製造され、銅箔としては、電解銅箔より屈曲性に優れたタフピッチ銅や無酸素銅の圧延銅箔が使用される。又、屈曲性を向上させるため、圧延銅箔は焼鈍した状態でFPCに使用される。
A flexible printed circuit board (hereinafter referred to as “FPC”) has flexibility, and is therefore widely used for bent portions and movable portions of electronic circuits. For example, FPCs are used for movable parts of disk-related devices such as HDDs, DVDs, and CD-ROMs, and for folding parts of foldable mobile phones.
FPC is generally manufactured by laminating and heating a copper foil to be a circuit on a base film, and as copper foil, rolled copper foil of tough pitch copper or oxygen-free copper having superior flexibility than electrolytic copper foil is used. The In order to improve flexibility, the rolled copper foil is used for FPC in an annealed state.

特に、携帯電話等の薄型化が進展し、それに応じて可動部に用いられるFPCの屈曲半径は小さくなる傾向にあり、より高い屈曲性が要求されている。そこで、最終圧延後に焼鈍された銅箔の板厚方向に貫通した結晶粒の割合を多くし(結晶粒径を大きくし)、屈曲による変形を単結晶の変形とさせて屈曲性を向上させた圧延銅箔が報告されている(特許文献1参照)。
又、最終冷間圧延後の再結晶焼鈍の後に圧延面でのX線回折で求めた200面の積分強度(I (200) )が,微粉末銅のX線回折で求めた200面の積分強度(I0 (200) )に対し,I (200) /I0 (200) ≧40とし、立方体集合組織が著しく発達した圧延銅箔が報告されている(特許文献2参照)。
In particular, the thinning of mobile phones and the like has progressed, and the bending radius of the FPC used for the movable part tends to be reduced accordingly, and higher flexibility is required. Therefore, the ratio of crystal grains penetrating in the thickness direction of the copper foil annealed after final rolling was increased (the crystal grain size was increased), and the deformation due to bending was changed to single crystal deformation to improve flexibility. A rolled copper foil has been reported (see Patent Document 1).
Also, after recrystallization annealing after the final cold rolling, the integral strength (I (200)) of 200 planes obtained by X-ray diffraction on the rolled surface is the integral of 200 planes obtained by X-ray diffraction of fine powder copper. A rolled copper foil in which I (200) / I 0 (200) ≧ 40 with respect to the strength (I 0 (200)) and a cubic texture is remarkably developed has been reported (see Patent Document 2).

特開2006-117977号公報JP 2006-117977 A 特開2001-323354号公報JP 2001-323354 A

しかしながら、上記特許文献1、2記載の技術の場合、屈曲特性を向上させるために強度が低く、柔らか過ぎるという問題があった。例えば、特許文献2記載の技術の場合、強度に寄与する(111)面の割合が極めて少ない。
一方、材料の強化方法には、固溶元素の添加と、強加工による加工硬化とがあるが、前者は固溶元素の添加により導電率が低下するためFPC用銅箔に適用するには制限がある。又、加工硬化を行う場合、加工度が高いほど強度が向上するが、FPC用銅箔をフィルムと貼合せて熱処理を行う際、焼き鈍されて粗大再結晶粒が形成されるため、かえって強度が低下することがある。
すなわち、本発明は上記の課題を解決するためになされたものであり、耐熱性、導電性、及び屈曲性に優れつつ高強度である銅箔及びそれを用いたフレキシブルプリント基板の提供を目的とする。
However, the techniques described in Patent Documents 1 and 2 have a problem that the strength is low and the film is too soft in order to improve the bending characteristics. For example, in the case of the technique described in Patent Document 2, the ratio of the (111) plane that contributes to the strength is extremely small.
On the other hand, the material strengthening method includes addition of a solid solution element and work hardening by strong processing. However, the former is limited to be applied to a copper foil for FPC because the conductivity decreases due to the addition of the solid solution element. There is. In addition, when work hardening is performed, the strength increases as the degree of processing increases. However, when heat treatment is performed by laminating a copper foil for FPC with a film, it is annealed to form coarse recrystallized grains. May decrease.
That is, the present invention has been made to solve the above-described problems, and aims to provide a copper foil having high strength while being excellent in heat resistance, conductivity, and flexibility, and a flexible printed board using the copper foil. To do.

本発明者らは種々検討した結果、FPC加工時の熱処理で再結晶集合組織を発達させず完全に再結晶させないよう制御することで、異方性がなく粗大結晶粒が生じ難い銅箔が得られ、(引張強度/ヤング率)の比を一定範囲に管理して強度と屈曲性を向上できることを見出した。この銅箔はFPC加工時の熱処理で強度が低下し難く、組織は (100)方位と(111)方位を適度に含み、ヤング率もこれらの方位の割合を反映した大きさとなる。そのため、(111)方位を持つ圧延上り材よりもヤング率が小さい、つまり、従来の銅箔より(引張強度/ヤング率)の比を高くできるので屈曲性に優れる。   As a result of various investigations, the present inventors have obtained a copper foil that has no anisotropy and hardly generates coarse crystal grains by controlling the heat treatment during FPC processing so that the recrystallization texture does not develop and is not completely recrystallized. It was found that the strength and flexibility can be improved by managing the ratio of (tensile strength / Young's modulus) within a certain range. This copper foil is unlikely to be reduced in strength by heat treatment during FPC processing, the structure appropriately includes the (100) orientation and the (111) orientation, and the Young's modulus is a size reflecting the proportion of these orientations. Therefore, the Young's modulus is smaller than that of the rolled up material having the (111) orientation, that is, the ratio of (tensile strength / Young's modulus) can be higher than that of the conventional copper foil, so that the flexibility is excellent.

すなわち、本発明の銅箔は、300℃で30分の熱処理後に、4.5×10-3≧(引張強度/ヤング率)≧3×10-3を満たし、かつ引張強度が250MPa以上で導電率が80%IACS以上であり、Ti、Zr及びMgの群から選ばれる1種以上の元素を合計1000〜3000ppm含むか、又はTi、Zr、Mg、Cr、Sn、In及びAgの群から選ばれる2種以上の元素を合計1000〜3000ppm含むことを特徴とする。 That is, the copper foil of the present invention satisfies 4.5 × 10 −3 ≧ (tensile strength / Young's modulus) ≧ 3 × 10 −3 after heat treatment at 300 ° C. for 30 minutes, and has a tensile strength of 250 MPa or more and an electrical conductivity. 80% IACS or more der is, selected Ti, or includes a total 1000~3000ppm one or more elements selected from the group consisting of Zr and Mg, or Ti, Zr, Mg, Cr, Sn, from the group of in and Ag It is characterized by containing a total of 1000 to 3000 ppm of two or more elements .

又、本発明の銅箔は、300℃で30分の熱処理後に、4.5×10-3≧(引張強度/ヤング率)≧3×10-3を満たし、かつヤング率が90〜130GPaで導電率が80%IACS以上であり、Ti、Zr及びMgの群から選ばれる1種以上の元素を合計1000〜3000ppm含むか、又はTi、Zr、Mg、Cr、Sn、In及びAgの群から選ばれる2種以上の元素を合計1000〜3000ppm含むことを特徴とする。 Moreover, the copper foil of the present invention satisfies 4.5 × 10 −3 ≧ (tensile strength / Young's modulus) ≧ 3 × 10 −3 after heat treatment at 300 ° C. for 30 minutes, and has a Young's modulus of 90 to 130 GPa and conductivity. selected Ri der but 80% IACS or more, Ti, or includes a total 1000~3000ppm one or more elements selected from the group consisting of Zr and Mg, or Ti, Zr, Mg, Cr, Sn, from the group of in and Ag It is characterized by containing a total of 1000 to 3000 ppm of two or more elements .

又、本発明の銅箔は、300℃で30分の熱処理後に、X線回折による(200)方位の積分強度I(200)と(111)方位の積分強度I(111)との比率が15≧I(200)/I(111)≧1.5であることが好ましいFurther, the copper foil of the present invention, after heat treatment at 300 ° C. for 30 minutes, the ratio of the integrated intensity I (200) of (200) orientation and the integrated intensity I (111) of (111) orientation by X-ray diffraction is 15 ≧ I (200) / I ( 111) ≧ 1.5 der Rukoto are preferred.

最終圧延加工度が80〜96%であり、最終圧延の直前での結晶粒径が5〜10μmで製造されていることが好ましい。
前記熱処理をしない前記銅箔について、焼鈍時間を30分としたときの半軟化温度が300℃以上であることが好ましい

It is preferable that the final rolling degree is 80 to 96%, and the crystal grain size immediately before the final rolling is 5 to 10 μm.
The copper foil not subjected to the heat treatment preferably has a semi-softening temperature of 300 ° C. or higher when the annealing time is 30 minutes .

本発明のフレキシブルプリント基板は、前記銅箔を用いたものである。   The flexible printed circuit board of the present invention uses the copper foil.

本発明によれば、耐熱性、導電性、及び屈曲性に優れつつ高強度である銅箔が得られる。   According to the present invention, it is possible to obtain a copper foil having high strength while being excellent in heat resistance, conductivity and flexibility.

以下、本発明の実施の形態に係る銅箔について説明する。なお、本発明において%は特に断らない限り、質量%を示すものとする。
又、本発明の実施の形態に係る銅箔は、FPC等の導電性を要求されるため、導電率が80%IACS以上である。なお、本発明の銅箔は銅合金箔も含む。
Hereinafter, the copper foil which concerns on embodiment of this invention is demonstrated. In the present invention, “%” means “% by mass” unless otherwise specified.
Moreover, since the copper foil which concerns on embodiment of this invention is requested | required of electroconductivity, such as FPC, electrical conductivity is 80% IACS or more. The copper foil of the present invention includes a copper alloy foil.

[σ/E(引張強度/ヤング率)の比]
本発明の実施の形態に係る銅箔は、4.5×10-3≧(引張強度/ヤング率)≧3×10-3を満たす。
従来から、材料の屈曲寿命と材料表面にかかるひずみの大きさとの関係は、バスキン(Basquin)の式(式1)として知られている。
log(2N) ∝{c−(1/b)log(σ/E) }+(1/b)・log(ΔεT /2) (1)
N:屈曲寿命、b:材料固有の負の定数、σ:破断強度、E:ヤング率、ΔεT:ひずみの大きさ
式1より、σ/E(引張強度/ヤング率)が大きいほど、ひずみに対する屈曲寿命は大きくなり、屈曲性が良好となる。又、σ/Eを大きくするためには、強度を大きくするかヤング率を小さくすればよい。
[Σ / E (tensile strength / Young's modulus) ratio]
The copper foil according to the embodiment of the present invention satisfies 4.5 × 10 −3 ≧ (tensile strength / Young's modulus) ≧ 3 × 10 −3 .
Conventionally, the relationship between the bending life of a material and the magnitude of strain applied to the surface of the material is known as Baskin's equation (Equation 1).
log (2N) ∝ {c− (1 / b) log (σ / E)} + (1 / b) · log (Δε T / 2) (1)
N: Bending life, b: Negative constant specific to material, σ: Breaking strength, E: Young's modulus, Δε T : Strain magnitude From Equation 1, the larger σ / E (tensile strength / Young's modulus), the greater the strain The bending life with respect to is increased, and the flexibility is improved. In order to increase σ / E, the strength may be increased or the Young's modulus may be decreased.

ヤング率を下げるには再結晶集合組織を発達させるとよいが、再結晶集合組織を発達させるために焼鈍すると、焼鈍軟化が起こって強度が低下し、σ/Eが大きくならない。
そこで、FPC加工時の熱処理で再結晶集合組織を発達させず完全に再結晶させないよう制御することで、異方性がなく粗大結晶粒が生じ難い銅箔が得られ、(引張強度/ヤング率)の比を一定範囲に管理して強度と屈曲性を向上できる。この銅箔はFPC加工時の熱処理で強度が低下し難く、組織は (100)方位と(111)方位を適度に含み、ヤング率もこれらの方位の割合を反映した大きさとなる。そのため、(111)方位を持つ圧延上り材よりもヤング率が小さい、つまり、従来の銅箔より(引張強度/ヤング率)の比を高くできるので屈曲性にも優れる。
To lower the Young's modulus, it is better to develop a recrystallized texture. However, if annealing is performed to develop a recrystallized texture, annealing softening occurs, the strength decreases, and σ / E does not increase.
Therefore, by controlling the heat treatment during FPC processing so that the recrystallized texture does not develop and is not completely recrystallized, a copper foil that has no anisotropy and is difficult to produce coarse crystal grains can be obtained (tensile strength / Young's modulus). ) Ratio can be managed within a certain range to improve strength and flexibility. This copper foil is unlikely to be reduced in strength by heat treatment during FPC processing, the structure appropriately includes the (100) orientation and the (111) orientation, and the Young's modulus is a size reflecting the proportion of these orientations. Therefore, the Young's modulus is smaller than that of the rolled up material having the (111) orientation, that is, the ratio of (tensile strength / Young's modulus) can be higher than that of the conventional copper foil, so that the flexibility is excellent.

再結晶集合組織の発達を抑えるためには、圧延加工度をあまり大きくせず、圧延前結晶粒径を小さくし過ぎないことがよい。これは、圧延加工度が高く、圧延前結晶粒径が小さいほど再結晶集合組織が発達しやすいためである。
好ましい圧延加工度と圧延前結晶粒径の範囲としては、最終圧延加工度が80〜96%であり、最終圧延の直前での結晶粒径が5〜10μmである。
In order to suppress the development of the recrystallized texture, it is preferable that the degree of rolling work is not increased so much that the crystal grain size before rolling is not too small. This is because the higher the degree of rolling and the smaller the grain size before rolling, the easier the recrystallized texture develops.
As a preferable range of the rolling degree and the crystal grain size before rolling, the final rolling degree is 80 to 96%, and the crystal grain size immediately before the final rolling is 5 to 10 μm.

σ/E<3×10-3であると、強度が低下し、特にFPC加工時の熱処理で強度が著しく低下する。一方、σ/Eは高いほどよいが、FPC加工時の熱処理(300℃で30分)では4.5×10-3が上限であり、これより高いσ/Eを得ようとすると熱処理温度を300℃未満とする必要があり、FPCを製造することができない。 When σ / E <3 × 10 −3 , the strength is lowered, and particularly the strength is significantly lowered by heat treatment during FPC processing. On the other hand, the higher σ / E, the better, but the upper limit is 4.5 × 10 -3 for heat treatment during FPC processing (30 minutes at 300 ° C). To obtain a higher σ / E, the heat treatment temperature is 300 ° C. The FPC cannot be manufactured.

[ヤング率]
ヤング率が低いほどσ/Eを大きくすることができるが、ヤング率が90GPa未満であると、箔が柔らかくなり過ぎて腰がなくなり、屈曲時の摺動半径にFPC(箔)の変形が追随できずに腰折れが発生することがある。腰折れが発生すると、腰折れ部に変形荷重が集中して破断する。一方、銅箔のヤング率は最大で130Gpa程度である。
以上のことから、本発明の一実施形態に係る銅箔は、ヤング率を90〜130Gpaに規定される。
[Young's modulus]
The lower the Young's modulus, the larger the σ / E can be. However, if the Young's modulus is less than 90 GPa, the foil becomes too soft and loses its waist, and the deformation of the FPC (foil) follows the sliding radius during bending. In some cases, hip breaks may occur. When the hip break occurs, the deformation load concentrates on the hip break and breaks. On the other hand, the maximum Young's modulus of copper foil is about 130 Gpa.
From the above, the copper foil according to one embodiment of the present invention is defined to have a Young's modulus of 90 to 130 Gpa.

[結晶方位]
ヤング率は結晶方位と相関があり、銅を含む面心立方格子では(100)方向でもっともヤング率が低く、その他の方位のヤング率は(100)方向のヤング率より高い。そのため、圧延方向に(100)方位が揃うように再結晶集合組織を発達させることで、圧延平行方向のヤング率を下げることができる。(100)方位への集合度は、X線回折による(200)方位の積分強度I(200)と、(111)方位の積分強度I(111)との比率であるI(200)/I(111)の値で評価できる。
I(200)/I(111)<1.5であると、ヤング率を低減させる(100)方位が少なくなり、σ/Eが小さくなって屈曲性が向上しない場合がある。一方、I(200)/I(111)>15であると、ヤング率は低下するが強度が大幅に低下し、箔が柔らかくなり過ぎて腰がなくなり腰折れが発生することがある。
以上のことから、本発明の一実施形態に係る銅箔は、15≧I(200)/I(111)≧1.5の範囲に規定される。
[Crystal orientation]
The Young's modulus has a correlation with the crystal orientation. In the face-centered cubic lattice containing copper, the Young's modulus is the lowest in the (100) direction, and the Young's modulus in other orientations is higher than the Young's modulus in the (100) direction. Therefore, the Young's modulus in the rolling parallel direction can be lowered by developing the recrystallized texture so that the (100) orientation is aligned in the rolling direction. The degree of assembly in the (100) direction is the ratio of the integrated intensity I (200) in the (200) direction by X-ray diffraction and the integrated intensity I (111) in the (111) direction, I (200) / I ( It can be evaluated by the value of 111).
If I (200) / I (111) <1.5, the (100) orientation that reduces the Young's modulus decreases, and σ / E decreases, and the flexibility may not be improved. On the other hand, if I (200) / I (111)> 15, the Young's modulus is lowered, but the strength is greatly lowered, and the foil becomes too soft and the waist is lost and the waist may be broken.
From the above, the copper foil according to one embodiment of the present invention is defined in the range of 15 ≧ I (200) / I (111) ≧ 1.5.

[組成]
一般に、銅箔をFPCに加工する工程での熱処理温度は250〜350℃程度(箔とフィルムとの2層材の場合)であるため、添加元素を含まない純銅は完全に再結晶してしまう。従って、加工時の再結晶を抑制するため、本発明の実施形態に係る銅箔は、導電率が低下しない範囲で元素を含む。
本発明の実施形態に係る圧延銅箔は、Ti、Zr及びMgの群から選ばれる1種以上の元素を合計1000〜3000ppm含むか、又はTi、Zr、Mg、Cr、Sn、In及びAgの群から選ばれる1種以上の元素を合計1000〜3000ppm含むことが好ましい。
上記した元素は耐熱性向上に有効な元素である。これは、耐熱性を向上させる元素は、FPC加工工程での銅箔の再結晶による結晶粒の粗大化を抑制できるからである。但し、添加元素を多量に含有すると導電率が低下し、FPC用銅箔として好ましくない。
[composition]
In general, since the heat treatment temperature in the process of processing copper foil into FPC is about 250 to 350 ° C. (in the case of a two-layer material of foil and film), pure copper containing no additive element is completely recrystallized. . Therefore, in order to suppress recrystallization at the time of processing, the copper foil according to the embodiment of the present invention contains an element within a range where the electrical conductivity does not decrease.
The rolled copper foil according to the embodiment of the present invention contains one or more elements selected from the group consisting of Ti, Zr and Mg in total of 1000 to 3000 ppm, or Ti, Zr, Mg, Cr, Sn, In and Ag. It is preferable to contain a total of 1000 to 3000 ppm of one or more elements selected from the group.
The above elements are effective elements for improving heat resistance. This is because the element that improves the heat resistance can suppress the coarsening of crystal grains due to recrystallization of the copper foil in the FPC processing step. However, if the additive element is contained in a large amount, the electrical conductivity is lowered, which is not preferable as a copper foil for FPC.

そこで、導電率への影響が少なく、かつ少量でも耐熱性向上に有効な元素を選択する。
図1は、銅箔の添加元素としてよく用いられるCu,Sn,Mg,Ag,In,Fe,Cr,Zn,Ti,Be,Cd,Zrをそれぞれ純度99.96%以上の電気銅に所定量添加し溶解し、得られた鋳塊を熱間圧延で厚さ10mmにした後、冷間圧延と焼鈍を繰り返して、厚さ0.1mmとしたときの、半軟化温度を示す。
半軟化温度は、試料を焼鈍してゆきビッカース硬さを測定した際の、焼鈍前のビッカース硬さと、完全に軟化したとき(30分焼鈍後にそれ以上焼鈍温度を上げても強度(ビッカース硬さ)が変化しない状態を、完全に軟化したとみなす)ときの中間のビッカース硬さを示す焼鈍温度を示す。
Therefore, an element that has little influence on conductivity and is effective in improving heat resistance even in a small amount is selected.
Fig. 1 shows that Cu, Sn, Mg, Ag, In, Fe, Cr, Zn, Ti, Be, Cd, and Zr, which are often used as additive elements for copper foil, are added to copper with a purity of 99.96% or more respectively. The semi-softening temperature is shown when the ingot obtained is melted and hot rolled to a thickness of 10 mm, and then cold rolling and annealing are repeated to a thickness of 0.1 mm.
The semi-softening temperature is the Vickers hardness before annealing when the sample is annealed and the Vickers hardness is measured, and when fully softened (even if the annealing temperature is further increased after 30-minute annealing, the strength (Vickers hardness ) Shows an annealing temperature indicating intermediate Vickers hardness when it is considered that the state in which no change occurs) is completely softened.

図1から、添加元素によって半軟化温度が異なることがわかる。純銅の半軟化温度は160℃であるので、この温度を基準とし、各元素の半軟化温度が160℃から上昇した分(ΔT)を求めて表1に比較した。   FIG. 1 shows that the semi-softening temperature varies depending on the additive element. Since the semi-softening temperature of pure copper is 160 ° C., the amount (ΔT) of the increase in the semi-softening temperature of each element from 160 ° C. was obtained and compared with Table 1 based on this temperature.

Figure 0005055088
Figure 0005055088

Snは耐熱性を向上させる元素として有効であることが知られており、本発明ではSnを添加元素を選択する際の基準におく。従って、表1より、SnのΔTSnを1としたとき、各元素(0.05%添加時)のΔTの比(ΔT/ΔTSn)を求めた。この比がSnに対して各元素が耐熱性を向上させる度合(効き具合)を示す。この比より、Snと同等(上記比が0.7以上)の元素は、Mg,Ag,In,Cr,Ti,Cd,Zrである。但し、Cdは添加元素として不適である。
これらの元素の合計添加量が1000ppm(0.1質量%)未満の場合、耐熱性向上に有効でなく、合計添加量が3000ppmを超えると導電率が低下する傾向にある。
なお、合金の導電率はマティーセン(Matthiessen)の式によって計算することができ、この式に上記元素のΔρiを代入すると、およそ合計添加量が3000ppmを超えると導電率が80IACS未満となる。Δρiは文献値(著者:村上陽太郎・亀井清 著、「朝倉金属工学シリーズ 非鉄金属材料学」、初版第1刷、朝倉書店、1978年4月発行、p13)による。
Sn is known to be effective as an element for improving heat resistance. In the present invention, Sn is used as a reference when selecting an additive element. Therefore, from Table 1, when ΔTSn of Sn is 1, the ratio of ΔT (ΔT / ΔTSn) of each element (at the time of adding 0.05%) was obtained. This ratio indicates the degree (effectiveness) that each element improves the heat resistance with respect to Sn. From this ratio, elements equivalent to Sn (the above ratio is 0.7 or more) are Mg, Ag, In, Cr, Ti, Cd, and Zr. However, Cd is not suitable as an additive element.
When the total addition amount of these elements is less than 1000 ppm (0.1% by mass), it is not effective for improving the heat resistance, and when the total addition amount exceeds 3000 ppm, the conductivity tends to decrease.
It should be noted that the electrical conductivity of the alloy can be calculated by the Matthiessen equation. If Δρi of the above elements is substituted into this equation, the electrical conductivity becomes less than 80 IACS when the total addition amount exceeds 3000 ppm. Δρi is based on literature values (author: Yotaro Murakami and Kiyoshi Kamei, “Asakura Metal Engineering Series Nonferrous Metallology”, first edition, first edition, Asakura Shoten, published in April 1978, p13).

本発明の実施の形態に係る銅箔において、圧延平行方向の表面の最大高さRyが0.5μm以下であり、かつ厚みが20μm以下であることが好ましい。
銅箔厚みが薄いほど屈曲時に銅箔にかかる変形量が小さくなるため、同一の屈曲半径で比較した場合に屈曲寿命が長くなるからである。
一方、銅箔厚みを薄くするためには最終圧延加工度を高くする必要があるが、強加工すると銅箔表面にオイルピットができて表面が粗くなる。そして、Rzが大きくなる程、引張り強度(TS)は低下する。これはオイルピット部分で銅箔の実効厚みが薄くなり、その部分に荷重が集中するためである。一方でヤング率は表面粗さによらないので、Rzが大きいとσ/Eの値が小さくなり屈曲性が低下する傾向にある。
このようなことから、Ryが0.5μm以下であることが好ましい。Ryを0.5μm以下とする方法としては、圧延油粘度とロール粗さ等の圧延条件を設定して最終圧延加工度に上限を設けることが挙げられる。
In the copper foil according to the embodiment of the present invention, it is preferable that the maximum height Ry of the surface in the rolling parallel direction is 0.5 μm or less and the thickness is 20 μm or less.
This is because the thinner the copper foil, the smaller the amount of deformation applied to the copper foil during bending, and the bending life becomes longer when compared with the same bending radius.
On the other hand, in order to reduce the thickness of the copper foil, it is necessary to increase the degree of final rolling. However, if the strong processing is performed, an oil pit is formed on the surface of the copper foil and the surface becomes rough. And as Rz increases, the tensile strength (TS) decreases. This is because the effective thickness of the copper foil is reduced at the oil pit portion, and the load is concentrated on that portion. On the other hand, since the Young's modulus does not depend on the surface roughness, if Rz is large, the value of σ / E decreases and the flexibility tends to decrease.
For these reasons, Ry is preferably 0.5 μm or less. An example of a method for setting Ry to 0.5 μm or less is to set rolling conditions such as rolling oil viscosity and roll roughness and to set an upper limit on the final rolling degree.

本発明のフレキシブルプリント基板(FPC)は、前記銅箔を用いたものである。
なお、FPCの加工工程内で過度に加熱すると再結晶がすすみ、集合組織が発達してしまう。従って、FPCの加工工程内での熱処理温度を、銅箔の半軟化温度+50℃以下とするのがよい。
The flexible printed circuit board (FPC) of this invention uses the said copper foil.
In addition, if it is heated excessively in the FPC processing process, recrystallization proceeds and a texture develops. Therefore, the heat treatment temperature in the FPC processing step is preferably set to the semi-softening temperature of the copper foil + 50 ° C. or less.

なお、本発明は、上記実施形態に限定されない。又、本発明の作用効果を奏する限り、上記実施形態における銅合金がその他の成分を含有してもよい。   In addition, this invention is not limited to the said embodiment. Moreover, as long as there exists an effect of this invention, the copper alloy in the said embodiment may contain another component.

次に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。
純度99.96%以上の電気銅に、表2、3に示す元素をそれぞれ添加し、鋳塊を得た。この鋳塊を熱間圧延して厚さ10mmとした後、表面を面削し、冷間圧延と焼鈍を繰り返し、最終厚さ0.1mmの板状試料とした。
各板状試料について、半軟化温度を測定した。半軟化温度は、板状試料を焼鈍してゆき、焼鈍前のビッカース硬さと、完全に軟化したときのビッカース硬さを求め、これらの中間のビッカース硬さを示すときの焼鈍温度とした。
又、各板状試料について、表面の最大高さRyをJIS-B0601(触針式粗さ測定に従って測定し、最終圧延前の結晶粒径をJIS-H0501(切断法)に従って測定した。
各板状試料について、最終圧延後の引張り強度(TS)をJIS-Z2241に従って測定し、ヤング率(E)をヤング率測定器(日本テクノプラス株式会社製TE-RT(非接触静電駆動方式片持ち式固有振動法ヤング率測定器)を用いて測定した。ヤング率測定の際の試料寸法は長さ15mm×幅3.2mmとした。
なお、各板状試料に対し、FPC加工における熱履歴と同等の熱処理として300℃で30分間の焼鈍を施した後の引張り強度及びヤング率についても測定した。
EXAMPLES Next, although an Example is given and this invention is demonstrated further in detail, this invention is not limited to these.
The elements shown in Tables 2 and 3 were respectively added to electrolytic copper having a purity of 99.96% or more to obtain ingots. The ingot was hot rolled to a thickness of 10 mm, then the surface was chamfered, and cold rolling and annealing were repeated to obtain a plate sample having a final thickness of 0.1 mm.
The semisoftening temperature was measured for each plate-like sample. The semi-softening temperature was obtained by annealing the plate-like sample, obtaining the Vickers hardness before annealing and the Vickers hardness when completely softened, and setting the annealing temperature at the intermediate Vickers hardness.
For each plate sample, the maximum surface height Ry was measured according to JIS-B0601 (stylus roughness measurement), and the crystal grain size before final rolling was measured according to JIS-H0501 (cutting method).
For each plate-like sample, the tensile strength (TS) after final rolling is measured according to JIS-Z2241, and the Young's modulus (E) is measured by Young's modulus measuring instrument (TE-RT (Non-contact electrostatic drive system manufactured by Nippon Techno Plus Co., Ltd. Measured using a cantilevered natural vibration method Young's modulus measuring device) The sample dimensions for measuring Young's modulus were 15 mm long × 3.2 mm wide.
Each plate-like sample was also measured for tensile strength and Young's modulus after annealing at 300 ° C. for 30 minutes as a heat treatment equivalent to the thermal history in FPC processing.

又、上記鋳塊を熱間圧延して厚さ10mmとした後、表面を面削し、冷間圧延と焼鈍を繰り返し、表2、3に示す最終厚さの箔を得た。得られた箔の片面に銅粗化めっきを行い、キャスト法でポリイミド(厚み20μm)と箔を積層した後にエッチング加工を行って所定パターンの回路を形成し、FPCサンプル(幅12.7mmの長尺状で、回路幅1mm)を得た。   The ingot was hot-rolled to a thickness of 10 mm, then the surface was chamfered, and cold rolling and annealing were repeated to obtain foils having final thicknesses shown in Tables 2 and 3. Copper roughening plating is performed on one side of the obtained foil, and a polyimide (thickness 20 μm) and foil are laminated by a cast method, followed by etching to form a circuit with a predetermined pattern, and an FPC sample (long with a width of 12.7 mm) A circuit width of 1 mm) was obtained.

各FPCサンプルについて、4端子法により25℃の導電率を測定した。
又、以下の方法で屈曲試験を行った。
屈曲試験(ICP)は、FPCサンプルを長手方向にU字に曲げ、一端を可動板に固定し、他端を固定板に固定し、可動板をFPCサンプルの長辺方向に往復振動させて行った。試験条件は、U字の曲率半径1mm、振動ストローク5mm、振動周波数1200回/分とした。また、屈曲試験中の試料の電気抵抗を測定し、初期抵抗から10%抵抗が増加するまでの屈曲回数を求めた。試料の電気抵抗が初期抵抗の10%増加するまでに要する屈曲回数が10万回以上であれば◎、5万回以上10万回未満であれば○、1万回以上5万回未満を△、1万回未満を×とした。評価が◎か○であれば、実用上問題ない。
摺動屈曲試験装置は、特開2001-323354号公報の図1に記載されているものと同様なものとした。
得られた結果を表2、表3に示す。なお、表2、表3の添加元素の割合(組成の添字)は質量%である。
For each FPC sample, the conductivity at 25 ° C. was measured by the 4-terminal method.
Moreover, the bending test was done by the following method.
The bending test (ICP) is performed by bending the FPC sample into a U shape in the longitudinal direction, fixing one end to the movable plate, fixing the other end to the fixed plate, and reciprocally vibrating the movable plate in the long side direction of the FPC sample. It was. The test conditions were a U-shaped radius of curvature of 1 mm, a vibration stroke of 5 mm, and a vibration frequency of 1200 times / minute. In addition, the electrical resistance of the sample during the bending test was measured, and the number of bendings until the resistance increased by 10% from the initial resistance was determined. ◎ if the number of flexing required for the electrical resistance of the sample to increase by 10% of the initial resistance is 100,000 times or more, ○ if it is 50,000 times or more and less than 100,000 times, △ if it is 10,000 times or more and less than 50,000 times △ X less than 10,000 times. If the evaluation is ◎ or ○, there is no practical problem.
The sliding bending test apparatus was the same as that described in FIG. 1 of JP-A-2001-323354.
The obtained results are shown in Tables 2 and 3. In addition, the ratio (subscript of a composition) of the additional element of Table 2 and Table 3 is the mass%.

Figure 0005055088
Figure 0005055088

Figure 0005055088
Figure 0005055088

表2から明らかなように、4.5×10-3≧σ/E≧3×10-3を満たす各実施例の場合、屈曲性が優れていた。 As is clear from Table 2, in each Example satisfying 4.5 × 10 −3 ≧ σ / E ≧ 3 × 10 −3 , the flexibility was excellent.

一方、圧延時に強加工した(98%)比較例1の場合、圧延直後の引張強度は高かったが熱処理後に強度が低下し、σ/E<3×10-3となったため、屈曲性が劣化した。これは強加工によってせん断帯が導入されたためと考えられる。
最終圧延後に焼鈍(450℃で30分)を加えた比較例2の場合、ヤング率は低下したがそれ以上に強度が著しく低下し、σ/E<3×10-3となったため、屈曲性が劣化した。
比較例3の場合、熱処理後に強度が著しく低下し、σ/E<3×10-3となったため、屈曲性が劣化した。これは、圧延前の結晶粒径が大きい(10nmを超えた)ため、圧延によって加工強化し難くなったためと考えられる。
On the other hand, in the case of Comparative Example 1 which was strongly processed during rolling (98%), the tensile strength immediately after rolling was high, but the strength decreased after heat treatment, and σ / E <3 × 10 −3 , so the flexibility deteriorated. did. This is thought to be due to the introduction of shear bands by strong processing.
In the case of Comparative Example 2 in which annealing (450 ° C. for 30 minutes) was added after the final rolling, the Young's modulus decreased, but the strength decreased significantly, and σ / E <3 × 10 −3 . Deteriorated.
In the case of Comparative Example 3, the strength was remarkably reduced after the heat treatment and σ / E <3 × 10 −3 , so that the flexibility deteriorated. This is probably because the grain size before rolling was large (exceeding 10 nm), making it difficult to strengthen the work by rolling.

熱処理を200℃で30分行った比較例4の場合、σ/E は4.5×10-3を超えたが、そもそもこの熱処理温度ではFPCを製造できないため、不適である。
添加元素の量が1000ppm未満である比較例5、7の場合、熱処理後に強度が著しく低下し、σ/E<3×10-3となったため、屈曲性が劣化した。これは、添加元素が少ないために熱処理時の再結晶を抑制できなかったためと考えられる。特に、比較例7の場合、(200)方位が極端に増えたために強度が最も低下し、材料の腰がないために屈曲試験時に腰折れが生じた。
添加元素の量が3000ppmを超えた比較例6,8の場合、導電率が80%IACS未満となった。
In the case of Comparative Example 4 in which the heat treatment was performed at 200 ° C. for 30 minutes, σ / E exceeded 4.5 × 10 −3 , but in the first place, FPC cannot be produced at this heat treatment temperature, which is inappropriate.
In Comparative Examples 5 and 7 in which the amount of the additive element was less than 1000 ppm, the strength was remarkably lowered after the heat treatment, and σ / E <3 × 10 −3 . This is presumably because recrystallization during heat treatment could not be suppressed due to the small amount of added elements. In particular, in the case of Comparative Example 7, the strength decreased most because the (200) azimuth increased extremely, and since the material did not have a waist, folding occurred during the bending test.
In Comparative Examples 6 and 8 in which the amount of additive element exceeded 3000 ppm, the conductivity was less than 80% IACS.

表3より、公知のタフピッチ銅を用いた参考例1,2の場合、熱処理後に強度が著しく低下し、σ/E<3×10-3となったため、屈曲性が劣化した。
公知のタフピッチ銅にAgを0.019質量%添加した参考例3〜5の場合、公知の無酸素銅にSnを0.012質量%添加した参考例6,7の場合も、熱処理後に強度が著しく低下し、σ/E<3×10-3となったため、屈曲性が劣化した。なお、参考例3〜7は、特開2001-323354号公報(段落0011)に記載の公知の銅材料である。
公知の7/3黄銅を用いた参考例8,9の場合、σ/Eは3×10-3以上となり屈曲性に優れたが、導電率が80%IACS未満となった。
From Table 3, in the case of Reference Examples 1 and 2 using known tough pitch copper, the strength was remarkably lowered after the heat treatment, and σ / E <3 × 10 −3 .
In the case of Reference Examples 3 to 5 in which 0.019% by mass of Ag is added to a known tough pitch copper, the strength is remarkably lowered after heat treatment in the cases of Reference Examples 6 and 7 in which 0.012% by mass of Sn is added to a known oxygen-free copper, Since σ / E <3 × 10 −3 , the flexibility deteriorated. Reference Examples 3 to 7 are known copper materials described in JP 2001-323354 A (paragraph 0011).
In Reference Examples 8 and 9 using known 7/3 brass, σ / E was 3 × 10 −3 or more and excellent flexibility, but the conductivity was less than 80% IACS.

添加元素を加えた銅の半軟化温度を示す図である。It is a figure which shows the semi-softening temperature of copper which added the additive element.

Claims (6)

300℃で30分の熱処理後に、4.5×10-3≧(引張強度/ヤング率)≧3×10-3を満たし、かつ引張強度が250MPa以上で導電率が80%IACS以上であり、Ti、Zr及びMgの群から選ばれる1種以上の元素を合計1000〜3000ppm含むか、又はTi、Zr、Mg、Cr、Sn、In及びAgの群から選ばれる2種以上の元素を合計1000〜3000ppm含むことを特徴とする銅箔。 After heat treatment for 30 minutes at 300 ° C., satisfies the 4.5 × 10 -3 ≧ (tensile strength / Young's modulus) ≧ 3 × 10 -3, and a tensile strength Ri der conductivity 80% IACS or more than 250 MPa, Ti One or more elements selected from the group of Zr and Mg are included in a total of 1000 to 3000 ppm, or two or more elements selected from the group of Ti, Zr, Mg, Cr, Sn, In and Ag are combined in a total of 1000 to Copper foil characterized by containing 3000ppm. 300℃で30分の熱処理後に、4.5×10-3≧(引張強度/ヤング率)≧3×10-3を満たし、かつヤング率が90〜130GPaで導電率が80%IACS以上であり、Ti、Zr及びMgの群から選ばれる1種以上の元素を合計1000〜3000ppm含むか、又はTi、Zr、Mg、Cr、Sn、In及びAgの群から選ばれる2種以上の元素を合計1000〜3000ppm含むことを特徴とする銅箔。 30 minutes after the heat treatment at 300 ℃, 4.5 × 10 -3 ≧ met (tensile strength / Young's modulus) ≧ 3 × 10 -3, and the Young's modulus Ri der conductivity 80% IACS or more 90~130GPa, Contains a total of 1000 to 3000 ppm of one or more elements selected from the group of Ti, Zr, and Mg, or a total of 1000 of two or more elements selected from the group of Ti, Zr, Mg, Cr, Sn, In, and Ag Copper foil characterized by containing ~ 3000ppm . 300℃で30分の熱処理後に、X線回折による(200)方位の積分強度I(200)と(111)方位の積分強度I(111)との比率が15≧I(200)/I(111)≧1.5であことを特徴とする請求項1又は2に記載の銅箔。 After a heat treatment at 300 ° C. for 30 minutes, the ratio of the integrated intensity I (200) in the (200) direction to the integrated intensity I (111) in the (111) direction by X-ray diffraction is 15 ≧ I (200) / I (111 ) copper foil according to claim 1 or 2, characterized in that Ru ≧ 1.5 der. 最終圧延加工度が80〜96%であり、最終圧延の直前での結晶粒径が5〜10μmで製造されたことを特徴とする請求項1〜3のいずれかに記載の銅箔。 The copper foil according to any one of claims 1 to 3, wherein the final rolling degree is 80 to 96%, and the crystal grain size immediately before the final rolling is 5 to 10 µm. 前記熱処理をしない前記銅箔について、焼鈍時間を30分としたときの半軟化温度が300℃以上であることを特徴とする、請求項1〜4のいずれかに記載の銅箔。 The copper foil according to any one of claims 1 to 4, wherein the copper foil not subjected to the heat treatment has a semi-softening temperature of 300 ° C or higher when the annealing time is 30 minutes. 請求項1〜のいずれかに記載の銅箔を用いたフレキシブルプリント基板。 The flexible printed circuit board using the copper foil in any one of Claims 1-5 .
JP2007282690A 2007-10-31 2007-10-31 Copper foil and flexible printed circuit board using the same Expired - Fee Related JP5055088B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007282690A JP5055088B2 (en) 2007-10-31 2007-10-31 Copper foil and flexible printed circuit board using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007282690A JP5055088B2 (en) 2007-10-31 2007-10-31 Copper foil and flexible printed circuit board using the same

Publications (2)

Publication Number Publication Date
JP2009108376A JP2009108376A (en) 2009-05-21
JP5055088B2 true JP5055088B2 (en) 2012-10-24

Family

ID=40777181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007282690A Expired - Fee Related JP5055088B2 (en) 2007-10-31 2007-10-31 Copper foil and flexible printed circuit board using the same

Country Status (1)

Country Link
JP (1) JP5055088B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103766010A (en) * 2011-09-01 2014-04-30 Jx日矿日石金属株式会社 Copper foil for flexible printed wiring board, copper-clad laminate, flexible printed wiring board and electronic device
KR20160117195A (en) 2015-03-30 2016-10-10 제이엑스금속주식회사 Rolled copper foil for secondary battery, and lithium ion secondary battery and lithium ion capacitor using the same

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010113343A1 (en) 2009-03-31 2010-10-07 日鉱金属株式会社 Electromagnetic shielding material and process for producing electromagnetic shielding material
JP4859262B2 (en) * 2009-07-07 2012-01-25 Jx日鉱日石金属株式会社 Copper foil composite
JP5325175B2 (en) 2010-07-15 2013-10-23 Jx日鉱日石金属株式会社 Copper foil composite and method for producing molded body
JP5778460B2 (en) * 2011-03-24 2015-09-16 Jx日鉱日石金属株式会社 Rolled copper foil, method for producing the same, and copper-clad laminate
EP2679384B1 (en) * 2011-03-31 2015-05-13 JX Nippon Mining & Metals Corporation Metallic foil composite, flexible printed circuit board using same, molded body, and manufacturing method for molded body
JP5705311B2 (en) * 2011-05-13 2015-04-22 Jx日鉱日石金属株式会社 Copper foil composite, copper foil used therefor, molded body and method for producing the same
EP2803481B1 (en) 2012-01-13 2019-11-20 JX Nippon Mining & Metals Corporation Copper foil composite, formed product, and method for producing same
CN104080605B (en) 2012-01-13 2016-08-24 Jx日矿日石金属株式会社 Copper foil composite and formed body and manufacture method thereof
JP5753115B2 (en) * 2012-03-12 2015-07-22 Jx日鉱日石金属株式会社 Rolled copper foil for printed wiring boards
JP6044097B2 (en) * 2012-03-30 2016-12-14 三菱マテリアル株式会社 Power module substrate with heat sink, power module substrate with cooler, and power module
JP6212482B2 (en) * 2012-04-13 2017-10-11 日本発條株式会社 Copper base circuit board
JP2013241662A (en) * 2012-05-22 2013-12-05 Furukawa Electric Co Ltd:The Rolled copper foil for collector of secondary battery and method for producing the same
JP6246502B2 (en) * 2013-06-13 2017-12-13 Jx金属株式会社 Copper alloy sheet with excellent conductivity and bending deflection coefficient
KR101626214B1 (en) * 2013-10-22 2016-05-31 스미토모 긴조쿠 고잔 가부시키가이샤 Two-layered flexible wiring substrate and flexible wiring board using the same
JP6887213B2 (en) * 2014-10-10 2021-06-16 Jx金属株式会社 Manufacturing method of rolled copper foil, copper-clad laminate, flexible printed wiring board, electronic equipment and rolled copper foil
US20170208680A1 (en) * 2016-01-15 2017-07-20 Jx Nippon Mining & Metals Corporation Copper Foil, Copper-Clad Laminate Board, Method For Producing Printed Wiring Board, Method For Producing Electronic Apparauts, Method For Producing Transmission Channel, And Method For Producing Antenna
JP6392268B2 (en) * 2016-02-05 2018-09-19 Jx金属株式会社 Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
JP6712561B2 (en) * 2017-03-21 2020-06-24 Jx金属株式会社 Rolled copper foil for flexible printed circuit board, copper clad laminate using the same, flexible printed circuit board, and electronic device
JP6617313B2 (en) * 2017-08-03 2019-12-11 Jx金属株式会社 Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
JP6643287B2 (en) * 2017-08-03 2020-02-12 Jx金属株式会社 Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
JP6793138B2 (en) * 2018-01-22 2020-12-02 Jx金属株式会社 Copper foil for flexible printed circuit boards, copper-clad laminates using it, flexible printed circuit boards, and electronic devices
JP6827022B2 (en) * 2018-10-03 2021-02-10 Jx金属株式会社 Copper foil for flexible printed circuit boards, copper-clad laminates using it, flexible printed circuit boards, and electronic devices
TWI777760B (en) * 2021-08-09 2022-09-11 頎邦科技股份有限公司 Flexible printed circuit board with heat-dissipation plate and heat-dissipation plate thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0819499B2 (en) * 1987-06-10 1996-02-28 古河電気工業株式会社 Copper alloy for flexible printing
JPH08940B2 (en) * 1987-07-03 1996-01-10 古河電気工業株式会社 Copper alloy for flexible printing
JPH10195609A (en) * 1996-12-27 1998-07-28 Dowa Mining Co Ltd Fcc metal in which crystal orientation is regulated and its production
JP3009383B2 (en) * 1998-03-31 2000-02-14 日鉱金属株式会社 Rolled copper foil and method for producing the same
JP3962291B2 (en) * 2001-07-17 2007-08-22 日鉱金属株式会社 Rolled copper foil for copper clad laminate and method for producing the same
JP2003055722A (en) * 2001-08-10 2003-02-26 Nippon Mining & Metals Co Ltd Copper alloy foil for laminate sheet
JP3911184B2 (en) * 2002-03-28 2007-05-09 日鉱金属株式会社 Copper alloy rolled foil
JP4059150B2 (en) * 2003-06-05 2008-03-12 日立電線株式会社 Copper alloy foil for printed wiring and manufacturing method thereof
JP4162087B2 (en) * 2003-08-22 2008-10-08 日鉱金属株式会社 Highly flexible rolled copper foil and method for producing the same
JP4524471B2 (en) * 2004-08-30 2010-08-18 Dowaメタルテック株式会社 Copper alloy foil and manufacturing method thereof
JP5050226B2 (en) * 2005-03-31 2012-10-17 Dowaメタルテック株式会社 Manufacturing method of copper alloy material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103766010A (en) * 2011-09-01 2014-04-30 Jx日矿日石金属株式会社 Copper foil for flexible printed wiring board, copper-clad laminate, flexible printed wiring board and electronic device
CN103766010B (en) * 2011-09-01 2017-06-09 Jx日矿日石金属株式会社 The Copper Foil of flexible printing wiring board, copper-clad laminated board, flexible printing wiring board and electronic equipment
KR20160117195A (en) 2015-03-30 2016-10-10 제이엑스금속주식회사 Rolled copper foil for secondary battery, and lithium ion secondary battery and lithium ion capacitor using the same

Also Published As

Publication number Publication date
JP2009108376A (en) 2009-05-21

Similar Documents

Publication Publication Date Title
JP5055088B2 (en) Copper foil and flexible printed circuit board using the same
JP4672515B2 (en) Rolled copper alloy foil for bending
JP3009383B2 (en) Rolled copper foil and method for producing the same
JP3856582B2 (en) Rolled copper foil for flexible printed circuit board and method for producing the same
JP5320638B2 (en) Rolled copper foil and method for producing the same
JP5057932B2 (en) Rolled copper foil and flexible printed wiring board
JP5235080B2 (en) Copper alloy foil and flexible printed circuit board using the same
JP5752536B2 (en) Rolled copper foil
JP2000212660A (en) Rolled copper foil for flexible printed circuit board and its production
JP5356714B2 (en) Copper alloy foil for flexible printed circuit board excellent in etching property and flexible printed circuit board using the same
WO2015099097A1 (en) Copper alloy sheet material, connector, and production method for copper alloy sheet material
JP6294257B2 (en) Copper alloy foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
JP3824593B2 (en) Rolled copper foil with high elongation
JP4162087B2 (en) Highly flexible rolled copper foil and method for producing the same
KR20200141427A (en) Copper foil for flexible printed circuit, and copper clad laminate, flexible printed circuit and electronic device using copper foil
JP5390852B2 (en) Rolled copper foil
JP2001262296A (en) Rolled copper foil and its manufacturing process
JP2019029605A (en) Copper foil for flexible printed board, copper-clad laminate arranged by use thereof, flexible printed board, and electronic device
JP2008088492A (en) Copper alloy foil and copper-resin organic matter flexible laminate
JP2017115222A (en) Rolled copper foil, copper-clad laminate using the same, flexible printed substrate and electronic device
JP5778460B2 (en) Rolled copper foil, method for producing the same, and copper-clad laminate
JP4749780B2 (en) Copper alloy rolled foil
JP5631847B2 (en) Rolled copper foil
JP2001144391A (en) Rolled copper foil for printed circuit board and manufacturing method therefor
CN112210689B (en) Copper foil for flexible printed substrate

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100903

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120723

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120730

R150 Certificate of patent or registration of utility model

Ref document number: 5055088

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees