JP2019029605A - Copper foil for flexible printed board, copper-clad laminate arranged by use thereof, flexible printed board, and electronic device - Google Patents

Copper foil for flexible printed board, copper-clad laminate arranged by use thereof, flexible printed board, and electronic device Download PDF

Info

Publication number
JP2019029605A
JP2019029605A JP2017150627A JP2017150627A JP2019029605A JP 2019029605 A JP2019029605 A JP 2019029605A JP 2017150627 A JP2017150627 A JP 2017150627A JP 2017150627 A JP2017150627 A JP 2017150627A JP 2019029605 A JP2019029605 A JP 2019029605A
Authority
JP
Japan
Prior art keywords
copper foil
flexible printed
mass
less
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017150627A
Other languages
Japanese (ja)
Other versions
JP6617313B2 (en
Inventor
慎介 坂東
Shinsuke Bando
慎介 坂東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2017150627A priority Critical patent/JP6617313B2/en
Priority to TW107122964A priority patent/TWI687526B/en
Priority to KR1020180083997A priority patent/KR102098479B1/en
Priority to CN201810877181.4A priority patent/CN109392242B/en
Publication of JP2019029605A publication Critical patent/JP2019029605A/en
Application granted granted Critical
Publication of JP6617313B2 publication Critical patent/JP6617313B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B2003/005Copper or its alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0355Metal foils

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Laminated Bodies (AREA)

Abstract

To provide copper foil for a flexible printed board, which is superior in bendability.SOLUTION: The copper foil is copper foil for a flexible printed board, which comprises 99.0 mass% or more of Cu with the balance consisting of inevitable impurities. The copper foil is larger than 75% IACS in conductivity, and KAM value ratio of a copper foil surface given by (Region A of 0-0.875 in KAM value)/(Region B of 0-5 in KAM value) is 0.98 or more.SELECTED DRAWING: Figure 2

Description

本発明はフレキシブルプリント基板等の配線部材に用いて好適な銅箔、それを用いた銅張積層体、フレキシブル配線板、及び電子機器に関する。   The present invention relates to a copper foil suitable for a wiring member such as a flexible printed circuit board, a copper clad laminate using the copper foil, a flexible wiring board, and an electronic device.

フレキシブルプリント基板(フレキシブル配線板、以下、「FPC」と称する)はフレキシブル性を有するため、電子回路の折り曲げ部や可動部に広く使用されている。例えば、HDDやDVD及びCD−ROM等のディスク関連機器の可動部や、折りたたみ式携帯電話機の折り曲げ部等にFPCが用いられている。
FPCは銅箔と樹脂とを積層したCopper Clad Laminate(銅張積層体、以下CCLと称する)をエッチングすることで配線を形成し、その上をカバーレイと呼ばれる樹脂層によって被覆したものである。カバーレイを積層する前段階で、銅箔とカバーレイとの密着性を向上するための表面改質工程の一環として、銅箔表面のエッチングが行われる。また、銅箔の厚みを低減して屈曲性を向上させるため、減肉エッチングを行う場合もある。
A flexible printed circuit board (flexible wiring board, hereinafter referred to as “FPC”) has flexibility, and is widely used in a bent portion and a movable portion of an electronic circuit. For example, FPCs are used for movable parts of disk-related devices such as HDDs, DVDs, and CD-ROMs, and for folding parts of foldable mobile phones.
The FPC is formed by etching a copper clad laminate (copper-clad laminate, hereinafter referred to as CCL) in which a copper foil and a resin are laminated, and then coating the wiring with a resin layer called a coverlay. The copper foil surface is etched as part of the surface modification step for improving the adhesion between the copper foil and the coverlay before the coverlay is laminated. Further, in order to improve the flexibility by reducing the thickness of the copper foil, thinning etching may be performed.

ところで、電子機器の小型、薄型、高性能化に伴い、これら機器の内部にFPCを高密度で実装することが要求されているが、高密度実装を行うためには、小型化した機器の内部にFPCを折り曲げて収容する、つまり高い折り曲げ性が必要となる。
一方、IPC屈曲性に代表される高サイクル屈曲性を改善した銅箔が開発されている(特許文献1、2)。
By the way, along with the downsizing, thinning, and high performance of electronic devices, it is required to mount FPCs in these devices at a high density. The FPC needs to be folded and accommodated, that is, high bendability is required.
On the other hand, copper foils with improved high-cycle flexibility represented by IPC flexibility have been developed (Patent Documents 1 and 2).

特開2010-100887号公報JP 2010-100877 A 特開2009-111203号公報JP 2009-111203 A

しかしながら、上述のようにFPCを高密度で実装するためには、MIT耐折性に代表される折り曲げ性の向上が必要であり、従来の銅箔では折り曲げ性の改善が十分とはいえないという問題がある。
本発明は上記の課題を解決するためになされたものであり、折り曲げ性に優れたフレキシブルプリント基板用銅箔、それを用いた銅張積層体、フレキシブルプリント基板、及び電子機器の提供を目的とする。
However, in order to mount the FPC at a high density as described above, it is necessary to improve the bendability represented by MIT fold resistance, and the conventional copper foil cannot be said to have sufficient improvement in bendability. There's a problem.
The present invention has been made to solve the above-mentioned problems, and aims to provide a copper foil for a flexible printed circuit board excellent in bendability, a copper-clad laminate using the same, a flexible printed circuit board, and an electronic device. To do.

本発明者らは種々検討した結果、銅箔の最終冷間圧延前の結晶粒径を微細化することにより、冷間圧延中の銅箔の各領域への転位の蓄積を均等にし、再結晶後に銅箔のいずれの領域でも、ひずみが開放されるためにKAM値の低減と破断伸びの向上が両立でき、折り曲げ性が向上できることを見出した。通常、KAM値が大きいほど再結晶後に粒内ひずみが蓄積されており、KAM値が大きい(粒内ひずみの蓄積が大きい)領域とKAM値が小さい(粒内ひずみの蓄積が少ない)領域では、折り曲げ時の塑性変形挙動が異なるため破断する。したがって、KAM値が小さい領域を増やせば、銅箔内における折り曲げ時の塑性変形挙動が均等化され、折り曲げ性が向上する。   As a result of various studies, the present inventors have refined the crystal grain size before the final cold rolling of the copper foil to make the accumulation of dislocations uniform in each region of the copper foil during the cold rolling and recrystallization. Later, in any region of the copper foil, it was found that since the strain is released, the KAM value can be reduced and the elongation at break can be improved, and the bendability can be improved. In general, the larger the KAM value, the more intragranular strain is accumulated after recrystallization. In the region where the KAM value is large (the accumulation of intragranular strain is large) and the region where the KAM value is small (the accumulation of intragranular strain is small), Fracture due to different plastic deformation behavior during bending. Therefore, if the region where the KAM value is small is increased, the plastic deformation behavior at the time of bending in the copper foil is equalized, and the bendability is improved.

すなわち、本発明のフレキシブルプリント基板用銅箔は、99.0質量%以上のCu、残部不可避的不純物からなる銅箔であって、導電率が75%IACSを超え、前記銅箔の表面のKAM値の構成比=(KAM値が0〜0.875の領域A)/(KAM値が0〜5の領域B)が0.98以上である。   That is, the copper foil for a flexible printed board of the present invention is a copper foil composed of 99.0% by mass or more of Cu and the balance unavoidable impurities, the electrical conductivity exceeds 75% IACS, the KAM value of the surface of the copper foil The composition ratio = (region A where the KAM value is 0 to 0.875) / (region B where the KAM value is 0 to 5) is 0.98 or more.

本発明のフレキシブルプリント基板用銅箔において、板厚をx[μm]としたとき、破断伸びy[%]が式1:[y=-0.0365(%・(μm) -2)x2+2.1352(%・(μm) -1)x-5.7219(%)]以上であることが好ましい。
本発明のフレキシブルプリント基板用銅箔において、JIS−H3100(C1100)に規格するタフピッチ銅又はJIS−H3100(C1020)の無酸素銅からなることが好ましい。
本発明のフレキシブルプリント基板用銅箔において、さらに、Pを0.03質量%以下、Agを0.05質量%以下、Sbを0.14質量%以下、Snを0.163質量%以下、Niを0.288質量%以下、Beを0.058質量%以下、Znを0.812質量%以下、Inを0.429質量%以下、およびMgを0.149質量%以下、それぞれ単独又は2種以上を含有してなることが好ましい。
In the copper foil for a flexible printed circuit board of the present invention, when the plate thickness is x [μm], the elongation at break y [%] is expressed by the formula 1: [y = −0.0365 (% · (μm) −2 ) x 2 +2.1352 It is preferably (% · (μm) −1 ) x−5.7219 (%)] or more.
The copper foil for flexible printed circuit boards of the present invention is preferably made of tough pitch copper standardized to JIS-H3100 (C1100) or oxygen-free copper of JIS-H3100 (C1020).
In the copper foil for flexible printed circuit boards of the present invention, P is 0.03% by mass or less, Ag is 0.05% by mass or less, Sb is 0.14% by mass or less, Sn is 0.163% by mass or less, Ni is 0.288% by mass or less, Be 0.058% by mass or less, Zn is 0.812% by mass or less, In is 0.429% by mass or less, and Mg is 0.149% by mass or less, each of which is preferably contained alone or in combination.

本発明のフレキシブルプリント基板用銅箔が圧延銅箔であり、300℃×30min焼鈍(但し、昇温速度100℃/min〜300℃/min)後、導電率が75%IACSを超え、かつ前記構成比が0.98以上であることが好ましい。   The copper foil for a flexible printed circuit board of the present invention is a rolled copper foil, and after annealing at 300 ° C. for 30 minutes (however, the heating rate is 100 ° C./min to 300 ° C./min), the conductivity exceeds 75% IACS, and The composition ratio is preferably 0.98 or more.

本発明の銅張積層体は、前記フレキシブルプリント基板用銅箔と、樹脂層とを積層してなる。   The copper clad laminate of the present invention is formed by laminating the flexible printed circuit board copper foil and a resin layer.

本発明のフレキシブルプリント基板は、前記銅張積層体における前記銅箔に回路を形成してなる。   The flexible printed board of the present invention is formed by forming a circuit on the copper foil in the copper clad laminate.

本発明の電子機器は、前記フレキシブルプリント基板を用いてなる。   The electronic device of the present invention uses the flexible printed circuit board.

本発明によれば、折り曲げ性に優れたフレキシブルプリント基板用銅箔が得られる。   ADVANTAGE OF THE INVENTION According to this invention, the copper foil for flexible printed circuit boards excellent in the bendability is obtained.

実施例及び比較例の銅箔厚みと破断伸びの関係を示す図である。It is a figure which shows the relationship between the copper foil thickness and break elongation of an Example and a comparative example. 実施例及び比較例のEBSD測定による結晶方位分布(マップ)を示す図である。It is a figure which shows the crystal orientation distribution (map) by the EBSD measurement of an Example and a comparative example.

以下、本発明に係る銅箔の実施の形態について説明する。なお、本発明において%は特に断らない限り、質量%を示すものとする。   Hereinafter, embodiments of the copper foil according to the present invention will be described. In the present invention, “%” means “% by mass” unless otherwise specified.

<組成>
本発明に係る銅箔は、99.0質量%以上のCu、残部不可避的不純物からなる。
上述のように、銅箔の最終冷間圧延前の結晶粒径を微細化することにより、冷間圧延中の銅箔の各領域への転位の蓄積を均等にし、再結晶後に銅箔のいずれの領域でも、ひずみが開放されるためにKAM値の低減と破断伸びの向上が両立でき、折り曲げ性が向上する。通常、KAM値が大きいほど再結晶後に粒内ひずみが蓄積されており、KAM値が大きい(粒内ひずみの蓄積が大きい)領域とKAM値が小さい(粒内ひずみの蓄積が少ない)領域では、折り曲げ時の塑性変形挙動が異なるため破断する。したがって、KAM値が小さい領域を増やせば、銅箔内における折り曲げ時の塑性変形挙動が均等化されるだけでなく折り曲げ性が向上する。
但し、上記したCu99.0質量%以上の純銅系の組成の場合、銅箔の再結晶後にKAM値を小さくすることが困難であるため、冷間圧延時の初期(焼鈍と冷間圧延を繰り返す際の初期の冷間圧延時)に再結晶焼鈍を行うことで、冷間圧延により加工ひずみを大量に導入することができ、再結晶後にKAM値が小さい領域を増えるともに破断伸びを高め、折り曲げ性をさらに向上できる。
<Composition>
The copper foil according to the present invention comprises 99.0% by mass or more of Cu and the balance of inevitable impurities.
As described above, by miniaturizing the crystal grain size before the final cold rolling of the copper foil, the accumulation of dislocations in each region of the copper foil during the cold rolling is made uniform, and any of the copper foils after recrystallization Even in this region, since the strain is released, the KAM value can be reduced and the elongation at break can be improved at the same time, and the bendability is improved. In general, the larger the KAM value, the more intragranular strain is accumulated after recrystallization. In the region where the KAM value is large (the accumulation of intragranular strain is large) and the region where the KAM value is small (the accumulation of intragranular strain is small), Fracture due to different plastic deformation behavior during bending. Therefore, if the region where the KAM value is small is increased, not only the plastic deformation behavior during bending in the copper foil is equalized, but also the bendability is improved.
However, in the case of the above pure copper-based composition of Cu99.0% by mass, it is difficult to reduce the KAM value after recrystallization of the copper foil, so the initial stage during cold rolling (repeating annealing and cold rolling) By performing recrystallization annealing at the time of initial cold rolling, a large amount of processing strain can be introduced by cold rolling, and after recrystallization, the area with a small KAM value is increased, the elongation at break is increased, and bending is increased. The sex can be further improved.

又、銅箔の再結晶後にKAM値の低減と破断伸びの向上を両立するためには、冷間圧延と焼鈍を繰り返す工程の中で、最終焼鈍後に行う最終冷間圧延前の結晶粒径を10μm以上〜15μm未満とすると好ましい。15μm以上の場合KAM値の低減と破断伸びの向上を両立できず折り曲げ性が悪くなる。一方、10μmより小さい場合、KAM値の低減と破断伸びの向上を両立する効果は飽和する。
最終冷間圧延前の結晶粒径が15μm以上の場合、加工時の転位の絡み合いが局所的に小さくなり、ひずみの蓄積が少なくなるため、再結晶後にひずみが解放されず、KAM値の低減と破断伸びの向上の両立が困難になる。最終冷間圧延前の結晶粒径が10μmより小さい場合は、加工時の転位の絡み合いが銅箔のほぼ全領域で生じてこれ以上の絡み合いができず、再結晶後のKAM値の低減と破断伸びの向上を両立する効果が飽和する。そして、圧延コストが高くなる。したがって最終冷間圧延前の結晶粒径の下限を10μmとした。
Moreover, in order to achieve both reduction of KAM value and improvement of elongation at break after recrystallization of copper foil, the crystal grain size before final cold rolling performed after final annealing in the process of repeating cold rolling and annealing is set. The thickness is preferably 10 μm or more and less than 15 μm. When it is 15 μm or more, it is impossible to achieve both reduction in KAM value and improvement in elongation at break, resulting in poor bendability. On the other hand, if it is smaller than 10 μm, the effect of simultaneously reducing the KAM value and improving the elongation at break is saturated.
When the crystal grain size before the final cold rolling is 15 μm or more, the entanglement of dislocations during processing is locally reduced and the accumulation of strain is reduced, so the strain is not released after recrystallization, and the KAM value is reduced. It becomes difficult to improve the elongation at break. When the grain size before final cold rolling is smaller than 10μm, dislocation entanglement during processing occurs in almost all areas of the copper foil, and no further entanglement is possible, reducing the KAM value after recrystallization and breaking The effect of achieving both improvement in elongation is saturated. And rolling cost becomes high. Therefore, the lower limit of the crystal grain size before the final cold rolling is set to 10 μm.

銅箔の最終冷間圧延前の結晶粒径を微細化する方法としては、最終焼鈍温度を400℃より大きく、500℃以下とし、最終焼鈍直前の冷間圧延加工度ηを0.91以上、1.6以下にすることが挙げられる。   As a method of refining the crystal grain size before the final cold rolling of the copper foil, the final annealing temperature is set to be higher than 400 ° C. and 500 ° C. or lower, and the cold rolling degree η immediately before the final annealing is 0.91 or higher and 1.6 or lower. Can be mentioned.

又、再結晶後のKAM値を小さくする添加元素として、上記組成に対し、Pを0.0005質量%以上0.03質量%以下、Agを0.0005質量%以上0.05質量%以下、Sbを0.0005質量%以上0.14質量%以下、Snを0.0005質量%以上0.163質量%以下、Niを0.0005質量%以上0.288質量%以下、Beを0.0005質量%以上0.058質量%以下、Znを0.0005質量%以上0.812質量%以下、Inを0.0005質量%以上0.429質量%以下、およびMgを0.0005質量%以上0.149質量%以下、それぞれ単独又は2種以上を含有すると、KAM値を容易に小さくすることができる。
P、Ag、Sb、Sn、Ni、Be、Zn、In、およびMgは、冷間圧延時に転位の絡み合いの頻度を増加させるので、再結晶後にKAM値の低減と破断伸びの向上を両立することができる。又、冷間圧延時の初期に一回のみ再結晶焼鈍を行い、以後は再結晶焼鈍を行わないようにすれば、冷間圧延により転位の絡み合いを増加させることにより、加工ひずみを大量に導入して再結晶後にKAM値の低減と破断伸びの向上をより容易に両立することができる。
Further, as additive elements for reducing the KAM value after recrystallization, P is 0.0005% by mass to 0.03% by mass, Ag is 0.0005% by mass to 0.05% by mass, and Sb is 0.0005% by mass to 0.14% by mass with respect to the above composition. %, Sn from 0.0005% to 0.163%, Ni from 0.0005% to 0.288%, Be from 0.0005% to 0.058%, Zn from 0.0005% to 0.812%, In to 0.0005% The KAM value can be easily reduced by containing not less than 0.4% by mass and not more than 0.429% by mass and Mg in an amount of not less than 0.0005% by mass and not more than 0.149% by mass, either singly or in combination.
P, Ag, Sb, Sn, Ni, Be, Zn, In, and Mg increase the frequency of dislocation entanglement during cold rolling, so both KAM value reduction and fracture elongation improvement can be achieved after recrystallization. Can do. In addition, if recrystallization annealing is performed only once in the initial stage of cold rolling and no subsequent recrystallization annealing is performed, a large amount of processing strain is introduced by increasing the entanglement of dislocations by cold rolling. Thus, the KAM value can be reduced and the elongation at break can be more easily achieved after recrystallization.

Pを0.03質量%を超え、Agを0.05質量%を超え、Sbを0.14質量%を超え、Snを0.163質量%を超え、Niを0.288質量%を超え、Beを0.058質量%を超え、Znを0.812質量%を超え、Inを0.429質量%を超え、又はMgを0.149質量%を超えて含有させると、導電率が低下し、フレキシブル基板用銅箔として適さない場合があるので、上述の範囲を上限とした。P、Sb、Sn、Ni、Be、Zn、In、およびMgの含有量の下限は特に制限されないが、例えば各元素につき0.0005質量%より小さく制御することは工業的に難しいので、各元素の含有量の下限を0.0005質量%とするとよい。   P exceeds 0.03 wt%, Ag exceeds 0.05 wt%, Sb exceeds 0.14 wt%, Sn exceeds 0.163 wt%, Ni exceeds 0.288 wt%, Be exceeds 0.058 wt%, Zn If it exceeds 0.812% by mass, In exceeds 0.429% by mass, or Mg exceeds 0.149% by mass, the conductivity may decrease and may not be suitable as a copper foil for flexible substrates. The upper limit. The lower limit of the content of P, Sb, Sn, Ni, Be, Zn, In, and Mg is not particularly limited. For example, it is industrially difficult to control less than 0.0005% by mass for each element. The lower limit of the amount is preferably 0.0005% by mass.

本発明に係る銅箔を、JIS−H3100(C1100)に規格するタフピッチ銅(TPC)又はJIS−H3100(C1020)の無酸素銅(OFC)からなる組成としてもよい。
又、上記TPC又はOFCに対し、Pを含有させてなる組成としてもよい。
The copper foil according to the present invention may be composed of tough pitch copper (TPC) standardized to JIS-H3100 (C1100) or oxygen-free copper (OFC) of JIS-H3100 (C1020).
Moreover, it is good also as a composition which contains P with respect to said TPC or OFC.

<KAM値の構成比>
銅箔の表面のKAM値の構成比=(KAM値が0〜0.875の領域)/(KAM値が0〜5の領域)が0.98以上である。
KAM値は、結晶粒内の隣接する測定点間の方位差を定量化した指標であり、KAM値が大きいと粒内ひずみの蓄積が大きく、KAM値が小さいと粒内ひずみの蓄積が少ない傾向にある。
KAM値の構成比として、(KAM値が0〜0.875の領域A)/(KAM値が0〜5の領域B)を採用した理由は、領域Bは粒内ひずみの定義を表しており、その内「0〜0.875」の領域Aでは粒内ひずみの蓄積が少なく、折り曲げ時のクラックの起点となり難いのに対し、「領域B−領域B」(0.875超え5以下)では粒内ひずみの蓄積が大きく折り曲げ時のクラックの起点となり易いからである。
上記のKAM値の構成比が0.98以上であると、粒内ひずみの蓄積が大きい領域が少ないためクラックの起点が少なく、折り曲げ性が向上する。
<Composition ratio of KAM value>
The composition ratio of the KAM value on the surface of the copper foil = (region where the KAM value is 0 to 0.875) / (region where the KAM value is 0 to 5) is 0.98 or more.
The KAM value is an index that quantifies the orientation difference between adjacent measurement points in a crystal grain. When the KAM value is large, the accumulation of intragranular strain is large, and when the KAM value is small, the accumulation of intragranular strain is small. It is in.
The reason for adopting (region A where the KAM value is 0 to 0.875) / (region B where the KAM value is 0 to 5) as the composition ratio of the KAM value is that the region B represents the definition of intragranular strain. In the region A of “0 to 0.875”, the accumulation of intragranular strain is small and it is difficult to become the starting point of cracks during bending, whereas in “region B-region B” (over 0.875 and less than 5), accumulation of intragranular strain is observed. It is because it is easy to become a starting point of the crack at the time of large bending.
When the composition ratio of the KAM value is 0.98 or more, since there are few regions where the accumulation of intragranular strain is large, the starting point of cracks is small and the bendability is improved.

KAM値は、試料の表面をEBSD(電子後方散乱回折:electron backscatter diffraction)で測定して求める。EBSDは、試料表面付近の結晶方位をnmオーダーの分解能で測定することができ、測定データから局所的な結晶方位の変化(局所方位差)を算出することができる。そして、これらのEBSDデータから、隣接する測定点間のKAM値(方位差)が0°以上5°以下となる境界を粒内蓄積ひずみとみなす。
なお、KAM値(方位差)が5°より大きな部位は結晶粒界であり、粒内ひずみとは異なる。
The KAM value is obtained by measuring the surface of the sample with EBSD (electron backscatter diffraction). EBSD can measure the crystal orientation in the vicinity of the sample surface with a resolution on the order of nm, and can calculate the local crystal orientation change (local orientation difference) from the measurement data. From these EBSD data, the boundary where the KAM value (orientation difference) between adjacent measurement points is 0 ° or more and 5 ° or less is regarded as intragranular accumulated strain.
Note that the portion where the KAM value (orientation difference) is greater than 5 ° is a crystal grain boundary, which is different from intragranular strain.

<破断伸び>
板厚をx[μm]としたとき、破断伸びy[%]が式1:[y=-0.0365(%・(μm) -2)x2+2.1352(%・(μm) -1)x-5.7219(%)]以上であることが好ましい。
銅箔の伸びは厚みによって変化し、厚みが厚いほど伸びは大きくなる。従って、折り曲げ性は、銅箔の厚みに応じた伸びに依存する。このため、折り曲げ性を向上させるためには、銅箔の伸びの絶対値だけでなく、伸びと厚みとの関係を規定する必要がある。本発明は、このように伸びと厚みとの関係に着目したものである。
図1は、後述する実施例1〜16、及び比較例1〜6の厚みと破断伸びとの関係を示す。図1に示すように、実施例1〜7の群よりも実施例8〜12の群の方が同じ厚みでも破断伸びが小さい。又、同じ厚みで見たとき、すべての実施例1〜16の破断伸びは比較例(比較例1〜6)の群の破断伸びよりも大きい。
<Elongation at break>
When the plate thickness is x [μm], the elongation at break y [%] is expressed by the formula 1: [y = −0.0365 (% · (μm) −2 ) x 2 +2.1352 (% · (μm) −1 ) x− 5.7219 (%)] or more.
The elongation of the copper foil varies depending on the thickness, and the greater the thickness, the greater the elongation. Therefore, the bendability depends on the elongation corresponding to the thickness of the copper foil. For this reason, in order to improve the bendability, it is necessary to define not only the absolute value of the elongation of the copper foil but also the relationship between the elongation and the thickness. The present invention thus focuses on the relationship between elongation and thickness.
FIG. 1 shows the relationship between the thickness and breaking elongation of Examples 1 to 16 and Comparative Examples 1 to 6 described later. As shown in FIG. 1, even if the group of Examples 8-12 has the same thickness rather than the group of Examples 1-7, elongation at break is smaller. Moreover, when it sees with the same thickness, the breaking elongation of all Examples 1-16 is larger than the breaking elongation of the group of a comparative example (comparative examples 1-6).

このことから、比較例よりも破断伸びが大きくなる領域であれば、折り曲げ性(MIT耐折回数)にも優れると考え、比較例よりも破断伸びが大きくなる最低限の値(下限)として、実施例1〜7の群よりも破断伸びが小さい実施例8〜12の群の各プロットを通る近似2次曲線を最小二乗法で求めた。その結果、図1の破線に示す上記式1が得られた。
なお、実施例1と2が重なり、実施例6と7が重なるので、実施例1〜7のプロット数は7個ではなく5個となった。
From this, if it is a region where the elongation at break is larger than that of the comparative example, it is considered that the bending property (the number of MIT foldings) is excellent, and the minimum value (lower limit) at which the elongation at break becomes larger than the comparative example, An approximate quadratic curve passing through each plot of the groups of Examples 8 to 12 having a smaller breaking elongation than the groups of Examples 1 to 7 was obtained by the method of least squares. As a result, the above equation 1 shown by the broken line in FIG. 1 was obtained.
In addition, since Example 1 and 2 overlap and Example 6 and 7 overlap, the number of plots of Examples 1-7 became five instead of seven.

以上から、破断伸びy[%]が式1以上の領域S(図1参照)であれば、折り曲げ性に優れる。
例えば、銅箔厚みが12μmの場合、破断伸び(%)および折り曲げ性(回)はそれぞれ、実施例4(:35 %:452回)、実施例10(:15 %:352回)、比較例4(:12 %:188回)となり、実施例4、10共に比較例4に比べ折り曲げ性が優れ、実施例4が最も優れる。
From the above, if the elongation at break y [%] is the region S (see FIG. 1) equal to or greater than Formula 1, the bendability is excellent.
For example, when the copper foil thickness is 12 μm, the elongation at break (%) and bendability (times) are Example 4 (: 35%: 452 times), Example 10 (: 15%: 352 times), and Comparative Example, respectively. 4 (: 12%: 188 times), both Examples 4 and 10 are superior to Comparative Example 4 in bendability, and Example 4 is most excellent.

なお、式2:[y=-0.07625(%・(μm) -2)x2+4.4090(%・(μm) -1)x-7.5054(%)]は、実施例8〜12の群よりも同じ厚みで破断伸びが大きい群である実施例1〜7の各プロットを通る近似2次曲線を最小二乗法で求めた結果である。
もとより、破断伸びは高ければ高い方が好ましいので、式2の値を超えるものも、本願発明の範囲に含まれることは言うまでもないが、同じ銅箔厚みでも破断伸びの向上には限界があるので、その限界の例示として式2を求めた。従って、本発明をより確実に実現する範囲として、式1以上、かつ式2以下の領域S1(図1参照)とすることも可能であるが、本発明は式2以下の領域に限定されるものではない。
Incidentally, the formula 2: [y = -0.07625 (% · (μm) -2) x 2 +4.4090 (% · (μm) -1) x-7.5054 (%)] , rather than the group of Examples 8 to 12 It is the result of calculating | requiring the approximate quadratic curve which passes through each plot of Examples 1-7 which is a group with the same thickness and a large breaking elongation by the least square method.
Of course, if the elongation at break is higher, it is preferable to have a higher elongation. Therefore, it goes without saying that those exceeding the value of Formula 2 are also included in the scope of the present invention, but there is a limit to improving the elongation at break even with the same copper foil thickness. As an example of the limit, Equation 2 was obtained. Accordingly, the range S1 (see FIG. 1) of the formula 1 or more and the formula 2 or less can be set as a range for realizing the present invention more reliably, but the present invention is limited to the range of the formula 2 or less. It is not a thing.

破断伸びが[y=-0.0365(%・(μm) -2)x2+2.1352(%・(μm) -1)x-5.7219(%)]未満であると、フレキシブルプリント基板を曲げた時の樹脂の伸びに銅箔が追従できず、折り曲げ性が劣るため、フレキシブルプリント基板用途に適さない。
又、銅箔を300℃×30min焼鈍(昇温速度100〜300℃/min)後の破断伸びy[%]についても、上述の範囲内であることが好ましい。
When the breaking elongation is less than [y = -0.0365 (% ・ (μm) -2 ) x 2 +2.1352 (% ・ (μm) -1 ) x-5.7219 (%)], the flexible printed circuit board is bent Since the copper foil cannot follow the elongation of the resin and the bendability is poor, it is not suitable for flexible printed circuit board applications.
The breaking elongation y [%] after annealing the copper foil at 300 ° C. for 30 minutes (temperature increase rate: 100 to 300 ° C./min) is also preferably within the above range.

<引張強度(TS)、破断伸び>
引張強度および破断伸びは、IPC-TM650に準拠した引張試験により、試験片幅12.7mm、室温(15〜35℃)、引張速度50.8mm/min、ゲージ長さ50mmで、銅箔の圧延方向と平行な方向に引張試験した。
<Tensile strength (TS), elongation at break>
Tensile strength and elongation at break were determined by a tensile test in accordance with IPC-TM650, with a test piece width of 12.7 mm, room temperature (15 to 35 ° C.), a tensile speed of 50.8 mm / min, and a gauge length of 50 mm. Tensile tests were performed in parallel directions.

<300℃で30分間の熱処理>
本発明に係る銅箔はフレキシブルプリント基板に用いられ、その際、銅箔と樹脂とを積層したCCLは、200〜400℃で樹脂を硬化させるための熱処理を行うため、再結晶によって結晶粒が粗大化する可能性がある。
従って、樹脂と積層する前後で、銅箔のKAM値の構成比が変わる。そこで、本願の請求項1に係るフレキシブルプリント基板用銅箔は、樹脂と積層後の銅張積層体になった後の、樹脂の硬化熱処理を受けた状態の銅箔を規定している。つまり、既に熱処理を受けているから、新たな熱処理を行わない状態の銅箔である。
一方、本願の請求項5に係るフレキシブルプリント基板用銅箔は、樹脂と積層する前の銅箔に上記熱処理を行ったときの状態を規定している。この300℃で30分間の熱処理は、CCLの積層時に樹脂を硬化熱処理させる温度条件を模したものである。なお、熱処理による銅箔表面の酸化を防止するため、熱処理の雰囲気は、還元性又は非酸化性の雰囲気が好ましく、例えば、真空雰囲気、又は、アルゴン、窒素、水素、一酸化炭素等若しくはこれらの混合ガスからなる雰囲気などとすればよい。昇温速度は100〜300℃/minの間であればよい。
<Heat treatment at 300 ° C for 30 minutes>
The copper foil which concerns on this invention is used for a flexible printed circuit board, In that case, since CCL which laminated | stacked copper foil and resin performs the heat processing for hardening resin at 200-400 degreeC, a crystal grain is formed by recrystallization. There is a possibility of coarsening.
Therefore, the composition ratio of the KAM value of the copper foil changes before and after being laminated with the resin. Then, the copper foil for flexible printed circuit boards concerning Claim 1 of this application has prescribed | regulated the copper foil of the state which received the hardening heat processing of resin after it became a copper clad laminated body laminated | stacked with resin. In other words, the copper foil is in a state where it has not been subjected to a new heat treatment since it has already undergone a heat treatment.
On the other hand, the copper foil for flexible printed circuit boards according to claim 5 of the present application defines a state when the heat treatment is performed on the copper foil before being laminated with the resin. This heat treatment at 300 ° C. for 30 minutes simulates the temperature condition for curing and heat-treating the resin during CCL lamination. In order to prevent oxidation of the copper foil surface due to the heat treatment, the atmosphere of the heat treatment is preferably a reducing or non-oxidizing atmosphere, for example, a vacuum atmosphere, argon, nitrogen, hydrogen, carbon monoxide, or the like. An atmosphere made of a mixed gas may be used. The heating rate may be between 100 and 300 ° C./min.

本発明の銅箔は、例えば以下のようにして製造することができる。まず、銅インゴットを溶解、鋳造した後、熱間圧延し、冷間圧延と焼鈍を行い、好ましくは冷間圧延時の初期に再結晶焼鈍を行うと共に、上述の最終冷間圧延を行うことにより箔を製造することができる。
ここで、最終冷間圧延前(冷間圧延と焼鈍を繰り返す工程全体の中で、最終焼鈍後に行う冷間圧延をいう)の結晶粒径を10μm以上15μm未満に微細化すると、KAM値の構成比を0.98以上に制御できる。
The copper foil of this invention can be manufactured as follows, for example. First, after melting and casting a copper ingot, it is hot-rolled, cold-rolled and annealed, preferably by recrystallization annealing at the initial stage of cold-rolling and by performing the above-mentioned final cold-rolling A foil can be produced.
Here, when the crystal grain size before final cold rolling (referring to cold rolling performed after final annealing in the whole process of cold rolling and annealing) is refined to 10 μm or more and less than 15 μm, the composition of KAM value The ratio can be controlled to 0.98 or higher.

<銅張積層体及びフレキシブルプリント基板>
又、本発明の銅箔に(1)樹脂前駆体(例えばワニスと呼ばれるポリイミド前駆体)をキャスティングして熱をかけて重合させること、(2)ベースフィルムと同種の熱可塑性接着剤を用いてベースフィルムを本発明の銅箔にラミネートすること、により、銅箔と樹脂基材の2層からなる銅張積層体(CCL)が得られる。又、本発明の銅箔に接着剤を塗着したベースフィルムをラミネートすることにより、銅箔と樹脂基材とその間の接着層の3層からなる銅張積層体(CCL)が得られる。これらのCCL製造時に銅箔が熱処理されて再結晶化する。
これらにフォトリソグラフィー技術を用いて回路を形成し、必要に応じて回路にめっきを施し、カバーレイフィルムをラミネートすることでフレキシブルプリント基板(フレキシブル配線板)が得られる。
<Copper-clad laminate and flexible printed circuit board>
Also, (1) a resin precursor (for example, a polyimide precursor called varnish) is cast on the copper foil of the present invention and polymerized by applying heat, and (2) a thermoplastic adhesive of the same type as the base film is used. By laminating the base film on the copper foil of the present invention, a copper clad laminate (CCL) composed of two layers of the copper foil and the resin base material is obtained. Further, by laminating a base film obtained by applying an adhesive to the copper foil of the present invention, a copper clad laminate (CCL) comprising three layers of a copper foil, a resin base material, and an adhesive layer therebetween is obtained. During the production of these CCLs, the copper foil is heat-treated and recrystallized.
A circuit is formed on these using a photolithographic technique, a circuit is plated as needed, and a cover-lay film is laminated, and a flexible printed circuit board (flexible wiring board) is obtained.

従って、本発明の銅張積層体は、銅箔と樹脂層とを積層してなる。又、本発明のフレキシブルプリント基板は、銅張積層体の銅箔に回路を形成してなる。
樹脂層としては、PET(ポリエチレンテレフタレート)、PI(ポリイミド)、LCP(液晶ポリマー)、PEN(ポリエチレンナフタレート)が挙げられるがこれに限定されない。また、樹脂層として、これらの樹脂フィルムを用いてもよい。
樹脂層と銅箔との積層方法としては、銅箔の表面に樹脂層となる材料を塗布して加熱成膜してもよい。又、樹脂層として樹脂フィルムを用い、樹脂フィルムと銅箔との間に以下の接着剤を用いてもよく、接着剤を用いずに樹脂フィルムを銅箔に熱圧着してもよい。但し、樹脂フィルムに余分な熱を加えないという点からは、接着剤を用いることが好ましい。
Therefore, the copper clad laminate of the present invention is formed by laminating a copper foil and a resin layer. Moreover, the flexible printed circuit board of this invention forms a circuit in the copper foil of a copper clad laminated body.
Examples of the resin layer include, but are not limited to, PET (polyethylene terephthalate), PI (polyimide), LCP (liquid crystal polymer), and PEN (polyethylene naphthalate). Moreover, you may use these resin films as a resin layer.
As a method of laminating the resin layer and the copper foil, a material for forming the resin layer may be applied to the surface of the copper foil and heated to form a film. Further, a resin film may be used as the resin layer, and the following adhesive may be used between the resin film and the copper foil, or the resin film may be thermocompression bonded to the copper foil without using the adhesive. However, it is preferable to use an adhesive from the viewpoint of not applying excessive heat to the resin film.

樹脂層としてフィルムを用いた場合、このフィルムを、接着剤層を介して銅箔に積層するとよい。この場合、フィルムと同成分の接着剤を用いることが好ましい。例えば、樹脂層としてポリイミドフィルムを用いる場合は、接着剤層もポリイミド系接着剤を用いることが好ましい。尚、ここでいうポリイミド接着剤とはイミド結合を含む接着剤を指し、ポリエーテルイミド等も含む。   When a film is used as the resin layer, this film may be laminated on the copper foil via an adhesive layer. In this case, it is preferable to use an adhesive having the same component as the film. For example, when a polyimide film is used as the resin layer, it is preferable to use a polyimide-based adhesive for the adhesive layer. In addition, the polyimide adhesive here refers to the adhesive agent containing an imide bond, and polyether imide etc. are also included.

なお、本発明は、上記実施形態に限定されない。又、本発明の作用効果を奏する限り、上記実施形態における銅合金がその他の成分を含有してもよい。また、電解銅箔でも良い。
例えば、銅箔の表面に、粗化処理、防錆処理、耐熱処理、またはこれらの組み合わせによる表面処理を施してもよい。
In addition, this invention is not limited to the said embodiment. Moreover, as long as there exists an effect of this invention, the copper alloy in the said embodiment may contain another component. Moreover, an electrolytic copper foil may be used.
For example, the surface of the copper foil may be subjected to a surface treatment by roughening treatment, rust prevention treatment, heat resistance treatment, or a combination thereof.

次に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。電気銅に、表1に示す元素をそれぞれ添加して表1の組成とし、Ar雰囲気で鋳造して鋳塊を得た。鋳塊中の酸素含有量は15ppm未満であった。この鋳塊を900℃で均質化焼鈍後、熱間圧延した後に冷間圧延を行い、さらに1回焼鈍を行い10μm以上15μm未満に結晶粒径を調整した。
その後、表面に発生した酸化スケールを除去して、表2に示す加工度ηで最終冷間圧延をして目的とする最終厚さの箔を得た。得られた箔にアルゴン雰囲気において300℃×30分の熱処理を加え、銅箔サンプルを得た。熱処理後の銅箔は、CCLの積層時に熱処理を受けた状態を模している。
EXAMPLES Next, although an Example is given and this invention is demonstrated further in detail, this invention is not limited to these. Each element shown in Table 1 was added to electrolytic copper to obtain the composition shown in Table 1, and cast in an Ar atmosphere to obtain an ingot. The oxygen content in the ingot was less than 15 ppm. This ingot was homogenized and annealed at 900 ° C., then hot rolled, then cold rolled, and further annealed once to adjust the crystal grain size to 10 μm or more and less than 15 μm.
Thereafter, the oxide scale generated on the surface was removed, and final cold rolling was performed at a working degree η shown in Table 2 to obtain a foil having a desired final thickness. The obtained foil was heat-treated at 300 ° C. for 30 minutes in an argon atmosphere to obtain a copper foil sample. The copper foil after the heat treatment imitates a state where the heat treatment is performed during the lamination of the CCL.

<A.銅箔サンプルの評価>
1.導電率
上記熱処理後の各銅箔サンプルについて、JIS H 0505に基づいて4端子法により、25℃の導電率(%IACS)を測定した。
導電率が75%IACSより大きければ導電性が良好である。
2.引張強度及び破断伸び
上記熱処理後の各銅箔サンプルについて、IPC-TM650に準拠した引張試験により、試験片幅12.7mm、室温(15〜35℃)、引張速度50.8mm/min、ゲージ長さ50mmで、銅箔の圧延方向と平行な方向に引張試験することにより、引張強度及び破断伸びを測定した。
<A. Evaluation of copper foil sample>
1. Electrical conductivity The electrical conductivity (% IACS) at 25 ° C. was measured for each copper foil sample after the heat treatment by a four-terminal method based on JIS H 0505.
If the conductivity is greater than 75% IACS, the conductivity is good.
2. Tensile strength and elongation at break Each copper foil sample after the above heat treatment was subjected to a tensile test in accordance with IPC-TM650, with a test piece width of 12.7 mm, room temperature (15 to 35 ° C.), tensile speed of 50.8 mm / min, and gauge length of 50 mm. The tensile strength and elongation at break were measured by conducting a tensile test in a direction parallel to the rolling direction of the copper foil.

3.KAM値
上記熱処理後の各サンプルの表面について、EBSD(TSLソリューションズ社製 OIM(Orientation Imaging Microscopy))装置を用いてEBSD測定を行った。測定電圧は15kVとし、ワーキングディスタンス17mmとし、試料傾斜角度70°とした。測定視野は、25μm×25μmで5か所とし、測定間距離d=0.2μmとした。
得られたEBSDデータを、装置に付属の解析ソフトウェア(OIM analysis5)を用いて解析し、KAM値の構成比=(KAM値0〜0.875)/(KAM値0〜5)=を算出した。データ解析の際、CI値(Confidential Index)が0.05以下のデータは精度が低いとして解析から除外した。
KAM値の構成比が0.98以上であれば、粒内ひずみの蓄積が小さい。
3. KAM value The surface of each sample after the heat treatment was subjected to EBSD measurement using an EBSD (OIM (Orientation Imaging Microscopy) manufactured by TSL Solutions) apparatus. The measurement voltage was 15 kV, the working distance was 17 mm, and the sample inclination angle was 70 °. The measurement field of view was 25 μm × 25 μm with 5 locations, and the distance between measurements d = 0.2 μm.
The obtained EBSD data was analyzed using the analysis software (OIM analysis 5) attached to the apparatus, and the composition ratio of the KAM value = (KAM value 0 to 0.875) / (KAM value 0 to 5) = was calculated. During the data analysis, data with a CI value (Confidential Index) of 0.05 or less were excluded from the analysis due to low accuracy.
If the composition ratio of the KAM value is 0.98 or more, the accumulation of intragranular strain is small.

4.銅箔の折り曲げ性(MIT耐折性)
上記熱処理後の各銅箔サンプルについて、JIS P 8115に基づいてMIT耐折回数(往復折曲げ回数)を測定した。ただし、折り曲げクランプのRは0.38mm、荷重は250gとした。
MIT耐折回数が同じ厚みの比較例よりも大きければ銅箔の折り曲げ性が良好である。
5.結晶粒径
上記熱処理前であって最終冷間圧延前(最終焼鈍後)の各サンプルをSEM(Scanning Electron Microscope)を用いて観察し、JIS H 0501に基づいて平均粒径を求めた。ただし、双晶は、別々の結晶粒とみなして測定を行った。測定領域は、圧延方向に平行な断面の400μm ×400μmとした。
4). Copper foil bendability (MIT folding resistance)
About each copper foil sample after the said heat processing, the MIT folding endurance (number of reciprocal bending) was measured based on JISP8115. However, the bending clamp R was 0.38 mm and the load was 250 g.
If the MIT folding endurance number is larger than that of the comparative example having the same thickness, the copper foil has good bendability.
5). Crystal grain size Each sample before the heat treatment and before the final cold rolling (after the final annealing) was observed using a SEM (Scanning Electron Microscope), and the average grain size was determined based on JIS H 0501. However, the twins were measured as if they were separate crystal grains. The measurement region was 400 μm × 400 μm in a cross section parallel to the rolling direction.

得られた結果を表1、表2に示す。   The obtained results are shown in Tables 1 and 2.

表1、表2から明らかなように、KAM値の構成比が0.98以上である各実施例の場合、同じ厚みの比較例よりもMIT屈曲性に優れていた。   As is clear from Tables 1 and 2, in each Example in which the composition ratio of the KAM value was 0.98 or more, the MIT flexibility was superior to the comparative example having the same thickness.

一方、最終焼鈍の温度を500℃より大きくした結果、最終冷間圧延前の結晶粒径が15μm以上となった比較例1〜6、9、10の場合、KAM値の構成比が0.98未満となり、同じ厚みの各実施例よりもMIT屈曲性が劣った。   On the other hand, as a result of making the final annealing temperature higher than 500 ° C, in the case of Comparative Examples 1 to 6, 9, and 10 in which the crystal grain size before final cold rolling became 15 μm or more, the composition ratio of KAM value was less than 0.98 The MIT flexibility was inferior to each of the examples having the same thickness.

また、Pの添加量が0.03%を超えた比較例7の場合、導電率が75%以下となり導電性が劣った。
Cuが99.0質量%未満である比較例8の場合も、導電率が75%以下となり導電性が劣った。
Further, in the case of Comparative Example 7 in which the addition amount of P exceeded 0.03%, the conductivity was 75% or less and the conductivity was inferior.
In Comparative Example 8 where Cu was less than 99.0% by mass, the conductivity was 75% or less and the conductivity was poor.

図2に、実施例2(図2(a))、及び比較例10(図2(b))のEBSD測定による結晶方位分布(マップ)を示す。図1の暗部は「KAM値が0〜0.875」の領域で、明部はそれ以外の「KAM値が0.875超え5以下」の領域である。実施例2は比較例10に比べて暗部が多く、KAM値の構成比が比較例10より高いことがわかる。   FIG. 2 shows crystal orientation distributions (maps) by EBSD measurement of Example 2 (FIG. 2A) and Comparative Example 10 (FIG. 2B). The dark part of FIG. 1 is an area where “KAM value is 0 to 0.875”, and the bright part is an area where “KAM value is more than 0.875 and less than 5”. It can be seen that Example 2 has more dark parts than Comparative Example 10, and the composition ratio of KAM values is higher than that of Comparative Example 10.

Claims (8)

99.0質量%以上のCu、残部不可避的不純物からなる銅箔であって、
導電率が75%IACSを超え、
前記銅箔の表面のKAM値の構成比=(KAM値が0〜0.875の領域A)/(KAM値が0〜5の領域B)が0.98以上であるフレキシブルプリント基板用銅箔。
99.0% by mass or more of Cu, the remaining copper foil consisting of inevitable impurities,
Conductivity exceeds 75% IACS,
The composition ratio of the KAM value on the surface of the copper foil = (region A where the KAM value is 0 to 0.875) / (region B where the KAM value is 0 to 5) is 0.98 or more.
板厚をx[μm]としたとき、破断伸びy[%]が式1:[y=-0.0365(%・(μm) -2)x2+2.1352(%・(μm) -1)x-5.7219(%)]以上である請求項1に記載のフレキシブルプリント基板用銅箔 When the plate thickness is x [μm], the elongation at break y [%] is expressed by the formula 1: [y = −0.0365 (% · (μm) −2 ) x 2 +2.1352 (% · (μm) −1 ) x− 5.7219 (%)] or more, The copper foil for flexible printed circuit boards according to claim 1 JIS−H3100(C1100)に規格するタフピッチ銅又はJIS−H3100(C1020)の無酸素銅からなる請求項1または2に記載のフレキシブルプリント基板用銅箔。   The copper foil for flexible printed circuit boards of Claim 1 or 2 which consists of tough pitch copper specified to JIS-H3100 (C1100) or oxygen-free copper of JIS-H3100 (C1020). さらに、Pを0.03質量%以下、Agを0.05質量%以下、Sbを0.14質量%以下、Snを0.163質量%以下、Niを0.288質量%以下、Beを0.058質量%以下、Znを0.812質量%以下、Inを0.429質量%以下、およびMgを0.149質量%以下、それぞれ単独又は2種以上を含有してなる請求項1〜3のいずれか一項に記載のフレキシブルプリント基板用銅箔。   Furthermore, P is 0.03% by mass or less, Ag is 0.05% by mass or less, Sb is 0.14% by mass or less, Sn is 0.163% by mass or less, Ni is 0.288% by mass or less, Be is 0.058% by mass or less, and Zn is 0.812% by mass or less. Copper foil for flexible printed circuit boards as described in any one of Claims 1-3 formed by containing 0.429 mass% or less of In and 0.149 mass% or less of Mg individually or in 2 types or more, respectively. 前記銅箔が圧延銅箔であり、
300℃×30min焼鈍(但し、昇温速度100℃/min〜300℃/min)後、導電率が75%IACSを超え、かつ前記構成比が0.98以上である請求項1〜4のいずれか一項に記載のフレキシブルプリント基板用銅箔。
The copper foil is a rolled copper foil,
The electrical conductivity exceeds 75% IACS and the composition ratio is 0.98 or higher after annealing at 300 ° C for 30 minutes (however, the heating rate is 100 ° C / min to 300 ° C / min). The copper foil for flexible printed circuit boards of description.
請求項1〜5のいずれか一項に記載のフレキシブルプリント基板用銅箔と、樹脂層とを積層してなる銅張積層体。   The copper clad laminated body formed by laminating | stacking the copper foil for flexible printed circuit boards as described in any one of Claims 1-5, and a resin layer. 請求項6に記載の銅張積層体における前記銅箔に回路を形成してなるフレキシブルプリント基板。   The flexible printed board formed by forming a circuit in the said copper foil in the copper clad laminated body of Claim 6. 請求項7に記載のフレキシブルプリント基板を用いた電子機器。   An electronic apparatus using the flexible printed circuit board according to claim 7.
JP2017150627A 2017-08-03 2017-08-03 Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device Active JP6617313B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017150627A JP6617313B2 (en) 2017-08-03 2017-08-03 Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
TW107122964A TWI687526B (en) 2017-08-03 2018-07-03 Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board and electronic equipment
KR1020180083997A KR102098479B1 (en) 2017-08-03 2018-07-19 Copper foil for flexible printed circuit, copper clad laminate using the same, flexible printed circuit and electronic device
CN201810877181.4A CN109392242B (en) 2017-08-03 2018-08-03 Copper foil for flexible printed board, copper-clad laminate using same, flexible printed board, and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017150627A JP6617313B2 (en) 2017-08-03 2017-08-03 Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device

Publications (2)

Publication Number Publication Date
JP2019029605A true JP2019029605A (en) 2019-02-21
JP6617313B2 JP6617313B2 (en) 2019-12-11

Family

ID=65366870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017150627A Active JP6617313B2 (en) 2017-08-03 2017-08-03 Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device

Country Status (4)

Country Link
JP (1) JP6617313B2 (en)
KR (1) KR102098479B1 (en)
CN (1) CN109392242B (en)
TW (1) TWI687526B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022004791A1 (en) * 2020-06-30 2022-01-06 三菱マテリアル株式会社 Copper alloy, copper alloy plastic working material, component for electronic/electrical devices, terminal, bus bar, lead frame and heat dissipation substrate
JP2022022637A (en) * 2020-06-30 2022-02-07 三菱マテリアル株式会社 Copper alloy, plastic processed material of copper alloy, component for electronic or electrical equipment, terminal, bus bar, and lead frame
JP2022072354A (en) * 2020-10-29 2022-05-17 三菱マテリアル株式会社 Copper alloy, copper alloy plastic working material, component for electronic/electric apparatus, terminal, bas bar, lead frame and heat dissipation substrate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7186141B2 (en) * 2019-07-10 2022-12-08 Jx金属株式会社 Copper foil for flexible printed circuit boards

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013055162A (en) * 2011-09-01 2013-03-21 Jx Nippon Mining & Metals Corp Copper foil for flexible printed wiring board, copper clad laminate, flexible printed wiring board, and electronic apparatus
JP2016060958A (en) * 2014-09-19 2016-04-25 Jx金属株式会社 Titanium copper for electronic component
JP2016188415A (en) * 2015-03-30 2016-11-04 Jx金属株式会社 Copper alloy foil for flexible printed circuit board, and copper cladding laminate, flexible printed circuit board and electronic apparatus using the same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3856582B2 (en) * 1998-11-17 2006-12-13 日鉱金属株式会社 Rolled copper foil for flexible printed circuit board and method for producing the same
KR100513943B1 (en) * 2001-03-27 2005-09-09 닛꼬 긴조꾸 가꼬 가부시키가이샤 Copper and copper alloy, and method for production of the same
JP4668232B2 (en) 2007-04-16 2011-04-13 株式会社フジクラ Flexible printed circuit board
JP5057932B2 (en) 2007-10-31 2012-10-24 Jx日鉱日石金属株式会社 Rolled copper foil and flexible printed wiring board
JP5055088B2 (en) * 2007-10-31 2012-10-24 Jx日鉱日石金属株式会社 Copper foil and flexible printed circuit board using the same
JP5185066B2 (en) 2008-10-23 2013-04-17 Jx日鉱日石金属株式会社 Copper foil excellent in flexibility, manufacturing method thereof, and flexible copper-clad laminate
JP5060625B2 (en) * 2011-02-18 2012-10-31 三菱伸銅株式会社 Cu-Zr-based copper alloy plate and manufacturing method thereof
CN103255310A (en) * 2012-02-15 2013-08-21 日立电线株式会社 Rolled copper foil and preparation thereof
JP5826160B2 (en) * 2012-04-10 2015-12-02 Jx日鉱日石金属株式会社 Rolled copper foil, copper-clad laminate, flexible printed wiring board and manufacturing method thereof
JP5201432B1 (en) * 2012-05-17 2013-06-05 日立電線株式会社 Rolled copper foil
JP6887213B2 (en) 2014-10-10 2021-06-16 Jx金属株式会社 Manufacturing method of rolled copper foil, copper-clad laminate, flexible printed wiring board, electronic equipment and rolled copper foil

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013055162A (en) * 2011-09-01 2013-03-21 Jx Nippon Mining & Metals Corp Copper foil for flexible printed wiring board, copper clad laminate, flexible printed wiring board, and electronic apparatus
JP2016060958A (en) * 2014-09-19 2016-04-25 Jx金属株式会社 Titanium copper for electronic component
JP2016188415A (en) * 2015-03-30 2016-11-04 Jx金属株式会社 Copper alloy foil for flexible printed circuit board, and copper cladding laminate, flexible printed circuit board and electronic apparatus using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022004791A1 (en) * 2020-06-30 2022-01-06 三菱マテリアル株式会社 Copper alloy, copper alloy plastic working material, component for electronic/electrical devices, terminal, bus bar, lead frame and heat dissipation substrate
JP2022022637A (en) * 2020-06-30 2022-02-07 三菱マテリアル株式会社 Copper alloy, plastic processed material of copper alloy, component for electronic or electrical equipment, terminal, bus bar, and lead frame
JP7078070B2 (en) 2020-06-30 2022-05-31 三菱マテリアル株式会社 Copper alloys, copper alloy plastic processed materials, parts for electronic and electrical equipment, terminals, bus bars, lead frames
JP2022072354A (en) * 2020-10-29 2022-05-17 三菱マテリアル株式会社 Copper alloy, copper alloy plastic working material, component for electronic/electric apparatus, terminal, bas bar, lead frame and heat dissipation substrate
JP7078091B2 (en) 2020-10-29 2022-05-31 三菱マテリアル株式会社 Copper alloys, copper alloy plastic processed materials, parts for electronic and electrical equipment, terminals, bus bars, lead frames, heat dissipation boards

Also Published As

Publication number Publication date
KR20190015102A (en) 2019-02-13
CN109392242A (en) 2019-02-26
KR102098479B1 (en) 2020-04-07
TWI687526B (en) 2020-03-11
TW201920699A (en) 2019-06-01
JP6617313B2 (en) 2019-12-11
CN109392242B (en) 2021-03-23

Similar Documents

Publication Publication Date Title
JP6617313B2 (en) Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
JP6392268B2 (en) Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
JP6294376B2 (en) Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
JP6294257B2 (en) Copper alloy foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
KR102470725B1 (en) Copper foil for flexible printed circuit, and copper clad laminate, flexible printed circuit and electronic device using copper foil
KR102049636B1 (en) Copper foil for flexible printed wiring board, copper-clad laminate using the same, flexible printed wiring board and electronic device
TWI663270B (en) Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
JP6348621B1 (en) Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
CN107046763B (en) Copper foil for flexible printed board and copper-clad laminate using same
CN107046768B (en) Copper foil for flexible printed board, copper-clad laminate using same, flexible printed board, and electronic device
KR102136096B1 (en) Copper foil for flexible printed substrate, and copper clad laminate using the same, flexible printed substrate and electronic equipment
JP6647253B2 (en) Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
JP6712561B2 (en) Rolled copper foil for flexible printed circuit board, copper clad laminate using the same, flexible printed circuit board, and electronic device
CN118272696A (en) Copper foil for flexible printed board, copper-clad laminate using same, flexible printed board, and electronic device
JP2019143229A (en) Copper foil for flexible printed circuit board, and copper clad laminate, flexible printed circuit board and electronic device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190930

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191017

R150 Certificate of patent or registration of utility model

Ref document number: 6617313

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250