JP2016188415A - Copper alloy foil for flexible printed circuit board, and copper cladding laminate, flexible printed circuit board and electronic apparatus using the same - Google Patents
Copper alloy foil for flexible printed circuit board, and copper cladding laminate, flexible printed circuit board and electronic apparatus using the same Download PDFInfo
- Publication number
- JP2016188415A JP2016188415A JP2015069339A JP2015069339A JP2016188415A JP 2016188415 A JP2016188415 A JP 2016188415A JP 2015069339 A JP2015069339 A JP 2015069339A JP 2015069339 A JP2015069339 A JP 2015069339A JP 2016188415 A JP2016188415 A JP 2016188415A
- Authority
- JP
- Japan
- Prior art keywords
- printed circuit
- flexible printed
- copper alloy
- mass
- alloy foil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011888 foil Substances 0.000 title claims abstract description 46
- 229910000881 Cu alloy Inorganic materials 0.000 title claims abstract description 43
- 239000010949 copper Substances 0.000 title claims abstract description 23
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims description 54
- 229910052802 copper Inorganic materials 0.000 title claims description 17
- 238000005253 cladding Methods 0.000 title 1
- 239000013078 crystal Substances 0.000 claims abstract description 55
- 238000010438 heat treatment Methods 0.000 claims abstract description 33
- 229910052787 antimony Inorganic materials 0.000 claims abstract description 11
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 10
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 10
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 8
- 229910052733 gallium Inorganic materials 0.000 claims abstract description 8
- 229910052732 germanium Inorganic materials 0.000 claims abstract description 8
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 8
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 8
- 239000012535 impurity Substances 0.000 claims abstract description 5
- 239000011347 resin Substances 0.000 claims description 28
- 229920005989 resin Polymers 0.000 claims description 28
- 239000000654 additive Substances 0.000 claims description 18
- 230000000996 additive effect Effects 0.000 claims description 18
- 238000005096 rolling process Methods 0.000 claims description 10
- 238000010030 laminating Methods 0.000 claims description 7
- 238000004519 manufacturing process Methods 0.000 abstract description 10
- 239000011889 copper foil Substances 0.000 description 37
- 239000010408 film Substances 0.000 description 14
- 238000005452 bending Methods 0.000 description 13
- 238000005097 cold rolling Methods 0.000 description 12
- 239000010410 layer Substances 0.000 description 12
- 238000005530 etching Methods 0.000 description 10
- 239000000853 adhesive Substances 0.000 description 9
- 238000001953 recrystallisation Methods 0.000 description 9
- 230000001070 adhesive effect Effects 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 8
- 238000012545 processing Methods 0.000 description 8
- 238000000034 method Methods 0.000 description 7
- 239000002245 particle Substances 0.000 description 6
- 229920001721 polyimide Polymers 0.000 description 6
- 229910052718 tin Inorganic materials 0.000 description 5
- 239000004642 Polyimide Substances 0.000 description 4
- 238000000137 annealing Methods 0.000 description 4
- 229910052749 magnesium Inorganic materials 0.000 description 4
- 229910052709 silver Inorganic materials 0.000 description 4
- 239000012790 adhesive layer Substances 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 229910052738 indium Inorganic materials 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 238000003475 lamination Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000003746 surface roughness Effects 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 229920000106 Liquid crystal polymer Polymers 0.000 description 2
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 2
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 2
- 239000011112 polyethylene naphthalate Substances 0.000 description 2
- -1 polyethylene terephthalate Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000007788 roughening Methods 0.000 description 2
- 239000004697 Polyetherimide Substances 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 229910001870 ammonium persulfate Inorganic materials 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000012787 coverlay film Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000000866 electrolytic etching Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- XEMZLVDIUVCKGL-UHFFFAOYSA-N hydrogen peroxide;sulfuric acid Chemical compound OO.OS(O)(=O)=O XEMZLVDIUVCKGL-UHFFFAOYSA-N 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 239000002966 varnish Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/04—Alloys based on copper with zinc as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/08—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/05—Flexible printed circuits [FPCs]
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Parts Printed On Printed Circuit Boards (AREA)
- Laminated Bodies (AREA)
Abstract
Description
本発明はフレキシブルプリント基板等の配線部材に用いて好適な銅合金箔、それを用いた銅張積層体、フレキシブル配線板、及び電子機器に関する。 The present invention relates to a copper alloy foil suitable for use in a wiring member such as a flexible printed circuit board, a copper-clad laminate using the same, a flexible wiring board, and an electronic device.
フレキシブルプリント基板(フレキシブル配線板、以下、「FPC」と称する)はフレキシブル性を有するため、電子回路の折り曲げ部や可動部に広く使用されている。例えば、HDDやDVD及びCD−ROM等のディスク関連機器の可動部や、折りたたみ式携帯電話機の折り曲げ部等にFPCが用いられている。
FPCは銅箔と樹脂とを積層したCopper Clad Laminate(銅張積層体、以下CCLと称する)をエッチングすることで配線を形成し、その上をカバーレイと呼ばれる樹脂層によって被覆したものである。カバーレイを積層する前段階で、銅箔とカバーレイとの密着性を向上するための表面改質工程の一環として、銅箔表面のエッチングが行われる。また、銅箔の厚みを低減して屈曲性を向上させるため、減肉エッチングを行う場合もある。
いずれの場合においても、エッチング液には硫酸-過酸化水素系や、過硫酸アンモニウム系のものが一般に使用されている。
A flexible printed circuit board (flexible wiring board, hereinafter referred to as “FPC”) has flexibility, and is widely used in a bent portion and a movable portion of an electronic circuit. For example, FPCs are used for movable parts of disk-related devices such as HDDs, DVDs, and CD-ROMs, and for folding parts of foldable mobile phones.
The FPC is formed by etching a copper clad laminate (copper-clad laminate, hereinafter referred to as CCL) in which a copper foil and a resin are laminated, and then coating the wiring with a resin layer called a coverlay. The copper foil surface is etched as part of the surface modification step for improving the adhesion between the copper foil and the coverlay before the coverlay is laminated. Further, in order to improve the flexibility by reducing the thickness of the copper foil, thinning etching may be performed.
In any case, a sulfuric acid-hydrogen peroxide type or an ammonium persulfate type is generally used as an etching solution.
一方、屈曲用銅箔において、銅箔表面に凹凸があると凹部への応力集中によって破断が発生し、屈曲性が低下するため、表面平滑性が求められている。また銅箔の表面粗さが大きいと、回路形成性が低下し、微細な回路を形成することができない。特に、近年では、高周波数帯域の信号が用いられるようになったことから、伝送損失を抑えるためにも銅箔表面の平滑化が求められるようになっている。 On the other hand, in a copper foil for bending, if there is unevenness on the surface of the copper foil, breakage occurs due to stress concentration in the recesses and the flexibility is lowered, so that surface smoothness is required. Further, if the surface roughness of the copper foil is large, the circuit formability is lowered and a fine circuit cannot be formed. In particular, in recent years, since signals in a high frequency band have been used, smoothing of the copper foil surface is required in order to suppress transmission loss.
高周波用途での導体損を低減する高周波回路用銅箔として、表面から4μmの深さの平均粒径が0.3μm以上の粒状の結晶組織からなり、その表面を電解エッチングで粗化処理する技術が開示されている(特許文献1参照)。
又、極ファインピッチ加工が施される銅張積層板に最適な圧延銅箔として、無酸素銅に、質量割合にて0.07〜0.5%のAgを含有し、Oが10 ppm以下、Sが10 ppm以下であり、Bi、Pb、Sb、Se、As、Fe、TeおよびSnの合計濃度が10 ppm以下であるものが開示されている(特許文献2参照)。
As a copper foil for high-frequency circuits that reduces conductor loss in high-frequency applications, it consists of a granular crystal structure with an average particle size of 0.3 μm or more at a depth of 4 μm from the surface, and the surface is roughened by electrolytic etching. Is disclosed (see Patent Document 1).
In addition, as an optimal rolled copper foil for copper-clad laminates subjected to extremely fine pitch processing, oxygen-free copper contains 0.07 to 0.5% Ag by mass, O is 10 ppm or less, and S is 10 There is disclosed one having a ppm or less and a total concentration of Bi, Pb, Sb, Se, As, Fe, Te and Sn being 10 ppm or less (see Patent Document 2).
又、圧延銅箔において減肉エッチング等を行うと、エッチング後の表面粗さがエッチング前に比べて粗くなるという問題がある。また、屈曲性を向上するために結晶粒を粗大化させた銅箔では、結晶方位に起因するエッチング速度の差によって、エッチング後に盆地状のくぼみができる。
そこで、本出願人は、銅箔にSn,Mg,In及びAgの1種以上を添加することで、FPC製造工程における熱処理後に平均結晶粒径5μm以下に細粒化させ、エッチング後の銅箔表面粗さを低減できる技術を開発した(特許文献3参照)。
In addition, when thinning etching or the like is performed on the rolled copper foil, there is a problem that the surface roughness after etching becomes rougher than before etching. Moreover, in the copper foil in which the crystal grains are coarsened in order to improve the flexibility, a basin-shaped depression is formed after the etching due to the difference in the etching rate due to the crystal orientation.
Therefore, the present applicant adds one or more of Sn, Mg, In, and Ag to the copper foil, thereby reducing the average crystal grain size to 5 μm or less after the heat treatment in the FPC manufacturing process, and etching the copper foil A technology capable of reducing the surface roughness was developed (see Patent Document 3).
ところで、特許文献3記載の技術は、FPC(CCL)製造工程における熱処理として、300℃で15分の高温長時間処理を想定しており、この条件下で結晶が細粒化するよう、添加元素を規定している。
しかしながら、近年のFPC(CCL)製造工程では、より低温(200℃程度)や、より短時間(5分以下)での熱処理が求められており、かかる条件下では、特許文献3に記載された添加元素(Sn,Mg,In及びAg)では結晶の細粒化が困難であることが判明した。又、エッチング性に加え、優れた屈曲性も要求されている。
本発明は上記の課題を解決するためになされたものであり、200℃程度の低温や5分以下の短時間での熱処理においても、導電性及び屈曲性に優れたフレキシブルプリント基板用銅合金箔、それを用いた銅張積層体、フレキシブルプリント基板、及び電子機器の提供を目的とする。
By the way, the technique described in Patent Document 3 assumes a high-temperature and long-time treatment at 300 ° C. for 15 minutes as a heat treatment in the FPC (CCL) manufacturing process. Is stipulated.
However, in recent FPC (CCL) manufacturing processes, heat treatment at a lower temperature (about 200 ° C.) or in a shorter time (5 minutes or less) is required. It was found that it was difficult to refine the crystals with the additive elements (Sn, Mg, In and Ag). In addition to etching properties, excellent flexibility is also required.
The present invention has been made to solve the above problems, and is a copper alloy foil for a flexible printed circuit board that is excellent in conductivity and flexibility even in heat treatment at a low temperature of about 200 ° C. or in a short time of 5 minutes or less. An object of the present invention is to provide a copper clad laminate, a flexible printed circuit board, and an electronic device using the same.
本発明者らは種々検討した結果、P、Si、Al、Ge、Ga、Zn、Ni、及びSbの群から選ばれる添加元素を用いることで、FPC製造工程における熱処理がより低温(200℃程度)や、より短時間(5分以下)であっても、結晶粒を細粒化することができ、屈曲性を向上できることを見出した。即ち、上記添加元素を結晶粒の細粒化に寄与する元素として用い、かつ、冷間圧延の加工度を調整することで、FPC製造工程における低温又は短時間の熱処理後であっても結晶粒が細粒化する。 As a result of various studies, the present inventors have found that heat treatment in the FPC manufacturing process is performed at a lower temperature (about 200 ° C.) by using an additive element selected from the group of P, Si, Al, Ge, Ga, Zn, Ni, and Sb. ) And even shorter time (5 minutes or less), it was found that the crystal grains can be made finer and the flexibility can be improved. That is, by using the additive element as an element contributing to the refinement of crystal grains and adjusting the degree of cold rolling, the crystal grains can be obtained even after low-temperature or short-time heat treatment in the FPC manufacturing process. Becomes finer.
すなわち、本発明のフレキシブルプリント基板用銅合金箔は、96.30質量%以上のCu、並びに添加元素としてP、Si、Al、Ge、Ga、Zn、Ni及びSbの群から選ばれる1種以上の元素を含有し、残部不可避的不純物からなる銅合金箔であって、表面を100μm×100μmの視野で観察した際、及びその圧延平行断面を幅100μmの範囲で観察した際、いずれの場合も再結晶部の平均結晶粒径が0.1〜3.0μmかつ最大結晶粒径が6μm以下である。 That is, the copper alloy foil for a flexible printed circuit board according to the present invention includes 96.30% by mass or more of Cu and one or more elements selected from the group of P, Si, Al, Ge, Ga, Zn, Ni, and Sb as additive elements. Re-crystallized in both cases when the surface is observed in a 100 μm × 100 μm field of view, and when the rolled parallel cross section is observed in a range of 100 μm in width. The average crystal grain size of the part is 0.1 to 3.0 μm and the maximum crystal grain size is 6 μm or less.
又、本発明のフレキシブルプリント基板用銅合金箔は、96.30質量%以上のCu、並びに添加元素としてP、Si、Al、Ge、Ga、Zn、Ni及びSbの群から選ばれる1種以上の元素を含有し、残部不可避的不純物からなる銅合金箔であって、320℃以上、かつ10分以下の高温短時間、又は240℃以下、かつ20分以上の低温長時間の熱処理後の表面を100μm×100μmの視野で観察した際、及びその圧延平行断面を幅100μmの範囲で観察した際、いずれの場合も再結晶部の平均結晶粒径が0.1〜3.0μmかつ最大結晶粒径が6μm以下である。 Moreover, the copper alloy foil for flexible printed circuit boards of this invention is 96.30 mass% or more of Cu, and 1 or more types of elements chosen from the group of P, Si, Al, Ge, Ga, Zn, Ni, and Sb as an additional element. Copper alloy foil containing the remaining inevitable impurities and having a surface after heat treatment of 320 ° C. or more and 10 minutes or less for a short time, or 240 ° C. or less and 20 minutes or more for a low temperature and long time 100 μm When observed in a field of × 100 μm and when the rolled parallel cross section was observed in the range of 100 μm in width, the average crystal grain size of the recrystallized part was 0.1 to 3.0 μm and the maximum crystal grain size was 6 μm or less in any case. is there.
本発明のフレキシブルプリント基板用銅合金箔において、Pを0.0066〜0.0837質量%、Siを0.0102〜0.1289質量%、Alを0.0308〜0.3925質量%、Geを0.0274〜0.3466質量%、Gaを0.0701〜0.888質量%、Znを0.2920〜3.6940質量%、Niを0.0670〜0.8500質量%、Sbを0.0322〜0.4070質量%の範囲で含有することが好ましい。
前記平均結晶粒径が0.1〜2.5μmかつ最大結晶粒径が5μm以下であることが好ましい。
さらに、Snを0.01〜0.1質量%含有することが好ましい。
In the copper alloy foil for a flexible printed circuit board of the present invention, P is 0.0066 to 0.0837% by mass, Si is 0.0102 to 0.1289% by mass, Al is 0.0308 to 0.3925% by mass, Ge is 0.0274 to 0.3466% by mass, and Ga is 0.0701 to 0.888% by mass. %, Zn is contained in the range of 0.2920 to 3.6940 mass%, Ni is contained in the range of 0.0670 to 0.8500 mass%, and Sb is preferably contained in the range of 0.0322 to 0.4070 mass%.
It is preferable that the average crystal grain size is 0.1 to 2.5 μm and the maximum crystal grain size is 5 μm or less.
Furthermore, it is preferable to contain Sn 0.01-0.1 mass%.
本発明の銅張積層体は、前記フレキシブルプリント基板用銅合金箔と、樹脂層とを積層してなる。 The copper clad laminate of the present invention is formed by laminating the copper alloy foil for flexible printed circuit boards and a resin layer.
本発明のフレキシブルプリント基板は、前記銅張積層体を用い、前記銅合金箔に回路を形成してなる。 The flexible printed board of the present invention is formed by using the copper-clad laminate and forming a circuit on the copper alloy foil.
本発明の電子機器は、前記フレキシブルプリント基板を用いてなる。 The electronic device of the present invention uses the flexible printed circuit board.
本発明によれば、FPC(CCL)製造工程における低温や短時間での熱処理後であっても、導電性及び屈曲性に優れたフレキシブルプリント基板用銅合金箔が得られる。 According to the present invention, a copper alloy foil for a flexible printed circuit board having excellent conductivity and flexibility can be obtained even after heat treatment at a low temperature or in a short time in the FPC (CCL) manufacturing process.
以下、本発明に係る銅合金箔の実施の形態について説明する。なお、本発明において%は特に断らない限り、質量%を示すものとする。 Hereinafter, embodiments of the copper alloy foil according to the present invention will be described. In the present invention, “%” means “% by mass” unless otherwise specified.
<組成>
本発明に係る銅合金箔は、96.30質量%以上のCu、並びに添加元素としてP、Si、Al、Ge、Ga、Zn、Ni、及びSbの群から選ばれる1種以上の元素を含有し、残部不可避的不純物からなる。
上述の特許文献3記載の技術では、銅合金の半軟化温度が高いほど結晶粒を微細化させる点に着目し、Sn,Mg,In及びAgを添加元素に選んだ。ところが、銅合金の半軟化温度が高くなると、再結晶温度も高くなるため、200℃程度の低温や5分以下の短時間での熱処理を行う場合に再結晶が不十分となるおそれがある。そこで、本発明者らは、低温や短時間での熱処理でも再結晶する元素として、上記の添加元素を見出した。又、上記の添加元素を用いて再結晶化した銅合金箔は、屈曲性が向上することを見出した。
<Composition>
The copper alloy foil according to the present invention contains 96.30% by mass or more of Cu and one or more elements selected from the group of P, Si, Al, Ge, Ga, Zn, Ni, and Sb as additive elements, The balance consists of inevitable impurities.
In the technique described in Patent Document 3 described above, Sn, Mg, In, and Ag were selected as additive elements by paying attention to the fact that the crystal grains become finer as the semi-softening temperature of the copper alloy is higher. However, when the semi-softening temperature of the copper alloy increases, the recrystallization temperature also increases. Therefore, when heat treatment is performed at a low temperature of about 200 ° C. or for a short time of 5 minutes or less, recrystallization may be insufficient. Therefore, the present inventors have found the above additive element as an element that can be recrystallized even by heat treatment at a low temperature or in a short time. It has also been found that the copper alloy foil recrystallized using the above additive elements has improved flexibility.
添加元素の添加量を多くするほど結晶粒は微細化するが、導電性は低下する傾向にある。このようなことから、各添加元素の含有量の好ましい範囲を規定した。
つまり、Pを0.0066〜0.0837質量%、Siを0.0102〜0.1289質量%、Alを0.0308〜0.3925質量%、Geを0.0274〜0.3466質量%、Gaを0.0701〜0.8880質量%、Znを0.2920〜3.6940質量%、Niを0.0670〜0.8500質量%、Sbを0.0322〜0.4070質量%の範囲で含有することが好ましい。
各添加元素の含有量が上記各下限値未満であると結晶粒の微細化の効果が十分に得られず、各上限値を超えると結晶粒は微細化するが、導電性が60%未満に低下する場合がある。又、Pの場合、上限値を超えると再結晶温度が上昇し、上述の熱処理では再結晶しなくなる。
The crystal grains become finer as the additive element is added, but the conductivity tends to decrease. For this reason, a preferable range of the content of each additive element is defined.
That is, P is 0.0066 to 0.0837% by mass, Si is 0.0102 to 0.1289% by mass, Al is 0.0308 to 0.3925% by mass, Ge is 0.0274 to 0.3466% by mass, Ga is 0.0701 to 0.8880% by mass, Zn is 0.2920 to 3.6940% by mass, Ni is preferably contained in the range of 0.0670 to 0.8500% by mass and Sb in the range of 0.0322 to 0.4070% by mass.
If the content of each additive element is less than each of the above lower limits, the effect of crystal grain refinement cannot be sufficiently obtained, and if each upper limit is exceeded, the crystal grains become finer, but the conductivity is less than 60%. May decrease. In the case of P, when the upper limit is exceeded, the recrystallization temperature rises, and the above heat treatment does not cause recrystallization.
<再結晶粒>
銅張積層体になった後の樹脂の硬化熱処理を受けた状態の銅合金箔の表面;又は320℃以上、かつ10分以下の高温短時間、又は240℃以下、かつ20分以上の低温長時間の熱処理後の表面を100μm×100μmの視野で観察した際、及びその圧延平行断面を幅100μmの範囲で観察した際、いずれの場合も再結晶部の平均結晶粒径が0.1〜3.0μmかつ最大結晶粒径が6μm以下である。
上記したように、本発明に係る銅合金箔はフレキシブルプリント基板に用いられ、その際、銅合金箔と樹脂とを積層したCCLは、200〜400℃で樹脂を硬化させるための熱処理を行うため、再結晶によって結晶粒が粗大化する可能性がある。そして、再結晶部の平均結晶粒径が3.0μmを超えると、屈曲時に転位セルを形成するため、屈曲性が低下する。
なお、再結晶部の平均結晶粒径は小さいほど良いが、平均結晶粒径を0.1μm未満とすることは製造上困難である。再結晶部の平均結晶粒径が0.1〜2.5μmであることが好ましい。
<Recrystallized grains>
The surface of the copper alloy foil in a state where it has undergone a curing heat treatment of the resin after becoming a copper clad laminate; or a high temperature short time of 320 ° C. or more and 10 minutes or less, or a low temperature length of 240 ° C. or less and 20 minutes or more When observing the surface after heat treatment for 100 hours with a field of view of 100 μm × 100 μm, and when observing the rolled parallel section in a range of 100 μm in width, the average crystal grain size of the recrystallized part is 0.1 to 3.0 μm and The maximum crystal grain size is 6 μm or less.
As described above, the copper alloy foil according to the present invention is used for a flexible printed circuit board. In this case, the CCL in which the copper alloy foil and the resin are laminated performs a heat treatment for curing the resin at 200 to 400 ° C. The crystal grains may be coarsened by recrystallization. When the average crystal grain size of the recrystallized portion exceeds 3.0 μm, dislocation cells are formed at the time of bending, so that the flexibility is lowered.
Note that the smaller the average crystal grain size of the recrystallized portion, the better. However, it is difficult to manufacture the average crystal grain size of less than 0.1 μm. The average crystal grain size of the recrystallized part is preferably 0.1 to 2.5 μm.
従って、再結晶部の平均結晶粒径を0.1〜3.0μmに規定する。なお、銅合金箔を上述の熱処理後の表面について平均結晶粒径を規定した理由は、上述のようにCCLを200℃程度の低温で、又は5分以下の短時間の条件で樹脂を硬化熱処理させるため、この温度条件を再現したものである。なお、この熱処理条件の規定は、樹脂と積層する前の銅合金箔についてのものである。高温短時間の熱処理条件の例としては、350℃で5分が挙げられる。低温長時間の熱処理条件の例としては、200℃で30分が挙げられる。又、高温短時間の熱処理の温度上限は例えば400℃、時間下限は例えば1分である。低温長時間の熱処理の温度下限は例えば160℃、時間上限は例えば60分である。
そして、本願の請求項1に係るフレキシブルプリント基板用銅合金箔は、樹脂と積層後の銅張積層体になった後の、樹脂の硬化熱処理を受けた状態の銅合金箔を規定している。又、本願の請求項2に係るフレキシブルプリント基板用銅合金箔は、樹脂と積層する前の銅合金箔に上記熱処理を行ったときの状態を規定している。
平均結晶粒径の測定は、誤差を避けるため、箔表面を100μm×100μmの視野で3視野以上を観察して行う。箔表面の観察は、SIM(Scanning Ion Microscope)またはSEM(Scanning Electron Microscope)を用い、JIS H 0501に基づいて平均結晶粒径を求めることができる。
Therefore, the average crystal grain size of the recrystallized part is specified to be 0.1 to 3.0 μm. The reason why the average grain size of the copper alloy foil is defined for the surface after the above heat treatment is that the resin is cured by heat treatment at a low temperature of about 200 ° C. or a short time of 5 minutes or less as described above. Therefore, this temperature condition is reproduced. The heat treatment conditions are defined for the copper alloy foil before being laminated with the resin. An example of heat treatment conditions for a short time at high temperature is 350 ° C. for 5 minutes. As an example of the heat treatment conditions for a long time at low temperature, 30 minutes at 200 ° C. can be mentioned. Further, the upper temperature limit of the heat treatment for high temperature and short time is, for example, 400 ° C., and the lower limit of the time is, for example, 1 minute. For example, the lower temperature limit for the low-temperature long-time heat treatment is 160 ° C., and the upper time limit is 60 minutes, for example.
And the copper alloy foil for flexible printed circuit boards which concerns on Claim 1 of this application has prescribed | regulated the copper alloy foil of the state which received the hardening heat processing of resin after becoming a copper clad laminated body after resin and lamination | stacking . Moreover, the copper alloy foil for flexible printed circuit boards concerning Claim 2 of this application has prescribed | regulated the state when the said heat processing is performed to the copper alloy foil before laminating | stacking with resin.
The average crystal grain size is measured by observing at least 3 fields of view on the surface of the foil in a 100 μm × 100 μm field in order to avoid errors. For observation of the foil surface, the average crystal grain size can be determined based on JIS H 0501 using a SIM (Scanning Ion Microscope) or SEM (Scanning Electron Microscope).
又、再結晶部の最大結晶粒径が6μm以下である。
再結晶部の最大結晶粒径を6μm以下とした理由は、再結晶部の平均結晶粒径が3.0μm以下であっても、最大結晶粒径が6μmを超える非常に大きい粒が存在すると、屈曲時に転位セルを形成して屈曲性が低下するからである。再結晶部の最大結晶粒径が5μm以下であることが好ましい。
Further, the maximum crystal grain size of the recrystallized portion is 6 μm or less.
The reason for setting the maximum crystal grain size of the recrystallized part to 6 μm or less is that even if the average crystal grain size of the recrystallized part is 3.0 μm or less, if there are very large grains exceeding the maximum crystal grain size of 6 μm, This is because sometimes dislocation cells are formed and flexibility is lowered. The maximum crystal grain size of the recrystallized portion is preferably 5 μm or less.
平均結晶粒径の測定はJIS H0501に定める切断法を用いて行う。また、最大結晶粒径の測定は、画像解析ソフト(例えば、ニラコ社製LUZEX-F)を用いてSIM像を解析することで求める。このとき用いる画像解析ソフトは一般的なものであるので、どのソフトウェアを用いても問題ない。
又、圧延平行断面を幅100μmの範囲で観察するとは、圧延方向に沿って100μmの長さで、厚み方向の断面を観察することを意味する。
The average crystal grain size is measured using the cutting method defined in JIS H0501. The maximum crystal grain size is measured by analyzing the SIM image using image analysis software (for example, LUZEX-F manufactured by Niraco). Since image analysis software used at this time is general, there is no problem even if any software is used.
Further, observing a rolled parallel section in a range of 100 μm in width means observing a section in the thickness direction at a length of 100 μm along the rolling direction.
なお、上記添加元素を添加しても、冷間圧延時の加工度を制御しないと微細化しないことがある。特に、最終冷間圧延(焼鈍と圧延を繰り返す工程全体の中で、最後の焼鈍後に行う仕上げ圧延)での加工度として、η=ln(最終冷間圧延後の板厚/最終冷間圧延前の板厚)=3.5〜7.5とすると好ましい。
ηが3.5未満の場合、加工時のひずみの蓄積が小さく、再結晶粒の核が少なくなるため、再結晶粒が粗大になる傾向にある。ηが7.5より大きい場合、ひずみが過剰に蓄積されて結晶粒成長の駆動力となり、結晶粒が粗大になる傾向にある。η=5.5〜7.5とするとさらに好ましい。
In addition, even if it adds the said additional element, it may not refine | miniaturize, if the workability at the time of cold rolling is not controlled. In particular, as the degree of processing in final cold rolling (finish rolling performed after the last annealing in the entire process of annealing and rolling), η = ln (plate thickness after final cold rolling / before final cold rolling) Plate thickness) = 3.5 to 7.5.
When η is less than 3.5, the accumulation of strain during processing is small and the nuclei of the recrystallized grains are reduced, so that the recrystallized grains tend to be coarse. When η is greater than 7.5, excessive strain is accumulated to serve as a driving force for crystal grain growth, and the crystal grains tend to be coarse. More preferably, η = 5.5 to 7.5.
本発明の銅合金箔は、例えば以下のようにして製造することができる。まず、銅インゴットに上記添加物を添加して溶解、鋳造した後、熱間圧延し、冷間圧延と焼鈍を行い、上述の最終冷間圧延を行うことにより箔を製造することができる。 The copper alloy foil of the present invention can be produced, for example, as follows. First, after adding the said additive to a copper ingot and melt | dissolving and casting, it hot-rolls, performs cold rolling and annealing, and can manufacture foil by performing the above-mentioned final cold rolling.
<銅張積層体及びフレキシブルプリント基板>
又、本発明の銅合金箔に(1)樹脂前駆体(例えばワニスと呼ばれるポリイミド前駆体)をキャスティングして熱をかけて重合させること、(2)ベースフィルムと同種の熱可塑性接着剤を用いてベースフィルムを本発明の銅合金箔にラミネートすること、により、銅合金箔と樹脂基材の2層からなる銅張積層体(CCL)が得られる。又、本発明の銅合金箔に接着剤を塗着したベースフィルムをラミネートすることにより、銅合金箔と樹脂基材とその間の接着層の3層からなる銅張積層体(CCL)が得られる。これらのCCL製造時に銅合金箔が熱処理されて再結晶化する。
これらにフォトリソグラフィー技術を用いて回路を形成し、必要に応じて回路にめっきを施し、カバーレイフィルムをラミネートすることでフレキシブルプリント基板(フレキシブル配線板)が得られる。
<Copper-clad laminate and flexible printed circuit board>
Also, (1) a resin precursor (for example, a polyimide precursor called varnish) is cast and polymerized by applying heat to the copper alloy foil of the present invention, and (2) the same kind of thermoplastic adhesive as the base film is used. By laminating the base film on the copper alloy foil of the present invention, a copper clad laminate (CCL) comprising two layers of the copper alloy foil and the resin base material is obtained. Further, by laminating a base film obtained by applying an adhesive to the copper alloy foil of the present invention, a copper clad laminate (CCL) composed of three layers of a copper alloy foil, a resin base material, and an adhesive layer therebetween can be obtained. . During the production of these CCLs, the copper alloy foil is heat-treated and recrystallized.
A circuit is formed on these using a photolithographic technique, a circuit is plated as needed, and a cover-lay film is laminated, and a flexible printed circuit board (flexible wiring board) is obtained.
従って、本発明の銅張積層体は、銅箔と樹脂層とを積層してなる。又、本発明のフレキシブルプリント基板は、銅張積層体の銅箔に回路を形成してなる。
樹脂層としては、PET(ポリエチレンテレフタレート)、PI(ポリイミド)、LCP(液晶ポリマー)、PEN(ポリエチレンナフタレート)が挙げられるがこれに限定されない。また、樹脂層として、これらの樹脂フィルムを用いてもよい。
樹脂層と銅箔との積層方法としては、銅箔の表面に樹脂層となる材料を塗布して加熱成膜してもよい。又、樹脂層として樹脂フィルムを用い、樹脂フィルムと銅箔との間に以下の接着剤を用いてもよく、接着剤を用いずに樹脂フィルムを銅箔に熱圧着してもよい。但し、樹脂フィルムに余分な熱を加えないという点からは、接着剤を用いることが好ましい。
樹脂層としてフィルムを用いた場合、このフィルムを、接着剤層を介して銅箔に積層するとよい。この場合、フィルムと同成分の接着剤を用いることが好ましい。例えば、樹脂層としてポリイミドフィルムを用いる場合は、接着剤層もポリイミド系接着剤を用いることが好ましい。尚、ここでいうポリイミド接着剤とはイミド結合を含む接着剤を指し、ポリエーテルイミド等も含む。
Therefore, the copper clad laminate of the present invention is formed by laminating a copper foil and a resin layer. Moreover, the flexible printed circuit board of this invention forms a circuit in the copper foil of a copper clad laminated body.
Examples of the resin layer include, but are not limited to, PET (polyethylene terephthalate), PI (polyimide), LCP (liquid crystal polymer), and PEN (polyethylene naphthalate). Moreover, you may use these resin films as a resin layer.
As a method of laminating the resin layer and the copper foil, a material for forming the resin layer may be applied to the surface of the copper foil and heated to form a film. Further, a resin film may be used as the resin layer, and the following adhesive may be used between the resin film and the copper foil, or the resin film may be thermocompression bonded to the copper foil without using the adhesive. However, it is preferable to use an adhesive from the viewpoint of not applying excessive heat to the resin film.
When a film is used as the resin layer, this film may be laminated on the copper foil via an adhesive layer. In this case, it is preferable to use an adhesive having the same component as the film. For example, when a polyimide film is used as the resin layer, it is preferable to use a polyimide-based adhesive for the adhesive layer. In addition, the polyimide adhesive here refers to the adhesive agent containing an imide bond, and polyether imide etc. are also included.
なお、本発明は、上記実施形態に限定されない。又、本発明の作用効果を奏する限り、上記実施形態における銅合金がその他の成分を含有してもよい。
例えば、銅箔の表面に、粗化処理、防錆処理、耐熱処理、またはこれらの組み合わせによる表面処理を施してもよい。
In addition, this invention is not limited to the said embodiment. Moreover, as long as there exists an effect of this invention, the copper alloy in the said embodiment may contain another component.
For example, the surface of the copper foil may be subjected to a surface treatment by roughening treatment, rust prevention treatment, heat resistance treatment, or a combination thereof.
次に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。
純度99.96%以上の電気銅に、表1に示す元素をそれぞれ添加し、Ar雰囲気で鋳造して鋳塊を得た。鋳塊中の酸素含有量は15ppm未満であった。この鋳塊を900℃で均質化焼鈍後、熱間圧延して厚さ60mmとした後、表面を面削し、冷間圧延と焼鈍を繰り返し、さらに表1に示す加工度ηで最終冷間圧延をして最終厚さ33μmの箔を得た。得られた箔に200℃×30分、又は300℃×5分の熱処理を加え、銅箔サンプルを得た。
EXAMPLES Next, although an Example is given and this invention is demonstrated further in detail, this invention is not limited to these.
The elements shown in Table 1 were added to electrolytic copper with a purity of 99.96% or more, respectively, and cast in an Ar atmosphere to obtain an ingot. The oxygen content in the ingot was less than 15 ppm. This ingot is homogenized and annealed at 900 ° C., hot-rolled to a thickness of 60 mm, then the surface is chamfered, cold rolling and annealing are repeated, and the final cold is applied at a working degree η shown in Table 1. Rolling was performed to obtain a foil having a final thickness of 33 μm. The obtained foil was subjected to heat treatment at 200 ° C. for 30 minutes or 300 ° C. for 5 minutes to obtain a copper foil sample.
<評価>
1.導電率
各銅箔サンプルについて、JIS H 0505に基づいて4端子法により、25℃の導電率(%IACS)を測定した。
2.粒径
各銅箔サンプル表面をSIM(Scanning Ion Microscope)を用いて観察し、JIS H 0501に基づいて平均粒径を求めた。又、表面の最大粒径及び面積率は、SIM像を画像解析ソフト(ニラコ社製LUZEX-F)で解析して算出した。測定領域は、表面の100μm ×100μmとした
またFIB(focused ion beam)を用い、銅箔サンプルを圧延平行に切断加工し、断面をSIM(Scanning Ion Microscope)を用いて観察し、JIS H 0501に基づいて平均粒径を求めた。又、断面の最大粒径及び面積率は、SIM像を画像解析ソフト(ニラコ社製LUZEX-F)で解析して算出した。測定領域は、圧延方向に沿って100μmの長さとした。
3.再結晶の有無
上記銅箔サンプル(熱処理後の銅箔)の引張強さが最終冷間圧延後の銅箔(熱処理前の銅箔)の50%以下かつ、銅箔サンプルの伸び率が最終冷間圧延後の銅箔の1.7倍以上の場合を、上記熱処理後に再結晶していると判断した。それ以外の場合を、「未再結晶」とみなした。引張強さおよび伸び率はJIS C 6515に基づいて25℃で測定した。
<Evaluation>
1. Conductivity For each copper foil sample, the conductivity (% IACS) at 25 ° C. was measured by the 4-terminal method based on JIS H 0505.
2. Particle size The surface of each copper foil sample was observed using a SIM (Scanning Ion Microscope), and the average particle size was determined based on JIS H 0501. The maximum particle size and area ratio of the surface were calculated by analyzing the SIM image with image analysis software (LUZEX-F manufactured by Niraco). The measurement area was 100 μm × 100 μm on the surface. Also, FIB (focused ion beam) was used, the copper foil sample was cut and processed in parallel with rolling, and the cross section was observed using SIM (Scanning Ion Microscope). Based on this, the average particle size was determined. The maximum particle size and area ratio of the cross section were calculated by analyzing the SIM image with image analysis software (LUZEX-F manufactured by Niraco). The measurement area was 100 μm long along the rolling direction.
3. Presence / absence of recrystallization The copper foil sample (copper foil after heat treatment) has a tensile strength of 50% or less of the copper foil after the final cold rolling (copper foil before heat treatment) and the elongation percentage of the copper foil sample is the final cold. The case of 1.7 times or more of the copper foil after hot rolling was judged to be recrystallized after the heat treatment. The other cases were considered “unrecrystallized”. Tensile strength and elongation were measured at 25 ° C. based on JIS C 6515.
4.屈曲性
最終冷間圧延後の厚さ33μmの銅箔(熱処理前の銅箔)の片面に銅粗化めっきを行い、ポリイミドフィルム(厚み27μm)と箔を積層し、加熱プレス(4MPa)で貼り合せてCCLサンプルを得た。なお、フィルムの積層時に200℃×30分、又は300℃×5分の熱処理を加えた。従って、表2の「300℃×5分」は、各銅箔サンプルにおける銅箔単体での熱処理、又はCCL積層時の熱処理である。CCLサンプルの銅箔部分に線幅300μmの所定の回路を形成し、FPCを得た。図1に示すIPC(アメリカプリント回路工業会)屈曲試験装置により、屈曲疲労寿命の測定を行った。この装置は、発振駆動体4に振動伝達部材3を結合した構造になっており、FPC1は、矢印で示したねじ2の部分と振動伝達部材3の先端部の計4点で装置に固定される。振動伝達部材3が上下に駆動すると、FPC1の中間部は、所定の曲率半径rでヘアピン状に屈曲される。本試験では、以下の条件下で屈曲を繰り返した時の破断までの回数を求めた。
なお、試験条件は次の通りである:試験片幅:12.7mm、試験片長さ:200mm、試験片採取方向:試験片の長さ方向が圧延方向と平行になるように採取、曲率半径r:2mm、振動ストローク:20mm、振動速度:1500回/分、屈曲疲労寿命:初期の電気抵抗値から10%を超えて高くなった時点。
なお、屈曲疲労寿命が10万回以上の場合に優れた屈曲性を有しているとし、屈曲疲労寿命が10万回未満を屈曲性が劣るとして評価した。
4). Flexibility Copper roughening plating is performed on one side of a 33μm-thick copper foil (copper foil before heat treatment) after final cold rolling, a polyimide film (thickness 27μm) and a foil are laminated, and then bonded with a hot press (4MPa) In combination, a CCL sample was obtained. In addition, the heat processing at 200 degreeC * 30 minutes or 300 degreeC * 5 minutes was added at the time of lamination | stacking of a film. Therefore, “300 ° C. × 5 minutes” in Table 2 is a heat treatment with a copper foil alone or a heat treatment during CCL lamination in each copper foil sample. A predetermined circuit having a line width of 300 μm was formed on the copper foil portion of the CCL sample to obtain an FPC. The bending fatigue life was measured by an IPC (American Printed Circuit Industry Association) bending test apparatus shown in FIG. This apparatus has a structure in which a vibration transmission member 3 is coupled to an oscillation driver 4. The FPC 1 is fixed to the apparatus at a total of four points, that is, a screw 2 portion indicated by an arrow and a tip portion of the vibration transmission member 3. The When the vibration transmitting member 3 is driven up and down, the intermediate portion of the FPC 1 is bent into a hairpin shape with a predetermined curvature radius r. In this test, the number of times until breakage when bending was repeated under the following conditions was determined.
The test conditions are as follows: Specimen width: 12.7 mm, Specimen length: 200 mm, Specimen sampling direction: Collected so that the length direction of the specimen is parallel to the rolling direction, curvature radius r : 2 mm, vibration stroke: 20 mm, vibration speed: 1500 times / minute, bending fatigue life: at a time when the initial electric resistance value is higher than 10%.
In addition, when the bending fatigue life was 100,000 times or more, it was considered that the film had excellent flexibility, and when the bending fatigue life was less than 100,000 times, the bending property was evaluated as inferior.
得られた結果を表1、表2に示す。 The obtained results are shown in Tables 1 and 2.
表1、表2から明らかなように、P、Si、Al、Ge、Ga、Zn、Ni、及びSbの群から選ばれる1種以上の元素を含有し、かつ350℃で5分又は200℃で30分の熱処理後の表面の再結晶部の平均結晶粒径が3μm以下かつ最大結晶粒径が6μm以下である各実施例の場合、導電率が60%以上であると共に、屈曲性に優れていた。 As is apparent from Tables 1 and 2, it contains one or more elements selected from the group consisting of P, Si, Al, Ge, Ga, Zn, Ni, and Sb, and at 350 ° C. for 5 minutes or 200 ° C. In each example in which the average crystal grain size of the recrystallized portion of the surface after 30 minutes of heat treatment is 3 μm or less and the maximum crystal grain size is 6 μm or less, the conductivity is 60% or more and excellent flexibility It was.
一方、添加元素としてMg又はSnをそれぞれ添加した比較例1、2の場合、350℃で5分又は200℃で30分の熱処理では再結晶せず、屈曲性に劣った。これは、再結晶しないために圧延前の粗大な結晶粒が残留し、屈曲時に転位セルを形成したためと考えられる。
添加元素を含まない純銅からなる比較例3の場合、及び、添加元素であるPの含有量が下限値未満である比較例6の場合、添加元素による再結晶時の粗大化抑制が十分でなく、表面の再結晶部の平均結晶粒径が3.0μmを超え、最大結晶粒径が6μmを超えた。その結果、屈曲性に劣った。
最終冷間圧延での加工度ηが7.5を超えた比較例4の場合、表面の再結晶部の平均結晶粒径が3.0μmを超え、最大結晶粒径が6μmを超えた。その結果、屈曲性に劣った。これは、強加工によって結晶粒が粗大となり、屈曲時に転位セルを形成したためと考えられる。
最終冷間圧延での加工度ηが3.5未満である比較例5,8の場合も、表面の再結晶部の最大結晶粒径が6μmを超え、屈曲性に劣った。これは、低加工度なために圧延前の粗大な結晶粒が残留し、屈曲時に転位セルを形成したためと考えられる。
On the other hand, in Comparative Examples 1 and 2 in which Mg or Sn was added as an additive element, recrystallization did not occur in heat treatment at 350 ° C. for 5 minutes or 200 ° C. for 30 minutes, and the flexibility was poor. This is presumably because coarse crystal grains before rolling remained because recrystallization did not occur and dislocation cells were formed during bending.
In the case of Comparative Example 3 made of pure copper containing no additive element and in the case of Comparative Example 6 in which the content of P as an additive element is less than the lower limit, the suppression of coarsening during recrystallization by the additive element is not sufficient. The average crystal grain size of the recrystallized portion of the surface exceeded 3.0 μm, and the maximum crystal grain size exceeded 6 μm. As a result, the flexibility was poor.
In the case of Comparative Example 4 in which the workability η in the final cold rolling exceeded 7.5, the average crystal grain size of the recrystallized portion on the surface exceeded 3.0 μm, and the maximum crystal grain size exceeded 6 μm. As a result, the flexibility was poor. This is presumably because the crystal grains became coarse due to strong processing and dislocation cells were formed during bending.
In Comparative Examples 5 and 8 in which the degree of work η in the final cold rolling was less than 3.5, the maximum crystal grain size of the recrystallized portion on the surface exceeded 6 μm, and the flexibility was poor. This is presumably because coarse crystal grains before rolling remained due to the low degree of processing, and dislocation cells were formed during bending.
Geの含有量が好ましい上限値(0.3466質量%)を超えた比較例7の場合、屈曲性は優れていたが導電率が60%未満に低下した。
Pの含有量が好ましい上限値(0.0837質量%)を超えた比較例9の場合、350℃で5分又は200℃で30分の熱処理では再結晶しなかったと共に、導電率が60%未満に低下した。なお、比較例9は再結晶しなかったために屈曲性は評価しなかった。
In the case of Comparative Example 7 in which the Ge content exceeded the preferable upper limit (0.3466% by mass), the flexibility was excellent, but the conductivity decreased to less than 60%.
In the case of Comparative Example 9 in which the P content exceeded the preferable upper limit (0.0837% by mass), it was not recrystallized by heat treatment at 350 ° C. for 5 minutes or 200 ° C. for 30 minutes, and the conductivity was reduced to less than 60%. Declined. Since Comparative Example 9 was not recrystallized, the flexibility was not evaluated.
Claims (8)
表面を100μm×100μmの視野で観察した際、及びその圧延平行断面を幅100μmの範囲で観察した際、いずれの場合も再結晶部の平均結晶粒径が0.1〜3.0μmかつ最大結晶粒径が6μm以下であるフレキシブルプリント基板用銅合金箔。 A copper alloy foil containing at least 96.30% by mass of Cu and one or more elements selected from the group of P, Si, Al, Ge, Ga, Zn, Ni and Sb as additive elements, and the balance being inevitable impurities There,
When observing the surface with a field of view of 100 μm × 100 μm, and when observing the rolled parallel cross section in the range of 100 μm in width, the average crystal grain size of the recrystallized part is 0.1 to 3.0 μm and the maximum crystal grain size is Copper alloy foil for flexible printed circuit boards that is 6μm or less.
320℃以上、かつ10分以下の高温短時間、又は240℃以下、かつ20分以上の低温長時間の熱処理後の表面を100μm×100μmの視野で観察した際、及びその圧延平行断面を幅100μmの範囲で観察した際、いずれの場合も再結晶部の平均結晶粒径が0.1〜3.0μmかつ最大結晶粒径が6μm以下であるフレキシブルプリント基板用銅合金箔。 A copper alloy foil containing at least 96.30% by mass of Cu and one or more elements selected from the group of P, Si, Al, Ge, Ga, Zn, Ni and Sb as additive elements, and the balance being inevitable impurities There,
When the surface after heat treatment at 320 ° C or more and 10 minutes or less for a short time, or 240 ° C or less and a low temperature and long time of 20 minutes or more is observed in a 100 μm × 100 μm field of view, and the rolling parallel section is 100 μm in width The copper alloy foil for flexible printed circuit boards in which the average crystal grain size of the recrystallized part is 0.1 to 3.0 μm and the maximum crystal grain size is 6 μm or less in any case.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015069339A JP6294257B2 (en) | 2015-03-30 | 2015-03-30 | Copper alloy foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device |
TW105108058A TWI588273B (en) | 2015-03-30 | 2016-03-16 | Copper alloy foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board and electronic equipment |
KR1020160031949A KR20160117196A (en) | 2015-03-30 | 2016-03-17 | Copper alloy foil for flexible printed wiring board, copper-clad laminate using the same, flexible printed wiring board and electronic device |
CN201610189970.XA CN106011525B (en) | 2015-03-30 | 2016-03-30 | Flexible printed board copper alloy foil uses copper clad layers stack, flexible printed board and electronic instrument made of it |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015069339A JP6294257B2 (en) | 2015-03-30 | 2015-03-30 | Copper alloy foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016188415A true JP2016188415A (en) | 2016-11-04 |
JP6294257B2 JP6294257B2 (en) | 2018-03-14 |
Family
ID=57080992
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015069339A Active JP6294257B2 (en) | 2015-03-30 | 2015-03-30 | Copper alloy foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6294257B2 (en) |
KR (1) | KR20160117196A (en) |
CN (1) | CN106011525B (en) |
TW (1) | TWI588273B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019029605A (en) * | 2017-08-03 | 2019-02-21 | Jx金属株式会社 | Copper foil for flexible printed board, copper-clad laminate arranged by use thereof, flexible printed board, and electronic device |
KR20200115206A (en) | 2019-03-26 | 2020-10-07 | 제이엑스금속주식회사 | Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic equipment |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6647253B2 (en) * | 2017-08-03 | 2020-02-14 | Jx金属株式会社 | Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device |
JP6793138B2 (en) * | 2018-01-22 | 2020-12-02 | Jx金属株式会社 | Copper foil for flexible printed circuit boards, copper-clad laminates using it, flexible printed circuit boards, and electronic devices |
JP6774457B2 (en) * | 2018-05-16 | 2020-10-21 | Jx金属株式会社 | Copper foil for flexible printed circuit boards, copper-clad laminates using it, flexible printed circuit boards, and electronic devices |
CN115179638B (en) * | 2022-06-29 | 2024-02-27 | 厦门爱谱生电子科技有限公司 | Manufacturing method of flexible copper-clad plate |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008038170A (en) * | 2006-08-03 | 2008-02-21 | Sumitomo Kinzoku Kozan Shindo Kk | Rolled copper foil |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3962291B2 (en) | 2001-07-17 | 2007-08-22 | 日鉱金属株式会社 | Rolled copper foil for copper clad laminate and method for producing the same |
JP4296250B2 (en) | 2005-06-14 | 2009-07-15 | 古河電気工業株式会社 | Copper foil for high frequency circuit and manufacturing method thereof |
JP5356714B2 (en) | 2008-03-31 | 2013-12-04 | Jx日鉱日石金属株式会社 | Copper alloy foil for flexible printed circuit board excellent in etching property and flexible printed circuit board using the same |
EP2695733B1 (en) * | 2011-05-13 | 2020-09-16 | JX Nippon Mining & Metals Corporation | Copper foil composite, copper foil used for the same, formed product and method of producing the same |
JP5694094B2 (en) * | 2011-09-01 | 2015-04-01 | Jx日鉱日石金属株式会社 | Copper foil for flexible printed wiring board, copper-clad laminate, flexible printed wiring board, and electronic device |
JP2013095933A (en) * | 2011-10-28 | 2013-05-20 | Jx Nippon Mining & Metals Corp | Rolled copper foil, copper-clad laminate, flexible printed wiring board and electronic equipment |
JP5826160B2 (en) * | 2012-04-10 | 2015-12-02 | Jx日鉱日石金属株式会社 | Rolled copper foil, copper-clad laminate, flexible printed wiring board and manufacturing method thereof |
JP2014077182A (en) * | 2012-10-12 | 2014-05-01 | Sh Copper Products Corp | Rolled copper foil |
JP2014152352A (en) * | 2013-02-06 | 2014-08-25 | Sh Copper Products Corp | Composite copper foil and production method thereof |
-
2015
- 2015-03-30 JP JP2015069339A patent/JP6294257B2/en active Active
-
2016
- 2016-03-16 TW TW105108058A patent/TWI588273B/en active
- 2016-03-17 KR KR1020160031949A patent/KR20160117196A/en active Search and Examination
- 2016-03-30 CN CN201610189970.XA patent/CN106011525B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008038170A (en) * | 2006-08-03 | 2008-02-21 | Sumitomo Kinzoku Kozan Shindo Kk | Rolled copper foil |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019029605A (en) * | 2017-08-03 | 2019-02-21 | Jx金属株式会社 | Copper foil for flexible printed board, copper-clad laminate arranged by use thereof, flexible printed board, and electronic device |
KR20200115206A (en) | 2019-03-26 | 2020-10-07 | 제이엑스금속주식회사 | Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic equipment |
CN111757599A (en) * | 2019-03-26 | 2020-10-09 | 捷客斯金属株式会社 | Copper foil for flexible printed board, copper-clad laminate using same, flexible printed board, and electronic device |
CN111757599B (en) * | 2019-03-26 | 2023-06-30 | 捷客斯金属株式会社 | Copper foil for flexible printed board |
Also Published As
Publication number | Publication date |
---|---|
CN106011525B (en) | 2019-01-15 |
TWI588273B (en) | 2017-06-21 |
JP6294257B2 (en) | 2018-03-14 |
TW201643260A (en) | 2016-12-16 |
CN106011525A (en) | 2016-10-12 |
KR20160117196A (en) | 2016-10-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6294257B2 (en) | Copper alloy foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device | |
JP4672515B2 (en) | Rolled copper alloy foil for bending | |
KR101935128B1 (en) | Copper foil for flexible printed wiring board, copper-clad laminate using the same, flexible printed wiring board and electronic device | |
KR101935129B1 (en) | Copper foil for flexible printed wiring board, and copper-clad laminate, flexible printed wiring board and electronic device using the same | |
KR102098479B1 (en) | Copper foil for flexible printed circuit, copper clad laminate using the same, flexible printed circuit and electronic device | |
KR102470725B1 (en) | Copper foil for flexible printed circuit, and copper clad laminate, flexible printed circuit and electronic device using copper foil | |
JP6781562B2 (en) | Copper foil for flexible printed circuit boards, copper-clad laminates using it, flexible printed circuit boards, and electronic devices | |
KR102049636B1 (en) | Copper foil for flexible printed wiring board, copper-clad laminate using the same, flexible printed wiring board and electronic device | |
JP5356714B2 (en) | Copper alloy foil for flexible printed circuit board excellent in etching property and flexible printed circuit board using the same | |
KR102056543B1 (en) | Copper foil for flexible printed circuit, and copper clad laminate, and flexible printed circuit and electronic device using the same | |
JP2005068484A (en) | High flexibility rolled copper foil | |
JP6348621B1 (en) | Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device | |
JP2017115222A (en) | Rolled copper foil, copper-clad laminate using the same, flexible printed substrate and electronic device | |
CN107046763B (en) | Copper foil for flexible printed board and copper-clad laminate using same | |
JP5933943B2 (en) | Rolled copper foil for flexible printed wiring boards, copper-clad laminates, flexible printed wiring boards, and electronic equipment | |
CN107046768B (en) | Copper foil for flexible printed board, copper-clad laminate using same, flexible printed board, and electronic device | |
KR102136096B1 (en) | Copper foil for flexible printed substrate, and copper clad laminate using the same, flexible printed substrate and electronic equipment | |
KR102115086B1 (en) | Copper foil for flexible printed circuit, copper clad laminate using the same, flexible printed circuit and electronic device | |
JP2019194360A (en) | Copper foil for flexible printed wiring board, and copper clad laminate, flexible printed wiring board and electronic device using the same | |
JP6712561B2 (en) | Rolled copper foil for flexible printed circuit board, copper clad laminate using the same, flexible printed circuit board, and electronic device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160928 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20170606 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20170807 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170816 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170828 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20171023 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20171106 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20171226 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180122 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180215 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6294257 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |