JP2014152352A - Composite copper foil and production method thereof - Google Patents
Composite copper foil and production method thereof Download PDFInfo
- Publication number
- JP2014152352A JP2014152352A JP2013021622A JP2013021622A JP2014152352A JP 2014152352 A JP2014152352 A JP 2014152352A JP 2013021622 A JP2013021622 A JP 2013021622A JP 2013021622 A JP2013021622 A JP 2013021622A JP 2014152352 A JP2014152352 A JP 2014152352A
- Authority
- JP
- Japan
- Prior art keywords
- plating layer
- roughened
- copper plating
- copper foil
- copper
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D7/00—Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
- B05D7/50—Multilayers
- B05D7/52—Two layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D7/00—Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
- B05D7/14—Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D7/00—Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
- B05D7/24—Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D1/00—Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D2202/00—Metallic substrate
- B05D2202/40—Metallic substrate based on other transition elements
- B05D2202/45—Metallic substrate based on other transition elements based on Cu
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Electroplating Methods And Accessories (AREA)
- Laminated Bodies (AREA)
- Electroplating And Plating Baths Therefor (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Abstract
Description
本発明は、銅めっき層および粗化銅めっき層を備える複合銅箔および複合銅箔の製造方法に関する。 The present invention relates to a composite copper foil including a copper plating layer and a roughened copper plating layer, and a method for producing the composite copper foil.
フレキシブルプリント配線板(FPC:Flexible Printed Circuit)は、薄くて可撓性に優れる。このため、FPCは、折り畳み式携帯電話の折り曲げ部や、デジタルカメラやプリンタヘッド等の可動部のほか、ディスク関連機器の可動部の配線等に用いられることが多い。 A flexible printed circuit (FPC) is thin and excellent in flexibility. For this reason, the FPC is often used for wiring of a movable part of a disk-related device in addition to a folding part of a folding cellular phone, a movable part such as a digital camera or a printer head.
FPCの配線材としては、電解銅箔等よりも繰り返しの曲げに耐える耐屈曲性に優れた圧延銅箔等が用いられる。FPC用の圧延銅箔は、FPCの製造工程において、ポリイミド等の樹脂からなるFPCのベースフィルム(基材)と加熱等により貼り合わされる。 As the FPC wiring material, rolled copper foil or the like having excellent bending resistance that can withstand repeated bending than electrolytic copper foil or the like is used. The rolled copper foil for FPC is bonded to an FPC base film (base material) made of a resin such as polyimide by heating or the like in the FPC manufacturing process.
このとき、圧延銅箔とFPCの基材との密着性を向上させるため、例えば圧延銅箔の少なくとも片面に、粗化粒を含んだ粗化銅めっき層を設けることがある。粗化粒の粒径が増大して圧延銅箔の表面粗さが増すほど、アンカー効果により基材との密着性が向上する。粗化銅めっき層を形成するときには、予め、圧延銅箔上に銅めっき層を設けて平滑化しておく場合がある(例えば、特許文献1,2)。 At this time, in order to improve the adhesion between the rolled copper foil and the FPC base material, for example, a roughened copper plating layer containing roughened grains may be provided on at least one surface of the rolled copper foil. As the grain size of the roughened grains increases and the surface roughness of the rolled copper foil increases, the adhesion with the base material is improved by the anchor effect. When a roughened copper plating layer is formed, a copper plating layer may be provided on a rolled copper foil and smoothed in advance (for example, Patent Documents 1 and 2).
しかし、銅めっき層や粗化銅めっき層を備える複合銅箔の表面粗さが大きくなりすぎると、複合銅箔が貼り合わされた基材に複合銅箔の凹凸が転写されてしまう場合がある。凹凸が転写された基材は透過率が低下し、例えばFPCを電子機器等に実装する際、位置合わせの妨げとなってしまう。 However, if the surface roughness of the composite copper foil provided with the copper plating layer or the roughened copper plating layer becomes too large, the unevenness of the composite copper foil may be transferred to the substrate on which the composite copper foil is bonded. The base material to which the unevenness is transferred has a reduced transmittance, and, for example, when the FPC is mounted on an electronic device or the like, the alignment is hindered.
一方で、粗化銅めっき層の粗化粒を小さくするなどして複合銅箔の表面粗さを小さくすると、基材との密着性が充分得られず、複合銅箔からなる配線の信頼性が低下してしまう。 On the other hand, if the surface roughness of the composite copper foil is reduced by reducing the roughened grains of the roughened copper plating layer, sufficient adhesion to the substrate cannot be obtained, and the reliability of the wiring made of the composite copper foil Will fall.
本発明の目的は、基材の透過率を維持しつつ、基材との高い密着性が得られる複合銅箔および複合銅箔の製造方法を提供することである。 The objective of this invention is providing the manufacturing method of the composite copper foil and composite copper foil with which high adhesiveness with a base material is acquired, maintaining the transmittance | permeability of a base material.
本発明の第1の態様によれば、
圧延銅箔と、
前記圧延銅箔の少なくとも片面上に形成された銅めっき層と、
前記銅めっき層の上に形成され、平均粒径が0.05μm以上0.30μm以下の粗化粒を含んだ粗化銅めっき層と、を備え、
前記粗化粒の最大粒径と最小粒径との粒径差の比率が65%以下であり、
前記粗化銅めっき層を厚さ方向に切断する切断面において、20μm以上の距離に亘って前記粗化粒が途切れることなく前記銅めっき層上に連なった状態となっている
複合銅箔が提供される。
但し、粒径差の比率(%)=(1−最小粒径/最大粒径)×100である。
According to a first aspect of the invention,
Rolled copper foil,
A copper plating layer formed on at least one side of the rolled copper foil;
A roughened copper plating layer formed on the copper plating layer and including roughening grains having an average particle size of 0.05 μm or more and 0.30 μm or less, and
The ratio of the particle size difference between the maximum particle size and the minimum particle size of the roughened particles is 65% or less,
Provided is a composite copper foil in which the roughened grains are continuous on the copper plated layer over a distance of 20 μm or more at a cut surface that cuts the roughened copper plated layer in the thickness direction. Is done.
However, the ratio of particle size difference (%) = (1−minimum particle size / maximum particle size) × 100.
本発明の第2の態様によれば、
圧延銅箔と、
前記圧延銅箔の少なくとも片面上に形成された銅めっき層と、
前記銅めっき層の上に形成され、平均粒径が0.05μm以上0.30μm以下の粗化粒を含んだ粗化銅めっき層と、を備え、
前記粗化粒の最大粒径と最小粒径との粒径差の比率が65%以下であり、
走査型電子顕微鏡にて、倍率1万倍の視野内に存在する前記粗化粒の無形成部分の面積が5μm2以下となっている
複合銅箔が提供される。
但し、粒径差の比率(%)=(1−最小粒径/最大粒径)×100である。
According to a second aspect of the invention,
Rolled copper foil,
A copper plating layer formed on at least one side of the rolled copper foil;
A roughened copper plating layer formed on the copper plating layer and including roughening grains having an average particle size of 0.05 μm or more and 0.30 μm or less, and
The ratio of the particle size difference between the maximum particle size and the minimum particle size of the roughened particles is 65% or less,
In the scanning electron microscope, a composite copper foil is provided in which the area of the non-formed portion of the roughened grains existing in the field of view of 10,000 times is 5 μm 2 or less.
However, the ratio of particle size difference (%) = (1−minimum particle size / maximum particle size) × 100.
本発明の第3の態様によれば、
前記銅めっき層の表面に凹部が存在する場合、前記凹部の深さの平均値が0.60μm以下である
第1又は第2の態様に記載の複合銅箔が提供される。
According to a third aspect of the invention,
When the concave portion exists on the surface of the copper plating layer, the composite copper foil according to the first or second aspect, in which an average depth of the concave portion is 0.60 μm or less, is provided.
本発明の第4の態様によれば、
前記銅めっき層は、
メルカプト基を有する有機硫黄化合物と、界面活性剤と、レベリング剤と、塩化物イオンとを添加した銅めっき液を用いて形成されている
第1〜第3の態様のいずれかに記載の複合銅箔が提供される。
According to a fourth aspect of the invention,
The copper plating layer is
The composite copper in any one of the 1st-3rd aspect currently formed using the copper plating solution which added the organic sulfur compound which has a mercapto group, surfactant, a leveling agent, and a chloride ion. A foil is provided.
本発明の第5の態様によれば、
前記粗化銅めっき層を平均に均したとき、0.05μm以上0.25μm以下の厚さ相当である
第1〜第4の態様のいずれかに記載の複合銅箔が提供される。
According to a fifth aspect of the present invention,
When the roughened copper plating layer is averaged, the composite copper foil according to any one of the first to fourth aspects is provided, which corresponds to a thickness of 0.05 μm or more and 0.25 μm or less.
本発明の第6の態様によれば、
前記粗化銅めっき層上に厚さが11nm以上70nm以下の防錆層を備える
第1〜第5の態様のいずれかに記載の複合銅箔が提供される。
According to a sixth aspect of the present invention,
The composite copper foil in any one of the 1st-5th aspect provided with the rust prevention layer whose thickness is 11 nm or more and 70 nm or less on the said roughening copper plating layer is provided.
本発明の第7の態様によれば、
前記粗化銅めっき層上に、ニッケルめっき層、亜鉛めっき層、クロメート処理層、シランカップリング処理層をこの順に形成してなり、厚さが11nm以上70nm以下の防錆層を備える
第1〜第6の態様のいずれかに記載の複合銅箔が提供される。
According to a seventh aspect of the present invention,
A nickel plating layer, a zinc plating layer, a chromate treatment layer, and a silane coupling treatment layer are formed in this order on the roughened copper plating layer, and first to first rust prevention layers having a thickness of 11 nm to 70 nm are provided. A composite copper foil according to any of the sixth aspects is provided.
本発明の第8の態様によれば、
圧延銅箔の少なくとも片面上に銅めっき層を形成する工程と、
前記銅めっき層上に、平均粒径が0.05μm以上0.30μm以下の粗化粒を含んだ粗化銅めっき層を形成する工程と、を有し、
前記銅めっき層を形成する工程では、
メルカプト基を有する有機硫黄化合物と、界面活性剤と、レベリング剤と、塩化物イオンとを添加した銅めっき液を用いて前記銅めっき層を形成する
複合銅箔の製造方法が提供される。
According to an eighth aspect of the present invention,
Forming a copper plating layer on at least one side of the rolled copper foil;
Forming a roughened copper plated layer containing roughened grains having an average particle size of 0.05 μm or more and 0.30 μm or less on the copper plated layer;
In the step of forming the copper plating layer,
There is provided a method for producing a composite copper foil in which the copper plating layer is formed using a copper plating solution to which an organic sulfur compound having a mercapto group, a surfactant, a leveling agent, and chloride ions are added.
本発明によれば、基材の透過率を維持しつつ、基材との高い密着性が得られる複合銅箔および複合銅箔の製造方法が提供される。 ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the composite copper foil and composite copper foil with which high adhesiveness with a base material is obtained, maintaining the transmittance | permeability of a base material is provided.
<本発明者等が得た知見>
上述のように、FPCの基材との密着性を向上させるため、圧延銅箔の少なくとも片面に、銅めっき層と粗化銅めっき層とをこの順に形成した複合銅箔が用いられることがある。このような粗化銅めっき層を形成するには、例えば圧延銅箔上に銅めっき層を形成して平滑化させた後、例えば銅めっき液中で限界電流密度以上の電流密度でめっきする粗化処理を行う。これにより、銅めっき層の表面に粗化粒を付着させて凹凸形状を形成する。例えば粗化処理時の電流値を上げたり、粗化処理を数段階に分けて施したりすることで粒径を大きくすることができ、表面粗さを制御できる。
<Knowledge obtained by the present inventors>
As described above, in order to improve the adhesion of the FPC to the base material, a composite copper foil in which a copper plating layer and a roughened copper plating layer are formed in this order on at least one surface of the rolled copper foil may be used. . In order to form such a roughened copper plating layer, for example, a copper plating layer is formed on a rolled copper foil and smoothed, and then, for example, roughening is performed in a copper plating solution at a current density equal to or higher than a limit current density. Process. Thereby, roughened grains are attached to the surface of the copper plating layer to form an uneven shape. For example, the particle size can be increased by increasing the current value at the time of the roughening treatment, or performing the roughening treatment in several stages, and the surface roughness can be controlled.
このとき、粗化銅めっき層が備える粗化粒が肥大化して複合銅箔の表面粗さが大きくなりすぎると、複合銅箔が貼り合わされた基材に表面の凹凸が転写され、基材の透過率が低下してしまうことがある。FPCを電子機器等に実装するときには、例えばCCDカメラ等にて、基材に貼り合わせた複合銅箔を一部除去して形成した配線の位置を、FPCの基材を透かして確認し、電子機器との位置合わせを行う。複合銅箔が除去され露出した基材に複合銅箔の凹凸が転写されて、基材の透過率が低下していると、位置合わせに時間がかかって実装作業効率が低下したり、そもそも位置合わせができなくなってしまったりする。これを金属顕微鏡にて観察した様子を、図5に示す。 At this time, when the roughened grains included in the roughened copper plating layer are enlarged and the surface roughness of the composite copper foil becomes too large, the surface irregularities are transferred to the base material on which the composite copper foil is bonded, and The transmittance may decrease. When mounting an FPC on an electronic device or the like, for example, by using a CCD camera or the like, the position of the wiring formed by removing a part of the composite copper foil bonded to the base material is confirmed through the base material of the FPC. Align with the device. If the unevenness of the composite copper foil is transferred to the exposed base material after the composite copper foil is removed and the transmittance of the base material is reduced, it will take time for alignment and the mounting work efficiency will decrease. It becomes impossible to match. FIG. 5 shows the state observed with a metal microscope.
図5(a)に示されているように、基材の透過率が良好なままに保たれていれば、配線の端部、つまり、配線と基材との境界が、観察領域における濃淡の違いとして明瞭に確認できる。一方、図5(b)に示されているのは、表面粗さの大きい複合銅箔との貼り合わせによって凹凸が転写され、基材の透過率が低下してしまった場合である。配線と基材との境界を示す濃淡が不明瞭となっていることが見て取れる。なお、図5(c)に示される、粗化粒が極度に小さい場合については、後述する。 As shown in FIG. 5 (a), if the transmittance of the base material is kept good, the end of the wiring, that is, the boundary between the wiring and the base material, is not a shade of light in the observation region. This can be clearly seen as a difference. On the other hand, FIG. 5B shows a case where the unevenness is transferred by bonding with the composite copper foil having a large surface roughness and the transmittance of the base material is lowered. It can be seen that the shading indicating the boundary between the wiring and the substrate is unclear. In addition, the case where the roughening grain shown by FIG.5 (c) is extremely small is mentioned later.
本発明者等は、FPC用の複合銅箔において、このような不具合を解消すべく、粗化処理のめっき時間を極力短くして粗化銅めっき層の備える粗化粒の成長抑制を試みた。 In the composite copper foil for FPC, the present inventors tried to suppress the growth of roughening grains provided in the roughened copper plating layer by shortening the plating time of the roughening treatment as much as possible in order to eliminate such problems. .
しかしながら、粗化銅めっき層の備える粗化粒を小さくしようとすると、銅めっき層上に局所的にめっきが付かない部分や粗化粒が成長しない無成長部分、いわゆる、粗化抜けした部分が生じてしまうことがあった。粗化粒の無成長部分では、表面粗さが極度に低下する。また、このような無成長部分では、複合銅箔と基材との間に隙間が生じ易くなる。これにより、複合銅箔と基材との間で充分なアンカー効果が得られず、密着性が低下してしまう。FPCを薬品等に浸漬したときの、薬品耐久性が低下してしまう場合もある。図6に、複合銅箔と基材との間に隙間が生じた様子を示す。 However, when trying to reduce the roughening grains provided in the roughened copper plating layer, there are portions where the plating is not locally deposited on the copper plating layer, non-growing portions where the roughening grains do not grow, so-called roughening missing portions. It sometimes happened. In the non-growth portion of the roughened grains, the surface roughness is extremely lowered. Moreover, in such a non-growth part, it becomes easy to produce a clearance gap between composite copper foil and a base material. Thereby, sufficient anchor effect is not acquired between composite copper foil and a base material, but adhesiveness will fall. When the FPC is immersed in a chemical or the like, the chemical durability may be reduced. In FIG. 6, a mode that the clearance gap produced between composite copper foil and a base material is shown.
また、このような無成長部分があると、基材に転写される複合銅箔の凹凸パターンが一様でなくなり、FPCの位置合わせ時、基材を透かして見たときの濃淡にムラが生じて配線の視認性を低下させてしまうことがある。上述の図5(c)は、粗化粒が極度に小さいことで視認性が低下してしまった例である。図5(c)に示される例では、配線の部分が光って見え、配線の境界が識別し難くなっている。 In addition, when there is such a non-growth part, the uneven pattern of the composite copper foil transferred to the base material is not uniform, and unevenness occurs in the shade when the base material is viewed through the FPC alignment. As a result, the visibility of the wiring may be reduced. The above-mentioned FIG.5 (c) is an example which visibility fell because the coarse grain is extremely small. In the example shown in FIG. 5C, the wiring portion appears shining, and the wiring boundary is difficult to identify.
本発明者等は、更に鋭意研究を重ね、上述の粗化抜けは、下地となる銅めっき層の状態に影響されて生じることを突き止めた。つまり、銅めっき層の状態を適正化することで、このような粗化抜けを抑制できることに想到した。また、本発明者等は、粗化抜けを抑制可能な状態に銅めっき層を形成する方法をも見いだした。 The inventors of the present invention made further studies and found out that the above-mentioned roughening omission occurs due to the influence of the state of the underlying copper plating layer. That is, it came to the idea that such roughening omission can be suppressed by optimizing the state of the copper plating layer. In addition, the present inventors have also found a method of forming a copper plating layer in a state where roughening omission can be suppressed.
本発明は、発明者等が見いだしたこれらの知見に基づくものである。 The present invention is based on these findings found by the inventors.
<本発明の一実施形態>
(1)複合銅箔の構成
まずは、本発明の一実施形態に係る複合銅箔の構成について説明する。
<One Embodiment of the Present Invention>
(1) Structure of composite copper foil First, the structure of the composite copper foil which concerns on one Embodiment of this invention is demonstrated.
本実施形態に係る複合銅箔は、圧延銅箔と、圧延銅箔の少なくとも片面上に形成された銅めっき層と、銅めっき層上に形成された粗化銅めっき層と、を備える。また、本実施形態に係る複合銅箔は、粗化銅めっき層上に防錆層を備える。 The composite copper foil according to the present embodiment includes a rolled copper foil, a copper plating layer formed on at least one surface of the rolled copper foil, and a roughened copper plating layer formed on the copper plating layer. Moreover, the composite copper foil which concerns on this embodiment is equipped with a rust prevention layer on a roughening copper plating layer.
このように構成された複合銅箔は、例えば粗化銅めっき層が形成された粗化面側がFPCの基材と貼り合わされ、FPCにおける可撓性の配線材としての用途に用いられる。 The composite copper foil configured as described above is used, for example, as a flexible wiring material in an FPC by bonding the roughened surface side on which a roughened copper plating layer is formed to an FPC base material.
(圧延銅箔の概要)
複合銅箔が備える圧延銅箔は、例えば主表面としての圧延面を備える板状に構成されている。この圧延銅箔は、例えば無酸素銅(OFC:Oxygen-Free Copper)やタフピッチ銅(TPC:Tough-Pitch Copper)等の純銅を原材料とする鋳塊に、熱間圧延工程や冷間圧延工程等を施し所定厚さとした圧延銅箔である。本実施形態に係る圧延銅箔は、例えばFPCの基材との貼り合わせの工程を兼ねる再結晶焼鈍工程が施されると、再結晶に調質されて優れた耐屈曲性を具備するよう企図されている。
(Outline of rolled copper foil)
The rolled copper foil included in the composite copper foil is configured in a plate shape including a rolled surface as a main surface, for example. This rolled copper foil is, for example, an ingot made of pure copper such as oxygen-free copper (OFC) or tough pitch copper (TPC), hot rolling process, cold rolling process, etc. A rolled copper foil having a predetermined thickness. The rolled copper foil according to the present embodiment is intended to have excellent bending resistance by being subjected to recrystallization when subjected to a recrystallization annealing process that also serves as a bonding process with an FPC base material, for example. Has been.
圧延銅箔の原材料となる無酸素銅は、例えばJIS C1020,H3100等に規定の純度が99.96%以上の銅材である。酸素含有量は完全にゼロでなくともよく、例えば数ppm程度の酸素が含まれていてもよい。また、圧延銅箔の原材料となるタフピッチ銅は、例えばJIS C1100,H3100等に規定の純度が99.9%以上の銅材である。タフピッチ銅の場合、酸素含有量は例えば100ppm〜600ppm程度である。或いは、圧延銅箔として、無酸素銅やタフピッチ銅にスズ(Sn)や銀(Ag)やホウ素(B)、チタン(Ti)等の所定の添加材を微量に加えて希薄銅合金とし、耐熱性等の諸特性が調整された原材料を用いてもよい。 The oxygen-free copper used as a raw material for the rolled copper foil is a copper material having a purity specified in JIS C1020, H3100, etc. of 99.96% or more. The oxygen content may not be completely zero, and for example, oxygen of about several ppm may be included. Moreover, the tough pitch copper used as the raw material of the rolled copper foil is a copper material having a purity specified in, for example, JIS C1100, H3100, etc. of 99.9% or more. In the case of tough pitch copper, the oxygen content is, for example, about 100 ppm to 600 ppm. Alternatively, as a rolled copper foil, oxygen-free copper or tough pitch copper is added to a small amount of a predetermined additive such as tin (Sn), silver (Ag), boron (B), titanium (Ti) to form a diluted copper alloy, You may use the raw material in which various characteristics, such as property, were adjusted.
(銅めっき層の概要)
複合銅箔が備える銅めっき層は、圧延銅箔の主表面としての圧延面、またはその裏面の、少なくとも片側の面上に、例えば電解めっき等を用いて形成されている。また、本実施形態に係る銅めっき層は、例えば厚さが0.1μm以上0.4μm以下である。
(Overview of copper plating layer)
The copper plating layer with which the composite copper foil is provided is formed on the rolled surface as the main surface of the rolled copper foil, or on at least one surface of the back surface by using, for example, electrolytic plating. Moreover, the copper plating layer which concerns on this embodiment is 0.1 micrometer or more and 0.4 micrometer or less in thickness, for example.
銅めっき層の厚さを例えば0.1μm以上とすることで、銅めっき層上に粗化銅めっき(粗化処理)を均一に施すことが容易となる。一方で、銅めっき層を0.4μm以下とすることで、電解めっき時間が不必要に長くなってしまうことがなく、生産性を向上させることができる。また、熱処理後に、より確実に複合銅箔全体の耐屈曲性を高めることができる。再結晶し難い銅めっき層が充分に薄いことで、圧延銅箔の耐屈曲性の向上が阻害され難くなるからである。 By setting the thickness of the copper plating layer to, for example, 0.1 μm or more, it becomes easy to uniformly perform roughening copper plating (roughening treatment) on the copper plating layer. On the other hand, when the copper plating layer is 0.4 μm or less, the electrolytic plating time does not become unnecessarily long, and the productivity can be improved. Moreover, the bending resistance of the whole composite copper foil can be improved more reliably after the heat treatment. This is because when the copper plating layer that is difficult to recrystallize is sufficiently thin, the improvement in the bending resistance of the rolled copper foil is hardly hindered.
また、本実施形態に係る銅めっき層は、特に、後述するように、メルカプト基を有する有機硫黄化合物と、界面活性剤と、塩化物イオンとを添加した銅めっき液を用いて形成されている。少なくともこれにより、例えば銅めっき層の表面に凹部が存在する場合、凹部の最大径の平均値が20μm以下、好ましくは15μm以下、凹部の深さの平均値が0.6μm以下、好ましくは0.5μm以下となっている。ここで、銅めっき層の表面における凹部の平面視の形状は、例えば真円ではなくいびつな形状となり得るところ、凹部の径を最大径で定義した。 In addition, the copper plating layer according to the present embodiment is formed using a copper plating solution to which an organic sulfur compound having a mercapto group, a surfactant, and chloride ions are added, as will be described later. . At least by this, for example, when a recess is present on the surface of the copper plating layer, the average value of the maximum diameter of the recess is 20 μm or less, preferably 15 μm or less, and the average value of the depth of the recess is 0.6 μm or less, preferably 0. It is 5 μm or less. Here, the shape of the concave portion on the surface of the copper plating layer in plan view may be, for example, an irregular shape instead of a perfect circle, and the diameter of the concave portion is defined as the maximum diameter.
後述するように、本発明者等は、粗化粒を極度に小さくした粗化銅めっき層であっても粗化抜けを抑制することができる理由の少なくとも1つは、このように銅めっき層の表面の凹部の深さを所定値以下としたことにあると考えている。 As will be described later, the present inventors have stated that at least one of the reasons why the roughening omission can be suppressed even in the case of a roughened copper plating layer in which the roughening grains are extremely small is as described above. It is considered that the depth of the recess on the surface is set to a predetermined value or less.
(粗化銅めっき層の概要)
複合銅箔が備える粗化銅めっき層は、銅めっき層の上に形成されている。複合銅箔が粗化銅めっき層を備えることで、複合銅箔とFPCの基材との密着性を向上させることができる。
(Outline of roughened copper plating layer)
The roughened copper plating layer with which the composite copper foil is provided is formed on the copper plating layer. By providing the composite copper foil with the roughened copper plating layer, the adhesion between the composite copper foil and the FPC substrate can be improved.
粗化銅めっき層は、主に銅めっき層上にめっきにより付着させた粗化粒からなる。粗化粒は、例えば銅(Cu)単体、または、銅(Cu)に、鉄(Fe)、モリブデン(Mo)、ニッケル(Ni)、コバルト(Co)、クロム(Cr)、亜鉛(Zn)、タングステン(W)等を少なくとも1種類以上、好ましくは2種類以上含む金属粒子である。このように他の金属粒子を含むことで、粗化粒が樹枝状(デンドライト状)に成長してしまうのを抑制することができる。 The roughened copper plating layer is mainly composed of roughened grains deposited on the copper plating layer by plating. The roughened grains are, for example, copper (Cu) alone or copper (Cu), iron (Fe), molybdenum (Mo), nickel (Ni), cobalt (Co), chromium (Cr), zinc (Zn), Metal particles containing at least one type, preferably two or more types of tungsten (W). By including other metal particles in this manner, it is possible to suppress the roughened grains from growing in a dendritic shape.
粗化粒の平均粒径は、例えば0.05μm以上0.30μm以下である。また、また、粗化粒の最大粒径と最小粒径との粒径差の比率は65%以下である。但し、粒径差の比率(%)=(1−最小粒径/最大粒径)×100である。つまり、粒径差の比率が小さいほど、粗化粒の最大粒径と最小粒径との差が少ないことを意味する。 The average particle diameter of the roughened grains is, for example, 0.05 μm or more and 0.30 μm or less. Moreover, the ratio of the particle size difference between the maximum particle size and the minimum particle size of the roughened particles is 65% or less. However, the ratio of particle size difference (%) = (1−minimum particle size / maximum particle size) × 100. That is, the smaller the particle size difference ratio, the smaller the difference between the maximum particle size and the minimum particle size of the roughened particles.
凹凸を有する各粗化粒を含む粗化銅めっき層の厚さは、各粗化粒を平均に均したとすると、例えば0.05μm以上0.26μm未満、好ましくは0.05μm以上0.25μm以下の厚さ相当となる。 The thickness of the roughened copper plating layer including the roughened grains having irregularities is, for example, 0.05 μm or more and less than 0.26 μm, preferably 0.05 μm or more and 0.25 μm, if each roughened grain is averaged. It corresponds to the following thickness.
粗化銅めっき層の厚さを0.05μm以上とすることで、充分なアンカー効果を得て基材との密着性を向上させることができる。一方で、粗化銅めっき層を0.26μm未満、更には、0.25μm以下とすることで、複合銅箔の表面粗さが大きくなりすぎてしまうことを抑制することができる。また、電解めっき時間が不必要に長くなってしまうことがなく、生産性を向上させることができる。また、粗化銅めっき層を過剰に厚くしないことで、複合銅箔の全体としての耐屈曲性も維持し易くなる。 By setting the thickness of the roughened copper plating layer to 0.05 μm or more, a sufficient anchor effect can be obtained and the adhesion to the substrate can be improved. On the other hand, it can suppress that the surface roughness of a composite copper foil becomes large too much by making a roughening copper plating layer into less than 0.26 micrometer, and also 0.25 micrometer or less. Further, the electrolytic plating time is not unnecessarily prolonged, and the productivity can be improved. Moreover, it becomes easy to maintain the bending resistance as a whole of composite copper foil by not making a roughening copper plating layer excessively thick.
また、粗化銅めっき層においては、粗化粒が成長しない無成長部分、すなわち、粗化抜けの発生が抑制された状態にある。このことは、例えば走査型電子顕微鏡(SEM:Scanning Electron Microscopy)により、粗化銅めっき層が以下のような状態になっている様子が観察されることでわかる。 Further, in the roughened copper plating layer, the non-growth portion where the roughened grains do not grow, that is, the occurrence of roughening omission is suppressed. This can be seen by observing the state of the roughened copper plating layer in the following state, for example, with a scanning electron microscope (SEM).
すなわち、粗化抜けが抑制された粗化銅めっき層では、粗化銅めっき層を厚さ方向に切断する切断面において、20μm以上の距離に亘って粗化粒が途切れることなく銅めっき層上に連なった状態となっている。このとき、粗化粒は銅めっき層上に1個または複数個が積み重なって成長している。よって、粗化粒が途切れることなく、とは、例えば図4(a)に示されているように、銅めっき層10上に直接付着した粗化粒20が互いに離れることなく隣接して連なった状態を含む。また、粗化粒が途切れることなく、とは、例えば図4(b)に示されているように、銅めっき層10上に直接付着した粗化粒20が互いに接することなく疎らになっていても、その上に1個以上の粗化粒20が更に付着することで、粗化粒20が銅めっき層10の表面に沿って一続きに連なった状態を含む。なお、以上のような状態は、任意の向きに切断した切断面において認められればよい。または、圧延方向と平行および垂直に切断した切断面のいずれか或いは両方において、上述の状態となっていることが好ましい。 That is, in the roughened copper plating layer in which roughening omission is suppressed, the roughening grains are not interrupted over a distance of 20 μm or more on the cut surface where the roughened copper plating layer is cut in the thickness direction. It is in a state linked to. At this time, one or a plurality of roughened grains grow on the copper plating layer. Therefore, the roughened grains are not interrupted, for example, as shown in FIG. 4A, the roughened grains 20 directly attached on the copper plating layer 10 are adjacent to each other without being separated from each other. Includes state. Further, the roughened grains are not interrupted, for example, as shown in FIG. 4B, the roughened grains 20 directly attached on the copper plating layer 10 are sparse without contacting each other. In addition, one or more roughened grains 20 are further adhered thereon, so that the roughened grains 20 are continuously connected along the surface of the copper plating layer 10. In addition, the above states should just be recognized in the cut surface cut | disconnected in arbitrary directions. Or it is preferable that it is the above-mentioned state in either or both of the cut surfaces cut | disconnected in parallel and perpendicular | vertical to the rolling direction.
或いは、粗化抜けが抑制された粗化銅めっき層では、SEMにて、倍率1万倍の視野内に存在する粗化粒の無形成部分の面積が5μm2以下、好ましくは2μm2以下となっている。粗化粒の無形成部分は、粗化粒の粒子状の輪郭が認められず、下地の銅めっき層が露出した状態となっていることで判別される。粗化粒の無形成部分の面積は、倍率1万倍の視野内における総和である。 Alternatively, in the roughened copper plating layer in which the roughening omission is suppressed, the area of the non-formed portion of the roughened grains existing in the field of view with a magnification of 10,000 times is 5 μm 2 or less, preferably 2 μm 2 or less. It has become. The portion where the roughened grains are not formed is identified by the fact that the grainy outline of the roughened grains is not recognized and the underlying copper plating layer is exposed. The area of the non-formed portion of the roughened grains is the sum in the field of view with a magnification of 10,000.
これら2つの状態のいずれか一方、或いは両方を満たすとき、粗化銅めっき層は、基材との密着性が充分得られるほどに、粗化抜けが抑制された状態にあるといえる。すなわち、複合銅箔の表面粗さが充分に維持され、また、基材との隙間が生じ難い状態となっている。 When either one or both of these two states are satisfied, it can be said that the roughened copper plating layer is in a state in which roughening omission is suppressed to the extent that sufficient adhesion to the base material is obtained. That is, the surface roughness of the composite copper foil is sufficiently maintained, and a gap with the base material is hardly generated.
(防錆層の概要)
複合銅箔が備える防錆層は、例えばニッケルめっき層、亜鉛めっき層、クロメート処理層(3価クロム化成処理層)、シランカップリング処理層が、この順に粗化銅めっき層上に形成された積層構造を備える。防錆層は、例えばめっき量にして、0.1g/m2以上0.6g/m2以下の厚さ相当、つまり、11nm以上70nm以下の厚さである。より具体的には、例えばニッケルめっき層を9nm以上50nm以下の厚さとし、亜鉛めっき層を1nm以上10nm以下の厚さとし、クロメート処理層を1nm以上10nm以下の厚さとする。シランカップリング処理層は、極薄の層である。
(Outline of rust prevention layer)
As for the rust prevention layer with which composite copper foil is provided, the nickel plating layer, the zinc plating layer, the chromate treatment layer (trivalent chromium chemical conversion treatment layer), and the silane coupling treatment layer were formed on the roughened copper plating layer in this order, for example. A laminated structure is provided. The anticorrosive layer is, for example, equivalent to a thickness of 0.1 g / m 2 or more and 0.6 g / m 2 or less, that is, a thickness of 11 nm or more and 70 nm or less in terms of a plating amount. More specifically, for example, the nickel plating layer has a thickness of 9 nm to 50 nm, the zinc plating layer has a thickness of 1 nm to 10 nm, and the chromate treatment layer has a thickness of 1 nm to 10 nm. The silane coupling treatment layer is an extremely thin layer.
複合銅箔が防錆層を備えることで、複合銅箔の耐熱性や耐薬品性が向上する。このとき、防錆層の厚さを上述の所定範囲内とすることで、充分な耐熱性や耐薬品性を得つつ、エッチングの容易性を損ねることのないようにすることができる。 By providing the composite copper foil with a rust prevention layer, the heat resistance and chemical resistance of the composite copper foil are improved. At this time, by making the thickness of the anticorrosive layer within the above-mentioned predetermined range, it is possible to obtain sufficient heat resistance and chemical resistance and not impair the ease of etching.
なお、具体的には、防錆層を構成する各層のうち、ニッケルめっき層は銅の拡散を抑制する。また、亜鉛めっき層は耐熱性を向上させる。また、クロメート処理層およびシランカップリング処理層は、化成処理層(化成処理皮膜)として働く。特に、シランカップリング処理層は、複合銅箔と基材との化学的密着性を向上させる。 Specifically, among the layers constituting the rust prevention layer, the nickel plating layer suppresses copper diffusion. Moreover, the galvanized layer improves the heat resistance. The chromate treatment layer and the silane coupling treatment layer function as a chemical conversion treatment layer (chemical conversion treatment film). In particular, the silane coupling treatment layer improves the chemical adhesion between the composite copper foil and the substrate.
また、銅めっき層や粗化銅めっき層を圧延銅箔の片面にのみ形成した場合であっても、このような防錆層を粗化銅めっき層等が形成された側に形成するとともに、このような防錆層の少なくとも一部、例えばニッケルめっき層、亜鉛めっき層、クロメート処理層を、圧延銅箔のこれとは反対側の面上に形成してもよい。これにより、複合銅箔の銅めっき層などを備えない面側においても、耐熱性や耐薬品性を向上させることができる。 In addition, even when a copper plating layer or a roughened copper plating layer is formed only on one side of the rolled copper foil, such a rust preventive layer is formed on the side on which the roughened copper plating layer is formed, You may form at least one part of such a rust preventive layer, for example, a nickel plating layer, a zinc plating layer, and a chromate treatment layer, on the surface on the opposite side to this of a rolled copper foil. Thereby, heat resistance and chemical resistance can be improved even on the side of the composite copper foil that does not include a copper plating layer.
(粗化抜け抑制の作用)
以上のように構成される複合銅箔において、粗化銅めっき層の粗化抜けが抑制される作用について、以下に説明する。
(Action of suppressing roughening loss)
The effect | action in which the roughening omission of a roughening copper plating layer is suppressed in the composite copper foil comprised as mentioned above is demonstrated below.
粗化銅めっき層の形成時、粗化処理のめっき時間を極力短くし、粗化粒の成長を抑制して小さな粗化粒とすると、上述のように、粗化銅めっき層に粗化抜け等が生じる場合がある。これにより、複合銅箔と基材との密着性や配線の境界視認性が低下してしまうことがある。 When forming the roughened copper plating layer, if the plating time for the roughening treatment is shortened as much as possible to suppress the growth of the roughened grains and small roughened grains are formed, the roughened copper plating layer is not roughened as described above. Etc. may occur. Thereby, the adhesiveness of composite copper foil and a base material, and the boundary visibility of wiring may fall.
本発明者等は、鋭意研究の結果、後述する所定の方法にて銅めっき層を形成し、これを下地とすることで、粗化抜けが抑制された粗化銅めっき層を形成することができることを見いだした。つまり、所定の方法により、粗化抜けを抑制可能な状態に銅めっき層を形成することが可能となる。このときの銅めっき層の具体的な状態と、係る状態が粗化抜けの抑制に寄与する機構については更に研究中である。 As a result of diligent research, the present inventors have formed a copper plating layer by a predetermined method to be described later, and can form a roughened copper plating layer in which roughening omission is suppressed by using this as a base. I found what I could do. That is, it is possible to form the copper plating layer in a state in which roughening omission can be suppressed by a predetermined method. The specific state of the copper plating layer at this time and the mechanism by which the state contributes to the suppression of roughening loss are under further study.
但し、本発明者等によれば、係る銅めっき層においては、少なくとも銅めっき層上に存在する僅かな窪み、つまり、表面の凹部の深さが、他の方法により形成された銅めっき層よりも小さくなっていることがわかっている。更に、本発明者等は、これらの粗化抜けの多くが、銅めっき層上の所定サイズを超える凹部の表面で起きていることを確認済みである。 However, according to the present inventors, in such a copper plating layer, at least a slight depression existing on the copper plating layer, that is, the depth of the concave portion on the surface is larger than the copper plating layer formed by other methods. Is known to be smaller. Furthermore, the present inventors have confirmed that many of these roughening defects occur on the surface of the recesses exceeding a predetermined size on the copper plating layer.
このような銅めっき層の表面の凹部は、圧延銅箔の表面に元々存在していたオイルピット等が銅めっき層によって埋まり切らずに残ったものであると考えられる。オイルピットは、例えば圧延時に用いる圧延油が圧延ロールによって圧延対象の板材の表面に噛み込まれて生じる窪みである。圧延銅箔の表面におけるオイルピットの深さは、例えば0.7μm以上1.0μm以下である。 Such a concave portion on the surface of the copper plating layer is considered to be an oil pit or the like originally present on the surface of the rolled copper foil without being completely filled with the copper plating layer. The oil pit is a depression formed by rolling oil used at the time of rolling, for example, into the surface of a plate material to be rolled by a rolling roll. The depth of the oil pit on the surface of the rolled copper foil is, for example, 0.7 μm or more and 1.0 μm or less.
本発明者等は、このような凹部の表面で粗化抜けが起きることについて以下のように考察している。 The present inventors have considered as follows that roughening is lost on the surface of such a recess.
粗化処理は、限界電流密度以上の電流密度で行う。このため、下地となる銅めっき層の僅かな凹凸により電界が影響を受けると考えられる。つまり、凸部には電流が集中し易く、めっきが成長し易い。反対に、凹部には電流が集中し難く、めっきが成長し難い。 The roughening process is performed at a current density equal to or higher than the limit current density. For this reason, it is thought that an electric field is influenced by the slight unevenness | corrugation of the copper plating layer used as a foundation | substrate. That is, current tends to concentrate on the convex portion, and plating is likely to grow. On the other hand, it is difficult for current to concentrate in the recess, and the plating is difficult to grow.
このことから、本発明者等は、銅めっき層の表面に存在する凹部が上述の所定サイズを超えていると、凹部の表面で粗化抜けが生じ易くなってしまうと考えた。このとき、粗化粒を微細化すればするほど、銅めっき層の僅かな凹凸に影響を受け易くなると考えられる。 From this, the present inventors considered that when the concave portion existing on the surface of the copper plating layer exceeds the above-mentioned predetermined size, roughening loss tends to occur on the surface of the concave portion. At this time, it is considered that the smaller the roughened grains are, the more easily affected by the slight unevenness of the copper plating layer.
一方、凹部の縁などは凸形状となっており、このような凸部では、粗化粒が肥大化したり、デンドライト状に粗化粒が成長したりしてしまい、これによっても粗化銅めっき層の凹凸が増し、表面粗さが大きくなりすぎてしまうおそれもある。 On the other hand, the edge of the recess has a convex shape, and in such a convex portion, the roughened grains become enlarged or the roughened grains grow in a dendritic shape, which also causes roughened copper plating. There is also a possibility that the unevenness of the layer increases and the surface roughness becomes too large.
以上のような課題を解決すべく、本実施形態に係る銅めっき層は、少なくとも表面の凹部のサイズが所定値以下となるよう構成されている。これにより、粗化処理のめっき時間を極力短くし、粗化粒を極度に小さくしても、粗化抜け等を抑制することができる。粗化粒の最大粒径と最小粒径との差も低減され易い。 In order to solve the problems as described above, the copper plating layer according to the present embodiment is configured such that at least the size of the recesses on the surface is a predetermined value or less. Thereby, even if it shortens the plating time of a roughening process as much as possible and makes a roughening grain extremely small, roughening omission etc. can be controlled. The difference between the maximum particle size and the minimum particle size of the roughened particles is also easily reduced.
また、銅めっき層の表面の凹部のサイズが所定値以下となっていることで、粗化粒の最大粒径と最小粒径との差、つまり、上述の式で求められる粒径差の比率を低減することができ、また、デンドライト等の発生を抑制することができる。 In addition, since the size of the concave portion on the surface of the copper plating layer is a predetermined value or less, the difference between the maximum particle size and the minimum particle size of the roughened particles, that is, the ratio of the particle size difference obtained by the above formula The generation of dendrites and the like can be suppressed.
但し、本実施形態においては、粗化粒が微細であるので、粗化抜け等は起こり易いがデンドライト等の異常成長は起こり難いと考えられる。よって、上述のように、凹部の深さを例えば0.6μm以下とすれば、異常成長は略確実に抑制した状態で、かつ、粗化抜けを充分に低減できると考えられる。凹部の深さを例えば0.5μm以下とすれば、より確実に異常成長を抑制することができる。 However, in the present embodiment, since the roughened grains are fine, roughening is likely to occur, but abnormal growth such as dendrite is unlikely to occur. Therefore, as described above, if the depth of the concave portion is set to 0.6 μm or less, for example, it is considered that abnormal growth can be suppressed with certainty and the roughening loss can be sufficiently reduced. If the depth of the recess is, for example, 0.5 μm or less, abnormal growth can be more reliably suppressed.
なお、後述するように、本発明者等によれば、所定の方法により形成された銅めっき層は、FPCの製造工程にて行う再結晶焼鈍工程において再結晶され易いことも判明している。一方、他の方法により形成された銅めっき層は、同一の工程でほとんど再結晶されない。したがって、本実施形態に係る銅めっき層は、固有の状態として、このような再結晶され易い状態を潜在的に有しているといえ、これが粗化銅めっき層の粗化抜け抑制効果の他の要因となっていることも考えられる。 As will be described later, according to the present inventors, it has also been found that the copper plating layer formed by a predetermined method is easily recrystallized in the recrystallization annealing process performed in the FPC manufacturing process. On the other hand, copper plating layers formed by other methods are hardly recrystallized in the same process. Therefore, it can be said that the copper plating layer according to the present embodiment potentially has such a state that it is easily recrystallized as a unique state. It is also possible that
(2)複合銅箔の製造方法
本発明者等は、粗化銅めっき層の粗化抜けを抑制可能な銅めっき層を形成すべく、鋭意研究を行った。その結果、以下の手法により所定の効果を得たので、ここに説明する。
(2) Manufacturing method of composite copper foil The present inventors conducted earnest research in order to form the copper plating layer which can suppress the roughening omission of a roughening copper plating layer. As a result, a predetermined effect was obtained by the following method, which will be described here.
本発明の一実施形態に係る複合銅箔の製造方法について、図1を用いて説明する。図1は、本実施形態に係る複合銅箔の製造工程を示すフロー図である。 The manufacturing method of the composite copper foil which concerns on one Embodiment of this invention is demonstrated using FIG. FIG. 1 is a flowchart showing the manufacturing process of the composite copper foil according to the present embodiment.
(圧延銅箔の準備工程S10)
図1に示されているように、まずは、原箔となる圧延銅箔を準備する。圧延銅箔は、上述の通り、無酸素銅やタフピッチ銅からなる純銅や、またはこれらを母相とする希薄銅合金等を原料とする。係る原料の鋳塊に対し、熱間圧延工程と、冷間圧延処理および焼鈍処理を繰り返す繰り返し工程と、最終冷間圧延工程と、を施し、所定厚さの圧延銅箔が得られる。
(Rolled copper foil preparation step S10)
As shown in FIG. 1, first, a rolled copper foil serving as a raw foil is prepared. As described above, the rolled copper foil is made of pure copper made of oxygen-free copper or tough pitch copper, or a dilute copper alloy having these as a parent phase. Such a raw material ingot is subjected to a hot rolling process, a repeating process of repeating a cold rolling process and an annealing process, and a final cold rolling process to obtain a rolled copper foil having a predetermined thickness.
(銅めっき層の形成工程S20)
次に、電解脱脂および酸洗処理S21と、銅めっき処理S22とを行って、圧延銅箔の少なくとも片面上に銅めっき層を形成する銅めっき層の形成工程S20を行う。なお、各処理の間には水洗処理を施す。
(Copper plating layer forming step S20)
Next, electrolytic degreasing and pickling treatment S21 and copper plating treatment S22 are performed, and a copper plating layer forming step S20 is performed to form a copper plating layer on at least one surface of the rolled copper foil. In addition, a water washing process is performed between each process.
すなわち、電解脱脂および酸洗処理S21を行って圧延銅箔の表面を清浄化する。電解脱脂としては、例えば水酸化ナトリウム等のアルカリ溶液を用いた陰極電解脱脂を行う。アルカリ溶液としては、例えば水酸化ナトリウムを20g/L以上60g/L以下、炭酸ナトリウムを10g/L以上30g/L以下含む水溶液を用いることができる。 That is, the surface of the rolled copper foil is cleaned by performing electrolytic degreasing and pickling treatment S21. As electrolytic degreasing, for example, cathodic degreasing using an alkaline solution such as sodium hydroxide is performed. As the alkaline solution, for example, an aqueous solution containing 20 g / L to 60 g / L of sodium hydroxide and 10 g / L to 30 g / L of sodium carbonate can be used.
酸洗処理としては、例えば硫酸等の酸性水溶液に圧延銅箔を浸漬し、圧延銅箔の表面に残存するアルカリ成分の中和および銅酸化膜の除去を行う。酸性水溶液としては、例えば硫酸を120g/L以上180g/L以下含む水溶液や、クエン酸等の酸性水溶液、銅エッチング液等を用いることができる。 As the pickling treatment, for example, the rolled copper foil is immersed in an acidic aqueous solution such as sulfuric acid, and the alkali component remaining on the surface of the rolled copper foil is neutralized and the copper oxide film is removed. As the acidic aqueous solution, for example, an aqueous solution containing 120 g / L or more and 180 g / L or less of sulfuric acid, an acidic aqueous solution such as citric acid, a copper etching solution, or the like can be used.
続いて、銅めっき処理S22を行って、圧延銅箔上に銅めっき層を形成する。銅めっき処理S22としては、例えば硫酸銅及び硫酸を主成分とする酸性銅めっき浴にて圧延銅箔を陰極とする電解処理を施す。 Subsequently, a copper plating process S22 is performed to form a copper plating layer on the rolled copper foil. As the copper plating treatment S22, for example, an electrolytic treatment using a rolled copper foil as a cathode in an acidic copper plating bath mainly composed of copper sulfate and sulfuric acid is performed.
このとき、酸性銅めっき浴の液組成、液温、電解条件は、広い範囲から選択可能であり、特に限定されるものではないが、例えば下記の範囲から選択されることが望ましい。
硫酸銅五水和物:20g/L以上300g/L以下
硫酸:10g/L以上200g/L以下
液温:15℃以上50℃以下
電流密度:2A/dm2以上15A/dm2以下
処理時間:1秒以上20秒以下
At this time, the liquid composition, the liquid temperature, and the electrolysis conditions of the acidic copper plating bath can be selected from a wide range and are not particularly limited, but are preferably selected from the following ranges, for example.
Copper sulfate pentahydrate: 20 g / L or more and 300 g / L or less Sulfuric acid: 10 g / L or more and 200 g / L or less Liquid temperature: 15 ° C. or more and 50 ° C. or less Current density: 2 A / dm 2 or more and 15 A / dm 2 or less Processing time: 1 second to 20 seconds
また、より好ましくは、硫酸銅五水和物を50g/L以上300g/L以下、硫酸を30g/L以上200g/L以下などとすることができる。 More preferably, the copper sulfate pentahydrate can be 50 g / L or more and 300 g / L or less, the sulfuric acid can be 30 g / L or more and 200 g / L or less, and the like.
なお、このときの電流密度は限界電流密度末満である。つまり、所謂、ヤケめっきとはならない電流密度とする。このように、限界電流密度末満の電流密度とすることで、銅めっき層の表面の凹凸を小さくし、平滑化を図ることができる。但し、電流密度が高いほどめっき速度が高まり生産性は向上する。したがって、所定のめっき条件における限界電流密度未満、かつ、極力高い電流密度とすることが好ましい。 In addition, the current density at this time is full of the limit current density. In other words, the current density is not so-called burnt plating. In this way, by setting the current density at the end of the limit current density, unevenness on the surface of the copper plating layer can be reduced and smoothing can be achieved. However, the higher the current density, the higher the plating speed and the higher the productivity. Therefore, it is preferable that the current density be less than the limit current density under predetermined plating conditions and as high as possible.
このとき、処理時間を1秒以上20秒以下とすることで、例えば銅めっき層の厚さを0.1μm以上0.4μm以下とすることができる。 At this time, by setting the treatment time to 1 second or more and 20 seconds or less, for example, the thickness of the copper plating layer can be made 0.1 μm or more and 0.4 μm or less.
また、上述の酸性銅めっき浴には、所定の有機系添加剤を添加する。有機系添加剤としては、例えば、3−メルカプト−1−スルホン酸(以下、MPSともいう)やビス(3−スルホプロピル)ジスルフィド(以下、SPSともいう)等のメルカプト基を持つ化合物、ポリエチレングリコールやポリプロピレングリコール等の界面活性剤、ジアリルジアルキルアンモニウムアルキルサルフェイト等のレベリング剤、塩酸(HCl水溶液)等の塩化物イオンを所定の組み合わせで用いる。 In addition, a predetermined organic additive is added to the above-described acidic copper plating bath. Examples of organic additives include compounds having mercapto groups such as 3-mercapto-1-sulfonic acid (hereinafter also referred to as MPS) and bis (3-sulfopropyl) disulfide (hereinafter also referred to as SPS), polyethylene glycol And a surfactant such as polypropylene glycol, a leveling agent such as diallyldialkylammonium alkyl sulfate, and a chloride ion such as hydrochloric acid (HCl aqueous solution) are used in a predetermined combination.
具体的には、有機硫黄化合物としてビス(3−スルホプロピル)ジスルフィドの粉末試薬を5mg/L以上40mg/L以下、界面活性剤としてポリプロピレングリコールを1ml/以上4ml/L以下、レベリング剤としてジアリルジアルキルアンモニウムアルキルサルフェイトを0.1g/L以上2.0g/L以下、塩化物イオンとして塩酸を0.05ml/L以上0.3ml/L以下等を組み合わせた添加剤を用いることができる。 Specifically, a powder reagent of bis (3-sulfopropyl) disulfide as an organic sulfur compound is 5 mg / L to 40 mg / L, polypropylene glycol is 1 ml / more to 4 ml / L as a surfactant, and diallyldialkyl as a leveling agent. An additive in which ammonium alkyl sulfate is 0.1 g / L or more and 2.0 g / L or less and hydrochloric acid is used as chloride ion in combination of 0.05 ml / L or more and 0.3 ml / L or less can be used.
またこのとき、これらの有機系添加剤が予め配合された銅めっき用添加剤等を用いることも可能である。このような銅めっき用添加剤としては、例えば奥野製薬工業株式会社製のトップルチナLS、メルテックス株式会社製のカパーグリームCLX、荏原ユージライト株式会社製のCU−BRITETH−RIII、上村工業株式会社製のスルカップEUC等が挙げられる。これらのいずれかを所定濃度、所定の配合で、或いは、上述の各種添加剤と組み合わせて用いる。 At this time, it is also possible to use an additive for copper plating in which these organic additives are blended in advance. As such an additive for copper plating, for example, Top Lucina LS manufactured by Okuno Pharmaceutical Co., Ltd., Capper Grime CLX manufactured by Meltex Co., Ltd., CU-BRITETH-RIII manufactured by Sugawara Eugene Corporation, and manufactured by Uemura Industrial Co., Ltd. Sulcup EUC and the like. Any one of these is used at a predetermined concentration, a predetermined formulation, or in combination with the various additives described above.
このような銅めっき用添加剤を用いる例としては、有機硫黄化合物としてビス(3−スルホプロピル)ジスルフィドを10mg/L以上60mg/L以下、界面活性剤として例えばモル質量が3000g/mol程度のポリエチレングリコールを50mg/L以上300mg/L以下、レベリング剤として荏原ユージライト株式会社製のCU−BRITETH−RIIIを3ml/L以上10ml/L以下、塩化物イオンとして塩酸を0.05ml/L以上0.3ml/L以下を含む水溶液等を用いることができる。 As an example of using such an additive for copper plating, bis (3-sulfopropyl) disulfide as an organic sulfur compound is 10 mg / L or more and 60 mg / L or less, and as a surfactant, for example, polyethylene having a molar mass of about 3000 g / mol. 50 mg / L to 300 mg / L of glycol, 3 ml / L to 10 ml / L of CU-BRITETH-RIII manufactured by Sugawara Eugleite Co., Ltd. as a leveling agent, and 0.05 ml / L to 0.001 of hydrochloric acid as chloride ion. An aqueous solution containing 3 ml / L or less can be used.
これらの有機系添加剤は、銅めっき処理において、光沢剤や界面活性剤として用いられるものである。しかしながら、本発明者等は、これらの有機系添加剤を所定の組み合わせで用いることで、形成される銅めっき層が粗化抜けを抑制可能な状態となることを見いだした。このような状態には、銅めっき層の表面の凹部の深さが所定値以下となっていることが含まれる。つまり、少なくとも上述の有機系添加剤の働きにより、銅めっき層によって圧延銅箔のオイルピット等の窪みを埋める効果が高まり、銅めっき層の表面に存在し得る凹部のサイズを小さくできると考えられる。 These organic additives are used as brighteners and surfactants in the copper plating process. However, the present inventors have found that by using these organic additives in a predetermined combination, the formed copper plating layer can be in a state in which roughening omission can be suppressed. Such a state includes that the depth of the concave portion on the surface of the copper plating layer is a predetermined value or less. That is, it is considered that the effect of filling the depressions such as oil pits of the rolled copper foil with the copper plating layer is enhanced by the action of at least the above-described organic additive, and the size of the concave portion that can exist on the surface of the copper plating layer can be reduced. .
本発明者等は、特にメルカプト基を持つ化合物が圧延銅箔の窪みを優先的に埋める効果を促進しているのではないかと推測している。メルカプト基を持つ化合物のこのような働きを、塩化物イオンが更に高めるような相乗効果が起きている可能性もある。これらの有機系添加剤を用いない場合には、凹部のサイズを上述の範囲内に抑えることができないことからも、その効果は明らかである。 The present inventors speculate that a compound having a mercapto group may promote the effect of preferentially filling the depression of the rolled copper foil. There is a possibility that a synergistic effect is caused such that chloride ions further enhance such a function of the compound having a mercapto group. When these organic additives are not used, the effect is clear from the fact that the size of the recesses cannot be suppressed within the above range.
また、本発明者等は、これらの有機系添加剤を所定の組み合わせで用いることで、FPCの製造工程にて行う再結晶焼鈍工程において、圧延銅箔のみならず、銅めっき層も再結晶されることを見いだした。本発明者等によれば、銅めっき層の形成時、これらの有機系添加剤により、銅めっき層の再結晶に必要な何らかのエネルギーが、銅めっき層に蓄積されると推察される。このとき、界面活性剤が、銅めっき層のセルフアニール、つまり、常温で自然に再結晶が進む現象の起きる閾値を下げることで、銅めっき層が再結晶し易いような状態となっている可能性がある。これにより、少なくとも複合銅箔の耐屈曲性を更に高めることができる。また、銅めっき層が再結晶し易い状態を潜在的に備えることによる、粗化銅めっき層の粗化抜け抑制効果への影響は鋭意研究中である。 In addition, by using these organic additives in a predetermined combination, the present inventors recrystallized not only the rolled copper foil but also the copper plating layer in the recrystallization annealing process performed in the FPC manufacturing process. I found out. According to the present inventors, it is presumed that, when the copper plating layer is formed, any energy necessary for recrystallization of the copper plating layer is accumulated in the copper plating layer by these organic additives. At this time, the surfactant may be in a state in which the copper plating layer is easily recrystallized by lowering the threshold value at which the self-annealing of the copper plating layer, that is, the phenomenon in which recrystallization proceeds naturally at room temperature, is lowered. There is sex. Thereby, at least the bending resistance of the composite copper foil can be further improved. Moreover, the influence on the roughening omission suppression effect of the roughening copper plating layer by having potentially the state which a copper plating layer is easy to recrystallize is earnestly researching.
本発明者等が見いだした、これらの効果や用途、使用法は、これらの有機系添加剤の光沢剤や界面活性像等としての従来の効果や用途、使用法とは全く異なる新規なものである。 These effects, uses and usages found by the present inventors are completely different from the conventional effects, uses and usages of these organic additives such as brighteners and surface-active images. is there.
以上により、本実施形態に係る銅めっき層付き圧延銅箔が形成される。 As described above, the rolled copper foil with a copper plating layer according to the present embodiment is formed.
(粗化銅めっき層の形成工程S30)
次に、銅めっき層上に粗化銅めっき層を形成する粗化銅めっき層の形成工程S30を行う。なお、各処理の間には水洗処理を施す。
(Roughening copper plating layer forming step S30)
Next, a roughening copper plating layer forming step S30 for forming a roughening copper plating layer on the copper plating layer is performed. In addition, a water washing process is performed between each process.
すなわち、例えば硫酸銅及び硫酸を主成分とする酸性銅めっき浴にて圧延銅箔を陰極とする電解処理を施して、粗化粒を銅めっき層の表面に付着させる。 That is, for example, electrolytic treatment using a rolled copper foil as a cathode is performed in an acidic copper plating bath containing copper sulfate and sulfuric acid as main components, and the roughened grains are adhered to the surface of the copper plating layer.
このとき、酸性銅めっき浴の液組成、液温、電解条件は、広い範囲から選択可能であり、特に限定されるものではないが、例えば下記の範囲から選択されることが望ましい。
硫酸銅五水和物:20g/L以上300g/L以下
硫酸:10g/L以上200g/L以下
液温:15℃以上50℃以下
電流密度:20A/dm2以上100A/dm2以下
処理時間:0.3秒以上2.0秒未満
At this time, the liquid composition, the liquid temperature, and the electrolysis conditions of the acidic copper plating bath can be selected from a wide range and are not particularly limited, but are preferably selected from the following ranges, for example.
Copper sulfate pentahydrate: 20 g / L or more and 300 g / L or less Sulfuric acid: 10 g / L or more and 200 g / L or less Liquid temperature: 15 ° C. or more and 50 ° C. or less Current density: 20 A / dm 2 or more and 100 A / dm 2 or less Treatment time: 0.3 seconds or more and less than 2.0 seconds
なお、このときの電流密度は限界電流密度を超えた値である。つまり、所謂、ヤケめっきとなる電流値で粗化処理を行う。 The current density at this time is a value exceeding the limit current density. That is, the roughening process is performed with a current value that causes so-called burn plating.
また、処理時間を0.3秒以上2.0秒以下とすることで、例えば粗化粒を平均に均したとすると、0.05μm以上0.26μm未満の厚さに形成することができる。好ましくは、処理時間を0.3秒以上1.3秒以下として、粗化粒層を0.05μm以上0.25μm以下の厚さに形成する。 Further, by setting the treatment time to 0.3 seconds or more and 2.0 seconds or less, for example, if the roughened grains are averaged, the thickness can be formed to 0.05 μm or more and less than 0.26 μm. Preferably, the roughening grain layer is formed to a thickness of 0.05 μm or more and 0.25 μm or less with a treatment time of 0.3 second or more and 1.3 second or less.
また、上述の酸性銅めっき浴には、銅(Cu)以外の金属元素を添加することが望ましい。銅(Cu)以外の金属元素としては、例えば銅(Cu)に、鉄(Fe)、モリブデン(Mo)、ニッケル(Ni)、コバルト(Co)、クロム(Cr)、亜鉛(Zn)、タングステン(W)等が挙げられ、これらを少なくとも1種類以上、好ましくは2種類以上添加することができる。 Moreover, it is desirable to add metal elements other than copper (Cu) to the above-mentioned acidic copper plating bath. Examples of metal elements other than copper (Cu) include copper (Cu), iron (Fe), molybdenum (Mo), nickel (Ni), cobalt (Co), chromium (Cr), zinc (Zn), tungsten ( W) and the like, and at least one, preferably two or more of these can be added.
具体的には、硫酸鉄七水和物を10g/L以上30g/L以下含む水溶液等を用いることができる。 Specifically, an aqueous solution containing 10 g / L or more and 30 g / L or less of iron sulfate heptahydrate can be used.
粗化銅めっき層の形成工程S30では、上述の所定の状態を備える銅めっき層を下地として粗化処理を施す。したがって、粗化処理の際、粗化粒の無成長部分、つまり、粗化抜けが生じ難い。よって、良好な均一性を有する微細な粗化粒を含む粗化銅めっき層が形成される。このとき、粗化粒の最大粒径と最小粒径との差も低減される。 In the roughening copper plating layer forming step S30, a roughening process is performed using the copper plating layer having the predetermined state as a base. Therefore, during the roughening treatment, the non-growth portion of the roughened grains, that is, the roughening is not easily generated. Therefore, a roughened copper plating layer including fine roughened grains having good uniformity is formed. At this time, the difference between the maximum particle size and the minimum particle size of the roughened particles is also reduced.
以上により、銅めっき層上に粗化銅めっき層が形成される。 As described above, the roughened copper plating layer is formed on the copper plating layer.
(防錆層の形成工程S40)
次に、ニッケルめっき処理S41と、亜鉛めっき処理S42と、クロメート処理(3価クロム化成処理)S43と、シランカップリング処理S44と、を行って、粗化銅めっき層上に防錆層を形成する防錆層の形成工程S40を行う。係る防錆層は、後処理めっき層とも呼ばれる。なお、各処理の間には水洗処理を施す。
(Rust prevention layer forming step S40)
Next, nickel plating treatment S41, zinc plating treatment S42, chromate treatment (trivalent chromium chemical conversion treatment) S43, and silane coupling treatment S44 are performed to form a rust prevention layer on the roughened copper plating layer. The rust preventive layer forming step S40 is performed. Such a rust prevention layer is also called a post-treatment plating layer. In addition, a water washing process is performed between each process.
ニッケルめっき処理S41には、例えば硫酸ニッケル六水和物を280g/L以上320g/L以下、塩化ニッケルを40g/L以上50g/L以下、硼酸を40g/L以上60g/L以下含む水溶液を用いることができる。これにより、粗化銅めっき層上にニッケルめっき層が形成される。このとき、コバルト等の他の金属元素を含む化合物を加えて、ニッケル合金から構成されるニッケルめっき層を形成してもよい。 For the nickel plating treatment S41, for example, an aqueous solution containing 280 g / L to 320 g / L of nickel sulfate hexahydrate, 40 g / L to 50 g / L of nickel chloride, and 40 g / L to 60 g / L of boric acid is used. be able to. Thereby, a nickel plating layer is formed on the roughened copper plating layer. At this time, a nickel plating layer made of a nickel alloy may be formed by adding a compound containing other metal elements such as cobalt.
亜鉛めっき処理S42には、例えば硫酸亜鉛を80g/L以上120g/L以下、硫酸ナトリウムを60g/L以上80g/L以下含む水溶液を用いることができる。これにより、ニッケルめっき層上に亜鉛めっき層が形成される。このとき、他の金属元素を含む化合物を加えて、亜鉛合金から構成される亜鉛めっき層を形成してもよい。 For the galvanizing treatment S42, for example, an aqueous solution containing zinc sulfate of 80 g / L to 120 g / L and sodium sulfate of 60 g / L to 80 g / L can be used. Thereby, a zinc plating layer is formed on the nickel plating layer. At this time, a compound containing another metal element may be added to form a galvanized layer composed of a zinc alloy.
その後、クロメート処理S43により、3価クロムタイプの反応型クロメート液を用い、亜鉛めっき層上にクロメート処理層(3価クロム化成処理層)を形成する。また、シランカップリング処理S44として、シランカップリング液を用い、クロメート処理層上にシランカップリング処理層を形成する。 Thereafter, a chromate treatment S43 is used to form a chromate treatment layer (trivalent chromium conversion treatment layer) on the zinc plating layer using a trivalent chromium type reaction chromate solution. Further, as the silane coupling treatment S44, a silane coupling treatment layer is formed on the chromate treatment layer using a silane coupling liquid.
以上の条件下で時間をそれぞれ調整し、例えばニッケルめっき層を10nm以上50nm以下の厚さに形成し、亜鉛めっき層を1nm以上10nm以下の厚さに形成し、クロメート処理層を1nm以上10nm以下の厚さに形成する。そして更に、シランカップリング処理層をごく薄く形成する。 Each time is adjusted under the above conditions, for example, a nickel plating layer is formed to a thickness of 10 nm to 50 nm, a zinc plating layer is formed to a thickness of 1 nm to 10 nm, and a chromate treatment layer is 1 nm to 10 nm. The thickness is formed. Further, the silane coupling treatment layer is formed very thin.
以上により、ニッケルめっき層、亜鉛めっき層、クロメート処理層、シランカップリング処理層が、この順に粗化銅めっき層上に形成されてなる防錆層が、11nm以上70nm以下の厚さで形成される。 As described above, the nickel plating layer, the zinc plating layer, the chromate treatment layer, and the silane coupling treatment layer are formed in this order on the roughened copper plating layer, and the rust prevention layer is formed with a thickness of 11 nm to 70 nm. The
また、以上により、本実施形態に係る複合銅箔としての粗化箔が製造される。 Moreover, the roughening foil as composite copper foil which concerns on this embodiment is manufactured by the above.
(3)フレキシブルプリント配線板の製造方法
次に、本発明の一実施形態に係る複合銅箔を用いたフレキシブルプリント配線板(FPC)の製造方法について説明する。
(3) Manufacturing method of flexible printed wiring board Next, the manufacturing method of the flexible printed wiring board (FPC) using the composite copper foil which concerns on one Embodiment of this invention is demonstrated.
(再結晶焼鈍工程(CCL工程))
まずは、本実施形態に係る複合銅箔を所定のサイズに裁断し、例えばポリイミド樹脂フィルム等からなるFPCの基材と貼り合わせてCCL(Copper Clad Laminate)を形成する。すなわち、加熱処理により、基材の表面に設けられたエポキシ系接着剤等の接着剤を硬化させて、複合銅箔の粗化銅めっき層等を有する粗化面と基材とを密着させ接合する。加熱温度や時間は、接着剤や基材の硬化温度等に合わせて適宜選択することができ、例えば150℃以上400℃以下の温度で、1分以上120分以下、0.5MPa以上3.0MPa以下の圧力を加えながら貼り合わせを行うことができる。
(Recrystallization annealing process (CCL process))
First, the composite copper foil according to the present embodiment is cut into a predetermined size and bonded to an FPC base material made of, for example, a polyimide resin film to form a CCL (Copper Clad Laminate). That is, an adhesive such as an epoxy-based adhesive provided on the surface of the base material is cured by heat treatment, and the roughened surface having the roughened copper plating layer of the composite copper foil and the base material are adhered and bonded. To do. The heating temperature and time can be appropriately selected according to the curing temperature of the adhesive or the base material, for example, at a temperature of 150 ° C. or more and 400 ° C. or less, 1 minute or more and 120 minutes or less, 0.5 MPa or more and 3.0 MPa. Bonding can be performed while applying the following pressure.
上述のように、複合銅箔が備える圧延銅箔の耐熱性は、このときの加熱温度に合わせて調整されている。したがって、最終冷間圧延工程により加工硬化した状態の圧延銅箔が、上述の加熱により軟化し再結晶に調質される。つまり、基材に複合銅箔を貼り合わせるCCL工程が、複合銅箔の圧延銅箔に対する再結晶焼鈍工程を兼ねている。 As described above, the heat resistance of the rolled copper foil included in the composite copper foil is adjusted according to the heating temperature at this time. Therefore, the rolled copper foil that has been work-hardened in the final cold rolling step is softened by the above-described heating and tempered to recrystallization. That is, the CCL process of bonding the composite copper foil to the substrate also serves as a recrystallization annealing process for the rolled copper foil of the composite copper foil.
このように、CCL工程が再結晶焼鈍工程を兼ねることで、複合銅箔を基材に貼り合わせるまでの工程では、圧延銅箔が最終冷間圧延工程後の加工硬化した状態で複合銅箔を取り扱うことができ、複合銅箔を基材に貼り合わせる際の、伸び、しわ、折れ等の変形を起こり難くすることができる。 Thus, in the process until the composite copper foil is bonded to the substrate by the CCL process also serving as the recrystallization annealing process, the rolled copper foil is processed and cured after the final cold rolling process. It can be handled, and deformation such as elongation, wrinkling, and folding can be made difficult to occur when the composite copper foil is bonded to the base material.
また、上述のような圧延銅箔の軟化は、再結晶焼鈍工程により、調質された圧延銅箔、つまり、再結晶組織を有する圧延銅箔が得られたことを示している。これにより、耐屈曲性に優れた圧延銅箔を得ることができる。 The softening of the rolled copper foil as described above indicates that a tempered rolled copper foil, that is, a rolled copper foil having a recrystallized structure, was obtained by the recrystallization annealing process. Thereby, the rolled copper foil excellent in bending resistance can be obtained.
一方、圧延銅箔上の銅めっき層および粗化銅めっき層は、圧延銅箔の再結晶を妨げることのないよう、充分な薄さに形成されている。また、上述の銅めっき層の形成工程S20により形成されることで、銅めっき層自体が比較的再結晶し易い状態となっている。よって、この再結晶焼鈍工程において、銅めっき層の少なくとも一部が、圧延銅箔と共に再結晶していることも考えられる。 On the other hand, the copper plating layer and the roughened copper plating layer on the rolled copper foil are formed to be sufficiently thin so as not to prevent recrystallization of the rolled copper foil. In addition, the copper plating layer itself is relatively easily recrystallized by being formed by the above-described copper plating layer forming step S20. Therefore, it is conceivable that at least a part of the copper plating layer is recrystallized together with the rolled copper foil in this recrystallization annealing step.
以上により、複合銅箔の全体としての耐屈曲を向上させることができる。 As described above, the bending resistance of the composite copper foil as a whole can be improved.
(表面加工工程)
次に、基材に貼り合わせた複合銅箔に表面加工工程を施す。表面加工工程では、複合銅箔に例えばエッチング等の手法を用いて配線(リード)等を形成する配線形成工程と、配線と他の電子部品等との接続信頼性を向上させるためメッキ処理等の表面処理を施す表面処理工程と、配線等を保護するため配線上の一部を覆うようにソルダレジスト等の保護膜を形成する保護膜形成工程とを行う。
(Surface machining process)
Next, a surface processing step is performed on the composite copper foil bonded to the substrate. In the surface processing process, for example, a wiring forming process for forming wiring (lead) etc. on the composite copper foil by using a technique such as etching, and a plating process for improving the connection reliability between the wiring and other electronic parts, etc. A surface treatment process for performing a surface treatment and a protective film forming process for forming a protective film such as a solder resist so as to cover a part of the wiring to protect the wiring and the like are performed.
以上により、本実施形態に係る複合銅箔を用いたFPCが製造される。 As described above, the FPC using the composite copper foil according to the present embodiment is manufactured.
このとき、上述の所定の状態を備える銅めっき層と、これを下地とし、粗化抜けの低減された粗化銅めっき層を備える複合銅箔を用いるので、FPCにおいて露出した基材は、透過率を高いままに維持した状態にある。よって、配線の境界視認性に優れ、位置合わせの容易なFPCが得られる。 At this time, since the copper plating layer having the above-described predetermined state and the composite copper foil having the roughened copper plating layer with the roughening omission reduced as a base are used, the substrate exposed in the FPC is transparent. The rate remains high. Therefore, an FPC with excellent wiring boundary visibility and easy alignment can be obtained.
<本発明の他の実施形態>
以上、本発明の実施形態について具体的に説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
<Other Embodiments of the Present Invention>
As mentioned above, although embodiment of this invention was described concretely, this invention is not limited to the above-mentioned embodiment, It can change variously in the range which does not deviate from the summary.
例えば、上述の実施形態においては、銅めっき層上に粗化粒を付着させて粗化銅めっき層を形成するとしたが、粗化銅めっき層の形成工程では、更にカプセルめっき処理を行ってもよい。これにより、カプセル銅めっき層、所謂、被せめっき層によって粗化粒が覆われ、粗化粒をコブ状突起へと成長させることができ、また、粗化粒の脱落を抑制することができる。但し、粗化粒を微細なままに留めたい場合には、カプセル銅めっき処理は不要である。 For example, in the above-described embodiment, the roughened copper plating layer is formed by attaching the roughened grains on the copper plating layer. However, in the step of forming the roughened copper plating layer, the capsule plating process may be further performed. Good. As a result, the roughened grains are covered with the capsule copper plating layer, so-called covering plating layer, and the roughened grains can be grown into bump-like projections, and the dropout of the roughened grains can be suppressed. However, when it is desired to keep the roughened grains fine, the capsule copper plating process is unnecessary.
また、上述の実施形態においては、FPCの製造工程におけるCCL工程は圧延銅箔に対する再結晶焼鈍工程を兼ねることとしたが、再結晶焼鈍工程は、CCL工程とは別工程として行ってもよい。 In the above-described embodiment, the CCL process in the FPC manufacturing process also serves as a recrystallization annealing process for the rolled copper foil. However, the recrystallization annealing process may be performed as a separate process from the CCL process.
また、上述の実施形態においては、接着剤を介して複合銅箔と基材との貼り合わせを行う3層材CCLを製造することとしたが、接着剤を介さず直接貼り合わせを行って2層材CCLを製造してもよい。接着剤を用いない場合には、加熱・加圧により複合銅箔と基材とを直接圧着させてもよい。2層CCLの場合、例えば150℃以上400℃以下の温度で、1分以上30分以下、1MPa以上10MPa以下の圧力を加えながら貼り合わせを行うことができる。 Moreover, in the above-mentioned embodiment, although it decided to manufacture the 3 layer material CCL which bonds together composite copper foil and a base material via an adhesive agent, it bonds directly without using an adhesive agent, and 2 The layer material CCL may be manufactured. When an adhesive is not used, the composite copper foil and the base material may be directly pressure-bonded by heating and pressing. In the case of the two-layer CCL, for example, bonding can be performed at a temperature of 150 ° C. or higher and 400 ° C. or lower while applying a pressure of 1 MPa or higher and 30 minutes or lower and 1 MPa or higher and 10 MPa or lower.
また、上述の実施形態においては、複合銅箔はFPC用途に用いられることとしたが、複合銅箔の用途はこれに限られず、例えばリチウムイオン二次電池の負極集電銅箔や、プラズマディスプレイ用電磁波シールド、ICカードのアンテナ等、その他の用途にも用いることができる。 In the above-described embodiment, the composite copper foil is used for FPC, but the use of the composite copper foil is not limited to this. For example, the negative electrode current collector copper foil of a lithium ion secondary battery, or a plasma display It can also be used for other applications such as electromagnetic wave shields and IC card antennas.
また、上述の実施形態においては、上述のような所定の状態を有する銅めっき層を形成する方法として、所定の有機系添加剤を用いた電解めっき等に所定の効果が見いだされた。但し、これ以外にも、上述の所定の有機系添加剤と同様の効果を奏する添加剤を用いてもよい。あるいは、上述とは異なる他の銅めっき層の形成工程等により、上述のような所定の条件を有する銅めっき層を形成してもよい。 Further, in the above-described embodiment, a predetermined effect has been found in electrolytic plating using a predetermined organic additive as a method of forming a copper plating layer having a predetermined state as described above. However, other than this, an additive having the same effect as the above-described predetermined organic additive may be used. Or you may form the copper plating layer which has the above predetermined conditions by the formation process etc. of the other copper plating layer different from the above.
本発明の主眼は、あくまで、粗化銅めっき層の粗化抜けが低減されている点にある。また、これを可能とする構成として、複合銅箔の銅めっき層が所定状態となっており、特に銅めっき層の表面に存在し得る凹部が所定のサイズ以下となっている点と、銅めっき層が上述の再結晶焼鈍工程にて再結晶することが可能に構成されている点と、にある。 The main point of the present invention is that the roughening omission of the roughened copper plating layer is reduced. In addition, as a configuration that enables this, the copper plating layer of the composite copper foil is in a predetermined state, and in particular, the concave portion that may exist on the surface of the copper plating layer is a predetermined size or less, and the copper plating The layer is configured to be recrystallized in the above-described recrystallization annealing step.
次に、本発明に係る実施例について比較例とともに説明する。 Next, examples according to the present invention will be described together with comparative examples.
(1)銅めっき層付き圧延銅箔および粗化箔の製作
種々の評価を行うため、実施例1〜9および比較例1〜11に係る銅めっき層付き圧延銅箔および粗化箔を製作した。
(1) Production of rolled copper foil with copper plating layer and roughened foil In order to perform various evaluations, the rolled copper foil with copper plated layer and the roughened foil according to Examples 1 to 9 and Comparative Examples 1 to 11 were produced. .
(実施例1)
まずは、実施例1に係る銅めっき層付き圧延銅箔および粗化箔の製作過程について以下に説明する。
Example 1
First, the production process of the rolled copper foil with a copper plating layer and the roughened foil according to Example 1 will be described below.
原箔としては、タフピッチ銅(TPC)からなる厚さが11μmの圧延銅箔を用いた。また、この圧延銅箔の表面をレーザ顕微鏡にて無作為に10点測定したところ、表面の凹部の深さの平均値は0.7μmであった。 As the raw foil, a rolled copper foil having a thickness of 11 μm made of tough pitch copper (TPC) was used. Further, when the surface of this rolled copper foil was measured at random at 10 points with a laser microscope, the average value of the depths of the concave portions on the surface was 0.7 μm.
次に、電解脱脂および酸洗処理を施して圧延銅箔の表面を清浄化した。電解脱脂としては、水酸化ナトリウム40g/L、炭酸ナトリウム20g/Lを含む水溶液中にて、液温40℃、電流密度10A/dm2の設定で10秒間の処理を行った。圧延銅箔を水洗した後、酸洗として、硫酸150g/Lを含む水溶液中にて液温25℃で10秒間浸漬した。その後、圧延銅箔を更に水洗した。 Next, electrolytic degreasing and pickling treatment were performed to clean the surface of the rolled copper foil. As electrolytic degreasing, treatment for 10 seconds was performed in an aqueous solution containing 40 g / L of sodium hydroxide and 20 g / L of sodium carbonate at a liquid temperature of 40 ° C. and a current density of 10 A / dm 2 . After the rolled copper foil was washed with water, it was immersed in an aqueous solution containing 150 g / L of sulfuric acid at a liquid temperature of 25 ° C. for 10 seconds as pickling. Thereafter, the rolled copper foil was further washed with water.
次に、厚さ0.1μmの銅めっき層を形成した。この工程では、硫酸銅五水和物を170g/L、硫酸を70g/L、有機硫黄化合物としてビス(3−スルホプロピル)ジスルフィド(SPS)の粉末試薬を30mg/L、界面活性剤としてポリエチレングリコール3000(モル質量が3000g/molのポリエチレングリコール)を200mg/L、レベリング剤として荏原ユージライト株式会社製のCU−BRITETH−RIII−Cを5ml/L、塩化物イオンとして塩酸(HCl水溶液)を0.15ml/Lを含む水溶液を用いた。めっき条件としては、液温35℃、電流密度7A/dm2の設定で10秒間とした。その後、圧延銅箔を水洗した。 Next, a copper plating layer having a thickness of 0.1 μm was formed. In this step, 170 g / L of copper sulfate pentahydrate, 70 g / L of sulfuric acid, 30 mg / L of bis (3-sulfopropyl) disulfide (SPS) powder reagent as an organic sulfur compound, and polyethylene glycol as a surfactant 3000 (polyethylene glycol having a molar mass of 3000 g / mol) is 200 mg / L, CU-BRITETH-RIII-C manufactured by Sugawara Eugene Co., Ltd. is used as a leveling agent, 5 ml / L, and hydrochloric acid (HCl aqueous solution) is used as chloride ions. An aqueous solution containing 15 ml / L was used. The plating conditions were set at a liquid temperature of 35 ° C. and a current density of 7 A / dm 2 for 10 seconds. Thereafter, the rolled copper foil was washed with water.
以上により、実施例1に係る銅めっき層付き圧延銅箔が製作された。 The rolled copper foil with a copper plating layer concerning Example 1 was manufactured by the above.
続いて、銅めっき層上に、粗化粒を形成してなる粗化銅めっき層を形成する。 Subsequently, a roughened copper plating layer formed by forming roughened grains is formed on the copper plating layer.
まずは、平均に均したときに0.05μmの厚さ相当となる粗化銅めっき層を形成した。この工程では、硫酸銅五水和物を100g/L、硫酸を70g/L、硫酸鉄七水和物20g/Lを含む水溶液を用いた。めっき条件としては、液温30℃、電流密度60A/dm2の設定で0.5秒間とした。その後、圧延銅箔を水洗した。 First, a roughened copper plating layer corresponding to a thickness of 0.05 μm was formed when averaged. In this step, an aqueous solution containing 100 g / L of copper sulfate pentahydrate, 70 g / L of sulfuric acid, and 20 g / L of iron sulfate heptahydrate was used. The plating conditions were set at a liquid temperature of 30 ° C. and a current density of 60 A / dm 2 for 0.5 seconds. Thereafter, the rolled copper foil was washed with water.
次に、粗化銅めっき層上に、ニッケルめっき層、亜鉛めっき層、クロメート処理層、シランカップリング処理層をこの順に形成してなる防錆層を形成する。 Next, a rust prevention layer is formed by forming a nickel plating layer, a zinc plating layer, a chromate treatment layer, and a silane coupling treatment layer in this order on the roughened copper plating layer.
まずは、厚さ20nmのニッケルめっき層を形成した。この工程では、硫酸ニッケル六水和物300g/L、塩化ニッケル45g/L、硼酸50g/Lを含む水溶液を用いた。めっき条件としては、液温50℃、電流密度2A/dm2の設定で5秒間とした。その後、圧延銅箔を水洗した。 First, a nickel plating layer having a thickness of 20 nm was formed. In this step, an aqueous solution containing nickel sulfate hexahydrate 300 g / L, nickel chloride 45 g / L, and boric acid 50 g / L was used. The plating conditions were set at a liquid temperature of 50 ° C. and a current density of 2 A / dm 2 for 5 seconds. Thereafter, the rolled copper foil was washed with water.
次に、厚さ7nmの亜鉛めっき層を形成した。この工程では、硫酸亜鉛90g/L、硫酸ナトリウム70g/Lを含む水溶液を用いた。めっき条件としては、液温30℃、電流密度1.5A/dm2の設定で4秒間とした。その後、圧延銅箔を水洗した。 Next, a zinc plating layer having a thickness of 7 nm was formed. In this step, an aqueous solution containing 90 g / L of zinc sulfate and 70 g / L of sodium sulfate was used. The plating conditions were set to a liquid temperature of 30 ° C. and a current density of 1.5 A / dm 2 for 4 seconds. Thereafter, the rolled copper foil was washed with water.
次に、3価クロム化成処理を行って厚さ5nmのクロメート処理層を形成した。その後、5%の3−アミノプロピルトリメトキシシランを含有するシランカップリング液に、25℃で5秒間浸漬した後、直ちに200℃の温度で乾燥し、シランカップリング処理層を形成した。 Next, a trivalent chromium chemical conversion treatment was performed to form a 5 nm thick chromate treatment layer. Thereafter, the film was immersed in a silane coupling solution containing 5% 3-aminopropyltrimethoxysilane at 25 ° C. for 5 seconds and immediately dried at a temperature of 200 ° C. to form a silane coupling treatment layer.
上述の各層を形成した面、つまり、この後、ポリイミド樹脂フィルムと貼り合わされる面と反対側の面には、上述のような各層は形成せず、防錆層の一部、つまり、ニッケルめっき層と亜鉛めっき層とクロメート処理層とを、上述の手法及び手順と同様に形成した。 The above-mentioned layers are not formed on the surface on which each of the above-described layers is formed, that is, the surface opposite to the surface to be bonded to the polyimide resin film, and a part of the rust-proof layer, that is, nickel plating. A layer, a galvanized layer, and a chromate treatment layer were formed in the same manner as described above.
以上により、実施例1に係る粗化箔が製作された。 Thus, the roughened foil according to Example 1 was manufactured.
(実施例2〜9)
続いて、実施例2〜9に係る銅めっき層付き圧延銅箔および粗化箔を製作した。
(Examples 2-9)
Then, the rolled copper foil with a copper plating layer and roughened foil which concern on Examples 2-9 were manufactured.
実施例2,3に係る銅めっき層付き圧延銅箔は、銅めっき層の厚さをそれぞれ0.3μm、0.6μmとした以外は、上述の実施例1と同様の条件で製作した。また、実施例2,3に係る粗化箔は、上述の実施例1と同様の条件で製作した。 The rolled copper foil with a copper plating layer according to Examples 2 and 3 was manufactured under the same conditions as in Example 1 except that the thickness of the copper plating layer was 0.3 μm and 0.6 μm, respectively. Further, the roughened foils according to Examples 2 and 3 were manufactured under the same conditions as in Example 1 described above.
実施例4に係る銅めっき層付き圧延銅箔は、上述の実施例1と同一の条件で製作した。また、実施例4に係る粗化箔は、粗化銅めっき層を平均に均したときに0.11μmの厚さ相当とすることで粗化粒を大きく形成した以外は、上述の実施例1と同様の条件で製作した。 The rolled copper foil with a copper plating layer according to Example 4 was manufactured under the same conditions as in Example 1 described above. Moreover, the roughened foil according to Example 4 was the same as that of Example 1 described above except that the roughened grains were largely formed by setting the roughened copper plating layer to an average thickness equivalent to 0.11 μm. Produced under the same conditions.
実施例5,6に係る銅めっき層付き圧延銅箔は、銅めっき層の厚さをそれぞれ0.3μm、0.6μmとした以外は、上述の実施例1と同様の条件で製作した。また、実施例5,6に係る粗化箔は、上述の実施例4と同様の条件で製作した。 The rolled copper foil with a copper plating layer according to Examples 5 and 6 was manufactured under the same conditions as in Example 1 except that the thickness of the copper plating layer was 0.3 μm and 0.6 μm, respectively. Further, the roughened foils according to Examples 5 and 6 were produced under the same conditions as in Example 4 described above.
実施例7に係る銅めっき層付き圧延銅箔は、上述の実施例1と同一の条件で製作した。また、実施例7に係る粗化箔は、粗化銅めっき層を平均に均したときに0.25μmの厚さ相当とすることで粗化粒を大きく形成した以外は、上述の実施例1と同様の条件で製作した。 The rolled copper foil with a copper plating layer according to Example 7 was manufactured under the same conditions as in Example 1 described above. Moreover, the roughening foil which concerns on Example 7 is above-mentioned Example 1 except having formed the roughening grain largely by making it equivalent to the thickness of 0.25 micrometer when a roughening copper plating layer is averaged. Produced under the same conditions.
実施例8,9に係る銅めっき層付き圧延銅箔は、銅めっき層の厚さをそれぞれ0.3μm、0.6μmとした以外は、上述の実施例1と同様の条件で製作した。また、実施例8,9に係る粗化箔は、上述の実施例7と同様の条件で製作した。 The rolled copper foil with a copper plating layer according to Examples 8 and 9 was manufactured under the same conditions as in Example 1 except that the thickness of the copper plating layer was 0.3 μm and 0.6 μm, respectively. Further, the roughened foils according to Examples 8 and 9 were produced under the same conditions as in Example 7 described above.
(比較例1〜11)
次に、比較例1〜11に係る銅めっき層付き圧延銅箔および粗化箔を製作した。
(Comparative Examples 1-11)
Next, the rolled copper foil with a copper plating layer and roughened foil which concern on Comparative Examples 1-11 were manufactured.
比較例1に係る銅めっき層付き圧延銅箔は、上述の実施例2と同様の条件で製作した。また、比較例1に係る粗化箔は、粗化銅めっき層を平均に均したときに0.03μmの厚さ相当とすることで粗化粒を小さく形成した以外は、上述の実施例1と同様の条件で製作した。 The rolled copper foil with a copper plating layer according to Comparative Example 1 was manufactured under the same conditions as in Example 2 described above. Moreover, the roughening foil which concerns on the comparative example 1 was above-mentioned Example 1 except having formed the roughening grain small by making it equivalent to the thickness of 0.03 micrometer when the roughening copper plating layer was averaged. Produced under the same conditions.
比較例2に係る銅めっき層付き圧延銅箔においては、有機系添加剤を添加せずに銅めっき層の形成を行った以外は、上述の実施例2と同様の条件で製作した。また、比較例2に係る粗化箔は、上述の比較例1と同様の条件で製作した。 The rolled copper foil with a copper plating layer according to Comparative Example 2 was manufactured under the same conditions as in Example 2 except that the copper plating layer was formed without adding an organic additive. Moreover, the roughened foil which concerns on the comparative example 2 was manufactured on the conditions similar to the above-mentioned comparative example 1.
比較例3に係る銅めっき層付き圧延銅箔においては、上述の実施例2と同様の条件で製作した。また、比較例3に係る粗化箔は、硫酸鉄七水和物を含まないめっき液にて粗化銅めっき層の形成を行った以外は、上述の比較例1と同様の条件で製作した。 The rolled copper foil with a copper plating layer according to Comparative Example 3 was manufactured under the same conditions as in Example 2 described above. Moreover, the roughening foil which concerns on the comparative example 3 was manufactured on the conditions similar to the above-mentioned comparative example 1 except having formed the roughening copper plating layer with the plating solution which does not contain iron sulfate heptahydrate. .
比較例4に係る銅めっき層付き圧延銅箔は、銅めっき層を形成しないこととした以外は、上述の実施例1と同様の条件で製作した。また、比較例4に係る粗化箔は、上述の比較例3と同様の条件で製作した。 The rolled copper foil with a copper plating layer according to Comparative Example 4 was manufactured under the same conditions as in Example 1 except that the copper plating layer was not formed. The roughened foil according to Comparative Example 4 was manufactured under the same conditions as in Comparative Example 3 described above.
比較例5に係る銅めっき層付き圧延銅箔は、上述の実施例2と同様の条件で製作した。また、比較例5に係る粗化箔は、粗化銅めっき層を平均に均したときに0.35μmの厚さ相当とすることで粗化粒を大きく形成した以外は、上述の実施例1と同様の条件で製作した。 The rolled copper foil with a copper plating layer according to Comparative Example 5 was manufactured under the same conditions as in Example 2 described above. Moreover, the roughening foil which concerns on the comparative example 5 is above-mentioned Example 1 except having formed the roughening grain largely by making it equivalent to the thickness of 0.35 micrometer when the roughening copper plating layer is averaged. Produced under the same conditions.
比較例6に係る銅めっき層付き圧延銅箔においては、有機系添加剤を添加せずに銅めっき層の形成を行った以外は、上述の実施例2と同様の条件で製作した。また、比較例6に係る粗化箔は、上述の比較例5と同様の条件で製作した。 The rolled copper foil with a copper plating layer according to Comparative Example 6 was manufactured under the same conditions as in Example 2 except that the copper plating layer was formed without adding an organic additive. The roughened foil according to Comparative Example 6 was manufactured under the same conditions as in Comparative Example 5 described above.
比較例7に係る銅めっき層付き圧延銅箔においては、上述の実施例2と同様の条件で製作した。また、比較例7に係る粗化箔は、硫酸鉄七水和物を含まないめっき液にて粗化銅めっき層の形成を行った以外は、上述の比較例5と同様の条件で製作した。 The rolled copper foil with a copper plating layer according to Comparative Example 7 was manufactured under the same conditions as in Example 2 described above. Moreover, the roughening foil which concerns on the comparative example 7 was manufactured on the conditions similar to the above-mentioned comparative example 5 except having formed the roughening copper plating layer with the plating solution which does not contain iron sulfate heptahydrate. .
比較例8に係る銅めっき層付き圧延銅箔は、銅めっき層を形成しないこととした以外は、上述の実施例1と同様の条件で製作した。また、比較例8に係る粗化箔は、上述の比較例5と同様の条件で製作した。 The rolled copper foil with a copper plating layer according to Comparative Example 8 was manufactured under the same conditions as in Example 1 except that the copper plating layer was not formed. Further, the roughened foil according to Comparative Example 8 was manufactured under the same conditions as in Comparative Example 5 described above.
比較例9に係る銅めっき層付き圧延銅箔においては、有機系添加剤を添加せずに銅めっき層の形成を行った以外は、上述の実施例2と同様の条件で製作した。また、比較例9に係る粗化箔は、上述の実施例4と同様の条件で製作した。 The rolled copper foil with a copper plating layer according to Comparative Example 9 was manufactured under the same conditions as in Example 2 except that the copper plating layer was formed without adding an organic additive. The roughened foil according to Comparative Example 9 was manufactured under the same conditions as in Example 4 described above.
比較例10に係る銅めっき層付き圧延銅箔においては、上述の実施例2と同様の条件で製作した。また、比較例10に係る粗化箔は、硫酸鉄七水和物を含まないめっき液にて粗化銅めっき層の形成を行った以外は、上述の実施例4と同様の条件で製作した。 The rolled copper foil with a copper plating layer according to Comparative Example 10 was manufactured under the same conditions as in Example 2 above. Moreover, the roughening foil which concerns on the comparative example 10 was manufactured on the conditions similar to the above-mentioned Example 4 except having formed the roughening copper plating layer with the plating solution which does not contain iron sulfate heptahydrate. .
比較例11に係る銅めっき層付き圧延銅箔は、銅めっき層を形成しないこととした以外は、上述の実施例1と同様の条件で製作した。また、比較例11に係る粗化箔は、上述の実施例4と同様の条件で製作した。 The rolled copper foil with a copper plating layer according to Comparative Example 11 was manufactured under the same conditions as in Example 1 except that the copper plating layer was not formed. The roughened foil according to Comparative Example 11 was manufactured under the same conditions as in Example 4 described above.
(2)銅めっき層付き圧延銅箔および粗化箔の評価
上述のように製作した実施例1〜9および比較例1〜11に係る銅めっき層付き圧延銅箔および粗化箔について、以下の評価を行った。
(2) Evaluation of rolled copper foil with copper plating layer and roughened foil About rolled copper foil with copper plated layer and roughened foil according to Examples 1-9 and Comparative Examples 1-11 manufactured as described above, Evaluation was performed.
(表面粗さ測定)
実施例1〜9および比較例1〜11に係る銅めっき層付き圧延銅箔の表面粗さ測定を行った。
(Surface roughness measurement)
The surface roughness of the rolled copper foil with a copper plating layer according to Examples 1 to 9 and Comparative Examples 1 to 11 was measured.
各銅めっき層付き圧延銅箔に対する表面粗さ測定は、レーザ顕微鏡にて、倍率500倍の視野中に存在する銅めっき層の表面に存在する凹部の深さを測定して行った。1回あたりの測定では、無作為に選んだ約200μmの測定長の中で最も高い部分を基準点とし、係る測定長の中に存在する凹部について、基準点からどれだけ窪んでいるかを測定した。これを5回繰り返し、凹部の深さの合計値を凹部の個数で割った値を、その銅めっき層における凹部の深さとした。 The surface roughness measurement for each rolled copper foil with a copper plating layer was carried out by measuring the depth of the recesses present on the surface of the copper plating layer existing in the field of view of magnification 500 times with a laser microscope. In each measurement, the highest part of the measurement length of approximately 200 μm selected at random was used as a reference point, and the degree of depression from the reference point was measured for the concave portion present in the measurement length. . This was repeated 5 times, and the value obtained by dividing the total depth of the recesses by the number of recesses was taken as the recess depth in the copper plating layer.
(粗化粒の粒径測定)
実施例1〜9および比較例1〜11に係る粗化箔が備える粗化粒の粒径を測定した。
(Measurement of grain size of roughened grains)
The particle diameters of the roughened grains included in the roughened foils according to Examples 1 to 9 and Comparative Examples 1 to 11 were measured.
SEMにて各粗化箔の粗化面を観察し、無作為に100個の粗化粒の粒径を測定した。次に、これら100個の平均粒径を求めた。また、これら100個のうちの最大粒径と最小粒径との粒径差の比率を、以下の式により算出した。
粒径差の比率(%)=(1−最小粒径/最大粒径)×100
The roughened surface of each roughened foil was observed with SEM, and the particle size of 100 roughened grains was measured randomly. Next, these 100 average particle diameters were determined. Moreover, the ratio of the particle size difference between the maximum particle size and the minimum particle size among these 100 particles was calculated by the following equation.
Ratio of particle size difference (%) = (1−minimum particle size / maximum particle size) × 100
これにより求められる各数値は防錆層込みの値であるが、防錆層は充分に薄いので、その影響は無視できる。 Each numerical value obtained by this is a value including the rust prevention layer, but the influence of the rust prevention layer is negligible because it is sufficiently thin.
(粗化抜けの面積測定)
実施例1〜9および比較例1〜11に係る粗化箔の粗化面における粗化粒の無成長部分、つまり、粗化抜け部分の面積を測定した。
(Measurement of roughening area)
The non-growth portion of the roughened grains on the roughened surface of the roughened foils according to Examples 1 to 9 and Comparative Examples 1 to 11, that is, the area of the roughened missing portion was measured.
SEMにて各粗化箔の粗化面を倍率1万倍で観察し、粗化粒が認められない部分を粗化抜けが起きた部分と判定し、粗化抜け部分の面積をSEM画像から求め、倍率1万倍の視野内における粗化抜け面積の総和を求めた。 The roughened surface of each roughened foil was observed at a magnification of 10,000 times with an SEM, the portion where no roughened grains were observed was determined as the portion where roughening was lost, and the area of the roughened portion was determined from the SEM image. The total sum of the roughened areas in the field of view with a magnification of 10,000 was obtained.
なお、このとき、参考までに、各粗化箔の断面の観察も行った。すなわち、日立製作所製のイオンミリング装置で、圧延方向と垂直にカットした各粗化箔の断面をSEMにより観察した。 At this time, the cross-section of each roughened foil was also observed for reference. That is, the cross section of each roughened foil cut perpendicularly to the rolling direction was observed with an SEM using an ion milling device manufactured by Hitachi.
(PI透過率の測定)
実施例1〜9および比較例1〜11に係る粗化箔を貼り合わせたポリイミド(PI)樹脂フィルムにおける光の透過率を測定した。
(Measurement of PI transmittance)
The light transmittance of the polyimide (PI) resin films to which the roughened foils according to Examples 1 to 9 and Comparative Examples 1 to 11 were bonded was measured.
まずは、真空プレス機により、温度300℃、圧力5MPa、15分間の条件で、各粗化箔の粗化面をポリイミド樹脂フィルムの両面に貼り合せた。このとき使用したのは、株式会社カネカ製のピクシオ50μm厚のポリイミド樹脂フィルムである。ポリイミド樹脂フィルムおよび粗化箔のサイズは共に、縦100mm×横60mmとした。貼り合わせ条件は、粗化箔が完全に焼鈍されて鈍り特性を有することとなる熱量が付与され、かつ、ポリイミド樹脂フィルムメーカーの推奨条件を満たすよう設定した。 First, the roughened surface of each roughened foil was bonded to both surfaces of the polyimide resin film with a vacuum press machine under conditions of a temperature of 300 ° C. and a pressure of 5 MPa for 15 minutes. At this time, a Pixio 50 μm-thick polyimide resin film manufactured by Kaneka Corporation was used. Both the polyimide resin film and the roughened foil were 100 mm long and 60 mm wide. The bonding conditions were set so that the heat that would cause the roughened foil to be completely annealed and to have dull characteristics was provided, and the recommended conditions of the polyimide resin film manufacturer were satisfied.
次に、ポリイミド樹脂フィルムに貼り合わされた各粗化箔に対し、塩化第二鉄のスプレーエッチングにて処理を行った。これにより、ポリイミド樹脂フィルム両面の粗化箔が完全に除去されて、下地のポリイミド樹脂フィルムが両面共に露出した状態となった。 Next, each roughened foil bonded to the polyimide resin film was processed by ferric chloride spray etching. As a result, the roughened foil on both sides of the polyimide resin film was completely removed, and the underlying polyimide resin film was exposed on both sides.
露出したポリイミド樹脂フィルムに対し、島津製作所製の分光光度計UV−1800を用いて波長700nmにおける光の透過率を測定した。FPCの実装時に使用するCCDカメラの波長は、通常500nm〜800nmであることから、700nmを試験波長として選定した。波長700nmの光の透過率が50%以上であることが好ましい。 The transmittance of light at a wavelength of 700 nm was measured for the exposed polyimide resin film using a spectrophotometer UV-1800 manufactured by Shimadzu Corporation. Since the wavelength of the CCD camera used when mounting the FPC is normally 500 nm to 800 nm, 700 nm was selected as the test wavelength. The transmittance of light having a wavelength of 700 nm is preferably 50% or more.
(銅箔/PIの隙間測定)
実施例1〜9および比較例1〜11に係る粗化箔を貼り合わせたポリイミド樹脂フィルムにおける粗化箔との隙間を測定した。
(Copper foil / PI gap measurement)
The clearance gap between the roughening foil in the polyimide resin film which bonded the roughening foil which concerns on Examples 1-9 and Comparative Examples 1-11 was measured.
上述と同様の条件で、各粗化箔をポリイミド樹脂フィルムの両面に貼り合わせ、日立製作所製のイオンミリング装置でカットした断面をSEMにより観察した。任意に選んだ一方の貼り合わせ面における観察幅200μmの間に、倍率1万倍で視認できる大きさの隙間の個数を数えた。隙間の個数は2個以下であることが好ましい。 Under the same conditions as described above, each roughened foil was bonded to both sides of the polyimide resin film, and a cross section cut with an ion milling device manufactured by Hitachi Ltd. was observed with an SEM. Between the observation width of 200 μm on one arbitrarily selected bonding surface, the number of gaps having a size that can be visually recognized at a magnification of 10,000 times was counted. The number of gaps is preferably 2 or less.
(ピール強度の測定)
実施例1〜9および比較例1〜11に係る粗化箔を貼り合わせたポリイミド樹脂フィルムにおける粗化箔のピール強度を測定し、粗化箔とポリイミド樹脂フィルムとの密着性を評価した。以下の測定方法によれば、ピール強度が高いほど密着性が高いといえる。
(Measurement of peel strength)
The peeling strength of the roughening foil in the polyimide resin film which bonded the roughening foil which concerns on Examples 1-9 and Comparative Examples 1-11 was measured, and the adhesiveness of roughening foil and a polyimide resin film was evaluated. According to the following measurement method, it can be said that the higher the peel strength, the higher the adhesion.
すなわち、上述と同様の条件で、各粗化箔をポリイミド樹脂フィルムの両面に貼り合わせた。次に、一方の貼り合わせ面においては粗化箔の圧延銅箔側の上面に幅1mmのマスキングテープを貼り、もう一方の貼り合わせ面においては圧延銅箔の全面にマスキングテープを貼り合せた。この状態で、塩化第二鉄のスプレーエッチングにて処理を行った。これにより、一方の貼り合わせ面では、マスキングテープによってマスキングされた領域以外の粗化箔が除去されて、下地のポリイミド樹脂フィルムが露出した状態となった。マスキングテープにより全面が保護されたもう一方の面側では、粗化箔がエッチングされることなく残った状態である。 That is, each roughened foil was bonded on both surfaces of the polyimide resin film under the same conditions as described above. Next, a masking tape having a width of 1 mm was applied to the upper surface of the roughened foil on the rolled copper foil side on one bonding surface, and a masking tape was bonded to the entire surface of the rolled copper foil on the other bonding surface. In this state, the treatment was performed by ferric chloride spray etching. Thereby, in one bonding surface, the roughening foil other than the area | region masked with the masking tape was removed, and it became the state which the base polyimide resin film exposed. On the other surface side where the entire surface is protected by the masking tape, the roughened foil remains without being etched.
粗化箔が貼り合わせられ、一部が露出したポリイミド樹脂フィルムを、50℃の3%希硫酸に1時間浸漬させ、浸漬前後のピール強度を測定した。係る測定では、エッチングされて1mm幅となった粗化箔を、ポリイミド樹脂フィルムから90°の角度で引き剥がすときに要する力をピール強度として測定した。また、浸漬前(常態)のピール強度に対する浸漬後(硫酸浸漬)のピール強度の比率(%)を算出し、薬品耐久性、つまり、浸漬後にどれだけピール強度が低下したかを評価した。常態でのピール強度は1.0N/nm以上であることが好ましく、薬品耐久性は80%以上であることが好ましい。 The polyimide resin film on which the roughened foil was bonded and a part thereof was exposed was immersed in 3% diluted sulfuric acid at 50 ° C. for 1 hour, and the peel strength before and after immersion was measured. In this measurement, the force required to peel off the roughened foil that had been etched to a width of 1 mm from the polyimide resin film at an angle of 90 ° was measured as the peel strength. Moreover, the ratio (%) of the peel strength after immersion (sulfuric acid immersion) with respect to the peel strength before immersion (normal state) was calculated, and chemical durability, that is, how much the peel strength decreased after immersion was evaluated. The peel strength in the normal state is preferably 1.0 N / nm or more, and the chemical durability is preferably 80% or more.
(境界視認性の評価)
実施例1〜9および比較例1〜11に係る粗化箔を貼り合わせたポリイミド樹脂フィルムにおける粗化箔の境界視認性を評価した。
(Evaluation of boundary visibility)
The boundary visibility of the roughening foil in the polyimide resin film which bonded the roughening foil which concerns on Examples 1-9 and Comparative Examples 1-11 was evaluated.
上述と同様の条件で、各粗化箔をポリイミド樹脂フィルムの両面に貼り合わせた。次に、一方の貼り合わせ面においては粗化箔の圧延銅箔側の上面に幅1mmのマスキングテープを貼り、もう一方の貼り合わせ面においては圧延銅箔の全面を露出したままとした。この状態で、塩化第二鉄のスプレーエッチングにて処理を行った。これにより、一方の貼り合わせ面では、マスキングテープによってマスキングされた領域以外の粗化箔が除去されて、下地のポリイミド樹脂フィルムが露出した状態となった。もう一方の面側では、粗化箔が完全に除去され、下地のポリイミド樹脂フィルムが全面露出した状態となった。 Each roughened foil was bonded to both surfaces of the polyimide resin film under the same conditions as described above. Next, a masking tape having a width of 1 mm was applied to the upper surface of the roughened foil on the side of the rolled copper foil on one bonding surface, and the entire surface of the rolled copper foil was left exposed on the other bonding surface. In this state, the treatment was performed by ferric chloride spray etching. Thereby, in one bonding surface, the roughening foil other than the area | region masked with the masking tape was removed, and it became the state which the base polyimide resin film exposed. On the other side, the roughened foil was completely removed, and the underlying polyimide resin film was exposed.
エッチングされて1mm幅となった粗化箔の側を裏面として、ポリイミド樹脂フィルムが全面露出した側を金属顕微鏡にて観察した。このように、ポリイミド樹脂フィルムを透かして見たときに、1mm幅となった粗化箔の端部、つまり、粗化箔とポリイミド樹脂フィルムとの境界の視認性を評価した。境界の濃淡が目視にて明瞭に確認できるか否かを、FPCの実装時にCCDカメラによる位置合わせが可能か否かの判断基準とした。明瞭に確認できれば良判定(○)とし、確認できなければ不可判定(×)とした。 The side of the roughened foil that had been etched to a width of 1 mm was taken as the back surface, and the side on which the polyimide resin film was exposed was observed with a metallographic microscope. Thus, when the polyimide resin film was seen through, the visibility of the edge of the roughened foil having a width of 1 mm, that is, the boundary between the roughened foil and the polyimide resin film was evaluated. Whether or not the density of the boundary can be clearly confirmed by visual observation was used as a criterion for determining whether or not the alignment by the CCD camera is possible when the FPC is mounted. If it could be confirmed clearly, it was judged as good (◯), and if it could not be confirmed, it was judged as impossible (×).
なお、以上の評価における判断基準等は、本実施例における良否判定の一応の目安として定めたものであり、実際に製品となる粗化箔やFPCの形態、求められる用途等によって、各評価における適否の範囲は適宜変わり得る。 In addition, the judgment criteria etc. in the above evaluation are established as a rough standard for the pass / fail judgment in this embodiment, and in each evaluation, depending on the form of the roughened foil or FPC that is actually the product, the required use, etc. The range of suitability can be changed as appropriate.
(3)銅めっき層付き圧延銅箔および粗化箔の評価結果
以下の表1に、実施例1〜9および比較例1〜11に係る銅めっき層付き圧延銅箔および粗化箔についての各評価結果を示す。
(3) Evaluation results of rolled copper foil with copper plating layer and roughened foil In Table 1 below, each of the rolled copper foil with copper plated layer and the roughened foil according to Examples 1-9 and Comparative Examples 1-11 An evaluation result is shown.
表1に示されているように、実施例1〜9に係る銅めっき層付き圧延銅箔および粗化箔においては、いずれの数値も上述の範囲内であった。一方、比較例1〜11に係る銅めっき層付き圧延銅箔および粗化箔においては、いずれかの数値が上述の範囲内を外れてしまった。比較例9に係る粗化箔においては、粗化粒の平均粒径や粒径差の比率は所定範囲内となっているが、粗化抜けや、ポリイミド樹脂フィルムとの隙間、薬品耐久性、境界視認強度がいずれも所定範囲を外れている。これは、粗化銅めっき層の下地となる銅めっき層のめっき液に、有機系添加剤を添加していないためと考えられる。 As Table 1 showed, in the rolled copper foil with a copper plating layer and roughened foil which concern on Examples 1-9, all the numerical values were in the above-mentioned range. On the other hand, in the rolled copper foil with copper plating layer and the roughened foil according to Comparative Examples 1 to 11, one of the numerical values was out of the above range. In the roughened foil according to Comparative Example 9, the ratio of the average particle diameter and the particle diameter difference of the roughened grains is within a predetermined range, but the roughened omission, the gap with the polyimide resin film, the chemical durability, The boundary visual recognition strength is out of the predetermined range. This is presumably because no organic additive was added to the plating solution of the copper plating layer serving as the base of the roughened copper plating layer.
また、粗化抜け面積は、銅めっき層における凹部が深いほど、また、粗化銅めっき層が備える粗化粒の平均粒径が小さいほど、大きくなる傾向がみられた。 Moreover, the roughening omission area showed the tendency which became large, so that the recessed part in a copper plating layer was deep, and the average particle diameter of the roughening grain with which the roughening copper plating layer was equipped was small.
また、ポリイミド樹脂フィルムの透過率は、粗化銅めっき層が備える粗化粒の平均粒径が大きくなるほど低下する傾向がみられた。 Moreover, the tendency for the transmittance | permeability of a polyimide resin film to fall, so that the average particle diameter of the roughening particle | grains with which a roughening copper plating layer is provided became large was seen.
また、粗化箔とポリイミド樹脂フィルムとの隙間の数は、粗化銅めっき層が備える粗化粒の粒径差の比率が大きいほど、また、粗化抜け面積が大きいほど、多くなる傾向がみられた。 In addition, the number of gaps between the roughened foil and the polyimide resin film tends to increase as the ratio of the particle size difference of the roughened grains provided in the roughened copper plating layer increases, and as the roughening missing area increases. It was seen.
また、常態でのピール強度は、粗化銅めっき層が備える粗化粒の平均粒径が小さいほど低下する傾向がみられた。また、薬品耐久性は、粗化箔とポリイミド樹脂フィルムとの隙間の数が増すほど低下する傾向がみられた。 Moreover, the tendency for the peeling strength in a normal state to fall was seen, so that the average particle diameter of the roughening grain with which the roughening copper plating layer is provided is small. Moreover, the chemical durability tended to decrease as the number of gaps between the roughened foil and the polyimide resin film increased.
また、粗化箔の境界視認性は、粗化銅めっき層が備える粗化粒の平均粒径が大きいほど、また、粗化箔とポリイミド樹脂フィルムとの隙間の数が増すほど、低下する傾向がみられた。 Further, the boundary visibility of the roughened foil tends to decrease as the average particle diameter of the roughened grains provided in the roughened copper plating layer increases and as the number of gaps between the roughened foil and the polyimide resin film increases. Was seen.
(SEMによる観察結果)
図2、図3に、実施例8および比較例4に係る粗化箔のSEMによる表面および断面の観察結果を示す。図2の上段が実施例8であり、下段が比較例4である。また、図2の表面観察においては、それぞれの粗化箔について倍率を異ならせたSEM像を取得した。このうち、上述の表1の粗化抜けの面積は、中央の倍率1万倍のSEM写真を基に割り出したものである。
(SEM observation results)
In FIG. 2, FIG. 3, the observation result of the surface and cross section by SEM of the roughening foil which concerns on Example 8 and Comparative Example 4 is shown. The upper part of FIG. 2 is Example 8, and the lower part is Comparative Example 4. Moreover, in the surface observation of FIG. 2, the SEM image which varied the magnification about each roughening foil was acquired. Of these, the area of roughening omission in Table 1 described above is determined based on the SEM photograph with a magnification of 10,000 in the center.
図2の上段に示されている実施例8においては、銅めっき層の表面全体を粗化粒が覆っており、これらのSEM画像における視野内には、粗化抜けは認められない。一方、図2の下段に示されている比較例4においては、粗化粒による粒子状の輪郭が認められず、下地の銅めっき層が露出した部分があることがわかる。これが、粗化粒の無成長部分、すなわち、粗化抜け部分である。 In Example 8 shown in the upper part of FIG. 2, the entire surface of the copper plating layer is covered with roughened grains, and no roughening is observed in the field of view in these SEM images. On the other hand, in Comparative Example 4 shown in the lower part of FIG. 2, it is understood that there is no particulate outline due to the roughened grains, and there is a portion where the underlying copper plating layer is exposed. This is a non-growth portion of the roughened grains, that is, a roughened missing portion.
また、図3には、これらの粗化箔の断面のSEM画像が示されている。図3左側の実施例8においては、粗化粒が所定距離途切れることなく連なった状態となっており、断面のSEM画像によっても粗化抜けは認められない。一方、図3右側の比較例4においては、粗化粒が一部途切れて銅めっき層が露出しており、断面のSEM画像によっても粗化抜けが発生していることが認められる。 Moreover, the SEM image of the cross section of these roughening foil is shown by FIG. In Example 8 on the left side of FIG. 3, the roughened grains are in a continuous state without interruption for a predetermined distance, and no roughening omission is recognized even by the SEM image of the cross section. On the other hand, in Comparative Example 4 on the right side of FIG. 3, the roughening grains are partly interrupted and the copper plating layer is exposed, and it is recognized that roughening omission has occurred in the SEM image of the cross section.
Claims (8)
前記圧延銅箔の少なくとも片面上に形成された銅めっき層と、
前記銅めっき層の上に形成され、平均粒径が0.05μm以上0.30μm以下の粗化粒を含んだ粗化銅めっき層と、を備え、
前記粗化粒の最大粒径と最小粒径との粒径差の比率が65%以下であり、
前記粗化銅めっき層を厚さ方向に切断する切断面において、20μm以上の距離に亘って前記粗化粒が途切れることなく前記銅めっき層上に連なった状態となっている
ことを特徴とする複合銅箔。
但し、粒径差の比率(%)=(1−最小粒径/最大粒径)×100である。 Rolled copper foil,
A copper plating layer formed on at least one side of the rolled copper foil;
A roughened copper plating layer formed on the copper plating layer and including roughening grains having an average particle size of 0.05 μm or more and 0.30 μm or less, and
The ratio of the particle size difference between the maximum particle size and the minimum particle size of the roughened particles is 65% or less,
In the cut surface that cuts the roughened copper plating layer in the thickness direction, the roughened grains are continuously connected on the copper plating layer without interruption over a distance of 20 μm or more. Composite copper foil.
However, the ratio of particle size difference (%) = (1−minimum particle size / maximum particle size) × 100.
前記圧延銅箔の少なくとも片面上に形成された銅めっき層と、
前記銅めっき層の上に形成され、平均粒径が0.05μm以上0.30μm以下の粗化粒を含んだ粗化銅めっき層と、を備え、
前記粗化粒の最大粒径と最小粒径との粒径差の比率が65%以下であり、
走査型電子顕微鏡にて、倍率1万倍の視野内に存在する前記粗化粒の無形成部分の面積が5μm2以下となっている
ことを特徴とする複合銅箔。
但し、粒径差の比率(%)=(1−最小粒径/最大粒径)×100である。 Rolled copper foil,
A copper plating layer formed on at least one side of the rolled copper foil;
A roughened copper plating layer formed on the copper plating layer and including roughening grains having an average particle size of 0.05 μm or more and 0.30 μm or less, and
The ratio of the particle size difference between the maximum particle size and the minimum particle size of the roughened particles is 65% or less,
A composite copper foil characterized in that, in a scanning electron microscope, the area of the non-formed portion of the roughened grains existing in a field of view of 10,000 times is 5 μm 2 or less.
However, the ratio of particle size difference (%) = (1−minimum particle size / maximum particle size) × 100.
ことを特徴とする請求項1又は2に記載の複合銅箔。 3. The composite copper foil according to claim 1, wherein when a recess is present on the surface of the copper plating layer, an average value of the depth of the recess is 0.60 μm or less.
メルカプト基を有する有機硫黄化合物と、界面活性剤と、レベリング剤と、塩化物イオンとを添加した銅めっき液を用いて形成されている
ことを特徴とする請求項1〜3のいずれかに記載の複合銅箔。 The copper plating layer is
It forms using the copper plating liquid which added the organic sulfur compound which has a mercapto group, surfactant, a leveling agent, and a chloride ion, The Claim 1 characterized by the above-mentioned. Composite copper foil.
ことを特徴とする請求項1〜4のいずれかに記載の複合銅箔。 5. The composite copper foil according to claim 1, which has a thickness of 0.05 μm or more and 0.25 μm or less when the roughened copper plating layer is averaged.
ことを特徴とする請求項1〜5のいずれかに記載の複合銅箔。 The composite copper foil according to claim 1, further comprising a rust prevention layer having a thickness of 11 nm to 70 nm on the roughened copper plating layer.
ことを特徴とする請求項1〜6のいずれかに記載の複合銅箔。 A nickel plating layer, a zinc plating layer, a chromate treatment layer, and a silane coupling treatment layer are formed in this order on the roughened copper plating layer, and a rust prevention layer having a thickness of 11 nm to 70 nm is provided. The composite copper foil according to any one of claims 1 to 6.
前記銅めっき層上に、平均粒径が0.05μm以上0.30μm以下の粗化粒を含んだ粗化銅めっき層を形成する工程と、を有し、
前記銅めっき層を形成する工程では、
メルカプト基を有する有機硫黄化合物と、界面活性剤と、レベリング剤と、塩化物イオンとを添加した銅めっき液を用いて前記銅めっき層を形成する
ことを特徴とする複合銅箔の製造方法。 Forming a copper plating layer on at least one side of the rolled copper foil;
Forming a roughened copper plated layer containing roughened grains having an average particle size of 0.05 μm or more and 0.30 μm or less on the copper plated layer;
In the step of forming the copper plating layer,
The manufacturing method of the composite copper foil characterized by forming the said copper plating layer using the copper plating liquid which added the organic sulfur compound which has a mercapto group, surfactant, a leveling agent, and a chloride ion.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013021622A JP2014152352A (en) | 2013-02-06 | 2013-02-06 | Composite copper foil and production method thereof |
KR1020130152780A KR102216344B1 (en) | 2013-02-06 | 2013-12-10 | Composite copper foil and method for manufacturing composite copper foil |
CN201410025355.6A CN103963376A (en) | 2013-02-06 | 2014-01-20 | Composite Copper Foil And Manufacturing Method Therefor |
TW103102965A TWI626150B (en) | 2013-02-06 | 2014-01-27 | Composite copper foil and composite copper foil manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013021622A JP2014152352A (en) | 2013-02-06 | 2013-02-06 | Composite copper foil and production method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2014152352A true JP2014152352A (en) | 2014-08-25 |
Family
ID=51233596
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013021622A Withdrawn JP2014152352A (en) | 2013-02-06 | 2013-02-06 | Composite copper foil and production method thereof |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP2014152352A (en) |
KR (1) | KR102216344B1 (en) |
CN (1) | CN103963376A (en) |
TW (1) | TWI626150B (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016089193A (en) * | 2014-10-30 | 2016-05-23 | 株式会社Shカッパープロダクツ | Surface treated copper foil and laminate |
JP2016089192A (en) * | 2014-10-30 | 2016-05-23 | 株式会社Shカッパープロダクツ | Surface treated copper foil and laminate |
JP2016135903A (en) * | 2015-01-23 | 2016-07-28 | 株式会社Shカッパープロダクツ | Surface treated copper foil and laminated sheet |
WO2021117339A1 (en) * | 2019-12-13 | 2021-06-17 | Jx金属株式会社 | Surface-treated copper foil, copper-clad laminate plate, and printed wiring board |
WO2021117338A1 (en) * | 2019-12-13 | 2021-06-17 | Jx金属株式会社 | Surface-treated copper foil, copper-cladded laminate plate, and printed wiring board |
CN113600636A (en) * | 2021-08-04 | 2021-11-05 | 许绝电工股份有限公司 | Copper foil pipe processing technology for lithium battery production |
WO2022244828A1 (en) * | 2021-05-20 | 2022-11-24 | 三井金属鉱業株式会社 | Roughened copper foil, copper foil with carrier, copper-clad laminate, and printed wiring board |
WO2023281777A1 (en) * | 2021-07-09 | 2023-01-12 | Jx金属株式会社 | Surface-treated copper foil, copper-clad laminate plate, and printed wiring board |
WO2023281774A1 (en) * | 2021-07-09 | 2023-01-12 | Jx金属株式会社 | Surface-treated copper foil, copper-clad laminate and printed wiring board |
WO2023281775A1 (en) * | 2021-07-09 | 2023-01-12 | Jx金属株式会社 | Surface-treated copper foil, copper-clad laminate, and printed wiring board |
WO2023281778A1 (en) * | 2021-07-09 | 2023-01-12 | Jx金属株式会社 | Surface-treated copper foil, copper-clad laminate board, and printed wiring board |
WO2023281776A1 (en) * | 2021-07-09 | 2023-01-12 | Jx金属株式会社 | Surface-treated copper foil, copper-cladded laminate plate, and printed wiring board |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6294257B2 (en) * | 2015-03-30 | 2018-03-14 | Jx金属株式会社 | Copper alloy foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device |
JP6294376B2 (en) * | 2016-02-05 | 2018-03-14 | Jx金属株式会社 | Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device |
WO2018193935A1 (en) * | 2017-04-17 | 2018-10-25 | 住友金属鉱山株式会社 | Conductive substrate and method for producing conductive substrate |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004238647A (en) | 2003-02-04 | 2004-08-26 | Furukawa Techno Research Kk | Smoothened copper foil, and production method therefor |
JP4429611B2 (en) | 2003-02-04 | 2010-03-10 | 古河電気工業株式会社 | Copper alloy composite foil, manufacturing method thereof, and high-frequency transmission circuit using the copper alloy composite foil |
SG182300A1 (en) * | 2010-01-25 | 2012-08-30 | Jx Nippon Mining & Metals Corp | Copper foil for negative electrode current collector of secondary battery |
JP2011179053A (en) * | 2010-02-26 | 2011-09-15 | Hitachi Cable Ltd | Roughened foil and method of producing the same |
EP2615196A1 (en) * | 2010-10-06 | 2013-07-17 | Furukawa Electric Co., Ltd. | Copper foil and manufacturing method therefor, copper foil with carrier and manufacturing method therefor, printed circuit board, and multilayer printed circuit board |
-
2013
- 2013-02-06 JP JP2013021622A patent/JP2014152352A/en not_active Withdrawn
- 2013-12-10 KR KR1020130152780A patent/KR102216344B1/en active IP Right Grant
-
2014
- 2014-01-20 CN CN201410025355.6A patent/CN103963376A/en active Pending
- 2014-01-27 TW TW103102965A patent/TWI626150B/en active
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016089193A (en) * | 2014-10-30 | 2016-05-23 | 株式会社Shカッパープロダクツ | Surface treated copper foil and laminate |
JP2016089192A (en) * | 2014-10-30 | 2016-05-23 | 株式会社Shカッパープロダクツ | Surface treated copper foil and laminate |
JP2016135903A (en) * | 2015-01-23 | 2016-07-28 | 株式会社Shカッパープロダクツ | Surface treated copper foil and laminated sheet |
JP2021095596A (en) * | 2019-12-13 | 2021-06-24 | Jx金属株式会社 | Surface-treated copper foil, copper-clad laminate, and printed wiring board |
WO2021117338A1 (en) * | 2019-12-13 | 2021-06-17 | Jx金属株式会社 | Surface-treated copper foil, copper-cladded laminate plate, and printed wiring board |
JP2021095595A (en) * | 2019-12-13 | 2021-06-24 | Jx金属株式会社 | Surface-treated copper foil, copper-clad laminate, and printed wiring board |
WO2021117339A1 (en) * | 2019-12-13 | 2021-06-17 | Jx金属株式会社 | Surface-treated copper foil, copper-clad laminate plate, and printed wiring board |
JP7300976B2 (en) | 2019-12-13 | 2023-06-30 | Jx金属株式会社 | Surface treated copper foil, copper clad laminate and printed wiring board |
WO2022244828A1 (en) * | 2021-05-20 | 2022-11-24 | 三井金属鉱業株式会社 | Roughened copper foil, copper foil with carrier, copper-clad laminate, and printed wiring board |
WO2023281777A1 (en) * | 2021-07-09 | 2023-01-12 | Jx金属株式会社 | Surface-treated copper foil, copper-clad laminate plate, and printed wiring board |
WO2023281774A1 (en) * | 2021-07-09 | 2023-01-12 | Jx金属株式会社 | Surface-treated copper foil, copper-clad laminate and printed wiring board |
WO2023281775A1 (en) * | 2021-07-09 | 2023-01-12 | Jx金属株式会社 | Surface-treated copper foil, copper-clad laminate, and printed wiring board |
WO2023281778A1 (en) * | 2021-07-09 | 2023-01-12 | Jx金属株式会社 | Surface-treated copper foil, copper-clad laminate board, and printed wiring board |
WO2023281776A1 (en) * | 2021-07-09 | 2023-01-12 | Jx金属株式会社 | Surface-treated copper foil, copper-cladded laminate plate, and printed wiring board |
CN113600636A (en) * | 2021-08-04 | 2021-11-05 | 许绝电工股份有限公司 | Copper foil pipe processing technology for lithium battery production |
Also Published As
Publication number | Publication date |
---|---|
CN103963376A (en) | 2014-08-06 |
KR102216344B1 (en) | 2021-02-16 |
TWI626150B (en) | 2018-06-11 |
TW201431675A (en) | 2014-08-16 |
KR20140100401A (en) | 2014-08-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2014152352A (en) | Composite copper foil and production method thereof | |
JP6259437B2 (en) | Plating laminate | |
JP6466837B2 (en) | Plating material manufacturing method and plating material | |
JP6367687B2 (en) | Surface-treated copper foil and laminate | |
JPWO2011138876A1 (en) | Copper foil for printed circuit | |
JP6373166B2 (en) | Surface-treated copper foil and laminate | |
JP2014100905A (en) | Copper foil with carrier, copper-clad laminate using the same, printed wiring board, printed circuit board and method producing printed wiring board | |
JP2015124426A (en) | Surface-treated copper foil and laminate | |
JP2012172198A (en) | Electrolytic copper foil and method for manufacturing the same | |
JP5358739B1 (en) | Copper foil with carrier, copper-clad laminate using the same, printed wiring board, printed circuit board, and printed wiring board manufacturing method | |
JP2014152344A (en) | Composite copper foil and production method thereof | |
JP5822928B2 (en) | Electrolytic copper foil having high strength and low warpage and method for producing the same | |
JP5075099B2 (en) | Surface-treated copper foil, surface treatment method thereof, and laminated circuit board | |
JPWO2015092978A1 (en) | Silver plating member and manufacturing method thereof | |
KR102336415B1 (en) | Copper alloy rolled material, manufacturing method thereof, and electrical and electronic components | |
JP2012087388A (en) | Surface-treated copper foil and copper-clad laminate sheet | |
JP5941959B2 (en) | Electrolytic copper foil and method for producing the same | |
JP6651852B2 (en) | Silver plated member and method of manufacturing the same | |
JP5728118B1 (en) | Surface-treated copper foil, method for producing the surface-treated copper foil, and copper-clad laminate using the surface-treated copper foil | |
JP2014152343A (en) | Composite copper foil and production method thereof | |
JP5728117B1 (en) | Surface-treated copper foil, method for producing the surface-treated copper foil, and copper-clad laminate using the surface-treated copper foil | |
JP3963907B2 (en) | Pure copper-coated copper foil and method for producing the same, TAB tape and method for producing the same | |
JP6392674B2 (en) | Surface-treated copper foil and laminate | |
JP2014100906A (en) | Copper foil with carrier, copper-clad laminate using the same, printed wiring board, printed circuit board and method producing printed wiring board |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150821 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20150929 |