JP6373166B2 - Surface-treated copper foil and laminate - Google Patents

Surface-treated copper foil and laminate Download PDF

Info

Publication number
JP6373166B2
JP6373166B2 JP2014221822A JP2014221822A JP6373166B2 JP 6373166 B2 JP6373166 B2 JP 6373166B2 JP 2014221822 A JP2014221822 A JP 2014221822A JP 2014221822 A JP2014221822 A JP 2014221822A JP 6373166 B2 JP6373166 B2 JP 6373166B2
Authority
JP
Japan
Prior art keywords
copper foil
plating
base material
particles
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014221822A
Other languages
Japanese (ja)
Other versions
JP2016089192A (en
Inventor
千鶴 後藤
千鶴 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2014221822A priority Critical patent/JP6373166B2/en
Publication of JP2016089192A publication Critical patent/JP2016089192A/en
Application granted granted Critical
Publication of JP6373166B2 publication Critical patent/JP6373166B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、表面処理銅箔及びこの表面処理銅箔を用いて形成した積層板に関する。   The present invention relates to a surface-treated copper foil and a laminate formed using the surface-treated copper foil.

従来より、携帯電話等の電子機器の配線板として、フレキシブルプリント配線板(FPC)等が用いられている。FPCは、例えば、銅箔と、樹脂基材と、を備える積層板で形成されている。積層板には、所定箇所の銅箔がエッチング等により除去されることで、銅配線(回路パターン)が形成されている。積層板には、銅箔と樹脂基材との密着性(以下、単に「密着性」とも言う。)が高く、銅配線が樹脂基材から剥がれにくいことが要求されている。そこで、銅箔として、例えば銅箔基材のいずれかの主面上にめっき粒子を含む粗化銅めっき層を設けることで、アンカー効果を得て密着性を向上させた表面処理銅箔を用いることが提案されている(例えば特許文献1〜3参照)。   Conventionally, a flexible printed wiring board (FPC) or the like has been used as a wiring board of an electronic device such as a mobile phone. FPC is formed with the laminated board provided with copper foil and a resin base material, for example. A copper wiring (circuit pattern) is formed on the laminate by removing the copper foil at a predetermined location by etching or the like. The laminated board is required to have high adhesion between the copper foil and the resin substrate (hereinafter also simply referred to as “adhesion”), and the copper wiring is difficult to peel off from the resin substrate. Therefore, as the copper foil, for example, a surface-treated copper foil having an anchor effect and improved adhesion by providing a roughened copper plating layer containing plating particles on any main surface of the copper foil base material is used. Has been proposed (see, for example, Patent Documents 1 to 3).

特開2004−238647号公報JP 2004-238647 A 特開2006−155899号公報JP 2006-155899 A 特開2010−218905号公報JP 2010-218905 A

しかしながら、上述の密着性を高めるために、めっき粒子の粒子径を大きくし、表面処理銅箔の表面を粗くすると、銅箔が除去された箇所の樹脂基材の透明性が低下してしまうことがある。従って、積層板に電子部品等を実装する際、銅箔が除去された箇所の樹脂基材越しにアライメントマーク等を認識しにくくなり、電子部品等の実装位置の位置決めを行いにくくなることがある。   However, if the particle diameter of the plating particles is increased and the surface of the surface-treated copper foil is roughened in order to increase the above-mentioned adhesion, the transparency of the resin base material at the location where the copper foil has been removed is reduced. There is. Therefore, when mounting an electronic component or the like on the laminate, it may be difficult to recognize the alignment mark or the like over the resin base material where the copper foil has been removed, and it may be difficult to position the mounting position of the electronic component or the like. .

本発明は、上記課題を解決し、積層板を形成した際の表面処理銅箔と樹脂基材との密着性が維持されるとともに、積層板から表面処理銅箔が除去された後の樹脂基材の透明性が確保される技術を提供することを目的とする。   The present invention solves the above problems and maintains the adhesion between the surface-treated copper foil and the resin base material when the laminated board is formed, and the resin base after the surface-treated copper foil is removed from the laminated board. The object is to provide a technology that ensures the transparency of the material.

本発明の一態様によれば、
銅箔基材と、
前記銅箔基材の少なくともいずれかの主面上に設けられ、所定の成長方向にそれぞれ成長した複数のめっき粒子を含む粗化銅めっき層と、を備え、
前記めっき粒子の前記銅箔基材の主面に沿った粒子径の平均値が0.05μm以上0.8μm以下であり、
前記めっき粒子の成長方向に沿った粒子径の平均値が0.05μm以上1.2μm以下であり、
前記めっき粒子の成長方向と前記銅箔基材の主面とのなす角度が20°以上90°以下である表面処理銅箔が提供される。
According to one aspect of the invention,
A copper foil base material;
A roughened copper plating layer that is provided on at least one main surface of the copper foil base material and includes a plurality of plating particles grown in a predetermined growth direction, and
The average value of the particle diameter along the principal surface of the copper foil base material of the plating particles is 0.05 μm or more and 0.8 μm or less,
The average value of the particle diameter along the growth direction of the plating particles is 0.05 μm or more and 1.2 μm or less,
Provided is a surface-treated copper foil in which an angle formed by the growth direction of the plating particles and the main surface of the copper foil base is 20 ° or more and 90 ° or less.

本発明の他の態様によれば、
銅箔基材、及び前記銅箔基材の少なくともいずれかの主面上に設けられ、所定の成長方向にそれぞれ成長した複数のめっき粒子を含む粗化銅めっき層を備える表面処理銅箔と、
前記粗化銅めっき層に対向するように前記表面処理銅箔と貼り合わせられた樹脂基材と、を備え、
前記めっき粒子の前記銅箔基材の主面に沿った粒子径の平均値が0.05μm以上0.8μm以下であり、
前記めっき粒子の成長方向に沿った粒子径の平均値が0.05μm以上1.2μm以下であり、
前記めっき粒子の成長方向と前記銅箔基材の主面とのなす角度が20°以上90°以下である積層板が提供される。
According to another aspect of the invention,
A surface-treated copper foil provided with a roughened copper plating layer that is provided on at least one main surface of the copper foil base material and the copper foil base material and includes a plurality of plating particles grown in a predetermined growth direction, and
A resin base material bonded to the surface-treated copper foil so as to face the roughened copper plating layer,
The average value of the particle diameter along the principal surface of the copper foil base material of the plating particles is 0.05 μm or more and 0.8 μm or less,
The average value of the particle diameter along the growth direction of the plating particles is 0.05 μm or more and 1.2 μm or less,
There is provided a laminated board in which an angle formed by the growth direction of the plating particles and the main surface of the copper foil base material is 20 ° or more and 90 ° or less.

本発明によれば、積層板を形成した際の表面処理銅箔と樹脂基材との密着性を維持できるとともに、積層板から表面処理銅箔が除去された後の樹脂基材の透明性を確保できる。   According to the present invention, the adhesiveness between the surface-treated copper foil and the resin base material when the laminated plate is formed can be maintained, and the transparency of the resin base material after the surface-treated copper foil is removed from the laminated plate can be maintained. It can be secured.

本発明の一実施形態にかかる表面処理銅箔を備える積層板の概略断面図である。It is a schematic sectional drawing of a laminated board provided with the surface treatment copper foil concerning one Embodiment of this invention. (a)〜(d)はそれぞれ、本発明の一実施形態にかかる表面処理銅箔が備える粗化銅めっき層に含まれるめっき粒子の縦断面概略図の一例である。(A)-(d) is an example of the longitudinal cross-sectional schematic diagram of the plating particle contained in the roughening copper plating layer with which the surface-treated copper foil concerning one Embodiment of this invention is provided, respectively. 本発明の一実施形態にかかる表面処理銅箔が備える粗化銅めっき層の上面のSEM像の一例である。It is an example of the SEM image of the upper surface of the roughening copper plating layer with which the surface treatment copper foil concerning one Embodiment of this invention is provided.

近年、電子機器のさらなる小型化、薄肉化の要求に伴い、電子機器に用いられるFPCにも、さらなる小型化、薄肉化が要求されている。そこで、例えば、樹脂基材の銅箔との貼り合わせ面上に設けられる接着剤層の厚さを薄くすることで、FPCの厚さを薄くすることが考えられている。しかしながら、接着剤層の厚さが薄くなると、表面処理銅箔における樹脂基材との貼り合わせ面の表面粗さ等の状態によっては、表面処理銅箔と樹脂基材との密着性が低下してしまうことがある。本発明は、このような接着剤層の厚さを薄くした場合に生じる特有の課題を解決するためになされたものである。   In recent years, with the demand for further downsizing and thinning of electronic devices, FPCs used in electronic devices are also required to be further downsized and thinned. Therefore, for example, it is considered to reduce the thickness of the FPC by reducing the thickness of the adhesive layer provided on the bonding surface of the resin base material to the copper foil. However, when the thickness of the adhesive layer is reduced, the adhesiveness between the surface-treated copper foil and the resin base material is lowered depending on the surface roughness of the surface of the surface-treated copper foil to be bonded to the resin base material. May end up. The present invention has been made to solve the specific problems that occur when the thickness of the adhesive layer is reduced.

(1)表面処理銅箔及び積層板の構成
本発明の一実施形態にかかる積層板及び表面処理銅箔の構成について、図1〜図3を参照しながら説明する。
(1) Structure of surface-treated copper foil and laminated board The structure of the laminated board and surface-treated copper foil concerning one Embodiment of this invention is demonstrated, referring FIGS. 1-3.

(積層板)
図1に示すように、本実施形態にかかる積層板(CCL:Copper Clad Laminate)10は、少なくともいずれかの主面上に粗化銅めっき層3が設けられた表面処理銅箔1と、粗化銅めっき層3に対向するように設けられた樹脂基材11と、を備えている。例えば、積層板10は、樹脂基材11の両主面上にそれぞれ表面処理銅箔1を貼り合わせることで形成されている。具体的には、積層板10は、樹脂基材11を挟んで表面処理銅箔1が対向するとともに、粗化銅めっき層3が樹脂基材11に対向するように、樹脂基材11の両主面上に表面処理銅箔1を貼り合わせて形成されている。
(Laminated board)
As shown in FIG. 1, a laminate (CCL: Copper Cladd Laminate) 10 according to the present embodiment includes a surface-treated copper foil 1 having a roughened copper plating layer 3 provided on at least one main surface, and a roughened copper foil 1. And a resin base material 11 provided so as to face the copper chloride plating layer 3. For example, the laminated board 10 is formed by bonding the surface-treated copper foil 1 to both main surfaces of the resin base material 11. Specifically, the laminate 10 has both the resin base material 11 so that the surface-treated copper foil 1 faces the resin base material 11 and the roughened copper plating layer 3 faces the resin base material 11. The surface-treated copper foil 1 is bonded to the main surface.

樹脂基材11として、例えばポリイミド(PI)樹脂フィルムや、ポリエチレンテレフタラート(PET)等のポリエステルフィルムや、液晶ポリマ(LCP)等が用いられる。また、樹脂基材11の表面処理銅箔1との貼り合わせ面には、接着剤層が設けられていることが好ましい。接着剤層としては、例えば熱可塑性ポリイミド(TPI)層を形成することができる。   As the resin base material 11, for example, a polyimide (PI) resin film, a polyester film such as polyethylene terephthalate (PET), a liquid crystal polymer (LCP), or the like is used. Moreover, it is preferable that the adhesive layer is provided in the bonding surface with the surface treatment copper foil 1 of the resin base material 11. FIG. As the adhesive layer, for example, a thermoplastic polyimide (TPI) layer can be formed.

(表面処理銅箔)
上述の積層板10に用いられる表面処理銅箔1は、銅箔基材2を備えている。銅箔基材2としては、例えば圧延銅箔や電解銅箔を用いることができる。銅箔基材2として、電解銅箔よりも耐屈曲性に優れ、繰り返し折り曲げても破断しにくい圧延銅箔が用いられることがより好ましい。銅箔基材2の厚さは例えば5μm以上18μm以下であることが好ましい。
(Surface treated copper foil)
The surface-treated copper foil 1 used for the above-described laminated plate 10 includes a copper foil base material 2. As the copper foil base material 2, for example, a rolled copper foil or an electrolytic copper foil can be used. As the copper foil base material 2, it is more preferable to use a rolled copper foil that is superior in bending resistance to the electrolytic copper foil and is not easily broken even if it is repeatedly bent. The thickness of the copper foil base material 2 is preferably 5 μm or more and 18 μm or less, for example.

銅箔基材2は、例えば無酸素銅(OFC:Oxygen−Free Copper)やタフピッチ銅(TPC:Tough−Pitch Copper)の純銅から形成されている。無酸素銅とは、JIS C1020やJIS H3100等に規定する純度が99.96%以上の銅材である。無酸素銅には、例えば数ppm程度の酸素が含有されていてもよい。タフピッチ銅とは、例えばJIS C1100やJIS H3100等に規定する純度が99.9%以上の銅材である。タフピッチ銅には、例えば100ppm〜600ppm程度の酸素が含有されていてもよい。銅箔基材2は、無酸素銅やタフピッチ銅に、微量のスズ(Sn)や銀(Ag)等の所定の添加剤が添加された希薄銅合金から形成されていてもよい。これにより、銅箔基材2の耐熱性等を向上させることができる。   The copper foil base material 2 is made of pure copper such as oxygen-free copper (OFC: Oxygen-Free Copper) or tough pitch copper (TPC: Tow-Pitch Copper). Oxygen-free copper is a copper material having a purity specified in JIS C1020, JIS H3100, etc. of 99.96% or higher. The oxygen-free copper may contain, for example, about several ppm of oxygen. Tough pitch copper is, for example, a copper material having a purity of 99.9% or more as defined in JIS C1100, JIS H3100, or the like. The tough pitch copper may contain, for example, about 100 ppm to 600 ppm of oxygen. The copper foil base material 2 may be formed from a dilute copper alloy obtained by adding a predetermined additive such as a small amount of tin (Sn) or silver (Ag) to oxygen-free copper or tough pitch copper. Thereby, the heat resistance etc. of the copper foil base material 2 can be improved.

銅箔基材2のいずれかの主面上には、粗化銅めっき層3が設けられている。粗化銅めっき層3は、粗化抜けが発生していない状態にあることが好ましい。例えば、粗化銅めっき層3を上面から見た際、銅箔基材2が露出しないように、粗化銅めっき層3が形成されていることが好ましい。   A roughened copper plating layer 3 is provided on any main surface of the copper foil base 2. The roughened copper plating layer 3 is preferably in a state in which no roughening omission occurs. For example, it is preferable that the roughened copper plating layer 3 is formed so that the copper foil base material 2 is not exposed when the roughened copper plating layer 3 is viewed from above.

粗化銅めっき層3には、例えば図2(a)〜(d)に示すような銅箔基材2のいずれかの主面上で所定の成長方向にそれぞれ成長した複数のめっき粒子(粗化粒)3aが含まれている。めっき粒子3aは、例えば銅(Cu)(つまりCu単体)で形成されている。粗化銅めっき層3(めっき粒子3a)は、例えば、Cuと、めっき粒子3aの余計な成長(異常な成長)を抑制し(デンドライトの発生を防止し)、めっき粒子3aの大きさを均一にする金属イオンと、を含むめっき液を用いて形成されていることが好ましい。このような金属イオンとして、具体的には、鉄(Fe)、ニッケル(Ni)、モリブデン(Mo)、タングステン(W)、コバルト(Co)、亜鉛(Zn)、クロム(Cr)等が用いられる。例えば、粗化銅めっき層3を形成するめっき液(以下、「粗化銅めっき液」とも言う。)中に、硫酸鉄七水和物やモリブデン酸ナトリウム(Mo酸Na)を添加することが好ましい。なお、粗化銅めっき層3は例えばCuからなる、上述の金属イオン非含有のめっき液を用いて形成されていてもよい。   The roughened copper plating layer 3 includes, for example, a plurality of plated particles (roughened) grown in a predetermined growth direction on any main surface of the copper foil base 2 as shown in FIGS. 3a) is included. The plated particles 3a are made of, for example, copper (Cu) (that is, Cu alone). The roughened copper plating layer 3 (plating particles 3a) suppresses excessive growth (abnormal growth) of Cu and plating particles 3a (prevents the generation of dendrites) and makes the size of the plating particles 3a uniform, for example. Preferably, it is formed using a plating solution containing metal ions. Specifically, iron (Fe), nickel (Ni), molybdenum (Mo), tungsten (W), cobalt (Co), zinc (Zn), chromium (Cr), etc. are used as such metal ions. . For example, iron sulfate heptahydrate or sodium molybdate (Mo acid Na) may be added to the plating solution for forming the roughened copper plating layer 3 (hereinafter also referred to as “roughened copper plating solution”). preferable. In addition, the roughening copper plating layer 3 may be formed using the above-mentioned plating solution which does not contain metal ions made of Cu, for example.

めっき粒子3aの銅箔基材2の主面に沿った粒子径Wの平均値が例えば0.05μm以上0.8μm以下であることが好ましい。めっき粒子3aの銅箔基材2の主面に沿った粒子径Wとは、例えばめっき粒子3aを上面から見た際におけるめっき粒子3aの銅箔基材2の主面に沿った粒子径の最大値である。めっき粒子3aの銅箔基材2の主面に沿った粒子径Wの平均値は、例えば粗化銅めっき液中の金属イオンの濃度(例えば硫酸鉄七水和物やMo酸Naの濃度)や、粗化銅めっき液の液温を調整することで制御することができる。なお、以下では、めっき粒子3aの銅箔基材2の主面に沿った粒子径の平均値を、めっき粒子3aの水平方向の平均粒子径とも言う。   It is preferable that the average value of the particle diameter W along the main surface of the copper foil base material 2 of the plating particle 3a is, for example, 0.05 μm or more and 0.8 μm or less. The particle diameter W along the main surface of the copper foil base material 2 of the plating particle 3a is, for example, the particle diameter along the main surface of the copper foil base material 2 of the plating particle 3a when the plating particle 3a is viewed from above. It is the maximum value. The average value of the particle diameter W along the main surface of the copper foil base material 2 of the plated particles 3a is, for example, the concentration of metal ions in the roughened copper plating solution (for example, the concentration of iron sulfate heptahydrate or Mo acid Na). Alternatively, it can be controlled by adjusting the temperature of the roughened copper plating solution. Hereinafter, the average value of the particle diameters of the plating particles 3a along the main surface of the copper foil base material 2 is also referred to as the horizontal average particle diameter of the plating particles 3a.

また、めっき粒子3aの成長方向に沿った粒子径Dの平均値が例えば0.05μm以上1.2μm以下であることが好ましい。めっき粒子3aの成長方向とは、めっき粒子3aの主たる成長方向であり、めっき粒子3aの縦断面図において、めっき粒子3aの底辺の中点Oからの頂点Tに向かって延びる線(成長軸L)の方向である。また、めっき粒子3aの成長方向に沿った粒子径Dとは、例えばめっき粒子3aの縦断面図において、頂点Tと底辺の中点Oとの間の長さである。つまり、めっき粒子3aの成長方向に沿った粒子径Dとは、例えばめっき粒子3aの成長軸Lの長さである。めっき粒子3aの成長方向に沿った粒子径Dの平均値は、例えば粗化銅めっき液の液温や、粗化銅めっき層3を形成するめっき処理のめっき時間を調整することで制御することができる。なお、以下では、めっき粒子3aの成長方向に沿った粒子径Dの平均値を、めっき粒子3aの成長方向の平均粒子径とも言う。   Moreover, it is preferable that the average value of the particle diameter D along the growth direction of the plating particle 3a is, for example, 0.05 μm or more and 1.2 μm or less. The growth direction of the plating particle 3a is the main growth direction of the plating particle 3a. In the longitudinal sectional view of the plating particle 3a, a line (growth axis L) extending from the middle point O to the bottom T of the plating particle 3a. ) Direction. Further, the particle diameter D along the growth direction of the plating particle 3a is, for example, the length between the vertex T and the midpoint O of the bottom in the longitudinal sectional view of the plating particle 3a. That is, the particle diameter D along the growth direction of the plating particles 3a is, for example, the length of the growth axis L of the plating particles 3a. The average value of the particle diameter D along the growth direction of the plated particles 3a is controlled by adjusting, for example, the liquid temperature of the roughened copper plating solution or the plating time of the plating process for forming the roughened copper plated layer 3. Can do. In the following, the average value of the particle diameter D along the growth direction of the plating particles 3a is also referred to as the average particle diameter in the growth direction of the plating particles 3a.

さらにまた、めっき粒子3aの成長方向(成長軸L)と銅箔基材2の主面とのなす角度θが例えば20°以上90°以下であることが好ましい。例えば、粗化銅めっき層3に含まれるめっき粒子3aの成長方向と銅箔基材2の主面とのなす角度θの平均値が20°以上90°以下であることが好ましく、60°以上90°以下であることがより好ましい。めっき粒子3aの成長方向と銅箔基材2の主面とのなす角度θの最大値は90°である。また、めっき粒子3aの成長方向と銅箔基材2の主面とのなす角度θは、鋭角側の角度とする。例えば、めっき粒子3aの成長方向と銅箔基材2の主面とのなす角度θが135°である場合及び45°である場合のいずれも、めっき粒子3aの成長方向と銅箔基材2の主面とのなす角度θは45°とする。めっき粒子3aの成長方向と銅箔基材2の主面とのなす角度θは、例えば粗化銅めっき層3を形成するめっき処理の電流密度を調整することで制御することができる。なお、以下では、めっき粒子3aの成長方向と銅箔基材2の主面とのなす角度θを、めっき粒子3aの成長角度θとも言う。   Furthermore, it is preferable that the angle θ formed by the growth direction (growth axis L) of the plated particles 3a and the main surface of the copper foil base 2 is, for example, 20 ° or more and 90 ° or less. For example, the average value of the angle θ formed by the growth direction of the plated particles 3a included in the roughened copper plating layer 3 and the main surface of the copper foil base 2 is preferably 20 ° or more and 90 ° or less, and 60 ° or more. More preferably, it is 90 ° or less. The maximum value of the angle θ formed by the growth direction of the plating particles 3a and the main surface of the copper foil base 2 is 90 °. In addition, the angle θ formed by the growth direction of the plating particles 3a and the main surface of the copper foil base 2 is an acute angle. For example, the growth direction of the plating particle 3a and the copper foil base material 2 are both the case where the angle θ formed by the growth direction of the plating particle 3a and the main surface of the copper foil base material 2 is 135 ° and 45 °. The angle θ made with the principal surface of the film is 45 °. The angle θ formed by the growth direction of the plated particles 3a and the main surface of the copper foil base 2 can be controlled by adjusting the current density of the plating process for forming the roughened copper plating layer 3, for example. Hereinafter, the angle θ formed by the growth direction of the plating particles 3a and the main surface of the copper foil base 2 is also referred to as the growth angle θ of the plating particles 3a.

めっき粒子3aの水平方向の平均粒子径、又はめっき粒子3aの成長方向の平均粒子径の少なくともいずれかが0.05μm未満であったり、めっき粒子3aの成長角度θが20°未満であると、積層板10において、樹脂基材11に接触する表面処理銅箔1の表面積が小さすぎ、アンカー効果が不足することがある。従って、所望の密着性を維持することができないことがある。なお、密着性とは、積層板10における表面処理銅箔1と樹脂基材11との密着性である。   When at least one of the average particle diameter in the horizontal direction of the plating particles 3a or the average particle diameter in the growth direction of the plating particles 3a is less than 0.05 μm, or the growth angle θ of the plating particles 3a is less than 20 °, In the laminated board 10, the surface treatment copper foil 1 which contacts the resin base material 11 has a surface area too small, and an anchor effect may be insufficient. Therefore, desired adhesion may not be maintained. In addition, adhesiveness is the adhesiveness of the surface-treated copper foil 1 and the resin base material 11 in the laminated board 10. FIG.

めっき粒子3aの水平方向の平均粒子径及びめっき粒子3aの成長方向の平均粒子径をそれぞれ0.05μm以上にし、めっき粒子3aの成長角度θを20°以上にすることで、積層板10において、樹脂基材11に接触する表面処理銅箔1の表面積を充分に大きくすることができる。その結果、アンカー効果を充分に得ることができる。これにより、所望の密着性を維持することができる。例えば、表面処理銅箔1を樹脂基材11に貼り合わせた後に表面処理銅箔1を樹脂基材11から引き剥がす際のピール強度(以下、単に「ピール強度」とも言う。)を0.7N/mm以上に維持することができる。めっき粒子3aの成長角度θを60°以上にすることで、積層板10において、樹脂基材11に接触する表面処理銅箔1の表面積をより大きくすることができる。   In the laminate 10, the average particle diameter in the horizontal direction of the plating particles 3 a and the average particle diameter in the growth direction of the plating particles 3 a are each 0.05 μm or more, and the growth angle θ of the plating particles 3 a is 20 ° or more. The surface area of the surface-treated copper foil 1 in contact with the resin base material 11 can be sufficiently increased. As a result, the anchor effect can be sufficiently obtained. Thereby, desired adhesiveness can be maintained. For example, the peel strength when the surface-treated copper foil 1 is peeled off from the resin substrate 11 after the surface-treated copper foil 1 is bonded to the resin substrate 11 (hereinafter also simply referred to as “peel strength”) is 0.7 N. / Mm or more. By setting the growth angle θ of the plated particles 3a to 60 ° or more, the surface area of the surface-treated copper foil 1 in contact with the resin substrate 11 in the laminated plate 10 can be further increased.

しかしながら、めっき粒子3aの水平方向の平均粒子径が0.8μmを超えたり、めっき粒子3aの成長方向の平均粒子径が1.2μmを超えると、透明性が低下することがある。なお、透明性とは、樹脂基材11を挟んで表面処理銅箔1が対向するとともに、粗化銅めっき層3が樹脂基材11に対向するように、樹脂基材11の両主面上に表面処理銅箔1を貼り合わせた後、樹脂基材11の両主面上から表面処理銅箔1を除去した樹脂基材11(以下、「銅箔除去後の樹脂基材11」とも言う。)の透明性である。ここで、めっき粒子3aの水平方向や成長方向の平均粒子径が大きくなるということは、粗化銅めっき層3に含まれる各めっき粒子3aのそれぞれの大きさが大きくなることを実質的に意味している。めっき粒子3aの水平方向や成長方向の平均粒子径が大きくなることにより、表面処理銅箔1と樹脂基材11とを貼り合わせて積層板10を形成する際、表面処理銅箔1の粗化銅めっき層3が設けられた側の面(粗化面)にめっき粒子3aにより形成される凸部が樹脂基材11に押し当てられることで樹脂基材11に形成(転写)される複数の凹部のそれぞれの大きさが、大きくなりすぎる。その結果、銅箔除去後の樹脂基材11の透明性が低下することがある。   However, if the average particle diameter in the horizontal direction of the plating particles 3a exceeds 0.8 μm or the average particle diameter in the growth direction of the plating particles 3a exceeds 1.2 μm, the transparency may be lowered. In addition, transparency refers to both main surfaces of the resin base material 11 so that the surface-treated copper foil 1 faces the resin base material 11 and the roughened copper plating layer 3 faces the resin base material 11. After the surface-treated copper foil 1 was bonded to the resin base material 11, the surface-treated copper foil 1 was removed from both main surfaces of the resin base material 11 (hereinafter also referred to as “resin base material 11 after removing the copper foil”). .) Transparency. Here, the fact that the average particle diameter in the horizontal direction and the growth direction of the plating particles 3a is increased substantially means that the respective sizes of the plating particles 3a included in the roughened copper plating layer 3 are increased. doing. When the average particle diameter in the horizontal direction or the growth direction of the plating particles 3a is increased, the surface-treated copper foil 1 is roughened when the surface-treated copper foil 1 and the resin base material 11 are bonded to form the laminated plate 10. Plural portions formed (transferred) to the resin base material 11 by pressing the convex portions formed of the plating particles 3 a against the surface (roughened surface) on which the copper plating layer 3 is provided are pressed against the resin base material 11. The size of each recess is too large. As a result, the transparency of the resin base material 11 after removing the copper foil may decrease.

また、めっき粒子3aの成長方向の平均粒子径が1.2μmを超えると、樹脂基材11に設けられた接着剤層を介して、樹脂基材11と表面処理銅箔1とを貼り合わせた際、表面処理銅箔1の粗化面にめっき粒子3aにより形成される凸部が接着剤層を突き抜ける(突き破る)ことがある。その結果、銅箔除去後の樹脂基材11において、表面処理銅箔1の一部が樹脂基材11の表面に残ってしまうことがある。つまり、いわゆる根残り(エッチング残り)が発生することがある。   Moreover, when the average particle diameter of the growth direction of the plating particle 3a exceeded 1.2 micrometers, the resin base material 11 and the surface treatment copper foil 1 were bonded together through the adhesive bond layer provided in the resin base material 11. At this time, the convex portion formed by the plated particles 3 a may penetrate (break through) the adhesive layer on the roughened surface of the surface-treated copper foil 1. As a result, in the resin base material 11 after removing the copper foil, part of the surface-treated copper foil 1 may remain on the surface of the resin base material 11. That is, so-called root residue (etching residue) may occur.

めっき粒子3aの水平方向の平均粒子径を0.8μm以下にし、めっき粒子3aの成長方向の平均粒子径を1.2μm以下にすることで、所望の透明性を確保することができる。例えば、銅箔除去後の樹脂基材11のHAZE値を80%以下にすることができる。なお、HAZE値は、濁度や曇度とも呼ばれ、HAZE値の値が大きくなるほど、透明性が低くなる。また、銅箔除去後の樹脂基材11において、表面処理銅箔1の一部が樹脂基材11の表面に残ることを抑制できる。   By setting the average particle diameter in the horizontal direction of the plated particles 3a to 0.8 μm or less and the average particle diameter in the growth direction of the plated particles 3a to 1.2 μm or less, desired transparency can be ensured. For example, the HAZE value of the resin base material 11 after removing the copper foil can be 80% or less. The HAZE value is also referred to as turbidity or haze, and the greater the HAZE value, the lower the transparency. Moreover, in the resin base material 11 after copper foil removal, it can suppress that a part of surface-treated copper foil 1 remains on the surface of the resin base material 11. FIG.

ここで、めっき粒子3aの水平方向の平均粒子径の算出方法について説明する。例えば、SEM法により、所定の観察倍率(例えば30000倍)で、粗化銅めっき層3の真上(粗化銅めっき層3の主面に対して垂直な方向)から、粗化銅めっき層3の上面(表面処理銅箔1の粗化面)を観察(撮影)する。これにより、例えば図3に示すような粗化銅めっき層3の上面のSEM像が得られる。得られたSEM像中で観察されるめっき粒子3aから、所定の個数(例えば10個)のめっき粒子3aを任意に抽出し、抽出しためっき粒子3aの粒子径(最大径)を測定し、これをめっき粒子3aの銅箔基材2に沿った粒子径Wとする。そして、測定しためっき粒子3aの銅箔基材2に沿った粒子径Wの平均値を算出し、これをめっき粒子3aの水平方向の平均粒子径とする。なお、例えば図2(d)に示すように、粗化銅めっき層3の高さ方向に複数のめっき粒子3aが重なっている(つまり、一のめっき粒子3a上に他のめっき粒子3aが成長している)場合、最上段に位置するめっき粒子3aの銅箔基材2の主面に沿った粒子径Wを測定する。   Here, the calculation method of the average particle diameter of the horizontal direction of the plating particle 3a is demonstrated. For example, by the SEM method, the roughened copper plated layer is formed from directly above the roughened copper plated layer 3 (in a direction perpendicular to the main surface of the roughened copper plated layer 3) at a predetermined observation magnification (for example, 30000 times). 3 (the roughened surface of the surface-treated copper foil 1) is observed (photographed). Thereby, for example, an SEM image of the upper surface of the roughened copper plating layer 3 as shown in FIG. 3 is obtained. A predetermined number (for example, 10) of plating particles 3a is arbitrarily extracted from the plating particles 3a observed in the obtained SEM image, and the particle diameter (maximum diameter) of the extracted plating particles 3a is measured. Is the particle diameter W along the copper foil substrate 2 of the plated particles 3a. And the average value of the particle diameter W along the copper foil base material 2 of the measured plating particle 3a is computed, and let this be the average particle diameter of the horizontal direction of the plating particle 3a. For example, as shown in FIG. 2 (d), a plurality of plating particles 3a overlap in the height direction of the roughened copper plating layer 3 (that is, other plating particles 3a grow on one plating particle 3a). The particle diameter W along the principal surface of the copper foil base material 2 of the plated particle 3a located at the uppermost stage is measured.

次に、めっき粒子3aの成長方向の平均粒子径の算出方法について説明する。例えば、SEM法により、所定の観察倍率(例えば10000倍)で、粗化銅めっき層3の縦断面を観察して得たSEM像から、所定の個数(例えば30個)のめっき粒子3aを任意に抽出する。抽出しためっき粒子3aについてそれぞれ、頂点Tと、底辺の中点Oと、を検出して、頂点Tと底辺の中点Oとの間の距離を測定し、これをめっき粒子3aの成長方向に沿った粒子径Dとする。そして、得られためっき粒子3aの成長方向に沿った粒子径Dの平均値を算出し、これをめっき粒子3aの成長方向の平均粒子径とする。なお、粗化銅めっき層3の高さ方向に複数のめっき粒子3aが重なっている場合、最上段に位置するめっき粒子3aの成長方向に沿った粒子径Dを測定する。   Next, a method for calculating the average particle diameter in the growth direction of the plated particles 3a will be described. For example, a predetermined number (for example, 30) of plated particles 3a is arbitrarily selected from an SEM image obtained by observing the longitudinal section of the roughened copper plating layer 3 at a predetermined observation magnification (for example, 10,000 times) by the SEM method. To extract. For each of the extracted plated particles 3a, the vertex T and the middle point O of the bottom are detected, the distance between the vertex T and the middle point O of the bottom is measured, and this is measured in the growth direction of the plated particles 3a. It is assumed that the particle diameter D is along. And the average value of the particle diameter D along the growth direction of the obtained plating particle 3a is calculated, and let this be the average particle diameter of the growth direction of the plating particle 3a. In addition, when the several plating particle 3a has overlapped in the height direction of the roughening copper plating layer 3, the particle diameter D along the growth direction of the plating particle 3a located in the uppermost stage is measured.

また、めっき粒子3aの成長方向と銅箔基材2の主面とのなす角度θの測定方法について説明する。例えばSEM法により、所定の観察倍率(例えば10000倍)で、粗化銅めっき層3の縦断面を観察して得たSEM像から、所定の個数(例えば30個)のめっき粒子3aを任意に抽出する。抽出しためっき粒子3aについてそれぞれ、頂点Tと、底辺の中点Oと、を検出し、底辺の中点Oから頂点Tに向かう方向をめっき粒子3aの成長方向とする。そして、抽出しためっき粒子3aについてそれぞれ、めっき粒子3aの成長方向と銅箔基材2の主面とのなす角度θを測定する。また、得られためっき粒子3aの成長方向と銅箔基材2の主面とのなす角度θを用い、平均値を算出してもよい。なお、例えば図2(d)に示すように、粗化銅めっき層3の高さ方向に複数のめっき粒子3aが重なっている場合、最下段に位置するめっき粒子3aの底辺の中点Oから最上段に位置するめっき粒子3aの頂点Tに向かう方向をめっき粒子3aの成長方向とする。   Moreover, the measuring method of angle (theta) which the growth direction of the plating particle 3a and the main surface of the copper foil base material 2 make is demonstrated. For example, from a SEM image obtained by observing the longitudinal section of the roughened copper plating layer 3 at a predetermined observation magnification (for example, 10,000 times) by the SEM method, a predetermined number (for example, 30) of plated particles 3a is arbitrarily selected. Extract. For each of the extracted plated particles 3a, the vertex T and the middle point O of the bottom are detected, and the direction from the middle point O of the bottom toward the vertex T is defined as the growth direction of the plated particles 3a. And about each extracted plating particle 3a, angle (theta) which the growth direction of the plating particle 3a and the main surface of the copper foil base material 2 make is measured. Moreover, you may calculate an average value using angle (theta) which the growth direction of the obtained plating particle 3a and the main surface of the copper foil base material 2 make. For example, as shown in FIG. 2 (d), when a plurality of plating particles 3 a overlap in the height direction of the roughened copper plating layer 3, the middle point O of the bottom of the plating particles 3 a located at the lowest level The direction toward the apex T of the plating particle 3a located at the uppermost stage is defined as the growth direction of the plating particle 3a.

また、粗化銅めっき層3の厚さは、例えば0.03μm以上1.1μm以下であることが好ましい。なお、粗化銅めっき層3の厚さとは、粗化銅めっき層3の凹凸を平均に均した時の厚さ(つまり平均厚さ)である。   Moreover, it is preferable that the thickness of the roughening copper plating layer 3 is 0.03 micrometer or more and 1.1 micrometers or less, for example. In addition, the thickness of the roughened copper plating layer 3 is a thickness when the unevenness of the roughened copper plating layer 3 is averaged (that is, an average thickness).

粗化銅めっき層3の厚さが0.03μm未満であると、粗化銅めっき層3に含まれる各めっき粒子3aの大きさが小さすぎることがある。例えば、めっき粒子3aの水平方向の平均粒子径やめっき粒子3aの成長方向の平均粒子径が0.05μm未満になることがある。また、粗化銅めっき層3を形成するめっき量が少なくなるため、各めっき粒子3aの成長角度θが例えば20°未満になることがある。その結果、積層板10において、樹脂基材11に接触する表面処理銅箔1の表面積が小さすぎ、充分なアンカー効果が得られないことがある。従って、所望の密着性を維持できないことがある。   When the thickness of the roughened copper plating layer 3 is less than 0.03 μm, the size of each plating particle 3 a included in the roughened copper plating layer 3 may be too small. For example, the average particle diameter in the horizontal direction of the plating particles 3a and the average particle diameter in the growth direction of the plating particles 3a may be less than 0.05 μm. Further, since the amount of plating for forming the roughened copper plating layer 3 is reduced, the growth angle θ of each plating particle 3a may be, for example, less than 20 °. As a result, in the laminated board 10, the surface treatment copper foil 1 which contacts the resin base material 11 is too small in surface area, and a sufficient anchor effect may not be obtained. Therefore, desired adhesion may not be maintained.

粗化銅めっき層3の厚さを0.03μm以上にすることで、めっき粒子3aの水平方向の平均粒子径及びめっき粒子3aの成長方向の平均粒子径をそれぞれ0.05μm以上に、より確実にすることができる。また、めっき粒子3aの成長角度θを充分に大きく(例えば20°以上に)することができる。その結果、アンカー効果をより得ることができ、所望の密着性をより確実に維持することができる。例えば、ピール強度を0.7N/mm以上に、より確実に維持することができる。   By making the thickness of the roughened copper plating layer 3 0.03 μm or more, the average particle diameter in the horizontal direction of the plating particles 3 a and the average particle diameter in the growth direction of the plating particles 3 a are each more reliably 0.05 μm or more. Can be. Further, the growth angle θ of the plated particles 3a can be made sufficiently large (for example, 20 ° or more). As a result, an anchor effect can be obtained more and desired adhesion can be more reliably maintained. For example, the peel strength can be more reliably maintained at 0.7 N / mm or more.

しかしながら、粗化銅めっき層3の厚さが1.1μmを超えると、めっき粒子3aの水平方向の平均粒子径が0.8μmを超えたり、めっき粒子3aの成長方向の平均粒子径が1.2μmを超え、各めっき粒子3aの大きさが大きくなることがある。その結果、所望の透明性を確保できないことがある。また、表面処理銅箔1と樹脂基材11とを貼り合わせた際、表面処理銅箔1の粗化面に形成される凸部が、樹脂基材11に設けられた接着剤層を突き抜けることがある。従って、銅箔除去後の樹脂基材11において、表面処理銅箔1の一部が樹脂基材11の表面に残ってしまうことがある。   However, when the thickness of the roughened copper plating layer 3 exceeds 1.1 μm, the average particle diameter in the horizontal direction of the plating particles 3 a exceeds 0.8 μm, or the average particle diameter in the growth direction of the plating particles 3 a is 1. The size of each plated particle 3a may be larger than 2 μm. As a result, desired transparency may not be ensured. Further, when the surface-treated copper foil 1 and the resin base material 11 are bonded together, the convex portion formed on the roughened surface of the surface-treated copper foil 1 penetrates the adhesive layer provided on the resin base material 11. There is. Therefore, in the resin base material 11 after removing the copper foil, a part of the surface-treated copper foil 1 may remain on the surface of the resin base material 11.

粗化銅めっき層3の厚さを1.1μm以下にすることで、めっき粒子3aの水平方向の平均粒子径を0.8μm以下にし、めっき粒子3aの成長方向の平均粒子径を1.2μm以下に、より確実にすることができる。その結果、所望の透明性をより確実に確保することができる。例えば、銅箔除去後の樹脂基材11のHAZE値を80%以下に、より確実にすることができる。また、銅箔除去後の樹脂基材11において、表面処理銅箔1の一部が樹脂基材11の表面に残ることを抑制することができる。   By setting the thickness of the roughened copper plating layer 3 to 1.1 μm or less, the average particle diameter in the horizontal direction of the plating particles 3 a is set to 0.8 μm or less, and the average particle diameter in the growth direction of the plating particles 3 a is 1.2 μm. The following can be made more reliable. As a result, desired transparency can be ensured more reliably. For example, the HAZE value of the resin base material 11 after removing the copper foil can be more reliably set to 80% or less. Moreover, in the resin base material 11 after copper foil removal, it can suppress that a part of surface-treated copper foil 1 remains on the surface of the resin base material 11. FIG.

銅箔基材2と粗化銅めっき層3との間には、粗化銅めっき層3の下地層として機能する下地めっき層4が設けられていてもよい。下地めっき層4は、例えば表面が平坦なめっき層である。下地めっき層4は、例えば銅めっき層で形成されていることが好ましい。下地めっき層4を形成するめっき処理のめっき時間が長くなり、表面処理銅箔1の生産性が低下することを抑制するため、下地めっき層4の厚さは例えば0.1μm以上0.5μm以下であることが好ましい。   Between the copper foil base material 2 and the roughened copper plating layer 3, a base plating layer 4 that functions as a base layer of the roughened copper plating layer 3 may be provided. The base plating layer 4 is a plating layer having a flat surface, for example. For example, the base plating layer 4 is preferably formed of a copper plating layer. In order to prevent the plating time for forming the base plating layer 4 from increasing and the productivity of the surface-treated copper foil 1 from decreasing, the thickness of the base plating layer 4 is, for example, 0.1 μm or more and 0.5 μm or less. It is preferable that

表面処理銅箔1の耐熱性や耐薬品性等を向上させるため、少なくとも粗化銅めっき層3の上面を覆うように、防錆層5が設けられていることが好ましい。防錆層5の厚さは例えば6nm以上35nm以下であることが好ましい。防錆層5の厚さが6nm未満であると、表面処理銅箔1の耐熱性や耐薬品性等が不足することがある。防錆層5の厚さを6nm以上にすることで、表面処理銅箔1の耐熱性や耐薬品性等を充分に向上させることができる。しかしながら、防錆層5はエッチングされにくいため、防錆層5の厚さが35nmを超えると、銅箔除去後の樹脂基材11において、表面処理銅箔1の一部が樹脂基材11の表面に残ってしまうことがある。   In order to improve the heat resistance and chemical resistance of the surface-treated copper foil 1, it is preferable that the rust prevention layer 5 is provided so as to cover at least the upper surface of the roughened copper plating layer 3. The thickness of the rust preventive layer 5 is preferably 6 nm or more and 35 nm or less, for example. When the thickness of the rust preventive layer 5 is less than 6 nm, the heat resistance and chemical resistance of the surface-treated copper foil 1 may be insufficient. By setting the thickness of the rust prevention layer 5 to 6 nm or more, the heat resistance and chemical resistance of the surface-treated copper foil 1 can be sufficiently improved. However, since the rust preventive layer 5 is difficult to be etched, when the thickness of the rust preventive layer 5 exceeds 35 nm, a part of the surface-treated copper foil 1 of the resin base 11 is removed from the resin base 11 after the copper foil is removed. It may remain on the surface.

防錆層5として、例えば、銅箔基材2の側から順に、Niめっき層(又はNiとCoとの合金めっき層等のNi合金めっき層)と、Znめっき層(又はZn合金めっき層)と、クロメート処理層(3価のクロム化成処理層)と、化成処理皮膜としてのシランカップリング層と、が設けられていることが好ましい。   As the rust prevention layer 5, for example, in order from the copper foil base material 2 side, a Ni plating layer (or a Ni alloy plating layer such as an alloy plating layer of Ni and Co) and a Zn plating layer (or a Zn alloy plating layer) And a chromate treatment layer (trivalent chromium chemical conversion treatment layer) and a silane coupling layer as a chemical conversion treatment film are preferably provided.

Niめっき層の厚さは例えば4nm以上20nm以下であることが好ましく、これにより、表面処理銅箔1中のCuが樹脂基材11側へ拡散することを抑制できる。Znめっき層の厚さは、例えば1nm以上10nm以下であることが好ましく、これにより、表面処理銅箔1の耐熱性をより向上させることができる。クロメート処理層の厚さは例えば1nm以上5nm以下であることが好ましい。また、シランカップリング層の厚さは非常に薄くてよく、これにより、密着性をより向上させることができる。   It is preferable that the thickness of the Ni plating layer is, for example, 4 nm or more and 20 nm or less, whereby the Cu in the surface-treated copper foil 1 can be prevented from diffusing to the resin base material 11 side. The thickness of the Zn plating layer is preferably, for example, 1 nm or more and 10 nm or less, whereby the heat resistance of the surface-treated copper foil 1 can be further improved. The thickness of the chromate treatment layer is preferably 1 nm or more and 5 nm or less, for example. Further, the thickness of the silane coupling layer may be very thin, which can further improve the adhesion.

(2)表面処理銅箔の製造方法
次に、本実施形態にかかる表面処理銅箔1及び積層板10の製造方法の一実施形態について説明する。
(2) Manufacturing method of surface-treated copper foil Next, one Embodiment of the manufacturing method of the surface-treated copper foil 1 and the laminated board 10 concerning this embodiment is described.

[表面処理銅箔形成工程]
まず、本実施形態にかかる表面処理銅箔1を形成する。
[Surface treatment copper foil formation process]
First, the surface-treated copper foil 1 according to the present embodiment is formed.

(銅箔基材形成工程)
銅箔基材2として、例えば圧延銅箔や電解銅箔を形成する。例えば、銅箔基材2としての圧延銅箔を形成する場合、まず、無酸素銅やタフピッチ銅からなる純銅の鋳塊や、無酸素銅やタフピッチ銅を母相とし、母相中に所定量のSnやAg等の添加剤を添加した希薄銅合金の鋳塊を鋳造する。そして、鋳造した鋳塊に対し、所定の熱間圧延処理、所定の冷間圧延処理、所定の焼鈍処理等を行い、所定厚さ(例えば5μm以上18μm以下)の圧延銅箔を形成する。
(Copper foil base material formation process)
As the copper foil base material 2, for example, a rolled copper foil or an electrolytic copper foil is formed. For example, when forming a rolled copper foil as the copper foil base material 2, first, a pure copper ingot made of oxygen-free copper or tough pitch copper, oxygen-free copper or tough pitch copper as a parent phase, and a predetermined amount in the mother phase An ingot of a dilute copper alloy to which additives such as Sn and Ag are added is cast. And a predetermined hot rolling process, a predetermined cold rolling process, a predetermined annealing process, etc. are performed with respect to the cast ingot, and the rolled copper foil of predetermined thickness (for example, 5 micrometers or more and 18 micrometers or less) is formed.

(下地めっき層形成工程)
銅箔基材形成工程が終了したら、銅箔基材2の少なくともいずれかの主面上に所定厚さ(例えば0.1μm以上0.5μm以下)の下地めっき層4を形成する。具体的には、下地めっき層4を形成するめっき液(下地めっき液)中で、例えば下地めっき液の限界電流密度よりも小さい電流密度で電解めっき処理を行い、下地めっき層4を形成する。下地めっき液として、例えば硫酸銅および硫酸を主成分とする酸性銅めっき浴を用いることができる。なお、電流密度を限界電流密度以上にすると、下地めっき層4の表面の凹凸が大きくなり、表面が平坦な下地めっき層4を形成することができないことがある。
(Under plating layer forming process)
When the copper foil base material forming step is completed, a base plating layer 4 having a predetermined thickness (for example, 0.1 μm or more and 0.5 μm or less) is formed on at least one main surface of the copper foil base material 2. Specifically, in the plating solution for forming the base plating layer 4 (base plating solution), for example, electrolytic plating is performed at a current density lower than the limit current density of the base plating solution to form the base plating layer 4. As the base plating solution, for example, an acidic copper plating bath mainly containing copper sulfate and sulfuric acid can be used. If the current density is set to be equal to or higher than the limit current density, the unevenness of the surface of the base plating layer 4 becomes large, and the base plating layer 4 having a flat surface may not be formed.

下地めっき液の液組成、液温、電流密度等の電解条件は、例えば下記の表1に示す範囲に設定することができる。このとき、陽極としてCu板を用い、めっき処理を施す対象である銅箔基材2自体を陰極とすることが好ましい。   The electrolysis conditions such as the liquid composition, liquid temperature, and current density of the base plating solution can be set within the range shown in Table 1 below, for example. At this time, it is preferable to use a Cu plate as the anode and to use the copper foil base material 2 itself, which is an object to be plated, as the cathode.

なお、表面処理銅箔1の生産性をより向上させるため、電流密度は、表1に記載の範囲内で、できるだけ高くすることが好ましい。   In order to further improve the productivity of the surface-treated copper foil 1, the current density is preferably as high as possible within the range shown in Table 1.

(粗化銅めっき層形成工程)
下地めっき層形成工程が終了したら、例えばロール・ツー・ロール(roll to roll)形式の連続電解(電気)めっき処理により、下地めっき層4上に所定厚さ(例えば0.04μm以上1.1μm以下)の粗化銅めっき層3を形成する。具体的には、粗化銅めっき層3を形成するめっき液(粗化銅めっき液)中で、例えば粗化銅めっき液の限界電流密度以上の電流密度(いわゆる「やけめっき」になるような電流密度)で電解めっき処理(粗化処理)を行い、粗化銅めっき層3を形成する。粗化銅めっき液として、例えば硫酸銅や硫酸を主成分とする酸性銅めっき浴を用いることができる。また、粗化銅めっき液中に所定量の硫酸鉄七水和物や、Mo酸Na等を添加することが好ましい。
(Roughening copper plating layer forming process)
When the base plating layer forming step is finished, a predetermined thickness (for example, 0.04 μm or more and 1.1 μm or less) is formed on the base plating layer 4 by, for example, roll-to-roll type continuous electrolytic (electric) plating treatment. ) Of the roughened copper plating layer 3 is formed. Specifically, in the plating solution (roughened copper plating solution) for forming the roughened copper plating layer 3, for example, a current density equal to or higher than the limit current density of the roughened copper plating solution (so-called “bake plating”). An electrolytic plating process (roughening process) is performed at a current density) to form a roughened copper plating layer 3. For example, an acidic copper plating bath mainly composed of copper sulfate or sulfuric acid can be used as the roughened copper plating solution. Further, it is preferable to add a predetermined amount of iron sulfate heptahydrate, Mo acid Na or the like to the roughened copper plating solution.

粗化銅めっき液の液組成、液温、電流密度等の電解条件は、例えば下記の表2に示す範囲に設定することができる。このとき、陽極としてCu板を用い、粗化処理を施す対象である銅箔基材2自体を陰極とすることが好ましい。   The electrolytic conditions such as the liquid composition, liquid temperature, and current density of the roughened copper plating solution can be set within the range shown in Table 2 below, for example. At this time, it is preferable to use a Cu plate as the anode and to use the copper foil base material 2 itself, which is a target to be roughened, as the cathode.

なお、粗化銅めっき液中の硫酸鉄七水和物(めっき粒子3aの大きさを均一にする金属イオン)の濃度が高くなるほど、また粗化銅めっき液の液温が高くなるほど、例えばめっき粒子3aの水平方向の平均粒子径が大きくなる傾向にある。また、粗化処理のめっき時間が長くなるほど、そして、粗化銅めっき液の液温が高くなるほど、例えばめっき粒子3aの成長方向の平均粒子径が大きくなる傾向にある。また、例えば同じ電荷量(=電流密度×めっき時間)である場合、電流密度が高いほど、例えばめっき粒子3aの成長角度θが大きくなる(90°に近付く)傾向がある。従って、めっき粒子3aの水平方向の平均粒子径と、めっき粒子3aの成長方向の平均粒子径と、めっき粒子3aの成長角度θと、がそれぞれ所望の範囲になるように、粗化銅めっき液中のめっき粒子3aの大きさを均一にする金属イオンの濃度、粗化銅めっき液の液温、めっき時間、電流密度等を適宜調整することが好ましい。   In addition, as the concentration of iron sulfate heptahydrate (metal ion that makes the size of the plating particles 3a uniform) in the roughened copper plating solution increases and the liquid temperature of the roughened copper plating solution increases, for example, plating The horizontal average particle diameter of the particles 3a tends to increase. In addition, the longer the plating time for the roughening treatment and the higher the temperature of the roughened copper plating solution, the larger the average particle diameter in the growth direction of the plated particles 3a, for example. For example, when the charge amount is the same (= current density × plating time), for example, the higher the current density, the larger the growth angle θ of the plated particles 3a tends to be (closer to 90 °). Accordingly, the roughened copper plating solution so that the average particle diameter in the horizontal direction of the plating particles 3a, the average particle diameter in the growth direction of the plating particles 3a, and the growth angle θ of the plating particles 3a are in desired ranges, respectively. It is preferable to adjust appropriately the density | concentration of the metal ion which makes the magnitude | size of the inside plating particle 3a uniform, the liquid temperature of a roughening copper plating solution, plating time, a current density, etc.

(防錆層形成工程)
粗化銅めっき層形成工程が終了したら、粗化銅めっき層3上に所定厚さ(例えば6nm以上35nm以下)の防錆層5を形成する。例えば、防錆層5として、粗化銅めっき層3の側から順に、所定厚さ(例えば4nm以上20nm以下)のNiめっき層(又はNi合金めっき層)と、所定厚さ(例えば1nm以上10nm以下)のZnめっき層(又はZn合金めっき層)と、所定厚さ(例えば1nm以上5nm以下)の3価クロム化成処理層と、シランカップリング層と、を形成する。3価クロム化成処理層は、例えば3価クロムタイプの反応型クロメート液を用いて形成することが好ましい。
(Rust prevention layer formation process)
When the roughened copper plating layer forming step is completed, a rust prevention layer 5 having a predetermined thickness (for example, 6 nm or more and 35 nm or less) is formed on the roughened copper plating layer 3. For example, as the rust preventive layer 5, a Ni plating layer (or Ni alloy plating layer) having a predetermined thickness (for example, 4 nm or more and 20 nm or less) and a predetermined thickness (for example, 1 nm or more and 10 nm or more) in order from the roughened copper plating layer 3 side. Below) Zn plating layer (or Zn alloy plating layer), a trivalent chromium chemical conversion treatment layer having a predetermined thickness (for example, 1 nm or more and 5 nm or less), and a silane coupling layer. The trivalent chromium chemical conversion treatment layer is preferably formed using, for example, a trivalent chromium type reactive chromate solution.

[積層板形成工程]
防錆層形成工程が終了し、表面処理銅箔形成工程が終了したら、表面処理銅箔1と樹脂基材11とを貼り合わせて積層板10を形成する。具体的には、樹脂基材11を挟んで表面処理銅箔1がそれぞれ対向するとともに、粗化銅めっき層3が樹脂基材11に対向するように表面処理銅箔1を樹脂基材11の両主面上に配置し、表面処理銅箔1と樹脂基材11とを貼り合わせて積層板10を形成する。表面処理銅箔1と樹脂基材11との貼り合わせは、例えば、真空プレス機を用い、表面処理銅箔1と樹脂基材11とを所定温度(例えば150℃以上350℃以下)に加熱しつつ、表面処理銅箔1と樹脂基材11とに所定圧力(例えば20MPa以下)を所定時間(例えば1分以上120分以下)加えて行うことができる。
[Laminated plate forming process]
When the rust preventive layer forming step is finished and the surface-treated copper foil forming step is finished, the surface-treated copper foil 1 and the resin base material 11 are bonded together to form the laminate 10. Specifically, the surface-treated copper foil 1 is placed on the resin substrate 11 so that the surface-treated copper foil 1 faces the resin substrate 11 and the roughened copper plating layer 3 faces the resin substrate 11. It arrange | positions on both main surfaces, the surface-treated copper foil 1 and the resin base material 11 are bonded together, and the laminated board 10 is formed. Bonding of the surface-treated copper foil 1 and the resin base material 11 is performed by heating the surface-treated copper foil 1 and the resin base material 11 to a predetermined temperature (for example, 150 ° C. or higher and 350 ° C. or lower) using, for example, a vacuum press. On the other hand, a predetermined pressure (for example, 20 MPa or less) can be applied to the surface-treated copper foil 1 and the resin base material 11 for a predetermined time (for example, 1 minute to 120 minutes).

(3)本実施形態にかかる効果
本実施形態によれば、以下に示す1つまたは複数の効果を奏する。
(3) Effects According to the Present Embodiment According to the present embodiment, one or a plurality of effects described below are exhibited.

(a)粗化銅めっき層3に含まれる複数のめっき粒子3aの銅箔基材2の主面に沿った粒子径の平均値、めっき粒子3aの成長方向に沿った粒子径の平均値、及びめっき粒子3aの成長方向と銅箔基材2の主面とのなす角度θをそれぞれ所望の範囲にすることで、所望の密着性を維持しつつ、所望の透明性を確保することができる。具体的には、めっき粒子3aの水平方向の平均粒子径を0.05μm以上0.8μm以下にし、めっき粒子3aの成長方向の平均粒子径を0.05μm以上1.2μm以下にし、めっき粒子3aの成長角度θを20°以上90°以下にすることで、ピール強度を0.7N/mm以上に維持しつつ、銅箔除去後の樹脂基材11のHAZE値を80%以下にできる。 (A) The average value of the particle diameter along the main surface of the copper foil base material 2 of the plurality of plating particles 3a contained in the roughened copper plating layer 3, the average value of the particle diameter along the growth direction of the plating particles 3a, In addition, by making the angle θ formed between the growth direction of the plated particles 3a and the main surface of the copper foil base material 2 within a desired range, it is possible to ensure desired transparency while maintaining desired adhesion. . Specifically, the average particle diameter in the horizontal direction of the plating particles 3a is set to 0.05 μm or more and 0.8 μm or less, the average particle diameter in the growth direction of the plating particles 3a is set to 0.05 μm or more and 1.2 μm or less, and the plating particles 3a By making the growth angle θ of 20 ° or more and 90 ° or less, the HAZE value of the resin base material 11 after removing the copper foil can be made 80% or less while maintaining the peel strength at 0.7 N / mm or more.

ピール強度を0.7N/mm以上にすることで、例えば表面処理銅箔1を用いた積層板10で形成したFPCにおいて、表面処理銅箔1の所定箇所をエッチング等により除去することで形成した銅配線が、樹脂基材11から剥がれることを抑制できる。従って、FPCの信頼性の低下を抑制できる。   By forming the peel strength to 0.7 N / mm or more, for example, in the FPC formed with the laminated plate 10 using the surface-treated copper foil 1, a predetermined portion of the surface-treated copper foil 1 is removed by etching or the like. It can suppress that copper wiring peels from the resin base material 11. FIG. Accordingly, it is possible to suppress a decrease in the reliability of the FPC.

また、銅箔除去後の樹脂基材11のHAZE値を80%以下にすることで、例えば表面処理銅箔1を用いた積層板10で形成したFPCに電子部品等を実装する際、目視やCCDカメラ等により、表面処理銅箔1が除去された箇所の樹脂基材11越しに銅配線や位置決めマーク等を容易に認識することができる。その結果、例えばFPCに電子部品等を実装する際の実装作業性を向上させることができる。   Further, by setting the HAZE value of the resin base material 11 after removing the copper foil to 80% or less, for example, when mounting an electronic component or the like on the FPC formed by the laminated plate 10 using the surface-treated copper foil 1, With a CCD camera or the like, it is possible to easily recognize the copper wiring, the positioning mark, and the like through the resin base material 11 at the place where the surface-treated copper foil 1 is removed. As a result, it is possible to improve the mounting workability when mounting electronic components or the like on the FPC, for example.

(b)また、めっき粒子3aの成長方向における平均粒子径を0.05μm以上1.2μm以下にすることで、表面処理銅箔1を用いて積層板10を形成した際、表面処理銅箔1の粗化面にめっき粒子3aにより形成された凸部が、樹脂基材11に設けられた接着剤層を突き抜けることを抑制できる。これにより、銅箔除去後の樹脂基材11において、表面処理銅箔1の一部が樹脂基材11の表面に残ることを抑制できる。 (B) When the laminate 10 is formed using the surface-treated copper foil 1 by setting the average particle diameter in the growth direction of the plated particles 3 a to 0.05 μm or more and 1.2 μm or less, the surface-treated copper foil 1 It can suppress that the convex part formed of the plating particle 3a on the roughened surface penetrates the adhesive layer provided on the resin substrate 11. Thereby, in the resin base material 11 after copper foil removal, it can suppress that a part of surface-treated copper foil 1 remains on the surface of the resin base material 11. FIG.

(c)本実施形態にかかる表面処理銅箔1は、積層板10を形成する際に表面処理銅箔1と貼り合わされる樹脂基材11に設けられた接着剤層の厚さが薄い場合に特に有効である。例えば、接着剤層の厚さが25μm以下である場合に特に有効である。つまり、本実施形態にかかる表面処理銅箔1は、接着剤層の厚さが薄い場合であっても、表面処理銅箔1の粗化面にめっき粒子3aにより形成された凸部が、接着剤層を突き抜けることを抑制できる。従って、上記(b)の効果をより得ることができる。 (C) The surface-treated copper foil 1 according to the present embodiment is used when the thickness of the adhesive layer provided on the resin base material 11 bonded to the surface-treated copper foil 1 when the laminated plate 10 is formed is thin. It is particularly effective. For example, it is particularly effective when the thickness of the adhesive layer is 25 μm or less. That is, even if the surface-treated copper foil 1 according to the present embodiment is a case where the thickness of the adhesive layer is thin, the convex portion formed by the plated particles 3a is bonded to the roughened surface of the surface-treated copper foil 1. It can suppress penetrating the agent layer. Therefore, the effect (b) can be further obtained.

(d)また、表面処理銅箔1の一部が樹脂基材11の表面に残ることが抑制されることで、表面処理銅箔1を用いた積層板10で形成したFPCにおいて、銅配線の配線ピッチをより狭くすることができる。つまり、精細な銅配線を形成することができる。また、精細な銅配線を形成した場合であっても、例えば短絡の発生を抑制でき、FPCの信頼性をより向上させることができる。このように、本実施形態にかかる表面処理銅箔1は、精細な銅配線を形成するFPCに用いられる場合に、特に有効である。 (D) Moreover, in FPC formed with the laminated board 10 using the surface-treated copper foil 1 by suppressing that a part of surface-treated copper foil 1 remains on the surface of the resin base material 11, The wiring pitch can be made narrower. That is, a fine copper wiring can be formed. Further, even when fine copper wiring is formed, for example, occurrence of a short circuit can be suppressed, and the reliability of the FPC can be further improved. Thus, the surface-treated copper foil 1 according to the present embodiment is particularly effective when used for an FPC that forms fine copper wiring.

(e)粗化銅めっき層3の厚さを0.03μm以上1.1μm以下にすることで、めっき粒子3aの水平方向の平均粒子径と、めっき粒子3aの成長方向の平均粒子径と、めっき粒子3aの成長角度θと、をそれぞれ、所望の範囲により確実にすることができる。従って、上記(a)〜(d)の効果をより確実に得ることができる。 (E) By making the thickness of the roughened copper plating layer 3 0.03 μm or more and 1.1 μm or less, the horizontal average particle diameter of the plating particles 3 a and the average particle diameter of the plating particles 3 a in the growth direction, The growth angle θ of the plating particle 3a can be ensured in a desired range. Therefore, the effects (a) to (d) can be obtained more reliably.

(f)本実施形態にかかる表面処理銅箔1を用いて形成した積層板10は、FPCに用いられる場合に特に有効である。本実施形態にかかる表面処理銅箔1を用いて形成したFPCは、表面処理銅箔1が除去された箇所の樹脂基材11を介した識別容易性が高く、表面処理銅箔1が除去された箇所の樹脂基材11越しに銅配線を容易に認識することができ、実装作業性を向上させることができる。また、表面処理銅箔1の所定箇所をエッチング等により除去することで形成した銅配線が、樹脂基材11から剥がれることを抑制できる。 (F) The laminated board 10 formed using the surface-treated copper foil 1 according to the present embodiment is particularly effective when used for FPC. The FPC formed using the surface-treated copper foil 1 according to the present embodiment has high identification ease through the resin base material 11 at the location where the surface-treated copper foil 1 is removed, and the surface-treated copper foil 1 is removed. Thus, the copper wiring can be easily recognized through the resin base material 11 at the spot, and the mounting workability can be improved. Moreover, it can suppress that the copper wiring formed by removing the predetermined location of the surface treatment copper foil 1 by an etching etc. peels from the resin base material 11. FIG.

(本発明の他の実施形態)
以上、本発明の一実施形態を具体的に説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で適宜変更可能である。
(Other embodiments of the present invention)
As mentioned above, although one Embodiment of this invention was described concretely, this invention is not limited to the above-mentioned embodiment, In the range which does not deviate from the summary, it can change suitably.

上述の実施形態では、表面処理銅箔1が下地めっき層4を備える場合について説明したが、これに限定されない。つまり、下地めっき層4は設けられていなくてもよい。これによっても、粗化銅めっき層3を形成するめっき処理の電流密度やめっき時間等のめっき条件を最適化することで、めっき粒子3aの水平方向の平均粒子径、めっき粒子3aの成長方向の粒子径、めっき粒子3aの成長角度θをそれぞれ、所望の範囲にすることができる。   Although the above-mentioned embodiment demonstrated the case where the surface-treated copper foil 1 was provided with the base plating layer 4, it is not limited to this. That is, the base plating layer 4 may not be provided. Also by this, by optimizing the plating conditions such as the current density and the plating time of the plating treatment for forming the roughened copper plating layer 3, the horizontal average particle diameter of the plating particles 3a and the growth direction of the plating particles 3a can be improved. Each of the particle diameter and the growth angle θ of the plating particle 3a can be set to a desired range.

また、例えば、表面処理銅箔1は、粗化銅めっき層3の少なくとも上面を覆うように設けられためっき粒子脱落抑制層を備えていてもよい。めっき粒子脱落抑制層は、例えば銅めっき層で形成されていることが好ましい。めっき粒子脱落抑制層の厚さは例えば0.05μm以上0.3μm以下であることが好ましい。   Further, for example, the surface-treated copper foil 1 may include a plating particle drop-off suppressing layer provided so as to cover at least the upper surface of the roughened copper plating layer 3. The plating particle drop-off suppressing layer is preferably formed of, for example, a copper plating layer. The thickness of the plating particle drop-off suppressing layer is preferably 0.05 μm or more and 0.3 μm or less, for example.

上述の実施形態では、防錆層5がNiめっき層(又はNi合金めっき層)を備える場合について説明したが、これに限定されない。つまり、防錆層5はNiめっき層を備えていなくてもよい。この場合には、Niめっき層を設ける場合に比べてZnめっき層の厚さを厚くすることが好ましい。例えば、Znめっき層の厚さを5nm以上20nm以下にすることが好ましい。   Although the above-mentioned embodiment demonstrated the case where the antirust layer 5 was equipped with Ni plating layer (or Ni alloy plating layer), it is not limited to this. That is, the rust preventive layer 5 may not include the Ni plating layer. In this case, it is preferable to increase the thickness of the Zn plating layer compared to the case where the Ni plating layer is provided. For example, the thickness of the Zn plating layer is preferably 5 nm or more and 20 nm or less.

また、例えば、粗化銅めっき層3が設けられた主面とは反対側の銅箔基材2の主面には、防錆層(以下、「裏面防錆層」とも言う。)が設けられていてもよい。裏面防錆層は、例えば積層板10やFPCの製造過程で表面処理銅箔1に加わる熱量に耐え得る耐熱性や、耐薬品性等を、表面処理銅箔1に付与することができるように構成されていればよい。例えば、裏面防錆層は、銅箔基材2の側から順に、Niめっき層(又はNi合金めっき層)と、Znめっき層(又はZn合金めっき層)と、クロメート処理層と、を備えていることが好ましい。Niめっき層(又はNi合金めっき層)は設けられていなくてもよい。また、裏面防錆層の厚さは、表面処理銅箔1に所望の耐熱性や耐薬品性等を付与することができる厚さであればよい。しかしながら、裏面防錆層はエッチングされにくいため、裏面防錆層の厚さは、例えばFPCの製造過程でエッチングにより積層板10から裏面防錆層を除去した後に、樹脂基材11の表面に裏面防錆層の一部が残ることを抑制できる厚さであることが好ましい。つまり、裏面防錆層のエッチング残りの発生を抑制できる厚さであることが好ましい。例えば、裏面防錆層の厚さは、防錆層5の厚さよりも薄いことが好ましい。裏面防錆層の形成は、上述の防錆層形成工程と同時並行的に行うことができる。例えば、防錆層5のNiめっき層の形成と同時に、裏面防錆層のNiめっき層を形成することができる。なお、裏面防錆層の形成は、上述の防錆層形成工程が終了した後に行ってもよい。   Further, for example, a rust prevention layer (hereinafter also referred to as a “back surface rust prevention layer”) is provided on the main surface of the copper foil base 2 opposite to the main surface on which the roughened copper plating layer 3 is provided. It may be done. The back surface rust preventive layer can impart to the surface treated copper foil 1 heat resistance, chemical resistance, etc. that can withstand the amount of heat applied to the surface treated copper foil 1 in the manufacturing process of the laminated plate 10 and FPC, for example. It only has to be configured. For example, the back surface rust prevention layer includes a Ni plating layer (or Ni alloy plating layer), a Zn plating layer (or Zn alloy plating layer), and a chromate treatment layer in order from the copper foil base material 2 side. Preferably it is. The Ni plating layer (or Ni alloy plating layer) may not be provided. Moreover, the thickness of a back surface antirust layer should just be the thickness which can provide desired heat resistance, chemical-resistance, etc. to the surface treatment copper foil 1. FIG. However, since the back surface rust preventive layer is difficult to be etched, the thickness of the back surface rust preventive layer is, for example, after the back surface rust preventive layer is removed from the laminate 10 by etching in the FPC manufacturing process, It is preferable that it is the thickness which can suppress that a part of rust prevention layer remains. That is, it is preferable that the thickness is such that the etching residue of the back surface rust preventive layer can be suppressed. For example, the thickness of the back surface rust prevention layer is preferably thinner than the thickness of the rust prevention layer 5. The back surface antirust layer can be formed simultaneously with the above-described antirust layer forming step. For example, the Ni plating layer of the back surface rust prevention layer can be formed simultaneously with the formation of the Ni plating layer of the rust prevention layer 5. In addition, you may perform formation of a back surface antirust layer after the above-mentioned antirust layer formation process is complete | finished.

また、下地めっき層形成工程、粗化銅めっき層形成工程、防錆層形成工程等を行う前にそれぞれ、必要に応じて銅箔基材2や粗化銅めっき層3の表面を清浄する清浄処理を行ってもよい。例えば、粗化銅めっき層形成工程を行う前に清浄処理を行うことで、積層板10における表面処理銅箔1と樹脂基材11との密着性をより向上させることができる。   Moreover, before performing a base plating layer formation process, a roughening copper plating layer formation process, a rust prevention layer formation process, etc., respectively, the cleaning which cleans the surface of the copper foil base material 2 or the roughening copper plating layer 3 as needed Processing may be performed. For example, the adhesion between the surface-treated copper foil 1 and the resin base material 11 in the laminated plate 10 can be further improved by performing a cleaning treatment before the roughened copper plating layer forming step.

清浄処理として、例えば電解脱脂処理と酸洗処理とを行うとよい。電解脱脂処理は、水酸化ナトリウム等を含むアルカリ性の水溶液を用いた陰極電解脱脂によって行うことができる。酸洗処理は、銅箔基材2や粗化銅めっき層3の表面に残存するアルカリ成分の中和や、酸化膜の除去を行うものである。酸洗処理は、例えば硫酸やクエン酸等を含む酸性の水溶液中に、銅箔基材2(粗化銅めっき層3が設けられた銅箔基材2)を浸漬することで行うことができる。なお、酸洗処理は、銅をエッチングするエッチング液を用いて行ってもよい。   As the cleaning treatment, for example, electrolytic degreasing treatment and pickling treatment may be performed. The electrolytic degreasing treatment can be performed by cathodic electrolytic degreasing using an alkaline aqueous solution containing sodium hydroxide or the like. The pickling treatment neutralizes the alkali component remaining on the surfaces of the copper foil base 2 and the roughened copper plating layer 3 and removes the oxide film. The pickling treatment can be performed by immersing the copper foil base material 2 (the copper foil base material 2 provided with the roughened copper plating layer 3) in an acidic aqueous solution containing, for example, sulfuric acid or citric acid. . The pickling treatment may be performed using an etchant that etches copper.

上述の実施形態では、樹脂基材11の両主面上に表面処理銅箔1を貼り合わせて積層板10が形成される場合について説明したが、これに限定されない。つまり、樹脂基材11の少なくともいずれかの主面上に表面処理銅箔1が貼り合わされて積層板10が形成されていればよい。   Although the above-mentioned embodiment demonstrated the case where the laminated sheet 10 was formed by bonding the surface-treated copper foil 1 on both main surfaces of the resin base material 11, it is not limited to this. That is, the laminated board 10 should just be formed by bonding the surface-treated copper foil 1 on at least one main surface of the resin base material 11.

上述の実施形態では、表面処理銅箔1と樹脂基材11との貼り合わせを、真空プレス機を用いて行ったが、これに限定されない。例えば、接着剤を用いて表面処理銅箔1と樹脂基材11とを貼り合わせて積層板10を形成してもよい。   In the above-described embodiment, the surface-treated copper foil 1 and the resin base material 11 are bonded using a vacuum press machine, but the present invention is not limited to this. For example, the laminate 10 may be formed by bonding the surface-treated copper foil 1 and the resin base material 11 using an adhesive.

上述の実施形態では、表面処理銅箔1を用いて構成された積層板10からFPCが形成される場合について説明したが、これに限定されない。本実施形態にかかる表面処理銅箔1は、プラズマディスプレイ用電磁波シールド、ICカードのアンテナ等にも用いることができる。この場合も、上述の効果を得ることができる。   In the above-mentioned embodiment, although the case where FPC was formed from the laminated board 10 comprised using the surface treatment copper foil 1 was demonstrated, it is not limited to this. The surface-treated copper foil 1 according to the present embodiment can be used for an electromagnetic wave shield for plasma display, an antenna of an IC card, and the like. Also in this case, the above-described effect can be obtained.

次に、本発明の実施例を説明するが、本発明はこれらに限定されるものではない。   Next, examples of the present invention will be described, but the present invention is not limited thereto.

<試料の作製>
(試料1)
まず、銅箔基材として、タフピッチ銅(TPC)で形成され、厚さが17μmである圧延銅箔を準備した。
<Preparation of sample>
(Sample 1)
First, a rolled copper foil formed of tough pitch copper (TPC) and having a thickness of 17 μm was prepared as a copper foil base material.

この銅箔基材に電解脱脂処理と酸洗処理とを行い、銅箔基材の表面を清浄した。具体的には、まず、水酸化ナトリウムを40g/Lと、炭酸ナトリウムを60g/Lと、を含む水溶液を用いて電解脱脂処理を行った。このとき、液温を45℃にし、電流密度を30A/dmにし、処理時間を7秒間にした。電解脱脂処理が終了した後、銅箔基材を水洗した。その後、硫酸を200g/L含み、液温が25℃である水溶液中に、銅箔基材を10秒間浸漬して酸洗処理を行った。酸洗処理が終了した後、銅箔基材を水洗した。 The copper foil base material was subjected to electrolytic degreasing treatment and pickling treatment to clean the surface of the copper foil base material. Specifically, first, electrolytic degreasing treatment was performed using an aqueous solution containing 40 g / L of sodium hydroxide and 60 g / L of sodium carbonate. At this time, the liquid temperature was 45 ° C., the current density was 30 A / dm 2 , and the treatment time was 7 seconds. After the electrolytic degreasing treatment was completed, the copper foil base material was washed with water. Then, the copper foil base material was immersed in an aqueous solution containing 200 g / L sulfuric acid and having a liquid temperature of 25 ° C. for 10 seconds to perform pickling. After the pickling treatment was completed, the copper foil base material was washed with water.

次に、銅箔基材のいずれかの主面上に、厚さが0.5μmである下地めっき層を形成した。具体的には、下地めっき層を形成するめっき液(下地めっき液)として、硫酸銅五水和物を150g/Lと、硫酸を50g/Lと、塩酸を0.3ml/Lと、を含む水溶液を作製した。そして、下地めっき液の液温を35℃にし、電流密度を8A/dmにし、めっき時間を8秒間にして、銅箔基材のいずれかの主面に対して電解めっき処理を行い、下地めっき層を形成した。 Next, a base plating layer having a thickness of 0.5 μm was formed on any main surface of the copper foil base material. Specifically, the plating solution for forming the base plating layer (base plating solution) includes copper sulfate pentahydrate 150 g / L, sulfuric acid 50 g / L, and hydrochloric acid 0.3 ml / L. An aqueous solution was prepared. The base plating solution temperature is set to 35 ° C., the current density is set to 8 A / dm 2 , the plating time is set to 8 seconds, and any main surface of the copper foil base material is subjected to electrolytic plating treatment. A plating layer was formed.

下地めっき層を形成した後に銅箔基材を水洗した。その後、下地めっき層上に、厚さが0.03μmである粗化銅めっき層を形成した。具体的には、粗化銅めっき液として、硫酸銅五水和物を100g/Lと、硫酸を150g/Lと、硫酸鉄七水和物を50g/Lと、を含む水溶液を作製した。そして、粗化銅めっき液の液温を30℃にし、電流密度を60A/dmにし、めっき時間を0.5秒間にして、電解めっき処理を行い、粗化銅めっき層を形成した。 After forming the base plating layer, the copper foil substrate was washed with water. Thereafter, a roughened copper plating layer having a thickness of 0.03 μm was formed on the base plating layer. Specifically, an aqueous solution containing 100 g / L of copper sulfate pentahydrate, 150 g / L of sulfuric acid, and 50 g / L of iron sulfate heptahydrate was prepared as a roughened copper plating solution. And the liquid temperature of the roughening copper plating solution was set to 30 ° C., the current density was set to 60 A / dm 2 , the plating time was set to 0.5 seconds, and electrolytic plating treatment was performed to form a roughened copper plating layer.

粗化銅めっき層を形成した後に銅箔基材を水洗した。その後、粗化銅めっき層上に防錆層を形成した。具体的には、防錆層として、銅箔基材の側から順に、厚さが20nmであるNiめっき層と、厚さが4nmであるZnめっき層と、厚さが4nmであるクロメート皮膜と、極薄い厚さのシランカップリング処理層と、を形成した。   After forming the roughened copper plating layer, the copper foil base material was washed with water. Thereafter, a rust preventive layer was formed on the roughened copper plating layer. Specifically, as a rust preventive layer, in order from the copper foil base material side, a Ni plating layer having a thickness of 20 nm, a Zn plating layer having a thickness of 4 nm, and a chromate film having a thickness of 4 nm, And a silane coupling treatment layer having an extremely thin thickness.

具体的には、硫酸ニッケル六水和物を300g/Lと、塩化ニッケルを45g/Lと、硼酸を40g/Lと、を含む水溶液(Niめっき液)を用い、電解めっき処理によりNiめっき層を形成した。このとき、Niめっき液の液温を50℃にし、電流密度を2.5A/dmにし、めっき時間を5秒間にした。Niめっき層を形成した後、銅箔基材を水洗した。その後、硫酸亜鉛七水和物を90g/Lと、硫酸ナトリウムを70g/Lと、を含む水溶液(Znめっき液)を用い、Znめっき層を形成した。このとき、Znめっき液の液温を30℃にし、電流密度を1.8A/dmにし、めっき時間を4秒間にした。Znめっき層を形成した後、銅箔基材を水洗した。続いて、3価クロム化成処理を行い、クロメート皮膜を形成した。クロメート皮膜を形成した後、銅箔基材を水洗した。そして、3―アミノプロピルトリメトキシシランの濃度が5%であり、液温が25℃であるシランカップリング液中に、クロメート皮膜を形成した銅箔基材を5秒間浸漬した後、直ちに200℃の温度で乾燥することで、シランカップリング処理層を形成した。 Specifically, an Ni plating layer is formed by electrolytic plating using an aqueous solution (Ni plating solution) containing 300 g / L of nickel sulfate hexahydrate, 45 g / L of nickel chloride, and 40 g / L of boric acid. Formed. At this time, the temperature of the Ni plating solution was 50 ° C., the current density was 2.5 A / dm 2 , and the plating time was 5 seconds. After forming the Ni plating layer, the copper foil substrate was washed with water. Thereafter, a Zn plating layer was formed using an aqueous solution (Zn plating solution) containing 90 g / L of zinc sulfate heptahydrate and 70 g / L of sodium sulfate. At this time, the temperature of the Zn plating solution was 30 ° C., the current density was 1.8 A / dm 2 , and the plating time was 4 seconds. After forming the Zn plating layer, the copper foil substrate was washed with water. Subsequently, a trivalent chromium chemical conversion treatment was performed to form a chromate film. After forming the chromate film, the copper foil substrate was washed with water. And after immersing the copper foil base material in which the chromate film | membrane was formed in the silane coupling liquid whose concentration of 3-aminopropyl trimethoxysilane is 5% and whose liquid temperature is 25 degreeC for 5 second, it is 200 degreeC immediately. A silane coupling treatment layer was formed by drying at a temperature of.

また、粗化銅めっき層を形成した主面とは反対側の銅箔基材の主面上に、防錆層(裏面防錆層)を形成した。具体的には、裏面防錆層として、銅箔基材の側から順に、所定厚さのNiめっき層と、所定厚さのZnめっき層と、所定厚さのクロメート処理層と、を形成した。なお、Niめっき層、Znめっき層、クロメート処理層の形成方法は、粗化銅めっき層上に設けた防錆層としてのNiめっき層、Znめっき層、クロメート処理層と同様である。これにより、表面処理銅箔を作製し、これを試料1とした。   Moreover, the antirust layer (back surface antirust layer) was formed on the main surface of the copper foil base material on the opposite side to the main surface on which the roughened copper plating layer was formed. Specifically, a Ni plating layer having a predetermined thickness, a Zn plating layer having a predetermined thickness, and a chromate treatment layer having a predetermined thickness were formed in this order from the copper foil base material side as a back surface rust prevention layer. . In addition, the formation method of Ni plating layer, Zn plating layer, and chromate treatment layer is the same as that of the Ni plating layer, Zn plating layer, and chromate treatment layer as a rust prevention layer provided on the roughened copper plating layer. In this way, a surface-treated copper foil was produced and used as Sample 1.

(試料2〜58)
試料2〜58ではそれぞれ、粗化銅めっき液中の硫酸鉄七水和物の濃度、粗化銅めっき液の液温、粗化銅めっき層を形成するめっき処理のめっき時間、電流密度等を適宜変更した。なお、試料28〜30及び試料56〜58ではそれぞれ、下地めっき層を設けなかった。また、試料28〜30ではそれぞれ、粗化銅めっき層を形成する際、試料13〜15と比べて、粗化銅めっき液中に含まれる硫酸鉄七水和物の濃度を高くし、粗化銅めっき液の液温及び電流密度を高くすると共に、めっき時間を短くした。試料56〜58ではそれぞれ、粗化銅めっき層を形成する際に、試料37〜39と比べて、粗化銅めっき液中に含まれる硫酸鉄七水和物の濃度を高くし、粗化銅めっき液の液温及び電流密度を高くすると共に、めっき時間を短くした。この他は、試料1と同様にして表面処理銅箔を作製した。これらをそれぞれ、試料2〜58とする。
(Samples 2 to 58)
In each of samples 2 to 58, the concentration of iron sulfate heptahydrate in the roughened copper plating solution, the temperature of the roughened copper plating solution, the plating time of the plating treatment for forming the roughened copper plating layer, the current density, etc. Changed as appropriate. In Samples 28 to 30 and Samples 56 to 58, no base plating layer was provided. Moreover, in the samples 28-30, when forming a roughened copper plating layer, compared with the samples 13-15, the density | concentration of the iron sulfate heptahydrate contained in a roughened copper plating solution is made high, and it roughens. The liquid temperature and current density of the copper plating solution were increased, and the plating time was shortened. In each of Samples 56 to 58, when the roughened copper plating layer was formed, the concentration of iron sulfate heptahydrate contained in the roughened copper plating solution was increased as compared with Samples 37 to 39, and the roughened copper plating layer was formed. The plating temperature and current density were increased, and the plating time was shortened. Other than this, a surface-treated copper foil was prepared in the same manner as Sample 1. These are designated as Samples 2 to 58, respectively.

<めっき粒子の水平方向の平均粒子径の算出>
試料1〜58の各表面処理銅箔についてそれぞれ、粗化銅めっき層に含まれるめっき粒子の水平方向の平均粒子径を算出した。具体的には、SEM法により、30000倍の観察倍率で、粗化銅めっき層の真上から、粗化銅めっき層の上面(表面処理銅箔の粗化面)を観察して得たSEM像から、10個のめっき粒子を任意に抽出し、抽出しためっき粒子の粒子径(最大径)を測定した。そして、測定しためっき粒子の粒子径の平均値を算出し、これをめっき粒子の水平方向の平均粒子径とした。その算出結果をそれぞれ、下記の表3及び表4に示す。
<Calculation of horizontal average particle diameter of plating particles>
For each of the surface-treated copper foils of Samples 1 to 58, the average particle diameter in the horizontal direction of the plated particles contained in the roughened copper plating layer was calculated. Specifically, an SEM obtained by observing the upper surface of the roughened copper plating layer (the roughened surface of the surface-treated copper foil) from directly above the roughened copper plating layer at an observation magnification of 30000 times by the SEM method. Ten plating particles were arbitrarily extracted from the image, and the particle diameter (maximum diameter) of the extracted plating particles was measured. And the average value of the particle diameter of the measured plating particle was computed, and this was made into the average particle diameter of the horizontal direction of a plating particle. The calculation results are shown in Table 3 and Table 4 below, respectively.

<めっき粒子の成長方向の平均粒子径の算出>
試料1〜58の各表面処理銅箔についてそれぞれ、粗化銅めっき層に含まれるめっき粒子の成長方向の平均粒子径を算出した。具体的には、SEM法により、10000倍の観察倍率で、粗化銅めっき層の縦断面を観察して得たSEM像から、30個のめっき粒子を任意に抽出した。抽出しためっき粒子の縦断面においてそれぞれ、頂点と、底辺の中点と、を検出し、めっき粒子の成長方向の粒子径(頂点と底辺の中点との間の距離)を測定した。そして、測定しためっき粒子の成長方向の粒子径の平均値を算出した。その算出結果をそれぞれ下記の表3及び表4に示す。
<Calculation of average particle diameter in the growth direction of plating particles>
For each surface-treated copper foil of Samples 1 to 58, the average particle diameter in the growth direction of the plated particles contained in the roughened copper plating layer was calculated. Specifically, 30 plating particles were arbitrarily extracted from the SEM image obtained by observing the longitudinal section of the roughened copper plating layer at an observation magnification of 10,000 times by the SEM method. In the extracted longitudinal section of the plated particles, the vertex and the midpoint of the bottom were detected, and the particle diameter in the growth direction of the plated particle (distance between the vertex and the midpoint of the bottom) was measured. And the average value of the particle diameter of the growth direction of the measured plating particle was computed. The calculation results are shown in Tables 3 and 4 below.

<めっき粒子の成長角度の測定>
試料1〜58の各表面処理銅箔についてそれぞれ、粗化銅めっき層に含まれるめっき粒子の成長角度を測定した。具体的には、SEM法により、10000倍の観察倍率で、粗化銅めっき層の縦断面を観察して得たSEM像から、30個のめっき粒子を任意に抽出した。抽出しためっき粒子の縦断面においてそれぞれ、頂点と、底辺の中点と、を検出し、めっき粒子の成長方向(めっき粒子の底辺の中点から頂点に向かっう方向)を検出した。そして、めっき粒子の成長方向と銅箔基材の主面とのなす角度(めっき粒子の成長角度)を測定した。そして、各試料においてそれぞれ、めっき粒子の成長角度の平均値を算出し、その算出結果をそれぞれ下記の表3及び表4に示す。
<Measurement of plating particle growth angle>
The growth angle of the plating particles contained in the roughened copper plating layer was measured for each of the surface-treated copper foils of Samples 1 to 58. Specifically, 30 plating particles were arbitrarily extracted from the SEM image obtained by observing the longitudinal section of the roughened copper plating layer at an observation magnification of 10,000 times by the SEM method. In the extracted longitudinal section of the plated particles, the vertex and the midpoint of the bottom were detected, respectively, and the growth direction of the plated particle (the direction from the midpoint of the bottom of the plated particle to the vertex) was detected. And the angle (growth angle of a plating particle) which the growth direction of a plating particle and the main surface of a copper foil base material make was measured. And in each sample, the average value of the growth angle of the plating particles was calculated, and the calculation results are shown in Tables 3 and 4 below.

<積層板の作製>
樹脂基材の両主面上に、試料1〜58の各表面処理銅箔を貼り合わせて積層板を作製した。なお、樹脂基材として、厚さが1.4μmである熱可塑性ポリイミド(TPI)層(接着剤層)が両主面上にそれぞれ設けられ、総厚が12.5μmであるポリイミドフィルムを用いた。
<Production of laminated plate>
On both main surfaces of the resin base material, the surface-treated copper foils of Samples 1 to 58 were bonded to produce a laminate. In addition, as a resin base material, a thermoplastic polyimide (TPI) layer (adhesive layer) having a thickness of 1.4 μm was provided on each main surface, and a polyimide film having a total thickness of 12.5 μm was used. .

まず、試料1〜58の各表面処理銅箔をそれぞれ所定の大きさ(縦100mm×横60mm)に裁断して切り出した。そして、樹脂基材を挟んで同一の試料から切り出した2つの表面処理銅箔をそれぞれ対向させるとともに、各表面処理銅箔の粗化銅めっき層がそれぞれ樹脂基材に対向するように、樹脂基材の両面上に表面処理銅箔を配置して積層体を作製した。そして、真空プレス機を用い、280℃の条件下で、プレス圧を5MPaにして15分間、積層体に圧力をかけ、表面処理銅箔と樹脂基材とを貼り合わせて積層板を形成した。   First, each surface-treated copper foil of Samples 1 to 58 was cut into a predetermined size (length 100 mm × width 60 mm) and cut out. Then, two surface-treated copper foils cut from the same sample are opposed to each other with the resin base material sandwiched therebetween, and the roughened copper plating layer of each surface-treated copper foil is opposed to the resin base material, respectively. A surface-treated copper foil was disposed on both surfaces of the material to produce a laminate. Then, using a vacuum press machine, a pressure was applied to the laminate for 15 minutes under a condition of 280 ° C. with a pressing pressure of 5 MPa, and the surface-treated copper foil and the resin base material were bonded to form a laminate.

<密着性の評価>
試料1〜58の各表面処理銅箔を用いて作製した積層板についてそれぞれ、表面処理銅箔と樹脂基材との密着性の評価として、表面処理銅箔を樹脂基材から剥離する際のピール強度の測定を行った。
<Evaluation of adhesion>
About the laminated board produced using each surface-treated copper foil of samples 1 to 58, as an evaluation of adhesion between the surface-treated copper foil and the resin base material, peel when the surface-treated copper foil is peeled from the resin base material Intensity measurements were taken.

ピール強度の測定は、以下のように行った。まず、各試料を用いて作製した積層板のそれぞれの一方の主面(積層板が備えるいずれかの表面処理銅箔)上に、幅が1mmのマスキングテープを貼った。また、各積層板の他方の主面の全面にマスキングテープを貼った。そして、マスキングテープを貼った各積層板に対し、35℃以上50℃以下(本実施例では45℃)の条件下で、塩化第二鉄を用いてスプレーエッチングを行い、積層板から表面処理銅箔の所定箇所(マスキングテープが貼られていない箇所)を除去した。その後、マスキングテープを除去した。続いて、表面処理銅箔を樹脂基材から引き剥がした際の強度を測定した。具体的には、オートグラフを用い、エッチングされて1mm幅になった表面処理銅箔を、樹脂基材から90°の角度で(引き剥がされた表面処理銅箔と樹脂基材とのなす角が90°になるように)、50mm/minの速度で表面処理銅箔を樹脂基材から引っ張ったときの剥離荷重を測定し、これをピール強度とした。測定したピール強度の値が大きいほど、密着性が高いことを意味している。ピール強度の測定結果をそれぞれ、下記の表3及び表4に示す。   The peel strength was measured as follows. First, a masking tape having a width of 1 mm was pasted on one main surface (any surface-treated copper foil provided in the laminate) of each laminate produced using each sample. Moreover, the masking tape was stuck on the whole surface of the other main surface of each laminated board. And each laminated board which stuck the masking tape was spray-etched using ferric chloride on the conditions of 35 degreeC or more and 50 degrees C or less (this example 45 degreeC), and surface-treated copper from a laminated board A predetermined portion of the foil (a portion where the masking tape was not applied) was removed. Thereafter, the masking tape was removed. Subsequently, the strength when the surface-treated copper foil was peeled from the resin base material was measured. Specifically, using an autograph, a surface-treated copper foil etched to a width of 1 mm is formed at an angle of 90 ° from the resin substrate (the angle formed by the peeled surface-treated copper foil and the resin substrate. The peel load when the surface-treated copper foil was pulled from the resin substrate at a speed of 50 mm / min was measured, and this was taken as the peel strength. It means that adhesiveness is so high that the value of the measured peel strength is large. The measurement results of peel strength are shown in Table 3 and Table 4 below, respectively.

<透明性の評価>
試料1〜58の各表面処理銅箔を用いて形成した積層板についてそれぞれ、積層板から各試料である表面処理銅箔を除去した後の樹脂基材の透明性の評価として、銅箔除去後の樹脂基材のHAZE値の測定を行った。
<Evaluation of transparency>
For the laminates formed using the surface-treated copper foils of Samples 1 to 58, respectively, as the evaluation of the transparency of the resin base material after removing the surface-treated copper foil as each sample from the laminate, after removing the copper foil The HAZE value of the resin base material was measured.

具体的には、各試料を用いて作製した積層板に対し、35℃以上50℃以下(本実施例では45℃)の条件下で、塩化第二鉄を用いてスプレーエッチングを行い、積層板から表面処理銅箔を全て除去した。つまり、樹脂基材の両面(両主面)の全面を露出させた。そして、表面処理銅箔が除去された樹脂基材のそれぞれについて、株式会社東洋精機製作所製のhaze−gard plusを用いてHAZE値の測定を行った。HAZE値が小さいほど、銅箔除去後の樹脂基材の透明性が高いことを意味している。HAZE値の測定結果をそれぞれ、下記の表3及び表4に示す。   Specifically, the laminate produced using each sample was spray-etched with ferric chloride under conditions of 35 ° C. or more and 50 ° C. or less (45 ° C. in this example), and the laminate All the surface-treated copper foil was removed. That is, the entire surface of both surfaces (both main surfaces) of the resin base material was exposed. And about each of the resin base material from which the surface treatment copper foil was removed, the HAZE value was measured using haze-gard plus made by Toyo Seiki Seisakusho. It means that the smaller the HAZE value, the higher the transparency of the resin substrate after removing the copper foil. The measurement results of the HAZE value are shown in Table 3 and Table 4 below, respectively.

<根残りの評価>
試料1〜58の各表面処理銅箔を用いて形成した積層板についてそれぞれ、積層板から各試料である表面処理銅箔を除去した後に、樹脂基材の表面に表面処理銅箔が残っていないか否かを評価した。つまり、銅箔除去後の樹脂基材に根残りが発生していないか否かを評価した。
<Evaluation of the rest>
About the laminated board formed using each surface-treated copper foil of samples 1-58, after removing the surface-treated copper foil which is each sample from a laminated board, surface-treated copper foil does not remain on the surface of a resin base material, respectively. It was evaluated whether or not. That is, it was evaluated whether or not the root residue was generated on the resin base material after the copper foil was removed.

具体的には、各試料を用いて作製した積層板のそれぞれの一方の主面(積層板が備えるいずれかの表面処理銅箔)上に、幅が1mmのマスキングテープを貼った。また、各積層板の他方の主面の全面にマスキングテープを貼った。そして、マスキングテープを貼った各積層板に対し、35℃以上50℃以下(本実施例では45℃)の条件下で、塩化第二鉄を用いてスプレーエッチングを行い、積層板から表面処理銅箔の所定箇所(マスキングテープが貼られていない箇所)を除去した。その後、マスキングテープを除去した。続いて、SEM法により、エッチングされて1mm幅になった表面処理銅箔を真上から観察し、1mm幅の表面処理銅箔と、表面処理銅箔が除去された箇所の樹脂基材と、を含むSEM像を得た。そして、得たSEM像において、本来エッチングされて除去されているべき表面処理銅箔が樹脂基材上に残っていないか否か、つまり表面処理銅箔の根残りが発生していないか否かを確認した。このとき、銅箔除去後の樹脂基材の領域であって、1mm幅の表面処理銅箔の長さ方向に沿って任意の10mmの長さの表面処理銅箔の付近の領域(表面処理銅箔と樹脂基材との境界)を確認した。そして、樹脂基材上に残った本来除去されるべき表面処理銅箔の最大径が5μm未満である試料を合格(○)とし、根残りした表面処理銅箔の最大径が5μm以上である試料を不合格(×)として評価した。表面処理銅箔の根残りの評価結果をそれぞれ、下記の表3及び表4に示す。   Specifically, a masking tape having a width of 1 mm was pasted on each main surface (any one of the surface-treated copper foils provided in the laminate) of the laminate produced using each sample. Moreover, the masking tape was stuck on the whole surface of the other main surface of each laminated board. And each laminated board which stuck the masking tape was spray-etched using ferric chloride on the conditions of 35 degreeC or more and 50 degrees C or less (this example 45 degreeC), and surface-treated copper from a laminated board A predetermined portion of the foil (a portion where the masking tape was not applied) was removed. Thereafter, the masking tape was removed. Subsequently, the surface-treated copper foil etched to have a width of 1 mm is observed from directly above by the SEM method, the surface-treated copper foil having a width of 1 mm, and the resin base material where the surface-treated copper foil has been removed, SEM image containing was obtained. Then, in the obtained SEM image, whether or not the surface-treated copper foil that should be etched and removed does not remain on the resin base material, that is, whether or not the root residue of the surface-treated copper foil has occurred. It was confirmed. At this time, it is a region of the resin base material after the removal of the copper foil, and a region in the vicinity of the surface-treated copper foil having an arbitrary length of 10 mm along the length direction of the surface-treated copper foil having a width of 1 mm (surface-treated copper). The boundary between the foil and the resin substrate was confirmed. And the sample whose surface treatment copper foil which should be removed originally on the resin base material should have a maximum diameter of less than 5 μm is a pass (◯), and the sample whose surface treatment copper foil has a maximum diameter of 5 μm or more remains. Was evaluated as a failure (x). The evaluation results of the remaining roots of the surface-treated copper foil are shown in Table 3 and Table 4 below, respectively.

<評価結果>
試料1〜30から、粗化銅めっき層に含まれるめっき粒子の水平方向の平均粒子径が0.05μm以上0.8μm以下であり、めっき粒子の成長方向の平均粒子径が0.05μm以上1.2μm以下であり、めっき粒子の成長角度が20°以上90°以下であると、所望の密着性を維持しつつ、所望の透明性を確保することができることを確認した。具体的には、ピール強度を0.7N/mm以上に維持しつつ、銅箔除去後の樹脂基材のHAZE値を80%以下にすることができることを確認した。その結果、表面処理銅箔を用いて形成したFPCに電子部品等を実装する際、目視やCCDカメラ等により、銅箔が除去された箇所の樹脂基材越しに銅配線を認識でき、電子部品の実装位置の位置決めを容易に行うことができることを確認した。また、銅配線が樹脂基材から剥離しにくく、FPCの信頼性を高めることができることを確認した。
<Evaluation results>
From Samples 1 to 30, the average particle size in the horizontal direction of the plating particles contained in the roughened copper plating layer is 0.05 μm or more and 0.8 μm or less, and the average particle size in the growth direction of the plating particles is 0.05 μm or more and 1 It was confirmed that the desired transparency could be secured while maintaining the desired adhesion when the plating particle growth angle was 20 ° or more and 90 ° or less. Specifically, it was confirmed that the HAZE value of the resin base material after removing the copper foil can be made 80% or less while maintaining the peel strength at 0.7 N / mm or more. As a result, when electronic parts are mounted on FPCs formed using surface-treated copper foil, the copper wiring can be recognized through the resin substrate where the copper foil has been removed by visual inspection or a CCD camera, etc. It was confirmed that the mounting position can be easily positioned. Moreover, it was confirmed that the copper wiring is difficult to peel from the resin base material, and the reliability of the FPC can be improved.

また、試料1〜30の表面処理銅箔を用いた積層板は、銅箔除去後の樹脂基材の表面に、表面処理銅箔の一部(本来エッチングにより除去されるべき表面処理銅箔の一部)が残ることを抑制できることを確認した。つまり、根残りの発生を抑制できることを確認した。その結果、試料1〜30の表面処理銅箔を用いた積層板から形成したFPCは、微細な銅配線を形成した場合であっても、短絡の発生を抑制でき、FPCの信頼性をより高めることができることを確認した。   Moreover, the laminated board using the surface-treated copper foil of samples 1 to 30 is a part of the surface-treated copper foil (originally to be removed by etching) on the surface of the resin base material after removing the copper foil. It was confirmed that it was possible to suppress the remaining part). That is, it was confirmed that the occurrence of root residue can be suppressed. As a result, the FPC formed from the laminate using the surface-treated copper foils of Samples 1 to 30 can suppress the occurrence of a short circuit and increase the reliability of the FPC even when a fine copper wiring is formed. Confirmed that it can.

試料13〜15と試料28〜30との比較や、試料37〜39と試料56〜58との比較から、下地めっき層を設けなくても、粗化銅めっき液中の硫酸鉄七水和物の濃度、粗化銅めっき液の液温、電流密度、及びめっき時間を制御することで、下地めっき層を設けた場合と同様に、所望の密着性を維持しつつ、所望の透明性を確保することができることを確認した。具体的には、ピール強度を0.7N/mm以上に維持しつつ、銅箔除去後の樹脂基材のHAZE値を80%以下にすることができることを確認した。   From the comparison between Samples 13 to 15 and Samples 28 to 30 and the comparison between Samples 37 to 39 and Samples 56 to 58, iron sulfate heptahydrate in the roughened copper plating solution can be obtained without providing a base plating layer. By controlling the concentration of copper, the temperature of the roughened copper plating solution, the current density, and the plating time, the desired transparency is maintained while maintaining the desired adhesion, as in the case of providing a base plating layer. Confirmed that you can. Specifically, it was confirmed that the HAZE value of the resin base material after removing the copper foil can be made 80% or less while maintaining the peel strength at 0.7 N / mm or more.

試料31〜39から、めっき粒子の水平方向の平均粒子径が0.05μm未満であると、めっき粒子の成長方向の平均粒子径、めっき粒子の成長角度を所望の範囲内にしても、所望の密着性を維持することができないことがあることを確認した。具体的には、ピール強度が0.7N/mm未満になることがあることを確認した。   From Samples 31 to 39, when the average particle diameter in the horizontal direction of the plating particles is less than 0.05 μm, the average particle diameter in the growth direction of the plating particles and the growth angle of the plating particles are within a desired range. It was confirmed that the adhesion could not be maintained. Specifically, it was confirmed that the peel strength might be less than 0.7 N / mm.

試料40〜42から、めっき粒子の成長方向の平均粒子径が0.05μm未満であると、めっき粒子の水平方向の平均粒子径、めっき粒子の成長角度を所望の範囲内にしても、所望の密着性を維持することができないことがあることを確認した。具体的には、ピール強度が0.7N/mm未満になることがあることを確認した。   From the samples 40 to 42, if the average particle size in the growth direction of the plating particles is less than 0.05 μm, the average particle size in the horizontal direction of the plating particles and the growth angle of the plating particles are within the desired range. It was confirmed that the adhesion could not be maintained. Specifically, it was confirmed that the peel strength might be less than 0.7 N / mm.

試料43から、めっき粒子の成長角度が20°未満であると、めっき粒子の水平方向の平均粒子径及びめっき粒子の成長方向の平均粒子径をそれぞれ所望の範囲内にしても、所望の密着性を維持することができないことがあることを確認した。具体的には、ピール強度が0.7N/mm未満になることがあることを確認した。   From Sample 43, if the growth angle of the plating particles is less than 20 °, the desired adhesion can be achieved even if the average particle diameter in the horizontal direction of the plating particles and the average particle diameter in the growth direction of the plating particles are within the desired ranges, respectively. It was confirmed that it may not be possible to maintain. Specifically, it was confirmed that the peel strength might be less than 0.7 N / mm.

試料44〜46から、めっき粒子の成長方向の平均粒子径が1.2μmを超えると、めっき粒子の水平方向の平均粒子径、めっき粒子の成長角度を所定の範囲内にしても、銅箔除去後の樹脂基材の透明性が低下し、所望の透明性を確保することができないことがあることを確認した。具体的には、銅箔除去後の樹脂基材のHAZE値が80%を超えることがあることを確認した。   When the average particle diameter in the growth direction of the plating particles exceeds 1.2 μm from the samples 44 to 46, the copper foil is removed even if the average particle diameter in the horizontal direction of the plating particles and the growth angle of the plating particles are within a predetermined range. It was confirmed that the transparency of the subsequent resin base material was lowered and the desired transparency could not be ensured. Specifically, it was confirmed that the HAZE value of the resin base material after removing the copper foil may exceed 80%.

試料37〜40、試料44〜46及び試料53〜58から、めっき粒子の成長方向の平均粒子径が1.2μmを超えると、銅箔除去後の樹脂基材の表面に、本来エッチングにより除去されるべき表面処理銅箔の一部が残ることがあることを確認した。   When the average particle diameter in the growth direction of the plated particles exceeds 1.2 μm from Samples 37 to 40, Samples 44 to 46, and Samples 53 to 58, the surface of the resin base material after removing the copper foil is originally removed by etching. It was confirmed that a part of the surface-treated copper foil to be left may remain.

試料47〜55から、めっき粒子の水平方向の平均粒子径が0.8μmを超えると、めっき粒子の成長方向の平均粒子径、めっき粒子の成長角度を所望の範囲内にしても、所望の透明性を確保できないことがあることを確認した。具体的には、銅箔除去後の樹脂基材のHAZE値が80%を超えることがあることを確認した。   From Samples 47 to 55, when the average particle diameter in the horizontal direction of the plating particles exceeds 0.8 μm, the desired transparency can be obtained even if the average particle diameter in the growth direction of the plating particles and the growth angle of the plating particles are within a desired range. It was confirmed that there is a case that the sex cannot be secured. Specifically, it was confirmed that the HAZE value of the resin base material after removing the copper foil may exceed 80%.

<本発明の好ましい態様>
以下に、本発明の好ましい態様について付記する。
<Preferred embodiment of the present invention>
Hereinafter, preferred embodiments of the present invention will be additionally described.

[付記1]
本発明の一態様によれば、
銅箔基材と、
前記銅箔基材の少なくともいずれかの主面上に設けられ、所定の成長方向にそれぞれ成長した複数のめっき粒子を含む粗化銅めっき層と、を備え、
前記めっき粒子の前記銅箔基材の主面に沿った粒子径の平均値が0.05μm以上0.8μm以下であり、
前記めっき粒子の成長方向に沿った粒子径の平均値が0.05μm以上1.2μm以下であり、
前記めっき粒子の成長方向と前記銅箔基材の主面とのなす角度が20°以上90°以下である表面処理銅箔が提供される。
[Appendix 1]
According to one aspect of the invention,
A copper foil base material;
A roughened copper plating layer that is provided on at least one main surface of the copper foil base material and includes a plurality of plating particles grown in a predetermined growth direction, and
The average value of the particle diameter along the principal surface of the copper foil base material of the plating particles is 0.05 μm or more and 0.8 μm or less,
The average value of the particle diameter along the growth direction of the plating particles is 0.05 μm or more and 1.2 μm or less,
Provided is a surface-treated copper foil in which an angle formed by the growth direction of the plating particles and the main surface of the copper foil base is 20 ° or more and 90 ° or less.

[付記2]
付記1の表面処理銅箔であって、好ましくは、
前記表面処理銅箔を樹脂基材に貼り合わせた後に前記表面処理銅箔を前記樹脂基材から引き剥がす際のピール強度が0.7N/mm以上であり、
前記樹脂基材を挟んで前記表面処理銅箔が対向するとともに、前記粗化銅めっき層が前記樹脂基材に対向するように、前記樹脂基材の両主面上に前記表面処理銅箔を貼り合わせた後、前記樹脂基材の両主面上から前記表面処理銅箔を除去した前記樹脂基材のHAZE値が80%以下である。
[Appendix 2]
The surface-treated copper foil of Appendix 1, preferably,
The peel strength when peeling the surface-treated copper foil from the resin substrate after bonding the surface-treated copper foil to the resin substrate is 0.7 N / mm or more,
The surface-treated copper foil is disposed on both main surfaces of the resin substrate so that the surface-treated copper foil faces the resin substrate and the roughened copper plating layer faces the resin substrate. After bonding, the HAZE value of the resin base material obtained by removing the surface-treated copper foil from both main surfaces of the resin base material is 80% or less.

[付記3]
付記1又は2の表面処理銅箔であって、好ましくは、
前記粗化銅めっき層の平均厚さは0.03μm以上1.1μm以下である。
[Appendix 3]
The surface-treated copper foil according to appendix 1 or 2,
The roughened copper plating layer has an average thickness of 0.03 μm or more and 1.1 μm or less.

[付記4]
本発明の他の態様によれば、
銅箔基材、及び前記銅箔基材の少なくともいずれかの主面上に設けられ、所定の成長方向にそれぞれ成長した複数のめっき粒子を含む粗化銅めっき層を備える表面処理銅箔と、
前記粗化銅めっき層に対向するように前記表面処理銅箔と貼り合わせられた樹脂基材と、を備え、
前記めっき粒子の前記銅箔基材の主面に沿った粒子径の平均値が0.05μm以上0.8μm以下であり、
前記めっき粒子の成長方向に沿った粒子径の平均値が0.05μm以上1.2μm以下であり、
前記めっき粒子の成長方向と前記銅箔基材の主面とのなす角度が20°以上90°以下である積層板が提供される。
[Appendix 4]
According to another aspect of the invention,
A surface-treated copper foil provided with a roughened copper plating layer that is provided on at least one main surface of the copper foil base material and the copper foil base material and includes a plurality of plating particles grown in a predetermined growth direction, and
A resin base material bonded to the surface-treated copper foil so as to face the roughened copper plating layer,
The average value of the particle diameter along the principal surface of the copper foil base material of the plating particles is 0.05 μm or more and 0.8 μm or less,
The average value of the particle diameter along the growth direction of the plating particles is 0.05 μm or more and 1.2 μm or less,
There is provided a laminated board in which an angle formed by the growth direction of the plating particles and the main surface of the copper foil base material is 20 ° or more and 90 ° or less.

[付記5]
付記4の積層板であって、好ましくは、
前記樹脂基材に、前記表面処理銅箔を貼り合わせる接着剤層が設けられており、
前記接着剤層の厚さは25μm以下である。
[Appendix 5]
The laminated board according to appendix 4, preferably,
The resin base material is provided with an adhesive layer for bonding the surface-treated copper foil,
The adhesive layer has a thickness of 25 μm or less.

1 表面処理銅箔
2 銅箔基材
3 粗化銅めっき層
3a めっき粒子
11 樹脂基材
DESCRIPTION OF SYMBOLS 1 Surface treatment copper foil 2 Copper foil base material 3 Roughening copper plating layer 3a Plating particle 11 Resin base material

Claims (4)

銅箔基材と、
前記銅箔基材の少なくともいずれかの主面上に設けられ、所定の成長方向にそれぞれ成長した複数のめっき粒子を含む粗化銅めっき層と、を備え、
前記めっき粒子の前記銅箔基材の主面に沿った粒子径の平均値が0.05μm以上0.8μm以下であり、
前記めっき粒子の成長方向に沿った粒子径の平均値が0.05μm以上1.2μm以下であり、
前記めっき粒子の成長方向と前記銅箔基材の主面とのなす角度が20°以上90°以下である
表面処理銅箔。
A copper foil base material;
A roughened copper plating layer that is provided on at least one main surface of the copper foil base material and includes a plurality of plating particles grown in a predetermined growth direction, and
The average value of the particle diameter along the principal surface of the copper foil base material of the plating particles is 0.05 μm or more and 0.8 μm or less,
The average value of the particle diameter along the growth direction of the plating particles is 0.05 μm or more and 1.2 μm or less,
The surface-treated copper foil whose angle which the growth direction of the said plating particle and the main surface of the said copper foil base material make is 20 degrees or more and 90 degrees or less.
前記表面処理銅箔を樹脂基材に貼り合わせた後に前記表面処理銅箔を前記樹脂基材から引き剥がす際のピール強度が0.7N/mm以上である
請求項1に記載の表面処理銅箔。
According to the surface-treated copper foil to <br/> claim 1 peel strength is 0.7 N / mm or more when peeling off the surface treated copper foil after bonding the resin substrate from the resin substrate Surface treated copper foil.
前記粗化銅めっき層の平均厚さは0.03μm以上1.1μm以下である
請求項1又は2に記載の表面処理銅箔。
The surface-treated copper foil according to claim 1 or 2, wherein an average thickness of the roughened copper plating layer is 0.03 µm or more and 1.1 µm or less.
銅箔基材、及び前記銅箔基材の少なくともいずれかの主面上に設けられ、所定の成長方向にそれぞれ成長した複数のめっき粒子を含む粗化銅めっき層を備える表面処理銅箔と、
前記粗化銅めっき層に対向するように前記表面処理銅箔と貼り合わせられた樹脂基材と、を備え、
前記めっき粒子の前記銅箔基材の主面に沿った粒子径の平均値が0.05μm以上0.8μm以下であり、
前記めっき粒子の成長方向に沿った粒子径の平均値が0.05μm以上1.2μm以下であり、
前記めっき粒子の成長方向と前記銅箔基材の主面とのなす角度が20°以上90°以下である
積層板。
A surface-treated copper foil provided with a roughened copper plating layer that is provided on at least one main surface of the copper foil base material and the copper foil base material and includes a plurality of plating particles grown in a predetermined growth direction, and
A resin base material bonded to the surface-treated copper foil so as to face the roughened copper plating layer,
The average value of the particle diameter along the principal surface of the copper foil base material of the plating particles is 0.05 μm or more and 0.8 μm or less,
The average value of the particle diameter along the growth direction of the plating particles is 0.05 μm or more and 1.2 μm or less,
The laminated board whose angle formed by the growth direction of the said plating particle and the main surface of the said copper foil base material is 20 degrees or more and 90 degrees or less.
JP2014221822A 2014-10-30 2014-10-30 Surface-treated copper foil and laminate Active JP6373166B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014221822A JP6373166B2 (en) 2014-10-30 2014-10-30 Surface-treated copper foil and laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014221822A JP6373166B2 (en) 2014-10-30 2014-10-30 Surface-treated copper foil and laminate

Publications (2)

Publication Number Publication Date
JP2016089192A JP2016089192A (en) 2016-05-23
JP6373166B2 true JP6373166B2 (en) 2018-08-15

Family

ID=56018912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014221822A Active JP6373166B2 (en) 2014-10-30 2014-10-30 Surface-treated copper foil and laminate

Country Status (1)

Country Link
JP (1) JP6373166B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7173483B2 (en) * 2017-10-24 2022-11-16 国立大学法人信州大学 Joined product of metal and resin material
WO2019082857A1 (en) * 2017-10-24 2019-05-02 国立大学法人信州大学 Joined body of metal and resin material
WO2022176648A1 (en) * 2021-02-19 2022-08-25 日本電解株式会社 Surface-treated copper foil
WO2022244826A1 (en) * 2021-05-20 2022-11-24 三井金属鉱業株式会社 Roughened copper foil, copper foil with carrier, copper-cladded laminate board, and printed wiring board
CN117321254A (en) * 2021-05-20 2023-12-29 三井金属矿业株式会社 Roughened copper foil, copper foil with carrier, copper-clad laminate, and printed wiring board
WO2022244828A1 (en) * 2021-05-20 2022-11-24 三井金属鉱業株式会社 Roughened copper foil, copper foil with carrier, copper-clad laminate, and printed wiring board

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5204908B1 (en) * 2012-03-26 2013-06-05 Jx日鉱日石金属株式会社 Copper foil with carrier, method for producing copper foil with carrier, copper foil with carrier for printed wiring board and printed wiring board
JP2014152352A (en) * 2013-02-06 2014-08-25 Sh Copper Products Corp Composite copper foil and production method thereof
JP2015124426A (en) * 2013-12-27 2015-07-06 株式会社Shカッパープロダクツ Surface-treated copper foil and laminate

Also Published As

Publication number Publication date
JP2016089192A (en) 2016-05-23

Similar Documents

Publication Publication Date Title
JP6367687B2 (en) Surface-treated copper foil and laminate
JP6373166B2 (en) Surface-treated copper foil and laminate
JP6283664B2 (en) Copper foil, copper foil with carrier foil and copper clad laminate
TWI626150B (en) Composite copper foil and composite copper foil manufacturing method
JP5282675B2 (en) Copper foil for printed wiring board and method for producing the same
KR20150119217A (en) Surface-treated copper foil, and copper-clad laminate obtained using surface-treated copper foil
KR101931895B1 (en) Surface-treated copper foil for forming high frequency signal transmission circuit, copper clad laminate board and printed wiring board
JP2015124426A (en) Surface-treated copper foil and laminate
JP5505828B2 (en) Composite metal foil and method for producing the same
JP5922227B2 (en) Copper foil with carrier, method for producing copper foil with carrier, and method for producing printed wiring board
JP4955104B2 (en) Method for forming an electronic circuit
JP5075099B2 (en) Surface-treated copper foil, surface treatment method thereof, and laminated circuit board
JP5756547B1 (en) Surface-treated copper foil and laminate
JP2016003378A (en) Surface-treated copper foil, production method thereof and laminate
JP6379055B2 (en) Surface-treated copper foil and laminate
JP5728118B1 (en) Surface-treated copper foil, method for producing the surface-treated copper foil, and copper-clad laminate using the surface-treated copper foil
JP5903446B2 (en) Copper foil with carrier, method for producing copper foil with carrier, method for producing printed wiring board, method for producing printed circuit board, method for producing copper-clad laminate, and method for producing electronic device
JP5247929B1 (en) Copper foil with carrier, method for producing copper foil with carrier, printed wiring board and printed circuit board
JP2014152343A (en) Composite copper foil and production method thereof
JP2014152344A (en) Composite copper foil and production method thereof
JP6392674B2 (en) Surface-treated copper foil and laminate
JP5854872B2 (en) Copper foil with carrier, method for producing copper foil with carrier, laminate and method for producing printed wiring board
TWI519411B (en) Composite copper foil and its manufacturing method
JP5728117B1 (en) Surface-treated copper foil, method for producing the surface-treated copper foil, and copper-clad laminate using the surface-treated copper foil
JP2016008343A (en) Surface-treated copper foil, copper-clad laminate using the surface-treated copper foil, and production method of the surface-treated copper foil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170615

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20170615

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180403

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180717

R150 Certificate of patent or registration of utility model

Ref document number: 6373166

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250