JP5247929B1 - Copper foil with carrier, method for producing copper foil with carrier, printed wiring board and printed circuit board - Google Patents

Copper foil with carrier, method for producing copper foil with carrier, printed wiring board and printed circuit board Download PDF

Info

Publication number
JP5247929B1
JP5247929B1 JP2012270749A JP2012270749A JP5247929B1 JP 5247929 B1 JP5247929 B1 JP 5247929B1 JP 2012270749 A JP2012270749 A JP 2012270749A JP 2012270749 A JP2012270749 A JP 2012270749A JP 5247929 B1 JP5247929 B1 JP 5247929B1
Authority
JP
Japan
Prior art keywords
layer
carrier
copper foil
copper
cobalt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012270749A
Other languages
Japanese (ja)
Other versions
JP2014129554A (en
Inventor
美里 本多
友太 永浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2012270749A priority Critical patent/JP5247929B1/en
Application granted granted Critical
Publication of JP5247929B1 publication Critical patent/JP5247929B1/en
Priority to PCT/JP2013/082081 priority patent/WO2014084321A1/en
Priority to TW102143428A priority patent/TWI512151B/en
Publication of JP2014129554A publication Critical patent/JP2014129554A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/627Electroplating characterised by the visual appearance of the layers, e.g. colour, brightness or mat appearance
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/20Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by affixing prefabricated conductor pattern
    • H05K3/205Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by affixing prefabricated conductor pattern using a pattern electroplated or electroformed on a metallic carrier
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1653Two or more layers with at least one layer obtained by electroless plating and one layer obtained by electroplating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/02Electroplating of selected surface areas
    • C25D5/022Electroplating of selected surface areas using masking means
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0355Metal foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0364Conductor shape
    • H05K2201/0367Metallic bump or raised conductor not used as solder bump

Abstract

【課題】絶縁基板への積層工程前はキャリアと極薄銅層との密着力が高く、積層工程後には密着性が低下し、キャリア/極薄銅層界面で容易に剥離でき、且つ、極薄銅層側表面のピンホール発生が抑制されたキャリア付銅箔の提供。
【解決手段】キャリア付銅箔において、中間層は、銅箔キャリア上に、ニッケルと、モリブデンまたはコバルトまたはモリブデン−コバルト合金とがこの順で積層されて構成されており、ニッケルの付着量が1000〜40000μg/dm2、モリブデンの付着量が50〜1000μg/dm2、またはコバルトの付着量が50〜1000μg/dm2であり、銅箔キャリア/中間層/極薄銅層の断面から、この順番でこれらを全て含む範囲において、ニッケル濃度の最大値が50〜95質量%であり、且つニッケルより極薄銅側に、モリブデンまたはコバルトが最大値で1〜50質量%存在する。
【選択図】図1
The adhesion between the carrier and the ultrathin copper layer is high before the lamination process to the insulating substrate, the adhesion is lowered after the lamination process, and can be easily peeled off at the interface between the carrier and the ultrathin copper layer. Provision of a copper foil with a carrier in which the generation of pinholes on the surface of the thin copper layer is suppressed.
In a copper foil with a carrier, an intermediate layer is formed by laminating nickel and molybdenum, cobalt, or a molybdenum-cobalt alloy in this order on a copper foil carrier, and the adhesion amount of nickel is 1000. ˜40000 μg / dm 2 , molybdenum adhesion amount is 50 to 1000 μg / dm 2 , or cobalt adhesion amount is 50 to 1000 μg / dm 2 , and in this order from the cross section of copper foil carrier / intermediate layer / ultra thin copper layer In the range including all of these, the maximum value of nickel concentration is 50 to 95% by mass, and molybdenum or cobalt is present at the maximum value of 1 to 50% by mass on the ultrathin copper side from nickel.
[Selection] Figure 1

Description

本発明は、キャリア付銅箔、キャリア付銅箔の製造方法、プリント配線板及びプリント回路板に関する。より詳細には、本発明はファインパターン用途のプリント配線板の材料として使用されるキャリア付銅箔、キャリア付銅箔の製造方法、プリント配線板及びプリント回路板に関する。   The present invention relates to a copper foil with a carrier, a method for producing a copper foil with a carrier, a printed wiring board, and a printed circuit board. More specifically, the present invention relates to a copper foil with a carrier used as a material for a printed wiring board for fine patterns, a method for producing the copper foil with a carrier, a printed wiring board, and a printed circuit board.

プリント配線板はここ半世紀に亘って大きな進展を遂げ、今日ではほぼすべての電子機器に使用されるまでに至っている。近年の電子機器の小型化、高性能化ニーズの増大に伴い、搭載部品の高密度実装化や信号の高周波化が進展し、プリント配線板に対して導体パターンの微細化(ファインピッチ化)や高周波対応等が求められており、特にプリント配線板上にICチップを載せる場合、L/S=20/20以下のファインピッチ化が求められている。   Printed wiring boards have made great progress over the last half century and are now used in almost all electronic devices. In recent years, with the increasing demand for miniaturization and high performance of electronic devices, higher density mounting of components and higher frequency of signals have progressed, and conductor patterns have become finer (fine pitch) and printed circuit boards. There is a demand for high frequency response, and in particular, when an IC chip is mounted on a printed wiring board, a fine pitch of L / S = 20/20 or less is required.

プリント配線板は、まず、銅箔とガラスエポキシ基板、BT樹脂、ポリイミドフィルムなどを主とする絶縁基板を貼り合わせた銅張積層体として製造される。貼り合わせは、絶縁基板と銅箔を重ね合わせて加熱加圧させて形成する方法(ラミネート法)、又は、絶縁基板材料の前駆体であるワニスを銅箔の被覆層を有する面に塗布し、加熱・硬化する方法(キャスティング法)が用いられる。   A printed wiring board is first manufactured as a copper clad laminate in which an insulating substrate mainly composed of a copper foil and a glass epoxy substrate, a BT resin, a polyimide film, or the like is bonded. Bonding is performed by laminating an insulating substrate and a copper foil and applying heat and pressure (lamination method), or by applying a varnish that is a precursor of an insulating substrate material to a surface having a coating layer of copper foil, A heating / curing method (casting method) is used.

ファインピッチ化に伴って銅張積層体に使用される銅箔の厚みも9μm、さらには5μm以下になるなど、箔厚が薄くなりつつある。ところが、箔厚が9μm以下になると前述のラミネート法やキャスティング法で銅張積層体を形成するときのハンドリング性が極めて悪化する。そこで、厚みのある金属箔をキャリアとして利用し、これに剥離層を介して極薄銅層を形成したキャリア付銅箔が登場している。極薄銅層の表面を絶縁基板に貼り合わせて熱圧着した後に、キャリアを剥離層を介して剥離するというのがキャリア付銅箔の一般的な使用方法である。   Along with the fine pitch, the thickness of the copper foil used for the copper clad laminate is also 9 μm, and further, 5 μm or less. However, when the foil thickness is 9 μm or less, the handleability when forming a copper clad laminate by the above-described lamination method or casting method is extremely deteriorated. Therefore, a copper foil with a carrier has appeared, in which a thick metal foil is used as a carrier, and an ultrathin copper layer is formed on the metal foil via a release layer. A general method of using a copper foil with a carrier is to peel the carrier through a release layer after the surface of the ultrathin copper layer is bonded to an insulating substrate and thermocompression bonded.

キャリア付銅箔に関する技術として、例えば特許文献1には、キャリアの表面に、拡散防止層、剥離層、電気銅めっきをこの順番に形成し、剥離層としてCr又はCr水和酸化物層を、拡散防止層としてNi、Co、Fe、Cr、Mo、Ta、Cu、Al、Pの単体又は合金を用いることで加熱プレス後の良好な剥離性を保持する方法が開示されている。   As a technique related to a copper foil with a carrier, for example, in Patent Document 1, a diffusion prevention layer, a release layer, and an electrolytic copper plating are formed in this order on the surface of a carrier, and a Cr or Cr hydrated oxide layer is formed as a release layer. A method for maintaining good peelability after hot pressing by using a simple substance or an alloy of Ni, Co, Fe, Cr, Mo, Ta, Cu, Al, P as a diffusion preventing layer is disclosed.

また、剥離層としてCr、Ni、Co、Fe、Mo、Ti、W、P又はこれらの合金又はこれらの水和物で形成することが知られている。さらに、加熱プレス等の高温使用環境における剥離性の安定化を図る上で、剥離層の下地にNi、Fe又はこれらの合金層をもうけると効果的であることが特許文献2および3に記載されている。   Further, it is known that the release layer is formed of Cr, Ni, Co, Fe, Mo, Ti, W, P, alloys thereof, or hydrates thereof. Furthermore, Patent Documents 2 and 3 describe that it is effective to provide Ni, Fe, or an alloy layer thereof as a base for the release layer in order to stabilize the peelability in a high temperature use environment such as a hot press. ing.

特開2006−022406号公報JP 2006-022406 A 特開2010−006071号公報JP 2010-006071 A 特開2007−007937号公報JP 2007-007937 A

キャリア付銅箔においては、絶縁基板への積層工程前にはキャリアから極薄銅層が剥離することは避けなければならず、一方、絶縁基板への積層工程後にはキャリアから極薄銅層が剥離できる必要がある。また、キャリア付銅箔においては、極薄銅層側の表面にピンホールが存在するのはプリント配線板の性能不良に繋がり好ましくない。   In copper foil with a carrier, it is necessary to avoid the peeling of the ultrathin copper layer from the carrier before the lamination process on the insulating substrate, while the ultrathin copper layer from the carrier is removed after the lamination process to the insulating substrate. Must be peelable. In addition, in the copper foil with a carrier, the presence of pinholes on the surface of the ultrathin copper layer is not preferable because it leads to poor performance of the printed wiring board.

これらの点に関して、従来技術では十分な検討がなされておらず、未だ改善の余地が残されている。そこで、本発明は、絶縁基板への積層工程前にはキャリアから極薄銅層が剥離しない一方で、絶縁基板への積層工程後には剥離可能なキャリア付銅箔を提供することを課題とする。本発明は更に、極薄銅層側表面におけるピンホールの発生が抑制されたキャリア付銅箔を提供することも課題とする。   With respect to these points, the prior art has not been sufficiently studied, and there is still room for improvement. Therefore, an object of the present invention is to provide a copper foil with a carrier that can be peeled off after a lamination process on an insulating substrate, while the ultrathin copper layer does not peel off from the carrier before the lamination process on the insulating substrate. . Another object of the present invention is to provide a copper foil with a carrier in which the generation of pinholes on the surface of the ultrathin copper layer is suppressed.

上記目的を達成するため、本発明者は鋭意研究を重ねたところ、キャリアとして銅箔を使用し、中間層を極薄銅層とキャリアとの間に形成し、この中間層を銅箔キャリア上から順にニッケルと、モリブデンまたはコバルトまたはモリブデン−コバルト合金で構成すること、ニッケル、モリブデン、コバルトの付着量を制御すること、及び、中間層付近のニッケル、モリブデン、コバルト濃度を制御することが極めて効果的であることを見出した。   In order to achieve the above object, the present inventor conducted extensive research and used copper foil as a carrier, formed an intermediate layer between the ultrathin copper layer and the carrier, and formed this intermediate layer on the copper foil carrier. It is extremely effective to be composed of nickel and molybdenum or cobalt or molybdenum-cobalt alloy in order, control the amount of nickel, molybdenum and cobalt deposited, and control the concentration of nickel, molybdenum and cobalt near the intermediate layer. I found out that

本発明は上記知見を基礎として完成したものであり、一側面において、銅箔キャリアと、銅箔キャリア上に積層された中間層と、中間層上に積層された極薄銅層とを備えたキャリア付銅箔であって、前記中間層は、前記銅箔キャリア上に、ニッケルと、モリブデンまたはコバルトまたはモリブデン−コバルト合金とがこの順で積層されて構成されており、前記中間層において、ニッケルの付着量が1000〜40000μg/dm2、モリブデンを含む場合はモリブデンの付着量が50〜1000μg/dm2、コバルトを含む場合はコバルトの付着量が50〜1000μg/dm2であり、前記銅箔キャリア/中間層/極薄銅層の断面から、この順番でこれらを全て含む範囲で50〜1000nm長STEM線分析を行ったとき、ニッケル濃度の最大値が50〜95質量%であり、且つニッケルより極薄銅側に、モリブデンまたはコバルトが最大値で1〜50質量%存在するキャリア付銅箔である。 The present invention has been completed on the basis of the above knowledge, and in one aspect, includes a copper foil carrier, an intermediate layer laminated on the copper foil carrier, and an ultrathin copper layer laminated on the intermediate layer. A copper foil with a carrier, wherein the intermediate layer is formed by laminating nickel and molybdenum or cobalt or a molybdenum-cobalt alloy in this order on the copper foil carrier. the adhesion amount 1000~40000μg / dm 2, 50~1000μg / dm 2 adhesion amount of molybdenum may include molybdenum, if it contains cobalt is deposited amount 50~1000μg / dm 2 of cobalt, the copper foil From the cross section of the carrier / intermediate layer / ultra-thin copper layer, when a 50 to 1000 nm long STEM line analysis was performed in a range including all of them in this order, the nickel concentration The maximum value of is 50 to 95 wt%, and the ultra-thin copper side of the nickel, copper foil with carrier in which molybdenum or cobalt is present from 1 to 50% by weight at the maximum value.

本発明に係るキャリア付銅箔の一実施形態においては、前記極薄銅層に絶縁基板を大気中、圧力:20kgf/cm2、220℃×2時間の条件下で熱圧着させたときに、前記銅箔キャリア/中間層/極薄銅層の断面から、この順番でこれらを全て含む範囲で50〜1000nm長STEM線分析を行ったとき、ニッケル濃度の最大値が50〜95質量%であり、且つニッケルより極薄銅側に、モリブデンまたはコバルトが最大値で1〜50質量%存在する。 In one embodiment of the copper foil with a carrier according to the present invention, when the insulating substrate is thermocompression bonded to the ultrathin copper layer under the conditions of pressure: 20 kgf / cm 2 and 220 ° C. × 2 hours in the atmosphere, From the cross section of the copper foil carrier / intermediate layer / ultra-thin copper layer, when a 50 to 1000 nm long STEM line analysis is performed in a range including all of them in this order, the maximum value of the nickel concentration is 50 to 95% by mass. In addition, molybdenum or cobalt is present at a maximum value of 1 to 50% by mass on the ultrathin copper side from nickel.

本発明に係るキャリア付銅箔の別の一実施形態においては、前記極薄銅層に絶縁基板を大気中、圧力:20kgf/cm2、220℃×2時間の条件下で熱圧着させたときに、前記銅箔キャリア/中間層/極薄銅層の断面から、これらを全て含む範囲で50〜1000nm長STEM線分析を行ったとき、ニッケルと、モリブデン及び/またはコバルトと、銅とが共存する箇所の銅濃度最小値が10〜65質量%となる。 In another embodiment of the copper foil with a carrier according to the present invention, when the insulating substrate is thermocompression bonded to the ultrathin copper layer in the atmosphere under the conditions of pressure: 20 kgf / cm 2 and 220 ° C. × 2 hours. In addition, from the cross section of the copper foil carrier / intermediate layer / ultra-thin copper layer, nickel, molybdenum and / or cobalt, and copper coexist when a 50 to 1000 nm long STEM line analysis is performed in a range including all of them. The copper concentration minimum value of the place to do becomes 10-65 mass%.

本発明に係るキャリア付銅箔の更に別の一実施形態においては、前記中間層のモリブデン−コバルト合金のコバルトの濃度が20〜80質量%である。   In still another embodiment of the copper foil with a carrier according to the present invention, the concentration of cobalt in the molybdenum-cobalt alloy of the intermediate layer is 20 to 80% by mass.

本発明に係るキャリア付銅箔の更に別の一実施形態においては、前記銅箔キャリアが電解銅箔又は圧延銅箔で形成されている。   In still another embodiment of the copper foil with a carrier according to the present invention, the copper foil carrier is formed of an electrolytic copper foil or a rolled copper foil.

本発明に係るキャリア付銅箔の更に別の一実施形態においては、前記極薄銅層表面に粗化処理層を有する。   In still another embodiment of the copper foil with a carrier according to the present invention, the surface of the ultrathin copper layer has a roughening treatment layer.

本発明に係るキャリア付銅箔の更に別の一実施形態においては、前記粗化処理層が、銅、ニッケル、コバルト及び亜鉛からなる群から選択されたいずれかの単体又はいずれか1種以上を含む合金からなる層である。   In still another embodiment of the copper foil with a carrier according to the present invention, the roughening treatment layer is any one selected from the group consisting of copper, nickel, cobalt and zinc, or any one or more. It is a layer made of an alloy containing.

本発明に係るキャリア付銅箔の更に別の一実施形態においては、前記粗化処理層の表面に、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層を有する。   In still another embodiment of the copper foil with a carrier according to the present invention, one or more types selected from the group consisting of a rust prevention layer, a chromate treatment layer and a silane coupling treatment layer on the surface of the roughening treatment layer. It has a layer of.

本発明に係るキャリア付銅箔の更に別の一実施形態においては、前記極薄銅層の表面に、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層を有する。   In still another embodiment of the copper foil with a carrier according to the present invention, one or more selected from the group consisting of a rust prevention layer, a chromate treatment layer and a silane coupling treatment layer on the surface of the ultrathin copper layer. It has a layer of.

本発明は別の一側面において、銅箔キャリア上に、乾式めっき又は湿式めっきにより、ニッケル層を形成し、前記ニッケル層の上にモリブデン層又はコバルト層又はモリブデン−コバルト合金層を形成することで中間層を形成する工程と、前記中間層上に電気めっきにより極薄銅層を形成する工程とを含む本発明のキャリア付銅箔の製造方法である。

In another aspect of the present invention, a nickel layer is formed on a copper foil carrier by dry plating or wet plating, and a molybdenum layer, a cobalt layer, or a molybdenum-cobalt alloy layer is formed on the nickel layer. It is a manufacturing method of the copper foil with a carrier of this invention including the process of forming an intermediate | middle layer, and the process of forming an ultra-thin copper layer on the said intermediate | middle layer by electroplating.

本発明に係るキャリア付銅箔の製造方法の一実施形態においては、前記極薄銅層上に粗化処理層を形成する工程をさらに含む。   In one Embodiment of the manufacturing method of the copper foil with a carrier which concerns on this invention, the process of forming a roughening process layer on the said ultra-thin copper layer is further included.

本発明は更に別の一側面において、本発明のキャリア付銅箔を用いて製造したプリント配線板である。   In still another aspect, the present invention is a printed wiring board manufactured using the carrier-attached copper foil of the present invention.

本発明は更に別の一側面において、本発明のキャリア付銅箔を用いて製造したプリント回路板である。   In still another aspect, the present invention is a printed circuit board manufactured using the carrier-attached copper foil of the present invention.

本発明に係るキャリア付銅箔は、絶縁基板への積層工程前にはキャリアと極薄銅層との密着力が高い一方で、絶縁基板への積層工程後にはキャリアと極薄銅層との密着性が低下し、キャリア/極薄銅層界面で容易に剥離でき、且つ、極薄銅層側表面におけるピンホールの発生を良好に抑制することができる。   The copper foil with a carrier according to the present invention has high adhesion between the carrier and the ultrathin copper layer before the lamination process to the insulating substrate, while the carrier and the ultrathin copper layer after the lamination process to the insulation substrate. Adhesiveness is lowered, it can be easily peeled off at the carrier / ultra-thin copper layer interface, and the occurrence of pinholes on the surface of the ultra-thin copper layer can be well suppressed.

実施例5に係る基板圧着後の断面の濃度プロファイルである。6 is a cross-sectional concentration profile after pressure bonding of a substrate according to Example 5. 比較例3に係る基板圧着後の断面の濃度プロファイルである。It is a density | concentration profile of the cross section after the board | substrate crimping | compression-bonding which concerns on the comparative example 3. FIG.

<1.キャリア>
本発明に用いることのできるキャリアとしては銅箔を使用する。キャリアは典型的には圧延銅箔や電解銅箔の形態で提供される。一般的には、電解銅箔は硫酸銅めっき浴からチタンやステンレスのドラム上に銅を電解析出して製造され、圧延銅箔は圧延ロールによる塑性加工と熱処理を繰り返して製造される。銅箔の材料としてはタフピッチ銅や無酸素銅といった高純度の銅の他、例えばSn入り銅、Ag入り銅、Cr、Zr又はMg等を添加した銅合金、Ni及びSi等を添加したコルソン系銅合金のような銅合金も使用可能である。なお、本明細書において用語「銅箔」を単独で用いたときには銅合金箔も含むものとする。
<1. Career>
A copper foil is used as a carrier that can be used in the present invention. The carrier is typically provided in the form of rolled copper foil or electrolytic copper foil. In general, the electrolytic copper foil is produced by electrolytic deposition of copper from a copper sulfate plating bath onto a drum of titanium or stainless steel, and the rolled copper foil is produced by repeating plastic working and heat treatment with a rolling roll. In addition to high-purity copper such as tough pitch copper and oxygen-free copper, the copper foil material is, for example, Sn-containing copper, Ag-containing copper, copper alloy added with Cr, Zr, Mg, etc., and Corson-based added with Ni, Si, etc. Copper alloys such as copper alloys can also be used. In addition, when the term “copper foil” is used alone in this specification, a copper alloy foil is also included.

本発明に用いることのできるキャリアの厚さについても特に制限はないが、キャリアとしての役目を果たす上で適した厚さに適宜調節すればよく、例えば12μm以上とすることができる。但し、厚すぎると生産コストが高くなるので一般には35μm以下とするのが好ましい。従って、キャリアの厚みは典型的には12〜70μmであり、より典型的には18〜35μmである。   The thickness of the carrier that can be used in the present invention is not particularly limited, but may be appropriately adjusted to a thickness suitable for serving as a carrier, for example, 12 μm or more. However, if it is too thick, the production cost becomes high, so generally it is preferably 35 μm or less. Accordingly, the thickness of the carrier is typically 12-70 μm, more typically 18-35 μm.

<2.中間層>
銅箔キャリア上には中間層を設ける。中間層は、銅箔キャリア上に、ニッケルと、モリブデンまたはコバルトまたはモリブデン−コバルト合金とがこの順で積層されて構成されている。ニッケルと銅との接着力は、モリブデンまたはコバルトと銅の接着力よりも高いので、極薄銅層を剥離する際に、極薄銅層とモリブデンまたはコバルトとの界面で剥離するようになる。また、中間層のニッケルにはキャリアから銅成分が極薄銅層へと拡散していくのを防ぐバリア効果が期待される。
キャリアとして電解銅箔を使用する場合には、ピンホールを減少させる観点からシャイニー面に中間層を設けることが好ましい。
<2. Intermediate layer>
An intermediate layer is provided on the copper foil carrier. The intermediate layer is configured by laminating nickel and molybdenum or cobalt or a molybdenum-cobalt alloy in this order on a copper foil carrier. Since the adhesive force between nickel and copper is higher than the adhesive force between molybdenum or cobalt and copper, when the ultrathin copper layer is peeled off, it peels at the interface between the ultrathin copper layer and molybdenum or cobalt. Further, the nickel of the intermediate layer is expected to have a barrier effect that prevents the copper component from diffusing from the carrier into the ultrathin copper layer.
When using electrolytic copper foil as a carrier, it is preferable to provide an intermediate layer on the shiny surface from the viewpoint of reducing pinholes.

中間層のうちモリブデンまたはコバルトまたはモリブデン−コバルト合金は極薄銅層の界面に薄く存在することが、絶縁基板への積層工程前にはキャリアから極薄銅層が剥離しない一方で、絶縁基板への積層工程後にはキャリアから極薄銅層が剥離可能であるという特性を得る上で好ましい。ニッケル層を設けずにモリブデンまたはコバルトまたはモリブデン−コバルト合金をキャリアと極薄銅層の境界に存在させた場合は、剥離性はほとんど向上しないし、モリブデンまたはコバルトまたはモリブデン−コバルト合金がなくニッケル層と極薄銅層を直接積層した場合はニッケル層におけるニッケル量に応じて剥離強度が強すぎたり弱すぎたりして適切な剥離強度は得られない。   Of the intermediate layer, molybdenum or cobalt or molybdenum-cobalt alloy is thinly present at the interface of the ultrathin copper layer. It is preferable for obtaining the property that the ultrathin copper layer can be peeled off from the carrier after the laminating step. When molybdenum or cobalt or molybdenum-cobalt alloy is present at the boundary between the carrier and the ultrathin copper layer without providing a nickel layer, the peelability is hardly improved, and there is no molybdenum or cobalt or molybdenum-cobalt alloy and the nickel layer. When the ultrathin copper layer is directly laminated, the peel strength is too strong or too weak depending on the amount of nickel in the nickel layer, and an appropriate peel strength cannot be obtained.

また、モリブデンまたはコバルトまたはモリブデン−コバルト合金がキャリアとニッケル層の境界に存在すると、極薄銅層の剥離時に中間層も付随して剥離されてしまう、すなわちキャリアと中間層の間で剥離が生じてしまうので好ましくない。このような状況は、キャリアとの界面にモリブデンまたはコバルトまたはモリブデン−コバルト合金を設けた場合のみならず、極薄銅層との界面にモリブデンまたはコバルトまたはモリブデン−コバルト合金を設けたとしてもモリブデン量またはコバルト量が多すぎると生じ得る。これは、銅とニッケルとは固溶しやすいので、これらが接触していると相互拡散によって接着力が高くなり剥離しにくくなる一方で、モリブデンまたはコバルトと銅とは固溶しにくく、相互拡散が生じにくいので、モリブデンまたはコバルトまたはモリブデン−コバルト合金と銅との界面では接着力が弱く、剥離しやすいことが原因と考えられる。また、中間層のニッケル量が不足している場合、キャリアと極薄銅層の間には微量のモリブデンまたはコバルトしか存在しないので両者が密着して剥がれにくくなる。   In addition, if molybdenum or cobalt or molybdenum-cobalt alloy is present at the boundary between the carrier and the nickel layer, the intermediate layer is also peeled off at the time of peeling of the ultrathin copper layer, that is, peeling occurs between the carrier and the intermediate layer. This is not preferable. Such a situation is not only when molybdenum, cobalt, or molybdenum-cobalt alloy is provided at the interface with the carrier, but also when molybdenum, cobalt, or molybdenum-cobalt alloy is provided at the interface with the ultrathin copper layer. Or it may occur when the amount of cobalt is too large. This is because copper and nickel are likely to be in solid solution, so if they are in contact with each other, the adhesive force increases due to mutual diffusion and it is difficult to peel off, while molybdenum or cobalt and copper are less likely to dissolve and mutual diffusion. This is considered to be because the adhesive strength is weak at the interface between molybdenum, cobalt, or a molybdenum-cobalt alloy and copper, and is easily peeled off. Further, when the amount of nickel in the intermediate layer is insufficient, there is only a small amount of molybdenum or cobalt between the carrier and the ultrathin copper layer, so that they are in close contact and difficult to peel off.

中間層のニッケル及びコバルトまたはモリブデン−コバルト合金は、例えば電気めっき、無電解めっき及び浸漬めっきのような湿式めっき、或いはスパッタリング、CVD及びPDVのような乾式めっきにより形成することができる。また、モリブデンはCVD及びPDVのような乾式めっきのみにより形成することができる。コストの観点から電気めっきが好ましい。   The intermediate layer nickel and cobalt or molybdenum-cobalt alloy can be formed by wet plating such as electroplating, electroless plating and immersion plating, or dry plating such as sputtering, CVD and PDV. Molybdenum can be formed only by dry plating such as CVD and PDV. Electroplating is preferable from the viewpoint of cost.

中間層において、ニッケルの付着量が1000〜40000μg/dm2、モリブデンを含む場合はモリブデンの付着量が50〜1000μg/dm2、コバルトを含む場合はコバルトの付着量が50〜1000μg/dm2である。ニッケル量が増えるにつれてピンホールの量が多くなる傾向にあるが、この範囲であればピンホールの数も抑制される。極薄銅層をムラなく均一に剥離する観点、及び、ピンホールを抑制する観点からは、ニッケル付着量は5000〜20000μg/dm2とすることが好ましく、7500〜15000μg/dm2とすることがより好ましい。モリブデンを含む場合は、モリブデン付着量は80〜600μg/dm2とすることが好ましく、100〜400μg/dm2とすることがより好ましい。コバルトを含む場合は、コバルト付着量は80〜600μg/dm2とすることが好ましく、100〜400μg/dm2とすることがより好ましい。なお、中間層においてモリブデンとコバルトとが含まれる層を設ける場合には、モリブデンとコバルトの合計の付着量は50〜1200μg/dm2であることが好ましい。また、モリブデンとコバルトの合計の付着量は100〜1000μg/dm2とすることが好ましく、150〜700μg/dm2とすることがより好ましい。 In the intermediate layer, 1000~40000μg / dm 2 adhesion amount of nickel, 50~1000μg / dm 2 adhesion amount of molybdenum may include molybdenum, the amount of deposition of cobalt may include cobalt is in 50~1000μg / dm 2 is there. Although the amount of pinholes tends to increase as the amount of nickel increases, the number of pinholes is also suppressed within this range. Terms of peeling ultrathin copper layer without unevenness uniformly, and, from the viewpoint of suppressing a pinhole, nickel coating weight is preferably set to 5000~20000μg / dm 2, be 7500~15000μg / dm 2 More preferred. If containing molybdenum, molybdenum deposition amount is preferably set to 80~600μg / dm 2, and more preferably a 100-400 / dm 2. If it contains cobalt, the cobalt coating weight is preferably set to 80~600μg / dm 2, and more preferably a 100-400 / dm 2. In the case where a layer containing molybdenum and cobalt is provided in the intermediate layer, the total adhesion amount of molybdenum and cobalt is preferably 50 to 1200 μg / dm 2 . The coating weight of the total of molybdenum and cobalt is preferably set to 100-1000 / dm 2, and more preferably a 150~700μg / dm 2.

<3.ストライクめっき>
中間層の上には極薄銅層を設ける。その前に極薄銅層のピンホールを低減させるために中間層のクロム層上に銅−リン合金によるストライクめっきを行ってもよい。ストライクめっきの処理液にはピロリン酸銅めっき液などを用いることができる。このように、銅−リン合金によるストライクめっきを行ったキャリア付銅箔は、中間層表面と極薄銅層表面の両方にリンが存在することとなる。このため、中間層/極薄銅層間で剥離させたとき、中間層及び極薄銅層の表面からリンが検出される。また、ストライクめっきで形成されためっき層は薄くなるため、FIBやTEM等で断面観察をし、中間層上の銅リンめっき層の厚みが0.1μm以下である場合にはストライクめっきであると判定することができる。
<3. Strike plating>
An ultrathin copper layer is provided on the intermediate layer. Before that, strike plating with a copper-phosphorus alloy may be performed on the chromium layer of the intermediate layer in order to reduce pinholes in the ultrathin copper layer. A copper pyrophosphate plating solution or the like can be used as the strike plating treatment solution. Thus, the carrier-attached copper foil subjected to the strike plating with the copper-phosphorus alloy has phosphorus on both the intermediate layer surface and the ultrathin copper layer surface. For this reason, when it peels between an intermediate | middle layer / ultra-thin copper layer, phosphorus is detected from the surface of an intermediate | middle layer and an ultra-thin copper layer. Moreover, since the plating layer formed by strike plating becomes thin, cross-sectional observation is performed with FIB, TEM, etc., and when the thickness of the copper phosphorous plating layer on the intermediate layer is 0.1 μm or less, it is strike plating Can be determined.

<4.極薄銅層>
中間層の上には極薄銅層を設ける。極薄銅層は、硫酸銅、ピロリン酸銅、スルファミン酸銅、シアン化銅等の電解浴を利用した電気めっきにより形成することができ、一般的な電解銅箔で使用され、高電流密度での銅箔形成が可能であることから硫酸銅浴が好ましい。極薄銅層の厚みは特に制限はないが、一般的にはキャリアよりも薄く、例えば12μm以下である。典型的には0.5〜12μmであり、より典型的には2〜5μmである。
<4. Ultra-thin copper layer>
An ultrathin copper layer is provided on the intermediate layer. The ultra-thin copper layer can be formed by electroplating using an electrolytic bath such as copper sulfate, copper pyrophosphate, copper sulfamate, copper cyanide, etc., and is used in general electrolytic copper foil with high current density. Since a copper foil can be formed, a copper sulfate bath is preferable. The thickness of the ultrathin copper layer is not particularly limited, but is generally thinner than the carrier, for example, 12 μm or less. It is typically 0.5-12 μm, more typically 2-5 μm.

<5.粗化処理>
極薄銅層の表面には、例えば絶縁基板との密着性を良好にすること等のために粗化処理を施すことで粗化処理層を設けてもよい。粗化処理は、例えば、銅又は銅合金で粗化粒子を形成することにより行うことができる。粗化処理は微細なものであっても良い。粗化処理層は、銅、ニッケル、りん、タングステン、ヒ素、モリブデン、クロム、コバルト及び亜鉛からなる群から選択されたいずれかの単体又はいずれか1種以上を含む合金からなる層などであってもよい。また、銅又は銅合金で粗化粒子を形成した後、更にニッケル、コバルト、銅、亜鉛の単体または合金等で二次粒子や三次粒子を設ける粗化処理を行うこともできる。その後に、銅、ニッケル、コバルト、亜鉛の単体または合金等で耐熱層または防錆層を形成してもよく、更にその表面にクロメート処理、シランカップリング処理などの処理を施してもよい。または粗化処理を行わずに、銅、ニッケル、コバルト、亜鉛の単体または合金等で耐熱層又は防錆層を形成し、さらにその表面にクロメート処理、シランカップリング処理などの処理を施してもよい。すなわち、粗化処理層の表面に、耐熱層、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層を形成してもよく、極薄銅層の表面に、耐熱層、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層を形成してもよい。なお、上述の耐熱層、防錆層、クロメート処理層、シランカップリング処理層はそれぞれ例えば2層以上、3層以上などの複数の層で形成されてもよい。
<5. Roughening>
A roughening treatment layer may be provided on the surface of the ultrathin copper layer by performing a roughening treatment, for example, in order to improve the adhesion to the insulating substrate. The roughening treatment can be performed, for example, by forming roughened particles with copper or a copper alloy. The roughening process may be fine. The roughening treatment layer is a single layer selected from the group consisting of copper, nickel, phosphorus, tungsten, arsenic, molybdenum, chromium, cobalt and zinc, or a layer made of an alloy containing one or more of them. Also good. Moreover, after forming the roughened particles with copper or a copper alloy, a roughening treatment can be performed in which secondary particles or tertiary particles are further formed of nickel, cobalt, copper, zinc alone or an alloy. Thereafter, a heat-resistant layer or a rust-preventing layer may be formed of copper, nickel, cobalt, zinc alone or an alloy, and the surface may be further subjected to a treatment such as a chromate treatment or a silane coupling treatment. Alternatively, a heat-resistant layer or a rust-preventing layer may be formed of copper, nickel, cobalt, zinc alone or an alloy without roughening, and the surface may be subjected to a treatment such as chromate treatment or silane coupling treatment. Good. That is, one or more layers selected from the group consisting of a heat-resistant layer, a rust-preventing layer, a chromate treatment layer, and a silane coupling treatment layer may be formed on the surface of the roughening treatment layer. One or more layers selected from the group consisting of a heat-resistant layer, a rust prevention layer, a chromate treatment layer, and a silane coupling treatment layer may be formed on the surface. In addition, the above-mentioned heat-resistant layer, rust prevention layer, chromate treatment layer, and silane coupling treatment layer may each be formed of a plurality of layers such as 2 layers or more and 3 layers or more.

<6.キャリア付銅箔>
このようにして、銅箔キャリアと、銅箔キャリア上に形成された中間層と、中間層の上に積層された極薄銅層とを備えたキャリア付銅箔が製造される。キャリア付銅箔自体の使用方法は当業者に周知であるが、例えば極薄銅層の表面を紙基材フェノール樹脂、紙基材エポキシ樹脂、合成繊維布基材エポキシ樹脂、ガラス布・紙複合基材エポキシ樹脂、ガラス布・ガラス不織布複合基材エポキシ樹脂及びガラス布基材エポキシ樹脂、ポリエステルフィルム、ポリイミドフィルム等の絶縁基板に貼り合わせて熱圧着後にキャリアを剥がす。本発明に係るキャリア付銅箔の場合、剥離箇所は主として中間層と極薄銅層の界面である。続いて、絶縁基板に接着した極薄銅層を目的とする導体パターンにエッチングし、最終的にプリント配線板又はプリント回路板を製造することができる。本発明のキャリア付銅箔を用いて製造したプリント配線板としては、公知の形態のものを広く用いることができ、例えば、各部品を電気的に接続するために、導体パターンを絶縁基板にプリントによって形成する配線が、回路設計に基づいて絶縁基板等に設けられてなる基板が挙げられる。また、本発明のキャリア付銅箔を用いて製造したプリント回路板としては、公知の形態のものを広く用いることができ、例えば、上記プリント配線及び基板に搭載する種々の部品等で構成される回路が絶縁基板等に設けられてなる基板が挙げられる。
<6. Copper foil with carrier>
Thus, the copper foil with a carrier provided with the copper foil carrier, the intermediate | middle layer formed on the copper foil carrier, and the ultra-thin copper layer laminated | stacked on the intermediate | middle layer is manufactured. The method of using the copper foil with carrier itself is well known to those skilled in the art. For example, the surface of the ultra-thin copper layer is made of paper base phenol resin, paper base epoxy resin, synthetic fiber cloth base epoxy resin, glass cloth / paper composite. A carrier is peeled off after being bonded to an insulating substrate such as a base epoxy resin, a glass cloth / glass nonwoven fabric composite base epoxy resin and a glass cloth base epoxy resin, a polyester film, a polyimide film, etc. In the case of the carrier-attached copper foil according to the present invention, the peeled portion is mainly the interface between the intermediate layer and the ultrathin copper layer. Subsequently, the ultrathin copper layer adhered to the insulating substrate is etched into the intended conductor pattern, and finally a printed wiring board or printed circuit board can be manufactured. As a printed wiring board manufactured using the copper foil with a carrier of the present invention, those in known forms can be widely used. For example, a conductor pattern is printed on an insulating substrate in order to electrically connect each component. A substrate in which the wiring formed by the above is provided on an insulating substrate or the like based on circuit design. Moreover, as a printed circuit board manufactured using the copper foil with a carrier of this invention, the thing of a well-known form can be used widely, for example, it is comprised with the said printed wiring, the various components mounted in a board | substrate, etc. A substrate in which a circuit is provided on an insulating substrate or the like can be given.

本発明のキャリア付銅箔は、銅箔キャリア/中間層/極薄銅層の断面から、この順番でこれらを全て含む範囲で50〜1000nm長STEM線分析を行ったとき、ニッケル濃度の最大値が50〜95質量%であり、且つニッケルより極薄銅側に、モリブデンまたはコバルトが最大値で1〜50質量%存在する。
このように、本発明のキャリア付銅箔は、銅箔キャリア/中間層/極薄銅層断面を元素分析すると、キャリア銅/ニッケル層/モリブデンまたはコバルトまたはモリブデン−コバルト合金層/極薄銅層の構造になっている。このとき、ニッケルと銅は固溶しやすいので、これらが接触していると相互拡散によって接着力が高くなり剥離しにくくなる一方で、モリブデンまたはコバルトと銅とは固溶しにくく、相互拡散が生じにくいので、モリブデンまたはコバルトまたはモリブデン−コバルト合金層と銅との界面では接着力が弱い。このニッケルとモリブデンまたはコバルトの濃度を変更することで、中間層中の銅濃度を制御することにより剥離強度を制御できる。また、モリブデンまたはコバルトまたはモリブデン−コバルト合金層がキャリアとニッケル層の境界に存在すると、極薄銅層の剥離時に中間層も付随して剥離されてしまう、すなわちキャリアと中間層の間で剥離が生じてしまうので好ましくない。このような状況は、キャリアとの界面にモリブデンまたはコバルトまたはモリブデン−コバルト合金層を設けた場合のみならず、極薄銅層との界面にモリブデンまたはコバルトまたはモリブデン−コバルト合金層を設けたとしてもモリブデン量またはコバルト量が多すぎると生じ得る。これは、モリブデンまたはコバルトと銅とは固溶しにくく、相互拡散が生じにくいので、モリブデンまたはコバルトまたはモリブデン−コバルト合金層と銅との界面では接着力が弱く、剥離しやすいことが原因と考えられる。また、中間層のニッケル量が不足している場合、キャリアと極薄銅層の間には微量のモリブデンまたはコバルトしか存在しないので両者が密着して剥がれにくくなる。
When the copper foil with a carrier of the present invention is subjected to a 50 to 1000 nm long STEM line analysis in a range including all of them in this order from the cross section of the copper foil carrier / intermediate layer / ultra thin copper layer, the maximum value of the nickel concentration Is 50 to 95% by mass, and molybdenum or cobalt is present at a maximum value of 1 to 50% by mass on the ultrathin copper side from nickel.
As described above, the copper foil with carrier of the present invention is obtained by performing elemental analysis on the cross section of the copper foil carrier / intermediate layer / ultra thin copper layer. Carrier copper / nickel layer / molybdenum or cobalt or molybdenum-cobalt alloy layer / ultra thin copper layer It has a structure. At this time, since nickel and copper are easy to dissolve, when they are in contact with each other, the adhesive force is increased due to mutual diffusion and it is difficult to peel off. On the other hand, molybdenum or cobalt and copper are difficult to dissolve and mutual diffusion is difficult. Since it does not easily occur, the adhesive force is weak at the interface between the molybdenum or cobalt or molybdenum-cobalt alloy layer and copper. By changing the concentration of nickel and molybdenum or cobalt, the peel strength can be controlled by controlling the copper concentration in the intermediate layer. In addition, if the molybdenum or cobalt or molybdenum-cobalt alloy layer is present at the boundary between the carrier and the nickel layer, the intermediate layer is also peeled off at the time of peeling of the ultrathin copper layer, that is, peeling is performed between the carrier and the intermediate layer. Since it will occur, it is not preferable. Such a situation is not only when a molybdenum or cobalt or molybdenum-cobalt alloy layer is provided at the interface with the carrier, but also when a molybdenum or cobalt or molybdenum-cobalt alloy layer is provided at the interface with the ultrathin copper layer. This can occur if the amount of molybdenum or cobalt is too high. This is thought to be because molybdenum or cobalt and copper are difficult to dissolve and interdiffusion hardly occurs, and the adhesive force is weak at the interface between the molybdenum or cobalt or molybdenum-cobalt alloy layer and copper, and is easily peeled off. It is done. Further, when the amount of nickel in the intermediate layer is insufficient, there is only a small amount of molybdenum or cobalt between the carrier and the ultrathin copper layer, so that they are in close contact and difficult to peel off.

本発明のキャリア付銅箔は、極薄銅層に絶縁基板を大気中、圧力:20kgf/cm2、220℃×2時間の条件下で熱圧着させたときに、銅箔キャリア/中間層/極薄銅層の断面から、この順番でこれらを全て含む範囲で50〜1000nm長STEM線分析を行ったとき、ニッケル濃度の最大値が50〜95質量%であり、且つニッケルより極薄銅側に、モリブデンまたはコバルトが最大値で1〜50質量%存在してもよい。
このように、熱圧着後のキャリア付銅箔においても、銅箔キャリア/中間層/極薄銅層断面を元素分析すると、銅箔キャリア/ニッケル層/モリブデンまたはコバルトまたはモリブデン−コバルト合金層/極薄銅層の構造になっている。このとき、ニッケル層と極薄銅層の界面に、モリブデンまたはコバルトまたはモリブデン−コバルト合金層が存在することで絶縁基板熱圧着時のニッケル層と極薄銅層間の元素拡散を抑制し、絶縁基板圧着による急激な剥離強度の上昇を防止し、安定した剥離強度を保持できる。
The copper foil with a carrier of the present invention has a copper foil carrier / intermediate layer / layer when an insulating substrate is thermocompression bonded to the ultrathin copper layer under the conditions of pressure: 20 kgf / cm 2 and 220 ° C. × 2 hours. From the cross section of the ultrathin copper layer, when a 50 to 1000 nm long STEM line analysis is performed in a range including all of these in this order, the maximum value of the nickel concentration is 50 to 95% by mass, and the ultrathin copper side from nickel In addition, 1 to 50% by mass of molybdenum or cobalt may be present at the maximum value.
Thus, even in the copper foil with a carrier after thermocompression bonding, when elemental analysis is performed on the cross section of the copper foil carrier / intermediate layer / ultra thin copper layer, the copper foil carrier / nickel layer / molybdenum or cobalt or molybdenum-cobalt alloy layer / electrode It has a thin copper layer structure. At this time, the presence of molybdenum or cobalt or a molybdenum-cobalt alloy layer at the interface between the nickel layer and the ultrathin copper layer suppresses element diffusion between the nickel layer and the ultrathin copper layer during thermocompression bonding of the insulated substrate, and A rapid increase in peel strength due to pressure bonding can be prevented, and a stable peel strength can be maintained.

本発明のキャリア付銅箔は、極薄銅層に絶縁基板を大気中、圧力:20kgf/cm2、220℃×2時間の条件下で熱圧着させたときに、銅箔キャリア/中間層/極薄銅層の断面から、これらを全て含む範囲で50〜1000nm長STEM線分析を行ったとき、ニッケルと、モリブデン及び/またはコバルトと、銅とが共存する箇所の銅濃度最小値が10〜65質量%となってもよい。
このような構成によれば、本発明のキャリア付銅箔は、熱圧着後に銅箔キャリア/中間層/極薄銅層の断面を元素分析すると、中間層の内部に銅が一定量以上で存在している。このため、熱圧着後の極端な剥離強度の低下を防止できるという効果がある。
The copper foil with a carrier of the present invention has a copper foil carrier / intermediate layer / layer when an insulating substrate is thermocompression bonded to the ultrathin copper layer under the conditions of pressure: 20 kgf / cm 2 and 220 ° C. × 2 hours. From the cross section of the ultrathin copper layer, when a 50 to 1000 nm long STEM line analysis is performed in a range including all of these, the minimum copper concentration at a location where nickel, molybdenum and / or cobalt and copper coexist is 10 to 10. It may be 65% by mass.
According to such a configuration, when the copper foil with a carrier of the present invention is subjected to elemental analysis of the cross section of the copper foil carrier / intermediate layer / ultra thin copper layer after thermocompression bonding, copper exists in the intermediate layer in a certain amount or more. doing. For this reason, there exists an effect that the fall of the extreme peeling strength after thermocompression-bonding can be prevented.

本発明のキャリア付銅箔は、中間層のモリブデン−コバルト合金のコバルトの濃度が20〜80質量%であってもよい。
このような構成によれば、中間層のコバルが一定量以上で存在していることで、中間層内部への過度の銅の拡散を防止し、剥離強度の極端な上昇を防止できるという効果がある。
In the copper foil with a carrier of the present invention, the concentration of cobalt in the molybdenum-cobalt alloy of the intermediate layer may be 20 to 80% by mass.
According to such a configuration, the presence of the cobalt of the intermediate layer in a certain amount or more has the effect of preventing excessive copper diffusion into the intermediate layer and preventing an extreme increase in peel strength. is there.

以下に、本発明の実施例によって本発明をさらに詳しく説明するが、本発明は、これらの実施例によって何ら限定されるものではない。   EXAMPLES The present invention will be described in more detail below with reference to examples of the present invention, but the present invention is not limited to these examples.

1.キャリア付銅箔の製造
銅箔キャリアとして、厚さ35μmの長尺の電解銅箔(JX日鉱日石金属社製JTC)及び厚さ33μmの圧延銅箔(JX日鉱日石金属社製C1100)を用意した。この銅箔のシャイニー面に対して、以下の条件でロール・トウ・ロール型の連続ラインでキャリア表面及び極薄銅層側について順に以下の条件で表1に記載の中間層形成処理を行った。キャリア表面側と極薄銅層側との処理工程の間には、水洗及び酸洗を行った。
1. Production of Copper Foil with Carrier As a copper foil carrier, a long electrolytic copper foil having a thickness of 35 μm (JTC made by JX Nippon Mining & Metals) and a rolled copper foil having a thickness of 33 μm (C1100 made by JX Nippon Mining & Metals) Prepared. With respect to the shiny surface of this copper foil, the intermediate layer formation treatment described in Table 1 was performed in the following conditions in order on the carrier surface and the ultrathin copper layer side in a roll-to-roll type continuous line under the following conditions. . Washing and pickling were performed between the processing steps on the carrier surface side and the ultrathin copper layer side.

(めっき条件)
・Niめっき
硫酸ニッケル:250〜500g/L
塩化ニッケル:35〜45g/L
酢酸ニッケル:10〜20g/L
クエン酸三ナトリウム:15〜30g/L
光沢剤:サッカリン、ブチンジオール等
ドデシル硫酸ナトリウム:30〜100ppm
pH:4〜6
浴温:50〜70℃
電流密度:3〜15A/dm2
(Plating conditions)
・ Ni plating Nickel sulfate: 250-500 g / L
Nickel chloride: 35 to 45 g / L
Nickel acetate: 10-20g / L
Trisodium citrate: 15-30 g / L
Brightener: Saccharin, butynediol, etc. Sodium dodecyl sulfate: 30-100 ppm
pH: 4-6
Bath temperature: 50-70 ° C
Current density: 3-15 A / dm 2

・コバルトめっき
硫酸コバルト:200〜300g/L
ホウ酸:20〜50g/L
pH:2〜5
液温:10〜70℃
電流密度:0.5〜20A/dm2
・モリブデン−コバルト合金めっき
硫酸コバルト:10〜200g/L
モリブデン酸ナトリウム:5〜200g/L
クエン酸ナトリウム:2〜240g/L
pH:2〜5
液温:10〜70℃
電流密度:0.5〜10A/dm2
・ Cobalt plating Cobalt sulfate: 200-300 g / L
Boric acid: 20-50 g / L
pH: 2-5
Liquid temperature: 10-70 degreeC
Current density: 0.5 to 20 A / dm 2
・ Molybdenum-cobalt alloy plating Cobalt sulfate: 10-200 g / L
Sodium molybdate: 5 to 200 g / L
Sodium citrate: 2-240 g / L
pH: 2-5
Liquid temperature: 10-70 degreeC
Current density: 0.5 to 10 A / dm 2

(スパッタ条件)
モリブデン層は電気めっきでは形成できないため、ロール to ロール式のスパッタリング装置で作製した。その場合、銅箔表面の薄い酸化膜をイオンガン(LIS)により取り除いた後、被覆層を形成してもよい。Ni層とMo層の厚さはスパッタリング電力を調整することにより変化させた。
・装置:ロール to ロール式スパッタリング装置(神港精機社)
・到達真空度:1.0×10-5Pa
・スパッタリング圧:0.25Pa
・搬送速度:15m/min
・イオンガン電力:225W
・スパッタリング電力:200〜3000W
・ターゲット:
Ni層用=Ni(純度3N)
Mo層用=Mo(純度3N)
・成膜速度:各ターゲットについて一定時間約0.2μm成膜し、3次元測定器で厚さを測定し、単位時間当たりのスパッタレートを算出した。
(Sputtering conditions)
Since the molybdenum layer cannot be formed by electroplating, it was produced with a roll-to-roll type sputtering apparatus. In that case, the thin oxide film on the copper foil surface may be removed by an ion gun (LIS), and then the coating layer may be formed. The thicknesses of the Ni layer and the Mo layer were changed by adjusting the sputtering power.
・ Equipment: Roll-to-roll type sputtering equipment (Shinko Seiki Co., Ltd.)
・ Achieving vacuum: 1.0 × 10 −5 Pa
・ Sputtering pressure: 0.25 Pa
・ Conveying speed: 15m / min
・ Ion gun power: 225W
・ Sputtering power: 200 to 3000 W
·target:
For Ni layer = Ni (purity 3N)
For Mo layer = Mo (purity 3N)
Film formation rate: About 0.2 μm of film was formed for each target for a fixed time, the thickness was measured with a three-dimensional measuring device, and the sputtering rate per unit time was calculated.

引き続き、ロール・トウ・ロール型の連続めっきライン上で、中間層の上に厚さ2〜5μmの極薄銅層を以下の条件で電気めっきすることにより形成し、キャリア付銅箔を作製した。
・極薄銅層
銅濃度:30〜120g/L
2SO4濃度:20〜120g/L
電解液温度:20〜80℃
電流密度:10〜100A/dm2
Subsequently, on a continuous roll-to-roll type plating line, an ultrathin copper layer having a thickness of 2 to 5 μm was formed on the intermediate layer by electroplating under the following conditions to produce a copper foil with a carrier. .
-Ultrathin copper layer Copper concentration: 30-120 g / L
H 2 SO 4 concentration: 20 to 120 g / L
Electrolyte temperature: 20-80 ° C
Current density: 10 to 100 A / dm 2

なお、実施例1、5、7については極薄銅層の表面に以下の粗化処理、防錆処理、クロメート処理、及び、シランカップリング処理をこの順に行った。
・粗化処理
Cu:10〜20g/L
Co:1〜10g/L
Ni:1〜10g/L
pH:1〜4
温度:40〜50℃
電流密度Dk:20〜30A/dm2
時間:1〜5秒
Cu付着量:15〜40mg/dm2
Co付着量:100〜3000μg/dm2
Ni付着量:100〜1000μg/dm2
・防錆処理
Zn:0〜20g/L
Ni:0〜5g/L
pH:3.5
温度:40℃
電流密度Dk :0〜1.7A/dm2
時間:1秒
Zn付着量:5〜250μg/dm2
Ni付着量:5〜300μg/dm2
・クロメート処理
2Cr27
(Na2Cr27或いはCrO3):2〜10g/L
NaOH或いはKOH:10〜50g/L
ZnO或いはZnSO47H2O:0.05〜10g/L
pH:7〜13
浴温:20〜80℃
電流密度 0.05〜5A/dm2
時間:5〜30秒
Cr付着量:10〜150μg/dm2
・シランカップリング処理
ビニルトリエトキシシラン水溶液
(ビニルトリエトキシシラン濃度:0.1〜1.4wt%)
pH:4〜5
時間:5〜30秒
In Examples 1, 5, and 7, the surface of the ultrathin copper layer was subjected to the following roughening treatment, rust prevention treatment, chromate treatment, and silane coupling treatment in this order.
・ Roughening treatment Cu: 10 to 20 g / L
Co: 1-10 g / L
Ni: 1-10g / L
pH: 1-4
Temperature: 40-50 ° C
Current density Dk: 20 to 30 A / dm 2
Time: 1 to 5 seconds Cu adhesion amount: 15 to 40 mg / dm 2
Co adhesion amount: 100 to 3000 μg / dm 2
Ni adhesion amount: 100 to 1000 μg / dm 2
・ Rust prevention treatment Zn: 0-20g / L
Ni: 0 to 5 g / L
pH: 3.5
Temperature: 40 ° C
Current density Dk: 0 to 1.7 A / dm 2
Time: 1 second Zn deposition amount: 5-250 μg / dm 2
Ni adhesion amount: 5 to 300 μg / dm 2
・ Chromate treatment K 2 Cr 2 O 7
(Na 2 Cr 2 O 7 or CrO 3 ): 2 to 10 g / L
NaOH or KOH: 10-50 g / L
ZnO or ZnSO 4 7H 2 O: 0.05 to 10 g / L
pH: 7-13
Bath temperature: 20-80 ° C
Current density 0.05-5A / dm 2
Time: 5 to 30 seconds Cr adhesion amount: 10 to 150 μg / dm 2
・ Silane coupling treatment Vinyltriethoxysilane aqueous solution (vinyltriethoxysilane concentration: 0.1 to 1.4 wt%)
pH: 4-5
Time: 5-30 seconds

2.キャリア付銅箔の各種評価
上記のようにして得られたキャリア付銅箔について、以下の方法で各種の評価を実施した。結果を表1に示す。
2. Various evaluations of copper foil with carrier Various evaluations were carried out by the following methods for the copper foil with carrier obtained as described above. The results are shown in Table 1.

<付着量の測定>
ニッケル付着量はサンプルを濃度20質量%の硝酸で溶解してICP発光分析によって測定し、モリブデン及びコバルト付着量はサンプルを濃度7質量%の塩酸にて溶解して、原子吸光法により定量分析を行うことで測定した。
<Measurement of adhesion amount>
The amount of nickel deposited was measured by ICP emission analysis after dissolving the sample in nitric acid with a concentration of 20% by mass. The amount of molybdenum and cobalt deposited was dissolved in hydrochloric acid with a concentration of 7% by mass and quantitative analysis was performed by atomic absorption spectrometry. Measured by doing.

<STEMによる評価>
キャリア付銅箔の断面の元素分布をSTEMによって観察したときの測定条件を以下に示す。
・装置:STEM(日立製作所社、型式HD−2000STEM)
・加速電圧:200kV
・倍率:100000〜1000000倍
・観察視野:1500nm×1500nm〜160nm×160nm
元素濃度の線分析は、キャリア/中間層/極薄銅層を介して50〜1000nm長行った。検出元素からカーボンを除外し、各元素の濃度(質量%)を分析した。
キャリア付銅箔の極薄銅層側を絶縁基板上に貼り合わせて、大気中、20kgf/cm2、220℃×2時間の条件下で圧着を行った後のものについても同様にSTEM評価を行った。
<Evaluation by STEM>
The measurement conditions when the element distribution in the cross section of the copper foil with a carrier is observed by STEM are shown below.
・ Device: STEM (Hitachi, Ltd., model HD-2000 STEM)
・ Acceleration voltage: 200kV
・ Magnification: 100,000 to 1,000,000 times ・ Viewing field: 1500 nm × 1500 nm to 160 nm × 160 nm
Elemental concentration line analysis was performed for 50 to 1000 nm in length through the carrier / intermediate layer / ultra thin copper layer. Carbon was excluded from the detected elements, and the concentration (% by mass) of each element was analyzed.
STEM evaluation is also applied to the case after bonding the ultrathin copper layer side of the copper foil with a carrier on the insulating substrate and performing pressure bonding in the atmosphere at 20 kgf / cm 2 and 220 ° C. × 2 hours. went.

<ピンホール>
民生用の写真用バックライトを光源にして、目視でピンホールの数を測定した。なお、ピンホール個数はキャリア付銅箔の極薄銅層側を絶縁基板上に貼り合わせて、大気中、20kgf/cm2、220℃×2時間の条件下で圧着を行った後、キャリアを剥離し、絶縁基板側からバックライトを透過させて測定した。
<Pinhole>
The number of pinholes was visually measured using a consumer photographic backlight as a light source. The number of pinholes is determined by bonding the ultrathin copper layer side of the copper foil with carrier on the insulating substrate and performing pressure bonding under the conditions of 20 kgf / cm 2 and 220 ° C. × 2 hours in the atmosphere. It peeled and measured by making a backlight permeate | transmit from the insulating substrate side.

<剥離強度>
キャリア付銅箔の極薄銅層側を絶縁基板上に貼り合わせて、大気中、20kgf/cm2、220℃×2時間の条件下で圧着を行った後、剥離強度は、ロードセルにて銅箔キャリア側を引っ張り、90°剥離法(JIS C 6471 8.1)に準拠して測定した。また、絶縁基板上に貼り合わせる前のキャリア付銅箔も同様に剥離強度を測定しておいた。
<Peel strength>
After bonding the ultra-thin copper layer side of the copper foil with carrier on the insulating substrate and performing pressure bonding under the conditions of 20 kgf / cm 2 and 220 ° C. × 2 hours in the atmosphere, the peel strength is measured with a load cell. The foil carrier side was pulled and measured according to the 90 ° peeling method (JIS C 6471 8.1). Further, the peel strength of the carrier-attached copper foil before being bonded onto the insulating substrate was also measured.

Figure 0005247929
Figure 0005247929

(評価結果)
実施例1〜7は、いずれもピンホールが良好に抑制されており、さらに良好な剥離強度を示した。
比較例1及び2は、ニッケル、コバルト、モリブデンが存在しないため、プレス前後で剥離できなかった。
比較例3は、モリブデン、コバルトが存在しないため、プレス後に剥離できなかった。
比較例4は、モリブデン、コバルトが存在せず、ニッケルの付着量が少ないため、プレス前後で剥離できなかった。
比較例5及び7は、コバルトの付着量が多すぎたため、ピンホールが多発し、剥離強度が低くなりすぎた。
比較例6は、モリブデンの付着量が多すぎたため、ピンホールが多発し、剥離強度が低くなりすぎた。
比較例8は、断面のSTEM線分析で測定されたモリブデンとコバルトの濃度が低いため、プレス後に剥離不可になった。
図1に、実施例5に係る基板圧着後の断面の濃度プロファイルを示す。図2に、比較例3に係る基板圧着後の断面の濃度プロファイルを示す。
(Evaluation results)
In each of Examples 1 to 7, pinholes were well suppressed, and even better peel strength was exhibited.
In Comparative Examples 1 and 2, since nickel, cobalt, and molybdenum were not present, peeling was not possible before and after pressing.
In Comparative Example 3, since molybdenum and cobalt were not present, peeling was not possible after pressing.
In Comparative Example 4, molybdenum and cobalt were not present, and the amount of nickel deposited was small, so that peeling was not possible before and after pressing.
In Comparative Examples 5 and 7, since the amount of cobalt deposited was too large, pinholes occurred frequently and the peel strength was too low.
In Comparative Example 6, since the amount of molybdenum deposited was too large, pinholes occurred frequently and the peel strength was too low.
In Comparative Example 8, the concentration of molybdenum and cobalt measured by the STEM line analysis of the cross section was low, so that peeling became impossible after pressing.
In FIG. 1, the density | concentration profile of the cross section after the board | substrate crimping | compression-bonding which concerns on Example 5 is shown. In FIG. 2, the density | concentration profile of the cross section after the board | substrate crimping | compression-bonding which concerns on the comparative example 3 is shown.

Claims (13)

銅箔キャリアと、銅箔キャリア上に積層された中間層と、中間層上に積層された極薄銅層とを備えたキャリア付銅箔であって、
前記中間層は、前記銅箔キャリア上に、ニッケルと、モリブデンまたはコバルトまたはモリブデン−コバルト合金とがこの順で積層されて構成されており、
前記中間層において、ニッケルの付着量が1000〜40000μg/dm2、モリブデンを含む場合はモリブデンの付着量が50〜1000μg/dm2、コバルトを含む場合はコバルトの付着量が50〜1000μg/dm2であり、
前記銅箔キャリア/中間層/極薄銅層の断面から、この順番でこれらを全て含む範囲で50〜1000nm長STEM線分析を行ったとき、ニッケル濃度の最大値が50〜95質量%であり、且つニッケルより極薄銅側に、モリブデンまたはコバルトが最大値で1〜50質量%存在するキャリア付銅箔。
A copper foil with a carrier comprising a copper foil carrier, an intermediate layer laminated on the copper foil carrier, and an ultrathin copper layer laminated on the intermediate layer,
The intermediate layer is configured by laminating nickel and molybdenum or cobalt or a molybdenum-cobalt alloy in this order on the copper foil carrier.
Wherein in the intermediate layer, 1000~40000μg / dm 2 adhesion amount of nickel, 50~1000μg / dm 2 adhesion amount of molybdenum case containing molybdenum, 50~1000μg / dm 2 adhesion amount of cobalt may include cobalt And
From the cross section of the copper foil carrier / intermediate layer / ultra-thin copper layer, when a 50 to 1000 nm long STEM line analysis is performed in a range including all of them in this order, the maximum value of the nickel concentration is 50 to 95% by mass. And the copper foil with a carrier in which 1-50 mass% of molybdenum or cobalt exists in the ultrathin copper side from nickel by the maximum value.
前記極薄銅層に絶縁基板を大気中、圧力:20kgf/cm2、220℃×2時間の条件下で熱圧着させたときに、
前記銅箔キャリア/中間層/極薄銅層の断面から、この順番でこれらを全て含む範囲で50〜1000nm長STEM線分析を行ったとき、ニッケル濃度の最大値が50〜95質量%であり、且つニッケルより極薄銅側に、モリブデンまたはコバルトが最大値で1〜50質量%存在する請求項1に記載のキャリア付銅箔。
When the insulating substrate is thermocompression bonded to the ultrathin copper layer in the atmosphere under the conditions of pressure: 20 kgf / cm 2 and 220 ° C. × 2 hours,
From the cross section of the copper foil carrier / intermediate layer / ultra-thin copper layer, when a 50 to 1000 nm long STEM line analysis is performed in a range including all of them in this order, the maximum value of the nickel concentration is 50 to 95% by mass. The copper foil with a carrier according to claim 1, wherein molybdenum or cobalt is present at a maximum value of 1 to 50% by mass on the ultrathin copper side from nickel.
前記極薄銅層に絶縁基板を大気中、圧力:20kgf/cm2、220℃×2時間の条件下で熱圧着させたときに、
前記銅箔キャリア/中間層/極薄銅層の断面から、これらを全て含む範囲で50〜1000nm長STEM線分析を行ったとき、ニッケルと、モリブデン及び/またはコバルトと、銅とが共存する箇所の銅濃度最小値が10〜65質量%となる請求項1又は2に記載のキャリア付銅箔。
When the insulating substrate is thermocompression bonded to the ultrathin copper layer in the atmosphere under the conditions of pressure: 20 kgf / cm 2 and 220 ° C. × 2 hours,
Locations where nickel, molybdenum and / or cobalt, and copper coexist when a 50 to 1000 nm long STEM line analysis is performed in a range including all of these from the cross section of the copper foil carrier / intermediate layer / ultra thin copper layer The copper foil with a carrier according to claim 1 or 2, wherein the minimum copper concentration is 10 to 65 mass%.
前記中間層のモリブデン−コバルト合金のコバルトの濃度が20〜80質量%である請求項1〜3のいずれかに記載のキャリア付銅箔。   The copper foil with a carrier according to claim 1, wherein a concentration of cobalt in the molybdenum-cobalt alloy in the intermediate layer is 20 to 80% by mass. 前記銅箔キャリアが電解銅箔又は圧延銅箔で形成されている請求項1〜4のいずれかに記載のキャリア付銅箔。   The copper foil with a carrier according to any one of claims 1 to 4, wherein the copper foil carrier is formed of an electrolytic copper foil or a rolled copper foil. 前記極薄銅層表面に粗化処理層を有する請求項1〜5のいずれかに記載のキャリア付銅箔。   The copper foil with a carrier in any one of Claims 1-5 which have a roughening process layer on the said ultra-thin copper layer surface. 前記粗化処理層が、銅、ニッケル、コバルト及び亜鉛からなる群から選択されたいずれかの単体又はいずれか1種以上を含む合金からなる層である請求項6に記載のキャリア付銅箔。   The copper foil with a carrier according to claim 6, wherein the roughening layer is a layer made of any single substance selected from the group consisting of copper, nickel, cobalt, and zinc, or an alloy containing at least one of them. 前記粗化処理層の表面に、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層を有する請求項6又は7に記載のキャリア付銅箔。   The copper foil with a carrier of Claim 6 or 7 which has 1 or more types of layers selected from the group which consists of a rust prevention layer, a chromate processing layer, and a silane coupling processing layer on the surface of the said roughening process layer. 前記極薄銅層の表面に、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層を有する請求項1〜8のいずれかに記載のキャリア付銅箔。   The copper with a carrier according to any one of claims 1 to 8, which has one or more layers selected from the group consisting of a rust preventive layer, a chromate treatment layer and a silane coupling treatment layer on the surface of the ultrathin copper layer. Foil. 銅箔キャリア上に、乾式めっき又は湿式めっきにより、ニッケル層を形成し、前記ニッケル層の上にモリブデン層又はコバルト層又はモリブデン−コバルト合金層を形成することで中間層を形成する工程と、前記中間層上に電気めっきにより極薄銅層を形成する工程とを含む請求項1〜9のいずれかに記載のキャリア付銅箔の製造方法。
Forming a nickel layer on the copper foil carrier by dry plating or wet plating, and forming an intermediate layer by forming a molybdenum layer, a cobalt layer, or a molybdenum-cobalt alloy layer on the nickel layer; and The manufacturing method of copper foil with a carrier in any one of Claims 1-9 including the process of forming an ultra-thin copper layer by electroplating on an intermediate | middle layer.
前記極薄銅層上に粗化処理層を形成する工程を含む請求項10に記載のキャリア付銅箔の製造方法。   The manufacturing method of the copper foil with a carrier of Claim 10 including the process of forming a roughening process layer on the said ultra-thin copper layer. 請求項1〜9のいずれかに記載のキャリア付銅箔を用いて製造したプリント配線板。   The printed wiring board manufactured using the copper foil with a carrier in any one of Claims 1-9. 請求項1〜9のいずれかに記載のキャリア付銅箔を用いて製造したプリント回路板。   The printed circuit board manufactured using the copper foil with a carrier in any one of Claims 1-9.
JP2012270749A 2012-11-28 2012-12-11 Copper foil with carrier, method for producing copper foil with carrier, printed wiring board and printed circuit board Active JP5247929B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012270749A JP5247929B1 (en) 2012-11-28 2012-12-11 Copper foil with carrier, method for producing copper foil with carrier, printed wiring board and printed circuit board
PCT/JP2013/082081 WO2014084321A1 (en) 2012-11-28 2013-11-28 Copper foil with carrier, process for producing copper foil with carrier, printed wiring board, and printed circuit board
TW102143428A TWI512151B (en) 2012-11-28 2013-11-28 A carrier copper foil, a method of manufacturing a carrier copper foil, a printed wiring board, and a printed circuit board

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012260171 2012-11-28
JP2012260171 2012-11-28
JP2012270749A JP5247929B1 (en) 2012-11-28 2012-12-11 Copper foil with carrier, method for producing copper foil with carrier, printed wiring board and printed circuit board

Publications (2)

Publication Number Publication Date
JP5247929B1 true JP5247929B1 (en) 2013-07-24
JP2014129554A JP2014129554A (en) 2014-07-10

Family

ID=49041866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012270749A Active JP5247929B1 (en) 2012-11-28 2012-12-11 Copper foil with carrier, method for producing copper foil with carrier, printed wiring board and printed circuit board

Country Status (3)

Country Link
JP (1) JP5247929B1 (en)
TW (1) TWI512151B (en)
WO (1) WO2014084321A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5521099B1 (en) * 2013-09-02 2014-06-11 Jx日鉱日石金属株式会社 Copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and printed wiring board manufacturing method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI593548B (en) * 2015-01-09 2017-08-01 Jx Nippon Mining & Metals Corp Attached to the metal substrate
JP7139594B2 (en) * 2017-11-30 2022-09-21 凸版印刷株式会社 Glass core, multilayer wiring board, and method for manufacturing glass core

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006022406A (en) * 2000-09-22 2006-01-26 Furukawa Circuit Foil Kk Ultrathin copper foil with carrier
JP2007007937A (en) * 2005-06-29 2007-01-18 Furukawa Circuit Foil Kk Very thin copper foil with carrier, flexible copper-clad polyimide laminate, and flexible printed wiring polyimide board
JP2007186782A (en) * 2005-12-15 2007-07-26 Furukawa Circuit Foil Kk Ultrathin copper foil with carrier and printed circuit board using the same
JP2010006071A (en) * 2009-08-21 2010-01-14 Furukawa Electric Co Ltd:The Surface treatment copper foil, extremely thin copper foil with carrier, flexible copper clad laminate, and polyimide based flexible printed wiring board
JP2010258398A (en) * 2009-03-31 2010-11-11 Jx Nippon Mining & Metals Corp Copper foil for printed circuit board
JP4659140B2 (en) * 2009-06-30 2011-03-30 Jx日鉱日石金属株式会社 Copper foil for printed wiring boards
JP2011129685A (en) * 2009-12-17 2011-06-30 Jx Nippon Mining & Metals Corp Environmentally friendly copper foil for printed wiring board
WO2012046804A1 (en) * 2010-10-06 2012-04-12 古河電気工業株式会社 Copper foil and manufacturing method therefor, copper foil with carrier and manufacturing method therefor, printed circuit board, and multilayer printed circuit board
JP2012102407A (en) * 2005-12-15 2012-05-31 Furukawa Electric Co Ltd:The Ultra-thin copper foil with carrier and printed circuit board

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4934409B2 (en) * 2005-12-15 2012-05-16 古河電気工業株式会社 Ultra-thin copper foil with carrier and printed wiring board
CN102643543B (en) * 2011-02-18 2014-09-17 中国科学院深圳先进技术研究院 Composite dielectric material, copper-clad foil prepreg manufactured and copper-clad foil laminated board by using composite dielectric material

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006022406A (en) * 2000-09-22 2006-01-26 Furukawa Circuit Foil Kk Ultrathin copper foil with carrier
JP2007007937A (en) * 2005-06-29 2007-01-18 Furukawa Circuit Foil Kk Very thin copper foil with carrier, flexible copper-clad polyimide laminate, and flexible printed wiring polyimide board
JP2007186782A (en) * 2005-12-15 2007-07-26 Furukawa Circuit Foil Kk Ultrathin copper foil with carrier and printed circuit board using the same
JP2012102407A (en) * 2005-12-15 2012-05-31 Furukawa Electric Co Ltd:The Ultra-thin copper foil with carrier and printed circuit board
JP2010258398A (en) * 2009-03-31 2010-11-11 Jx Nippon Mining & Metals Corp Copper foil for printed circuit board
JP4659140B2 (en) * 2009-06-30 2011-03-30 Jx日鉱日石金属株式会社 Copper foil for printed wiring boards
JP2010006071A (en) * 2009-08-21 2010-01-14 Furukawa Electric Co Ltd:The Surface treatment copper foil, extremely thin copper foil with carrier, flexible copper clad laminate, and polyimide based flexible printed wiring board
JP2011129685A (en) * 2009-12-17 2011-06-30 Jx Nippon Mining & Metals Corp Environmentally friendly copper foil for printed wiring board
WO2012046804A1 (en) * 2010-10-06 2012-04-12 古河電気工業株式会社 Copper foil and manufacturing method therefor, copper foil with carrier and manufacturing method therefor, printed circuit board, and multilayer printed circuit board

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5521099B1 (en) * 2013-09-02 2014-06-11 Jx日鉱日石金属株式会社 Copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and printed wiring board manufacturing method
JP2015047795A (en) * 2013-09-02 2015-03-16 Jx日鉱日石金属株式会社 Copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method of manufacturing printed wiring board

Also Published As

Publication number Publication date
TW201435154A (en) 2014-09-16
WO2014084321A1 (en) 2014-06-05
JP2014129554A (en) 2014-07-10
TWI512151B (en) 2015-12-11

Similar Documents

Publication Publication Date Title
JP5228130B1 (en) Copper foil with carrier
JP5373995B2 (en) Copper foil with carrier
JP5922227B2 (en) Copper foil with carrier, method for producing copper foil with carrier, and method for producing printed wiring board
JP5358740B1 (en) Copper foil with carrier, copper-clad laminate using the same, printed wiring board, printed circuit board, and printed wiring board manufacturing method
JP5352748B1 (en) Copper foil with carrier, copper-clad laminate using the same, printed wiring board, printed circuit board, and printed wiring board manufacturing method
JP5156873B1 (en) Copper foil with carrier
JP5364838B1 (en) Copper foil with carrier
JP5997080B2 (en) Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board
JP5358739B1 (en) Copper foil with carrier, copper-clad laminate using the same, printed wiring board, printed circuit board, and printed wiring board manufacturing method
JP5247929B1 (en) Copper foil with carrier, method for producing copper foil with carrier, printed wiring board and printed circuit board
JP5903446B2 (en) Copper foil with carrier, method for producing copper foil with carrier, method for producing printed wiring board, method for producing printed circuit board, method for producing copper-clad laminate, and method for producing electronic device
JP5298252B1 (en) Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board
JP2011210994A (en) Copper foil for printed wiring board, and laminate using the same
JP6140480B2 (en) Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board
JP5854872B2 (en) Copper foil with carrier, method for producing copper foil with carrier, laminate and method for producing printed wiring board
JP5814168B2 (en) Copper foil with carrier
JP2011014651A (en) Copper foil for printed wiring board
JP6329727B2 (en) Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board
JP6176948B2 (en) Copper foil with carrier, method for producing copper foil with carrier, method for producing printed circuit board, method for producing copper-clad laminate, and method for producing printed wiring board
JP2014172183A (en) Carrier-provided copper foil, printed wiring board, printed circuit board, copper-clad laminate and method of producing printed wiring board
JP6336142B2 (en) Copper foil with carrier, method for producing copper foil with carrier, method for producing printed circuit board, method for producing copper-clad laminate, and method for producing printed wiring board
JP5380615B1 (en) Copper foil with carrier, copper-clad laminate using the same, printed wiring board, printed circuit board, and printed wiring board manufacturing method
JP2014172180A (en) Carrier-provided copper foil, method of producing carrier-provided copper foil, printed wiring board, printed circuit board, copper-clad laminate and method of producing printed wiring board
JP2014172184A (en) Carrier-fitted copper foil, printed wiring board, printed circuit board, copper-clad laminate sheet, and method for manufacturing printed wiring board
JP2014024315A (en) Copper foil with carrier

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130409

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5247929

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250