JP2012102407A - Ultra-thin copper foil with carrier and printed circuit board - Google Patents

Ultra-thin copper foil with carrier and printed circuit board Download PDF

Info

Publication number
JP2012102407A
JP2012102407A JP2011288400A JP2011288400A JP2012102407A JP 2012102407 A JP2012102407 A JP 2012102407A JP 2011288400 A JP2011288400 A JP 2011288400A JP 2011288400 A JP2011288400 A JP 2011288400A JP 2012102407 A JP2012102407 A JP 2012102407A
Authority
JP
Japan
Prior art keywords
carrier
copper foil
metal
foil
ultra
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011288400A
Other languages
Japanese (ja)
Inventor
Yuji Suzuki
裕二 鈴木
Takasane Mogi
貴実 茂木
Kazuhiro Hoshino
和弘 星野
Satoru Fujisawa
哲 藤沢
Akira Kawakami
昭 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2011288400A priority Critical patent/JP2012102407A/en
Publication of JP2012102407A publication Critical patent/JP2012102407A/en
Pending legal-status Critical Current

Links

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Laminated Bodies (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide ultra-thin copper foil with a carrier which suppresses the generation of a blister at an interface of release layers, does not influence carrier peel, has a wide control range in the condition for producing the ultra-thin copper foil with the carrier, achieves stable production quality, is friendly to an environment, and enables the easy peeling of the ultra-thin copper foil from the carrier foil even in a high-temperature environment.SOLUTION: The ultra-thin copper foil with the carrier includes carrier foil, a diffusion prevention layer, a release layer, and ultra-thin copper foil. The release layer includes two layers each having a different composition ratio of metal A to metal B, the metal A selected from the group of Mo, Ta, V, Mn, and W, and the metal B selected from the group of Fe, Co, Ni, and Cr. Here, the following expression for percentage is satisfied: |(c/c+d)-(e/e+f)|*100≥3(%), wherein c and d represent the content of metal A and metal B which constitute the release layer at the side of the carrier foil, respectively, and e and f represent the content of metal A and metal B which constitute the release layer at the side of the ultra-thin copper foil, respectively.

Description

本発明はキャリア付き極薄銅箔並びに該キャリア付き極薄銅箔を用いたプリント配線基板に関するもので、特に高密度極微細配線(ファインパターン)用途のプリント配線板、多層プリント配線板、チップオンフィルム用配線板に適したキャリア付き極薄銅箔に関するものである。 The present invention relates to an ultra-thin copper foil with a carrier and a printed wiring board using the ultra-thin copper foil with a carrier, and more particularly to a printed wiring board, a multilayer printed wiring board, a chip-on for high-density ultra-fine wiring (fine pattern). The present invention relates to an ultrathin copper foil with a carrier suitable for a film wiring board.

通常、プリント配線板、多層プリント配線板、チップオンフィルム用配線板等の基礎となるプリント配線基板に用いる銅箔は、樹脂基板等に熱圧着する側の表面を粗化面とし、この粗化面で該基板に対するアンカー効果を発揮させ、該基板と銅箔との接合強度を高めてプリント配線基板としての信頼性を確保している。
さらに最近では、銅箔の粗化面をあらかじめエポキシ樹脂のような接着用樹脂で被覆し、該接着用樹脂を半硬化状態(Bステージ)の絶縁樹脂層にした樹脂付き銅箔を回路形成用の銅箔として用い、絶縁樹脂層の側を基板に熱圧着してプリント配線基板とし、該プリント配線基板を多層に積層してビルドアップ配線板を製造することが行われている。ビルドアップ配線基板とは、多層プリント配線板の一種で、絶縁基板上に1層ずつ絶縁層、導体パターンの順に形成し、レーザー法やフォト法により開口した穴(ビア)にめっきを施し、層間を導通させながら配線層を積み上げた配線板である。
In general, copper foil used for printed wiring boards that are the basis of printed wiring boards, multilayer printed wiring boards, chip-on-film wiring boards, etc., has a roughened surface on the surface to be thermocompression bonded to a resin board. The anchor effect with respect to the board is exhibited on the surface, and the bonding strength between the board and the copper foil is increased to ensure the reliability as a printed wiring board.
More recently, a copper foil with resin, in which the roughened surface of the copper foil is previously coated with an adhesive resin such as an epoxy resin and the adhesive resin is used as an insulating resin layer in a semi-cured state (B stage), is used for circuit formation. As a copper foil, a printed wiring board is obtained by thermocompression bonding the insulating resin layer side to a substrate, and a build-up wiring board is manufactured by laminating the printed wiring board in multiple layers. A build-up wiring board is a type of multilayer printed wiring board, in which an insulating layer and a conductor pattern are formed in order on an insulating board in that order, and plating is performed on holes (vias) opened by the laser method or photo method. It is a wiring board which piled up wiring layers, making conduct.

この配線板は、各種電子部品の高度集積化に対応してビアが微細化できることから、配線パターンにも微細な線幅や線間ピッチの要求が高まってきており、例えば、半導体パッケージに使用されるプリント配線板の場合は、線幅や線間ピッチがそれぞれ30μm前後という高密度極微細配線を有するプリント配線板の提供が要求されている。
このようなファインパターンプリント配線板用の銅箔として、厚い銅箔を用いると、エッチングによる配線回路形成時のエッチング時間が長くなり、その結果、形成される配線パターンの側壁の垂直性が崩れ、形成する配線パターンの配線線幅が狭い場合には断線に結びつくこともある。従って、ファインパターン用途に使われる銅箔としては、厚さ9μm以下の銅箔が要望され、現在では、厚さが5μm程度の銅箔が最も多く使用され、更に極薄銅箔化が求められている。
In this wiring board, vias can be miniaturized in response to high integration of various electronic components, and therefore, there is an increasing demand for fine line widths and line pitches in wiring patterns. For example, these wiring boards are used in semiconductor packages. In the case of a printed wiring board, it is required to provide a printed wiring board having high-density ultrafine wiring with a line width and a line pitch of around 30 μm.
As a copper foil for such a fine pattern printed wiring board, if a thick copper foil is used, the etching time at the time of wiring circuit formation by etching becomes long, and as a result, the verticality of the side wall of the formed wiring pattern is disrupted, When the wiring line width of the wiring pattern to be formed is narrow, it may lead to disconnection. Therefore, a copper foil having a thickness of 9 μm or less is demanded as a copper foil used for fine pattern applications. At present, a copper foil having a thickness of about 5 μm is most frequently used, and further ultrathin copper foil is required. ing.

しかし、このような薄い銅箔(以下、極薄銅箔と云うことがある)は機械的強度が弱く、プリント配線基板の製造時に皺や折れ目が発生しやすく、銅箔切れを起こすこともあるため、ファインパターン用途に使われる極薄銅箔としては、キャリアとしての金属箔(以下、キャリア箔という)の片面に剥離層を介して極薄銅箔層を直接電着させたキャリア付き極薄銅箔が使用されている。
上述したように、現在多用されている5μm厚さの銅箔はキャリア付き極薄銅箔として提供されている。
キャリア付き極薄銅箔は、キャリア箔の片面に、剥離層と電気銅めっきによる極薄銅箔がこの順序で形成されたものであり、該電気銅めっきからなる極薄銅箔の最外層表面が粗化面に仕上げられている。
キャリア箔の片面に形成する剥離層は、有機被膜、Cr金属、Cr合金、クロメートなどが常用されているが、近年ポリイミドなどの高温プラスチック等を絶縁基板とする配線基板においては、銅箔と基板とのプレス温度または硬化温度等の条件が高温のため、有機系の剥離層では剥がれなくなるため有機皮膜は使用できず、金属系の剥離層が用いられている。
However, such a thin copper foil (hereinafter sometimes referred to as an ultrathin copper foil) has a low mechanical strength, is likely to cause wrinkles and creases during the production of a printed wiring board, and may cause the copper foil to break. Therefore, as an ultra-thin copper foil used for fine pattern applications, an electrode with a carrier in which an ultra-thin copper foil layer is directly electrodeposited via a release layer on one side of a metal foil (hereinafter referred to as carrier foil) as a carrier. Thin copper foil is used.
As described above, the copper foil having a thickness of 5 μm that is widely used at present is provided as an ultrathin copper foil with a carrier.
The ultrathin copper foil with a carrier is formed by forming a peeling layer and an ultrathin copper foil by electrolytic copper plating in this order on one side of the carrier foil, and the outermost surface of the ultrathin copper foil made of the electrolytic copper plating Has a roughened surface.
For the release layer formed on one side of the carrier foil, organic coating, Cr metal, Cr alloy, chromate, etc. are commonly used. However, in recent years, in a wiring board using a high temperature plastic such as polyimide as an insulating substrate, a copper foil and a substrate are used. Since the conditions such as the pressing temperature or the curing temperature are high, the organic release layer cannot be peeled off and the organic coating cannot be used, and a metal release layer is used.

剥離層を形成する金属としては前記したようにCr金属、Cr合金、クロメートが主流である。しかしながらCrを剥離層に用いると高温での配線基板製造工程においてフクレが発生し、剥離性にばらつきが生じ、配線基板の安定製造に少々問題が発生している。
また、これらCrのような金属の一部は人体に悪影響があると言われ、今後これらの金属の使用禁止も予想される。従って、Crなどの金属は極力使用しない方向にしていかなければならないのが現状である。
As described above, Cr metal, Cr alloy, and chromate are the mainstreams for forming the release layer. However, when Cr is used for the release layer, blisters are generated in the wiring board manufacturing process at a high temperature, the peelability varies, and there is a slight problem in stable manufacturing of the wiring board.
In addition, some of these metals such as Cr are said to have an adverse effect on the human body, and the use of these metals is expected to be prohibited in the future. Therefore, the current situation is that the metal such as Cr should be used in the direction where it is not used as much as possible.

前述したように、Crによる剥離層では高温における配線基板の製造安定性に欠け、また、人体に影響を及ぼす恐れのあるCr金属を使用しないかまたは最小限度に抑えた剥離層とし、高温下でも容易に剥離可能としたキャリア付き極薄銅箔の出現が望まれている。 As described above, the release layer made of Cr lacks the manufacturing stability of the wiring board at high temperatures, and does not use or minimizes the use of Cr metal that may affect the human body, even at high temperatures. The appearance of an ultrathin copper foil with a carrier that can be easily peeled is desired.

本発明は、かかる現状に鑑み、フクレの発生を抑え、キャリアピールに影響せず、キャリア付き極薄銅箔の製造条件における管理範囲が広く、製造品質が安定し、環境に優しく、高温下の環境に置かれてもキャリア箔と極薄銅箔とを容易に剥がすことができるキャリア付き極薄銅箔を提供することを目的とする。
また本発明は、前記キャリア付き極薄銅箔を使用したファインパターン用途のプリント配線板、多層プリント配線板、チップオンフィルム用配線板等の基材となるプリント配線基板を提供することを目的とする。
In view of the present situation, the present invention suppresses the occurrence of swelling, does not affect the carrier peel, has a wide management range in the manufacturing conditions of the ultra-thin copper foil with a carrier, has stable manufacturing quality, is environmentally friendly, An object is to provide an ultra-thin copper foil with a carrier that can easily peel off the carrier foil and the ultra-thin copper foil even when placed in an environment.
Another object of the present invention is to provide a printed wiring board that serves as a base material for a fine pattern use printed wiring board, multilayer printed wiring board, chip-on-film wiring board, etc., using the ultrathin copper foil with carrier. To do.

本発明のキャリア付き極薄銅箔は、キャリア箔、拡散防止層、剥離層、極薄銅箔からなるキャリア付き極薄銅箔であって、前記剥離層はMo、Ta、V、Mn、W、の群から選定される金属Aと、Fe、Co、Ni、Crの群から選定される金属Bとの組成比が異なる2層からなり、キャリア箔側の剥離層を構成する金属Aの含有量c、金属Bの含有量d、極薄銅箔側の剥離層を構成する金属Aの含有量e、金属Bの含有量fとしたとき
|(c/c+d)−(e/e+f)|*100≧3(%)
の比率であることを特徴とする。
The ultra-thin copper foil with a carrier of the present invention is an ultra-thin copper foil with a carrier comprising a carrier foil, a diffusion prevention layer, a release layer, and an ultra-thin copper foil, and the release layer includes Mo, Ta, V, Mn, and W. The metal A selected from the group consisting of 2 and the metal B selected from the group consisting of Fe, Co, Ni, and Cr are composed of two layers different from each other, and contains the metal A constituting the release layer on the carrier foil side. When the amount c, the content d of the metal B, the content e of the metal A constituting the peeling layer on the ultrathin copper foil side, and the content f of the metal B | (c / c + d) − (e / e + f) | * 100 ≧ 3 (%)
It is the ratio of these.

本発明のキャリア付き極薄銅箔は、キャリア箔、拡散防止層、剥離層、酸化防止層、極薄銅箔からなるキャリア付き極薄銅箔であって、前記剥離層は剥離性を保持する金属Aと、極薄銅箔のめっきを容易にする金属Bとの組成比が異なるMo、Ta、V、Mn、W、の群から選定される金属Aと、Fe、Co、Ni、Crの群から選定される金属Bとの組成比が異なる2層からなり、キャリア箔側の剥離層を構成する金属Aの含有量c、金属Bの含有量d、極薄銅箔側の剥離層を構成する金属Aの含有量e、金属Bの含有量fとしたとき
|(c/c+d)−(e/e+f)|*100≧3(%)
の比率であり、
前記酸化防止層は単体で融点が450℃以下である金属、または合金である低融点金属の層である、ことを特徴とする。
The ultra-thin copper foil with a carrier of the present invention is an ultra-thin copper foil with a carrier comprising a carrier foil, a diffusion preventing layer, a release layer, an antioxidant layer, and an ultra-thin copper foil, and the release layer retains peelability. A metal A selected from the group of Mo, Ta, V, Mn, and W having different composition ratios between the metal A and the metal B that facilitates plating of an ultrathin copper foil, and Fe, Co, Ni, and Cr. It consists of two layers having a composition ratio different from that of the metal B selected from the group. The content c of the metal A constituting the release layer on the carrier foil side, the content d of the metal B, and the release layer on the ultrathin copper foil side When the content e of the constituent metal A and the content f of the metal B are | (c / c + d) − (e / e + f) | * 100 ≧ 3 (%)
The ratio of
The anti-oxidation layer is a single metal layer having a melting point of 450 ° C. or lower, or a low melting point metal layer that is an alloy.

前記剥離層の付着量は、合計(Total)金属付着量が0.05mg/dm〜50mg/dmであることが好ましい。 Adhesion amount of the release layer is preferably a total (Total) metal deposition amount is 0.05mg / dm 2 ~50mg / dm 2 .

前記酸化防止層を形成する低融点金属は、Zn、Sn、Bi、In、またはZn、Sn、Pb、Bi、Inの内の1種を主成分とする合金であることが好ましい。 The low melting point metal forming the antioxidant layer is preferably Zn, Sn, Bi, In, or an alloy containing as a main component one of Zn, Sn, Pb, Bi, and In.

本発明のプリント配線基板は前記本発明のキャリア付き極薄銅箔の、極薄銅箔を樹脂基板に積層してなる高密度極微細配線用途のプリント配線板である。 The printed wiring board of the present invention is a printed wiring board for use in high-density ultrafine wiring obtained by laminating an ultrathin copper foil with a carrier of the present invention on a resin substrate.

本発明は、剥離層界面におけるフクレの発生を抑え、キャリアピールに影響せず、製造品質が安定し、環境に優しく、高温下の環境に置かれてもキャリア箔と極薄銅箔とを容易に剥がすことができるキャリア付き極薄銅箔を提供することができる。 The present invention suppresses the occurrence of blisters at the peeling layer interface, does not affect the carrier peel, stabilizes the production quality, is environmentally friendly, and makes it easy to make the carrier foil and ultrathin copper foil even when placed in a high temperature environment An ultrathin copper foil with a carrier that can be peeled off is provided.

また本発明は、前記キャリア付き極薄銅箔を使用したファインパターン用途のプリント配線板、多層プリント配線板、チップオンフィルム用配線板等の基材となるプリント配線基板を提供することができる。 Moreover, this invention can provide the printed wiring board used as base materials, such as a printed wiring board for a fine pattern using the said ultra-thin copper foil with a carrier, a multilayer printed wiring board, a wiring board for chip-on-film.

キャリア付き極薄銅箔用の金属キャリア箔としては一般に、アルミニウム箔、アルミニウム合金箔、ステンレス鋼箔、チタン箔、チタン合金箔、銅箔、銅合金箔等が使用可能であるが、極薄銅箔または銅合金箔(以下これらを区別する必要がないときは総称して極薄銅箔という)に使用するキャリア箔としてはその取扱いの簡便さの点から、電解銅箔、電解銅合金箔、圧延銅箔または圧延銅合金箔が好ましい。また、その厚みは7μm〜200μmの厚さの箔を使用することが好ましい。 Generally, aluminum foil, aluminum alloy foil, stainless steel foil, titanium foil, titanium alloy foil, copper foil, copper alloy foil, etc. can be used as the metal carrier foil for ultrathin copper foil with carrier. As a carrier foil used for a foil or a copper alloy foil (hereinafter collectively referred to as an ultrathin copper foil when it is not necessary to distinguish between them), from the viewpoint of easy handling, an electrolytic copper foil, an electrolytic copper alloy foil, Rolled copper foil or rolled copper alloy foil is preferred. Moreover, it is preferable to use the foil whose thickness is 7 micrometers-200 micrometers.

キャリア箔として、厚さが7μm以下の薄い銅箔を採用すると、このキャリア箔の機械的強度が弱いためにプリント配線基板等の製造時に皺や折れ目が発生しやすく、箔切れを起こす危険性がある。またキャリア箔の厚さが200μm以上になると単位コイル当たりの重量(コイル単重)が増すことで生産性に大きく影響するとともに設備上もより大きな張力を要求され、設備が大がかりとなって好ましくない。従って、キャリア箔の厚さとしては7μm〜200μmのものが好適である。 If a thin copper foil with a thickness of 7 μm or less is used as the carrier foil, the mechanical strength of the carrier foil is weak, so that wrinkles and folds are likely to occur during the production of printed circuit boards, etc. There is. Further, when the thickness of the carrier foil is 200 μm or more, the weight per unit coil (coil single weight) increases, which greatly affects the productivity and requires a higher tension on the equipment, which is not preferable because the equipment becomes large. . Therefore, the thickness of the carrier foil is preferably 7 μm to 200 μm.

キャリア箔としては、少なくとも片面の表面粗さがRz:0.01μm〜5.0μmの金属箔を使用することが好ましく、特にチップオンフィルム用配線板における視認性などが要求される場合はRz:0.01μm〜2.0μmであることが好ましい。そのため、チップオンフィルム配線基板用等視認性が要求される場合に表面粗さの範囲がRz:2μm〜5.0μmのキャリア箔を使用するときは、粗い表面に予め機械的研磨または電解研磨を施し、表面粗さをRz:0.01μm〜2μmの範囲に平滑化して使用するとよい。なお、表面粗さRz:5μm以上のキャリア箔についても予め機械的研磨・電気化学的溶解を施し、平滑化して使用することも可能である。 As the carrier foil, it is preferable to use a metal foil having a surface roughness of at least one surface of Rz: 0.01 μm to 5.0 μm, and particularly when visibility in a wiring board for chip-on-film is required. It is preferable that it is 0.01 micrometer-2.0 micrometers. Therefore, when using a carrier foil having a surface roughness range of Rz: 2 μm to 5.0 μm when visibility such as for a chip-on-film wiring board is required, mechanical polishing or electrolytic polishing is performed on the rough surface in advance. And the surface roughness is preferably smoothed to a range of Rz: 0.01 μm to 2 μm. Note that a carrier foil having a surface roughness Rz of 5 μm or more can be preliminarily mechanically polished and electrochemically dissolved and smoothed before use.

本発明においては、後述する剥離層の剥離性に対する耐熱性を安定させるために、剥離層とキャリア箔の間に拡散防止層を設ける。拡散防止層はNiまたはその合金で形成することが好ましい。なお、CrまたはCr合金での形成も効果がある。 In the present invention, a diffusion preventing layer is provided between the release layer and the carrier foil in order to stabilize the heat resistance against the peelability of the release layer described later. The diffusion prevention layer is preferably formed of Ni or an alloy thereof. In addition, formation with Cr or Cr alloy is also effective.

本発明において、拡散防止層上に設ける剥離層は、金属及び、非金属または金属の酸化物又は合金の混合物で構成する。特に本発明の剥離層は、剥離性を保持する金属Aと、極薄銅箔のめっきを容易にする金属Bとで構成する。
前記剥離層を構成する金属AとしてはMo、Ta、V、Mn、Wの群から選定する。
また、金属BはFe,Co,Ni,Crの群から選定する。
なお、Cr金属は環境への問題を含むため、できるだけ使用しないか、使用したとしても必要最小限度の量に抑えることが特に好ましい。
In the present invention, the release layer provided on the diffusion prevention layer is composed of a mixture of a metal and a non-metal or metal oxide or alloy. In particular, the release layer of the present invention is composed of a metal A that maintains releasability and a metal B that facilitates plating of an ultrathin copper foil.
The metal A constituting the release layer is selected from the group of Mo, Ta, V, Mn, and W.
The metal B is selected from the group of Fe, Co, Ni, and Cr.
In addition, since Cr metal contains a problem to the environment, it is particularly preferable that it is not used as much as possible, or even if it is used, it is suppressed to a necessary minimum amount.

前記剥離層は剥離性を保持する金属Aと、極薄銅箔のめっきを容易にする金属Bとの組成比が異なる2層とし、拡散層側の剥離層を構成する前記金属Aの含有量c、前記金属Bの含有量d、極薄銅箔側の剥離層を構成する前記金属Aの含有量e、前記金属Bの含有量fとしたとき
|(c/c+d)−(e/e+f)|*100≧3(%)
の比率とする。
なお、各層が
(a/a+b)*100=10〜70(%)
(c/c+d)*100=10〜70(%)
の比率を満たすことで効果は更に向上する。
The release layer is composed of two layers having different composition ratios of the metal A that keeps peelability and the metal B that facilitates plating of an ultrathin copper foil, and the content of the metal A that constitutes the release layer on the diffusion layer side c, the content B of the metal B, the content e of the metal A constituting the peeling layer on the ultrathin copper foil side, and the content f of the metal B | (c / c + d) − (e / e + f ) | * 100 ≧ 3 (%)
The ratio of
Each layer is (a / a + b) * 100 = 10 to 70 (%)
(C / c + d) * 100 = 10 to 70 (%)
The effect is further improved by satisfying this ratio.

上記2層またはそれ以上の層は、意識的に組成を変えなくともめっき条件によってはキャリア箔表面側と極薄銅箔側で組成比を変るようにしても良い。キャリア箔側と極薄銅箔側から付着量全体の0.1%以上5%以下の厚みにおいてその上下の組成比の差異が3%以上あれば意識的に2層を設けたものと同等の効果を生み出す。
剥離層を2層で構成し、その2層を異種金属にて構成する場合も金属Aに属する金属種と金属Bに属する金属種で上記組成比の範囲であるならば同等の効果を生み出すことができる。
The above two layers or more layers may change the composition ratio on the carrier foil surface side and the ultrathin copper foil side depending on the plating conditions without intentionally changing the composition. If the difference between the upper and lower composition ratios is 3% or more at a thickness of 0.1% or more and 5% or less of the total adhesion amount from the carrier foil side and the ultra-thin copper foil side, it is equivalent to the case where two layers are consciously provided. Create an effect.
Even if the peeling layer is composed of two layers and the two layers are composed of different metals, the same effect can be produced if the metal species belonging to metal A and the metal species belonging to metal B are within the above composition ratio range. Can do.

本発明において、付着させる剥離層の付着量は、
0.05mg/dm〜50mg/dm
であることが好ましい。
付着量が0.05mg/dm以下では、剥離層としての十分な機能を果たさないことから不適であり、また、50mg/dm以上であっても剥がすことは可能であるが、剥離層を形成する金属種は、めっきし難い金属であり厚くすると平滑性が失われ剥離力にバラツキがみられ安定性が無くなり、フクレの原因にもなりかねないため、好ましくは50mg/dm以下であることが好ましい。更に、極薄銅箔の表面の平滑性も考慮すると20mg/dm以下であることが好ましい。また、剥離層表面の粗さはキャリア箔表面の粗さの1.5倍以下であり、また表面積もキャリア箔の表面積の1.5倍以下であることが好ましい。表面粗さ及び表面積が大きくなると全体的にキャリアピールを大きくしバラツキも大きくなるためである。
本発明において、剥離層を2層とした場合の厚みは、2層の合計付着量が上記同様0.05mg/dm〜50m/dmであり、特にキャリア箔側の1層目の付着量より極薄銅箔側の2層目の付着量が小さい方が剥離性が向上する傾向にある。
In the present invention, the adhesion amount of the release layer to be adhered is
0.05 mg / dm 2 to 50 mg / dm 2
It is preferable that
An adhesion amount of 0.05 mg / dm 2 or less is unsuitable because it does not perform a sufficient function as a release layer, and even if it is 50 mg / dm 2 or more, it can be peeled off. The metal species to be formed is a metal that is difficult to plate, and if it is thick, the smoothness is lost, the peel force varies, the stability is lost, and it may cause blistering, so it is preferably 50 mg / dm 2 or less. It is preferable. Furthermore, in consideration of the smoothness of the surface of the ultrathin copper foil, it is preferably 20 mg / dm 2 or less. The roughness of the release layer surface is preferably 1.5 times or less of the surface roughness of the carrier foil, and the surface area is preferably 1.5 times or less of the surface area of the carrier foil. This is because when the surface roughness and the surface area are increased, the carrier peel is increased as a whole and the variation is also increased.
In the present invention, when the release layer has two layers, the total adhesion amount of the two layers is 0.05 mg / dm 2 to 50 m / dm 2 as described above, and in particular, the adhesion amount of the first layer on the carrier foil side The smaller the amount of adhesion of the second layer on the ultrathin copper foil side, the better the peelability.

また剥離層上に極薄銅箔表面の酸化を防止させる理由から低融点金属からなる酸化防止層を設けると良い。低融点金属としては単体で融点が450℃以下である金属かまたはその合金である。具体的には、Zn、Sn、Bi、In、またはZn、Sn、Pb、Bi、Inの内の1種を主成分とする合金を付着させることで極薄銅箔表面の酸化変色を抑える効果があり、好ましい。
また、この低融点金属の効果としては、常態では剥離層と薄銅箔を密着させ易くするため、薄銅箔のめっき欠陥(ピンホール)及び熱処理を行なったときのフクレ発生をし難くさせる。また、ポリイミドに貼り付けるときには、熱がかかり低融点金属が薄銅箔表面に拡散するため剥離層と薄銅箔との間に空間が生じキャリアピールも低くするということが上げられる。金属種によって異なるが、剥離層上の低融点金属の付着量は0.01mg/dm以上が好ましく。特に0.05mg/dm〜10mg/dmが最適である。各低融点金属を付着するめっき浴については特に指定することなく、市販のめっき液を使用することができる。
Moreover, it is good to provide the antioxidant layer which consists of a low melting metal from the reason for preventing the oxidation of the ultra-thin copper foil surface on a peeling layer. The low melting point metal is a single metal having a melting point of 450 ° C. or lower or an alloy thereof. Specifically, the effect of suppressing oxidation discoloration on the surface of an ultrathin copper foil by adhering an alloy mainly composed of one of Zn, Sn, Bi, In or Zn, Sn, Pb, Bi, In. Is preferable.
Further, as an effect of this low melting point metal, in order to make the release layer and the thin copper foil easily adhere to each other in a normal state, plating defects (pin holes) of the thin copper foil and blistering when heat treatment is performed are made difficult. Further, when pasted on polyimide, heat is applied and the low melting point metal diffuses on the surface of the thin copper foil, so that a space is formed between the release layer and the thin copper foil, and the carrier peel is also lowered. The amount of low melting point metal on the release layer is preferably 0.01 mg / dm 2 or more, depending on the metal species. In particular, 0.05mg / dm 2 ~10mg / dm 2 is optimal. A commercially available plating solution can be used without particularly specifying the plating bath to which each low melting point metal adheres.

極薄銅箔の形成は、硫酸銅浴、ピロリン酸銅浴、スルファミン酸銅浴、シアン化銅浴などを使用し、剥離層上に電解めっきで形成する。なお、めっき浴は、pH1〜12の間にある銅めっき浴を使用することが好ましい。
極薄銅箔の形成は、剥離層がZn等のめっき液に溶解し易い金属で形成されている場合には、めっき液中のディップ時間・電流値、めっき仕上げのめっき液切り・水洗、金属めっき直後のめっき液pHなどが剥離層の残存状態を決定するため、浴種は剥離層表面及びその上に形成する金属との関係で選択する必要がある。
The ultrathin copper foil is formed by electrolytic plating on the release layer using a copper sulfate bath, a copper pyrophosphate bath, a copper sulfamate bath, a copper cyanide bath, or the like. The plating bath is preferably a copper plating bath having a pH between 1 and 12.
Ultra-thin copper foil is formed when the release layer is made of a metal that is easily dissolved in a plating solution such as Zn, the dip time / current value in the plating solution, the plating solution draining / washing in the plating finish, metal Since the plating solution pH immediately after plating determines the remaining state of the release layer, the bath type must be selected in relation to the surface of the release layer and the metal formed thereon.

また、剥離層上への極薄銅箔の形成は、その剥離層の剥離性ゆえに、均一なめっきを行うことが非常に難しく、極薄銅箔にピンホールの数が多く存在する結果となることがある。このようなめっき条件の時には、先ずストライク銅めっきを行い、次いで通常の電解めっきを行うことで剥離層上に均一なめっきを施すことができ、極薄銅箔に生じるピンホールの数を激減させることができる。 In addition, the formation of the ultrathin copper foil on the release layer is very difficult to perform uniform plating because of the peelability of the release layer, resulting in a large number of pinholes in the ultrathin copper foil. Sometimes. Under such plating conditions, strike copper plating is performed first, and then normal electrolytic plating is performed, so that uniform plating can be performed on the release layer, and the number of pinholes generated in the ultrathin copper foil is drastically reduced. be able to.

ストライクめっきで付着させる銅めっき厚は0.01μm〜1μmが好ましく浴種によってその条件はいろいろであるが、電流密度としては、0.1A/dm〜20A/dm、めっき時間としては0.1秒以上が好ましい。電流密度が0.1A/dm以下では、剥離層上にめっきを均一にのせることが難しく、また20A/dm以上ではめっき液の金属濃度を薄めているストライクめっきでは、焼けめっきが発生し、均一な銅めっき層が得られず、好ましくない。めっき時間については、0.1秒以下では、十分なめっき層を得るためには短か過ぎて好ましくない。
ストライクめっきにより剥離層上に剥離層の剥離性を損なわない厚さの0.01μm以上の銅めっき層を形成した後、所望の厚さに銅めっきを行い、極薄銅箔とする。
また、極薄銅箔表面にPを含有させると、剥離層との間の密着性が弱まるために剥離強度が小さくなる。したがって、剥離強度を調節するために、極薄銅箔表面にPを含ませることは効果的である。
The thickness of the copper plating deposited by strike plating is preferably 0.01 μm to 1 μm, and the conditions vary depending on the type of bath. The current density is 0.1 A / dm 2 to 20 A / dm 2 , and the plating time is 0. One second or more is preferable. When the current density is 0.1 A / dm 2 or less, it is difficult to uniformly deposit the plating on the release layer, and when the current density is 20 A / dm 2 or more, the burn plating is generated in the strike plating in which the metal concentration of the plating solution is reduced. In addition, a uniform copper plating layer cannot be obtained, which is not preferable. Regarding the plating time, 0.1 seconds or less is not preferable because it is too short to obtain a sufficient plating layer.
After forming a copper plating layer having a thickness of 0.01 μm or more which does not impair the peelability of the release layer on the release layer by strike plating, copper plating is performed to a desired thickness to obtain an ultrathin copper foil.
Further, when P is contained on the surface of the ultrathin copper foil, the adhesive strength with the release layer is weakened, so that the peel strength is reduced. Therefore, in order to adjust the peel strength, it is effective to include P on the surface of the ultrathin copper foil.

なお、極薄銅箔表面における絶縁基板とのより強度の密着性を得るためには極薄銅箔表面に粗化処理を行い、表面の粗度をRz:0.2〜3.0(μm)にするとよい。粗化処理は、粗さが0.2(μm)以下では、密着性にあまり影響を与えないため粗化を行っても意味がなく、粗さが3(μm)あれば、充分な密着性を得られることからそれ以上の粗化は必要としないためである。
最後に、粗化処理した表面上に防錆及び耐熱性に効果があるNi、Zn、或いは場合によりCrを付着させる。またピール強度を向上させるためシランを塗布することも効果的である。
In order to obtain stronger adhesion with the insulating substrate on the surface of the ultrathin copper foil, the surface of the ultrathin copper foil is subjected to a roughening treatment, and the roughness of the surface is Rz: 0.2 to 3.0 (μm ). As for the roughening treatment, if the roughness is 0.2 (μm) or less, there is no effect on the adhesion, so it is meaningless to roughen. If the roughness is 3 (μm), sufficient adhesion is achieved. This is because no further roughening is required.
Finally, Ni, Zn, or, in some cases, Cr, which has an effect on rust prevention and heat resistance, is deposited on the roughened surface. It is also effective to apply silane in order to improve the peel strength.

以下、本発明を実施例により具体的に説明する。
各実施例のめっき条件は次のとおりである。
(1)銅めっき条件
<銅めっき条件1>
Cu 3HO :3〜50g/l
:50〜350g/l
pH :8〜11
電流密度 :0.1〜5A/dm
Hereinafter, the present invention will be specifically described by way of examples.
The plating conditions in each example are as follows.
(1) Copper plating conditions <Copper plating conditions 1>
Cu 2 P 2 O 7 3H 2 O: 3 to 50 g / l
K 4 P 2 O 7: 50~350g / l
pH: 8-11
Current density: 0.1 to 5 A / dm 2

<銅めっき条件2>
Cu・3HO :10〜150g/l
:50〜400g/l
NHOH(28%) :1〜10ml/l
pH :8〜12
浴温 :20〜60℃
<Copper plating condition 2>
Cu 2 P 2 O 7 · 3H 2 O: 10~150g / l
K 4 P 2 O 7: 50~400g / l
NH 3 OH (28%): 1 to 10 ml / l
pH: 8-12
Bath temperature: 20-60 ° C

<銅めっき条件3>
硫酸銅(Cu金属として) :10〜70g/dm
硫酸 :30〜120g/dm
電流密度 :1〜60A/dm
通電時間 :1秒〜2分
浴温 :10〜70℃
<Copper plating condition 3>
Copper sulfate (as Cu metal): 10-70 g / dm 3
Sulfuric acid: 30-120 g / dm 3
Current density: 1 to 60 A / dm 2
Energizing time: 1 second-2 minutes Bath temperature: 10-70 ° C

(2)ニッケルめっき条件
硫酸ニッケル(Niとして) :1〜120g/dm
ホウ酸 :10〜50g/dm
電流密度 :1〜60A/dm
通電時間 :1秒〜2分
浴温 :10〜70℃
(2) Nickel plating conditions Nickel sulfate (as Ni): 1-120 g / dm 3
Boric acid: 10-50 g / dm 3
Current density: 1 to 60 A / dm 2
Energizing time: 1 second-2 minutes Bath temperature: 10-70 ° C

(3)Ni−Coめっき条件
硫酸ニッケル(Niとして) :5〜120g/dm3
硫酸コバルト(Co金属として) :0.5〜40g/dm3
pH :2〜4
電流密度 :0.5〜10A/dm
時間 :1秒〜2分
(3) Ni-Co plating conditions Nickel sulfate (as Ni): 5 to 120 g / dm 3
Cobalt sulfate (as Co metal): 0.5 to 40 g / dm 3
pH: 2-4
Current density: 0.5 to 10 A / dm 2
Time: 1 second to 2 minutes

(4)Mo−Coめっき条件
Co量 :0.1〜20g/dm
Mo量 :0.05〜20g/dm
クエン酸 :5〜240g/dm
電流密度 :0.1〜60A/dm
通電時間 :1秒〜5分
浴温 :10℃〜70℃
(4) Mo—Co plating condition Co amount: 0.1 to 20 g / dm 3
Mo amount: 0.05 to 20 g / dm 3
Citric acid: 5-240 g / dm 3
Current density: 0.1 to 60 A / dm 2
Energizing time: 1 second to 5 minutes Bath temperature: 10 ° C to 70 ° C

(5)Mo−Niめっき条件
硫酸Ni6水和物 :10〜100g/dm
モリブデン酸ナトリウム2水和物 :10〜100g/dm
クエン酸ナトリウム :30〜200g/dm
浴温 :10〜50℃
電流密度 :0.5〜15A/dm
(5) Mo—Ni plating condition Ni sulfate sulfate: 10 to 100 g / dm 3
Sodium molybdate dihydrate: 10 to 100 g / dm 3
Sodium citrate: 30 to 200 g / dm 3
Bath temperature: 10-50 ° C
Current density: 0.5 to 15 A / dm 2

(6)W−Niめっき条件
硫酸Ni6水和物 :10〜100g/dm
タングステン酸ナトリウム2水和物 :10〜100g/dm
クエン酸ナトリウム :30〜200g/dm
浴温 :30〜90℃
電流密度 :0.5〜15A/dm
(6) W-Ni plating conditions Ni sulfate sulfate: 10 to 100 g / dm 3
Sodium tungstate dihydrate: 10 to 100 g / dm 3
Sodium citrate: 30 to 200 g / dm 3
Bath temperature: 30-90 ° C
Current density: 0.5 to 15 A / dm 2

<実施例1>
キャリア箔→Ni(拡散防止層)→Mo−Co(剥離層)→銅めっき(極薄銅箔)によるキャリア付き極薄銅箔の製造
片面がRz:0.8μmの銅箔(厚さ:31μm)をキャリア箔とし、該キャリア箔上に前記Niめっき条件下において拡散防止層を施した後、下記条件にてMo−Coめっきにより剥離層を形成した。
Co量 :4.0g/dm
Mo量 :2.0g/dm
クエン酸 :80g/dm
電流密度 :2A/dm
通電時間 :15秒
浴温 :50℃
形成した剥離層の付着量は1.5mg/dm 、Mo/(Mo+Co)*100=31(%)であった。
形成した剥離層上に前記<銅めっき条件1>で0.2μm厚さに銅めっきを施し、その上に前記<銅めっき条件3>により銅めっきを、電流密度4.5A/dmで行い3μm厚さの極薄銅箔を形成し、キャリア付き極薄銅箔とした。
次いで、Ni:0.5mg/dm、Zn:0.05mg/dm、Cr:0.3mg/dmの表面処理後、シランカップリング剤処理(後処理)を行い、キャリア付き極薄銅箔を得た。
<Example 1>
Carrier foil-> Ni (diffusion prevention layer)-> Mo-Co (peeling layer)-> copper plating (ultra-thin copper foil) with a carrier made of ultra-thin copper foil with a Rz: 0.8 μm copper foil (thickness: 31 μm) ) Was used as a carrier foil, a diffusion prevention layer was applied on the carrier foil under the Ni plating conditions, and then a release layer was formed by Mo-Co plating under the following conditions.
Co amount: 4.0 g / dm 3
Mo amount: 2.0 g / dm 3
Citric acid: 80 g / dm 3
Current density: 2 A / dm 2
Energizing time: 15 seconds Bath temperature: 50 ° C
The adhesion amount of the formed release layer was 1.5 mg / dm 2 and Mo / (Mo + Co) * 100 = 31 (%).
On the formed release layer, copper plating is performed to a thickness of 0.2 μm under the above <copper plating condition 1>, and then copper plating is performed according to the above <copper plating condition 3> at a current density of 4.5 A / dm 2 . An ultrathin copper foil having a thickness of 3 μm was formed to obtain an ultrathin copper foil with a carrier.
Next, after surface treatment of Ni: 0.5 mg / dm 2 , Zn: 0.05 mg / dm 2 , Cr: 0.3 mg / dm 2 , silane coupling agent treatment (post treatment) is performed, and ultrathin copper with a carrier A foil was obtained.

<実施例2>
キャリア箔→Ni(拡散防止層)→Mo−Ni(剥離層)→銅めっき(薄銅箔)によるキャリア付き極薄銅箔の製造
片面がRz:0.85μmの銅箔(厚さ:31μm)をキャリア銅箔とし、前記Niめっき条件下においてめっきを施した後、その上に下記条件にてMo−Niめっき層を作成した。
硫酸Ni6水和物 :50g/dm
モリブデン酸ナトリウム2水和物 : 60g/dm
クエン酸ナトリウム :90g/dm
浴温 :30℃
電流密度 :3A/dm
通電時間 :20秒
作製した剥離層の付着量は:2.4mg/dm
Mo/(Mo+Ni)*100=29(%)であった。
<銅めっき条件1>で剥離層上に厚さ0.2μmの銅めっき層を形成した後、更に<銅めっき条件3>を使用し銅めっき層を、電流密度4.5A/dmのめっきで形成し、3μm厚さの極薄銅箔を形成させ、キャリア付き極薄銅箔とした。
次いで、Ni:0.5mg/dm、Zn:0.05mg/dm、Cr:0.3mg/dmの表面処理後、シランカップリング剤処理(後処理)を行い、キャリア付き極薄銅箔を得た。
<Example 2>
Carrier foil → Ni (diffusion prevention layer) → Mo—Ni (peeling layer) → Manufacture of ultra-thin copper foil with carrier by copper plating (thin copper foil) Copper foil (thickness: 31 μm) on one side Rz: 0.85 μm Was used as a carrier copper foil and plated under the Ni plating conditions, and then a Mo-Ni plating layer was formed thereon under the following conditions.
Sulfuric acid Ni hexahydrate: 50 g / dm 3
Sodium molybdate dihydrate: 60 g / dm 3
Sodium citrate: 90 g / dm 3
Bath temperature: 30 ° C
Current density: 3 A / dm 2
Energizing time: adhesion amount of 20 seconds fabricated release layer: 2.4 mg / dm 2,
Mo / (Mo + Ni) * 100 = 29 (%).
After forming a copper plating layer having a thickness of 0.2 μm on the release layer under <copper plating condition 1>, further using <copper plating condition 3>, the copper plating layer is plated with a current density of 4.5 A / dm 2 Then, an ultrathin copper foil having a thickness of 3 μm was formed to obtain an ultrathin copper foil with a carrier.
Next, after surface treatment of Ni: 0.5 mg / dm 2 , Zn: 0.05 mg / dm 2 , Cr: 0.3 mg / dm 2 , silane coupling agent treatment (post treatment) is performed, and ultrathin copper with a carrier A foil was obtained.

<実施例3>キャリア箔→Ni(拡散防止層)→W−Ni(剥離層)→銅めっき(極薄銅箔)によるキャリア付き極薄銅箔の製造
片面がRz:0.82μmの銅箔(厚さ:31μm)をキャリア銅箔とし、Niめっき
条件においてめっきを施した後、W−Ni層を下記めっき条件にて作成した。
硫酸Ni6水和物 :50g/dm
タングステン酸ナトリウム2水和物 :60g/dm
クエン酸ナトリウム :90g/dm
浴温 :70℃
電流密度 :2.5A/dm
通電時間 :18秒
剥離層の付着量 :2に.1mg/dm
W*100/W+Ni=20%
を形成した。
銅めっきを前記<銅めっき条件1>により0.2μm厚さに形成した後、更に銅めっき条件<銅めっき条件3>により、電流密度3.5A/dmでめっきを行い3μm厚さの極極薄銅箔を形成させ、キャリア付き極薄銅箔とした。
次いで、Ni0.5mg/dm、Zn:0.05mg/dm、Cr:0.3mg/dmの表面処理後、シランカップリング剤処理(後処理)を行い、キャリア付き極薄銅箔を得た。
<Example 3> Carrier foil-> Ni (diffusion prevention layer)-> W-Ni (peeling layer)-> copper plating (ultra-thin copper foil) with a carrier made of ultra-thin copper foil with carrier Rz: 0.82 μm copper foil (Thickness: 31 μm) was used as a carrier copper foil, and after plating was performed under Ni plating conditions, a W—Ni layer was formed under the following plating conditions.
Sulfuric acid Ni hexahydrate: 50 g / dm 3
Sodium tungstate dihydrate: 60 g / dm 3
Sodium citrate: 90 g / dm 3
Bath temperature: 70 ° C
Current density: 2.5 A / dm 2
Energizing time: 18 seconds Amount of adhesion of release layer: 2. 1 mg / dm 2 ,
W * 100 / W + Ni = 20%
Formed.
After the copper plating is formed to a thickness of 0.2 μm according to the above <copper plating condition 1>, further plating is performed at a current density of 3.5 A / dm 2 according to the copper plating condition <copper plating condition 3>. A thin copper foil was formed into an ultrathin copper foil with a carrier.
Then, after surface treatment of Ni 0.5 mg / dm 2 , Zn: 0.05 mg / dm 2 , Cr: 0.3 mg / dm 2 , silane coupling agent treatment (post treatment) is performed, and an ultrathin copper foil with a carrier is obtained. Obtained.

<実施例4>キャリア箔→Ni(拡散防止層)→Mo−Co(一層目)→Mo−Co(ニ層目)(剥離層)→銅めっき(極薄銅箔)によるキャリア付き極薄銅箔の製造
片面がRz:0.74μmの銅箔(厚さ:22μm)をキャリア銅箔とし、<Niめっき条件>でめっきを施した後、Mo−Coめっき層を下記条件にて作成した。
<一層目めっき条件>
Co量 :4.0g/dm
Mo量 :3.0g/dm
クエン酸 :80g/dm
電流密度 :2A/dm
通電時間 :10秒
浴温 :50℃
<ニ層目めっき条件>
Co量 :4.0g/dm
Mo量 :1.5g/dm
クエン酸 :80g/dm
電流密度 :2A/dm
通電時間 :5秒
浴温 :50℃
剥離層(1層目+2層目)の付着量 :2.3mg/dm
1層目 Mo*100/Mo+Co=56%
2層目 Mo*100/Mo+Co=23%
を形成した。
銅めっきは<銅めっき条件1>で0.2μm厚さに形成した後、更に<銅めっき条件3>を使用し、電流密度3.5A/dmでめっきを行い3μm厚さの極薄銅箔を形成させ、キャリア付き極薄銅箔とした。
次いで、Ni0.5mg/dm、Zn:0.05mg/dm、Cr:0.3mg/dmに表面処理後、シランカップリング剤処理(後処理)を行い、キャリア付き極薄銅箔を得た。
<Example 4> Carrier foil → Ni (diffusion prevention layer) → Mo—Co (first layer) → Mo—Co (second layer) (peeling layer) → copper plating (ultra thin copper foil) with carrier ultra thin copper One side of the foil was a copper foil (thickness: 22 μm) having a Rz: 0.74 μm carrier copper foil, plated with <Ni plating conditions>, and then a Mo—Co plated layer was prepared under the following conditions.
<First-layer plating conditions>
Co amount: 4.0 g / dm 3
Mo amount: 3.0 g / dm 3
Citric acid: 80 g / dm 3
Current density: 2 A / dm 2
Energizing time: 10 seconds Bath temperature: 50 ° C
<Second layer plating conditions>
Co amount: 4.0 g / dm 3
Mo amount: 1.5 g / dm 3
Citric acid: 80 g / dm 3
Current density: 2 A / dm 2
Energizing time: 5 seconds Bath temperature: 50 ° C
Adhesion amount of release layer (first layer + second layer): 2.3 mg / dm 2
1st layer Mo * 100 / Mo + Co = 56%
Second layer Mo * 100 / Mo + Co = 23%
Formed.
After copper plating is formed to a thickness of 0.2 μm under <Copper Plating Conditions 1>, it is further plated with a current density of 3.5 A / dm 2 using <Copper Plating Conditions 3>, and an ultrathin copper with a thickness of 3 μm. A foil was formed into an ultrathin copper foil with a carrier.
Next, Ni 0.5 mg / dm 2 , Zn: 0.05 mg / dm 2 , Cr: 0.3 mg / dm 2 after surface treatment, silane coupling agent treatment (post treatment) is performed, and an ultrathin copper foil with a carrier is obtained. Obtained.

<実施例5>
拡散防止層をNi−Coとした他は実施例1と同様に処理しキャリア付き極薄銅箔を得た。
<Example 5>
An ultrathin copper foil with a carrier was obtained in the same manner as in Example 1 except that the diffusion preventing layer was Ni-Co.

<実施例6>
拡散防止層をNi−Coとした他は実施例2と同様に処理しキャリア付き極薄銅箔を得た。
<Example 6>
An ultrathin copper foil with a carrier was obtained in the same manner as in Example 2 except that the diffusion prevention layer was Ni-Co.

<実施例7>
拡散防止層をNi−Coとした他は実施例3と同様に処理しキャリア付き極薄銅箔を得た。
<Example 7>
An ultrathin copper foil with a carrier was obtained in the same manner as in Example 3 except that the diffusion preventing layer was Ni-Co.

<実施例8>
拡散防止層をNi−Coとした他は実施例4と同様に処理しキャリア付き極薄銅箔を得た。
<Example 8>
An ultrathin copper foil with a carrier was obtained in the same manner as in Example 4 except that the diffusion prevention layer was Ni-Co.

<実施例9>
実施例1と同様に剥離層(Mo−Co)まで形成後、該剥離層上に低融点金属である亜鉛を下記めっき条件で、0.3mg/dm施しキャリア付き極薄銅箔を得た。
剥離層上の亜鉛めっきは、
Zn金属濃度 :1〜40g/dm
NaOH :3〜100g/dm
温度 10〜60℃
電流密度 :0.1〜10A/dm
<Example 9>
After forming the release layer (Mo—Co) as in Example 1, 0.3 mg / dm 2 of zinc, which is a low melting point metal, was applied on the release layer under the following plating conditions to obtain an ultrathin copper foil with a carrier. .
Zinc plating on the release layer
Zn metal concentration: 1 to 40 g / dm 3
NaOH: 3 to 100 g / dm 3
Temperature 10-60 ° C
Current density: 0.1 to 10 A / dm 2

<比較例1>
1.キャリア箔
キャリア箔の表面粗さRz:1.2μmの銅箔をキャリア箔とした。
2.剥離層の形成
前記キャリア銅箔に、Cr金属を付着させ剥離層を形成した。
3.極薄銅箔の形成
Cu・3HO :30g/l
:300g/l
pH :8
電流密度 :4A/dm
の条件で厚さ1μmめっきした後
Cu濃度 :50g/l
SO :100g/l
電流密度 :20A/dm
の条件で、3μmの厚さの極薄銅箔になるように電気めっきし、更に、公知の方法により、銅の粒子を付着させる粗化処理を施した。
防錆処理および表面処理として、粗化処理を施した極薄銅層上に、公知の方法により、亜鉛めっきおよびクロメート処理を行いキャリア付き極薄銅箔を得た。
<Comparative Example 1>
1. Carrier foil Surface roughness Rz of carrier foil: A copper foil having a thickness of 1.2 μm was used as a carrier foil.
2. Formation of release layer Cr metal was attached to the carrier copper foil to form a release layer.
3. Formation of ultrathin copper foil Cu 2 P 2 O 7 · 3H 2 O: 30 g / l
K 4 P 2 O 7 : 300 g / l
pH: 8
Current density: 4 A / dm 2
After plating with a thickness of 1 μm under the conditions of: Cu concentration: 50 g / l
H 2 SO 4 : 100 g / l
Current density: 20 A / dm 2
Then, electroplating was performed so as to obtain an ultrathin copper foil having a thickness of 3 μm, and further, a roughening treatment for attaching copper particles was performed by a known method.
As a rust prevention treatment and a surface treatment, a galvanizing and chromate treatment was performed on the ultrathin copper layer subjected to the roughening treatment by a known method to obtain an ultrathin copper foil with a carrier.

<比較例2>
1.キャリア箔
キャリア箔の表面粗さRz:1.2μmの銅箔をキャリア箔とした。
2.剥離層の形成
前記キャリア銅箔に、Crの電気めっきを連続的に行い、付着量1.5mg/dmのCrめっき剥離層を形成した。表層には水和酸化物が形成されている。
3.極薄銅箔の形成
このCrめっき剥離層の上に、
Cu・3HO :30g/l
:300g/l
pH :8
電流密度 :1.5A/dm
の条件で60秒間、ストライク銅めっきを施し、更に、
Cu・3HO :30g/l
:300g/l
pH :8
電流密度 :4A/dm
の条件で厚さ1μmめっき後
Cu濃度 :50g/l
SO :100g/l
電流密度 :20A/dm
の条件で、3μmの厚さの極薄銅箔になるように電気めっきを行い、更に、公知の方法により、銅の粒子を付着させる粗化処理を施した。
防錆処理および表面処理として、粗化処理を施した極薄銅層上に、公知の方法により、亜鉛めっきおよびクロメート処理を行いキャリア付き極薄銅箔を得た。
<Comparative example 2>
1. Carrier foil Surface roughness Rz of carrier foil: A copper foil having a thickness of 1.2 μm was used as a carrier foil.
2. To form the carrier copper foil of the release layer continuously performs electroplating Cr, to form a Cr plating peeling layer of the deposited amount 1.5 mg / dm 2. A hydrated oxide is formed on the surface layer.
3. Formation of ultrathin copper foil On this Cr plating release layer,
Cu 2 P 2 O 7 · 3H 2 O: 30g / l
K 4 P 2 O 7 : 300 g / l
pH: 8
Current density: 1.5 A / dm 2
Strike copper plating for 60 seconds under the conditions of
Cu 2 P 2 O 7 · 3H 2 O: 30g / l
K 4 P 2 O 7 : 300 g / l
pH: 8
Current density: 4 A / dm 2
Cu concentration after plating with a thickness of 1 μm under the conditions of: 50 g / l
H 2 SO 4 : 100 g / l
Current density: 20 A / dm 2
Then, electroplating was performed so as to obtain an ultrathin copper foil having a thickness of 3 μm, and further, a roughening treatment for attaching copper particles was performed by a known method.
As a rust prevention treatment and a surface treatment, a galvanizing and chromate treatment was performed on the ultrathin copper layer subjected to the roughening treatment by a known method to obtain an ultrathin copper foil with a carrier.

<評価>
上記実施例及び比較例で作成したキャリア付き極薄銅箔のキャリアピールの評価用サンプルを下記のように作成し評価した。
(1)キャリアピールの測定及びフクレ確認用サンプル
キャリア付き極薄銅箔(実施例1〜4、比較例1、2)を、縦250mm、横250mmに切断したのち、温度350℃、10分間加熱しフクレ確認用のサンプルを作成した。
また、上記熱処理したサンプルの極薄銅箔側に、両面テープで樹脂基板を貼り付け、キャリア箔付きのポリイミドキャリアピール測定用片面銅張積層板とした。
<Evaluation>
Samples for evaluation of carrier peel of the ultrathin copper foil with carrier prepared in the above Examples and Comparative Examples were prepared and evaluated as follows.
(1) Measurement of carrier peel and ultrathin copper foil with sample carrier for swelling check (Examples 1 to 4, Comparative Examples 1 and 2) were cut into 250 mm length and 250 mm width, and then heated at 350 ° C. for 10 minutes. A sample for confirmation of blisters was created.
Moreover, the resin substrate was affixed with the double-sided tape on the ultra-thin copper foil side of the heat-treated sample, and a single-sided copper-clad laminate for measuring a polyimide carrier peel with a carrier foil was obtained.

(2)ピンホール確認サンプル
キャリア付き極薄銅箔(実施例1〜4、比較例1、2)を、縦250mm、横250mmに切断し、透明テープを極薄銅箔側に貼り付け、極薄銅箔をキャリア箔から剥離してピンホール確認用のサンプルとした。
(2) Ultra-thin copper foil with pinhole confirmation sample carrier (Examples 1 to 4, Comparative Examples 1 and 2) was cut into a length of 250 mm and a width of 250 mm, and a transparent tape was attached to the ultra-thin copper foil side. The thin copper foil was peeled from the carrier foil to obtain a sample for pinhole confirmation.

<極薄銅箔の特性評価>
(1)キャリアピールの測定方法とフクレの確認
(a)フクレの確認
キャリア箔上の極薄銅箔が膨れているかどうかを目視で観察し、フクレの数を数えた。その結果を表1に示す。
(b)キャリアピールの測定
上記(1)の方法により作製した試料を、JISC6511に規定する方法に準拠して、測定試料幅10mmでキャリア箔から極薄銅箔を引き剥がし、キャリアピール(ピール強度)をn数3で測定した。評価結果を表1に示す。
<Characteristic evaluation of ultrathin copper foil>
(1) Carrier peel measurement method and check of blisters (a) Check of blisters Whether or not the ultra-thin copper foil on the carrier foil is swollen was visually observed, and the number of blisters was counted. The results are shown in Table 1.
(B) Measurement of carrier peel In accordance with the method specified in JIS C6511, the sample prepared by the method of (1) above is peeled off from the carrier foil with a measurement sample width of 10 mm, and the carrier peel (peel strength) ) Was measured by n number 3. The evaluation results are shown in Table 1.

(c)ピンホール確認
上記(2)ピンホール測定用サンプルに下から光をあて、光が見える数を数えピンホール数とした。
(C) Pinhole confirmation The above (2) pinhole measurement sample was irradiated with light from below, and the number of visible light was counted as the number of pinholes.

Figure 2012102407
Figure 2012102407

<評価結果>
比較例1のキャリア付き極薄銅箔はキャリアピールが高く、フクレが少ない。一方比較例2のキャリア付き極薄銅箔はキャリアピールが低く、フクレが多い。このように、比較例からはキャリアピールが低いとフクレが多くなる傾向にあり、フクレの数が少ないとキャリアピールが高くなる傾向を示している。
これに対し、本発明のキャリア付き極薄銅箔はキャリアピールが低くフクレも少ない。
また、拡散防止層のありなしで比較すると若干ではあるが拡散防止層がない方がある方に比べキャリアピールが高い傾向にあるが実用上問題のないレベルである。
<Evaluation results>
The ultra-thin copper foil with a carrier of Comparative Example 1 has a high carrier peel and little swelling. On the other hand, the ultrathin copper foil with a carrier of Comparative Example 2 has a low carrier peel and a lot of swelling. Thus, according to the comparative example, when the carrier peel is low, the swelling tends to increase, and when the number of swelling is small, the carrier peel tends to increase.
On the other hand, the ultra-thin copper foil with a carrier of the present invention has a low carrier peel and little swelling.
In comparison with the presence or absence of the diffusion prevention layer, the carrier peel tends to be higher than that of the case where there is no diffusion prevention layer, but the level is practically acceptable.

本発明のキャリア付き極薄銅箔は比較例に示すように、剥離層の主成分がCrである従来のキャリア付き極薄銅箔に比較して、フクレ・キャリアピールがともに安定している。
また、その剥離層を構成している2成分の金属組成比が違う層を2層とし、キャリア箔側に接している部分と極薄銅箔に接している部分の組成比を変えることによってより安定したキャリア付き極薄銅箔となる。
As shown in a comparative example, the ultrathin copper foil with a carrier of the present invention has a stable bulge and carrier peel as compared with a conventional ultrathin copper foil with a carrier whose main component of the release layer is Cr.
In addition, the two layers constituting the release layer have two different metal composition ratios, and by changing the composition ratio between the portion in contact with the carrier foil side and the portion in contact with the ultrathin copper foil, It becomes a very thin copper foil with a stable carrier.

上記実施例では剥離層として、Mo−Co、Mo−Ni、W−Niの層を使用したが、この他に、Mo−Fe、V−Fe、V−Co、V−Ni、Mn−Fe、Mn−Co、Mn−Ni、W−Fe、W−Coの組合せでも同様の効果が得られる。
更に、環境問題が重要になってきている現代においてCrを全く使用しないか微量で済むことから、本発明のキャリア付き極薄銅箔は環境にやさしい素材として提供することができる。
In the above examples, Mo—Co, Mo—Ni, W—Ni layers were used as the release layer, but in addition to this, Mo—Fe, V—Fe, V—Co, V—Ni, Mn—Fe, The same effect can be obtained by a combination of Mn—Co, Mn—Ni, W—Fe, and W—Co.
Further, since Cr is not used at all or in a very small amount in the present day when environmental problems are becoming important, the ultrathin copper foil with a carrier of the present invention can be provided as an environmentally friendly material.

本発明は上述したように、キャリアピールに影響を与えずに剥離層界面におけるフクレの発生を抑え、環境に優しく、高温下の環境に置かれてもキャリア箔と極薄銅箔とを容易に剥がすことができるキャリア付き極薄銅箔を提供することができる。
また本発明は、前記キャリア付き極薄銅箔を使用したファインパターン用途のプリント配線板、多層プリント配線板、チップオンフィルム用配線板等の基材として、製造品質が安定したプリント配線基板を提供することができる、優れた効果を有するものである。
As described above, the present invention suppresses the occurrence of swelling at the peeling layer interface without affecting the carrier peel, and is easy on the carrier foil and the ultrathin copper foil even in an environment that is environmentally friendly and high temperature. An ultrathin copper foil with a carrier that can be peeled off can be provided.
In addition, the present invention provides a printed wiring board having a stable production quality as a substrate for a fine pattern use printed wiring board, multilayer printed wiring board, chip-on-film wiring board, etc., using the ultra-thin copper foil with carrier. It has an excellent effect.

Claims (5)

キャリア箔、拡散防止層、剥離層、極薄銅箔からなるキャリア付き極薄銅箔において、前記剥離層はMo、Ta、V、Mn、W、の群から選定される金属Aと、Fe,Co,Ni,Crの群から選定される金属Bとの組成比が異なる2層からなり、キャリア箔側の剥離層を構成する金属Aの含有量c、金属Bの含有量d、極薄銅箔側の剥離層を構成する金属Aの含有量e、金属Bの含有量fとしたとき
|(c/c+d)−(e/e+f)|*100≧3(%)
の比率であることを特徴とするキャリア付き極薄銅箔。
In the ultra-thin copper foil with a carrier comprising a carrier foil, a diffusion prevention layer, a release layer, and an ultra-thin copper foil, the release layer comprises a metal A selected from the group consisting of Mo, Ta, V, Mn, and W, Fe, It consists of two layers having different composition ratios with the metal B selected from the group of Co, Ni, and Cr, the content c of the metal A constituting the release layer on the carrier foil side, the content d of the metal B, ultrathin copper When the content e of the metal A constituting the release layer on the foil side and the content f of the metal B are defined as | (c / c + d) − (e / e + f) | * 100 ≧ 3 (%)
An ultrathin copper foil with a carrier, characterized in that
キャリア箔、拡散防止層、剥離層、酸化防止層、極薄銅箔からなるキャリア付き極薄銅箔において、前記剥離層は剥離性を保持する金属Aと、極薄銅箔のめっきを容易にする金属Bとの組成比が異なるMo、Ta、V、Mn、W、の群から選定される金属Aと、Fe,Co,Ni,Crの群から選定される金属Bとの組成比が異なる2層からなり、キャリア箔側の剥離層を構成する金属Aの含有量c、金属Bの含有量d、極薄銅箔側の剥離層を構成する金属Aの含有量e、金属Bの含有量fとしたとき
|(c/c+d)−(e/e+f)|*100≧3(%)
の比率であり、
前記酸化防止層は単体で融点が450℃以下である金属、または合金である低融点金属の層である、
ことを特徴とするキャリア付き極薄銅箔。
In an ultra-thin copper foil with a carrier comprising a carrier foil, a diffusion prevention layer, a release layer, an anti-oxidation layer, and an ultra-thin copper foil, the release layer facilitates plating of the metal A holding the peelability and the ultra-thin copper foil. The composition ratio of the metal A selected from the group of Mo, Ta, V, Mn, and W, which is different from the composition ratio of the metal B to be performed, and the metal B selected from the group of Fe, Co, Ni, and Cr is different. It consists of two layers, the content c of the metal A constituting the release layer on the carrier foil side, the content d of the metal B, the content e of the metal A constituting the release layer on the ultrathin copper foil side, and the content of the metal B When the amount is f | (c / c + d) − (e / e + f) | * 100 ≧ 3 (%)
The ratio of
The antioxidant layer is a single layer of a metal having a melting point of 450 ° C. or lower, or a low melting point metal that is an alloy.
An ultra-thin copper foil with a carrier.
前記剥離層の付着量は、合計(Total)金属付着量が0.05mg/dm〜50mg/dmであることを特徴とする請求項1または2に記載のキャリア付き極薄銅箔。 The adhesion amount of the release layer, the total (Total) with a carrier electrode thin copper foil according to claim 1 or 2, wherein the metal coating weight is 0.05mg / dm 2 ~50mg / dm 2 . 前記酸化防止層を形成する低融点金属は、Zn、Sn、Bi、In、またはZn、Sn、Pb、Bi、Inの内の1種を主成分とする合金である請求項2に記載のキャリア付き極薄銅箔。   3. The carrier according to claim 2, wherein the low melting point metal forming the antioxidant layer is Zn, Sn, Bi, In, or an alloy mainly containing one of Zn, Sn, Pb, Bi, and In. With ultra-thin copper foil. 請求項1〜4の何れかに記載のキャリア付き極薄銅箔の、極薄銅箔を樹脂基板に積層し
てなる高密度極微細配線用途のプリント配線基板。
A printed wiring board for high-density ultrafine wiring, wherein the ultrathin copper foil with a carrier according to any one of claims 1 to 4 is laminated on a resin substrate.
JP2011288400A 2005-12-15 2011-12-28 Ultra-thin copper foil with carrier and printed circuit board Pending JP2012102407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011288400A JP2012102407A (en) 2005-12-15 2011-12-28 Ultra-thin copper foil with carrier and printed circuit board

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005361311 2005-12-15
JP2005361311 2005-12-15
JP2011288400A JP2012102407A (en) 2005-12-15 2011-12-28 Ultra-thin copper foil with carrier and printed circuit board

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006303303A Division JP4927503B2 (en) 2005-12-15 2006-11-08 Ultra-thin copper foil with carrier and printed wiring board

Publications (1)

Publication Number Publication Date
JP2012102407A true JP2012102407A (en) 2012-05-31

Family

ID=38166637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011288400A Pending JP2012102407A (en) 2005-12-15 2011-12-28 Ultra-thin copper foil with carrier and printed circuit board

Country Status (2)

Country Link
JP (1) JP2012102407A (en)
CN (2) CN1984526B (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5228130B1 (en) * 2012-08-08 2013-07-03 Jx日鉱日石金属株式会社 Copper foil with carrier
JP5247929B1 (en) * 2012-11-28 2013-07-24 Jx日鉱日石金属株式会社 Copper foil with carrier, method for producing copper foil with carrier, printed wiring board and printed circuit board
JP5481586B1 (en) * 2013-02-28 2014-04-23 Jx日鉱日石金属株式会社 Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board
WO2014103706A1 (en) * 2012-12-28 2014-07-03 Jx日鉱日石金属株式会社 Copper foil with carrier, and printed wiring board, printed circuit board and copper-clad laminate, using same
WO2014132947A1 (en) * 2013-02-26 2014-09-04 古河電気工業株式会社 Ultrathin copper foil with carrier, copper-clad laminate, and coreless substrate
JP2015010273A (en) * 2013-07-02 2015-01-19 Jx日鉱日石金属株式会社 Copper foil with carrier, production method of copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate sheet and production method of printed wiring board
JP2015010274A (en) * 2013-07-02 2015-01-19 Jx日鉱日石金属株式会社 Copper foil with carrier, production method of copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate sheet and production method of printed wiring board
JP2015010275A (en) * 2013-07-02 2015-01-19 Jx日鉱日石金属株式会社 Copper foil with carrier, production method of copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate sheet and production method of printed wiring board
WO2015170715A1 (en) * 2014-05-07 2015-11-12 三井金属鉱業株式会社 Copper foil with carrier, manufacturing method for copper foil with carrier, copper clad laminate sheet and printed wiring board obtained using copper foil with carrier
JP2016135917A (en) * 2015-01-16 2016-07-28 Jx金属株式会社 Copper foil with carrier, laminate, printed wiring board, manufacturing method of electronic apparatus and manufacturing method of printed wiring board
KR20160128319A (en) * 2014-03-03 2016-11-07 가부시키가이샤 닛폰 쇼쿠바이 Production method for polyacrylic acid (polyacrylate) water-absorptive resin
KR101832806B1 (en) 2014-04-02 2018-02-28 미쓰이금속광업주식회사 Copper foil having carrier, production method for copper foil having carrier, and copper clad laminate sheet and printed wiring board obtained using copper foil having carrier
KR20180062344A (en) * 2016-11-30 2018-06-08 후쿠다 킨조쿠 하쿠훈 코교 가부시키가이샤 Composite metal foil, copper-clad laminate using the composite metal foil, and manufacturing method of the copper-clad laminate
WO2021107397A1 (en) * 2019-11-27 2021-06-03 와이엠티 주식회사 Carrier foil-attached metal foil, manufacturing method therefor, and laminate comprising same

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101351928B1 (en) * 2007-12-28 2014-01-21 일진머티리얼즈 주식회사 Copper foil attached to the carrier foil, a method for preparing the same and printed circuit board using the same
CN101374388B (en) * 2008-03-28 2010-06-02 广州力加电子有限公司 Method for preparing fine line flexible circuit board with high peeling strength
KR101281146B1 (en) * 2008-09-05 2013-07-02 후루카와 덴끼고교 가부시키가이샤 Ultrathin copper foil with carrier, and copper laminated board or printed wiring board
JP2009143233A (en) * 2008-12-24 2009-07-02 Nippon Mining & Metals Co Ltd Metal foil with carrier
CN102291930A (en) * 2011-08-06 2011-12-21 何忠亮 Circuit board adhesive structure and manufacturing method thereof
EP2752505B1 (en) 2011-08-31 2016-03-23 JX Nippon Mining & Metals Corporation Copper foil with carrier
JP5204908B1 (en) * 2012-03-26 2013-06-05 Jx日鉱日石金属株式会社 Copper foil with carrier, method for producing copper foil with carrier, copper foil with carrier for printed wiring board and printed wiring board
JP5364838B1 (en) * 2012-11-30 2013-12-11 Jx日鉱日石金属株式会社 Copper foil with carrier
CN103857178B (en) * 2012-12-03 2017-07-04 南亚塑胶工业股份有限公司 Copper foil structure and its manufacture method with black ultrathin copper foil
WO2016143117A1 (en) * 2015-03-12 2016-09-15 三井金属鉱業株式会社 Metal foil with carrier, and manufacturing method for wiring board
CN109327975A (en) * 2017-07-31 2019-02-12 奥特斯奥地利科技与系统技术有限公司 The method and plater that zero defect copper for the hole in component load-bearing part is filled
TWI690607B (en) * 2018-06-15 2020-04-11 南亞塑膠工業股份有限公司 Method for manufacturing porous super-thin copper foil and collector plate
CN111286736A (en) * 2018-12-10 2020-06-16 广州方邦电子股份有限公司 Preparation method of metal foil with carrier
CN115233262B (en) * 2022-08-01 2023-12-12 九江德福科技股份有限公司 Preparation method of extra-thin copper foil with carrier

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5720347A (en) * 1980-07-14 1982-02-02 Nippon Denkai Kk Synthetic foil for printed wiring and its manufacture
JP2000269637A (en) * 1999-03-18 2000-09-29 Furukawa Circuit Foil Kk Copper foil for high-density ultrafine wiring board
WO2002024444A1 (en) * 2000-09-22 2002-03-28 Circuit Foil Japan Co., Ltd. Copper foil for high-density ultrafine wiring board
JP2003094553A (en) * 2001-09-20 2003-04-03 Nippon Denkai Kk Composite copper foil and manufacturing method therefor
JP2003181970A (en) * 2001-12-20 2003-07-03 Mitsui Mining & Smelting Co Ltd Electrolytic copper foil with carrier foil, method of manufacturing the same, and copper-clad laminate using electrolytic copper foil with carrier foil
JP2004169181A (en) * 2002-10-31 2004-06-17 Furukawa Techno Research Kk Ultrathin copper foil with carrier and method for manufacturing the same, and printed wiring board using ultrathin copper foil with carrier
JP2004535515A (en) * 2001-07-18 2004-11-25 サーキット フォイル ルクセンブルグ エス.エイ.アール.エル. Composite foil and method of manufacturing the same
JP2005254673A (en) * 2004-03-12 2005-09-22 Furukawa Circuit Foil Kk Ultrathin copper foil with carrier and wiring plate using ultrathin copper foil with carrier

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200420208A (en) * 2002-10-31 2004-10-01 Furukawa Circuit Foil Ultra-thin copper foil with carrier, method of production of the same, and printed circuit board using ultra-thin copper foil with carrier
US20050158574A1 (en) * 2003-11-11 2005-07-21 Furukawa Circuit Foil Co., Ltd. Ultra-thin copper foil with carrier and printed wiring board using ultra-thin copper foil with carrier

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5720347A (en) * 1980-07-14 1982-02-02 Nippon Denkai Kk Synthetic foil for printed wiring and its manufacture
JP2000269637A (en) * 1999-03-18 2000-09-29 Furukawa Circuit Foil Kk Copper foil for high-density ultrafine wiring board
WO2002024444A1 (en) * 2000-09-22 2002-03-28 Circuit Foil Japan Co., Ltd. Copper foil for high-density ultrafine wiring board
JP2004535515A (en) * 2001-07-18 2004-11-25 サーキット フォイル ルクセンブルグ エス.エイ.アール.エル. Composite foil and method of manufacturing the same
JP2003094553A (en) * 2001-09-20 2003-04-03 Nippon Denkai Kk Composite copper foil and manufacturing method therefor
JP2003181970A (en) * 2001-12-20 2003-07-03 Mitsui Mining & Smelting Co Ltd Electrolytic copper foil with carrier foil, method of manufacturing the same, and copper-clad laminate using electrolytic copper foil with carrier foil
JP2004169181A (en) * 2002-10-31 2004-06-17 Furukawa Techno Research Kk Ultrathin copper foil with carrier and method for manufacturing the same, and printed wiring board using ultrathin copper foil with carrier
JP2005254673A (en) * 2004-03-12 2005-09-22 Furukawa Circuit Foil Kk Ultrathin copper foil with carrier and wiring plate using ultrathin copper foil with carrier

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014024994A1 (en) * 2012-08-08 2014-02-13 Jx日鉱日石金属株式会社 Copper foil with carrier attached thereto
JP5228130B1 (en) * 2012-08-08 2013-07-03 Jx日鉱日石金属株式会社 Copper foil with carrier
JP5247929B1 (en) * 2012-11-28 2013-07-24 Jx日鉱日石金属株式会社 Copper foil with carrier, method for producing copper foil with carrier, printed wiring board and printed circuit board
JP2014129554A (en) * 2012-11-28 2014-07-10 Jx Nippon Mining & Metals Corp Copper foil with carrier, process for producing copper foil with carrier, printed wiring board, and printed circuit board
WO2014103706A1 (en) * 2012-12-28 2014-07-03 Jx日鉱日石金属株式会社 Copper foil with carrier, and printed wiring board, printed circuit board and copper-clad laminate, using same
KR20150122632A (en) * 2013-02-26 2015-11-02 후루카와 덴키 고교 가부시키가이샤 Ultrathin copper foil with carrier, copper-clad laminate, and coreless substrate
WO2014132947A1 (en) * 2013-02-26 2014-09-04 古河電気工業株式会社 Ultrathin copper foil with carrier, copper-clad laminate, and coreless substrate
JPWO2014132947A1 (en) * 2013-02-26 2017-02-02 古河電気工業株式会社 Ultra-thin copper foil with carrier, copper-clad laminate and coreless substrate
KR101664993B1 (en) * 2013-02-26 2016-10-11 후루카와 덴키 고교 가부시키가이샤 Ultrathin copper foil with carrier, copper-clad laminate, and coreless substrate
JP5481586B1 (en) * 2013-02-28 2014-04-23 Jx日鉱日石金属株式会社 Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board
JP2014195036A (en) * 2013-02-28 2014-10-09 Jx Nippon Mining & Metals Corp Copper foil with carrier, manufacturing method of copper foil with carrier, printed wiring board, printed circuit board, copper clad laminate and manufacturing method of printed wiring board
JP2015010275A (en) * 2013-07-02 2015-01-19 Jx日鉱日石金属株式会社 Copper foil with carrier, production method of copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate sheet and production method of printed wiring board
JP2015010274A (en) * 2013-07-02 2015-01-19 Jx日鉱日石金属株式会社 Copper foil with carrier, production method of copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate sheet and production method of printed wiring board
JP2015010273A (en) * 2013-07-02 2015-01-19 Jx日鉱日石金属株式会社 Copper foil with carrier, production method of copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate sheet and production method of printed wiring board
KR20160128319A (en) * 2014-03-03 2016-11-07 가부시키가이샤 닛폰 쇼쿠바이 Production method for polyacrylic acid (polyacrylate) water-absorptive resin
KR101832806B1 (en) 2014-04-02 2018-02-28 미쓰이금속광업주식회사 Copper foil having carrier, production method for copper foil having carrier, and copper clad laminate sheet and printed wiring board obtained using copper foil having carrier
WO2015170715A1 (en) * 2014-05-07 2015-11-12 三井金属鉱業株式会社 Copper foil with carrier, manufacturing method for copper foil with carrier, copper clad laminate sheet and printed wiring board obtained using copper foil with carrier
KR101807453B1 (en) 2014-05-07 2017-12-08 미쓰이금속광업주식회사 Copper foil with carrier, manufacturing method for copper foil with carrier, copper clad laminate sheet and printed wiring board obtained using copper foil with carrier
JP2016135917A (en) * 2015-01-16 2016-07-28 Jx金属株式会社 Copper foil with carrier, laminate, printed wiring board, manufacturing method of electronic apparatus and manufacturing method of printed wiring board
KR20180062344A (en) * 2016-11-30 2018-06-08 후쿠다 킨조쿠 하쿠훈 코교 가부시키가이샤 Composite metal foil, copper-clad laminate using the composite metal foil, and manufacturing method of the copper-clad laminate
KR102118245B1 (en) 2016-11-30 2020-06-02 후쿠다 킨조쿠 하쿠훈 코교 가부시키가이샤 Composite metal foil, copper-clad laminate using the composite metal foil, and manufacturing method of the copper-clad laminate
WO2021107397A1 (en) * 2019-11-27 2021-06-03 와이엠티 주식회사 Carrier foil-attached metal foil, manufacturing method therefor, and laminate comprising same

Also Published As

Publication number Publication date
CN1984527B (en) 2010-12-01
CN1984527A (en) 2007-06-20
CN1984526B (en) 2011-01-12
CN1984526A (en) 2007-06-20

Similar Documents

Publication Publication Date Title
JP4927503B2 (en) Ultra-thin copper foil with carrier and printed wiring board
JP4934409B2 (en) Ultra-thin copper foil with carrier and printed wiring board
JP2012102407A (en) Ultra-thin copper foil with carrier and printed circuit board
US8674229B2 (en) Ultra-thin copper foil with carrier and copper-clad laminate board or printed circuit board substrate
JP3977790B2 (en) Manufacturing method of ultra-thin copper foil with carrier, ultra-thin copper foil manufactured by the manufacturing method, printed wiring board using the ultra-thin copper foil, multilayer printed wiring board, chip-on-film wiring board
JP5373995B2 (en) Copper foil with carrier
JP2010100942A (en) Ultra-thin copper foil with carrier, method of manufacturing the same and printed circuit board
JP4087369B2 (en) Ultra-thin copper foil with carrier and printed wiring board
JP2007314855A (en) Ultra-thin copper foil provided with carrier, copper-clad laminate and printed circuit board
JP2004169181A (en) Ultrathin copper foil with carrier and method for manufacturing the same, and printed wiring board using ultrathin copper foil with carrier
TW202314056A (en) Surface treated copper foil, copper clad laminate, and printed circuit board
JP2007186797A (en) Method for producing ultrathin copper foil with carrier, ultrathin copper foil produced by the production method, and printed circuit board, multilayer printed circuit board and wiring board for chip on film using the ultrathin copper foil
JP5156873B1 (en) Copper foil with carrier
JP2005260058A (en) Carrier-attached very thin copper foil, manufacturing method of carrier-attached very thin copper foil, and wiring board
JP5364838B1 (en) Copper foil with carrier
JP4391449B2 (en) Ultra-thin copper foil with carrier and printed wiring board
JP4748519B2 (en) Ultra thin copper foil with carrier, manufacturing method thereof, printed wiring board using ultra thin copper foil with carrier
JP2020183565A (en) Electrolytic copper foil, surface-treated copper foil using electrolytic copper foil, copper-clad laminate using surface-treated copper foil, and printed circuit board
TW201329293A (en) Ultra thin copper foil with very low profile copper foil as carrier and its manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131029

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131119