JP2010006071A - Surface treatment copper foil, extremely thin copper foil with carrier, flexible copper clad laminate, and polyimide based flexible printed wiring board - Google Patents

Surface treatment copper foil, extremely thin copper foil with carrier, flexible copper clad laminate, and polyimide based flexible printed wiring board Download PDF

Info

Publication number
JP2010006071A
JP2010006071A JP2009191801A JP2009191801A JP2010006071A JP 2010006071 A JP2010006071 A JP 2010006071A JP 2009191801 A JP2009191801 A JP 2009191801A JP 2009191801 A JP2009191801 A JP 2009191801A JP 2010006071 A JP2010006071 A JP 2010006071A
Authority
JP
Japan
Prior art keywords
copper foil
carrier
layer
foil
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009191801A
Other languages
Japanese (ja)
Inventor
Akira Kawakami
昭 川上
Yuji Suzuki
裕二 鈴木
Akitoshi Suzuki
昭利 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2009191801A priority Critical patent/JP2010006071A/en
Publication of JP2010006071A publication Critical patent/JP2010006071A/en
Pending legal-status Critical Current

Links

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an extremely thin copper foil with a carrier, which ensures flexibility of a substrate and which excels in adhesive strength between the extremely thin copper foil and the substrate. <P>SOLUTION: The extremely thin copper foil with a carrier has a lamination of a carrier foil, an exfoliation layer, and an extremely thin copper foil in this order. On the surface of the extremely thin copper foil with a carrier, an Ni layer and/or an Ni alloy layer is formed, which contains 0.03-3.0 mg/dm<SP>2</SP>Ni and, on top of the Ni layer and/or the Ni alloy layer, a surface treatment layer is formed, which is composed of chromate containing 0.03-1.0 mg/dm<SP>2</SP>Cr. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、キャリア付き極薄銅箔、該キャリア付き極薄銅箔を用いて作成したポリイミド系フレキシブル銅張積層板及びポリイミド系フレキシブルプリント配線板に関するものである。   The present invention relates to an ultrathin copper foil with a carrier, a polyimide-based flexible copper-clad laminate and a polyimide-based flexible printed wiring board prepared using the ultrathin copper foil with a carrier.

通常、プリント配線板、多層プリント配線板、チップオンフィルム用配線板等の基礎となるプリント配線基板に用いる銅箔は、樹脂基板等に熱圧着する側の表面を粗化面とし、この粗化面で該基板に対するアンカー効果を発揮させ、これにより、該基板と銅箔との接合強度を高めてプリント配線基板としての信頼性を確保している。
この配線板は、各種電子部品の高度集積化に対応して、配線パターンも微細な線幅や線間ピッチ、いわゆるファインパターンプリント配線板としての要求が高まってきている。例えば、半導体パッケージに使用されるプリント配線板の場合は、線幅や線間ピッチがそれぞれ30μm前後という高密度極微細配線を有するプリント配線板の提供が要求されている。このようなファインパターンプリント配線板用の銅箔として、厚い銅箔を用いると、エッチングによる配線回路形成時のエッチング時間が長くなり、その結果、形成される配線パターンの側壁の垂直性が崩れ、形成する配線パターンの配線線幅が狭い場合には断線に結びつくこともある。従って、ファインパターン用途に使われる銅箔としては、厚さ9μm以下の銅箔が要望され、現在では、厚さが5μm程度の銅箔が最も多く使用され、更に薄箔化が求められている。
In general, copper foil used for printed wiring boards that are the basis of printed wiring boards, multilayer printed wiring boards, chip-on-film wiring boards, etc., has a roughened surface on the surface to be thermocompression bonded to a resin board. The anchor effect with respect to the substrate is exhibited on the surface, thereby increasing the bonding strength between the substrate and the copper foil, thereby ensuring the reliability as a printed wiring board.
In response to the high integration of various electronic components, there is an increasing demand for fine wiring patterns and fine pitches between lines, so-called fine pattern printed wiring boards. For example, in the case of a printed wiring board used for a semiconductor package, it is required to provide a printed wiring board having high-density ultrafine wiring with a line width and a line-to-line pitch of about 30 μm. As a copper foil for such a fine pattern printed wiring board, if a thick copper foil is used, the etching time at the time of wiring circuit formation by etching becomes long, and as a result, the verticality of the side wall of the formed wiring pattern is disrupted, When the wiring line width of the wiring pattern to be formed is narrow, it may lead to disconnection. Therefore, a copper foil having a thickness of 9 μm or less is demanded as a copper foil used for fine pattern applications. At present, a copper foil having a thickness of about 5 μm is most frequently used, and further thinning is required. .

しかし、このような薄い銅箔(以下、極薄銅箔と云うことがある)は機械的強度が弱く、プリント配線基板の製造時に皺や折れ目が発生しやすく、銅箔切れを起こすこともあるため、ファインパターン用途に使われる極薄銅箔としてはキャリアとしての金属箔(以下、「キャリア箔」という)の片面に剥離層を介して極薄銅箔層を直接電着させたキャリア付き極薄銅箔が使用されている。
上述したように、現在多用されている5μm厚さの銅箔はキャリア付き極薄銅箔として提供されている。
キャリア付き極薄銅箔は、キャリア箔の片面に、剥離層と電気銅めっき層がこの順序で形成されたものであり、該電気銅めっき層の表面が粗化面に仕上げた粗化処理層が設けられている。
However, such a thin copper foil (hereinafter sometimes referred to as an ultrathin copper foil) has a low mechanical strength, is likely to cause wrinkles and creases during the production of a printed wiring board, and may cause the copper foil to break. Therefore, as an ultra-thin copper foil used for fine pattern applications, a metal foil (hereinafter referred to as “carrier foil”) as a carrier is directly electrodeposited via a release layer on one side of a metal foil as a carrier. Ultra-thin copper foil is used.
As described above, the copper foil having a thickness of 5 μm that is widely used at present is provided as an ultrathin copper foil with a carrier.
The ultra-thin copper foil with a carrier is a carrier foil in which a release layer and an electrolytic copper plating layer are formed in this order, and the surface of the electrolytic copper plating layer is a roughened surface. Is provided.

一方、近年、電子機器のメモリ容量の増加に伴い、電子機器では、配線の狭ピッチ化や、高密度実装化が進んでいる。それに伴い、フレキシブルプリント配線板として利用されるフレキシブル銅張積層板に対する使用環境も苛酷化され、機械的物性の要求水準もより高くなってきている。また、最近の高密度実装化に伴い、電子機器の筐体内に収納されるフレキシブルプリント配線板では、屈曲部が増えると共に、屈曲部を形成する2つの面のなす角度が小さくなってきている。このような使用条件を克服する配線基板の基材として機械的物性、耐屈曲性に優れるポリイミドフィルムが採用されるようになってきている。前記屈曲性を向上させ、かつ電子機器の高密度実装を実現するためには、ポリイミドフィルムの厚みを可能な限り薄くする必要がある。 On the other hand, in recent years, with the increase in memory capacity of electronic devices, in electronic devices, wiring pitches have been narrowed and high-density mounting has been advanced. Along with this, the usage environment for flexible copper clad laminates used as flexible printed wiring boards has become severe, and the required level of mechanical properties has become higher. In addition, with recent high-density mounting, in a flexible printed wiring board housed in a housing of an electronic device, the number of bent portions increases and the angle formed between the two surfaces forming the bent portions has decreased. A polyimide film having excellent mechanical properties and bending resistance has been adopted as a base material of a wiring board that overcomes such use conditions. In order to improve the flexibility and realize high-density mounting of electronic equipment, it is necessary to make the polyimide film as thin as possible.

一方、ポリイミドフィルム基板の厚さを薄くすると、極薄銅箔との接着性に問題がでてくる。即ち、基板に銅箔を接着させるには銅箔表面に粗化処理層を設けている。しかし、銅箔表面に設ける現状の粗化処理層をそのまま採用すると、粗化処理層表面の凹凸が薄い基板に食い込むため、この基板を積層すると基板間の絶縁距離が不足することとなる。絶縁距離不足を解消するため銅箔表面の凹凸を小さくすると、基板と銅箔との接着強度が減少し、両者を積層することが困難となる。
このように基板の厚さは薄くしたいが銅箔との接着強度は維持しなければならない、との要望がなされている。
上述したように、ファインパターン化及び優れた屈曲特性を得るためには、極薄銅箔表面の平滑化と粗化処理層の粒子の小径化を行うことが必要であるが、一方で、極薄銅箔と基板間の接着強度を低下させるという問題が発生する。
本発明は、このような問題を解決し、ポリイミドフィルム基板の厚さを薄くし、薄くした基板に極薄銅箔を強固に接着でき、基板の絶縁信頼性を損なわずに、プリント配線として狭ピッチ化、高密度実装化に対処できるキャリア付き極薄銅箔、該極薄銅箔を用いたポリイミド系フレキシブル銅張積層板、並びにポリイミド系フレキシブルプリント配線板を提供することを目的とする。
On the other hand, if the thickness of the polyimide film substrate is reduced, there will be a problem with the adhesion to the ultrathin copper foil. That is, a roughening layer is provided on the surface of the copper foil in order to bond the copper foil to the substrate. However, if the current roughened layer provided on the surface of the copper foil is used as it is, the unevenness of the surface of the roughened layer will bite into a thin substrate, and if this substrate is laminated, the insulation distance between the substrates will be insufficient. If the unevenness on the surface of the copper foil is reduced in order to eliminate the shortage of the insulation distance, the adhesive strength between the substrate and the copper foil is reduced, and it becomes difficult to laminate the two.
As described above, there is a demand for reducing the thickness of the substrate but maintaining the adhesive strength with the copper foil.
As described above, in order to obtain a fine pattern and excellent bending characteristics, it is necessary to smooth the surface of the ultrathin copper foil and reduce the diameter of the particles of the roughening treatment layer. There arises a problem that the adhesive strength between the thin copper foil and the substrate is lowered.
The present invention solves such a problem, reduces the thickness of the polyimide film substrate, and can firmly bond the ultrathin copper foil to the thinned substrate, so that the printed wiring can be narrowed without impairing the insulation reliability of the substrate. An object is to provide an ultra-thin copper foil with a carrier capable of coping with pitching and high-density mounting, a polyimide-based flexible copper-clad laminate using the ultra-thin copper foil, and a polyimide-based flexible printed wiring board.

本発明は上記課題を解決すべく鋭意研究を行った結果、基板の屈折性を確保し、極薄銅箔と基板との接着強度に優れるキャリア付き極薄銅箔の開発に成功したものである。
本発明のキャリア付き極薄銅箔は、キャリア箔、剥離層、極薄銅箔がこの順に積層されているキャリア付き銅箔の前記極薄銅箔表面に、Ni量にして0.03〜3.0mg/dm含有するNi層又は/及びNi合金層が形成され、該Ni層又は/及びNi合金層の上にCr量にして0.03〜1.0mg/dm含有するクロメートからなる表面処理層が形成されている。
As a result of diligent research to solve the above-mentioned problems, the present invention has succeeded in developing an ultra-thin copper foil with a carrier that ensures the refraction property of the substrate and has excellent adhesion strength between the ultra-thin copper foil and the substrate. .
The ultrathin copper foil with a carrier of the present invention has a Ni content of 0.03 to 3 on the surface of the ultrathin copper foil of the copper foil with a carrier in which a carrier foil, a release layer, and an ultrathin copper foil are laminated in this order. An Ni layer and / or Ni alloy layer containing 0.0 mg / dm 2 is formed, and a Cr content of 0.03 to 1.0 mg / dm 2 in terms of Cr is formed on the Ni layer or / and Ni alloy layer. A surface treatment layer is formed.

本発明において、前記極薄銅箔表面に平均粒径1μm以下の銅粒による粗化処理層が形成され、該粗化処理層の表面に前記表面処理層が形成されていることが好ましい。
また、前記表面処理層の表面にシランカップリング剤処理が施されていることが好ましい。
In this invention, it is preferable that the roughening process layer by the copper particle of average particle diameter of 1 micrometer or less is formed in the said ultra-thin copper foil surface, and the said surface treatment layer is formed in the surface of this roughening process layer.
Moreover, it is preferable that the surface of the surface treatment layer is treated with a silane coupling agent.

本発明のポリイミド系フレキシブル銅張積層板は前記キャリア付き極薄銅箔を用いて作成したフレキシブル銅張積層板である。
本発明のポリイミド系フレキシブルプリント配線板は前記ポリイミド系フレキシブル銅張積層板を用いて作成したフレキシブルプリント配線板である。
The polyimide-based flexible copper-clad laminate of the present invention is a flexible copper-clad laminate produced using the ultrathin copper foil with carrier.
The polyimide-based flexible printed wiring board of the present invention is a flexible printed wiring board prepared using the polyimide-based flexible copper-clad laminate.

本発明は、極薄銅箔とポリイミド系樹脂層との間の接着強度に優れ、絶縁信頼性、配線パターン形成時のエッチング特性に優れ、基板の耐屈曲特性を阻害することのない、優れたキャリア付き極薄銅箔を提供することができる。
また、本発明は前記キャリア付き極薄銅箔を用い、狭ピッチ化、高密度実装化に対処できるフレキシブル銅張積層板、並びにポリイミド系フレキシブル銅張積層板を用いて作成した狭ピッチ、高密度実装フレキシブルプリント配線板を提供することができる。
The present invention is excellent in adhesive strength between an ultrathin copper foil and a polyimide resin layer, excellent in insulation reliability and etching characteristics when forming a wiring pattern, and does not hinder the bending resistance of the substrate. An ultra-thin copper foil with a carrier can be provided.
In addition, the present invention uses the above-mentioned ultrathin copper foil with a carrier, a flexible copper-clad laminate capable of coping with narrow pitch and high-density mounting, and a narrow pitch, high-density produced using a polyimide-based flexible copper-clad laminate. A mounting flexible printed wiring board can be provided.

本発明キャリア付き極薄銅箔において、キャリア箔は、銅、銅合金、アルミ、アルミ合金またはステンレス等の圧延箔もしくは電解銅箔である。キャリア箔の厚みは7μm以上70μm以下が適している。箔の厚さが7μm以下では、キャリア(支持体)としての役割を果たさないため不適であり、70μm以上では生産性等の点で好ましくない。
また、キャリア箔の表面粗さRzは0.1μm〜3μmが好ましい。粗さRzが0.1μm以下では現実的に量産することは困難であり、また3μm以上では、後述するように該キャリア箔表面の粗さが極薄銅箔表面に転写されるためファインパターン化に適さないからである。
In the ultrathin copper foil with a carrier of the present invention, the carrier foil is a rolled foil or electrolytic copper foil such as copper, copper alloy, aluminum, aluminum alloy or stainless steel. The thickness of the carrier foil is suitably 7 μm or more and 70 μm or less. A foil thickness of 7 μm or less is not suitable because it does not serve as a carrier (support), and a thickness of 70 μm or more is not preferable in terms of productivity.
Further, the surface roughness Rz of the carrier foil is preferably 0.1 μm to 3 μm. When the roughness Rz is 0.1 μm or less, it is difficult to actually mass-produce, and when it is 3 μm or more, the roughness of the surface of the carrier foil is transferred to the surface of the ultrathin copper foil as described later. It is because it is not suitable for.

キャリア箔の少なくとも片面に剥離層を形成する。剥離層はCr、Ni、Co、Fe、Mo、Ti、W、Pまたはこれらの合金またはこれらの水和物で形成することが好ましい。
例えば、二元系合金としては、ニッケルークロム、コバルトークロム、クロム−タングステン、クロム−銅、クロム−鉄、クロムーチタンがあげられる。また、三元系合金としては、ニッケル−鉄−クロム、ニッケル−クロム−モリブデン、ニッケル−クロム−タングステン、ニッケル−クロム−銅、ニッケル−クロム−リン、コバルト−鉄−クロム、コバルト−クロム−モリブデン、コバルト−クロム−タングステン、コバルト−クロム−銅、コバルト−クロム−リン等があげられる。
これらの剥離層を形成する金属及びそれらの水和酸化物は電気めっきにより形成することが好ましい。なお、加熱プレス等高温使用環境における剥離性の安定化を図る上で、剥離層の下地にNi、Feまたはこれらの合金層を設けると効果的である。
A release layer is formed on at least one side of the carrier foil. The release layer is preferably formed of Cr, Ni, Co, Fe, Mo, Ti, W, P, alloys thereof or hydrates thereof.
Examples of binary alloys include nickel-chromium, cobalt-chromium, chromium-tungsten, chromium-copper, chromium-iron, and chromium-titanium. Ternary alloys include nickel-iron-chromium, nickel-chromium-molybdenum, nickel-chromium-tungsten, nickel-chromium-copper, nickel-chromium-phosphorus, cobalt-iron-chromium, cobalt-chromium-molybdenum. Cobalt-chromium-tungsten, cobalt-chromium-copper, cobalt-chromium-phosphorus and the like.
The metal forming these release layers and their hydrated oxides are preferably formed by electroplating. In order to stabilize the peelability in a high temperature use environment such as a hot press, it is effective to provide Ni, Fe or an alloy layer thereof on the base of the peel layer.

剥離層の上に極薄銅箔を形成する。極薄銅箔の形成は、硫酸銅、ピロリン酸銅、スルファミン酸銅、シアン化銅等の電解浴を使用して形成する。
なお、極薄銅箔の形成は、剥離層を安定に存在させるためにpH3〜12の間にある銅めっき浴を使用することが好ましい。これらのめっき浴を使用することで剥離層の剥離性を損なわずにめっきを行うことができる。
また、剥離層上へのめっきは、その剥離性ゆえに、均一なめっきを行うことが非常に難しいことから、めっき条件によっては形成される極薄銅箔にピンホールの数が多くなることがある。このような条件のもとでのめっきでは、先ず剥離層の上にストライク銅めっきを行い、ストライクめっき層の上に更に銅をめっきすることで剥離層上に均一なめっきを施すことができ、極薄銅箔のピンホールの数を著しく減少することができる。
An ultrathin copper foil is formed on the release layer. The ultrathin copper foil is formed using an electrolytic bath of copper sulfate, copper pyrophosphate, copper sulfamate, copper cyanide or the like.
In addition, it is preferable to use the copper plating bath which exists between pH 3-12 for formation of ultra-thin copper foil, in order to make a peeling layer exist stably. By using these plating baths, plating can be performed without impairing the peelability of the release layer.
In addition, plating on the release layer is extremely difficult to perform uniform plating because of its releasability, and depending on the plating conditions, the number of pinholes may increase in the formed ultrathin copper foil. . In plating under such conditions, first, strike copper plating is performed on the release layer, and further plating can be performed on the release layer by further plating copper on the strike plating layer. The number of pinholes in the ultrathin copper foil can be significantly reduced.

ストライクめっきで付着させる銅めっき厚は0.001μm〜1μmが好ましく浴種によってその条件はいろいろであるが、電流密度としては、0.1A/dm〜20A/dm、めっき時間は0.1秒以上が好ましい。電流密度が0.1A/dm以下では、剥離層上にめっきを均一にのせることが難しく、また20A/dm以上ではめっき液の金属濃度を薄めているストライクめっきでは、焼けめっきが発生し、均一な銅めっき層を得られないため好ましくない。まためっき時間は、0.1秒以下では十分なめっき層を得るためには短かすぎて好ましくない。ストライクめっきにより剥離層上にピロリン酸銅めっき浴で剥離層の剥離性を損なわないように0.01μm以上の銅めっき層をつけた後、銅めっきを硫酸系浴、スルファミン酸浴、ピロリン酸浴、シアン浴にしてめっきを行い、所望のめっき厚の極薄銅箔とする。なお、光沢めっきを行う場合は市販の光沢剤を使用しても良く、または、メルカプト基を有する化合物、塩化物イオン、並びに分子量10,000以下の低分子量膠又は/及び高分子多糖類を添加した銅めっき液で製箔しても良い。
なお、剥離層上に形成する極薄銅箔の表面は平滑であることが好ましいことから柱状結晶より粒状結晶の方が望ましい。
The thickness of the copper plating deposited by strike plating is preferably 0.001 μm to 1 μm, and the conditions vary depending on the type of bath, but the current density is 0.1 A / dm 2 to 20 A / dm 2 , and the plating time is 0.1 Seconds or more are preferred. When the current density is 0.1 A / dm 2 or less, it is difficult to uniformly deposit the plating on the release layer, and when the current density is 20 A / dm 2 or more, the strike plating in which the metal concentration of the plating solution is reduced causes burnt plating. In addition, it is not preferable because a uniform copper plating layer cannot be obtained. Also, the plating time of 0.1 seconds or less is not preferable because it is too short to obtain a sufficient plating layer. After applying a copper plating layer of 0.01 μm or more on the release layer by strike plating so that the peelability of the release layer is not impaired by the copper pyrophosphate plating bath, the copper plating is performed using a sulfuric acid bath, sulfamic acid bath, pyrophosphate bath. Then, plating is performed in a cyan bath to obtain an ultrathin copper foil having a desired plating thickness. In addition, when performing bright plating, a commercially available brightener may be used, or a compound having a mercapto group, a chloride ion, and a low molecular weight glue having a molecular weight of 10,000 or less or / and a high molecular polysaccharide are added. The foil may be made with a copper plating solution.
In addition, since it is preferable that the surface of the ultra-thin copper foil formed on a peeling layer is smooth, a granular crystal is more desirable than a columnar crystal.

本発明の第1は、キャリア付き極薄銅箔のポリイミド系樹脂基板と接触(接着)する面に、Ni層又は/及びNi合金層(以下Ni層という)を設ける。このNi層を設けることにより、ポリイミド系樹脂基板とキャリア付き極薄銅箔との密着強度を粗化処理なし、または粗化処理の程度を低減(微細化)させて従来通りレベルの接着強度とすることができる。このようなNi層は、電気めっき法、無電解めっき法、蒸着法、スパッタ法などにより形成できる。なお、これらの形成方法の内、Ni層の厚さを制御し易い等の点から電気めっき法が好ましい。電気めっき浴としては、硫酸ニッケルめっき浴、スルファミン酸ニッケルめっき浴、ピロリン酸ニッケルめっき浴等が挙げられる。なお、コストの点からは、安い硫酸ニッケル浴を好ましく使用することができる。
キャリア付き極薄銅箔表面に設けるNi層の被覆量としては、少なすぎると樹脂層の接着強度が低下し、多すぎるとパターン形成のエッチング時にファインパターンの形成が困難になるので、少なくとも金属Ni換算で0.03〜3.0mg/dm、好ましくは0.05〜1.0mg/dmである。
In the first aspect of the present invention, a Ni layer and / or a Ni alloy layer (hereinafter referred to as Ni layer) is provided on the surface of the ultrathin copper foil with carrier that contacts (adheres) the polyimide resin substrate. By providing this Ni layer, the adhesion strength between the polyimide resin substrate and the ultra-thin copper foil with carrier is not roughened, or the level of the roughening treatment is reduced (miniaturized) and the conventional level of adhesive strength and can do. Such a Ni layer can be formed by electroplating, electroless plating, vapor deposition, sputtering, or the like. Of these forming methods, the electroplating method is preferable from the viewpoint of easy control of the thickness of the Ni layer. Examples of the electroplating bath include a nickel sulfate plating bath, a nickel sulfamate plating bath, and a nickel pyrophosphate plating bath. In view of cost, a cheap nickel sulfate bath can be preferably used.
As the coating amount of the Ni layer provided on the surface of the ultra-thin copper foil with carrier, if the amount is too small, the adhesive strength of the resin layer is lowered, and if it is too large, it becomes difficult to form a fine pattern during pattern formation etching. 0.03~3.0mg / dm 2 in terms of, preferably 0.05~1.0mg / dm 2.

本発明の第2はキャリア付き極薄銅箔のポリイミド系樹脂基板と接触(接着)する面にクロメート層を設ける。キャリア付き極薄銅箔表面にクロメート層を設けることによりポリイミド系樹脂基板とキャリア付き極薄銅箔との密着強度を粗化処理なし、または粗化処理の程度を低減(微細化)させて従来通りレベルの接着強度とすることができる。クロメート層は、一般的なクロメート処理により形成することができ、クロメート層の被覆量としては、少なすぎると樹脂層の接着強度が低下し、多すぎるとパターン形成のエッチング時に、ファインパターンの形成が困難となるので、金属Cr換算で0.03〜1.0mg/dm、好ましくは0.05〜0.5mg/dmである。 In the second aspect of the present invention, a chromate layer is provided on the surface of the ultrathin copper foil with carrier that contacts (adheres) the polyimide resin substrate. Conventionally, by providing a chromate layer on the surface of the ultra-thin copper foil with carrier, the adhesion strength between the polyimide resin substrate and the ultra-thin copper foil with carrier is not roughened, or the degree of roughening is reduced (miniaturized). A street-level adhesive strength can be obtained. The chromate layer can be formed by a general chromate treatment. If the coating amount of the chromate layer is too small, the adhesive strength of the resin layer is lowered, and if it is too large, the fine pattern can be formed during pattern formation etching. since it is difficult, 0.03~1.0mg / dm 2 of metal Cr terms, preferably 0.05 to 0.5 / dm 2.

本発明の第3はキャリア付き極薄銅箔のポリイミド系樹脂基板と接触(接着)する面にCr層又は/及びCr合金層(以下Cr層という)を設ける。キャリア付き極薄銅箔表面にCr層を設けることにより、ポリイミド系樹脂基板とキャリア付き極薄銅箔との密着強度を粗化処理なし、または粗化処理の程度を低減(微細化)させて従来通りレベルの接着強度とすることができる。Cr層は、一般的なクロム処理により形成することができる。クロム層の被覆量は少なすぎると樹脂層の接着強度が低下し、多すぎるとパターン形成のエッチング時に、ファインパターンの形成が困難となるので、Cr量換算で0.03〜1.0mg/dm、好ましくは0.05〜0.5mg/dmである。 In the third aspect of the present invention, a Cr layer and / or a Cr alloy layer (hereinafter referred to as a Cr layer) is provided on the surface of the ultrathin copper foil with carrier that contacts (adheres) the polyimide resin substrate. By providing a Cr layer on the surface of the ultra-thin copper foil with carrier, the adhesion strength between the polyimide resin substrate and the ultra-thin copper foil with carrier is not roughened, or the degree of roughening is reduced (miniaturized). A conventional adhesive strength level can be obtained. The Cr layer can be formed by a general chrome treatment. If the coating amount of the chromium layer is too small, the adhesive strength of the resin layer is lowered, and if it is too large, it becomes difficult to form a fine pattern during etching for pattern formation, so 0.03-1.0 mg / dm in terms of Cr amount. 2 , preferably 0.05 to 0.5 mg / dm 2 .

本発明の第4は、キャリア付き極薄銅箔の基板と接触する面にNi層とクロメート層とを設ける。キャリア付き極薄銅箔表面に設けるNi層はNi量にして0.03〜3.0mg/dm含有する層とすることが好ましく、その上に、Cr量にして0.03〜1.0mg/dm含有するクロメート層を設ける。Ni層上にクロメート層を設けることにより、ポリイミド基板との接着強度を適切に向上することができる。 In the fourth aspect of the present invention, a Ni layer and a chromate layer are provided on the surface of the ultrathin copper foil with carrier that contacts the substrate. The Ni layer provided on the surface of the ultrathin copper foil with a carrier is preferably a layer containing 0.03 to 3.0 mg / dm 2 in terms of Ni, and further, 0.03 to 1.0 mg in terms of Cr. A chromate layer containing / dm 2 is provided. By providing the chromate layer on the Ni layer, the adhesive strength with the polyimide substrate can be appropriately improved.

本発明の第5はキャリア付き極薄銅箔の基板と接触する面にNi層とCr層とを設ける。該キャリア付き極薄銅箔表面に設けるNi層はNi量にして0.03〜3.0mg/dm含有する層とすることが好ましく、その上にCr量にして0.03〜1.0mg/dm含有するCr層を設ける。Ni層上にCr層を設けることによりポリイミド基板との接着強度を適切に向上することができる。 In the fifth aspect of the present invention, a Ni layer and a Cr layer are provided on the surface of the ultrathin copper foil with carrier that contacts the substrate. The Ni layer provided on the surface of the ultrathin copper foil with carrier is preferably a layer containing 0.03 to 3.0 mg / dm 2 in terms of Ni, and 0.03 to 1.0 mg in terms of Cr. A Cr layer containing / dm 2 is provided. By providing the Cr layer on the Ni layer, the adhesive strength with the polyimide substrate can be appropriately improved.

前記銅箔表面にNi層、クロメート層又はCr層を形成したキャリア付き極薄銅箔(以下表面処理キャリア付き極薄銅箔という)表面上には、シランカップリング剤を塗布することが好ましい。シランカップリング剤は、ビニル系シラン、エポキシ系シラン、スチリル系シラン、メタクリロキシ系シラン、アクリロキシ系シラン、アミノ系シラン、ウレイド系シラン、クロロプロピル系シラン、メルカプト系シラン、スルフィド系シラン、イソシアネート系シラン等の一般に市販されているシランカップリング剤を使うことができる。特にポリイミド基板との接着性を高めるには、エポキシ系シラン、アミノ系シランが好適である。
また、表面処理キャリア付き極薄銅箔に防錆処理を施すと良い。防錆処理としてはZn処理又は/及びZn−クロメート処理、ベントリ処理などがある。
It is preferable to apply a silane coupling agent on the surface of an ultrathin copper foil with a carrier (hereinafter referred to as an ultrathin copper foil with a surface-treated carrier) in which a Ni layer, a chromate layer or a Cr layer is formed on the surface of the copper foil. Silane coupling agents are vinyl silane, epoxy silane, styryl silane, methacryloxy silane, acryloxy silane, amino silane, ureido silane, chloropropyl silane, mercapto silane, sulfide silane, isocyanate silane. A commercially available silane coupling agent such as can be used. In particular, epoxy silanes and amino silanes are suitable for improving the adhesion to the polyimide substrate.
Moreover, it is good to give a rust prevention process to the ultra-thin copper foil with a surface treatment carrier. Examples of the rust preventive treatment include Zn treatment or / and Zn-chromate treatment, and ventri treatment.

前記表面処理キャリア付き極薄銅箔を用い、該表面処理キャリア付き極薄銅箔をポリイミド系基板に積層することで、接着強度に優れ、絶縁信頼性、屈曲特性、ファインパターン用途に優れたフレキシブル銅張及び、該銅張積層板を加工したフレキシブルプリント配線板を作製することができる。 By using the ultra-thin copper foil with a surface-treated carrier and laminating the ultra-thin copper foil with a surface-treated carrier on a polyimide substrate, it has excellent adhesive strength, insulation reliability, flex characteristics, and excellent flexibility for fine pattern applications. Copper-clad and flexible printed wiring boards obtained by processing the copper-clad laminate can be produced.

次に、本発明を実施例に基づき詳細に説明する。
なお、以下の実施例は、本発明の一般的な説明をする目的で記載するものであり、何ら限定的意味を持つものではない。
Next, the present invention will be described in detail based on examples.
In addition, the following examples are described for the purpose of general explanation of the present invention, and have no limiting meaning.

1、実施例におけるめっき、表面処理条件
(1)キャリア付き極薄銅箔の極薄銅箔作製条件
めっき浴:
Cu :30〜130g/l
SO :80〜140g/l
電流密度 :10〜70a/dm
浴温 :30〜60℃
1. Plating in Examples, Surface Treatment Conditions (1) Ultra-thin copper foil production conditions for ultra-thin copper foil with carrier Plating bath:
Cu: 30 to 130 g / l
H 2 SO 4: 80~140g / l
Current density: 10 to 70 a / dm 2
Bath temperature: 30-60 ° C

(2)極薄箔表面(剥離層と反対側の面)の粗化処理条件
めっき浴:
Cu :20〜35g/l
SO :110〜160g/l
電流密度 :10〜50a/dm
浴温 :15〜35℃
(2) Roughening conditions on the surface of the ultrathin foil (surface opposite to the release layer) Plating bath:
Cu: 20 to 35 g / l
H 2 SO 4: 110~160g / l
Current density: 10 to 50 a / dm 2
Bath temperature: 15-35 ° C

(3)Niめっき処理条件(めっき浴):
NiSO/7HO :220〜360g/l
BO :20〜50g/l
電流密度 :1〜5a/dm
浴温 :15〜35℃
(3) Ni plating treatment conditions (plating bath):
NiSO 4 / 7H 2 O: 220~360g / l
H 3 BO 3: 20~50g / l
Current density: 1 to 5 a / dm 2
Bath temperature: 15-35 ° C

(5)Crめっき処理条件(めっき浴):
CrO :10〜300g/l
SO :0.1〜3g/l
電流密度 :1〜10a/dm
浴温 :15〜35℃
(5) Cr plating treatment conditions (plating bath):
CrO 3 : 10 to 300 g / l
H 2 SO 4: 0.1~3g / l
Current density: 1-10 a / dm 2
Bath temperature: 15-35 ° C

(6)クロメート処理条件(処理浴):
CrO :0.5〜3g/l
電流密度 :1〜4a/dm
浴温 :15〜30℃
(6) Chromate treatment conditions (treatment bath):
CrO 3: 0.5~3g / l
Current density: 1 to 4 a / dm 2
Bath temperature: 15-30 ° C

(7)シランカップリング剤処理
3-アミノプロピルトリエトキシシラン :0.1〜0.5%溶液を塗布
(7) Silane coupling agent treatment 3-aminopropyltriethoxysilane: 0.1-0.5% solution applied

以下の実施例1〜11で使用したキャリア付き極薄銅箔は、キャリア箔として、Tiドラムをカソードとして作成した厚さ35μmの銅箔を使用し、このキャリア銅箔の表面にCr付着量にして0.001〜3.0mg/dmの剥離層を形成し、該剥離層上に厚さ3.0μmの極薄銅箔を形成したものである。 The ultrathin copper foil with a carrier used in Examples 1 to 11 below uses a 35 μm-thick copper foil prepared using a Ti drum as a cathode as the carrier foil, and the Cr adhesion amount is set on the surface of the carrier copper foil. A release layer of 0.001 to 3.0 mg / dm 2 is formed, and an ultrathin copper foil having a thickness of 3.0 μm is formed on the release layer.

実施例1
キャリア銅箔付き極薄銅箔の表面(キャリア箔に接着している面と反対側の面)に、Ni量にして0.2mg/dmのNiめっき処理を施した。
Example 1
The surface of the ultrathin copper foil with the carrier copper foil (the surface opposite to the surface bonded to the carrier foil) was subjected to Ni plating treatment with a Ni amount of 0.2 mg / dm 2 .

実施例2
キャリア銅箔付き極薄銅箔の表面(キャリア箔に接着している面と反対側の面)に、Ni量にして1.0mg/dmのNiめっき処理を施した。
Example 2
The surface of the ultra-thin copper foil with carrier copper foil (surface opposite to the surface bonded to the carrier foil) was subjected to Ni plating treatment of 1.0 mg / dm 2 in terms of Ni amount.

実施例3
キャリア銅箔付き極薄銅箔の表面(キャリア箔に接着している面と反対側の面)に、Cr量にして0.1mg/dmのクロメート処理を施した。
Example 3
The surface of the ultrathin copper foil with carrier copper foil (surface opposite to the surface bonded to the carrier foil) was subjected to a chromate treatment of 0.1 mg / dm 2 in terms of Cr amount.

実施例4
キャリア銅箔付き極薄銅箔の表面(キャリア箔に接着している面と反対側の面)に、Cr量にして0.5mg/dmのクロメート処理を施した。
Example 4
The surface of the ultrathin copper foil with carrier copper foil (surface opposite to the surface bonded to the carrier foil) was subjected to a chromate treatment of 0.5 mg / dm 2 in terms of Cr amount.

実施例5
キャリア銅箔付き極薄銅箔の表面(キャリア箔に接着している面と反対側の面)に、Cr量にして0.5mg/dmのCrめっき処理を施した。
Example 5
The surface of the ultrathin copper foil with carrier copper foil (surface opposite to the surface bonded to the carrier foil) was subjected to Cr plating treatment at 0.5 mg / dm 2 in terms of Cr amount.

実施例6
キャリア銅箔付き極薄銅箔の表面(キャリア箔に接着している面と反対側の面)に、Ni量にして0.2mg/dmのNiめっき処理を施し、更に金属Cr量にして0.1mg/dmのクロメート処理を施した。
Example 6
The surface of the ultrathin copper foil with carrier copper foil (surface opposite to the surface bonded to the carrier foil) is subjected to Ni plating treatment of 0.2 mg / dm 2 in Ni amount, and further to the metal Cr amount A chromate treatment of 0.1 mg / dm 2 was performed.

実施例7
キャリア銅箔付き極薄銅箔の表面(キャリア箔に接着している面と反対側の面)に、Ni量にして0.2mg/dmのNiめっき処理を施し、更に金属Cr量にして0.1mg/dmのCrめっき処理を施した。
Example 7
The surface of the ultrathin copper foil with carrier copper foil (surface opposite to the surface bonded to the carrier foil) is subjected to Ni plating treatment of 0.2 mg / dm 2 in Ni amount, and further to the metal Cr amount A Cr plating treatment of 0.1 mg / dm 2 was performed.

実施例8
キャリア銅箔付き極薄銅箔の表面(キャリア箔に接着している面と反対側の面)に、Ni量にして0.4mg/dmのNiめっき処理、金属Cr量にして0.2mg/dmのクロメート処理を施した。
Example 8
On the surface of the ultrathin copper foil with carrier copper foil (surface opposite to the surface bonded to the carrier foil), Ni plating treatment of 0.4 mg / dm 2 in Ni amount, 0.2 mg in metal Cr amount / Dm 2 chromate treatment.

実施例9
キャリア銅箔付き極薄銅箔の表面(キャリア箔に接着している面と反対側の面)に、Ni量にして0.4mg/dmのNiめっき処理し、金属Cr量にして0.2mg/dmのクロメート処理を施し、更にシランカップリング剤処理を施した。
Example 9
The surface of the ultrathin copper foil with carrier copper foil (surface opposite to the surface bonded to the carrier foil) was subjected to Ni plating treatment with a Ni content of 0.4 mg / dm 2 and a metal Cr content of 0. A chromate treatment of 2 mg / dm 2 was applied, and a silane coupling agent treatment was further applied.

実施例10
キャリア銅箔付き極薄銅箔の表面(キャリア箔に接着している面と反対側の面)に、粗化銅粒量0.02g/dmの粗化処理を施し、更にNi量にして0.4g/dmのNiめっき処理、金属Cr量にして0.2mg/dmのクロメート処理、シランカップリング剤処理を施した。
Example 10
The surface of the ultra-thin copper foil with carrier copper foil (the surface opposite to the surface bonded to the carrier foil) is subjected to a roughening treatment with a roughened copper grain amount of 0.02 g / dm 2 to further reduce the amount of Ni. Ni plating treatment of 0.4 g / dm 2 , chromate treatment of 0.2 mg / dm 2 in terms of metal Cr amount, and silane coupling agent treatment were performed.

実施例11
キャリア銅箔付き極薄銅箔の表面(キャリア箔に接着している面と反対側の面)に、粗化銅粒量0.08g/dmの粗化処理を施し、Ni量にして0.4mg/dmのNiめっき処理、金属Cr量にして0.2mg/dmのクロメート処理、シランカップリング剤処理を施した。
Example 11
The surface of the ultra-thin copper foil with carrier copper foil (surface opposite to the surface bonded to the carrier foil) is subjected to a roughening treatment with a roughened copper grain amount of 0.08 g / dm 2 , and the amount of Ni is reduced to 0. Ni plating treatment .4mg / dm 2, a chromate treatment of 0.2 mg / dm 2 in the metal Cr content, subjected to silane coupling agent treatment.

比較例1
キャリア銅箔付き極薄銅箔の表面(キャリア箔に接着している面と反対側の面)に、金属Cr量にして0.02mg/dmのクロメート処理を施した。
Comparative Example 1
The surface of the ultrathin copper foil with carrier copper foil (surface opposite to the surface bonded to the carrier foil) was subjected to a chromate treatment of 0.02 mg / dm 2 in terms of metal Cr.

比較例2
キャリア銅箔付き極薄銅箔の表面(キャリア箔に接着している面と反対側の面)に、Ni量にして0.01mg/dmのNiめっき処理を施した。
Comparative Example 2
The surface of the ultrathin copper foil with carrier copper foil (surface opposite to the surface bonded to the carrier foil) was subjected to Ni plating treatment of 0.01 mg / dm 2 in terms of Ni amount.

比較例3
キャリア銅箔付き極薄銅箔の表面(キャリア箔に接着している面と反対側の面)に、Zn量にして0.1mg/dmのZnめっき処理を施し、更に金属Cr量にして0.02mg/dmのクロメート処理を施した。
Comparative Example 3
The surface of the ultra-thin copper foil with carrier copper foil (surface opposite to the surface bonded to the carrier foil) is subjected to Zn plating treatment of 0.1 mg / dm 2 in terms of Zn amount, and further to the amount of metal Cr A chromate treatment of 0.02 mg / dm 2 was applied.

比較例4
キャリア銅箔付き極薄銅箔の表面(キャリア箔に接着している面と反対側の面)に、Zn量にして0.12mg/dmのZnめっき処理を施し、更に金属Cr量にして0.02mg/dmのクロメート処理を施した。
Comparative Example 4
The surface of the ultra-thin copper foil with carrier copper foil (surface opposite to the surface bonded to the carrier foil) is subjected to Zn plating treatment of 0.12 mg / dm 2 in terms of Zn amount, and further to the amount of metal Cr A chromate treatment of 0.02 mg / dm 2 was applied.

実施例1乃至11及び比較例1乃至4に付き「粗化銅粒子」の平均粒径、表面粗さRz、金属付着量、ピール強度を測定し、その結果を表1、2に示した。 The average particle diameter, surface roughness Rz, metal adhesion amount, and peel strength of the “roughened copper particles” in Examples 1 to 11 and Comparative Examples 1 to 4 were measured, and the results are shown in Tables 1 and 2.

表中のピール強度は、表面処理を施したキャリア付き極薄銅箔に、ポリアミック酸ワニスを塗布し、発泡が起こらないように段階的に乾燥した後、窒素雰囲気下において330℃(30分間)でイミド化することにより、25μm厚のポリイミド系フレキシブル銅張積層板を作成し、キャリア付き極薄銅箔にパターン加工を施し、23℃における接着強度(ピール強度)(kN/m)を測定した結果である。 The peel strengths in the table are as follows. After applying a polyamic acid varnish to an ultrathin copper foil with a carrier subjected to a surface treatment and drying it stepwise so as not to cause foaming, it is 330 ° C. (30 minutes) in a nitrogen atmosphere. The polyimide-based flexible copper-clad laminate with a thickness of 25 μm was prepared by imidizing with, and pattern processing was applied to the ultrathin copper foil with carrier, and the adhesive strength (peel strength) (kN / m) at 23 ° C. was measured. It is a result.

Figure 2010006071
Figure 2010006071

Figure 2010006071
Figure 2010006071

各実施例と比較例とを表1、表2で比較する。
Ni量を0.2mg/dm被覆した実施例1、Ni量を1.0mg/dm被覆した実施例2、クロメート層を金属Cr量で0.1mg/dm被覆した実施例3、クロメート層を金属Cr量として0.5mg/dm被覆した実施例4、クロム層を金属Cr量として0.5mg/dm被覆した実施例5、Ni量を0.2mg/dm被覆し、更にクロメート層を金属Cr量として0.1mg/dm被覆した実施例6、Ni量を0.2mg/dm被覆し、更にCr層を金属Cr量として0.1mg/dm被覆した実施例7は比較例1〜3に比較してピール強度が向上している。
Each Example and Comparative Example are compared in Table 1 and Table 2.
Example 1 coated with 0.2 mg / dm 2 of Ni, Example 2 coated with 1.0 mg / dm 2 of Ni, Example 3 coated with 0.1 mg / dm 2 of chromate layer with metal Cr, Chromate example layer was 0.5 mg / dm 2 coating as weight metal Cr 4, a chromium layer of 0.5 mg / dm 2 coated example 5, Ni amount 0.2 mg / dm 2 was coated as the amount metals Cr, further Example 6 in which the chromate layer was coated with 0.1 mg / dm 2 as the amount of metallic Cr, Example 7 where the amount of Ni was coated at 0.2 mg / dm 2, and the Cr layer was further coated as 0.1 mg / dm 2 as the amount of metallic Cr Compared with Comparative Examples 1-3, the peel strength is improved.

Ni量を0.4mg/dm被覆し、更にクロメート層を金属Cr量として0.2mg/dm被覆した実施例8は実施例6よりもNi量、金属Cr量を多く被覆したことにより、ピール強度が更に向上した。 In Example 8 in which the amount of Ni was coated at 0.4 mg / dm 2 and the chromate layer was further coated at 0.2 mg / dm 2 as the amount of metallic Cr, the amount of Ni and the amount of metallic Cr were coated more than in Example 6, The peel strength was further improved.

実施例9は実施例8に対して、さらにシランカップリング剤処理を施したことにより、ピール強度が更に向上した。 In Example 9, the peel strength was further improved by subjecting Example 8 to further silane coupling agent treatment.

実施例10は実施例9に対して、粗化処理(粗化銅粒量0.02g/dm)を施したことにより、ピール強度が更に向上した。 In Example 10, the peel strength was further improved by subjecting Example 9 to a roughening treatment (roughened copper grain amount: 0.02 g / dm 2 ).

実施例11は実施例10に対して、粗化処理(粗化銅粒量0.08g/dm)を多く施したことにより、ピール強度が更に向上した。 In Example 11, the peel strength was further improved by applying a large amount of roughening treatment (roughened copper grain amount 0.08 g / dm 2 ) to Example 10.

実施例及び比較例で作成した表面処理キャリア付き極薄銅箔に、ポリアミック酸ワニスを塗布し、発泡が起こらないように段階的に乾燥した後、窒素雰囲気下において330℃(30分間)でイミド化することにより、25μm厚のポリイミド系フレキシブル銅張積層板を作成し、キャリア箔を除去した後、極薄銅箔にパターン加工を施した。その結果、実施例で作成したキャリア付き極薄銅箔を表面処理したものでは高ピール強度を維持しつつ、配線ピッチL/S=25/25のファインパターンを形成することができた。また、絶縁信頼性も確保された。
なお、比較例においても実施例と同じ条件で配線ピッチL/S=25/25のファインパターンを形成したが、何れもピール強度が不足し、満足する配線板を作成することができなかった。
After applying polyamic acid varnish to the ultrathin copper foil with surface-treated carrier prepared in Examples and Comparative Examples and drying stepwise so as not to cause foaming, the imide was formed at 330 ° C. (30 minutes) in a nitrogen atmosphere. As a result, a polyimide-based flexible copper clad laminate having a thickness of 25 μm was prepared, and after removing the carrier foil, patterning was applied to the ultrathin copper foil. As a result, it was possible to form a fine pattern with a wiring pitch L / S = 25/25 while maintaining high peel strength with the surface treatment of the ultrathin copper foil with a carrier prepared in the example. Also, insulation reliability was ensured.
In the comparative example, a fine pattern with a wiring pitch L / S = 25/25 was formed under the same conditions as in the example. However, in all cases, the peel strength was insufficient and a satisfactory wiring board could not be produced.

本発明のキャリア付き極薄銅箔は、極薄銅箔の表面にNi、クロメート、Cr層からなる表面処理を施すことにより、ポリイミド基板との間で高いピール強度を得ることができる。また、低粗度であることより、絶縁信頼性、屈曲特性、ファインパターン用途に優れたフレキシブル銅張積層板用キャリア付き極薄銅箔、また、該キャリア付き極薄銅箔を使用したフレキシブル銅張積層板及びフレキシブルプリント配線板を提供することができる。 The ultra-thin copper foil with a carrier of the present invention can obtain a high peel strength with a polyimide substrate by subjecting the surface of the ultra-thin copper foil to a surface treatment comprising Ni, chromate and Cr layers. In addition, because of low roughness, ultra-thin copper foil with carrier for flexible copper-clad laminates with excellent insulation reliability, bending characteristics and fine pattern applications, and flexible copper using the ultra-thin copper foil with carrier A tension laminate and a flexible printed wiring board can be provided.

Claims (5)

キャリア箔、剥離層、極薄銅箔がこの順に積層されているキャリア付き極薄銅箔の前記極薄銅箔表面に、Ni量にして0.03〜3.0mg/dm含有するNi層又は/及びNi合金層が形成され、該Ni層又は/及びNi合金層の上にCr量にして0.03〜1.0mg/dm含有するクロメートからなる表面処理層が形成されているキャリア付き極薄銅箔。 Carrier foil, a release layer, very thin copper foil the ultra-thin copper foil surface of the ultrathin copper foil with carrier are laminated in this order, Ni layer containing 0.03~3.0mg / dm 2 in the amount of Ni Alternatively, a carrier in which a Ni alloy layer is formed and a surface treatment layer made of chromate containing 0.03 to 1.0 mg / dm 2 of Cr is formed on the Ni layer or / and the Ni alloy layer. With ultra-thin copper foil. 前記極薄銅箔表面を平均粒径1μm以下の銅粒により粗化処理層が形成され、該粗化処理層の表面に前記表面処理層が形成されていることを特徴とする請求項1に記載のキャリア付き極薄銅箔。 2. The surface of the ultrathin copper foil is formed of copper grains having an average particle size of 1 μm or less, and the surface treatment layer is formed on the surface of the roughened layer. The ultrathin copper foil with a carrier described. 前記表面処理層の表面にシランカップリング剤処理が施されていることを特徴とする請求項1に記載のキャリア付き極薄銅箔。 The ultrathin copper foil with a carrier according to claim 1, wherein a surface of the surface treatment layer is treated with a silane coupling agent. 請求項1に記載のキャリア付き極薄銅箔を用いて作成したポリイミド系フレキシブル銅張積層板。 A polyimide-based flexible copper-clad laminate produced using the ultrathin copper foil with a carrier according to claim 1. 請求項4に記載のポリイミド系フレキシブル銅張積層板を用いて作成したポリイミド系フレキシブルプリント配線板。 A polyimide-based flexible printed wiring board produced using the polyimide-based flexible copper-clad laminate according to claim 4.
JP2009191801A 2009-08-21 2009-08-21 Surface treatment copper foil, extremely thin copper foil with carrier, flexible copper clad laminate, and polyimide based flexible printed wiring board Pending JP2010006071A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009191801A JP2010006071A (en) 2009-08-21 2009-08-21 Surface treatment copper foil, extremely thin copper foil with carrier, flexible copper clad laminate, and polyimide based flexible printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009191801A JP2010006071A (en) 2009-08-21 2009-08-21 Surface treatment copper foil, extremely thin copper foil with carrier, flexible copper clad laminate, and polyimide based flexible printed wiring board

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005189763A Division JP4429979B2 (en) 2005-06-29 2005-06-29 Ultra-thin copper foil with carrier and method for producing ultra-thin copper foil with carrier

Publications (1)

Publication Number Publication Date
JP2010006071A true JP2010006071A (en) 2010-01-14

Family

ID=41587068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009191801A Pending JP2010006071A (en) 2009-08-21 2009-08-21 Surface treatment copper foil, extremely thin copper foil with carrier, flexible copper clad laminate, and polyimide based flexible printed wiring board

Country Status (1)

Country Link
JP (1) JP2010006071A (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011121801A1 (en) * 2010-03-30 2011-10-06 Jx日鉱日石金属株式会社 Composite for electromagnetic shielding
JP5156873B1 (en) * 2012-07-25 2013-03-06 Jx日鉱日石金属株式会社 Copper foil with carrier
WO2013031913A1 (en) 2011-08-31 2013-03-07 Jx日鉱日石金属株式会社 Copper foil with carrier
JP5247929B1 (en) * 2012-11-28 2013-07-24 Jx日鉱日石金属株式会社 Copper foil with carrier, method for producing copper foil with carrier, printed wiring board and printed circuit board
JP5364838B1 (en) * 2012-11-30 2013-12-11 Jx日鉱日石金属株式会社 Copper foil with carrier
JP5380615B1 (en) * 2012-10-26 2014-01-08 Jx日鉱日石金属株式会社 Copper foil with carrier, copper-clad laminate using the same, printed wiring board, printed circuit board, and printed wiring board manufacturing method
JP5481553B1 (en) * 2012-11-30 2014-04-23 Jx日鉱日石金属株式会社 Copper foil with carrier
JP2014201777A (en) * 2013-04-02 2014-10-27 Jx日鉱日石金属株式会社 Carrier-provided copper foil
JP2014201778A (en) * 2013-04-02 2014-10-27 Jx日鉱日石金属株式会社 Copper foil with carrier
TWI492842B (en) * 2012-01-13 2015-07-21 Jx Nippon Mining & Metals Corp A copper foil composite, and a molded body and a method for producing the same
KR20150113901A (en) 2014-03-31 2015-10-08 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Copper foil with carrier, printed circuit board, laminate, electronic device and method of manufacturing printed circuit board
KR20160026758A (en) 2014-08-29 2016-03-09 제이엑스 킨조쿠 가부시키가이샤 Method of manufacturing copper foil with carrier, method of manufacturing copper-clad laminate, method of manufacturing printed wiring board, and method of manufacturing electronic device, copper foil with carrier, laminate, printed wiring board, and electronic device
KR20160145198A (en) 2012-11-20 2016-12-19 제이엑스금속주식회사 Copper foil with carrier
JPWO2014080958A1 (en) * 2012-11-20 2017-01-05 Jx金属株式会社 Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board
US9549471B2 (en) 2010-07-15 2017-01-17 Jx Nippon Mining & Metals Corporation Copper foil composite
KR20170009734A (en) 2015-07-16 2017-01-25 제이엑스금속주식회사 Copper foil with carrier, laminate, production method for laminate, production method for printed wiring board and production method for electronic device
KR20170046822A (en) 2012-09-11 2017-05-02 제이엑스금속주식회사 Copper foil provided with carrier
KR20180035566A (en) 2016-09-29 2018-04-06 제이엑스금속주식회사 Metal foil with carrier, laminate, method of manufacturing printed wiring board, method of manufacturing electronic device and method of manufacturing metal foil with carrier
US9981450B2 (en) 2012-01-13 2018-05-29 Jx Nippon Mining & Metals Corporation Copper foil composite, formed product and method of producing the same
US10123433B2 (en) 2015-07-27 2018-11-06 Jx Nippon Mining & Metals Corporation Carrier-attached copper foil, laminate, method for manufacturing printed-wiring board and method for manufacturing electronic device
US10178816B2 (en) 2011-05-13 2019-01-08 Jx Nippon Mining & Metals Corporation Copper foil composite, copper foil used for the same, formed product and method of producing the same
US10251283B2 (en) 2015-08-06 2019-04-02 Jx Nippon Mining & Metals Corporation Carrier-attached copper foil, laminate, method for producing printed wiring board, and method for producing electronic device
US10299385B2 (en) 2015-08-06 2019-05-21 Jx Nippon Mining & Metals Corporation Carrier-attached copper foil, laminate, method for producing printed wiring board, and method for producing electronic device
US10332756B2 (en) 2015-07-27 2019-06-25 Jx Nippon Mining & Metals Corporation Carrier-attached copper foil, laminate, method for manufacturing printed-wiring board and method for manufacturing electronic device
US10356898B2 (en) 2015-08-06 2019-07-16 Jx Nippon Mining & Metals Corporation Carrier-attached copper foil, laminate, method for producing printed wiring board, and method for producing electronic device
JP2021035755A (en) * 2019-08-26 2021-03-04 東洋鋼鈑株式会社 Carrier-layer-included metal laminate base material and method for manufacturing the same, metal laminate base material and method for manufacturing the same, and printed wiring board
WO2021039759A1 (en) * 2019-08-26 2021-03-04 東洋鋼鈑株式会社 Carrier-layer-included metal laminate base material and method for producing same, metal laminate base material and method for producing same, and printed wiring board

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03102277A (en) * 1989-12-13 1991-04-26 Hinode Pawatoronikusu Kk Printed board for constituting signal taking-out circuit utilising hall element
JPH045588A (en) * 1990-04-20 1992-01-09 Seiko Instr Inc Squid fluxmeter provided with coil for calibration
JP2001214299A (en) * 2000-01-28 2001-08-07 Mitsui Mining & Smelting Co Ltd Surface-treated copper foil, method for manufacturing the surface-treated copper foil and copper-clad laminate using the surface-treated copper foil
JP2002016111A (en) * 2000-04-25 2002-01-18 Nippon Denkai Kk Copper foil used for tab tape carrier, and tab carrier tape and tab tape carrier using copper foil
JP2003193291A (en) * 2001-12-28 2003-07-09 Furukawa Circuit Foil Kk Copper foil with resistance layer and production method therefor
JP2005048269A (en) * 2003-07-31 2005-02-24 Nikko Materials Co Ltd Surface treated copper foil, and board obtained by using the same
JP2005048277A (en) * 2003-07-15 2005-02-24 Mitsui Mining & Smelting Co Ltd Electrolytic copper foil with carrier foil, and manufacturing method therefor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03102277A (en) * 1989-12-13 1991-04-26 Hinode Pawatoronikusu Kk Printed board for constituting signal taking-out circuit utilising hall element
JPH045588A (en) * 1990-04-20 1992-01-09 Seiko Instr Inc Squid fluxmeter provided with coil for calibration
JP2001214299A (en) * 2000-01-28 2001-08-07 Mitsui Mining & Smelting Co Ltd Surface-treated copper foil, method for manufacturing the surface-treated copper foil and copper-clad laminate using the surface-treated copper foil
JP2002016111A (en) * 2000-04-25 2002-01-18 Nippon Denkai Kk Copper foil used for tab tape carrier, and tab carrier tape and tab tape carrier using copper foil
JP2003193291A (en) * 2001-12-28 2003-07-09 Furukawa Circuit Foil Kk Copper foil with resistance layer and production method therefor
JP2005048277A (en) * 2003-07-15 2005-02-24 Mitsui Mining & Smelting Co Ltd Electrolytic copper foil with carrier foil, and manufacturing method therefor
JP2005048269A (en) * 2003-07-31 2005-02-24 Nikko Materials Co Ltd Surface treated copper foil, and board obtained by using the same

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5000792B2 (en) * 2010-03-30 2012-08-15 Jx日鉱日石金属株式会社 Electromagnetic wave shielding composite
TWI448240B (en) * 2010-03-30 2014-08-01 Jx Nippon Mining & Metals Corp Electromagnetic wave shielding composite
WO2011121801A1 (en) * 2010-03-30 2011-10-06 Jx日鉱日石金属株式会社 Composite for electromagnetic shielding
US9549471B2 (en) 2010-07-15 2017-01-17 Jx Nippon Mining & Metals Corporation Copper foil composite
US10178816B2 (en) 2011-05-13 2019-01-08 Jx Nippon Mining & Metals Corporation Copper foil composite, copper foil used for the same, formed product and method of producing the same
JP5373995B2 (en) * 2011-08-31 2013-12-18 Jx日鉱日石金属株式会社 Copper foil with carrier
WO2013031913A1 (en) 2011-08-31 2013-03-07 Jx日鉱日石金属株式会社 Copper foil with carrier
KR101614624B1 (en) 2011-08-31 2016-04-29 제이엑스 킨조쿠 가부시키가이샤 Copper foil with carrier
US9826635B2 (en) 2011-08-31 2017-11-21 AXIS Patent International Carrier-attached copper foil
KR20140024951A (en) 2011-08-31 2014-03-03 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Copper foil with carrier
JPWO2013031913A1 (en) * 2011-08-31 2015-03-23 Jx日鉱日石金属株式会社 Copper foil with carrier
US8980414B2 (en) 2011-08-31 2015-03-17 Jx Nippon Mining & Metals Corporation Carrier-attached copper foil
TWI457230B (en) * 2011-08-31 2014-10-21 Jx Nippon Mining & Metals Corp Attached copper foil
US9981450B2 (en) 2012-01-13 2018-05-29 Jx Nippon Mining & Metals Corporation Copper foil composite, formed product and method of producing the same
TWI492842B (en) * 2012-01-13 2015-07-21 Jx Nippon Mining & Metals Corp A copper foil composite, and a molded body and a method for producing the same
US9955574B2 (en) 2012-01-13 2018-04-24 Jx Nippon Mining & Metals Corporation Copper foil composite, formed product and method of producing the same
WO2014017606A1 (en) * 2012-07-25 2014-01-30 Jx日鉱日石金属株式会社 Copper foil with carrier
JP5156873B1 (en) * 2012-07-25 2013-03-06 Jx日鉱日石金属株式会社 Copper foil with carrier
KR20170046822A (en) 2012-09-11 2017-05-02 제이엑스금속주식회사 Copper foil provided with carrier
JP5380615B1 (en) * 2012-10-26 2014-01-08 Jx日鉱日石金属株式会社 Copper foil with carrier, copper-clad laminate using the same, printed wiring board, printed circuit board, and printed wiring board manufacturing method
TWI564143B (en) * 2012-10-26 2017-01-01 Jx日鑛日石金屬股份有限公司 A copper foil with a carrier, a copper-clad laminate, with use of the copper foil, a printed wiring board with use of the copper foil, a printed circuit board with use of the copper foil, and manufacturing method of a printed wiring board
JPWO2014080958A1 (en) * 2012-11-20 2017-01-05 Jx金属株式会社 Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board
KR20190103452A (en) 2012-11-20 2019-09-04 제이엑스금속주식회사 Copper foil with carrier
KR20190025739A (en) 2012-11-20 2019-03-11 제이엑스금속주식회사 Copper foil with carrier
KR20160145198A (en) 2012-11-20 2016-12-19 제이엑스금속주식회사 Copper foil with carrier
JP5247929B1 (en) * 2012-11-28 2013-07-24 Jx日鉱日石金属株式会社 Copper foil with carrier, method for producing copper foil with carrier, printed wiring board and printed circuit board
JP2014129554A (en) * 2012-11-28 2014-07-10 Jx Nippon Mining & Metals Corp Copper foil with carrier, process for producing copper foil with carrier, printed wiring board, and printed circuit board
WO2014084384A1 (en) * 2012-11-30 2014-06-05 Jx日鉱日石金属株式会社 Carrier-supported copper foil
WO2014084385A1 (en) * 2012-11-30 2014-06-05 Jx日鉱日石金属株式会社 Copper foil with carrier
JP5481553B1 (en) * 2012-11-30 2014-04-23 Jx日鉱日石金属株式会社 Copper foil with carrier
JP5364838B1 (en) * 2012-11-30 2013-12-11 Jx日鉱日石金属株式会社 Copper foil with carrier
KR101793799B1 (en) 2012-11-30 2017-11-03 제이엑스금속주식회사 Carrier-supported copper foil
CN104822525A (en) * 2012-11-30 2015-08-05 Jx日矿日石金属株式会社 Copper foil with carrier
JP2014201778A (en) * 2013-04-02 2014-10-27 Jx日鉱日石金属株式会社 Copper foil with carrier
JP2014201777A (en) * 2013-04-02 2014-10-27 Jx日鉱日石金属株式会社 Carrier-provided copper foil
KR20150113901A (en) 2014-03-31 2015-10-08 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Copper foil with carrier, printed circuit board, laminate, electronic device and method of manufacturing printed circuit board
KR20160026758A (en) 2014-08-29 2016-03-09 제이엑스 킨조쿠 가부시키가이샤 Method of manufacturing copper foil with carrier, method of manufacturing copper-clad laminate, method of manufacturing printed wiring board, and method of manufacturing electronic device, copper foil with carrier, laminate, printed wiring board, and electronic device
KR20170009734A (en) 2015-07-16 2017-01-25 제이엑스금속주식회사 Copper foil with carrier, laminate, production method for laminate, production method for printed wiring board and production method for electronic device
US10349531B2 (en) 2015-07-16 2019-07-09 Jx Nippon Mining & Metals Corporation Carrier-attached copper foil, laminate, laminate producing method, printed wiring board producing method, and electronic device producing method
US10123433B2 (en) 2015-07-27 2018-11-06 Jx Nippon Mining & Metals Corporation Carrier-attached copper foil, laminate, method for manufacturing printed-wiring board and method for manufacturing electronic device
US10332756B2 (en) 2015-07-27 2019-06-25 Jx Nippon Mining & Metals Corporation Carrier-attached copper foil, laminate, method for manufacturing printed-wiring board and method for manufacturing electronic device
US10356898B2 (en) 2015-08-06 2019-07-16 Jx Nippon Mining & Metals Corporation Carrier-attached copper foil, laminate, method for producing printed wiring board, and method for producing electronic device
US10299385B2 (en) 2015-08-06 2019-05-21 Jx Nippon Mining & Metals Corporation Carrier-attached copper foil, laminate, method for producing printed wiring board, and method for producing electronic device
US10251283B2 (en) 2015-08-06 2019-04-02 Jx Nippon Mining & Metals Corporation Carrier-attached copper foil, laminate, method for producing printed wiring board, and method for producing electronic device
KR20180035566A (en) 2016-09-29 2018-04-06 제이엑스금속주식회사 Metal foil with carrier, laminate, method of manufacturing printed wiring board, method of manufacturing electronic device and method of manufacturing metal foil with carrier
JP2021035755A (en) * 2019-08-26 2021-03-04 東洋鋼鈑株式会社 Carrier-layer-included metal laminate base material and method for manufacturing the same, metal laminate base material and method for manufacturing the same, and printed wiring board
WO2021039759A1 (en) * 2019-08-26 2021-03-04 東洋鋼鈑株式会社 Carrier-layer-included metal laminate base material and method for producing same, metal laminate base material and method for producing same, and printed wiring board
CN114342571A (en) * 2019-08-26 2022-04-12 东洋钢钣株式会社 Metal laminated substrate with carrier layer and method for producing same, metal laminated substrate and method for producing same, and printed wiring board

Similar Documents

Publication Publication Date Title
JP4429979B2 (en) Ultra-thin copper foil with carrier and method for producing ultra-thin copper foil with carrier
JP2010006071A (en) Surface treatment copper foil, extremely thin copper foil with carrier, flexible copper clad laminate, and polyimide based flexible printed wiring board
KR101208310B1 (en) Copper foil for polyimide copper layer-built panel, polyimide copper layer-built panel and flexible print circuit board
KR101851882B1 (en) Treated surface copper foil, copper foil with carrier, substrate, resin substrate, printed circuit board, copper clad laminate, and printed circuit board manufacturing method
WO2019208521A1 (en) Surface-treated copper foil, copper clad laminate, and printed wiring board
KR101853519B1 (en) Liquid crystal polymer-copper clad laminate and copper foil used for liquid crystal polymer-copper clad laminate
JP4087369B2 (en) Ultra-thin copper foil with carrier and printed wiring board
JP2010100942A (en) Ultra-thin copper foil with carrier, method of manufacturing the same and printed circuit board
JP2012102407A (en) Ultra-thin copper foil with carrier and printed circuit board
TW201800242A (en) Surface-treated copper foil and copper-clad laminate produced using same
KR101822251B1 (en) Copper foil, copper foil with carrier, copper-clad laminate, printed circuit board, circuit forming substrate for semiconductor package, semiconductor package, electronic device, resin substrate, circuit forming method, semiadditive method, and printed circuit board manufacturing method
JP2009206514A (en) Copper foil for printed circuit and surface treating method thereof, and plating apparatus
JP4429539B2 (en) Electrolytic copper foil for fine pattern
JP2010141227A (en) Rolled copper foil for printed wiring board
JP2007146258A (en) Electrolytic copper foil, printed wiring board and multilayer printed wiring board
JPH08222857A (en) Copper foil and high-density multilayered printed circuit board using the foil for its internal-layer circuit
JP2005288856A (en) Electrolytic copper foil with carrier foil and method for manufacturing the same and copper-clad laminated sheet using electrolytic copper foil with carrier foil
KR101623713B1 (en) Copper foil for printing circuit
WO2013065831A1 (en) Copper foil for printed circuit
JP4748519B2 (en) Ultra thin copper foil with carrier, manufacturing method thereof, printed wiring board using ultra thin copper foil with carrier
JP5386652B1 (en) Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board
JP4391449B2 (en) Ultra-thin copper foil with carrier and printed wiring board
JP2020183565A (en) Electrolytic copper foil, surface-treated copper foil using electrolytic copper foil, copper-clad laminate using surface-treated copper foil, and printed circuit board
JP6329727B2 (en) Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board
JP2013166995A (en) Copper foil with carrier and method for producing the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A02 Decision of refusal

Effective date: 20111206

Free format text: JAPANESE INTERMEDIATE CODE: A02