WO2021039759A1 - Carrier-layer-included metal laminate base material and method for producing same, metal laminate base material and method for producing same, and printed wiring board - Google Patents

Carrier-layer-included metal laminate base material and method for producing same, metal laminate base material and method for producing same, and printed wiring board Download PDF

Info

Publication number
WO2021039759A1
WO2021039759A1 PCT/JP2020/031951 JP2020031951W WO2021039759A1 WO 2021039759 A1 WO2021039759 A1 WO 2021039759A1 JP 2020031951 W JP2020031951 W JP 2020031951W WO 2021039759 A1 WO2021039759 A1 WO 2021039759A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
metal
base material
low
carrier layer
Prior art date
Application number
PCT/JP2020/031951
Other languages
French (fr)
Japanese (ja)
Inventor
南部 光司
橋本 裕介
哲平 黒川
功太 貞木
貴文 畠田
Original Assignee
東洋鋼鈑株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020013319A external-priority patent/JP2021035755A/en
Application filed by 東洋鋼鈑株式会社 filed Critical 東洋鋼鈑株式会社
Priority to KR1020227008479A priority Critical patent/KR20220053602A/en
Priority to CN202080060045.1A priority patent/CN114342571A/en
Publication of WO2021039759A1 publication Critical patent/WO2021039759A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/085Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/088Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/06Interconnection of layers permitting easy separation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/26Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer which influences the bonding during the lamination process, e.g. release layers or pressure equalising layers
    • B32B2037/268Release layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/204Di-electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2327/00Polyvinylhalogenides
    • B32B2327/12Polyvinylhalogenides containing fluorine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2379/00Other polymers having nitrogen, with or without oxygen or carbon only, in the main chain
    • B32B2379/08Polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards

Definitions

  • the present invention relates to a metal laminated base material with a carrier layer and a manufacturing method thereof, a metal laminated base material and a manufacturing method thereof, and a printed wiring board.
  • a metal foil with a carrier layer is known as a member for forming fine wiring (fine pitch).
  • This metal foil with a carrier layer is a laminate of a peelable carrier layer and an ultrathin metal layer, and is laminated with a rigid substrate made of glass epoxy resin or the like to form a metal laminated base material with a carrier layer (metal-clad laminate). ) Is obtained.
  • a rigid substrate instead of the rigid substrate, one in which a flexible polymer film is laminated is also known, and is used as a metal laminated substrate for forming a flexible circuit board.
  • a polymer film using a film of a low dielectric polymer such as a low dielectric constant polyimide is useful for a high frequency circuit in a 5th generation mobile communication system (5G).
  • a carrier such as a copper foil for high-frequency circuits having a color difference ⁇ a * value of 4.0 or less and a color difference ⁇ b * value of 3.5 or less when measuring the color difference of the roughened surface in the described color difference system. Copper foil is disclosed.
  • Patent Document 1 also describes a copper-clad laminate with a carrier in which a rigid substrate such as a paper-based phenol resin or a polymer film such as a liquid crystal polymer (LCP) is laminated with the copper foil with a carrier. Has been done.
  • a rigid substrate such as a paper-based phenol resin or a polymer film such as a liquid crystal polymer (LCP)
  • Patent Document 1 when the copper foil with a carrier and the rigid substrate are bonded together, a prepreg obtained by impregnating a base material such as a glass cloth with a resin and curing the resin to a semi-cured state is prepared, and the copper foil is prepared. Is performed by superimposing the above on the prepreg and heating and pressurizing. Further, when a polymer film is used instead of the rigid substrate, copper foil is laminated and bonded (thermocompression bonded) to a base material such as a liquid crystal polymer under high temperature and high pressure.
  • thermocompression bonding temperature must be 280 ° C. or higher, or 300 ° C. or higher. In such a temperature range, the release layer between the carrier layer and the ultrathin metal layer is deteriorated, and the carrier's temperature is changed. There was a problem that the peelability was impaired.
  • thermocompression bonding temperature is lowered in order to maintain the peelability
  • adhesion between the ultrathin metal layer and the low-dielectric film is lowered. Therefore, it has been difficult in the past to maintain both the peelability (low adhesion) between the carrier and the ultrathin metal layer and to secure the high adhesion between the ultrathin metal layer and the low-dielectric film.
  • the present invention provides a metal laminated base material with a carrier layer, which ensures high adhesion between the ultrathin metal layer and the low-dielectric film while maintaining low adhesion between the carrier layer and the ultrathin metal layer. It is an object of the present invention to provide the manufacturing method. Another object of the present invention is to provide a metal laminated base material in which a low-dielectric film and an ultrathin metal layer are laminated, and a method for producing the same. Another object of the present invention is to provide a printed wiring board obtained from the above-mentioned metal laminated substrate and suitably used for a high frequency circuit.
  • the gist of the present invention is as follows.
  • the intermediate layer contains any one metal selected from the group consisting of copper, iron, nickel, zinc, chromium, cobalt, titanium, tin, platinum, silver and gold or an alloy thereof.
  • the described metal laminated base material is any one of the above (1) to (3), wherein the low-dielectric film is a film of a low-dielectric polymer selected from the group consisting of a liquid crystal polymer, polyethylene fluoride, polyamide and a low dielectric constant polyimide.
  • a method for producing a metal laminated base material with a carrier layer (10) The metal laminate group with a carrier layer according to (9) above, wherein the low-dielectric film is a film of a low-dielectric polymer selected from the group consisting of a liquid crystal polymer, polyethylene fluoride, polyamide and a low dielectric constant polyimide. Material manufacturing method.
  • a method for producing a metal laminated base material in which an ultrathin metal layer is laminated on at least one surface of a low-dielectric film via an intermediate layer containing a metal comprises a step of peeling off the carrier layer in the metal laminated base material with a carrier layer according to the above (2).
  • a metal laminated base material with a carrier layer maintenance of low adhesion between the carrier layer and the ultrathin metal layer and ensuring high adhesion between the ultrathin metal layer and the low dielectric film are ensured.
  • FIG. 1 shows a cross section of a metal laminated base material with a carrier layer according to the first embodiment of the present invention.
  • a metal foil 10 with a carrier layer composed of a carrier layer 11, a release layer 12, and an ultrathin metal layer 13 and a low-dielectric film 20 are laminated in this order. It is roughly configured.
  • a roughened particle layer, a rust preventive layer, a treated layer with a silane coupling agent, and the like are laminated on the surface of the ultrathin metal layer 13 on the low-dielectric film 20 side. You may. As for these layers, any one kind of layer may be laminated, or a plurality of kinds of layers may be laminated.
  • the roughened particle layer can contain, for example, any kind of metal selected from the group consisting of Cu, Co and Ni, or an alloy thereof. Specific examples thereof include a cobalt-nickel alloy plating layer and a copper-cobalt-nickel alloy plating layer.
  • the rust preventive layer may contain, for example, any kind of metal selected from the group consisting of Cr, Ni and Zn, or an alloy thereof. Specific examples thereof include a coating treatment of chromium oxide, a coating treatment of a mixture of chromium oxide and zinc / zinc oxide, and a Ni plating layer.
  • examples of the silane coupling agent include, but are not limited to, olefin-based silanes, epoxy-based silanes, acrylic-based silanes, amino-based silanes, and mercapto-based silanes. The silane coupling agent can be applied by appropriately using a method such as spraying, coating with a coater, or dipping.
  • the carrier layer 11 has a sheet shape, and functions as a supporting material or a protective layer for preventing wrinkles and breakage in the metal laminated base material 1A with the carrier layer and scratches on the ultrathin metal layer 13. .
  • Examples of the carrier layer 11 include foils or plates made of copper, aluminum, nickel, alloys thereof (stainless steel, brass, etc.), resins having a metal coated on the surface, and the like. A copper foil is preferable.
  • the thickness of the carrier layer 11 is not particularly limited, and is appropriately set according to desired characteristics such as flexibility. Specifically, it is preferably about 10 ⁇ m or more and 100 ⁇ m or less. If the thickness is too thin, the handleability of the metal foil 10 with a carrier layer may be impaired, which is not preferable. That is, it may be deformed during handling, causing wrinkles or cracks in the ultrathin metal layer 13. Further, if the carrier layer 11 is too thick, it has excessive rigidity as a supporting material and may be difficult to peel off from the ultrathin metal layer 13, which is not preferable. Further, the cost of producing the metal leaf 10 with a carrier layer also increases.
  • the release layer 12 reduces the release strength of the carrier layer 11, and when the metal foil 10 with the carrier layer is heated when it is bonded to the low-dielectric film 20, it is between the carrier layer 11 and the ultrathin metal layer 13. It also has a function of suppressing mutual diffusion that may occur in.
  • the release layer 12 may be either an organic release layer or an inorganic release layer, and examples of the components used in the organic release layer include nitrogen-containing organic compounds, sulfur-containing organic compounds, and carboxylic acids. Be done. Examples of the nitrogen-containing organic compound include a triazole compound and an imidazole compound.
  • triazole compounds examples include 1,2,3-benzotriazole, carboxybenzotriazole, N', N'-bis (benzotriazolylmethyl) urea, 1H-1,2,4-triazole and 3-amino-. Examples thereof include 1H-1,2,4-triazole.
  • sulfur-containing organic compound examples include mercaptobenzothiazole, thiothianulic acid, 2-benzimidazole thiol and the like.
  • carboxylic acids include monocarboxylic acids and dicarboxylic acids.
  • the components used in the inorganic release layer include Ni, Mo, Co, Cr, Fe, Ti, W, P, Zn, and a chromate-treated film.
  • the release layer 12 can be formed by bringing the component-containing solution of the release layer 12 into contact with the surface of the carrier layer 11 and fixing the component of the release layer 12 to the surface of the carrier layer 11.
  • this contact may be performed by immersion in the release layer component-containing solution, spraying the release layer component-containing solution, flowing down the release layer component-containing solution, or the like. After that, it can be fixed by drying or the like.
  • a method of forming a film of the components of the release layer 12 by a vapor phase method such as vapor deposition or sputtering can also be adopted.
  • the thickness of the release layer 12 is typically 1 nm or more and 1 ⁇ m or less, preferably 5 nm or more and 500 nm or less, but is not limited thereto. If the thickness of the peeling layer 12 is too thin, there is a problem that the peeling layer 12 cannot be sufficiently separated from the ultrathin metal layer 13 and the peeling is poor. Further, if the thickness is too large, peeling is possible, but the manufacturing cost is high, so that the balance is appropriately set.
  • the metal constituting the ultrathin metal layer 13 can be appropriately selected according to the application of the metal laminated base material 1A with a carrier layer and the desired characteristics. Specific examples thereof include copper, iron, nickel, zinc, tin, chromium, gold, silver, platinum, cobalt, titanium and alloys based on any of these. In particular, it is preferably a layer of copper or a copper alloy. By rolling and joining these metals with the low-dielectric film 20, for example, a flexible substrate for forming fine wiring can be obtained.
  • the thickness of the ultrathin metal layer 13 is 0.5 ⁇ m or more and 10 ⁇ m or less. It is preferably 1 ⁇ m or more and 7 ⁇ m or less.
  • an optical micrograph of a cross section of the metal laminated base material 1A with a carrier layer is acquired, and the thickness of the ultrathin metal layer 13 at any 10 points is measured in the optical micrograph. , The average value of the obtained values.
  • the method for producing such an ultrathin metal layer 13 is not particularly limited, but a release layer can be obtained by a wet film forming method such as an electroless plating method or an electrolytic plating method, a dry film forming method such as sputtering or chemical vapor deposition, or a combination thereof. It can be formed on the twelve.
  • the ultra-thin metal layer 13 and the low-dielectric film 20 and the peel strength between the carrier layer 11 and the ultra-thin metal layer 13 are compared.
  • the joint strength of is greater.
  • the ultra-thin metal layer 13 can be peeled off without causing wrinkles or tears.
  • the value of the bonding strength of the ultrathin metal layer 13 and the low dielectric film 20 and the value of the peel strength of the carrier layer 11 and the ultrathin metal layer 13 are too close, the value of the ultrathin metal layer 13 is practically low.
  • the bonding strength between the ultrathin metal layer 13 and the low dielectric film 20 and the carrier layer 11 and the electrode is preferably 0.25 N / cm or more. It is more preferably 0.5 N / cm or more, and most preferably 1.5 N / cm or more. Specific values of the bonding strength between the ultrathin metal layer 13 and the low dielectric film 20 and the peel strength between the carrier layer 11 and the ultrathin metal layer 13 include the bonding strength between the ultrathin metal layer 13 and the low dielectric film 20. However, it is preferably 2.0 N / cm or more.
  • the peel strength of the carrier layer 11 and the ultrathin metal layer 13 may be greater than 0, preferably 0.5 N / cm or less, but in a region of less than about 0.05 N / cm, the material to be peeled off ( Due to the influence of the rigidity of the carrier layer 11, the ultrathin metal layer 13, the low dielectric film 20, other rust preventive layer, etc.), accurate peel strength may not be measured.
  • the peel strength between the carrier layer 11 and the ultrathin metal layer 13 is preferably in the range of 0.15 N / cm or more and 0.5 N / cm or less. In order to measure the value of the bonding strength, first, a test piece having a width of 1 cm is prepared from the metal laminated base material 1A with a carrier layer.
  • the surface of the ultrathin metal layer 13 is electroplated (when the ultrathin metal layer 13 is copper, for example, copper plating), and the surface of the low dielectric film 20 is about 10 to 20 ⁇ m thick.
  • a metal layer (including an ultrathin metal layer 13) is formed.
  • the low-dielectric film 20 is fixed to the support, and the metal layer having a thickness of about 10 to 20 ⁇ m is formed into the low-dielectric film. Pull in the 90 ° direction with respect to 20. The force required for peeling at that time is used as the joint strength (unit: N / cm).
  • a test piece having a width of 1 cm is prepared from the metal laminated base material 1A with a carrier layer. After partially peeling off the carrier layer 11, the low-dielectric film 20 including the ultra-thin metal layer 13 is fixed to the support, and the carrier layer 11 is 90 ° in the direction of the low-dielectric film 20 including the ultra-thin metal layer 13. Pull to.
  • the force required for peeling at that time is defined as the peel strength (unit: N / cm).
  • the term "bonding strength between the ultrathin metal layer and the low dielectric film” refers to the bonding strength when the ultrathin metal layer and the low dielectric film are peeled off at the interface, and also the ultrathin metal layer. It also means the bonding strength when the inside of the film is broken and peeled off, and the bonding strength when the inside of the low dielectric film is broken and peeled off, and further, as described above, in the ultrathin metal layer.
  • treated layer (collectively referred to as "treated layer") are laminated on the surface of the low dielectric film side, the ultrathin metal layer and the treated layer It also means the bonding strength when peeling at the interface with, the bonding strength when peeling at the interface between the treated layer and the low dielectric film, and the bonding strength when peeling due to the inside of the treated layer being destroyed. To do. Further, when a metal-containing intermediate layer 30 is provided between the low dielectric film 20 and the ultrathin metal layer 13 as in the metal laminated base material with a carrier layer (FIG. 2) according to the second embodiment described later.
  • the bonding strength between the ultra-thin metal layer and the low-dielectric film is the bonding strength when the inside of the ultra-thin metal layer is destroyed and peeled off, and the ultra-thin metal layer (treated if a treated layer exists). Bonding strength when peeling at the interface between the layer) and the intermediate layer, bonding strength when peeling at the interface between the intermediate layer and the low dielectric film, bonding strength when peeling due to destruction of the inside of the intermediate layer , And the bonding strength when the inside of the low-dielectric film is broken and peeled off.
  • the low-dielectric film 20 is laminated on the ultra-thin metal layer 13.
  • any low-dielectric polymer material that can be used as a flexible substrate can be applied.
  • the relative permittivity ⁇ r is 3.3 or less
  • the value of the dielectric loss tangent tan ⁇ is 0.
  • the material is 006 or less, but is not limited to this. Specifically, it is appropriately selected from materials such as liquid crystal polymer, polyfluoroethylene (fluorine-based resin such as polytetrafluoroethylene), polyamide, isocyanate compound, polyamideimide, polyimide, low dielectric constant polyimide, polyethylene terephthalate, and polyetherimide. Can be used.
  • a liquid crystal polymer, polyethylene fluoride, polyamide or low dielectric constant polyimide is preferable.
  • the low-dielectric film 20 is a single-layer film or a laminate composed of a plurality of layers, and in the case of a plurality of layers, any one or more of the plurality of layers is the above-mentioned low-dielectric polymer. Any layer made of material may be used.
  • the layers other than the layer made of the low-dielectric polymer material can be made of various conventionally known materials such as epoxy resin.
  • the liquid crystal polymer refers to an aromatic polyester-based resin having a basic structure such as parahydroxybenzoic acid, which exhibits the properties of a liquid crystal in a molten state.
  • the thickness of the low-dielectric film 20 can be appropriately set according to the application of the metal laminated base material and the like.
  • the thickness is preferably 10 ⁇ m or more and 150 ⁇ m or less, and more preferably 10 ⁇ m or more and 120 ⁇ m or less.
  • the thickness of the low-dielectric film 20 before bonding can be measured with a micrometer or the like, and refers to the average value of the thickness measured at 10 points randomly selected from the surface of the target low-dielectric film. Further, for the low-dielectric film to be used, it is preferable that the deviation from the average value of the measured values at 10 points is within 10% for all the measured values.
  • FIG. 2 shows a cross section of the metal laminated base material with a carrier layer according to the second embodiment of the present invention.
  • an intermediate layer 30 containing a metal is provided between the ultrathin metal layer 13 and the low-dielectric film 20.
  • the intermediate layer 30 may be one layer or two or more layers may be laminated. Examples of the intermediate layer 30 containing a metal include a metal layer provided on the low-dielectric film 20 by thin-film deposition, electroless plating, or sputtering film formation.
  • the surface of the ultrathin metal layer 13 on the intermediate layer 30 side has a roughened particle layer and a rust preventive, similar to the metal laminated base material with a carrier layer according to the first embodiment.
  • a rust layer, a layer of a silane coupling agent, and the like may be laminated.
  • any one kind of layer may be laminated, or a plurality of kinds of layers may be laminated.
  • the roughened particle layer can include, but is not limited to, any kind of metal selected from the group consisting of Cu, Co and Ni, or an alloy thereof.
  • the rust preventive layer may contain, for example, any kind of metal selected from the group consisting of Cr, Ni and Zn or an alloy thereof, but is not limited thereto.
  • the intermediate layer 30 preferably contains any kind of metal selected from the group consisting of copper, iron, nickel, zinc, chromium, cobalt, titanium, tin, platinum, silver and gold or an alloy thereof.
  • the metal constituting the intermediate layer 30 is also preferably an alloy containing copper such as copper or a copper-nickel alloy.
  • the intermediate layer 30 is, for example, a Cu—Ni alloy, the ratio of Ni to Cu is preferably 10 to 90% in at%. However, it is not limited to this.
  • the intermediate layers 30 it is possible to protect the surface of the ultra-thin metal layer 13 or the low-dielectric film 20 and improve the adhesion between the ultra-thin metal layer 13 and the low-dielectric film 20.
  • a function peculiar to the intermediate layer 30 for example, a function as an etching stopper layer during etching processing.
  • the thickness of the intermediate layer 30 is not particularly limited as long as it can exhibit functions such as improving adhesion. Specifically, the thickness is preferably 5 nm or more and 200 nm or less, and more preferably 10 nm or more and 100 nm or less.
  • an intermediate layer 30 containing a metal is provided between the low-dielectric film 20 and the ultrathin metal layer 13, as shown in FIG.
  • a case of manufacturing the metal laminated base material 1B with a carrier layer will be described as an example.
  • a metal foil 10 with a carrier layer composed of a carrier layer 11, a release layer 12, and an ultrathin metal layer 13 and a low-dielectric film 20 are prepared, and low-dielectricity is obtained.
  • the bonding and / or heat treatment under high pressure during the production of the metal laminated base material 1B with a carrier layer significantly changes the structure of each layer of the metal laminated base material 1B with a carrier layer before and after joining and / or before and after the heat treatment. Since the characteristics of the metal laminated base material 1B with a carrier layer may be impaired, it is preferable to select bonding / heat treatment conditions that can avoid such structural changes.
  • FIGS. 3A and 3B A preferred embodiment as a method for producing the metal laminated base material 1B with a carrier layer will be described with reference to FIGS. 3A and 3B.
  • the intermediate layer 30 containing a metal on the surface 20a of the low-dielectric film 20 Is sputtered and formed.
  • the conditions for performing the sputter film formation can be appropriately set according to the metal species constituting the intermediate layer 30 and the thickness of the intermediate layer 30.
  • the surface 30a of the intermediate layer 30 is activated by sputtering etching, and the surface 13a of the ultrathin metal layer 13 in the metal foil 10 with a carrier layer is activated by sputtering etching, and these activated surfaces are used.
  • the metal laminated base material 1B with a carrier layer can be manufactured ((d) in FIG. 3B).
  • the surface 13a of the ultrathin metal layer 13 contains a roughened particle layer or a rust preventive layer
  • the surface of the roughened particle layer or the rust preventive layer is activated by sputter etching.
  • the roughened particle layer and the rust preventive layer may be completely removed by sputter etching, or may remain without being removed.
  • the reduction ratio at the time of rolling and joining is 0 to 30%. It is preferably 0 to 15%. Since the above-mentioned surface-activated bonding method can reduce the reduction rate, it is possible to perform bonding while maintaining the function (low adhesion) of the release layer 12, and wrinkles, cracks, etc. occur.
  • the ultra-thin metal layer 13 having excellent thickness accuracy can be formed without any problem.
  • the waviness at the interface between the ultrathin metal layer 13 and the intermediate layer 30 and the low-dielectric film 20 can be reduced, a circuit is formed by performing pattern etching on the ultrathin metal layer 13 and the intermediate layer 30.
  • the thickness accuracy is excellent, a precise circuit can be obtained.
  • the surface 30a of the intermediate layer 30 or the surface 13a of the ultrathin metal layer 13 before being activated by sputter etching is subjected to Ni plating, chromate treatment, or silane, if necessary, in order to prevent oxidation and improve adhesion. It may be treated with a coupling agent or the like. Further, the surface 13a of the ultrathin metal layer 13 can be roughened as necessary in order to improve the adhesion with the intermediate layer 30.
  • a low-dielectric film 20 provided with a carrier layer-attached metal foil 10 or an intermediate layer 30 to be bonded is prepared as a long coil having a width of 100 mm to 600 mm, and the carrier layer-attached metal foil 10 or low-dielectric
  • the joint surface of the sex film 20 is used as one electrode grounded to the ground, and an AC of 1 MHz to 50 MHz is applied between the electrode and the other electrode supported by insulation to generate a glow discharge, and the glow discharge is generated in the plasma.
  • the area of the exposed electrode can be set to 1/3 or less of the area of the other electrode.
  • the grounded electrode is in the form of a cooling roll to prevent the temperature of the conveyed material from rising.
  • the surface to be bonded to the metal foil 10 with a carrier layer or the low-dielectric film 20 is sputtered with an inert gas under vacuum to completely remove adsorbents on the surface and the oxide layer on the surface. Remove some or all of. It is preferable to completely remove the copper oxide layer.
  • an inert gas argon, neon, xenon, krypton and the like, and a mixed gas containing at least one of these can be applied.
  • the adsorbent on the surface of the ultrathin metal layer 13 or the intermediate layer 30 can be completely removed with an etching amount of about 1 nm, and in particular, the copper oxide layer is usually 5 nm to 12 nm (usually 5 nm to 12 nm). It can be removed by (converted to SiO 2).
  • the processing conditions for sputter etching can be appropriately set according to the type of the ultrathin metal layer 13 or the intermediate layer 30 and the like. For example, it can be performed under vacuum at a plasma output of 100 W to 10 kW and a line speed of 0.5 m / min to 30 m / min.
  • the degree of vacuum at this time is preferably high in order to prevent re-adsorbed substances on the surface, but may be, for example, 1 ⁇ 10 -5 Pa to 10 Pa.
  • the surfaces of the ultrathin metal layer 13 and the intermediate layer 30 that have undergone sputtering etching can be pressure-welded to each other by roll pressure welding.
  • the rolling wire load for roll pressure welding is not particularly limited, and can be set, for example, in the range of 0.1 tf / cm to 10 tf / cm.
  • it is necessary to increase the rolling wire load in order to secure the pressure at the time of joining In some cases, it is not limited to this numerical range.
  • the rolling wire load is too high, not only the surface layer of the ultrathin metal layer 13 or the intermediate layer 30 but also the bonding interface is easily deformed, so that the thickness accuracy of each layer in the metal laminated base material 1B with a carrier layer is high. May decrease. Further, if the rolling wire load is high, the machining strain applied at the time of joining may increase.
  • the reduction rate at the time of pressure welding is 30% or less, preferably 8% or less, and more preferably 6% or less. Since the thickness does not have to change before and after the pressure welding, the lower limit of the reduction rate is 0%.
  • the metal laminated base material 1B with a carrier layer obtained by pressure welding can be further heat-treated if necessary.
  • the strain of the ultrathin metal layer 13 or the intermediate layer 30 is removed, and the adhesion between the layers can be improved.
  • this heat treatment is performed at a high temperature for a long time, blister is generated in the carrier layer 11 starting from the peeling layer 12, and the carrier layer 11 may be peeled off from the blister, or conversely, the carrier layer 11 and the ultrathin metal layer.
  • Adhesion with 13 may be enhanced by mutual diffusion or the like, and it may be difficult to peel off the carrier layer 11.
  • the above heat treatment is performed at a temperature of 160 ° C. or higher and 300 ° C. or lower. More preferably, it is 180 ° C. or higher and 290 ° C. or lower. Alternatively, it is preferable not to perform heat treatment after rolling and joining. After the carrier layer 11 is peeled off and removed from the metal laminated base material 1B with a carrier layer after bonding, heat treatment is performed in a temperature range in which an intermetallic compound is not generated at the interface between the ultrathin metal layer 13 and the intermediate layer 30. May be done.
  • FIG. 4 is a diagram showing a manufacturing process of a metal laminated base material according to an embodiment of the present invention.
  • the metal laminated base material 2 shown in FIG. 4 is roughly configured by laminating an ultrathin metal layer 13 on one surface of a low-dielectric film 20 via an intermediate layer 30 containing a metal.
  • the metal laminated base material 2 is the same as the metal laminated base material 1B with a carrier layer shown in FIG. 2 except that it does not have the carrier layer 11 and the release layer 12, and the configuration of each layer is the metal laminated base material 1B with a carrier layer. It is the same as the composition of each layer in.
  • the metal laminated base material 2 can be obtained from the metal laminated base material 1B with a carrier layer. That is, as shown in FIG. 4, the metal laminated base material 1B with a carrier layer is prepared ((a) of FIG. 4), and the carrier layer 11 in the metal laminated base material 1B with a carrier layer is peeled off together with the release layer 12. ((B) in FIG. 4), a metal laminated base material 2 having a three-layer structure can be obtained ((c) in FIG. 4).
  • the manufactured metal laminated base material 2 has, for example, an ultrathin metal layer 13 having a thickness of 0.5 ⁇ m or more and 10 ⁇ m or less, and is a metal laminated base material (metal-clad) for producing a flexible circuit board. It can be used as a laminated board).
  • an additional metal layer was laminated on the surface of the ultrathin metal layer 13 opposite to the low dielectric film by electroless plating, electrolytic plating (for example, copper plating) or the like. It includes morphology.
  • a printed wiring board on which a fine circuit is formed can be obtained by using the metal laminated base material 2.
  • the additional metal layer may be formed only on the circuit portion.
  • a printed wiring board can be obtained by appropriately using a conventionally known method such as a modified semi-additive method (MSAP method) or a semi-additive method (SAP method).
  • MSAP method modified semi-additive method
  • SAP method semi-additive method
  • a electrode in a metal laminated substrate 2 can be obtained.
  • the non-circuit part on the thin metal layer 13 is masked, the unmasked part is copper-plated to form an additional metal layer, the mask is removed, and the ultra-thin metal layer 13 hidden by the mask is etched.
  • a printed wiring board can be manufactured by removing it.
  • the "printed wiring board" in the present invention includes not only a laminated body in which a circuit is formed but also a board in which electronic components such as ICs are mounted after the circuit is formed.
  • the metal laminated base material 1A with a carrier layer in FIG. 1 the metal laminated base material 1B with a carrier layer in FIG. 2, and the metal laminated base material 2 in FIG. 4
  • carriers are formed on one surface of the low dielectric film 20.
  • the layered metal foil 10 or the ultrathin metal layer 13 is laminated has been described, the present invention is not limited to this. That is, if necessary, the intermediate layer 30, the ultrathin metal layer 13, the release layer 12, and the carrier layer 11 may be provided on both surfaces of the low-dielectric film 20.
  • Example 1 First, as a metal foil with a carrier layer, a carrier layer having a thickness of 18 ⁇ m made of copper, an ultrathin copper layer having a thickness of 1.5 ⁇ m via a release layer (organic release layer), and a roughened particle layer and rust preventive on the surface thereof.
  • a copper foil with a carrier layer provided with a layer (MT18FL manufactured by Mitsui Metal Mining Co., Ltd.) and a liquid crystal polymer (LCP) film having a thickness of 25 ⁇ m were prepared as a low dielectric film. After activating the surface of the LCP film by sputtering etching, an intermediate layer (thickness 40 nm) made of copper was formed by sputtering film formation.
  • MT18FL manufactured by Mitsui Metal Mining Co., Ltd.
  • LCP liquid crystal polymer
  • the surfaces of the ultrathin copper layer and the intermediate layer were rolled and joined to produce a target metal laminated base material with a carrier layer.
  • the linear load at the time of pressure welding is 1.5 tf / cm, and the reduction rate by surface activation bonding is 2.2%.
  • heat treatment was performed at 240 ° C.
  • a carrier layer having a thickness of 18 ⁇ m made of copper is provided with an ultrathin copper layer having a thickness of 1.5 ⁇ m via a release layer (organic release layer), and a roughened particle layer and a rust preventive layer on the surface thereof.
  • a provided copper foil with a carrier layer (MT18FL manufactured by Mitsui Metal Mining Co., Ltd.) was used.
  • MT18FL manufactured by Mitsui Metal Mining Co., Ltd.
  • an LCP film having a thickness of 100 ⁇ m was used, and after the surface was activated by sputtering etching, an intermediate layer (thickness 40 nm) made of copper was formed by sputtering film formation.
  • the joining conditions are as shown in Table 1.
  • the reduction rate due to surface activation bonding is 2.5%.
  • Example 3 A metal laminated base material with a carrier layer was produced in the same manner as in Example 2 except that the joining conditions were changed as shown in Table 1.
  • the reduction rates in Examples 3 and 4 are 2.5% and 3.5%, respectively.
  • Example 5 As the low-dielectric film and the intermediate layer, an intermediate layer (thickness 40 nm) made of copper was formed on the surface of an LCP film having a thickness of 25 ⁇ m by sputter film formation as in Example 1, and the bonding conditions were further described in Table 1.
  • a metal laminated base material with a carrier layer was produced in the same manner as in Example 2 except that the changes were made as shown in. The reduction rate is 2.2%.
  • Example 6 As a metal foil with a carrier layer, a carrier layer having a thickness of 18 ⁇ m made of copper, an ultrathin copper layer having a thickness of 3.0 ⁇ m via a release layer (inorganic release layer), and a roughened particle layer and a rust preventive layer on the surface thereof.
  • a metal laminated group with a carrier layer was used in the same manner as in Example 5, except that the provided copper foil with a carrier layer (JXUT-III manufactured by JX Nippon Mining & Metals Co., Ltd.) was used and the joining conditions were changed as shown in Table 1. Manufactured the material. The reduction rate is 4.3%.
  • Example 7 As the low-dielectric film and the intermediate layer, except that an intermediate layer (thickness 40 nm) made of copper was formed on the surface of a low-dielectric polyimide (modified polyimide, MPI) film having a thickness of 25 ⁇ m by sputter film formation.
  • a metal laminated base material with a carrier layer was produced in the same manner as in Example 4. The reduction rate is 2.2%.
  • Example 8 As a metal foil with a carrier layer, a carrier layer having a thickness of 18 ⁇ m made of copper, an ultrathin copper layer having a thickness of 2.0 ⁇ m via a release layer (inorganic release layer), and a rust preventive layer only on the surface thereof (roughened particle layer).
  • a metal laminated base material with a carrier layer was produced in the same manner as in Example 6 except that a copper foil with a carrier layer (prototype material 1) provided with (none) was used and the joining conditions were changed as shown in Table 1. did. The reduction rate is 2.2%.
  • Example 9 As a metal foil with a carrier layer, a carrier layer having a thickness of 18 ⁇ m made of copper, an ultrathin copper layer having a thickness of 5.0 ⁇ m via a release layer (organic release layer), and a rust preventive layer only on the surface thereof (roughened particle layer).
  • a metal laminated base material with a carrier layer was produced in the same manner as in Example 8 except that a copper foil with a carrier layer (prototype material 2) provided with (none) was used and the joining conditions were changed as shown in Table 1. did. The reduction rate is 6.3%.
  • Example 1 A metal laminated base material with a carrier layer was produced in the same manner as in Example 5 except that the joining conditions were changed as shown in Table 1. The reduction rate is 2.2%.
  • Example 2 A metal laminated base material with a carrier layer was produced in the same manner as in Example 6 except that the joining conditions were changed as shown in Table 1. The reduction rate is 4.3%.
  • a carrier layer having a thickness of 18 ⁇ m made of copper, an ultrathin copper layer having a thickness of 2.0 ⁇ m via a release layer (organic release layer), and a roughened particle layer and rust preventive on the surface thereof.
  • a copper foil with a carrier layer provided with a layer (MT18FL manufactured by Mitsui Metal Mining Co., Ltd.) and a liquid crystal polymer (LCP) film having a thickness of 25 ⁇ m were prepared as a low dielectric film.
  • the copper foil with a carrier layer and the LCP film were bonded by thermocompression bonding to produce a metal laminated base material with a carrier layer.
  • the conditions for thermocompression bonding are as shown in Table 2.
  • a carrier layer having a thickness of 18 ⁇ m made of copper, an ultrathin copper layer having a thickness of 3.0 ⁇ m via a release layer (inorganic release layer), and a roughened particle layer and rust preventive on the surface thereof.
  • a copper foil with a carrier layer provided with a layer (JXUT-III manufactured by JX Nippon Mining & Metals Co., Ltd.) and a liquid crystal polymer (LCP) film having a thickness of 25 ⁇ m were prepared as a low dielectric film.
  • the copper foil with a carrier layer and the LCP film were bonded by thermocompression bonding to produce a metal laminated base material with a carrier layer.
  • the conditions for thermocompression bonding are as shown in Table 2.
  • each peeled surface after measuring the bonding strength in Example 5 was observed using a scanning electron microscope (SEM) and surface element analysis by EDX was performed. A scanning electron microscope image is shown in FIG. As a result of the analysis, it was confirmed that copper did not adhere to the peeled surface on the LCP side of Example 5.
  • the peeled surface is an intermediate layer
  • the peeling is caused by both the internal fracture of the LCP and the interfacial peeling of the intermediate layer and the LCP. It became clear.
  • Example 10 to 16 By removing the carrier layer from the metal laminated base material with the carrier layer obtained in Examples 1 to 7, an ultrathin copper layer having a thickness of 1.5 ⁇ m to 3.0 ⁇ m including a roughened particle layer and a rust preventive layer is provided. A metal laminated base material was produced.
  • Example 17 and 18 By removing the carrier layer from the metal laminated base material with the carrier layer obtained in Examples 8 and 9, a pole having a thickness of 2.0 ⁇ m to 5.0 ⁇ m including only the rust preventive layer (excluding the roughened particle layer). A metal laminated base material having a thin copper layer was produced.
  • the metal laminated base material of Examples 10 to 16 is composed of an ultrathin copper layer, a roughened particle layer, a rust preventive layer, an intermediate layer (copper) and an LCP or MPI film, and Examples 17 and 18
  • the metal laminated base material of is composed of an ultrathin copper layer, a rust preventive layer, an intermediate layer (copper) and an LCP.
  • Dept Profile distribution state of elements in the depth direction (Depts Profile) measurement by glow discharge emission spectroscopy (GDS) and Auger electron spectroscopy (AES) and cross-sectional observation by transmission electron microscope (TEM) It is possible to specify the laminated state of each layer by using.
  • a circuit pattern is formed on an ultrathin copper layer in a metal laminated base material by a resist or the like, and a fine circuit is formed on a low-dielectric film by a modified semi-additive method (MSAP method) or a semi-additive method (SAP method). Can be formed.
  • MSAP method modified semi-additive method
  • SAP method semi-additive method

Abstract

The purpose of the present invention is to provide a carrier-layer-included metal laminate base material in which the high adhesion between an ultra-thin metal layer and a low-dielectric film is secured while maintaining the low adhesion between a carrier layer and the ultra-thin metal layer. A carrier-layer-included metal laminate base material 1A which comprises a low-dielectric film 20 and a three-layered carrier-layer-included metal foil 10 laminated on one surface of the low-dielectric film 20 and comprising a carrier layer 11, a release layer 12 and an ultra-thin metal layer 13, the carrier-layer-included metal laminate base material 1A being characterized in that the bonding strength between the ultra-thin metal layer 13 and the low-dielectric film 20 is larger than the peel strength between the carrier layer 11 and the ultra-thin metal layer 13.

Description

キャリア層付き金属積層基材及びその製造方法、金属積層基材及びその製造方法、並びにプリント配線板Metal laminated base material with carrier layer and its manufacturing method, metal laminated base material and its manufacturing method, and printed wiring board
 本発明は、キャリア層付き金属積層基材及びその製造方法、金属積層基材及びその製造方法、並びにプリント配線板に関する。 The present invention relates to a metal laminated base material with a carrier layer and a manufacturing method thereof, a metal laminated base material and a manufacturing method thereof, and a printed wiring board.
 従来、微細配線(ファインピッチ)を形成するための部材としてキャリア層付き金属箔が知られている。このキャリア層付き金属箔は、剥離可能なキャリア層と極薄金属層との積層体であり、ガラスエポキシ樹脂等からなるリジッド基板と積層させてキャリア層付きの金属積層基材(金属張積層板)が得られる。また、上記リジッド基板に代えて、可撓性を有する高分子フィルムを積層させたものも知られており、フレキシブル回路基板を形成するための金属積層基材として用いられている。特に、高分子フィルムとして、低誘電率ポリイミド等の低誘電性ポリマーのフィルムを用いたものは、高周波回路用として、第5世代移動通信システム(5G)において有用である。 Conventionally, a metal foil with a carrier layer is known as a member for forming fine wiring (fine pitch). This metal foil with a carrier layer is a laminate of a peelable carrier layer and an ultrathin metal layer, and is laminated with a rigid substrate made of glass epoxy resin or the like to form a metal laminated base material with a carrier layer (metal-clad laminate). ) Is obtained. Further, instead of the rigid substrate, one in which a flexible polymer film is laminated is also known, and is used as a metal laminated substrate for forming a flexible circuit board. In particular, a polymer film using a film of a low dielectric polymer such as a low dielectric constant polyimide is useful for a high frequency circuit in a 5th generation mobile communication system (5G).
 (特許文献1)には、キャリアの一方の面、又は、両方の面に、中間層、極薄銅層をこの順に有するキャリア付銅箔であって、前記極薄銅層が、銅箔の表面に、銅を含む一次粒子層を形成した後、該一次粒子層の上に、銅、コバルト及びニッケルからなる3元系合金を含む二次粒子層を形成した銅箔であり、且つJISZ8730に記載の色差系において粗化処理面の色差を測定した際の白色との色差Δa*値が4.0以下、色差Δb*値が3.5以下の高周波回路用銅箔であるようなキャリア付銅箔が開示されている。また、(特許文献1)には、紙基材フェノール樹脂等のリジッド基板や、液晶ポリマー(LCP)等の高分子フィルムを、上記キャリア付銅箔と積層させたキャリア付銅張積層板も記載されている。 According to (Patent Document 1), a copper foil with a carrier having an intermediate layer and an ultrathin copper layer on one surface or both surfaces of the carrier in this order, wherein the ultrathin copper layer is a copper foil. A copper foil in which a primary particle layer containing copper is formed on the surface, and then a secondary particle layer containing a ternary alloy composed of copper, cobalt and nickel is formed on the primary particle layer, and the JISZ8730 is formed. With a carrier such as a copper foil for high-frequency circuits having a color difference Δa * value of 4.0 or less and a color difference Δb * value of 3.5 or less when measuring the color difference of the roughened surface in the described color difference system. Copper foil is disclosed. Further, (Patent Document 1) also describes a copper-clad laminate with a carrier in which a rigid substrate such as a paper-based phenol resin or a polymer film such as a liquid crystal polymer (LCP) is laminated with the copper foil with a carrier. Has been done.
特開2014-224318号公報Japanese Unexamined Patent Publication No. 2014-224318
 上記(特許文献1)では、キャリア付銅箔とリジッド基板とを貼り合わせる際に、ガラス布等の基材に樹脂を含浸させ、樹脂を半硬化状態まで硬化させたプリプレグを用意し、銅箔をプリプレグに重ねて加熱加圧させることにより行っている。また、リジッド基板に代えて高分子フィルムを用いる場合も、液晶ポリマー等の基材に対して、高温高圧下で銅箔を積層接着(熱圧着)することにより貼り合わせている。 In the above (Patent Document 1), when the copper foil with a carrier and the rigid substrate are bonded together, a prepreg obtained by impregnating a base material such as a glass cloth with a resin and curing the resin to a semi-cured state is prepared, and the copper foil is prepared. Is performed by superimposing the above on the prepreg and heating and pressurizing. Further, when a polymer film is used instead of the rigid substrate, copper foil is laminated and bonded (thermocompression bonded) to a base material such as a liquid crystal polymer under high temperature and high pressure.
 しかしながら、特に、高周波回路用途に適した液晶ポリマーやポリフッ化エチレン、低誘電率ポリイミド等の低誘電性フィルムに対してキャリア付金属箔を熱圧着する場合、低誘電性フィルムの融点等の諸特性を考慮すると熱圧着の温度を280℃以上、あるいは300℃以上にする必要があり、このような温度範囲では、キャリア層と極薄金属層との間の剥離層が変質してしまい、キャリアの剥離性が損なわれるという問題があった。一方、剥離性を維持するため熱圧着の温度を低くすると、極薄金属層と低誘電性フィルムとの密着性が低下するという問題があった。したがって、キャリアと極薄金属層との剥離性(低密着性)の維持と、極薄金属層と低誘電性フィルムとの高い密着性の確保とを両立することは従来困難であった。 However, in particular, when a metal foil with a carrier is thermocompression bonded to a low dielectric film such as a liquid crystal polymer, polyethylene fluoride, or low dielectric constant polyimide suitable for high frequency circuit applications, various characteristics such as the melting point of the low dielectric film are obtained. In consideration of the above, the thermocompression bonding temperature must be 280 ° C. or higher, or 300 ° C. or higher. In such a temperature range, the release layer between the carrier layer and the ultrathin metal layer is deteriorated, and the carrier's temperature is changed. There was a problem that the peelability was impaired. On the other hand, if the thermocompression bonding temperature is lowered in order to maintain the peelability, there is a problem that the adhesion between the ultrathin metal layer and the low-dielectric film is lowered. Therefore, it has been difficult in the past to maintain both the peelability (low adhesion) between the carrier and the ultrathin metal layer and to secure the high adhesion between the ultrathin metal layer and the low-dielectric film.
 そこで本発明は、キャリア層と極薄金属層との間の低密着性を維持しつつ、極薄金属層と低誘電性フィルムとの高い密着性が確保されたキャリア層付き金属積層基材及びその製造方法を提供することを目的とする。また、低誘電性フィルムと極薄金属層とが積層された金属積層基材及びその製造方法を提供することを目的とする。さらに、上記の金属積層基材から得られ、高周波回路用として好適に用いられるプリント配線板を提供することを目的とする。 Therefore, the present invention provides a metal laminated base material with a carrier layer, which ensures high adhesion between the ultrathin metal layer and the low-dielectric film while maintaining low adhesion between the carrier layer and the ultrathin metal layer. It is an object of the present invention to provide the manufacturing method. Another object of the present invention is to provide a metal laminated base material in which a low-dielectric film and an ultrathin metal layer are laminated, and a method for producing the same. Another object of the present invention is to provide a printed wiring board obtained from the above-mentioned metal laminated substrate and suitably used for a high frequency circuit.
 本発明者らが鋭意検討を行った結果、低誘電性フィルムと、キャリア層、剥離層及び極薄金属層を含むキャリア層付き金属箔とを積層させる際に、特定の接合方法を採用し、極薄金属層と低誘電性フィルムの接合強度、並びにキャリア層と極薄金属層の剥離強度をそれぞれ制御することによって上記課題が解決できることを見い出し、発明を完成した。すなわち、本発明の要旨は次のとおりである。 As a result of diligent studies by the present inventors, a specific joining method was adopted when laminating a low-dielectric film and a metal foil with a carrier layer including a carrier layer, a release layer and an ultrathin metal layer. We have found that the above problems can be solved by controlling the bonding strength between the ultrathin metal layer and the low dielectric film and the peeling strength between the carrier layer and the ultrathin metal layer, respectively, and completed the invention. That is, the gist of the present invention is as follows.
(1)低誘電性フィルムの少なくとも一方の面に、キャリア層、剥離層及び極薄金属層を含む少なくとも3層以上からなるキャリア層付き金属箔が積層されたキャリア層付き金属積層基材であって、
 前記極薄金属層と前記低誘電性フィルムの接合強度が、前記キャリア層と前記極薄金属層の剥離強度よりも大きい前記キャリア層付き金属積層基材。
(2)低誘電性フィルムと極薄金属層との間に、金属を含む中間層を1層以上有する上記(1)に記載のキャリア層付き金属積層基材。
(3)中間層が、銅、鉄、ニッケル、亜鉛、クロム、コバルト、チタン、スズ、白金、銀及び金からなる群より選択されるいずれか一種の金属又はその合金を含む上記(2)に記載の金属積層基材。
(4)低誘電性フィルムが、液晶ポリマー、ポリフッ化エチレン、ポリアミド及び低誘電率ポリイミドからなる群より選択される低誘電性ポリマーのフィルムである上記(1)~(3)のいずれか一つに記載のキャリア層付き金属積層基材。
(5)キャリア層と極薄金属層の剥離強度が、0.15N/cm以上0.5N/cm以下である上記(1)~(4)のいずれか一つに記載のキャリア層付き金属積層基材。
(6)極薄金属層と低誘電性フィルムの接合強度が、2.0N/cm以上である上記(1)~(5)のいずれか一つに記載のキャリア層付き金属積層基材。
(7)剥離層が、有機系剥離層又は無機系剥離層である上記(1)~(6)のいずれか一つに記載のキャリア層付き金属積層基材。
(8)極薄金属層の厚みが、0.5μm以上10μm以下である上記(1)~(7)のいずれか一つに記載のキャリア層付き金属積層基材。
(9)上記(2)に記載のキャリア層付き金属積層基材の製造方法であって、
 低誘電性フィルムと、キャリア層、剥離層及び極薄金属層を含む少なくとも3層以上からなるキャリア層付き金属箔とを準備する工程と、
 前記低誘電性フィルムの少なくとも一方の面をスパッタエッチングにより活性化した後、前記面上に金属を含む中間層をスパッタ成膜する工程と、
 前記中間層の表面をスパッタエッチングにより活性化する工程と、
 前記極薄金属層の表面をスパッタエッチングにより活性化する工程と、
 前記活性化した表面同士を0~30%の圧下率で圧延接合する工程と、
を含む前記キャリア層付き金属積層基材の製造方法。
(10)低誘電性フィルムが、液晶ポリマー、ポリフッ化エチレン、ポリアミド及び低誘電率ポリイミドからなる群より選択される低誘電性ポリマーのフィルムである上記(9)に記載のキャリア層付き金属積層基材の製造方法。
(11)圧延接合を行った後、160℃以上300℃以下での熱処理を行う上記(9)又は(10)に記載のキャリア層付き金属積層基材の製造方法。
(12)低誘電性フィルムの少なくとも一方の面に、金属を含む中間層を介して極薄金属層が積層され、前記低誘電率フィルムと前記極薄金属層の接合強度が2.0N/cm以上である金属積層基材。
(13)中間層が、銅、鉄、ニッケル、亜鉛、クロム、コバルト、チタン、スズ、白金、銀及び金からなる群より選択されるいずれか一種の金属又はその合金を含む上記(12)に記載の金属積層基材。
(14)極薄金属層の中間層側の表面に、Cu、Co及びNiからなる群より選択されるいずれか一種の金属又はその合金を含む粗化粒子層、及び/又はCr、Ni及びZnからなる群より選択されるいずれか一種の金属又はその合金を含む防錆層が積層された上記(12)又は(13)に記載の金属積層基材。
(15)極薄金属層の厚みが、0.5μm以上10μm以下である上記(12)~(14)のいずれか一つに記載の金属積層基材。
(16)低誘電性フィルムの少なくとも一方の面に、金属を含む中間層を介して極薄金属層が積層された金属積層基材の製造方法であって、
 上記(2)に記載のキャリア層付き金属積層基材における前記キャリア層を剥離する工程を含む前記金属積層基材の製造方法。
(17)上記(12)~(15)のいずれか一つに記載の金属積層基材における中間層及び極薄金属層に、回路が形成されてなるプリント配線板。
 本明細書は本願の優先権の基礎となる日本国特許出願番号2019-154167号、2020-013319号の開示内容を包含する。
(1) A metal laminated base material with a carrier layer in which a metal foil with a carrier layer including at least three layers including a carrier layer, a release layer and an ultrathin metal layer is laminated on at least one surface of a low-dielectric film. hand,
A metal laminated base material with a carrier layer in which the bonding strength between the ultrathin metal layer and the low-dielectric film is greater than the peel strength between the carrier layer and the ultrathin metal layer.
(2) The metal laminated base material with a carrier layer according to (1) above, which has at least one intermediate layer containing a metal between the low-dielectric film and the ultrathin metal layer.
(3) In (2) above, the intermediate layer contains any one metal selected from the group consisting of copper, iron, nickel, zinc, chromium, cobalt, titanium, tin, platinum, silver and gold or an alloy thereof. The described metal laminated base material.
(4) Any one of the above (1) to (3), wherein the low-dielectric film is a film of a low-dielectric polymer selected from the group consisting of a liquid crystal polymer, polyethylene fluoride, polyamide and a low dielectric constant polyimide. The metal laminated substrate with a carrier layer described in 1.
(5) The metal laminate with a carrier layer according to any one of (1) to (4) above, wherein the peel strength between the carrier layer and the ultrathin metal layer is 0.15 N / cm or more and 0.5 N / cm or less. Base material.
(6) The metal laminated base material with a carrier layer according to any one of (1) to (5) above, wherein the bonding strength between the ultrathin metal layer and the low-dielectric film is 2.0 N / cm or more.
(7) The metal laminated base material with a carrier layer according to any one of (1) to (6) above, wherein the release layer is an organic release layer or an inorganic release layer.
(8) The metal laminated base material with a carrier layer according to any one of (1) to (7) above, wherein the thickness of the ultrathin metal layer is 0.5 μm or more and 10 μm or less.
(9) The method for producing a metal laminated base material with a carrier layer according to (2) above.
A step of preparing a low-dielectric film and a metal foil with a carrier layer including at least three layers including a carrier layer, a release layer and an ultrathin metal layer, and a step of preparing the metal foil.
A step of activating at least one surface of the low-dielectric film by sputtering etching and then sputtering a film of an intermediate layer containing a metal on the surface.
A step of activating the surface of the intermediate layer by sputter etching and
A step of activating the surface of the ultrathin metal layer by sputter etching and
A step of rolling and joining the activated surfaces at a rolling reduction of 0 to 30%,
A method for producing a metal laminated base material with a carrier layer.
(10) The metal laminate group with a carrier layer according to (9) above, wherein the low-dielectric film is a film of a low-dielectric polymer selected from the group consisting of a liquid crystal polymer, polyethylene fluoride, polyamide and a low dielectric constant polyimide. Material manufacturing method.
(11) The method for producing a metal laminated base material with a carrier layer according to (9) or (10) above, wherein the heat treatment is performed at 160 ° C. or higher and 300 ° C. or lower after rolling and joining.
(12) An ultra-thin metal layer is laminated on at least one surface of the low-dielectric film via an intermediate layer containing a metal, and the bonding strength between the low-dielectric film and the ultra-thin metal layer is 2.0 N / cm. The above metal laminated base material.
(13) In (12) above, the intermediate layer contains any one metal selected from the group consisting of copper, iron, nickel, zinc, chromium, cobalt, titanium, tin, platinum, silver and gold or an alloy thereof. The described metal laminated base material.
(14) A roughened particle layer containing any one of the metals selected from the group consisting of Cu, Co and Ni or an alloy thereof on the surface of the ultrathin metal layer on the intermediate layer side, and / or Cr, Ni and Zn. The metal laminated base material according to (12) or (13) above, wherein a rust preventive layer containing any one kind of metal selected from the group consisting of or an alloy thereof is laminated.
(15) The metal laminated base material according to any one of (12) to (14) above, wherein the thickness of the ultrathin metal layer is 0.5 μm or more and 10 μm or less.
(16) A method for producing a metal laminated base material in which an ultrathin metal layer is laminated on at least one surface of a low-dielectric film via an intermediate layer containing a metal.
The method for producing a metal laminated base material, which comprises a step of peeling off the carrier layer in the metal laminated base material with a carrier layer according to the above (2).
(17) A printed wiring board in which a circuit is formed on an intermediate layer and an ultrathin metal layer in the metal laminated base material according to any one of (12) to (15) above.
This specification includes the disclosure contents of Japanese Patent Application Nos. 2019-154167 and 2020-0133319, which are the basis of the priority of the present application.
 本発明によれば、キャリア層付き金属積層基材において、キャリア層及び極薄金属層の間の低密着性の維持と、極薄金属層及び低誘電性フィルムの間の高い密着性の確保との両立が可能となる。また、低誘電性フィルムと極薄金属層とが積層された金属積層基材を得ることができる。この金属積層基材は、高周波回路用として好適に用いられる。 According to the present invention, in a metal laminated base material with a carrier layer, maintenance of low adhesion between the carrier layer and the ultrathin metal layer and ensuring high adhesion between the ultrathin metal layer and the low dielectric film are ensured. Can be compatible with each other. Further, it is possible to obtain a metal laminated base material in which a low-dielectric film and an ultrathin metal layer are laminated. This metal laminated base material is suitably used for high frequency circuits.
本発明の第1実施形態に係るキャリア層付き金属積層基材の断面図である。It is sectional drawing of the metal laminated base material with a carrier layer which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係るキャリア層付き金属積層基材の断面図である。It is sectional drawing of the metal laminated base material with a carrier layer which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係るキャリア層付き金属積層基材の製造工程を示す図である。It is a figure which shows the manufacturing process of the metal laminated base material with a carrier layer which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係るキャリア層付き金属積層基材の製造工程を示す図である。It is a figure which shows the manufacturing process of the metal laminated base material with a carrier layer which concerns on 2nd Embodiment of this invention. 本発明の一実施形態に係る金属積層基材の製造工程を示す図である。It is a figure which shows the manufacturing process of the metal laminated base material which concerns on one Embodiment of this invention. 実施例5のキャリア層付き金属積層基材について、極薄銅層と低誘電性フィルムとの間を剥離した際の各々の剥離面の走査型電子顕微鏡(SEM)像である。6 is a scanning electron microscope (SEM) image of each peeled surface of the metal laminated base material with a carrier layer of Example 5 when peeled between the ultrathin copper layer and the low-dielectric film.
 以下、本発明を詳細に説明する。
 図1に、本発明の第1実施形態に係るキャリア層付き金属積層基材の断面を示す。図1に示すキャリア層付き金属積層基材1Aは、キャリア層11、剥離層12及び極薄金属層13から構成されるキャリア層付き金属箔10と、低誘電性フィルム20とがこの順で積層して概略構成される。
Hereinafter, the present invention will be described in detail.
FIG. 1 shows a cross section of a metal laminated base material with a carrier layer according to the first embodiment of the present invention. In the metal laminated base material 1A with a carrier layer shown in FIG. 1, a metal foil 10 with a carrier layer composed of a carrier layer 11, a release layer 12, and an ultrathin metal layer 13 and a low-dielectric film 20 are laminated in this order. It is roughly configured.
 なお、図1には記載していないが、極薄金属層13の低誘電性フィルム20側の表面には、粗化粒子層や防錆層、シランカップリング剤による処理層等が積層されていても良い。これらの層は、いずれか一種の層が積層されていても良いし、複数種の層が積層されていても良い。粗化粒子層は、例えば、Cu、Co及びNiからなる群より選択されるいずれか一種の金属又はその合金を含むことができる。具体的には、コバルト-ニッケル合金めっき層、銅-コバルト-ニッケル合金めっき層等が挙げられる。また、防錆層は、例えば、Cr、Ni及びZnからなる群より選択されるいずれか一種の金属又はその合金を含むことができる。具体的には、クロム酸化物の皮膜処理、クロム酸化物と亜鉛/亜鉛酸化物との混合物皮膜処理、Niめっき層等を挙げることができる。さらに、シランカップリング剤としては、オレフィン系シラン、エポキシ系シラン、アクリル系シラン、アミノ系シラン、メルカプト系シランを挙げることができるが、これらに限定されるものではない。シランカップリング剤の塗布は、スプレーによる吹付け、コーターによる塗布、浸漬等の方法を適宜用いて行うことができる。 Although not shown in FIG. 1, a roughened particle layer, a rust preventive layer, a treated layer with a silane coupling agent, and the like are laminated on the surface of the ultrathin metal layer 13 on the low-dielectric film 20 side. You may. As for these layers, any one kind of layer may be laminated, or a plurality of kinds of layers may be laminated. The roughened particle layer can contain, for example, any kind of metal selected from the group consisting of Cu, Co and Ni, or an alloy thereof. Specific examples thereof include a cobalt-nickel alloy plating layer and a copper-cobalt-nickel alloy plating layer. Further, the rust preventive layer may contain, for example, any kind of metal selected from the group consisting of Cr, Ni and Zn, or an alloy thereof. Specific examples thereof include a coating treatment of chromium oxide, a coating treatment of a mixture of chromium oxide and zinc / zinc oxide, and a Ni plating layer. Further, examples of the silane coupling agent include, but are not limited to, olefin-based silanes, epoxy-based silanes, acrylic-based silanes, amino-based silanes, and mercapto-based silanes. The silane coupling agent can be applied by appropriately using a method such as spraying, coating with a coater, or dipping.
 キャリア層11は、シート形状を有するものであり、キャリア層付き金属積層基材1Aへの皺や折れの発生、極薄金属層13への傷を防止するための支持材料あるいは保護層として機能する。キャリア層11としては、銅、アルミニウム、ニッケル、及びその合金類(ステンレス、真鍮等)、表面に金属をコーティングした樹脂等からなる箔もしくは板状のものが挙げられる。好ましくは、銅箔である。 The carrier layer 11 has a sheet shape, and functions as a supporting material or a protective layer for preventing wrinkles and breakage in the metal laminated base material 1A with the carrier layer and scratches on the ultrathin metal layer 13. .. Examples of the carrier layer 11 include foils or plates made of copper, aluminum, nickel, alloys thereof (stainless steel, brass, etc.), resins having a metal coated on the surface, and the like. A copper foil is preferable.
 キャリア層11の厚みは、特に限定されるものではなく、可撓性等の所望の特性に応じて適宜設定される。具体的には、10μm以上100μm以下程度とすることが好ましい。厚みが薄過ぎると、キャリア層付き金属箔10の取り扱い性が損なわれる可能性があるため好ましくない。すなわち、取り扱い時に変形して、極薄金属層13に皺や割れが生じる場合がある。また、キャリア層11が厚過ぎると、支持材料として過剰な剛性を有し、極薄金属層13と剥離し難くなる可能性があるため好ましくない。さらに、キャリア層付き金属箔10を生産するコストも上昇してしまう。 The thickness of the carrier layer 11 is not particularly limited, and is appropriately set according to desired characteristics such as flexibility. Specifically, it is preferably about 10 μm or more and 100 μm or less. If the thickness is too thin, the handleability of the metal foil 10 with a carrier layer may be impaired, which is not preferable. That is, it may be deformed during handling, causing wrinkles or cracks in the ultrathin metal layer 13. Further, if the carrier layer 11 is too thick, it has excessive rigidity as a supporting material and may be difficult to peel off from the ultrathin metal layer 13, which is not preferable. Further, the cost of producing the metal leaf 10 with a carrier layer also increases.
 剥離層12は、キャリア層11の剥離強度を小さくし、さらに、キャリア層付き金属箔10を低誘電性フィルム20と接合するに際して加熱する場合には、キャリア層11と極薄金属層13の間で起こり得る相互拡散を抑制する機能をも有する。剥離層12は、有機系剥離層及び無機系剥離層のいずれであっても良く、有機系剥離層に用いられる成分としては、例えば、窒素含有有機化合物、硫黄含有有機化合物、カルボン酸等が挙げられる。窒素含有有機化合物としては、トリアゾール化合物、イミダゾール化合物等が挙げられる。トリアゾール化合物の例としては、1,2,3-ベンゾトリアゾール、カルボキシベンゾトリアゾール、N’,N’-ビス(ベンゾトリアゾリルメチル)ユリア、1H-1,2,4-トリアゾール及び3-アミノ-1H-1,2,4-トリアゾール等が挙げられる。硫黄含有有機化合物の例としては、メルカプトベンゾチアゾール、チオシアヌル酸、2-ベンズイミダゾールチオール等が挙げられる。カルボン酸の例としては、モノカルボン酸、ジカルボン酸等が挙げられる。また、無機系剥離層に用いられる成分としては、例えば、Ni、Mo、Co、Cr、Fe、Ti、W、P、Zn、クロメート処理膜等が挙げられる。なお、剥離層12の形成は、キャリア層11の表面に、剥離層12の成分含有溶液を接触させ、剥離層成分をキャリア層11の表面に固定すること等により行うことができる。キャリア層11を剥離層12の成分含有溶液に接触させる場合、この接触は、剥離層成分含有溶液への浸漬、剥離層成分含有溶液の噴霧、剥離層成分含有溶液の流下等により行えば良く、その後に乾燥等を行って固定することができる。その他、蒸着やスパッタリング等による気相法で剥離層12の成分を被膜形成する方法も採用することができる。 The release layer 12 reduces the release strength of the carrier layer 11, and when the metal foil 10 with the carrier layer is heated when it is bonded to the low-dielectric film 20, it is between the carrier layer 11 and the ultrathin metal layer 13. It also has a function of suppressing mutual diffusion that may occur in. The release layer 12 may be either an organic release layer or an inorganic release layer, and examples of the components used in the organic release layer include nitrogen-containing organic compounds, sulfur-containing organic compounds, and carboxylic acids. Be done. Examples of the nitrogen-containing organic compound include a triazole compound and an imidazole compound. Examples of triazole compounds include 1,2,3-benzotriazole, carboxybenzotriazole, N', N'-bis (benzotriazolylmethyl) urea, 1H-1,2,4-triazole and 3-amino-. Examples thereof include 1H-1,2,4-triazole. Examples of the sulfur-containing organic compound include mercaptobenzothiazole, thiothianulic acid, 2-benzimidazole thiol and the like. Examples of carboxylic acids include monocarboxylic acids and dicarboxylic acids. Examples of the components used in the inorganic release layer include Ni, Mo, Co, Cr, Fe, Ti, W, P, Zn, and a chromate-treated film. The release layer 12 can be formed by bringing the component-containing solution of the release layer 12 into contact with the surface of the carrier layer 11 and fixing the component of the release layer 12 to the surface of the carrier layer 11. When the carrier layer 11 is brought into contact with the component-containing solution of the release layer 12, this contact may be performed by immersion in the release layer component-containing solution, spraying the release layer component-containing solution, flowing down the release layer component-containing solution, or the like. After that, it can be fixed by drying or the like. In addition, a method of forming a film of the components of the release layer 12 by a vapor phase method such as vapor deposition or sputtering can also be adopted.
 剥離層12の厚みは、典型的には1nm以上1μm以下であり、好ましくは5nm以上500nm以下であるがこれに限定されるものではない。剥離層12の厚みが薄過ぎると、極薄金属層13との分離が十分に行えず剥離不良になるという問題がある。また、厚みが大き過ぎると、剥離は可能であるが、製造コストが高くなるためこれらのバランスを考慮して適宜設定される。 The thickness of the release layer 12 is typically 1 nm or more and 1 μm or less, preferably 5 nm or more and 500 nm or less, but is not limited thereto. If the thickness of the peeling layer 12 is too thin, there is a problem that the peeling layer 12 cannot be sufficiently separated from the ultrathin metal layer 13 and the peeling is poor. Further, if the thickness is too large, peeling is possible, but the manufacturing cost is high, so that the balance is appropriately set.
 極薄金属層13を構成する金属は、キャリア層付き金属積層基材1Aの用途や目的とする特性に応じて適宜選択することができる。具体的には、銅、鉄、ニッケル、亜鉛、スズ、クロム、金、銀、白金、コバルト、チタン及びこれらのいずれかを基とする合金等が挙げられる。特に、銅又は銅合金の層であることが好ましい。これらの金属を低誘電性フィルム20と圧延接合することで、例えば微細配線形成用のフレキシブル基板を得ることができる。 The metal constituting the ultrathin metal layer 13 can be appropriately selected according to the application of the metal laminated base material 1A with a carrier layer and the desired characteristics. Specific examples thereof include copper, iron, nickel, zinc, tin, chromium, gold, silver, platinum, cobalt, titanium and alloys based on any of these. In particular, it is preferably a layer of copper or a copper alloy. By rolling and joining these metals with the low-dielectric film 20, for example, a flexible substrate for forming fine wiring can be obtained.
 極薄金属層13の厚みは、0.5μm以上10μm以下である。好ましくは、1μm以上7μm以下である。ここで、極薄金属層13の厚みは、キャリア層付き金属積層基材1Aの断面の光学顕微鏡写真を取得し、その光学顕微鏡写真において任意の10点における極薄金属層13の厚みを計測し、得られた値の平均値をいう。 The thickness of the ultrathin metal layer 13 is 0.5 μm or more and 10 μm or less. It is preferably 1 μm or more and 7 μm or less. Here, for the thickness of the ultrathin metal layer 13, an optical micrograph of a cross section of the metal laminated base material 1A with a carrier layer is acquired, and the thickness of the ultrathin metal layer 13 at any 10 points is measured in the optical micrograph. , The average value of the obtained values.
 このような極薄金属層13の製造方法は特に限定されないが、無電解めっき法、電解めっき法等の湿式成膜法、スパッタリング及び化学蒸着等の乾式成膜法、又はそれらの組み合わせにより剥離層12上に形成することができる。 The method for producing such an ultrathin metal layer 13 is not particularly limited, but a release layer can be obtained by a wet film forming method such as an electroless plating method or an electrolytic plating method, a dry film forming method such as sputtering or chemical vapor deposition, or a combination thereof. It can be formed on the twelve.
 本実施形態において、極薄金属層13と低誘電性フィルム20の接合強度と、キャリア層11と極薄金属層13の剥離強度とを比較した場合、極薄金属層13と低誘電性フィルム20の接合強度の方が大きい。これにより、キャリア層11を極薄金属層13から剥離する際に、極薄金属層13に皺や破れ等を生ずることなく剥離することができる。しかし、極薄金属層13及び低誘電性フィルム20の接合強度の値と、キャリア層11と極薄金属層13の剥離強度の値とが近過ぎると、実際上、極薄金属層13と低誘電性フィルム20との界面に影響を及ぼさずにキャリア層11を剥離することが困難になる場合があるため、極薄金属層13及び低誘電性フィルム20の接合強度と、キャリア層11と極薄金属層13の剥離強度との差が、0.25N/cm以上あることが好ましい。より好ましくは0.5N/cm以上、最も好ましくは1.5N/cm以上である。極薄金属層13及び低誘電性フィルム20の接合強度、及びキャリア層11と極薄金属層13の剥離強度の具体的な値としては、極薄金属層13と低誘電性フィルム20の接合強度が、2.0N/cm以上であることが好ましい。また、キャリア層11と極薄金属層13の剥離強度は、0より大きければ良く、0.5N/cm以下であることが好ましいが、約0.05N/cmを下回る領域では、引き剥がす材料(キャリア層11、極薄金属層13、低誘電性フィルム20、その他防錆層等)自体の剛性の影響により、正確な剥離強度を測れない場合がある。キャリア層11と極薄金属層13の剥離強度は、好ましくは0.15N/cm以上0.5N/cm以下の範囲である。なお、上記接合強度の値を測定するには、まずキャリア層付き金属積層基材1Aから幅1cmの試験片を作製する。その後、キャリア層11を除去した後に極薄金属層13表面に電解めっき(極薄金属層13が銅である場合、例えば銅めっき)を施し、低誘電性フィルム20表面に約10~20μm厚みの金属層(極薄金属層13を含む)を形成する。そして、前記約10~20μm厚みの金属層と低誘電性フィルム20を一部剥離後、低誘電性フィルム20を支持体へ固定し、前記約10~20μm厚みの金属層を、低誘電性フィルム20に対して90°方向へ引っ張る。その際の引き剥がすのに要する力をもって接合強度とする(単位:N/cm)。また、上記剥離強度を測定するには、まずキャリア層付き金属積層基材1Aから幅1cmの試験片を作製する。キャリア層11を一部剥離後、極薄金属層13を含む低誘電性フィルム20を支持体に固定し、キャリア層11を極薄金属層13を含む低誘電性フィルム20に対して90°方向へ引っ張る。その際の引き剥がすのに要する力をもって剥離強度とする(単位:N/cm)。 In the present embodiment, when the bonding strength between the ultra-thin metal layer 13 and the low-dielectric film 20 and the peel strength between the carrier layer 11 and the ultra-thin metal layer 13 are compared, the ultra-thin metal layer 13 and the low-dielectric film 20 are compared. The joint strength of is greater. As a result, when the carrier layer 11 is peeled from the ultra-thin metal layer 13, the ultra-thin metal layer 13 can be peeled off without causing wrinkles or tears. However, if the value of the bonding strength of the ultrathin metal layer 13 and the low dielectric film 20 and the value of the peel strength of the carrier layer 11 and the ultrathin metal layer 13 are too close, the value of the ultrathin metal layer 13 is practically low. Since it may be difficult to peel off the carrier layer 11 without affecting the interface with the dielectric film 20, the bonding strength between the ultrathin metal layer 13 and the low dielectric film 20 and the carrier layer 11 and the electrode The difference from the peel strength of the thin metal layer 13 is preferably 0.25 N / cm or more. It is more preferably 0.5 N / cm or more, and most preferably 1.5 N / cm or more. Specific values of the bonding strength between the ultrathin metal layer 13 and the low dielectric film 20 and the peel strength between the carrier layer 11 and the ultrathin metal layer 13 include the bonding strength between the ultrathin metal layer 13 and the low dielectric film 20. However, it is preferably 2.0 N / cm or more. The peel strength of the carrier layer 11 and the ultrathin metal layer 13 may be greater than 0, preferably 0.5 N / cm or less, but in a region of less than about 0.05 N / cm, the material to be peeled off ( Due to the influence of the rigidity of the carrier layer 11, the ultrathin metal layer 13, the low dielectric film 20, other rust preventive layer, etc.), accurate peel strength may not be measured. The peel strength between the carrier layer 11 and the ultrathin metal layer 13 is preferably in the range of 0.15 N / cm or more and 0.5 N / cm or less. In order to measure the value of the bonding strength, first, a test piece having a width of 1 cm is prepared from the metal laminated base material 1A with a carrier layer. Then, after removing the carrier layer 11, the surface of the ultrathin metal layer 13 is electroplated (when the ultrathin metal layer 13 is copper, for example, copper plating), and the surface of the low dielectric film 20 is about 10 to 20 μm thick. A metal layer (including an ultrathin metal layer 13) is formed. Then, after partially peeling the metal layer having a thickness of about 10 to 20 μm and the low-dielectric film 20, the low-dielectric film 20 is fixed to the support, and the metal layer having a thickness of about 10 to 20 μm is formed into the low-dielectric film. Pull in the 90 ° direction with respect to 20. The force required for peeling at that time is used as the joint strength (unit: N / cm). Further, in order to measure the peel strength, first, a test piece having a width of 1 cm is prepared from the metal laminated base material 1A with a carrier layer. After partially peeling off the carrier layer 11, the low-dielectric film 20 including the ultra-thin metal layer 13 is fixed to the support, and the carrier layer 11 is 90 ° in the direction of the low-dielectric film 20 including the ultra-thin metal layer 13. Pull to. The force required for peeling at that time is defined as the peel strength (unit: N / cm).
 本明細書において、「極薄金属層と低誘電性フィルムの接合強度」というときは、極薄金属層と低誘電性フィルムとの界面で剥離する場合の接合強度をいう他、極薄金属層の内部が破壊されることにより剥離する場合の接合強度、及び低誘電性フィルムの内部が破壊されることにより剥離する場合の接合強度をも意味し、さらに、上述のように極薄金属層における低誘電性フィルム側の表面に粗化粒子層や防錆層、シランカップリング剤による処理層等(総称して「処理層」という)が積層しているときは、極薄金属層と処理層との界面で剥離する場合の接合強度、処理層と低誘電性フィルムとの界面で剥離する場合の接合強度、及び、処理層の内部が破壊されることにより剥離する場合の接合強度をも意味する。また、後述の第2実施形態に係るキャリア層付き金属積層基材(図2)のように、低誘電性フィルム20と極薄金属層13との間に、金属を含む中間層30を有する場合は、「極薄金属層と低誘電性フィルムの接合強度」は、極薄金属層の内部が破壊されることにより剥離する場合の接合強度、極薄金属層(処理層が存在する場合は処理層)と中間層との界面で剥離する場合の接合強度、中間層と低誘電性フィルムとの界面で剥離する場合の接合強度、中間層の内部が破壊されることにより剥離する場合の接合強度、及び低誘電性フィルムの内部が破壊されることにより剥離する場合の接合強度のいずれをも意味する。 In the present specification, the term "bonding strength between the ultrathin metal layer and the low dielectric film" refers to the bonding strength when the ultrathin metal layer and the low dielectric film are peeled off at the interface, and also the ultrathin metal layer. It also means the bonding strength when the inside of the film is broken and peeled off, and the bonding strength when the inside of the low dielectric film is broken and peeled off, and further, as described above, in the ultrathin metal layer. When a roughened particle layer, a rust preventive layer, a treated layer with a silane coupling agent, etc. (collectively referred to as "treated layer") are laminated on the surface of the low dielectric film side, the ultrathin metal layer and the treated layer It also means the bonding strength when peeling at the interface with, the bonding strength when peeling at the interface between the treated layer and the low dielectric film, and the bonding strength when peeling due to the inside of the treated layer being destroyed. To do. Further, when a metal-containing intermediate layer 30 is provided between the low dielectric film 20 and the ultrathin metal layer 13 as in the metal laminated base material with a carrier layer (FIG. 2) according to the second embodiment described later. "The bonding strength between the ultra-thin metal layer and the low-dielectric film" is the bonding strength when the inside of the ultra-thin metal layer is destroyed and peeled off, and the ultra-thin metal layer (treated if a treated layer exists). Bonding strength when peeling at the interface between the layer) and the intermediate layer, bonding strength when peeling at the interface between the intermediate layer and the low dielectric film, bonding strength when peeling due to destruction of the inside of the intermediate layer , And the bonding strength when the inside of the low-dielectric film is broken and peeled off.
 低誘電性フィルム20は、極薄金属層13に積層されている。低誘電性フィルム20の材質としては、フレキシブル基板として用い得る低誘電性のポリマー材料であれば適用可能であり、例えば、比誘電率εが3.3以下、誘電正接tanδの値が0.006以下であるような材料であるが、これに限定されなくても良い。具体的には、液晶ポリマー、ポリフッ化エチレン(ポリテトラフルオロエチレン等のフッ素系樹脂)、ポリアミド、イソシアネート化合物、ポリアミドイミド、ポリイミド、低誘電率ポリイミド、ポリエチレンテレフタレート、ポリエーテルイミド等の材料から適宜選択して用いることができる。好ましくは、液晶ポリマー、ポリフッ化エチレン、ポリアミド又は低誘電率ポリイミドである。低誘電性フィルム20は、単層のフィルムであるか、又は複数層からなる積層体であり、複数層である場合は、その複数層のうちのいずれか一層以上が上記の低誘電性のポリマー材料からなる層であれば良い。低誘電性のポリマー材料からなる層以外の層は、エポキシ樹脂等の従来知られた種々の材料から構成することができる。なお、液晶ポリマーとは、溶融状態で液晶の性質を示すような、パラヒドロキシ安息香酸等を基本構造とする芳香族ポリエステル系樹脂をいう。 The low-dielectric film 20 is laminated on the ultra-thin metal layer 13. As the material of the low-dielectric film 20, any low-dielectric polymer material that can be used as a flexible substrate can be applied. For example, the relative permittivity ε r is 3.3 or less, and the value of the dielectric loss tangent tan δ is 0. The material is 006 or less, but is not limited to this. Specifically, it is appropriately selected from materials such as liquid crystal polymer, polyfluoroethylene (fluorine-based resin such as polytetrafluoroethylene), polyamide, isocyanate compound, polyamideimide, polyimide, low dielectric constant polyimide, polyethylene terephthalate, and polyetherimide. Can be used. A liquid crystal polymer, polyethylene fluoride, polyamide or low dielectric constant polyimide is preferable. The low-dielectric film 20 is a single-layer film or a laminate composed of a plurality of layers, and in the case of a plurality of layers, any one or more of the plurality of layers is the above-mentioned low-dielectric polymer. Any layer made of material may be used. The layers other than the layer made of the low-dielectric polymer material can be made of various conventionally known materials such as epoxy resin. The liquid crystal polymer refers to an aromatic polyester-based resin having a basic structure such as parahydroxybenzoic acid, which exhibits the properties of a liquid crystal in a molten state.
 低誘電性フィルム20の厚みは、金属積層基材の用途等に応じて適宜設定することができる。例えば、フレキシブルなプリント配線板として用いる場合は、厚みは10μm以上150μm以下であることが好ましく、より好ましくは10μm以上120μm以下である。なお、接合前の低誘電性フィルム20の厚みは、マイクロメータ等によって測定可能であり、対象とする低誘電性フィルムの表面上からランダムに選択した10点において測定した厚みの平均値をいう。また、用いる低誘電性フィルムについては、10点の測定値の平均値からの偏差が全ての測定値で10%以内であることが好ましい。 The thickness of the low-dielectric film 20 can be appropriately set according to the application of the metal laminated base material and the like. For example, when used as a flexible printed wiring board, the thickness is preferably 10 μm or more and 150 μm or less, and more preferably 10 μm or more and 120 μm or less. The thickness of the low-dielectric film 20 before bonding can be measured with a micrometer or the like, and refers to the average value of the thickness measured at 10 points randomly selected from the surface of the target low-dielectric film. Further, for the low-dielectric film to be used, it is preferable that the deviation from the average value of the measured values at 10 points is within 10% for all the measured values.
 次に、本発明の第2実施形態について説明する。図2に、本発明の第2実施形態に係るキャリア層付き金属積層基材の断面を示す。本実施形態では、図2に示すように、極薄金属層13と低誘電性フィルム20との間に、金属を含む中間層30を備える。この中間層30は、1層でも良いし、2層以上が積層していても良い。金属を含む中間層30としては、低誘電性フィルム20上に設けられた蒸着もしくは無電解めっき、スパッタ成膜による金属層が挙げられる。 Next, the second embodiment of the present invention will be described. FIG. 2 shows a cross section of the metal laminated base material with a carrier layer according to the second embodiment of the present invention. In the present embodiment, as shown in FIG. 2, an intermediate layer 30 containing a metal is provided between the ultrathin metal layer 13 and the low-dielectric film 20. The intermediate layer 30 may be one layer or two or more layers may be laminated. Examples of the intermediate layer 30 containing a metal include a metal layer provided on the low-dielectric film 20 by thin-film deposition, electroless plating, or sputtering film formation.
 なお、図2には記載していないが、第1実施形態に係るキャリア層付き金属積層基材と同様に、極薄金属層13の中間層30側の表面には、粗化粒子層や防錆層、シランカップリング剤の層等が積層されていても良い。これらの層は、いずれか一種の層が積層されていても良いし、複数種の層が積層されていても良い。粗化粒子層は、例えば、Cu、Co及びNiからなる群より選択されるいずれか一種の金属又はその合金を含むことができるが、これに限定されなくても良い。また、防錆層は、例えば、Cr、Ni及びZnからなる群より選択されるいずれか一種の金属又はその合金を含むことができるが、これに限定されなくても良い。 Although not shown in FIG. 2, the surface of the ultrathin metal layer 13 on the intermediate layer 30 side has a roughened particle layer and a rust preventive, similar to the metal laminated base material with a carrier layer according to the first embodiment. A rust layer, a layer of a silane coupling agent, and the like may be laminated. As for these layers, any one kind of layer may be laminated, or a plurality of kinds of layers may be laminated. The roughened particle layer can include, but is not limited to, any kind of metal selected from the group consisting of Cu, Co and Ni, or an alloy thereof. Further, the rust preventive layer may contain, for example, any kind of metal selected from the group consisting of Cr, Ni and Zn or an alloy thereof, but is not limited thereto.
 中間層30は、銅、鉄、ニッケル、亜鉛、クロム、コバルト、チタン、スズ、白金、銀及び金からなる群より選択されるいずれか一種の金属又はその合金を含むことが好ましい。特に、極薄金属層13が銅又はその合金である場合には、中間層30を構成する金属についても、銅、又は銅ニッケル合金等の銅を含む合金であることが好ましい。中間層30が例えばCu-Ni合金である場合は、Cuに対するNiの比率がat%で10~90%であることが好ましい。しかし、これに限定されるものではない。これらの中間層30を設けることにより、極薄金属層13又は低誘電性フィルム20の表面を保護し、また極薄金属層13と低誘電性フィルム20との密着性を向上させることができるだけでなく、中間層30特有の機能を付与することができる(例えば、エッチング加工時のエッチングストッパー層としての機能等)。中間層30の厚みは、密着性向上等の機能を発揮し得る厚みであれば良く、特に限定されない。具体的には、5nm以上200nm以下の厚みとすることが好ましく、より好ましくは10nm以上100nm以下である。 The intermediate layer 30 preferably contains any kind of metal selected from the group consisting of copper, iron, nickel, zinc, chromium, cobalt, titanium, tin, platinum, silver and gold or an alloy thereof. In particular, when the ultrathin metal layer 13 is copper or an alloy thereof, the metal constituting the intermediate layer 30 is also preferably an alloy containing copper such as copper or a copper-nickel alloy. When the intermediate layer 30 is, for example, a Cu—Ni alloy, the ratio of Ni to Cu is preferably 10 to 90% in at%. However, it is not limited to this. By providing these intermediate layers 30, it is possible to protect the surface of the ultra-thin metal layer 13 or the low-dielectric film 20 and improve the adhesion between the ultra-thin metal layer 13 and the low-dielectric film 20. However, it is possible to impart a function peculiar to the intermediate layer 30 (for example, a function as an etching stopper layer during etching processing). The thickness of the intermediate layer 30 is not particularly limited as long as it can exhibit functions such as improving adhesion. Specifically, the thickness is preferably 5 nm or more and 200 nm or less, and more preferably 10 nm or more and 100 nm or less.
 次に、本発明に係るキャリア層付き金属積層基材の製造方法について、特に図2に示すような、低誘電性フィルム20と極薄金属層13との間に金属を含む中間層30を有するキャリア層付き金属積層基材1Bを製造する場合を例に説明する。図2に示すキャリア層付き金属積層基材1Bは、キャリア層11、剥離層12、極薄金属層13からなるキャリア層付き金属箔10と、低誘電性フィルム20とを準備し、低誘電性フィルム20の面上に金属を含む中間層30を設け、次に、これらを冷間圧延接合、表面活性化接合等の各種の方法により互いに接合して、層間を密着させることにより得ることができる。なお、キャリア層付き金属積層基材1Bを製造する際の高圧下での接合及び/又は熱処理は、接合前後及び/又は熱処理前後でキャリア層付き金属積層基材1Bの各層における組織を著しく変化させ、キャリア層付き金属積層基材1Bの特性を損なう恐れがあるため、そのような組織変化を回避できる接合・熱処理条件を選択することが好ましい。 Next, regarding the method for producing a metal laminated base material with a carrier layer according to the present invention, an intermediate layer 30 containing a metal is provided between the low-dielectric film 20 and the ultrathin metal layer 13, as shown in FIG. A case of manufacturing the metal laminated base material 1B with a carrier layer will be described as an example. In the metal laminated base material 1B with a carrier layer shown in FIG. 2, a metal foil 10 with a carrier layer composed of a carrier layer 11, a release layer 12, and an ultrathin metal layer 13 and a low-dielectric film 20 are prepared, and low-dielectricity is obtained. It can be obtained by providing an intermediate layer 30 containing a metal on the surface of the film 20 and then joining them to each other by various methods such as cold rolling bonding and surface activation bonding to bring the layers into close contact with each other. .. The bonding and / or heat treatment under high pressure during the production of the metal laminated base material 1B with a carrier layer significantly changes the structure of each layer of the metal laminated base material 1B with a carrier layer before and after joining and / or before and after the heat treatment. Since the characteristics of the metal laminated base material 1B with a carrier layer may be impaired, it is preferable to select bonding / heat treatment conditions that can avoid such structural changes.
 キャリア層付き金属積層基材1Bを製造する方法として好ましい態様を図3A及び図3Bに基づき説明する。まず、図3Aに示すように、低誘電性フィルム20の面20aをスパッタエッチングにより活性化した後(図3Aの(a))、低誘電性フィルム20の面20a上に金属を含む中間層30をスパッタ成膜する。スパッタ成膜を行う際の条件は、中間層30を構成する金属種や、中間層30の厚みに応じて適宜設定することができる。 A preferred embodiment as a method for producing the metal laminated base material 1B with a carrier layer will be described with reference to FIGS. 3A and 3B. First, as shown in FIG. 3A, after the surface 20a of the low-dielectric film 20 is activated by sputter etching ((a) in FIG. 3A), the intermediate layer 30 containing a metal on the surface 20a of the low-dielectric film 20 Is sputtered and formed. The conditions for performing the sputter film formation can be appropriately set according to the metal species constituting the intermediate layer 30 and the thickness of the intermediate layer 30.
 次に、図3Bに示すように、中間層30の表面30aをスパッタエッチングにより活性化し、キャリア層付き金属箔10における極薄金属層13の表面13aをスパッタエッチングにより活性化し、それら活性化した表面同士を圧延接合することにより(図3Bの(c))、キャリア層付き金属積層基材1Bを製造することができる(図3Bの(d))。なお、極薄金属層13の表面13aに粗化粒子層や防錆層が含まれている場合は、当該粗化粒子層や防錆層表面がスパッタエッチングにより活性化される。その際、スパッタエッチングによって、当該粗化粒子層や防錆層が完全に除去されても良いし、除去されずに残存しても良い。圧延接合する際の圧下率は、0~30%とする。好ましくは0~15%である。上記の表面活性化接合による方法は、圧下率を低くすることができるため、剥離層12の機能(低密着性)を維持したまま接合することが可能であり、また、皺や割れ等を生ずることなく、厚み精度に優れた極薄金属層13を形成することができる。さらに、極薄金属層13と中間層30及び低誘電性フィルム20との界面のうねりを小さくすることができるため、極薄金属層13及び中間層30へパターンエッチングを施して回路を形成する場合に、厚み精度が優れるため精密な回路を得ることができる。 Next, as shown in FIG. 3B, the surface 30a of the intermediate layer 30 is activated by sputtering etching, and the surface 13a of the ultrathin metal layer 13 in the metal foil 10 with a carrier layer is activated by sputtering etching, and these activated surfaces are used. By rolling and joining each other ((c) in FIG. 3B), the metal laminated base material 1B with a carrier layer can be manufactured ((d) in FIG. 3B). When the surface 13a of the ultrathin metal layer 13 contains a roughened particle layer or a rust preventive layer, the surface of the roughened particle layer or the rust preventive layer is activated by sputter etching. At that time, the roughened particle layer and the rust preventive layer may be completely removed by sputter etching, or may remain without being removed. The reduction ratio at the time of rolling and joining is 0 to 30%. It is preferably 0 to 15%. Since the above-mentioned surface-activated bonding method can reduce the reduction rate, it is possible to perform bonding while maintaining the function (low adhesion) of the release layer 12, and wrinkles, cracks, etc. occur. The ultra-thin metal layer 13 having excellent thickness accuracy can be formed without any problem. Further, since the waviness at the interface between the ultrathin metal layer 13 and the intermediate layer 30 and the low-dielectric film 20 can be reduced, a circuit is formed by performing pattern etching on the ultrathin metal layer 13 and the intermediate layer 30. In addition, since the thickness accuracy is excellent, a precise circuit can be obtained.
 なお、スパッタエッチングにより活性化する前の中間層30の表面30a、又は極薄金属層13の表面13aには、必要に応じて、酸化防止や密着性向上のため、Niめっき、クロメート処理、シランカップリング剤処理等が施されていても良い。また、極薄金属層13の表面13aは、中間層30との密着性を高めるため、必要に応じて粗化処理を施すことができる。 The surface 30a of the intermediate layer 30 or the surface 13a of the ultrathin metal layer 13 before being activated by sputter etching is subjected to Ni plating, chromate treatment, or silane, if necessary, in order to prevent oxidation and improve adhesion. It may be treated with a coupling agent or the like. Further, the surface 13a of the ultrathin metal layer 13 can be roughened as necessary in order to improve the adhesion with the intermediate layer 30.
 スパッタエッチング処理は、例えば、接合するキャリア層付き金属箔10あるいは中間層30を設けた低誘電性フィルム20を、幅100mm~600mmの長尺コイルとして用意し、キャリア層付き金属箔10又は低誘電性フィルム20の接合面をアース接地した一方の電極とし、絶縁支持された他の電極との間に1MHz~50MHzの交流を印加してグロー放電を発生させ、且つグロー放電によって生じたプラズマ中に露出される電極の面積を前記の他の電極の面積の1/3以下として行うことができる。スパッタエッチング処理中は、アース接地した電極が冷却ロールの形をとっており、搬送材の温度上昇を防いでいる。 For the sputter etching treatment, for example, a low-dielectric film 20 provided with a carrier layer-attached metal foil 10 or an intermediate layer 30 to be bonded is prepared as a long coil having a width of 100 mm to 600 mm, and the carrier layer-attached metal foil 10 or low-dielectric The joint surface of the sex film 20 is used as one electrode grounded to the ground, and an AC of 1 MHz to 50 MHz is applied between the electrode and the other electrode supported by insulation to generate a glow discharge, and the glow discharge is generated in the plasma. The area of the exposed electrode can be set to 1/3 or less of the area of the other electrode. During the sputter etching process, the grounded electrode is in the form of a cooling roll to prevent the temperature of the conveyed material from rising.
 スパッタエッチング処理では、真空下でキャリア層付き金属箔10又は低誘電性フィルム20の接合する面を不活性ガスによりスパッタすることにより、表面の吸着物を完全に除去し、且つ表面の酸化物層の一部又は全部を除去する。銅の酸化物層は完全に除去することが好ましい。不活性ガスとしては、アルゴン、ネオン、キセノン、クリプトン等や、これらを少なくとも1種類含む混合気体を適用することができる。金属の種類にもよるが、極薄金属層13又は中間層30の表面の吸着物は、エッチング量約1nm程度で完全に除去することができ、特に銅の酸化物層は通常5nm~12nm(SiO換算)程度で除去が可能である。 In the sputter etching process, the surface to be bonded to the metal foil 10 with a carrier layer or the low-dielectric film 20 is sputtered with an inert gas under vacuum to completely remove adsorbents on the surface and the oxide layer on the surface. Remove some or all of. It is preferable to completely remove the copper oxide layer. As the inert gas, argon, neon, xenon, krypton and the like, and a mixed gas containing at least one of these can be applied. Although it depends on the type of metal, the adsorbent on the surface of the ultrathin metal layer 13 or the intermediate layer 30 can be completely removed with an etching amount of about 1 nm, and in particular, the copper oxide layer is usually 5 nm to 12 nm (usually 5 nm to 12 nm). It can be removed by (converted to SiO 2).
 スパッタエッチングの処理条件は、極薄金属層13又は中間層30の種類等に応じて適宜設定することができる。例えば、真空下で、100W~10kWのプラズマ出力、ライン速度0.5m/分~30m/分で行うことができる。この時の真空度は、表面への再吸着物を防止するため高い方が好ましいが、例えば、1×10-5Pa~10Paであれば良い。 The processing conditions for sputter etching can be appropriately set according to the type of the ultrathin metal layer 13 or the intermediate layer 30 and the like. For example, it can be performed under vacuum at a plasma output of 100 W to 10 kW and a line speed of 0.5 m / min to 30 m / min. The degree of vacuum at this time is preferably high in order to prevent re-adsorbed substances on the surface, but may be, for example, 1 × 10 -5 Pa to 10 Pa.
 スパッタエッチングを経た極薄金属層13及び中間層30の表面同士の圧接は、ロール圧接により行うことができる。ロール圧接の圧延線荷重は、特に限定されずに、例えば、0.1tf/cm~10tf/cmの範囲に設定して行うことができる。ただし、キャリア層付き金属箔10又は中間層30を設けた低誘電性フィルム20の接合前の厚みが大きい場合等には、接合時の圧力確保のために圧延線荷重を高くすることが必要になる場合があり、この数値範囲に限定されるものではない。一方で、圧延線荷重が高過ぎると、極薄金属層13又は中間層30の表層だけでなく、接合界面も変形しやすくなるため、キャリア層付き金属積層基材1Bにおけるそれぞれの層の厚み精度が低下する恐れがある。また、圧延線荷重が高いと接合時に加わる加工ひずみが大きくなる恐れがある。 The surfaces of the ultrathin metal layer 13 and the intermediate layer 30 that have undergone sputtering etching can be pressure-welded to each other by roll pressure welding. The rolling wire load for roll pressure welding is not particularly limited, and can be set, for example, in the range of 0.1 tf / cm to 10 tf / cm. However, when the thickness of the low-dielectric film 20 provided with the metal foil 10 with a carrier layer or the intermediate layer 30 before joining is large, it is necessary to increase the rolling wire load in order to secure the pressure at the time of joining. In some cases, it is not limited to this numerical range. On the other hand, if the rolling wire load is too high, not only the surface layer of the ultrathin metal layer 13 or the intermediate layer 30 but also the bonding interface is easily deformed, so that the thickness accuracy of each layer in the metal laminated base material 1B with a carrier layer is high. May decrease. Further, if the rolling wire load is high, the machining strain applied at the time of joining may increase.
 圧接する際の圧下率は、30%以下であり、好ましくは8%以下、より好ましくは6%以下である。なお、圧接の前後で厚さは変わらなくても良いため、圧下率の下限値は0%である。 The reduction rate at the time of pressure welding is 30% or less, preferably 8% or less, and more preferably 6% or less. Since the thickness does not have to change before and after the pressure welding, the lower limit of the reduction rate is 0%.
 ロール圧接による接合は、極薄金属層13又は中間層30表面への酸素の再吸着によって両者間の接合強度が低下するのを防止するため、非酸化雰囲気中、例えば真空中やAr等の不活性ガス雰囲気中で行うことが好ましい。 In the bonding by roll pressure welding, in order to prevent the bonding strength between the two from being lowered due to the re-adsorption of oxygen on the surface of the ultrathin metal layer 13 or the intermediate layer 30, in a non-oxidizing atmosphere, for example, in a vacuum or in Ar, etc. It is preferable to carry out in an active gas atmosphere.
 また、圧接により得られたキャリア層付き金属積層基材1Bは、必要に応じて、さらに熱処理を行うことができる。熱処理によって、極薄金属層13又は中間層30のひずみが除かれ、層間の密着性を向上させることができる。この熱処理は、高温で長時間行うと、剥離層12を起点にキャリア層11にフクレが発生し、そのフクレを起点にキャリア層11が剥離する恐れや、逆にキャリア層11と極薄金属層13との密着性が相互拡散等により高まり、キャリア層11の剥離が困難となる恐れもある。また、極薄金属層13と中間層30の組合せ次第では界面に金属間化合物を生成し、密着性(接合強度)が低下する傾向がある。よって、上記の熱処理は160℃以上300℃以下の温度で行う。より好ましくは180℃以上290℃以下である。あるいは、圧延接合した後に熱処理を行わないことが好ましい。なお、接合後のキャリア層付き金属積層基材1Bからキャリア層11を剥離・除去した後であれば、極薄金属層13及び中間層30の界面において金属間化合物を生成しない温度範囲での熱処理を行っても良い。 Further, the metal laminated base material 1B with a carrier layer obtained by pressure welding can be further heat-treated if necessary. By the heat treatment, the strain of the ultrathin metal layer 13 or the intermediate layer 30 is removed, and the adhesion between the layers can be improved. When this heat treatment is performed at a high temperature for a long time, blister is generated in the carrier layer 11 starting from the peeling layer 12, and the carrier layer 11 may be peeled off from the blister, or conversely, the carrier layer 11 and the ultrathin metal layer. Adhesion with 13 may be enhanced by mutual diffusion or the like, and it may be difficult to peel off the carrier layer 11. Further, depending on the combination of the ultrathin metal layer 13 and the intermediate layer 30, an intermetallic compound is formed at the interface, and the adhesion (bonding strength) tends to decrease. Therefore, the above heat treatment is performed at a temperature of 160 ° C. or higher and 300 ° C. or lower. More preferably, it is 180 ° C. or higher and 290 ° C. or lower. Alternatively, it is preferable not to perform heat treatment after rolling and joining. After the carrier layer 11 is peeled off and removed from the metal laminated base material 1B with a carrier layer after bonding, heat treatment is performed in a temperature range in which an intermetallic compound is not generated at the interface between the ultrathin metal layer 13 and the intermediate layer 30. May be done.
 次に、本発明に係る金属積層基材及びその製造方法について説明する。図4は、本発明の一実施形態に係る金属積層基材の製造工程を示す図である。図4に示す金属積層基材2は、低誘電性フィルム20の一方の面に、金属を含む中間層30を介して極薄金属層13が積層されて概略構成されている。金属積層基材2は、キャリア層11及び剥離層12を有しない以外は、図2に示すキャリア層付き金属積層基材1Bと同じであり、各層の構成は、キャリア層付き金属積層基材1Bにおける各層の構成と同様である。この金属積層基材2は、キャリア層付き金属積層基材1Bから得ることができる。すなわち、図4に示すように、キャリア層付き金属積層基材1Bを準備し(図4の(a))、このキャリア層付き金属積層基材1Bにおけるキャリア層11を剥離層12とともに剥離することにより(図4の(b))、3層構造の金属積層基材2を得ることができる(図4の(c))。 Next, the metal laminated base material and the manufacturing method thereof according to the present invention will be described. FIG. 4 is a diagram showing a manufacturing process of a metal laminated base material according to an embodiment of the present invention. The metal laminated base material 2 shown in FIG. 4 is roughly configured by laminating an ultrathin metal layer 13 on one surface of a low-dielectric film 20 via an intermediate layer 30 containing a metal. The metal laminated base material 2 is the same as the metal laminated base material 1B with a carrier layer shown in FIG. 2 except that it does not have the carrier layer 11 and the release layer 12, and the configuration of each layer is the metal laminated base material 1B with a carrier layer. It is the same as the composition of each layer in. The metal laminated base material 2 can be obtained from the metal laminated base material 1B with a carrier layer. That is, as shown in FIG. 4, the metal laminated base material 1B with a carrier layer is prepared ((a) of FIG. 4), and the carrier layer 11 in the metal laminated base material 1B with a carrier layer is peeled off together with the release layer 12. ((B) in FIG. 4), a metal laminated base material 2 having a three-layer structure can be obtained ((c) in FIG. 4).
 製造された金属積層基材2は、例えば厚みが0.5μm以上10μm以下であるような極薄金属層13を有しており、フレキシブルな回路基板を作製するための金属積層基材(金属張積層板)として利用することができる。なお、本発明の金属積層基材には、極薄金属層13における低誘電性フィルムと反対側の表面上に、無電解めっき、電解めっき(例えば銅めっき)等により追加の金属層を積層した形態を含むものである。 The manufactured metal laminated base material 2 has, for example, an ultrathin metal layer 13 having a thickness of 0.5 μm or more and 10 μm or less, and is a metal laminated base material (metal-clad) for producing a flexible circuit board. It can be used as a laminated board). In the metal laminated base material of the present invention, an additional metal layer was laminated on the surface of the ultrathin metal layer 13 opposite to the low dielectric film by electroless plating, electrolytic plating (for example, copper plating) or the like. It includes morphology.
 金属積層基材2を用いて微細な回路が形成されたプリント配線板を得ることができる。回路を形成する工程において、回路部分にのみ前記追加の金属層を形成することもできる。具体的には、モディファイドセミアディティブ法(MSAP法)やセミアディティブ法(SAP法)等の従来知られた手法を適宜用いてプリント配線板を得ることができ、例えば、金属積層基材2における極薄金属層13上の非回路部をマスクし、マスクされていない部分に銅めっきを施して追加の金属層を形成し、マスクを除去し、マスクにより隠れていた極薄金属層13をエッチングにより除去することによってプリント配線板を製造することができる。なお、本発明における「プリント配線板」には、回路を形成した積層体のみならず、回路を形成した後にIC等の電子部品類を搭載したものも含む。 A printed wiring board on which a fine circuit is formed can be obtained by using the metal laminated base material 2. In the process of forming the circuit, the additional metal layer may be formed only on the circuit portion. Specifically, a printed wiring board can be obtained by appropriately using a conventionally known method such as a modified semi-additive method (MSAP method) or a semi-additive method (SAP method). For example, a electrode in a metal laminated substrate 2 can be obtained. The non-circuit part on the thin metal layer 13 is masked, the unmasked part is copper-plated to form an additional metal layer, the mask is removed, and the ultra-thin metal layer 13 hidden by the mask is etched. A printed wiring board can be manufactured by removing it. The "printed wiring board" in the present invention includes not only a laminated body in which a circuit is formed but also a board in which electronic components such as ICs are mounted after the circuit is formed.
 図1におけるキャリア層付き金属積層基材1A、図2におけるキャリア層付き金属積層基材1B、及び図4における金属積層基材2の実施形態では、低誘電性フィルム20の一方の面に、キャリア層付き金属箔10ないし極薄金属層13を積層させる場合について説明したが、これに限定されるものではない。すなわち、必要に応じて、低誘電性フィルム20の両方の面に、中間層30、極薄金属層13、剥離層12及びキャリア層11を設けても良い。低誘電性フィルム20の両面にこれらの各層を設けたキャリア層付き金属積層基材を利用することにより、低誘電性フィルム20の両面に回路が形成されたフレキシブルなプリント配線板を得ることができる。 In the embodiment of the metal laminated base material 1A with a carrier layer in FIG. 1, the metal laminated base material 1B with a carrier layer in FIG. 2, and the metal laminated base material 2 in FIG. 4, carriers are formed on one surface of the low dielectric film 20. Although the case where the layered metal foil 10 or the ultrathin metal layer 13 is laminated has been described, the present invention is not limited to this. That is, if necessary, the intermediate layer 30, the ultrathin metal layer 13, the release layer 12, and the carrier layer 11 may be provided on both surfaces of the low-dielectric film 20. By using a metal laminated base material with a carrier layer in which each of these layers is provided on both sides of the low-dielectric film 20, a flexible printed wiring board in which circuits are formed on both sides of the low-dielectric film 20 can be obtained. ..
 以下、実施例及び比較例に基づき本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail based on Examples and Comparative Examples, but the present invention is not limited to these Examples.
(実施例1)
 まず、キャリア層付き金属箔として、銅からなる厚み18μmのキャリア層に、剥離層(有機系剥離層)を介して厚み1.5μmの極薄銅層とその表面に粗化粒子層及び防錆層が設けられたキャリア層付き銅箔(三井金属鉱業(株)製MT18FL)と、低誘電性フィルムとして厚み25μmの液晶ポリマー(LCP)フィルムとを準備した。LCPフィルムの表面をスパッタエッチングにより活性化した後、銅からなる中間層(厚み40nm)をスパッタ成膜により形成した。そして、極薄銅層及び中間層の表面同士を圧延接合して、目的のキャリア層付き金属積層基材を製造した。圧接する際の線荷重は1.5tf/cmとし、表面活性化接合による圧下率は2.2%である。圧延接合後、240℃での熱処理を行った。
(Example 1)
First, as a metal foil with a carrier layer, a carrier layer having a thickness of 18 μm made of copper, an ultrathin copper layer having a thickness of 1.5 μm via a release layer (organic release layer), and a roughened particle layer and rust preventive on the surface thereof. A copper foil with a carrier layer provided with a layer (MT18FL manufactured by Mitsui Metal Mining Co., Ltd.) and a liquid crystal polymer (LCP) film having a thickness of 25 μm were prepared as a low dielectric film. After activating the surface of the LCP film by sputtering etching, an intermediate layer (thickness 40 nm) made of copper was formed by sputtering film formation. Then, the surfaces of the ultrathin copper layer and the intermediate layer were rolled and joined to produce a target metal laminated base material with a carrier layer. The linear load at the time of pressure welding is 1.5 tf / cm, and the reduction rate by surface activation bonding is 2.2%. After the rolling joint, heat treatment was performed at 240 ° C.
(実施例2)
 キャリア層付き金属箔として、銅からなる厚み18μmのキャリア層に、剥離層(有機系剥離層)を介して厚み1.5μmの極薄銅層とその表面に粗化粒子層及び防錆層が設けられたキャリア層付き銅箔(三井金属鉱業(株)製MT18FL)を用いた。また、低誘電性フィルムとして、厚み100μmのLCPフィルムを用い、この表面をスパッタエッチングにより活性化した後、銅からなる中間層(厚み40nm)をスパッタ成膜により形成した。そして、極薄銅層及び中間層の表面同士を圧延接合し、その後に熱処理を行ってキャリア層付き金属積層基材を製造した。接合条件は表1に示すとおりである。また、表面活性化接合による圧下率は2.5%である。
(Example 2)
As a metal foil with a carrier layer, a carrier layer having a thickness of 18 μm made of copper is provided with an ultrathin copper layer having a thickness of 1.5 μm via a release layer (organic release layer), and a roughened particle layer and a rust preventive layer on the surface thereof. A provided copper foil with a carrier layer (MT18FL manufactured by Mitsui Metal Mining Co., Ltd.) was used. Further, as a low-dielectric film, an LCP film having a thickness of 100 μm was used, and after the surface was activated by sputtering etching, an intermediate layer (thickness 40 nm) made of copper was formed by sputtering film formation. Then, the surfaces of the ultrathin copper layer and the intermediate layer were rolled and joined, and then heat treatment was performed to produce a metal laminated base material with a carrier layer. The joining conditions are as shown in Table 1. The reduction rate due to surface activation bonding is 2.5%.
(実施例3及び4)
 接合条件を表1に示すとおりに変更した以外は、実施例2と同様にしてキャリア層付き金属積層基材を製造した。実施例3及び4における圧下率はそれぞれ2.5%及び3.5%である。
(Examples 3 and 4)
A metal laminated base material with a carrier layer was produced in the same manner as in Example 2 except that the joining conditions were changed as shown in Table 1. The reduction rates in Examples 3 and 4 are 2.5% and 3.5%, respectively.
(実施例5)
 低誘電性フィルム及び中間層として、実施例1と同様に、厚み25μmのLCPフィルムの表面に銅からなる中間層(厚み40nm)をスパッタ成膜により形成したものを用い、さらに接合条件を表1に示すとおりに変更した以外は、実施例2と同様にしてキャリア層付き金属積層基材を製造した。圧下率は2.2%である。
(Example 5)
As the low-dielectric film and the intermediate layer, an intermediate layer (thickness 40 nm) made of copper was formed on the surface of an LCP film having a thickness of 25 μm by sputter film formation as in Example 1, and the bonding conditions were further described in Table 1. A metal laminated base material with a carrier layer was produced in the same manner as in Example 2 except that the changes were made as shown in. The reduction rate is 2.2%.
(実施例6)
 キャリア層付き金属箔として、銅からなる厚み18μmのキャリア層に、剥離層(無機系剥離層)を介して厚み3.0μmの極薄銅層とその表面に粗化粒子層及び防錆層が設けられたキャリア層付き銅箔(JX金属(株)製JXUT-III)を用い、さらに接合条件を表1に示すとおりに変更した以外は、実施例5と同様にしてキャリア層付き金属積層基材を製造した。圧下率は4.3%である。
(Example 6)
As a metal foil with a carrier layer, a carrier layer having a thickness of 18 μm made of copper, an ultrathin copper layer having a thickness of 3.0 μm via a release layer (inorganic release layer), and a roughened particle layer and a rust preventive layer on the surface thereof. A metal laminated group with a carrier layer was used in the same manner as in Example 5, except that the provided copper foil with a carrier layer (JXUT-III manufactured by JX Nippon Mining & Metals Co., Ltd.) was used and the joining conditions were changed as shown in Table 1. Manufactured the material. The reduction rate is 4.3%.
(実施例7)
 低誘電性フィルム及び中間層として、厚み25μmの低誘電性ポリイミド(変性ポリイミド、MPI)フィルムの表面に銅からなる中間層(厚み40nm)をスパッタ成膜により形成したものを用いた以外は、実施例4と同様にしてキャリア層付き金属積層基材を製造した。圧下率は2.2%である。
(Example 7)
As the low-dielectric film and the intermediate layer, except that an intermediate layer (thickness 40 nm) made of copper was formed on the surface of a low-dielectric polyimide (modified polyimide, MPI) film having a thickness of 25 μm by sputter film formation. A metal laminated base material with a carrier layer was produced in the same manner as in Example 4. The reduction rate is 2.2%.
(実施例8)
 キャリア層付き金属箔として、銅からなる厚み18μmのキャリア層に、剥離層(無機系剥離層)を介して厚み2.0μmの極薄銅層とその表面に防錆層のみ(粗化粒子層なし)が設けられたキャリア層付き銅箔(試作材1)を用い、さらに接合条件を表1に示すとおりに変更した以外は、実施例6と同様にしてキャリア層付き金属積層基材を製造した。圧下率は2.2%である。
(Example 8)
As a metal foil with a carrier layer, a carrier layer having a thickness of 18 μm made of copper, an ultrathin copper layer having a thickness of 2.0 μm via a release layer (inorganic release layer), and a rust preventive layer only on the surface thereof (roughened particle layer). A metal laminated base material with a carrier layer was produced in the same manner as in Example 6 except that a copper foil with a carrier layer (prototype material 1) provided with (none) was used and the joining conditions were changed as shown in Table 1. did. The reduction rate is 2.2%.
(実施例9)
 キャリア層付き金属箔として、銅からなる厚み18μmのキャリア層に、剥離層(有機系剥離層)を介して厚み5.0μmの極薄銅層とその表面に防錆層のみ(粗化粒子層なし)が設けられたキャリア層付き銅箔(試作材2)を用い、さらに接合条件を表1に示すとおりに変更した以外は、実施例8と同様にしてキャリア層付き金属積層基材を製造した。圧下率は6.3%である。
(Example 9)
As a metal foil with a carrier layer, a carrier layer having a thickness of 18 μm made of copper, an ultrathin copper layer having a thickness of 5.0 μm via a release layer (organic release layer), and a rust preventive layer only on the surface thereof (roughened particle layer). A metal laminated base material with a carrier layer was produced in the same manner as in Example 8 except that a copper foil with a carrier layer (prototype material 2) provided with (none) was used and the joining conditions were changed as shown in Table 1. did. The reduction rate is 6.3%.
(比較例1)
 接合条件を表1に示すとおりに変更した以外は、実施例5と同様にしてキャリア層付き金属積層基材を製造した。圧下率は2.2%である。
(Comparative Example 1)
A metal laminated base material with a carrier layer was produced in the same manner as in Example 5 except that the joining conditions were changed as shown in Table 1. The reduction rate is 2.2%.
(比較例2)
 接合条件を表1に示すとおりに変更した以外は、実施例6と同様にしてキャリア層付き金属積層基材を製造した。圧下率は4.3%である。
(Comparative Example 2)
A metal laminated base material with a carrier layer was produced in the same manner as in Example 6 except that the joining conditions were changed as shown in Table 1. The reduction rate is 4.3%.
(比較例3)
 接合条件を表1に示すとおりに変更した以外は、実施例5と同様にしてキャリア層付き金属積層基材を製造した。圧下率は2.2%である。
(Comparative Example 3)
A metal laminated base material with a carrier layer was produced in the same manner as in Example 5 except that the joining conditions were changed as shown in Table 1. The reduction rate is 2.2%.
(比較例4)
 接合条件を表1に示すとおりに変更した以外は、実施例6と同様にしてキャリア層付き金属積層基材を製造した。圧下率は4.3%である。
(Comparative Example 4)
A metal laminated base material with a carrier layer was produced in the same manner as in Example 6 except that the joining conditions were changed as shown in Table 1. The reduction rate is 4.3%.
(比較例5)
 まず、キャリア層付き金属箔として、銅からなる厚み18μmのキャリア層に、剥離層(有機系剥離層)を介して厚み2.0μmの極薄銅層とその表面に粗化粒子層及び防錆層が設けられたキャリア層付き銅箔(三井金属鉱業(株)製MT18FL)と、低誘電性フィルムとして厚み25μmの液晶ポリマー(LCP)フィルムとを準備した。続いて、キャリア層付き銅箔とLCPフィルムとを熱圧着により接合し、キャリア層付き金属積層基材を製造した。熱圧着の条件は表2に示すとおりである。
(Comparative Example 5)
First, as a metal foil with a carrier layer, a carrier layer having a thickness of 18 μm made of copper, an ultrathin copper layer having a thickness of 2.0 μm via a release layer (organic release layer), and a roughened particle layer and rust preventive on the surface thereof. A copper foil with a carrier layer provided with a layer (MT18FL manufactured by Mitsui Metal Mining Co., Ltd.) and a liquid crystal polymer (LCP) film having a thickness of 25 μm were prepared as a low dielectric film. Subsequently, the copper foil with a carrier layer and the LCP film were bonded by thermocompression bonding to produce a metal laminated base material with a carrier layer. The conditions for thermocompression bonding are as shown in Table 2.
(比較例6及び7)
 熱圧着の条件を表2に示すとおりに変更した以外は、比較例5と同様にしてキャリア層付き金属積層基材を製造した。
(Comparative Examples 6 and 7)
A metal laminated base material with a carrier layer was produced in the same manner as in Comparative Example 5, except that the thermocompression bonding conditions were changed as shown in Table 2.
(比較例8)
 まず、キャリア層付き金属箔として、銅からなる厚み18μmのキャリア層に、剥離層(無機系剥離層)を介して厚み3.0μmの極薄銅層とその表面に粗化粒子層及び防錆層が設けられたキャリア層付き銅箔(JX金属(株)製JXUT-III)と、低誘電性フィルムとして厚み25μmの液晶ポリマー(LCP)フィルムとを準備した。続いて、キャリア層付き銅箔とLCPフィルムとを熱圧着により接合し、キャリア層付き金属積層基材を製造した。熱圧着の条件は表2に示すとおりである。
(Comparative Example 8)
First, as a metal foil with a carrier layer, a carrier layer having a thickness of 18 μm made of copper, an ultrathin copper layer having a thickness of 3.0 μm via a release layer (inorganic release layer), and a roughened particle layer and rust preventive on the surface thereof. A copper foil with a carrier layer provided with a layer (JXUT-III manufactured by JX Nippon Mining & Metals Co., Ltd.) and a liquid crystal polymer (LCP) film having a thickness of 25 μm were prepared as a low dielectric film. Subsequently, the copper foil with a carrier layer and the LCP film were bonded by thermocompression bonding to produce a metal laminated base material with a carrier layer. The conditions for thermocompression bonding are as shown in Table 2.
(比較例9及び10)
 熱圧着の条件を表2に示すとおりに変更した以外は、比較例8と同様にしてキャリア層付き金属積層基材を製造した。
(Comparative Examples 9 and 10)
A metal laminated base material with a carrier layer was produced in the same manner as in Comparative Example 8 except that the thermocompression bonding conditions were changed as shown in Table 2.
 実施例1~9及び比較例1~10で得られたキャリア層付き金属積層基材について、極薄銅層と低誘電性フィルムの接合強度、キャリア層と極薄銅層の剥離強度、及び総厚みを測定した。測定結果を表3に示す。 With respect to the metal laminated base material with a carrier layer obtained in Examples 1 to 9 and Comparative Examples 1 to 10, the bonding strength between the ultrathin copper layer and the low dielectric film, the peel strength between the carrier layer and the ultrathin copper layer, and the total The thickness was measured. The measurement results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1及び3に示すように、熱処理温度が高い場合(比較例1及び2)、及び熱処理温度が低い場合(比較例3及び4)には、キャリア層及び極薄銅層の間の低い密着性と、極薄銅層及び低誘電性フィルムの間の高い密着性との両立ができなかった。 As shown in Tables 1 and 3, when the heat treatment temperature is high (Comparative Examples 1 and 2) and when the heat treatment temperature is low (Comparative Examples 3 and 4), the adhesion between the carrier layer and the ultrathin copper layer is low. It was not possible to achieve both properties and high adhesion between the ultrathin copper layer and the low-dielectric film.
 また、表2及び3に示すように、キャリア層付き銅箔と低誘電性フィルムとを熱圧着により接合した場合には、キャリア層及び極薄銅層の間の低い密着性と、極薄銅層及び低誘電性フィルムの間の高い密着性との両立ができなかった。特に、比較例6、7、9及び10では、低誘電性フィルムが脆く変質し、回路を形成するための金属積層基材として不適であった。また、比較例10では、キャリア層と極薄銅層とが剥離できなかった。 Further, as shown in Tables 2 and 3, when the copper foil with a carrier layer and the low-dielectric film are bonded by thermocompression bonding, the low adhesion between the carrier layer and the ultra-thin copper layer and the ultra-thin copper are obtained. It was not possible to achieve both high adhesion between the layer and the low-dielectric film. In particular, in Comparative Examples 6, 7, 9 and 10, the low-dielectric film was brittle and deteriorated, and was unsuitable as a metal laminated base material for forming a circuit. Further, in Comparative Example 10, the carrier layer and the ultrathin copper layer could not be separated.
 さらに、実施例5において接合強度を測定した後の各々の剥離面について、走査型電子顕微鏡(SEM)を用いて観察及びEDXによる表面元素分析を実施した。走査型電子顕微鏡像を図5に示す。分析の結果、実施例5のLCP側の剥離面には銅が付着していないことが確認された。また、極薄銅層側(剥離表面は中間層)には凝集破壊したLCPが一部付着していることから、剥離はLCPの内部破壊及び中間層とLCPの界面剥離の両方によって生じていることが明らかとなった。 Further, each peeled surface after measuring the bonding strength in Example 5 was observed using a scanning electron microscope (SEM) and surface element analysis by EDX was performed. A scanning electron microscope image is shown in FIG. As a result of the analysis, it was confirmed that copper did not adhere to the peeled surface on the LCP side of Example 5. In addition, since some of the coagulated and fractured LCPs are attached to the ultrathin copper layer side (the peeled surface is an intermediate layer), the peeling is caused by both the internal fracture of the LCP and the interfacial peeling of the intermediate layer and the LCP. It became clear.
(実施例10~16)
 実施例1~7で得られたキャリア層付き金属積層基材からキャリア層を除去することで、粗化粒子層及び防錆層を含む厚み1.5μm~3.0μmの極薄銅層を備えた金属積層基材を製造した。
(Examples 10 to 16)
By removing the carrier layer from the metal laminated base material with the carrier layer obtained in Examples 1 to 7, an ultrathin copper layer having a thickness of 1.5 μm to 3.0 μm including a roughened particle layer and a rust preventive layer is provided. A metal laminated base material was produced.
(実施例17、18)
 実施例8、9で得られたキャリア層付き金属積層基材からキャリア層を除去することで、防錆層のみ(粗化粒子層は含まない)を含む厚み2.0μm~5.0μmの極薄銅層を備えた金属積層基材を製造した。
(Examples 17 and 18)
By removing the carrier layer from the metal laminated base material with the carrier layer obtained in Examples 8 and 9, a pole having a thickness of 2.0 μm to 5.0 μm including only the rust preventive layer (excluding the roughened particle layer). A metal laminated base material having a thin copper layer was produced.
 得られた実施例10~18の金属積層基材について、極薄銅層と低誘電性フィルムの接合強度、総厚み、及び極薄銅層の厚みを測定した。測定結果を表4に示す。 With respect to the obtained metal laminated base materials of Examples 10 to 18, the bonding strength, total thickness, and thickness of the ultrathin copper layer between the ultrathin copper layer and the low-dielectric film were measured. The measurement results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 これら実施例10~16の金属積層基材は、極薄銅層、粗化粒子層、防錆層、中間層(銅)及びLCP又はMPIフィルムからなる構成であり、また、実施例17、18の金属積層基材は、極薄銅層、防錆層、中間層(銅)及びLCPからなる構成である。これらの金属積層基材については、グロー放電発光分光法(GDS)、オージェ電子分光法(AES)による深さ方向の元素の分布状態(Depth Profile)測定や透過型電子顕微鏡(TEM)による断面観察を用いて各層の積層状態を特定することが可能である。 The metal laminated base material of Examples 10 to 16 is composed of an ultrathin copper layer, a roughened particle layer, a rust preventive layer, an intermediate layer (copper) and an LCP or MPI film, and Examples 17 and 18 The metal laminated base material of is composed of an ultrathin copper layer, a rust preventive layer, an intermediate layer (copper) and an LCP. For these metal laminated substrates, the distribution state (Dept Profile) of elements in the depth direction (Depts Profile) measurement by glow discharge emission spectroscopy (GDS) and Auger electron spectroscopy (AES) and cross-sectional observation by transmission electron microscope (TEM) It is possible to specify the laminated state of each layer by using.
 また、金属積層基材における極薄銅層上に、レジスト等で回路パターンを形成し、モディファイドセミアディティブ法(MSAP法)やセミアディティブ法(SAP法)等により低誘電性フィルム上に微細な回路を形成することが可能となる。 Further, a circuit pattern is formed on an ultrathin copper layer in a metal laminated base material by a resist or the like, and a fine circuit is formed on a low-dielectric film by a modified semi-additive method (MSAP method) or a semi-additive method (SAP method). Can be formed.
1A  キャリア層付き金属積層基材
1B  キャリア層付き金属積層基材
2   金属積層基材
10  キャリア層付き金属箔
11  キャリア層
12  剥離層
13  極薄金属層
13a 極薄金属層の表面
20  低誘電性フィルム
20a 低誘電性フィルムの面
30  中間層
30a 中間層の表面
 本明細書で引用した全ての刊行物、特許及び特許出願はそのまま引用により本明細書に組み入れられるものとする。
1A Metal laminated base material with carrier layer 1B Metal laminated base material with carrier layer 2 Metal laminated base material 10 Metal foil with carrier layer 11 Carrier layer 12 Peeling layer 13 Ultra-thin metal layer 13a Surface of ultra-thin metal layer 20 Low dielectric film 20a Surface of low dielectric film 30 Intermediate layer 30a Surface of intermediate layer All publications, patents and patent applications cited herein are incorporated herein by reference in their entirety.

Claims (17)

  1.  低誘電性フィルムの少なくとも一方の面に、キャリア層、剥離層及び極薄金属層を含む少なくとも3層以上からなるキャリア層付き金属箔が積層されたキャリア層付き金属積層基材であって、
     前記極薄金属層と前記低誘電性フィルムの接合強度が、前記キャリア層と前記極薄金属層の剥離強度よりも大きい前記キャリア層付き金属積層基材。
    A metal laminated base material with a carrier layer in which a metal foil with a carrier layer composed of at least three layers including a carrier layer, a release layer and an ultrathin metal layer is laminated on at least one surface of the low-dielectric film.
    A metal laminated base material with a carrier layer in which the bonding strength between the ultrathin metal layer and the low-dielectric film is greater than the peel strength between the carrier layer and the ultrathin metal layer.
  2.  低誘電性フィルムと極薄金属層との間に、金属を含む中間層を1層以上有する請求項1に記載のキャリア層付き金属積層基材。 The metal laminated base material with a carrier layer according to claim 1, which has one or more intermediate layers containing a metal between the low-dielectric film and the ultrathin metal layer.
  3.  中間層が、銅、鉄、ニッケル、亜鉛、クロム、コバルト、チタン、スズ、白金、銀及び金からなる群より選択されるいずれか一種の金属又はその合金を含む請求項2に記載の金属積層基材。 The metal laminate according to claim 2, wherein the intermediate layer comprises any one metal selected from the group consisting of copper, iron, nickel, zinc, chromium, cobalt, titanium, tin, platinum, silver and gold or an alloy thereof. Base material.
  4.  低誘電性フィルムが、液晶ポリマー、ポリフッ化エチレン、ポリアミド及び低誘電率ポリイミドからなる群より選択される低誘電性ポリマーのフィルムである請求項1~3のいずれか一項に記載のキャリア層付き金属積層基材。 The carrier layer according to any one of claims 1 to 3, wherein the low-dielectric film is a film of a low-dielectric polymer selected from the group consisting of a liquid crystal polymer, polyfluoroethylene, polyamide and a low dielectric constant polyimide. Metal laminate substrate.
  5.  キャリア層と極薄金属層の剥離強度が、0.15N/cm以上0.5N/cm以下である請求項1~4のいずれか一項に記載のキャリア層付き金属積層基材。 The metal laminated base material with a carrier layer according to any one of claims 1 to 4, wherein the peel strength between the carrier layer and the ultrathin metal layer is 0.15 N / cm or more and 0.5 N / cm or less.
  6.  極薄金属層と低誘電性フィルムの接合強度が、2.0N/cm以上である請求項1~5のいずれか一項に記載のキャリア層付き金属積層基材。 The metal laminated base material with a carrier layer according to any one of claims 1 to 5, wherein the bonding strength between the ultrathin metal layer and the low-dielectric film is 2.0 N / cm or more.
  7.  剥離層が、有機系剥離層又は無機系剥離層である請求項1~6のいずれか一項に記載のキャリア層付き金属積層基材。 The metal laminated base material with a carrier layer according to any one of claims 1 to 6, wherein the release layer is an organic release layer or an inorganic release layer.
  8.  極薄金属層の厚みが、0.5μm以上10μm以下である請求項1~7のいずれか一項に記載のキャリア層付き金属積層基材。 The metal laminated base material with a carrier layer according to any one of claims 1 to 7, wherein the thickness of the ultrathin metal layer is 0.5 μm or more and 10 μm or less.
  9.  請求項2に記載のキャリア層付き金属積層基材の製造方法であって、
     低誘電性フィルムと、キャリア層、剥離層及び極薄金属層を含む少なくとも3層以上からなるキャリア層付き金属箔とを準備する工程と、
     前記低誘電性フィルムの少なくとも一方の面をスパッタエッチングにより活性化した後、前記面上に金属を含む中間層をスパッタ成膜する工程と、
     前記中間層の表面をスパッタエッチングにより活性化する工程と、
     前記極薄金属層の表面をスパッタエッチングにより活性化する工程と、
     前記活性化した表面同士を0~30%の圧下率で圧延接合する工程と、
    を含む前記キャリア層付き金属積層基材の製造方法。
    The method for producing a metal laminated base material with a carrier layer according to claim 2.
    A step of preparing a low-dielectric film and a metal foil with a carrier layer including at least three layers including a carrier layer, a release layer and an ultrathin metal layer, and a step of preparing the metal foil.
    A step of activating at least one surface of the low-dielectric film by sputtering etching and then sputtering a film of an intermediate layer containing a metal on the surface.
    A step of activating the surface of the intermediate layer by sputter etching and
    A step of activating the surface of the ultrathin metal layer by sputter etching and
    A step of rolling and joining the activated surfaces at a rolling reduction of 0 to 30%,
    A method for producing a metal laminated base material with a carrier layer.
  10.  低誘電性フィルムが、液晶ポリマー、ポリフッ化エチレン、ポリアミド及び低誘電率ポリイミドからなる群より選択される低誘電性ポリマーのフィルムである請求項9に記載のキャリア層付き金属積層基材の製造方法。 The method for producing a metal laminated base material with a carrier layer according to claim 9, wherein the low-dielectric film is a film of a low-dielectric polymer selected from the group consisting of a liquid crystal polymer, polyethylene fluoride, polyamide and a low dielectric constant polyimide. ..
  11.  圧延接合を行った後、160℃以上300℃以下での熱処理を行う請求項9又は10に記載のキャリア層付き金属積層基材の製造方法。 The method for producing a metal laminated base material with a carrier layer according to claim 9 or 10, wherein the heat treatment is performed at 160 ° C. or higher and 300 ° C. or lower after rolling and joining.
  12.  低誘電性フィルムの少なくとも一方の面に、金属を含む中間層を介して極薄金属層が積層され、前記低誘電率フィルムと前記極薄金属層の接合強度が2.0N/cm以上である金属積層基材。 An ultra-thin metal layer is laminated on at least one surface of the low-dielectric film via an intermediate layer containing a metal, and the bonding strength between the low-dielectric film and the ultra-thin metal layer is 2.0 N / cm or more. Metal laminated substrate.
  13.  中間層が、銅、鉄、ニッケル、亜鉛、クロム、コバルト、チタン、スズ、白金、銀及び金からなる群より選択されるいずれか一種の金属又はその合金を含む請求項12に記載の金属積層基材。 The metal laminate according to claim 12, wherein the intermediate layer comprises any one metal selected from the group consisting of copper, iron, nickel, zinc, chromium, cobalt, titanium, tin, platinum, silver and gold or an alloy thereof. Base material.
  14.  極薄金属層の中間層側の表面に、Cu、Co及びNiからなる群より選択されるいずれか一種の金属又はその合金を含む粗化粒子層、及び/又はCr、Ni及びZnからなる群より選択されるいずれか一種の金属又はその合金を含む防錆層が積層された請求項12又は13に記載の金属積層基材。 A roughened particle layer containing any one of the metals selected from the group consisting of Cu, Co and Ni or an alloy thereof on the surface of the ultrathin metal layer on the intermediate layer side, and / or a group consisting of Cr, Ni and Zn. The metal laminated base material according to claim 12 or 13, wherein a rust preventive layer containing any one of the metals selected from the above or an alloy thereof is laminated.
  15.  極薄金属層の厚みが、0.5μm以上10μm以下である請求項12~14のいずれか一項に記載の金属積層基材。 The metal laminated base material according to any one of claims 12 to 14, wherein the thickness of the ultrathin metal layer is 0.5 μm or more and 10 μm or less.
  16.  低誘電性フィルムの少なくとも一方の面に、金属を含む中間層を介して極薄金属層が積層された金属積層基材の製造方法であって、
     請求項2に記載のキャリア層付き金属積層基材における前記キャリア層を剥離する工程を含む前記金属積層基材の製造方法。
    A method for producing a metal laminated base material in which an ultrathin metal layer is laminated on at least one surface of a low-dielectric film via an intermediate layer containing a metal.
    The method for producing a metal laminated base material, which comprises a step of peeling off the carrier layer in the metal laminated base material with a carrier layer according to claim 2.
  17.  請求項12~15のいずれか一項に記載の金属積層基材における中間層及び極薄金属層に、回路が形成されてなるプリント配線板。 A printed wiring board in which a circuit is formed on an intermediate layer and an ultrathin metal layer in the metal laminated base material according to any one of claims 12 to 15.
PCT/JP2020/031951 2019-08-26 2020-08-25 Carrier-layer-included metal laminate base material and method for producing same, metal laminate base material and method for producing same, and printed wiring board WO2021039759A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020227008479A KR20220053602A (en) 2019-08-26 2020-08-25 Metal laminated substrate with carrier layer and manufacturing method thereof, metal laminated substrate and manufacturing method thereof, and printed wiring board
CN202080060045.1A CN114342571A (en) 2019-08-26 2020-08-25 Metal laminated substrate with carrier layer and method for producing same, metal laminated substrate and method for producing same, and printed wiring board

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-154167 2019-08-26
JP2019154167 2019-08-26
JP2020-013319 2020-01-30
JP2020013319A JP2021035755A (en) 2019-08-26 2020-01-30 Carrier-layer-included metal laminate base material and method for manufacturing the same, metal laminate base material and method for manufacturing the same, and printed wiring board

Publications (1)

Publication Number Publication Date
WO2021039759A1 true WO2021039759A1 (en) 2021-03-04

Family

ID=74685920

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/031951 WO2021039759A1 (en) 2019-08-26 2020-08-25 Carrier-layer-included metal laminate base material and method for producing same, metal laminate base material and method for producing same, and printed wiring board

Country Status (3)

Country Link
KR (1) KR20220053602A (en)
CN (1) CN114342571A (en)
WO (1) WO2021039759A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115233262B (en) * 2022-08-01 2023-12-12 九江德福科技股份有限公司 Preparation method of extra-thin copper foil with carrier

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007007937A (en) * 2005-06-29 2007-01-18 Furukawa Circuit Foil Kk Very thin copper foil with carrier, flexible copper-clad polyimide laminate, and flexible printed wiring polyimide board
JP2008255462A (en) * 2006-05-19 2008-10-23 Mitsui Mining & Smelting Co Ltd Copper foil with carrier sheet, manufacturing method of copper foil with carrier sheet, surface-treated copper foil with carrier sheet, and copper laminated plate using the surface-treated copper foil with carrier sheet
JP2010006071A (en) * 2009-08-21 2010-01-14 Furukawa Electric Co Ltd:The Surface treatment copper foil, extremely thin copper foil with carrier, flexible copper clad laminate, and polyimide based flexible printed wiring board
JP2013107323A (en) * 2011-11-22 2013-06-06 Sumitomo Chemical Co Ltd Laminate

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6511225B2 (en) * 2013-04-26 2019-05-15 Jx金属株式会社 Copper foil for high frequency circuit, copper clad laminate for high frequency circuit, printed wiring board for high frequency circuit, copper foil with carrier for high frequency circuit, electronic device, and method of manufacturing printed wiring board

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007007937A (en) * 2005-06-29 2007-01-18 Furukawa Circuit Foil Kk Very thin copper foil with carrier, flexible copper-clad polyimide laminate, and flexible printed wiring polyimide board
JP2008255462A (en) * 2006-05-19 2008-10-23 Mitsui Mining & Smelting Co Ltd Copper foil with carrier sheet, manufacturing method of copper foil with carrier sheet, surface-treated copper foil with carrier sheet, and copper laminated plate using the surface-treated copper foil with carrier sheet
JP2010006071A (en) * 2009-08-21 2010-01-14 Furukawa Electric Co Ltd:The Surface treatment copper foil, extremely thin copper foil with carrier, flexible copper clad laminate, and polyimide based flexible printed wiring board
JP2013107323A (en) * 2011-11-22 2013-06-06 Sumitomo Chemical Co Ltd Laminate

Also Published As

Publication number Publication date
CN114342571A (en) 2022-04-12
KR20220053602A (en) 2022-04-29

Similar Documents

Publication Publication Date Title
JP6488354B2 (en) Copper foil with carrier, laminate, printed wiring board manufacturing method and electronic device manufacturing method
JP2021035755A (en) Carrier-layer-included metal laminate base material and method for manufacturing the same, metal laminate base material and method for manufacturing the same, and printed wiring board
JP6905157B2 (en) Roughened copper foil, copper foil with carrier, copper-clad laminate and printed wiring board
JP6190500B2 (en) Copper foil with carrier, laminate, printed wiring board manufacturing method and electronic device manufacturing method
WO2015122258A1 (en) Carrier-equipped ultrathin copper foil, and copper-clad laminate, printed circuit substrate and coreless substrate that are manufactured using same
JP5346054B2 (en) Copper foil for printed wiring board and laminated board using the same
JP6111017B2 (en) Copper foil for printed wiring board, laminate using the same, printed wiring board, and electronic component
JP2023123687A (en) Surface treated copper foil, surface treated copper foil with resin layer, copper foil with carrier, laminate, method for producing printed circuit board, and method for producing electronic device
WO2021039759A1 (en) Carrier-layer-included metal laminate base material and method for producing same, metal laminate base material and method for producing same, and printed wiring board
WO2014109396A1 (en) Surface treated copper foil, laminate board, copper foil with carrier, printed wiring board, printed circuit board, electronic device, and method for production of printed wiring board
JP6854114B2 (en) Surface-treated copper foil
TWI783190B (en) laminated body
JP2010239095A (en) Copper foil for printed wiring board
WO2002100136A1 (en) Composite copper foil with copper or copper alloy support body, and printed circuit board using the composite copper foil
JP5386652B1 (en) Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board
WO2020195748A1 (en) Metal foil for printed wiring board, metal foil with carrier, and metal-clad laminate, and method for manufacturing printed wiring board using same
KR102126611B1 (en) Method for manufacturing peelable copper foil, coreless substrate and coreless substrate obtained by this method
JP2014193592A (en) Carrier-fitted copper foil, method for manufacturing carrier-fitted copper foil, printed wiring board, printed circuit board, copper-clad laminate sheet, and method for manufacturing printed wiring board
WO2023074531A1 (en) Metal laminate, method for manufacturing same, and printed wiring board
JP5650023B2 (en) Copper foil for printed wiring board and laminated board using the same
WO2021215353A1 (en) Metal-laminated film and method for manufacturing same
TWI423742B (en) Printed wiring board with copper foil and the use of its layered body
JP2004103681A (en) Composite copper foil equipped with copper or copper-alloy substrate and printed board using the foil
JP5746876B2 (en) Method for forming an electronic circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20857568

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20227008479

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20857568

Country of ref document: EP

Kind code of ref document: A1