JP6854114B2 - Surface-treated copper foil - Google Patents

Surface-treated copper foil Download PDF

Info

Publication number
JP6854114B2
JP6854114B2 JP2016230684A JP2016230684A JP6854114B2 JP 6854114 B2 JP6854114 B2 JP 6854114B2 JP 2016230684 A JP2016230684 A JP 2016230684A JP 2016230684 A JP2016230684 A JP 2016230684A JP 6854114 B2 JP6854114 B2 JP 6854114B2
Authority
JP
Japan
Prior art keywords
treated
copper foil
layer
treatment layer
chromate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016230684A
Other languages
Japanese (ja)
Other versions
JP2017122274A (en
Inventor
敦史 三木
敦史 三木
亮 福地
亮 福地
新井 英太
英太 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to TW105140323A priority Critical patent/TWI623639B/en
Priority to KR1020170000901A priority patent/KR102054044B1/en
Priority to CN201710001200.2A priority patent/CN107018624B/en
Priority to US15/398,126 priority patent/US10383222B2/en
Priority to MYPI2017700033A priority patent/MY190555A/en
Priority to PH12017000003A priority patent/PH12017000003A1/en
Publication of JP2017122274A publication Critical patent/JP2017122274A/en
Application granted granted Critical
Publication of JP6854114B2 publication Critical patent/JP6854114B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/24Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing hexavalent chromium compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment
    • C23C22/83Chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/562Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of iron or nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • C25D5/14Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium two or more layers being of nickel or chromium, e.g. duplex or triplex layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/382Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/382Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal
    • H05K3/384Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal by plating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/389Improvement of the adhesion between the insulating substrate and the metal by the use of a coupling agent, e.g. silane
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2222/00Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
    • C23C2222/20Use of solutions containing silanes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0355Metal foils

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Description

本発明は、銅張積層板用表面処理銅箔に関する。 The present invention relates to a surface-treated copper foil for a copper-clad laminate.

プリント配線板は銅及び銅合金箔(以下、「銅箔」と称する。)に絶縁基材を接着させて銅張積層板とした後に、エッチングにより銅箔面に導体パターンを形成するという工程を経て製造されるのが一般的である。そして、プリント配線板上に電子部品をはんだ等で接続して実装することでプリント回路板が製造される。 The printed wiring board is formed by adhering an insulating base material to copper and a copper alloy foil (hereinafter referred to as "copper foil") to form a copper-clad laminate, and then etching to form a conductor pattern on the copper foil surface. It is generally manufactured after that. Then, a printed circuit board is manufactured by connecting and mounting electronic components on the printed wiring board with solder or the like.

プリント配線板用の銅箔に要求される特性の一つとして、絶縁基材との良好な密着性が挙げられており、銅箔表面の粗化処理技術を中心に、これまで種々の技術が開発されてきた(例えば、WO2011/138876、特開2011−168887号公報)。 One of the characteristics required for copper foil for printed wiring boards is that it has good adhesion to the insulating base material, and various technologies have been used so far, centering on the copper foil surface roughening treatment technology. It has been developed (for example, WO2011 / 138876, JP-A-2011-16887).

一方で、銅箔表面をシランカップリング剤で処理することで、絶縁基材との密着性が向上することも知られている(例えば、特開2011−168887号公報、特開2008−118163号公報)。更に、銅箔表面のN濃度及びSi濃度が絶縁基材との密着性に有意な影響を与えるとして、銅箔表面を所定濃度のシランカップリング剤で処理することなどによってN濃度及びSi濃度を制御した技術も知られている(例えば、WO2013/147116)。 On the other hand, it is also known that the adhesion to the insulating base material is improved by treating the surface of the copper foil with a silane coupling agent (for example, JP-A-2011-16887, JP-A-2008-118163). Gazette). Furthermore, assuming that the N concentration and Si concentration on the copper foil surface have a significant effect on the adhesion to the insulating base material, the N concentration and Si concentration can be adjusted by treating the copper foil surface with a silane coupling agent having a predetermined concentration. Controlled techniques are also known (eg, WO2013 / 147116).

WO2011/138876WO2011 / 138876 特開2011−168887号公報JP-A-2011-16887 特開2008−118163号公報Japanese Unexamined Patent Publication No. 2008-118163 WO2013/147116WO2013 / 147116

WO2013/147116に記載される銅箔表面のN濃度及びSi濃度を制御した技術は絶縁基材との密着性を向上させる上で有効な技術である。一方、上述したようにプリント回路板の製造工程においては、電子部品の実装をはんだで行うことが多く、はんだリフローの際に銅箔及び絶縁基材にも熱負荷がかかる。最近では、はんだリフローによる高温熱負荷に対する信頼性について、300℃以上の耐性が要求されつつある。しかしながら、WO2013/147116に記載されるようなシランカップリング剤による表面処理を行った銅張積層板は、良好な密着性が得られるも、300℃以上のはんだリフローの熱負荷によって銅張積層板にブリスター(膨れ)が生じやすいことが分かった。熱負荷によってブリスターが生じやすい銅張積層板では、電子部品の実装時に回路の変形や剥離が起きやすい。このため、常温での良好な密着性に加え、熱負荷時にブリスターの発生が抑制された銅張積層板が提供されることが有利であろう。 The technique of controlling the N concentration and the Si concentration of the copper foil surface described in WO2013 / 147116 is an effective technique for improving the adhesion to the insulating base material. On the other hand, as described above, in the manufacturing process of the printed circuit board, the electronic components are often mounted by solder, and the copper foil and the insulating base material are also subjected to a heat load during the solder reflow. Recently, resistance of 300 ° C. or higher is required for reliability against a high temperature heat load due to solder reflow. However, the copper-clad laminates that have been surface-treated with a silane coupling agent as described in WO2013 / 147116 can obtain good adhesion, but are copper-clad laminates due to the heat load of solder reflow of 300 ° C. or higher. It was found that blister (swelling) is likely to occur in the solder. Copper-clad laminates, which are prone to blisters due to heat load, are prone to circuit deformation and peeling when mounting electronic components. Therefore, in addition to good adhesion at room temperature, it would be advantageous to provide a copper-clad laminate in which the generation of blisters is suppressed during a heat load.

本発明は上記事情に鑑みて創作されたものであり、常温における絶縁基板との密着性に優れ、且つ、銅張積層板を構成してはんだリフローの熱負荷を与えたときにブリスターの発生を抑制可能な表面処理銅箔を提供することを課題の一つとする。また、本発明はそのような表面処理銅箔を備えた銅張積層板を提供することを別の課題の一つとする。 The present invention was created in view of the above circumstances, has excellent adhesion to an insulating substrate at room temperature, and generates blister when a copper-clad laminate is formed and a heat load of solder reflow is applied. One of the issues is to provide a surface-treated copper foil that can be suppressed. Another object of the present invention is to provide a copper-clad laminate provided with such a surface-treated copper foil.

本発明者らは、上記課題を解決すべく鋭意検討したところ、WO2013/147116では表面処理銅箔の表面のXPS survey測定におけるN及びSiの濃度を制御しているが、加熱時のブリスターを抑制するためには、表面処理銅箔の表面の深さ方向におけるN濃度、C濃度、又は、Si及びO濃度の組み合わせを制御することが重要であることを見出した。 As a result of diligent studies to solve the above problems, the present inventors control the concentrations of N and Si in the XPS surveillance measurement of the surface of the surface-treated copper foil in WO2013 / 147116, but suppress the blister during heating. It has been found that it is important to control the combination of N concentration, C concentration, or Si and O concentration in the depth direction of the surface of the surface-treated copper foil.

本発明は一側面において、表面処理面を有する表面処理銅箔であって、表面処理面からレート1.1nm/min(SiO2換算)条件で0.5minスパッタ後の深さにおけるXPS測定によるN濃度が1.5〜7.5atom%である表面処理銅箔である。 The present invention is a surface-treated copper foil having a surface-treated surface on one side, and N by XPS measurement at a depth of 0.5 min after sputtering at a rate of 1.1 nm / min (SiO 2 conversion) from the surface-treated surface. A surface-treated copper foil having a concentration of 1.5 to 7.5 atom%.

本発明は別の一側面において、表面処理面を有する表面処理銅箔であって、表面処理面からレート1.1nm/min(SiO2換算)条件で0.5minスパッタ後の深さにおけるXPS測定によるC濃度が12〜30atom%である表面処理銅箔である。 In another aspect, the present invention is a surface-treated copper foil having a surface-treated surface, and XPS measurement at a depth of 0.5 min after sputtering at a rate of 1.1 nm / min (SiO 2 conversion) from the surface-treated surface. This is a surface-treated copper foil having a C concentration of 12 to 30 atom%.

本発明は更に別の一側面において、表面処理面を有する表面処理銅箔であって、表面処理面からレート1.1nm/min(SiO2換算)条件で0.5minスパッタ後の深さにおけるXPS測定によるSi濃度が3.1atom%以上であり、且つ、O濃度が40〜48atom%である表面処理銅箔である。 In yet another aspect, the present invention is a surface-treated copper foil having a surface-treated surface, and XPS at a depth of 0.5 min after sputtering at a rate of 1.1 nm / min (SiO 2 conversion) from the surface-treated surface. A surface-treated copper foil having a measured Si concentration of 3.1 atom% or more and an O concentration of 40 to 48 atom%.

本発明は更に別の一側面において、表面処理面を有する表面処理銅箔であって、以下の何れか二つ以上の条件を満たす表面処理銅箔である。
・表面処理面からレート1.1nm/min(SiO2換算)条件で0.5minスパッタ後の深さにおけるXPS測定によるN濃度が1.5〜7.5atom%である;
・表面処理面からレート1.1nm/min(SiO2換算)条件で0.5minスパッタ後の深さにおけるXPS測定によるC濃度が12〜30atom%である;
・表面処理面からレート1.1nm/min(SiO2換算)条件で0.5minスパッタ後の深さにおけるXPS測定によるSi濃度が3.1atom%以上であり、且つ、O濃度が40〜48atom%である。
In yet another aspect, the present invention is a surface-treated copper foil having a surface-treated surface, which satisfies any one or more of the following conditions.
-The N concentration measured by XPS at the depth after 0.5 min sputtering under the condition of 1.1 nm / min (SiO 2 conversion) from the surface treated surface is 1.5 to 7.5 atom%;
-The C concentration by XPS measurement at the depth after 0.5 min sputtering under the condition of 1.1 nm / min (SiO 2 conversion) from the surface treated surface is 12 to 30 atom%;
-Si concentration by XPS measurement at a depth after 0.5 min sputtering under the condition of rate 1.1 nm / min (SiO 2 conversion) from the surface treated surface is 3.1 atom% or more, and O concentration is 40 to 48 atom%. Is.

本発明に係る表面処理銅箔は一実施形態において、表面処理面からレート1.1nm/min(SiO2換算)条件で1.0minスパッタ後の深さにおけるXPS測定によるN濃度が0.5〜6.0atom%である。 In one embodiment, the surface-treated copper foil according to the present invention has an N concentration of 0.5 to 0.5 by XPS measurement at a depth of 1.0 min after sputtering at a rate of 1.1 nm / min (SiO 2 conversion) from the surface-treated surface. It is 6.0 atom%.

本発明に係る表面処理銅箔は別の一実施形態において、表面処理面からレート1.1nm/min(SiO2換算)条件で1.0minスパッタ後の深さにおけるXPS測定によるC濃度が8〜25atom%である。 In another embodiment, the surface-treated copper foil according to the present invention has a C concentration of 8 to 8 to a depth measured by XPS at a depth of 1.0 min after sputtering at a rate of 1.1 nm / min (SiO 2 conversion) from the surface-treated surface. It is 25 atom%.

本発明に係る表面処理銅箔は更に別の一実施形態において、表面処理面のRzが1.5μm以下である。 In still another embodiment, the surface-treated copper foil according to the present invention has an Rz of 1.5 μm or less on the surface-treated surface.

本発明に係る表面処理銅箔は更に別の一実施形態において、銅箔が圧延銅箔又は電解銅箔である。 In still another embodiment, the surface-treated copper foil according to the present invention is a rolled copper foil or an electrolytic copper foil.

本発明に係る表面処理銅箔は更に別の一実施形態において、液晶ポリマーとの接合用である。 In yet another embodiment, the surface-treated copper foil according to the present invention is for bonding with a liquid crystal polymer.

本発明に係る表面処理銅箔は更に別の一実施形態において、ポリイミド樹脂との接合用である。 In still another embodiment, the surface-treated copper foil according to the present invention is for bonding with a polyimide resin.

本発明に係る表面処理銅箔は更に別の一実施形態において、1GHzを超える高周波数下で使用されるプリント回路板に用いられる。 In yet another embodiment, the surface-treated copper foil according to the present invention is used for a printed circuit board used at a high frequency exceeding 1 GHz.

本発明に係る表面処理銅箔は更に別の一実施形態において、銅箔表面に粗化処理層、耐熱処理層、防錆処理層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層を有する。 In still another embodiment, the surface-treated copper foil according to the present invention is selected from the group consisting of a roughening treatment layer, a heat-resistant treatment layer, a rust prevention treatment layer, a chromate treatment layer, and a silane coupling treatment layer on the surface of the copper foil. It has one or more layers.

本発明に係る表面処理銅箔は更に別の一実施形態において、銅箔表面に耐熱処理層、防錆処理層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層を有する。 In still another embodiment, the surface-treated copper foil according to the present invention is one or more selected from the group consisting of a heat-resistant treatment layer, a rust prevention treatment layer, a chromate treatment layer and a silane coupling treatment layer on the surface of the copper foil. Has a layer.

本発明に係る表面処理銅箔は更に別の一実施形態において、銅箔表面に耐熱処理層若しくは防錆処理層を有し、前記耐熱処理層若しくは防錆処理層の上にクロメート処理層を有し、前記クロメート処理層の上にシランカップリング処理層を有する。 In still another embodiment, the surface-treated copper foil according to the present invention has a heat-resistant treatment layer or a rust-preventive treatment layer on the surface of the copper foil, and has a chromate-treatment layer on the heat-resistant treatment layer or the rust prevention treatment layer. Then, a silane coupling treatment layer is provided on the chromate treatment layer.

本発明に係る表面処理銅箔は更に別の一実施形態において、銅箔表面に耐熱処理層を有し、前記耐熱処理層の上に防錆処理層を有し、前記防錆処理層の上にクロメート処理層を有し、前記クロメート処理層の上にシランカップリング処理層を有する。 In still another embodiment, the surface-treated copper foil according to the present invention has a heat-resistant treatment layer on the surface of the copper foil, has a rust-preventive treatment layer on the heat-resistant treatment layer, and is on the rust-preventive treatment layer. Has a chromate-treated layer, and has a silane coupling-treated layer on the chromate-treated layer.

本発明に係る表面処理銅箔は更に別の一実施形態において、銅箔表面にクロメート処理層を有し、前記クロメート処理層の上にシランカップリング処理層を有する。 In still another embodiment, the surface-treated copper foil according to the present invention has a chromate-treated layer on the surface of the copper foil and a silane coupling-treated layer on the chromate-treated layer.

本発明に係る表面処理銅箔は更に別の一実施形態において、銅箔表面に粗化処理層を有し、前記粗化処理層の上にクロメート処理層を有し、前記クロメート処理層の上にシランカップリング処理層を有する。 In still another embodiment, the surface-treated copper foil according to the present invention has a roughening-treated layer on the surface of the copper foil, a chromate-treated layer on the roughening-treated layer, and a chromate-treated layer on the chromate-treated layer. Has a silane coupling treatment layer.

本発明に係る表面処理銅箔は更に別の一実施形態において、銅箔表面に粗化処理層を有し、前記粗化処理層の上に防錆処理層及び耐熱処理層からなる群から選択される1種以上の層を有し、前記防錆処理層及び耐熱処理層からなる群から選択される1種以上の層の上にクロメート処理層を有し、前記クロメート処理層の上にシランカップリング処理層を有する。 In still another embodiment, the surface-treated copper foil according to the present invention has a roughening-treated layer on the surface of the copper foil, and is selected from the group consisting of a rust-preventive treatment layer and a heat-resistant treatment layer on the roughening treatment layer. It has one or more layers to be coated, has a chromate-treated layer on one or more layers selected from the group consisting of the rust-preventive treatment layer and the heat-resistant treatment layer, and has a silane on the chromate-treated layer. It has a coupling treatment layer.

本発明に係る表面処理銅箔は更に別の一実施形態において、銅箔表面に粗化処理層を有し、前記粗化処理層の上に防錆処理層を有し、前記防錆処理層の上にクロメート処理層を有し、前記クロメート処理層の上にシランカップリング処理層を有する。 In still another embodiment, the surface-treated copper foil according to the present invention has a roughening-treated layer on the surface of the copper foil, a rust-preventive treatment layer on the roughening-treated layer, and the rust-preventive treatment layer. A chromate-treated layer is provided on the top, and a silane coupling-treated layer is provided on the chromate-treated layer.

本発明に係る表面処理銅箔は更に別の一実施形態において、銅箔表面に粗化処理層を有し、前記粗化処理層の上にシランカップリング処理層を有する。 In still another embodiment, the surface-treated copper foil according to the present invention has a roughening-treated layer on the surface of the copper foil and a silane coupling-treated layer on the roughening-treated layer.

本発明に係る表面処理銅箔は更に別の一実施形態において、銅箔表面にシランカップリング処理層を有する。 In still another embodiment, the surface-treated copper foil according to the present invention has a silane coupling-treated layer on the surface of the copper foil.

本発明に係る表面処理銅箔は更に別の一実施形態において、銅箔表面に粗化処理層を有し、前記粗化処理層が一次粒子層と、該一次粒子層の上に、二次粒子層を有する。 In still another embodiment, the surface-treated copper foil according to the present invention has a roughening-treated layer on the surface of the copper foil, and the roughening-treated layer is a primary particle layer and a secondary particle layer on the primary particle layer. It has a particle layer.

本発明に係る表面処理銅箔は更に別の一実施形態において、前記二次粒子層が銅、コバルト及びニッケルからなる3元系合金で形成されている。 In still another embodiment, the surface-treated copper foil according to the present invention has the secondary particle layer formed of a ternary alloy composed of copper, cobalt and nickel.

本発明に係る表面処理銅箔は更に別の一実施形態において、前記一次粒子層の平均粒子径が0.25〜0.45μmであり、前記二次粒子層の平均粒子径が0.05〜0.25μmである。 In still another embodiment, the surface-treated copper foil according to the present invention has an average particle size of 0.25 to 0.45 μm of the primary particle layer and an average particle size of 0.05 to 0.45 μm of the secondary particle layer. It is 0.25 μm.

本発明は更に別の一側面において、本発明に係る表面処理銅箔の表面処理面を絶縁基材と貼り合わせてなる銅箔積層板である。 In yet another aspect, the present invention is a copper foil laminated plate obtained by laminating the surface-treated surface of the surface-treated copper foil according to the present invention with an insulating base material.

本発明は更に別の一側面において、本発明に係る表面処理銅箔を用いたプリント配線板である。 In yet another aspect, the present invention is a printed wiring board using the surface-treated copper foil according to the present invention.

本発明は更に別の一側面において、本発明に係るプリント配線板を用いた電子機器である。 In yet another aspect, the present invention is an electronic device using a printed wiring board according to the present invention.

本発明によれば、常温における絶縁基板との密着性に優れ、且つ、銅張積層板を構成して熱負荷を与えたときにブリスターの発生を抑制可能な表面処理銅箔を提供することができる。このため、プリント配線板にはんだ付けによって電子部品を実装する際に発生する熱によって回路の変形や剥離が抑制されるので、品質信頼性の高いプリント回路板の製造に貢献する。 According to the present invention, it is possible to provide a surface-treated copper foil having excellent adhesion to an insulating substrate at room temperature and capable of suppressing the generation of blisters when a copper-clad laminate is formed and a heat load is applied. it can. Therefore, deformation and peeling of the circuit are suppressed by the heat generated when the electronic component is mounted on the printed wiring board by soldering, which contributes to the production of the printed circuit board with high quality reliability.

本発明の一実施形態においては、表面処理銅箔の表面処理面からレート1.1nm/min(SiO2換算)条件で0.5minスパッタ後の深さ(以下、「0.5minスパッタ深さ」という。)におけるXPS測定によるN原子濃度、C原子濃度、並びに、Si及びOの原子濃度の組み合わせから選択される少なくとも一つを制御している。本発明者の検討結果によれば、0.5minスパッタ深さにおけるN原子濃度、C原子濃度、並びに、Si及びOの原子濃度の組み合わせから選択される少なくとも一つを制御することが、常温における絶縁基板との密着性に優れ、且つ、銅張積層板を構成して熱負荷を与えたときにブリスターの発生を抑制する上で有効である。 In one embodiment of the present invention, the depth after 0.5 min sputtering from the surface treated surface of the surface treated copper foil under the condition of a rate of 1.1 nm / min (SiO 2 conversion) (hereinafter, “0.5 min sputtering depth””. It controls at least one selected from the combination of N atomic concentration, C atomic concentration, and Si and O atomic concentrations measured by XPS in (). According to the results of the study by the present inventor, it is possible to control at least one selected from a combination of N atomic concentration, C atomic concentration, and Si and O atomic concentrations at a sputtering depth of 0.5 min at room temperature. It has excellent adhesion to the insulating substrate, and is effective in suppressing the generation of blister when a copper-clad laminate is formed and a heat load is applied.

0.5minスパッタ深さにおけるXPS測定によるN濃度は、絶縁基材との密着強度を高めるという観点から1.5atom%以上であることが好ましく、3.7atom%以上であることがより好ましく、4.0atom%以上であることが更により好ましい。また、上記深さにおけるXPS測定によるN濃度は、ブリスターの発生を抑制するという観点から7.5atom%以下であることが好ましく、6.7atom%以下であることがより好ましく、6.6atom%以下であることが更により好ましい。 The N concentration measured by XPS at a sputtering depth of 0.5 min is preferably 1.5 atom% or more, more preferably 3.7 atom% or more, from the viewpoint of increasing the adhesion strength with the insulating base material. Even more preferably, it is 0.0 atom% or more. Further, the N concentration measured by XPS at the above depth is preferably 7.5 atom% or less, more preferably 6.7 atom% or less, and 6.6 atom% or less from the viewpoint of suppressing the generation of blisters. Is even more preferable.

また、0.5minスパッタ深さにおけるXPS測定によるC濃度は、絶縁基材との密着強度を高めるという観点から12atom%以上であることが好ましく、18atom%以上であることがより好ましく、21.6atom%以上であることが更により好ましい。また、上記深さにおけるXPS測定によるC濃度は、ブリスターの発生を抑制するという観点から30atom%以下であることが好ましく、28.6atom%以下であることがより好ましく、23.8atom%以下であることが更により好ましい。 Further, the C concentration measured by XPS at a sputtering depth of 0.5 min is preferably 12 atom% or more, more preferably 18 atom% or more, and 21.6 atom from the viewpoint of increasing the adhesion strength with the insulating base material. % Or more is even more preferable. Further, the C concentration measured by XPS at the above depth is preferably 30 atom% or less, more preferably 28.6 atom% or less, and 23.8 atom% or less from the viewpoint of suppressing the generation of blisters. Is even more preferable.

また、0.5minスパッタ深さおけるXPS測定によるSi及びO濃度の組み合わせは、絶縁基材との密着強度を高めるという観点からSi:3.1atom%以上、O:40atom%以上であることが好ましく、Si:4.3tom%以上、O:43.4atom%以上であることがより好ましく、Si:5.8atom%以上、O:44.6atom%以上であることが更により好ましい。また、上記深さにおけるXPS測定によるSi及びO濃度の組み合わせは、ブリスターの発生を抑制するという観点からSi:12.6atom%以下、O:48atom%以下であることが好ましく、Si:12.4atom%以下、O:47atom%以下であることがより好ましく、Si:11.9tom%以下、O:46.4atom%以下であることが更により好ましい。 Further, the combination of Si and O concentrations measured by XPS at a sputtering depth of 0.5 min is preferably Si: 3.1 atom% or more and O: 40 atom% or more from the viewpoint of increasing the adhesion strength with the insulating base material. , Si: 4.3 tom% or more, O: 43.4 atom% or more, and even more preferably Si: 5.8 atom% or more, O: 44.6 atom% or more. Further, the combination of Si and O concentrations measured by XPS at the above depth is preferably Si: 12.6 atom% or less, O: 48 atom% or less, and Si: 12.4 atom from the viewpoint of suppressing the generation of blisters. % Or less, O: 47 atom% or less, and even more preferably Si: 11.9 tom% or less, O: 46.4 atom% or less.

0.5minスパッタ深さおけるXPS測定によるN原子濃度、C原子濃度、並びに、Si及びOの原子濃度の組み合わせの少なくとも一つが上記濃度条件を満たしていることにより、絶縁基材との密着強度が向上するとともにブリスターの発生を有意に抑制可能であるが、これら三種類の濃度要件のうち、二種類以上の濃度要件を満たしていることが好ましく、三種類すべての濃度要件を満たしていることがより好ましい。 When at least one combination of N-atom concentration, C-atom concentration, and Si and O atomic concentrations measured by XPS at a sputter depth of 0.5 min satisfies the above concentration conditions, the adhesion strength with the insulating substrate is increased. Although it can be improved and the occurrence of blister can be significantly suppressed, it is preferable that two or more of these three types of concentration requirements are satisfied, and all three types of concentration requirements are satisfied. More preferred.

本発明の好ましい一実施形態においては、表面処理銅箔の表面処理面からレート1.1nm/min(SiO2換算)条件で1.0minスパッタ後の深さ(以下、「1.0minスパッタ深さ」という。)におけるXPS測定によるN及びCの原子濃度から選択される少なくとも一つを制御している。本発明者の検討結果によれば、0.5minスパッタ深さに加えて、1.0minスパッタ深さにおけるN及びCの原子濃度から選択される少なくとも一方、好ましくは両者を制御することが、常温における絶縁基板との密着性に優れ、且つ、銅張積層板を構成して熱負荷を与えたときにブリスターの発生を抑制する上で更に有効である。 In a preferred embodiment of the present invention, the depth after 1.0 min sputtering from the surface treated surface of the surface treated copper foil under the condition of a rate of 1.1 nm / min (SiO 2 conversion) (hereinafter, “1.0 min sputtering depth”). At least one selected from the atomic concentrations of N and C by XPS measurement in) is controlled. According to the results of the study by the present inventor, in addition to the 0.5 min sputtering depth, at least one selected from the atomic concentrations of N and C at the 1.0 min sputtering depth, preferably both, is controlled at room temperature. It is excellent in adhesion to the insulating substrate in the above, and is more effective in suppressing the generation of blister when a copper-clad laminate is formed and a heat load is applied.

1.0minスパッタ深さにおけるXPS測定によるN濃度は、絶縁基材との密着強度を高めるという観点から0.5atom%以上であることが好ましく、1.0atom%以上であることがより好ましく、1.8atom%以上であることが更により好ましい。また、上記深さにおけるXPS測定によるN濃度は、ブリスターの発生を抑制するという観点から6.0atom%以下であることが好ましく、4.7atom%以下であることがより好ましく、4.2atom%以下であることが更により好ましい。 The N concentration measured by XPS at a sputtering depth of 1.0 min is preferably 0.5 atom% or more, more preferably 1.0 atom% or more, from the viewpoint of increasing the adhesion strength with the insulating base material. It is even more preferable that the content is 0.8 atom% or more. Further, the N concentration measured by XPS at the above depth is preferably 6.0 atom% or less, more preferably 4.7 atom% or less, and 4.2 atom% or less from the viewpoint of suppressing the generation of blisters. Is even more preferable.

また、1.0minスパッタ深さにおけるXPS測定によるC濃度は、絶縁基材との密着強度を高めるという観点から8atom%以上であることが好ましく、16.8atom%以上であることがより好ましく、18.4atom%以上であることが更により好ましい。また、上記深さにおけるXPS測定によるC濃度は、ブリスターの発生を抑制するという観点から25atom%以下であることが好ましく、21.3atom%以下であることがより好ましく、20.7atom%以下であることが更により好ましい。 Further, the C concentration measured by XPS at a sputtering depth of 1.0 min is preferably 8 atom% or more, more preferably 16.8 atom% or more, and more preferably 16.8 atom% or more, from the viewpoint of increasing the adhesion strength with the insulating base material. It is even more preferable that the content is 4 atom% or more. Further, the C concentration measured by XPS at the above depth is preferably 25 atom% or less, more preferably 21.3 atom% or less, and 20.7 atom% or less from the viewpoint of suppressing the generation of blisters. Is even more preferable.

XPS測定による上記深さにおける各元素の原子濃度の測定は、表面処理銅箔の表面処理面に対してXPS深さ方向分析を実施することにより可能である。
実施例では以下の条件で分析した。
装置:アルバック・ファイ株式会社製5600MC
到達真空度:5.7×10-7Pa
励起源:単色化 MgKα
出力:400W
検出面積:800μmφ
入射角:81°度
取り出し角:45°度
中和銃なし
<スパッタ条件>
イオン種:Ar+
加速電圧:1kV
掃引領域:3mm×3mm
レート: 1.1nm/min(SiO2換算)
The atomic concentration of each element at the above depth by XPS measurement can be measured by performing XPS depth direction analysis on the surface-treated surface of the surface-treated copper foil.
In the examples, the analysis was performed under the following conditions.
Equipment: 5600MC manufactured by ULVAC PHI Co., Ltd.
Ultimate vacuum: 5.7 x 10 -7 Pa
Excitation source: Monochromatic MgKα
Output: 400W
Detection area: 800 μmφ
Incident angle: 81 ° degree Extraction angle: 45 ° degree No neutralizing gun <Sputtering conditions>
Ion species: Ar +
Acceleration voltage: 1kV
Sweep area: 3mm x 3mm
Rate: 1.1 nm / min (SiO 2 conversion)

本発明において、XPS測定におけるN、C、Si及びOの原子濃度は、N1s、O1s、C1s、Si2s、Cr2p3、Zn2p3、Cu2p3、Ni2p3、Co2p3を測定対象とし、これらの合計モル数を100%としたときのN1s、C1s、Si2s及びO1sのそれぞれのモル分率として与えられる。 In the present invention, the atomic concentrations of N, C, Si and O in the XPS measurement are measured for N1s, O1s, C1s, Si2s, Cr2p 3 , Zn2p 3 , Cu2p 3 , Ni2p 3 and Co2p 3 , and the total mole fraction thereof. It is given as the mole fraction of each of N1s, C1s, Si2s and O1s when the number is 100%.

N濃度、C濃度、並びに、Si及びO濃度の組み合わせが上記範囲に制御された表面処理面を形成するための1つの手段として、銅箔表面をシランカップリング剤で処理する方法が挙げられる。シランカップリング剤で銅箔表面を処理する際には、シランカップリング剤の種類、シランカップリング剤の水中濃度、及び攪拌時間を適切に選定することが重要である。 As one means for forming a surface-treated surface in which the combination of N concentration, C concentration, and Si and O concentration is controlled in the above range, a method of treating the copper foil surface with a silane coupling agent can be mentioned. When treating the copper foil surface with a silane coupling agent, it is important to appropriately select the type of silane coupling agent, the concentration of the silane coupling agent in water, and the stirring time.

シランカップリング剤としては特に制限はないが、分子中にN及びSiが含まれるアミノシランが好適に使用できる。アミノシランとして、1個以上のアミノ基又はイミノ基を含むシランを使用することができる。アミノシランに含まれるアミノ基又はイミノ基の数は、例えばそれぞれ1〜4個、好ましくはそれぞれ1〜3個、さらに好ましくは1〜2個とすることができる。好適な実施の態様において、アミノシランに含まれるアミノ基及び/又はイミノ基の数は、それぞれ1個とすることができる。 The silane coupling agent is not particularly limited, but aminosilane containing N and Si in the molecule can be preferably used. As the aminosilane, a silane containing one or more amino groups or imino groups can be used. The number of amino groups or imino groups contained in aminosilane can be, for example, 1 to 4, preferably 1 to 3, and more preferably 1 to 2, respectively. In a preferred embodiment, the number of amino groups and / or imino groups contained in aminosilane can be one each.

アミノシランに含まれるアミノ基及びイミノ基の数の合計が、1個であるアミノシランは特にモノアミノシラン、2個であるアミノシランは特にジアミノシラン、3個であるアミノシランは特にトリアミノシランと、呼ぶことができる。モノアミノシラン、ジアミノシランは、本発明において好適に使用することができる。好適な実施の態様において、アミノシランとして、アミノ基1個を含むモノアミノシランを使用することができる。好適な実施の態様において、アミノシランは、少なくとも1個、例えば1個のアミノ基を、分子の末端に、好ましくは直鎖状又は分枝状の鎖状分子の末端に、含むものとすることができる。 Aminosilane having a total number of amino groups and imino groups contained in aminosilane of 1 can be referred to as monoaminosilane in particular, aminosilane having 2 can be referred to as diaminosilane, and aminosilane having 3 can be referred to as triaminosilane. .. Monoaminosilane and diaminosilane can be suitably used in the present invention. In a preferred embodiment, a monoaminosilane containing one amino group can be used as the aminosilane. In a preferred embodiment, the aminosilane can contain at least one, eg, one amino group, at the end of the molecule, preferably at the end of a linear or branched chain molecule.

アミノシランとしては、例えば、N−2−(アミノエチル)−3−アミノプロピルメチルジメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリメトキシシラン、1−アミノプロピルトリメトキシシラン、2−アミノプロピルトリメトキシシラン、1、2−ジアミノプロピルトリメトキシシラン、3−アミノ−1−プロぺニルトリメトキシシラン、3−アミノ−1−プロピニルトリメトキシシラン、3−トリエトキシシリル−N−(1,3−ジメチル−ブチリデン)プロピルアミン、N−フェニル−3−アミノプロピルトリメトキシシラン、N−(ビニルベンジル)−2−アミノエチル−3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−アミノプロピルトリメトキシシラン、N−(2−アミノエチル)−3−アミノプロピルトリメトキシシラン、N−(2−アミノエチル)−3−アミノプロピルメチルジメトキシシラン、3−(N−フェニル)アミノプロピルトリメトキシシランを挙げることできる。 Examples of aminosilanes include N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 1-. Aminopropyltrimethoxysilane, 2-aminopropyltrimethoxysilane, 1,2-diaminopropyltrimethoxysilane, 3-amino-1-propenyltrimethoxysilane, 3-amino-1-propynyltrimethoxysilane, 3- Triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, N-phenyl-3-aminopropyltrimethoxysilane, N- (vinylbenzyl) -2-aminoethyl-3-aminopropyltrimethoxysilane, 3-Aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, 3- (N-phenyl) aminopropyltrimethoxysilane can be mentioned.

また、好ましい実施態様において、以下の式Iの構造式を有するシランカップリング剤を用いることができる。
2N−R1−Si(OR22(R3) (式I)
(ただし、上記式Iにおいて、
1は、直鎖状又は分枝を有する、飽和又は不飽和の、置換又は非置換の、環式又は非環式の、複素環を有する又は複素環を有しない、C1〜C12の炭化水素の二価基であり、
2は、C1〜C5のアルキル基であり、
3は、C1〜C5のアルキル基、又はC1〜C5のアルコキシ基である。)
Further, in a preferred embodiment, a silane coupling agent having the following structural formula I can be used.
H 2 N-R 1- Si (OR 2 ) 2 (R 3 ) (Formula I)
(However, in the above formula I,
R 1 has linear or branched, saturated or unsaturated, substituted or unsubstituted, cyclic or acyclic, heterocyclic or heterocyclic, C 1 to C 12 It is a divalent group of hydrocarbons and
R 2 is an alkyl group of C 1 to C 5 and
R 3 is an alkyl group of C 1 -C 5, or an alkoxy group of C 1 -C 5. )

1は、置換又は非置換の、C1〜C12の直鎖状飽和炭化水素の二価基、置換又は非置換の、C1〜C12の分枝状飽和炭化水素の二価基、置換又は非置換の、C1〜C12の直鎖状不飽和炭化水素の二価基、置換又は非置換の、C1〜C12の分枝状不飽和炭化水素の二価基、置換又は非置換の、C1〜C12の環式炭化水素の二価基、置換又は非置換の、C1〜C12の複素環式炭化水素の二価基、置換又は非置換の、C1〜C12の芳香族炭化水素の二価基、からなる群から選択された基であることが好ましい。 R 1 is a substituted or unsubstituted divalent group of linear saturated hydrocarbons C 1 to C 12 , a substituted or unsubstituted divalent group of branched saturated hydrocarbons C 1 to C 12, substituted or unsubstituted, straight-chain unsaturated hydrocarbon divalent radical of hydrogen C 1 -C 12, a substituted or unsubstituted, branched unsaturated hydrocarbon divalent radical of hydrogen C 1 -C 12, substituted or Unsubstituted, divalent groups of C 1 to C 12 cyclic hydrocarbons, substituted or unsubstituted, C 1 to C 12 heterocyclic hydrocarbon divalent groups, substituted or unsubstituted, C 1 to It is preferably a group selected from the group consisting of divalent groups of C 12 aromatic hydrocarbons.

1は、−(CH2n−、−(CH2n−(CH)m−(CH2j-1−、−(CH2n−(CC)−(CH2n-1−、−(CH2n−NH−(CH2m−、−(CH2n−NH−(CH2m−NH−(CH2j−、−(CH2n-1−(CH)NH2−(CH2m-1−、−(CH2n-1−(CH)NH2−(CH2m-1−NH−(CH2j−からなる群から選択される基である(ただし、n、m、jは、1以上の整数である)ことが好ましい。
1は、−(CH2n−、又は−(CH2n−NH−(CH2m−であることがより好ましい。
n、m、jは、それぞれ独立に、1、2又は3であることが好ましい。
2は、メチル基又はエチル基であることが好ましい。
3は、メチル基、エチル基、メトキシ基又はエトキシ基であることが好ましい。
R 1 is − (CH 2 ) n −, − (CH 2 ) n − (CH) m − (CH 2 ) j-1 −, − (CH 2 ) n − (CC) − (CH 2 ) n- 1 −, − (CH 2 ) n −NH − (CH 2 ) m −, − (CH 2 ) n −NH − (CH 2 ) m −NH − (CH 2 ) j −, − (CH 2 ) n- 1 − (CH) NH 2 − (CH 2 ) m-1 −, − (CH 2 ) n-1 − (CH) NH 2 − (CH 2 ) m-1 − NH − (CH 2 ) j − It is preferably a group selected from the group (where n, m, j are integers greater than or equal to 1).
It is more preferable that R 1 is − (CH 2 ) n − or − (CH 2 ) n −NH − (CH 2 ) m −.
It is preferable that n, m, and j are 1, 2, or 3 independently of each other.
R 2 is preferably a methyl group or an ethyl group.
R 3 is preferably a methyl group, an ethyl group, a methoxy group or an ethoxy group.

シランカップリング剤の水中濃度は通常よりも高濃度(例えば、1.0vol%以上)として、シランカップリング処理を行うことが絶縁基材との高い密着性を得る上では重要であるが、高すぎるとN、C又はO濃度が過剰になり、ブリスターの抑制が困難となるので注意する。例示的には、シランカップリング剤の水中濃度は1.5〜6vol%とすることができ、好ましくは2.0〜4.0vol%とすることができる。 The concentration of the silane coupling agent in water is higher than usual (for example, 1.0 vol% or more), and it is important to perform the silane coupling treatment in order to obtain high adhesion to the insulating base material, but it is high. Note that if it is too much, the N, C or O concentration will be excessive and it will be difficult to suppress the blister. Illustratively, the concentration of the silane coupling agent in water can be 1.5 to 6 vol%, preferably 2.0 to 4.0 vol%.

シランカップリング剤はシランと水を混合して水溶液として提供することができるところ、両者を混合する際の攪拌時間を、シランカップリング剤の種類及び濃度に応じて適切に設定することが重要である。最適な攪拌時間はシランカップリング剤の種類及び濃度に応じて変動するため一般化して議論することは困難であるが、目安としては、1〜24時間の範囲で選定することができる。0.5時間未満のように撹拌時間が短い場合は、シランカップリング剤の加水分解が十分に進行しないことで、上述の(式I)で示されるSi(OR22(R3)におけるOR2またはR3がOH基(水酸基)に十分に置換されないことで、想定する密着性が得られないことがある。この場合、シランカップリング層には、R2またはR3に該当するC1〜C5のアルキル基が多く残存する。さらに密着性を増加させるために、最適量以上のシランカップリング剤を使用すると、C濃度だけでなく、N濃度やO濃度も増加することとなる。好ましい撹拌時間は2時間以上であり、より好ましい撹拌時間5時間以上であり、より好ましい撹拌時間は12時間以上である。長時間の撹拌により、pHや温度の変動を受けやすくなり、Nを含むアミノ基やOを含む水酸基などは、シランカップリング剤同士で水素結合を形成してしまい、想定する金属と樹脂の間の架橋構造を有しなくなる。さらにアミノ基や水酸基は、pHの影響を受けやすいことから、シランカップリング剤が変質する可能性もある。このような場合には、工業的に使用が難しくなる。
攪拌時間としてはシランカップリング剤中のアミノ基及びイミノ基の合計数が多い場合には攪拌時間を短く、逆に少ない場合には攪拌時間を長くすることが、上述した本発明に係る表面処理面の濃度条件を満たしやすい。また、シランカップリング剤の水中濃度が高い場合には攪拌時間を短く、逆に低い場合には攪拌時間を長くすることで、上述した本発明に係る表面処理面の濃度条件を満たしやすい。
Since the silane coupling agent can be provided as an aqueous solution by mixing silane and water, it is important to appropriately set the stirring time when mixing the two according to the type and concentration of the silane coupling agent. is there. Since the optimum stirring time varies depending on the type and concentration of the silane coupling agent, it is difficult to generalize and discuss it, but as a guide, it can be selected in the range of 1 to 24 hours. When the stirring time is short, such as less than 0.5 hours, the hydrolysis of the silane coupling agent does not proceed sufficiently, so that in Si (OR 2 ) 2 (R 3 ) represented by the above formula (I), If OR 2 or R 3 is not sufficiently substituted with an OH group (hydroxyl group), the expected adhesion may not be obtained. In this case, a large amount of C 1 to C 5 alkyl groups corresponding to R 2 or R 3 remains in the silane coupling layer. If an optimum amount or more of the silane coupling agent is used in order to further increase the adhesion, not only the C concentration but also the N concentration and the O concentration will increase. The preferable stirring time is 2 hours or more, the more preferable stirring time is 5 hours or more, and the more preferable stirring time is 12 hours or more. Stirring for a long time makes it susceptible to fluctuations in pH and temperature, and amino groups containing N and hydroxyl groups containing O form hydrogen bonds between the silane coupling agents, and between the assumed metal and resin. Does not have the cross-linked structure of. Furthermore, since amino groups and hydroxyl groups are easily affected by pH, the silane coupling agent may be altered. In such a case, it becomes difficult to use industrially.
As the stirring time, when the total number of amino groups and imino groups in the silane coupling agent is large, the stirring time is short, and when the total number is small, the stirring time is long. It is easy to meet the surface density condition. Further, when the concentration of the silane coupling agent in water is high, the stirring time is short, and when the concentration is low, the stirring time is long, so that the above-mentioned concentration condition of the surface-treated surface according to the present invention can be easily satisfied.

シランカップリング剤による銅箔の表面処理方法はシランカップリング剤水溶液のスプレー吹き付け、コーター塗布、浸漬、流しかけ等いずれでも良い。また、シランカップリング処理後は、乾燥温度を高くしすぎず、また乾燥時間を長くしすぎないことが必要である。乾燥温度を高くしすぎたり、乾燥時間を長くしすぎたりした場合、銅箔表面に存在するシランカップリング剤が分解する場合があるからである。例示的には、乾燥温度は70〜150℃、乾燥時間は1秒〜10分とすることができる。 The surface treatment method of the copper foil with the silane coupling agent may be any of spray spraying of an aqueous solution of the silane coupling agent, coating with a coater, dipping, pouring and the like. Further, after the silane coupling treatment, it is necessary not to raise the drying temperature too high and not to make the drying time too long. This is because if the drying temperature is set too high or the drying time is set too long, the silane coupling agent present on the surface of the copper foil may be decomposed. Illustratively, the drying temperature can be 70 to 150 ° C. and the drying time can be 1 second to 10 minutes.

表面処理の対象となる銅箔(原箔)の種類には特に制限はないが、圧延銅箔及び電解銅箔を好適に使用可能である。銅箔には純銅箔及び銅合金箔が含まれ、回路形成用途として公知の任意の組成とすることができる。なお、表面処理の対象となる銅箔はキャリア、剥離層、極薄銅層をこの順で有するキャリア付銅箔の極薄銅層であってもよく、表面処理の対象となる銅箔はキャリアを有しても良い。上述のキャリア付銅箔、キャリアにはどのようなキャリア付銅箔、キャリアを用いてもよく、公知のキャリア付銅箔、キャリアを用いることができる。 The type of copper foil (raw foil) to be surface-treated is not particularly limited, but rolled copper foil and electrolytic copper foil can be preferably used. The copper foil includes a pure copper foil and a copper alloy foil, and can have any composition known for circuit forming applications. The copper foil to be surface-treated may be an ultra-thin copper layer of a copper foil with a carrier having a carrier, a release layer, and an ultra-thin copper layer in this order, and the copper foil to be surface-treated is a carrier. May have. Any kind of carrier-attached copper foil or carrier may be used for the above-mentioned carrier-attached copper foil or carrier, and known carrier-attached copper foil or carrier can be used.

また、本発明においては、表面処理面におけるN濃度、C濃度、並びに、Si及びO濃度の組み合わせの一種以上を制御することで絶縁基材との密着性を向上させていることから、絶縁基材との密着性を高めるために表面粗さを大きくする必要性は少ない。このため、絶縁基材との密着性を確保しつつ、表面処理銅箔の表面処理面における表面粗さを小さくすることで導体損失を少なくできる。導体損失が少ないというのは、例えば1GHzを超える高周波数下での使用されるようなプリント回路板への適用に有利である。表面処理面における表面粗さとしては具体的には、JIS B0601−1982に準拠して触針式粗度計を用いて測定したときに、十点平均粗さRzが1.5μm以下であることが好ましく、1.2μm以下であることがより好ましく、1.0μm以下であることが更により好ましく、例えば0.2〜1.5μmとすることができる。 Further, in the present invention, since the adhesion to the insulating base material is improved by controlling one or more combinations of N concentration, C concentration, and Si and O concentration on the surface-treated surface, the insulating group is used. There is little need to increase the surface roughness in order to improve the adhesion with the material. Therefore, the conductor loss can be reduced by reducing the surface roughness of the surface-treated surface of the surface-treated copper foil while ensuring the adhesion to the insulating base material. The low conductor loss is advantageous for application to printed circuit boards such as those used at high frequencies above 1 GHz. Specifically, the surface roughness of the surface-treated surface is that the ten-point average roughness Rz is 1.5 μm or less when measured using a stylus type roughness meter in accordance with JIS B0601-1982. Is more preferable, 1.2 μm or less is more preferable, 1.0 μm or less is even more preferable, and for example, it can be 0.2 to 1.5 μm.

N濃度、C濃度、並びに、Si及びO濃度の組み合わせが上記範囲に制御された表面処理面を形成するための別の手段として、スパッタリング、CVD及びPVDなどの乾式めっきによって銅箔の表面にN、C、Si及びOを付着させ、その後、温度及び時間を適切に設定して加熱する方法も挙げられる。加熱条件を調節することによって表面処理面のN、C、Si及びO濃度を制御可能である。 As another means for forming a surface-treated surface in which the combination of N concentration, C concentration, and Si and O concentration is controlled in the above range, N is applied to the surface of the copper foil by dry plating such as sputtering, CVD, and PVD. , C, Si and O are attached, and then the temperature and time are appropriately set for heating. The N, C, Si and O concentrations of the surface-treated surface can be controlled by adjusting the heating conditions.

本発明に係る表面処理銅箔は一実施形態において、銅箔表面に粗化処理層、耐熱処理層、防錆処理層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層を有することができる。また、本発明に係る表面処理銅箔は一実施形態において、銅箔表面に耐熱処理層、防錆処理層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層を有することができる。 In one embodiment, the surface-treated copper foil according to the present invention is one selected from the group consisting of a roughening treatment layer, a heat-resistant treatment layer, a rust prevention treatment layer, a chromate treatment layer, and a silane coupling treatment layer on the surface of the copper foil. It can have the above layers. Further, in one embodiment, the surface-treated copper foil according to the present invention is one or more layers selected from the group consisting of a heat-resistant treatment layer, a rust prevention treatment layer, a chromate treatment layer and a silane coupling treatment layer on the surface of the copper foil. Can have.

前記粗化処理層は特に限定はされず、あらゆる粗化処理層や公知の粗化処理層を適用することが出来る。前記耐熱処理層は特に限定はされず、あらゆる耐熱処理層や公知の耐熱処理層を適用することが出来る。前記防錆処理層は特に限定はされず、あらゆる防錆処理層や公知の防錆処理層を適用することが出来る。前記めっき処理層は特に限定はされず、あらゆるめっき処理層や公知のめっき処理層を適用することが出来る。前記クロメート処理層は特に限定はされず、あらゆるクロメート処理層や公知のクロメート処理層を適用することが出来る。 The roughening treatment layer is not particularly limited, and any roughening treatment layer or a known roughening treatment layer can be applied. The heat-resistant treatment layer is not particularly limited, and any heat-resistant treatment layer or a known heat-resistant treatment layer can be applied. The rust preventive treatment layer is not particularly limited, and any rust preventive treatment layer or a known rust preventive treatment layer can be applied. The plating-treated layer is not particularly limited, and any plating-treated layer or a known plating-treated layer can be applied. The chromate-treated layer is not particularly limited, and any chromate-treated layer or a known chromate-treated layer can be applied.

本発明に係る表面処理銅箔の一実施形態においては、銅箔表面に、例えば絶縁基板との密着性を良好にすること等のための粗化処理を施すことにより粗化処理層を設けてもよい。粗化処理は、例えば、銅又は銅合金で粗化粒子を形成することにより行うことができる。粗化処理は微細なものであっても良い。粗化処理層は、銅、ニッケル、りん、タングステン、ヒ素、モリブデン、クロム、コバルト及び亜鉛からなる群から選択されたいずれかの単体又はいずれか1種以上を含む合金からなる層などであってもよい。また、銅又は銅合金で粗化粒子を形成した後、更にニッケル、コバルト、銅、亜鉛の単体または合金等で二次粒子や三次粒子を設ける粗化処理を行うこともできる。とりわけ、銅の一次粒子層と、該一次粒子層の上に、銅、コバルト及びニッケルからなる3元系合金からなる二次粒子層とが形成された粗化処理層が好ましい。該一次粒子層の平均粒子径が0.25〜0.45μmであり、該二次粒子層の平均粒子径が0.05〜0.25μmであることがより好ましい。 In one embodiment of the surface-treated copper foil according to the present invention, a roughening-treated layer is provided on the surface of the copper foil by, for example, roughening treatment for improving adhesion with an insulating substrate. May be good. The roughening treatment can be performed, for example, by forming roughened particles with copper or a copper alloy. The roughening treatment may be fine. The roughened layer is a layer made of any simple substance selected from the group consisting of copper, nickel, phosphorus, tungsten, arsenic, molybdenum, chromium, cobalt and zinc, or an alloy containing any one or more of them. May be good. Further, after forming the roughened particles with copper or a copper alloy, it is also possible to carry out a roughening treatment in which secondary particles or tertiary particles are further provided with a simple substance or alloy of nickel, cobalt, copper or zinc. In particular, a roughened treatment layer in which a primary particle layer of copper and a secondary particle layer made of a ternary alloy composed of copper, cobalt and nickel is formed on the primary particle layer is preferable. It is more preferable that the average particle size of the primary particle layer is 0.25 to 0.45 μm, and the average particle size of the secondary particle layer is 0.05 to 0.25 μm.

本発明に係る表面処理銅箔の一実施形態においては、粗化処理後に、ニッケル、コバルト、銅、亜鉛の単体または合金等で耐熱処理層または防錆処理層を形成しても良く、更にその表面にクロメート処理、シランカップリング処理などの処理を施してもよい。または粗化処理を行わずに、ニッケル、コバルト、銅、亜鉛の単体または合金等で耐熱処理層又は防錆処理層を形成し、さらにその表面にクロメート処理、シランカップリング処理などの処理を施してもよい。 In one embodiment of the surface-treated copper foil according to the present invention, a heat-resistant treatment layer or a rust-prevention treatment layer may be formed from a simple substance or alloy of nickel, cobalt, copper, zinc, or the like after the roughening treatment. The surface may be subjected to a treatment such as chromate treatment or silane coupling treatment. Alternatively, a heat-resistant treatment layer or a rust-preventive treatment layer is formed from a simple substance or alloy of nickel, cobalt, copper, zinc, etc. without roughening treatment, and the surface thereof is further subjected to treatment such as chromate treatment and silane coupling treatment. You may.

すなわち、粗化処理層の表面に、耐熱処理層、防錆処理層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層を形成してもよく、銅箔表面に、耐熱処理層、防錆処理層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層を形成してもよい。なお、上述の耐熱層、防錆処理層、クロメート処理層、シランカップリング処理層はそれぞれ複数の層で形成されてもよい(例えば2層以上、3層以上など)。なお、本発明において「防錆処理層」は「クロメート処理層」を含む。樹脂との密着性を考慮すると、表面処理銅箔の最外層にシランカップリング処理層を設けることが好ましい。 That is, one or more layers selected from the group consisting of a heat resistant treatment layer, a rust prevention treatment layer, a chromate treatment layer, and a silane coupling treatment layer may be formed on the surface of the roughening treatment layer, and the copper foil surface may be formed. In addition, one or more layers selected from the group consisting of a heat-resistant treatment layer, a rust prevention treatment layer, a chromate treatment layer and a silane coupling treatment layer may be formed. The heat-resistant layer, the rust-preventive treatment layer, the chromate treatment layer, and the silane coupling treatment layer may each be formed of a plurality of layers (for example, two or more layers, three or more layers, etc.). In the present invention, the "rust preventive treatment layer" includes a "chromate treatment layer". Considering the adhesion to the resin, it is preferable to provide a silane coupling-treated layer on the outermost layer of the surface-treated copper foil.

防錆処理またはクロメート処理として以下の処理を用いることができる。
<Niめっき>
(液組成)Niイオン:10〜40g/L
(pH)1.0〜5.0
(液温)30〜70℃
(電流密度)1〜9A/dm2
(通電時間)0.1〜3秒
The following treatments can be used as the rust preventive treatment or the chromate treatment.
<Ni plating>
(Liquid composition) Ni ion: 10-40 g / L
(PH) 1.0-5.0
(Liquid temperature) 30-70 ° C
(Current density) 1-9A / dm 2
(Energizing time) 0.1 to 3 seconds

<Ni−Coめっき>:Ni−Co合金めっき
(液組成)Co:1〜20g/L、Ni:1〜20g/L
(pH)1.5〜3.5
(液温)30〜80℃
(電流密度)1〜20A/dm2
(通電時間)0.5〜4秒
<Ni-Co plating>: Ni-Co alloy plating (liquid composition) Co: 1 to 20 g / L, Ni: 1 to 20 g / L
(PH) 1.5-3.5
(Liquid temperature) 30-80 ° C
(Current density) 1 to 20 A / dm 2
(Energizing time) 0.5-4 seconds

<Zn−Niめっき>:Zn−Ni合金めっき
(液組成)Zn:10〜30g/L、Ni:1〜10g/L
(pH)3〜4
(液温)40〜50℃
(電流密度)0.5〜5A/dm2
(通電時間)1〜3秒
<Zn-Ni plating>: Zn-Ni alloy plating (liquid composition) Zn: 10 to 30 g / L, Ni: 1 to 1 to 10 g / L
(PH) 3-4
(Liquid temperature) 40-50 ° C
(Current density) 0.5 to 5 A / dm 2
(Energizing time) 1-3 seconds

<Ni−Moめっき>:Ni−Mo合金めっき
(液組成)硫酸ニッケル:270〜280g/L、塩化ニッケル:35〜45g/L、酢酸ニッケル:10〜20g/L、モリブデン(モリブデン酸ナトリウムとして添加):0.1〜10g/L、クエン酸三ナトリウム:15〜25g/L、光沢剤:サッカリン、ブチンジオール等、ドデシル硫酸ナトリウム:55〜75ppm
(pH)4〜6
(液温)55〜65℃
(電流密度)1〜11A/dm2
(通電時間)1〜20秒
<Ni-Mo plating>: Ni-Mo alloy plating (liquid composition) Nickel sulfate: 270 to 280 g / L, nickel chloride: 35 to 45 g / L, nickel acetate: 10 to 20 g / L, molybdate (added as sodium molybdate) ): 0.1 to 10 g / L, trisodium citrate: 15-25 g / L, brightener: saccharin, butinediol, etc., sodium dodecyl sulfate: 55 to 75 ppm
(PH) 4-6
(Liquid temperature) 55-65 ° C
(Current density) 1 to 11 A / dm 2
(Energizing time) 1 to 20 seconds

<Cu−Znめっき>:Cu−Zn合金めっき
(液組成)NaCN:10〜30g/L、NaOH:40〜100g/L、Cu:60〜120g/L、Zn:1〜10g/L
(液温)60〜80℃
(電流密度)1〜10A/dm2
(通電時間)1〜10秒
<Cu-Zn plating>: Cu-Zn alloy plating (liquid composition) NaCl: 10 to 30 g / L, NaOH: 40 to 100 g / L, Cu: 60 to 120 g / L, Zn: 1 to 10 g / L
(Liquid temperature) 60-80 ° C
(Current density) 1 to 10 A / dm 2
(Energizing time) 1 to 10 seconds

<電解クロメート>
(液組成)無水クロム酸、クロム酸、または重クロム酸カリウム:1〜10g/L、亜鉛(添加する場合は硫酸亜鉛の形で添加):0〜5g/L
(pH)0.5〜10
(液温)40〜60℃
(電流密度)0.1〜2.6A/dm2
(クーロン量)0.5〜90As/dm2
(通電時間)1〜30秒
<Electrolytic chromate>
(Liquid composition) Chromic anhydride, chromic acid, or potassium dichromate: 1-10 g / L, zinc (added in the form of zinc sulfate if added): 0-5 g / L
(PH) 0.5-10
(Liquid temperature) 40-60 ° C
(Current density) 0.1 to 2.6 A / dm 2
(Amount of coulomb) 0.5 to 90 As / dm 2
(Energizing time) 1 to 30 seconds

<浸漬クロメート>
(液組成)無水クロム酸、クロム酸、または重クロム酸カリウム:1〜10g/L、亜鉛(添加する場合は硫酸亜鉛の形で添加):0〜5g/L
(pH)2〜10
(液温)20〜60℃
(処理時間)1〜30秒
<Immersion chromate>
(Liquid composition) Chromic anhydride, chromic acid, or potassium dichromate: 1-10 g / L, zinc (added in the form of zinc sulfate if added): 0-5 g / L
(PH) 2-10
(Liquid temperature) 20-60 ° C
(Processing time) 1 to 30 seconds

本発明に係る表面処理銅箔の表面処理面を絶縁基材と貼り合わせることで銅箔積層板を形成可能である。絶縁基材が単層である単層銅張積層板としてもよく、絶縁基材が二層以上である多層銅張積層板としてもよい。銅箔積層板はフレキシブル及びリジッドの何れとすることも可能である。絶縁基材としては、特に制限はないが、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂、ポリイミドアミド樹脂、ポリエステル樹脂、ポリフェニレンサルファイド樹脂、ポリエーテルイミド樹脂、フッ素樹脂、液晶ポリマー(LCP)、及びそれらを混合させたものが挙げられる。この他、ガラスクロスにエポキシ樹脂、ビスマレイドトリアジン樹脂、又はポリイミド樹脂等を含浸させた絶縁基材が挙げられる。とりわけ、液晶ポリマーは低誘電率、低誘電正接、低吸水性、電気特性の変化が少ない、更には寸法変化が少ないという大きな利点を持ち、高周波用途に好適である。 A copper foil laminated plate can be formed by laminating the surface-treated surface of the surface-treated copper foil according to the present invention with an insulating base material. A single-layer copper-clad laminate having a single-layer insulating base material may be used, or a multi-layer copper-clad laminate having two or more layers of an insulating base material may be used. The copper foil laminate can be either flexible or rigid. The insulating base material is not particularly limited, but is an epoxy resin, a phenol resin, a polyimide resin, a polyimideamide resin, a polyester resin, a polyphenylene sulfide resin, a polyetherimide resin, a fluororesin, a liquid crystal polymer (LCP), and a mixture thereof. The ones that have been made can be mentioned. In addition, an insulating base material obtained by impregnating a glass cloth with an epoxy resin, a bismaredo triazine resin, a polyimide resin, or the like can be mentioned. In particular, the liquid crystal polymer has the great advantages of low dielectric constant, low dielectric loss tangent, low water absorption, little change in electrical characteristics, and little change in dimensions, and is suitable for high frequency applications.

本発明に係る表面処理銅箔は液晶ポリマーに銅箔を積層したフレキシブルプリント基板(FPC)用銅箔として特に有用である。絶縁基材の中でも、液晶ポリマーは強度が弱く、銅箔を積層した材料はピール強度が出難いという大きな問題を有している。銅箔表面の粗さを大きくすると、物理的なアンカー効果が得られることからピール強度は高くなる傾向にあるが、前述の表皮効果の影響によって、高周波における電気特性が悪化してしまう。しかしながら、本発明に係る表面処理銅箔の一実施形態によれば、表面粗さが小さくても絶縁基材との密着性を確保することができるため、上述した液晶ポリマーの利点を活かすことができるのである。 The surface-treated copper foil according to the present invention is particularly useful as a copper foil for a flexible printed circuit board (FPC) in which a copper foil is laminated on a liquid crystal polymer. Among the insulating base materials, the liquid crystal polymer has a weak strength, and the material in which the copper foil is laminated has a big problem that the peel strength is hard to be obtained. When the roughness of the copper foil surface is increased, the peel strength tends to be increased because a physical anchor effect is obtained, but the electric characteristics at high frequencies are deteriorated due to the influence of the above-mentioned skin effect. However, according to one embodiment of the surface-treated copper foil according to the present invention, the adhesion to the insulating base material can be ensured even if the surface roughness is small, so that the above-mentioned advantages of the liquid crystal polymer can be utilized. You can.

銅張積層板を用いてプリント配線板を作製することができる。銅張積層板からプリント配線板への加工方法には、特段の限定はなく、公知のエッチング加工プロセスを用いれば足りる。プリント配線板に各種電子部品を実装することでプリント回路板を作製することもできる。また、プリント回路板は種々の電子機器に搭載可能である。 A printed wiring board can be manufactured using a copper-clad laminate. The processing method from the copper-clad laminate to the printed wiring board is not particularly limited, and a known etching processing process may be used. A printed circuit board can also be manufactured by mounting various electronic components on a printed wiring board. Further, the printed circuit board can be mounted on various electronic devices.

以下、実施例により本発明を説明する。なお、本実施例は好適な一例を示すもので、本発明はこれらの実施例に限定されるものではない。したがって、本発明の技術思想に含まれる変形、他の実施例又は態様は、全て本発明に含まれる。なお、本発明との対比のために、比較例を併記する。また、本願の実験例に記載されている粗化処理、めっき、シランカップリング処理、耐熱処理、防錆処理などに用いられる液の残部も特に記載が無い限り水とした。 Hereinafter, the present invention will be described with reference to Examples. It should be noted that this example shows a suitable example, and the present invention is not limited to these examples. Therefore, all modifications, other examples or embodiments included in the technical idea of the present invention are included in the present invention. A comparative example is also described for comparison with the present invention. Further, the rest of the liquid used for the roughening treatment, plating, silane coupling treatment, heat resistance treatment, rust prevention treatment, etc. described in the experimental examples of the present application was also water unless otherwise specified.

(実施例1、4〜6及び比較例1、3、4)
厚み12μmの圧延銅箔(JX日鉱日石金属株式会社製 タフピッチ銅(JIS H3100 合金番号C1100))を用意した。当該圧延銅箔の表面を電解脱脂、水洗、酸洗を行った後、当該圧延銅箔の表面に銅の一次粒子を設ける処理を行い、その後、二次粒子を設ける処理を行うことにより粗化処理を行った。粗化処理の詳細条件は以下である。
(Examples 1, 4 to 6 and Comparative Examples 1, 3, 4)
A rolled copper foil having a thickness of 12 μm (Tough pitch copper manufactured by JX Nippon Mining & Metals Co., Ltd. (JIS H3100 alloy number C1100)) was prepared. After the surface of the rolled copper foil is electrolytically degreased, washed with water, and pickled, a treatment of providing primary copper particles on the surface of the rolled copper foil is performed, and then a treatment of providing secondary particles is performed to roughen the surface. Processing was performed. The detailed conditions for the roughening process are as follows.

<粗化処理条件>
(銅の一次粒子のめっき条件)
液組成 :銅10g/L、硫酸50g/L
液温 :26℃
電流密度 :50A/dm2
めっき時間:1.5秒
<Roughening treatment conditions>
(Plating conditions for primary copper particles)
Liquid composition: copper 10 g / L, sulfuric acid 50 g / L
Liquid temperature: 26 ° C
Current density: 50A / dm 2
Plating time: 1.5 seconds

(二次粒子のめっき条件)
液組成 :銅16g/L、ニッケル9g/L、コバルト8g/L
pH :2.4
液温 :35℃
電流密度 :25A/dm2
めっき時間:1.5秒
(Plating conditions for secondary particles)
Liquid composition: Copper 16 g / L, Nickel 9 g / L, Cobalt 8 g / L
pH: 2.4
Liquid temperature: 35 ° C
Current density: 25A / dm 2
Plating time: 1.5 seconds

上記粗化処理を施した後に、Ni−Co合金めっき(耐熱防錆処理)及びクロメート処理を順に行った。
<Ni−Coめっき>:Ni−Co合金めっき
(液組成)Co:4g/L、Ni:12g/L
(pH)2.3
(液温)50℃
(電流密度)12A/dm2
(通電時間)0.8秒
After the above roughening treatment, Ni—Co alloy plating (heat-resistant rust-preventive treatment) and chromate treatment were performed in this order.
<Ni-Co plating>: Ni-Co alloy plating (liquid composition) Co: 4 g / L, Ni: 12 g / L
(PH) 2.3
(Liquid temperature) 50 ° C
(Current density) 12A / dm 2
(Energizing time) 0.8 seconds

<電解クロメート>
(液組成)重クロム酸カリウム:4g/L、亜鉛(硫酸亜鉛の形で添加):0.5g/L
(pH)3.5
(液温)60℃
(電流密度)2.0A/dm2
(通電時間)2秒
<Electrolytic chromate>
(Liquid composition) Potassium dichromate: 4 g / L, Zinc (added in the form of zinc sulfate): 0.5 g / L
(PH) 3.5
(Liquid temperature) 60 ° C
(Current density) 2.0A / dm 2
(Energizing time) 2 seconds

クロメート処理面に対して走査型電子顕微鏡(SEM)を用いて写真撮影を行った。そして当該写真を用いて粗化処理の粒子の観察を行った。その結果、銅の一次粒子層の平均粒子径は0.25〜0.45μmであり、二次粒子層の平均粒子径は0.05〜0.25μmであった。なお、粒子を取り囲む最小円の直径を粒子径として測定し、平均粒子径を算出した。なお、耐熱防錆処理及びクロメート処理の前後で粗化粒子の大きさはほとんど変化しない。 Photographs were taken on the chromate-treated surface using a scanning electron microscope (SEM). Then, the particles of the roughening treatment were observed using the photograph. As a result, the average particle size of the copper primary particle layer was 0.25 to 0.45 μm, and the average particle size of the secondary particle layer was 0.05 to 0.25 μm. The diameter of the smallest circle surrounding the particles was measured as the particle diameter, and the average particle diameter was calculated. The size of the roughened particles hardly changes before and after the heat-resistant rust preventive treatment and the chromate treatment.

次いで、クロメート処理後の表面にシランカップリング処理を行った。表1に示す種類のシランを25℃の水と表1に記載のシラン濃度となるように混合して表1に記載の時間撹拌速度を900rpmで攪拌することによりシランカップリング剤を調製した。得られたシランカップリング剤溶液を銅箔の表面処理表面に塗布後、SUS棒を銅箔表面に当てて転がしながら、余分なシランカップリング剤溶液の液切りを行った。その後、100℃×5分の条件で乾燥することにより、シランカップリング処理を実施した。 Next, the surface after the chromate treatment was subjected to a silane coupling treatment. A silane coupling agent was prepared by mixing the types of silanes shown in Table 1 with water at 25 ° C. so as to have the silane concentration shown in Table 1 and stirring the time stirring speed shown in Table 1 at 900 rpm. After applying the obtained silane coupling agent solution to the surface-treated surface of the copper foil, the excess silane coupling agent solution was drained while rolling the SUS rod against the surface of the copper foil. Then, the silane coupling treatment was carried out by drying under the condition of 100 ° C. × 5 minutes.

(実施例2、7、8及び比較例5、6、9)
無酸素銅(OFC)にAgを50〜100質量ppm添加した組成を有する厚み12μmの圧延銅箔(JX日鉱日石金属株式会社製)を用意した。当該圧延銅箔の表面に実施例1と同様の粗化処理、耐熱防錆処理及びクロメート処理を順に行った。クロメート処理後の表面にシランカップリング処理を行った。表1に示す種類のシランを25℃の水と表1に記載のシラン濃度となるように混合して表1に記載の時間撹拌速度を900rpmで攪拌することによりシランカップリング剤を調製した。得られたシランカップリング剤溶液を銅箔の表面処理表面に塗布後、SUS棒を銅箔表面に当てて転がしながら、余分なシランカップリング剤溶液の液切りを行った。その後、100℃×5分の条件で乾燥することにより、シランカップリング処理を実施した。
(Examples 2, 7, 8 and Comparative Examples 5, 6, 9)
A rolled copper foil (manufactured by JX Nippon Mining & Metals Co., Ltd.) having a thickness of 12 μm having a composition of adding 50 to 100 mass ppm of Ag to oxygen-free copper (OFC) was prepared. The surface of the rolled copper foil was subjected to the same roughening treatment, heat-resistant rust prevention treatment, and chromate treatment as in Example 1 in this order. A silane coupling treatment was performed on the surface after the chromate treatment. A silane coupling agent was prepared by mixing the types of silanes shown in Table 1 with water at 25 ° C. so as to have the silane concentration shown in Table 1 and stirring the time stirring speed shown in Table 1 at 900 rpm. After applying the obtained silane coupling agent solution to the surface-treated surface of the copper foil, the excess silane coupling agent solution was drained while rolling the SUS rod against the surface of the copper foil. Then, the silane coupling treatment was carried out by drying under the condition of 100 ° C. × 5 minutes.

(実施例3、9〜11及び比較例2、7、8)
無酸素銅に1200ppmのSnを添加したインゴットを溶製し、このインゴットを900℃から熱間圧延し、厚さ10mmの板を得た。その後、冷間圧延と焼鈍を繰り返し、最終的に9μm厚の銅箔に冷間圧延し、圧延銅箔を得た。
(Examples 3, 9 to 11 and Comparative Examples 2, 7, 8)
An ingot in which 1200 ppm of Sn was added to oxygen-free copper was melted, and the ingot was hot-rolled from 900 ° C. to obtain a plate having a thickness of 10 mm. Then, cold rolling and annealing were repeated, and finally cold rolling was performed on a copper foil having a thickness of 9 μm to obtain a rolled copper foil.

次に、前記圧延銅箔に、次の条件でNiめっきを実施した(粗化処理は実施せず)。
Niイオン:40g/L
温度:50℃
電流密度:7.0A/dm2
めっき時間:2.0秒
pH:4.0
Next, the rolled copper foil was subjected to Ni plating under the following conditions (no roughening treatment was performed).
Ni ion: 40 g / L
Temperature: 50 ° C
Current density: 7.0A / dm 2
Plating time: 2.0 seconds pH: 4.0

次いで、Niめっき面にシランカップリング処理を行った。表1に示す種類のシランを25℃の水と表1に記載のシラン濃度となるように混合して表1に記載の時間撹拌速度を900rpmで攪拌することによりシランカップリング剤を調製した。得られたシランカップリング剤溶液を銅箔の表面処理表面に塗布後、SUS棒を銅箔表面に当てて転がしながら、余分なシランカップリング剤溶液の液切りを行った。その後、100℃×5分の条件で乾燥することにより、シランカップリング処理を実施した。
<XPS深さ方向分析>
得られた各表面処理銅箔の表面処理面に対して、アルバック・ファイ株式会社製5600MCを用いて、先述した条件で、レート1.1nm/min(SiO2換算)でスパッタしながらXPS深さ方向分析を実施した。分析対象元素はN1s、O1s、C1s、Si2s、Cr2p3、Zn2p3、Cu2p3、Ni2p3、Co2p3とした。0.5minスパッタ後及び1.0minスパッタ後のN、C、Si及びOの原子濃度を表1に示す。
Next, the Ni-plated surface was subjected to a silane coupling treatment. A silane coupling agent was prepared by mixing the types of silanes shown in Table 1 with water at 25 ° C. so as to have the silane concentration shown in Table 1 and stirring the time stirring speed shown in Table 1 at 900 rpm. After applying the obtained silane coupling agent solution to the surface-treated surface of the copper foil, the excess silane coupling agent solution was drained while rolling the SUS rod against the surface of the copper foil. Then, the silane coupling treatment was carried out by drying under the condition of 100 ° C. × 5 minutes.
<XPS depth direction analysis>
XPS depth was applied to the surface-treated surface of each of the obtained surface-treated copper foils while sputtering at a rate of 1.1 nm / min (SiO 2 conversion) under the above-mentioned conditions using 5600MC manufactured by ULVAC PFI Co., Ltd. Directional analysis was performed. The elements to be analyzed were N1s, O1s, C1s, Si2s, Cr2p 3 , Zn2p 3 , Cu2p 3 , Ni2p 3 , and Co2p 3 . Table 1 shows the atomic concentrations of N, C, Si and O after 0.5 min sputtering and 1.0 min sputtering.

<表面処理銅箔の表面粗さ>
得られた各表面処理銅箔の表面処理面の十点平均粗さRzをJIS B0601−1982に準拠して、株式会社小阪研究所製のSurfcorder SE−3C触針式粗度計を用いて測定した。結果を表1に示す。
<Surface roughness of surface-treated copper foil>
The ten-point average roughness Rz of the surface-treated surface of each of the obtained surface-treated copper foils was measured using a Surfcoder SE-3C stylus type roughness meter manufactured by Kosaka Research Institute Co., Ltd. in accordance with JIS B0601-1982. did. The results are shown in Table 1.

<ピール強度>
得られた各表面処理銅箔の表面処理面を厚さ50μmの液晶ポリマー(Kuraray製、Vecstar CT−Z、ヒドロキシ安息香酸(エステル)とヒドロキシナフトエ酸(エステル)との共重合体)に熱プレスにて貼り合わせ、銅張積層板を得た。
熱条件:約5.1℃/分の昇温スピードにて加熱(60分後に305℃に到達)
10分間保持後に自然冷却
圧力条件:加熱開始から50分後に、4.0MPa加圧
30分加圧保持後に圧力ゼロ
<Peel strength>
The surface-treated surface of each of the obtained surface-treated copper foils is hot-pressed on a liquid crystal polymer having a thickness of 50 μm (Kuraray, Vectstar CT-Z, a copolymer of hydroxybenzoic acid (ester) and hydroxynaphthoic acid (ester)). To obtain a copper-clad laminate.
Thermal conditions: Heating at a heating speed of about 5.1 ° C / min (reaches 305 ° C after 60 minutes)
Natural cooling pressure condition after holding for 10 minutes: 4.0 MPa pressurization 50 minutes after the start of heating
Zero pressure after holding pressure for 30 minutes

このようにして得た銅張積層板を用いて常温(25℃)における90度ピール強度を測定した。ピール強度は、回路幅3mmとし、90度の角度で50mm/minの速度で液晶ポリマーから銅箔を引き剥がした場合の値である。このピール強度の測定は、JIS C6471−1995に準拠するものである(以下、同様である)。2回測定し、その平均値を測定値とした。結果を表1に示す。 Using the copper-clad laminate thus obtained, the 90-degree peel strength at room temperature (25 ° C.) was measured. The peel strength is a value when the copper foil is peeled off from the liquid crystal polymer at a speed of 50 mm / min at an angle of 90 degrees with a circuit width of 3 mm. This peel strength measurement conforms to JIS C6471-1995 (hereinafter, the same applies). The measurement was performed twice, and the average value was used as the measured value. The results are shown in Table 1.

<はんだブリスター試験>
得られた各表面処理銅箔の表面処理面を厚さ50μmの液晶ポリマー(Kuraray製、Vecstar CT−Z)の両面に熱プレスにて貼り合わせ、銅張積層板を得た。
熱条件:約5.1℃/分の昇温スピードにて加熱(60分後に305℃に到達)
10分間保持後に自然冷却
圧力条件:加熱開始から50分後に、4.0MPa加圧
30分加圧保持後に圧力ゼロ
<Solder blister test>
The surface-treated surface of each of the obtained surface-treated copper foils was bonded to both sides of a liquid crystal polymer (Vecstar CT-Z manufactured by Kuraray) having a thickness of 50 μm by a hot press to obtain a copper-clad laminate.
Thermal conditions: Heating at a heating speed of about 5.1 ° C / min (reaches 305 ° C after 60 minutes)
Natural cooling pressure condition after holding for 10 minutes: 4.0 MPa pressurization 50 minutes after the start of heating
Zero pressure after holding pressure for 30 minutes

この銅張積層板を40mm×40mmサイズにカットした後、銅張積層板表面に、はんだ付着予防のためのグリースを塗った。その後、10秒間、300℃〜330℃のハンダ浴に浮かべた時に銅張積層板の表面に生じたブリスターの様子について、目視により以下の基準で評価した。結果を表1に示す。
◎:40mm×40mmサンプルにてブリスターが発生しなかった場合
○:40mm×40mmサンプルにて、ブリスターの発生は見られたが、ブリスターの占める面積が10%以下であった場合
△:40mm×40mmサンプルにて、ブリスターの占める面積が10%を超え、20%以下であった場合
×:40mm×40mmサンプルにて、ブリスターの占める面積が20%を超えた場合
After cutting the copper-clad laminate into a size of 40 mm × 40 mm, grease was applied to the surface of the copper-clad laminate to prevent solder adhesion. Then, the appearance of the blisters formed on the surface of the copper-clad laminate when floated in a solder bath at 300 ° C. to 330 ° C. for 10 seconds was visually evaluated according to the following criteria. The results are shown in Table 1.
⊚: When no blister was generated in the 40 mm × 40 mm sample ○: When blister was observed in the 40 mm × 40 mm sample, but the area occupied by the blister was 10% or less Δ: 40 mm × 40 mm When the area occupied by the blister exceeds 10% in the sample and is 20% or less ×: When the area occupied by the blister exceeds 20% in the 40 mm × 40 mm sample

<高周波特性試験>
得られた各表面処理銅箔の表面処理面を50μmの液晶ポリマー(Kuraray製、Vecstar CT−Z)の両面に熱プレスにて貼り合わせ後、高周波特性を調べるために、マイクロストリップライン構造を形成した。このとき、特性インピーダンスは50Ωになるようエッチングによる回路形成を行った。この回路を用いて伝送損失の測定を行い、30GHzの周波数における伝送損失(TL:単位dB/cm)が0≧TL≧−0.8の場合、高周波特性を○とした。また、当該伝送損失が−0.8>TL≧−1.2の場合を△、当該伝送損失が−1.2>TL≧−10の場合は×とした。結果を表1に示す。
<High frequency characteristic test>
After the surface-treated surface of each of the obtained surface-treated copper foils is bonded to both sides of a 50 μm liquid crystal polymer (Vecstar CT-Z manufactured by Kuraray) by a hot press, a microstrip line structure is formed in order to investigate high-frequency characteristics. did. At this time, the circuit was formed by etching so that the characteristic impedance was 50Ω. The transmission loss was measured using this circuit, and when the transmission loss (TL: unit dB / cm) at a frequency of 30 GHz was 0 ≧ TL ≧ −0.8, the high frequency characteristic was set to ◯. Further, the case where the transmission loss was −0.8> TL ≧ −1.2 was evaluated as Δ, and the case where the transmission loss was −1.2> TL ≧ −10 was evaluated as ×. The results are shown in Table 1.

(実施例12、13及び比較例10)
実施例12は実施例1と同様の方法で表面処理銅箔を作製した。実施例13は実施例6と同様の方法で表面処理銅箔を作製した。比較例10は比較例1と同様の方法で表面処理銅箔を作製した。
(Examples 12 and 13 and Comparative Example 10)
In Example 12, a surface-treated copper foil was prepared in the same manner as in Example 1. In Example 13, a surface-treated copper foil was prepared in the same manner as in Example 6. In Comparative Example 10, a surface-treated copper foil was prepared in the same manner as in Comparative Example 1.

得られた各表面処理銅箔の表面処理面上に、ポリアミック酸(約20wt%)及びN−メチル−2−ピロリドン(約80wt%)から成る宇部興産株式会社製U−ワニスAをヨシミツ精機製ドクターブレードYD−3型を用いて塗工した。塗工後に100℃のオーブンで20分間乾燥した後、窒素置換オーブンにて、約3℃/分の昇温スピードで350℃まで約2時間で昇温した後、350℃×30分間保持することで、ポリイミド樹脂のキュア工程を行うことで、銅箔積層板を得た。 U-Varnish A manufactured by Ube Industries, Ltd. composed of polyamic acid (about 20 wt%) and N-methyl-2-pyrrolidone (about 80 wt%) was produced by Yoshimitsu Seiki on the surface-treated surface of each of the obtained surface-treated copper foils. The coating was performed using a doctor blade YD-3 type. After coating, it is dried in an oven at 100 ° C. for 20 minutes, then heated to 350 ° C. in a nitrogen replacement oven at a heating speed of about 3 ° C./min in about 2 hours, and then held at 350 ° C. for 30 minutes. Then, a copper foil laminated plate was obtained by performing a curing step of the polyimide resin.

<ピール強度>
このようにして得た銅張積層板を用いて常温(25℃)における90度ピール強度を測定した。ピール強度は、回路幅3mmとし、90度の角度で50mm/minの速度でポリイミド樹脂から銅箔を引き剥がした場合の値である。このピール強度の測定は、JIS C6471−1995に準拠するものである(以下、同様である)。2回測定し、その平均値を測定値とした。結果を表1に示す。
<Peel strength>
Using the copper-clad laminate thus obtained, the 90-degree peel strength at room temperature (25 ° C.) was measured. The peel strength is a value when the copper foil is peeled off from the polyimide resin at a speed of 50 mm / min at an angle of 90 degrees with a circuit width of 3 mm. This peel strength measurement conforms to JIS C6471-1995 (hereinafter, the same applies). The measurement was performed twice, and the average value was used as the measured value. The results are shown in Table 1.

<はんだブリスター試験>
このようにして得た銅張積層板を40mm×40mmサイズにカットした後、銅張積層板表面に、はんだ付着予防のためのグリースを塗った。その後、10秒間、300℃〜330℃のハンダ浴に浮かべた時に銅張積層板の表面に生じたブリスターの様子について、目視により以下の基準で評価した。結果を表1に示す。
◎:40mm×40mmサンプルにてブリスターが発生しなかった場合
○:40mm×40mmサンプルにて、ブリスターの発生は見られたが、ブリスターの占める面積が10%以下であった場合
△:40mm×40mmサンプルにて、ブリスターの占める面積が10%を超え、20%以下であった場合
×:40mm×40mmサンプルにて、ブリスターの占める面積が20%を超えた場合
<Solder blister test>
The copper-clad laminate thus obtained was cut into a size of 40 mm × 40 mm, and then grease was applied to the surface of the copper-clad laminate to prevent solder adhesion. Then, the appearance of the blisters formed on the surface of the copper-clad laminate when floated in a solder bath at 300 ° C. to 330 ° C. for 10 seconds was visually evaluated according to the following criteria. The results are shown in Table 1.
⊚: When no blister was generated in the 40 mm × 40 mm sample ○: When blister was observed in the 40 mm × 40 mm sample, but the area occupied by the blister was 10% or less Δ: 40 mm × 40 mm When the area occupied by the blister exceeds 10% in the sample and is 20% or less ×: When the area occupied by the blister exceeds 20% in the 40 mm × 40 mm sample

Figure 0006854114
Figure 0006854114

Figure 0006854114
Figure 0006854114

Figure 0006854114
Figure 0006854114

Figure 0006854114
Figure 0006854114

<考察>
本発明で規定する表面処理面からの0.5minスパッタ深さにおけるN濃度、C濃度、並びに、Si及びO濃度の組み合わせから選択される少なくとも一つの濃度要件を満たす表面処理銅箔は常温での液晶ポリマーとの密着性が高く、銅張積層板を構成して熱負荷を与えたときにブリスターの発生が抑制されることが分かる。また、0.5minスパッタ深さに加えて、1.0minスパッタ深さにおけるN及びCの原子濃度が好ましい実施例1、2、4〜6、8、10及び11では、320℃の熱負荷を与えたときにもブリスターの抑制効果が優れていた。更に、0.5minスパッタ深さにおけるN濃度、C濃度、並びに、Si及びO濃度がより好ましい実施例1、6及び8は、330℃の熱負荷を与えたときにもブリスターの抑制効果が優れていた。なお、実験データは示していないが、絶縁基板としてポリアミドやプリプレグやフッ素樹脂を使用しても同様の傾向が見られたことから、本発明の効果は液晶ポリマーと貼り合わせた時のみならず、他の絶縁基材と貼り合わせた時も得られるといえる。
<Discussion>
A surface-treated copper foil satisfying at least one concentration requirement selected from a combination of N concentration, C concentration, and Si and O concentration at a sputtering depth of 0.5 min from the surface-treated surface specified in the present invention is at room temperature. It can be seen that the adhesion to the liquid crystal polymer is high, and the generation of blister is suppressed when a copper-clad laminate is formed and a heat load is applied. Further, in Examples 1, 2, 4 to 6, 8, 10 and 11, in which the atomic concentrations of N and C at a sputtering depth of 1.0 min are preferable in addition to the sputtering depth of 0.5 min, a heat load of 320 ° C. is applied. Even when given, the effect of suppressing blister was excellent. Further, Examples 1, 6 and 8 in which the N concentration and the C concentration at the sputtering depth of 0.5 min and the Si and O concentrations are more preferable are excellent in the effect of suppressing the blister even when a heat load of 330 ° C. is applied. Was there. Although experimental data is not shown, the same tendency was observed even when polyamide, prepreg, or fluororesin was used as the insulating substrate. Therefore, the effect of the present invention is not limited to when bonded to a liquid crystal polymer. It can be said that it can be obtained even when it is bonded to another insulating base material.

一方、比較例1、2、4、6、7はシランカップリング濃度が高いことで、表面処理の最表層に厚いシランカップリング膜が形成された理由により、比較例2、3、5、7は撹拌時間が十分でないために、シランカップリング剤の加水分解反応が不十分であった理由により、比較例8、9はシランカップリング濃度が薄いことで、表面処理の最表層に十分な厚みのシランカップリング膜が形成されなかった理由により、何れも本発明で規定する表面処理面からの0.5minスパッタ深さにおけるN濃度、C濃度、並びに、Si及びO濃度の組み合わせに関する要件を満たすことはできなかった。このため、常温での液晶ポリマーとの密着性が高い場合でも銅張積層板を構成して熱負荷を与えたときにブリスターの発生を抑制することはできなかった。また、比較例8及び9はブリスターの発生は抑制されていたが、常温での液晶ポリマーとの密着性が不十分であった。 On the other hand, Comparative Examples 1, 2, 4, 6 and 7 had a high silane coupling concentration, and a thick silane coupling film was formed on the outermost layer of the surface treatment. Therefore, Comparative Examples 2, 3, 5, 7 Because the hydrolysis reaction of the silane coupling agent was insufficient due to insufficient stirring time, Comparative Examples 8 and 9 had a low silane coupling concentration and thus had a sufficient thickness for the outermost layer of the surface treatment. Because of the reason that the silane coupling film was not formed, all of them satisfy the requirements regarding the combination of N concentration, C concentration, and Si and O concentration at a sputter depth of 0.5 min from the surface-treated surface specified in the present invention. I couldn't. Therefore, even when the adhesion to the liquid crystal polymer at room temperature is high, it is not possible to suppress the generation of blisters when a copper-clad laminate is formed and a heat load is applied. Further, in Comparative Examples 8 and 9, the generation of blisters was suppressed, but the adhesion to the liquid crystal polymer at room temperature was insufficient.

Claims (27)

絶縁基材と貼り合わせる前の状態において表面処理面を有する表面処理銅箔であって、表面処理面からレート1.1nm/min(SiO2換算)条件で0.5minスパッタ後の深さにおけるXPS測定によるN濃度が1.5〜7.5atom%である表面処理銅箔。 A surface-treated copper foil having a surface-treated surface in a state before being bonded to an insulating base material, and XPS at a depth of 0.5 min after sputtering at a rate of 1.1 nm / min (SiO 2 conversion) from the surface-treated surface. A surface-treated copper foil having a measured N concentration of 1.5 to 7.5 atom%. 表面処理面を有する表面処理銅箔であって、表面処理面からレート1.1nm/min(SiO2換算)条件で0.5minスパッタ後の深さにおけるXPS測定によるC濃度が12〜30atom%である表面処理銅箔。 A surface-treated copper foil having a surface-treated surface, with a C concentration of 12 to 30 atom% measured by XPS at a depth of 0.5 min after sputtering at a rate of 1.1 nm / min (SiO 2 conversion) from the surface-treated surface. A surface-treated copper foil. 表面処理面を有する表面処理銅箔であって、表面処理面からレート1.1nm/min(SiO2換算)条件で0.5minスパッタ後の深さにおけるXPS測定によるSi濃度が3.1atom%以上であり、且つ、O濃度が40〜48atom%である表面処理銅箔。 A surface-treated copper foil having a surface-treated surface, the Si concentration measured by XPS at a depth of 0.5 min after sputtering under the condition of 1.1 nm / min (SiO 2 conversion) from the surface-treated surface is 3.1 atom% or more. A surface-treated copper foil having an O concentration of 40 to 48 atom%. 表面処理面を有する表面処理銅箔であって、以下の何れか二つ以上の条件を満たす表面処理銅箔。
・表面処理面からレート1.1nm/min(SiO2換算)条件で0.5minスパッタ後の深さにおけるXPS測定によるN濃度が1.5〜7.5atom%である;
・表面処理面からレート1.1nm/min(SiO2換算)条件で0.5minスパッタ後の深さにおけるXPS測定によるC濃度が12〜30atom%である;
・表面処理面からレート1.1nm/min(SiO2換算)条件で0.5minスパッタ後の深さにおけるXPS測定によるSi濃度が3.1atom%以上であり、且つ、O濃度が40〜48atom%である。
A surface-treated copper foil having a surface-treated surface and satisfying any one or more of the following conditions.
-The N concentration measured by XPS at the depth after 0.5 min sputtering under the condition of 1.1 nm / min (SiO 2 conversion) from the surface treated surface is 1.5 to 7.5 atom%;
-The C concentration by XPS measurement at the depth after 0.5 min sputtering under the condition of 1.1 nm / min (SiO 2 conversion) from the surface treated surface is 12 to 30 atom%;
-Si concentration by XPS measurement at a depth after 0.5 min sputtering under the condition of rate 1.1 nm / min (SiO 2 conversion) from the surface treated surface is 3.1 atom% or more, and O concentration is 40 to 48 atom%. Is.
表面処理面からレート1.1nm/min(SiO2換算)条件で1.0minスパッタ後の深さにおけるXPS測定によるN濃度が0.5〜6.0atom%である請求項1〜4のいずれか一項に記載の表面処理銅箔。 Any of claims 1 to 4 in which the N concentration measured by XPS at a depth after 1.0 min sputtering under the condition of a rate of 1.1 nm / min (SiO 2 conversion) from the surface-treated surface is 0.5 to 6.0 atom%. The surface-treated copper foil according to item 1. 表面処理面からレート1.1nm/min(SiO2換算)条件で1.0minスパッタ後の深さにおけるXPS測定によるC濃度が8〜25atom%である請求項1〜5のいずれか一項に記載の表面処理銅箔。 The present invention according to any one of claims 1 to 5, wherein the C concentration measured by XPS at a depth after 1.0 min sputtering at a rate of 1.1 nm / min (SiO 2 conversion) from the surface-treated surface is 8 to 25 atom%. Surface treatment copper foil. 表面処理面のRzが1.5μm以下である請求項1〜6のいずれか一項に記載の表面処理銅箔。 The surface-treated copper foil according to any one of claims 1 to 6, wherein the Rz of the surface-treated surface is 1.5 μm or less. 銅箔が圧延銅箔又は電解銅箔である請求項1〜7のいずれか一項に記載の表面処理銅箔。 The surface-treated copper foil according to any one of claims 1 to 7, wherein the copper foil is a rolled copper foil or an electrolytic copper foil. 液晶ポリマーとの接合用である請求項1〜8のいずれか一項に記載の表面処理銅箔。 The surface-treated copper foil according to any one of claims 1 to 8, which is used for bonding to a liquid crystal polymer. ポリイミド樹脂との接合用である請求項1〜8のいずれか一項に記載の表面処理銅箔。 The surface-treated copper foil according to any one of claims 1 to 8, which is used for bonding with a polyimide resin. 1GHzを超える高周波数下で使用されるプリント回路板に用いられる請求項1〜10のいずれか一項に記載の表面処理銅箔。 The surface-treated copper foil according to any one of claims 1 to 10, which is used for a printed circuit board used at a high frequency exceeding 1 GHz. 銅箔表面に粗化処理層、耐熱処理層、防錆処理層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層を有する請求項1〜11のいずれか一項に記載の表面処理銅箔。 Any one of claims 1 to 11 having one or more layers selected from the group consisting of a roughening treatment layer, a heat resistance treatment layer, a rust prevention treatment layer, a chromate treatment layer and a silane coupling treatment layer on the surface of a copper foil. The surface-treated copper foil described in the section. 銅箔表面に耐熱処理層、防錆処理層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層を有する請求項1〜11のいずれか一項に記載の表面処理銅箔。 The surface according to any one of claims 1 to 11, wherein the surface of the copper foil has one or more layers selected from the group consisting of a heat-resistant treatment layer, a rust prevention treatment layer, a chromate treatment layer and a silane coupling treatment layer. Treated copper foil. 銅箔表面に耐熱処理層若しくは防錆処理層を有し、前記耐熱処理層若しくは防錆処理層の上にクロメート処理層を有し、前記クロメート処理層の上にシランカップリング処理層を有する請求項1〜11のいずれか一項に記載の表面処理銅箔。 A claim having a heat-resistant treatment layer or a rust-preventive treatment layer on the copper foil surface, a chromate-treatment layer on the heat-resistant treatment layer or the rust-prevention treatment layer, and a silane coupling treatment layer on the chromate treatment layer. Item 2. The surface-treated copper foil according to any one of Items 1 to 11. 銅箔表面に耐熱処理層を有し、前記耐熱処理層の上に防錆処理層を有し、前記防錆処理層の上にクロメート処理層を有し、前記クロメート処理層の上にシランカップリング処理層を有する請求項1〜11のいずれか一項に記載の表面処理銅箔。 A heat-resistant treatment layer is provided on the surface of the copper foil, a rust-preventive treatment layer is provided on the heat-resistant treatment layer, a chromate treatment layer is provided on the rust prevention treatment layer, and a silane cup is provided on the chromate treatment layer. The surface-treated copper foil according to any one of claims 1 to 11, which has a ring-treated layer. 銅箔表面にクロメート処理層を有し、前記クロメート処理層の上にシランカップリング処理層を有する請求項1〜11のいずれか一項に記載の表面処理銅箔。 The surface-treated copper foil according to any one of claims 1 to 11, which has a chromate-treated layer on the surface of the copper foil and has a silane coupling-treated layer on the chromate-treated layer. 銅箔表面に粗化処理層を有し、前記粗化処理層の上にクロメート処理層を有し、前記クロメート処理層の上にシランカップリング処理層を有する請求項1〜11のいずれか一項に記載の表面処理銅箔。 Any one of claims 1 to 11 having a roughening-treated layer on a copper foil surface, a chromate-treated layer on the roughening-treated layer, and a silane coupling-treated layer on the chromate-treated layer. The surface-treated copper foil described in the section. 銅箔表面に粗化処理層を有し、前記粗化処理層の上に防錆処理層及び耐熱処理層からなる群から選択される1種以上の層を有し、前記防錆処理層及び耐熱処理層からなる群から選択される1種以上の層の上にクロメート処理層を有し、前記クロメート処理層の上にシランカップリング処理層を有する請求項1〜11のいずれか一項に記載の表面処理銅箔。 A roughening treatment layer is provided on the surface of the copper foil, and one or more layers selected from the group consisting of a rust prevention treatment layer and a heat resistance treatment layer are provided on the roughening treatment layer. The invention according to any one of claims 1 to 11, which has a chromate-treated layer on one or more layers selected from the group consisting of heat-resistant treatment layers and a silane coupling-treated layer on the chromate-treated layer. The surface-treated copper foil described. 銅箔表面に粗化処理層を有し、前記粗化処理層の上に防錆処理層を有し、前記防錆処理層の上にクロメート処理層を有し、前記クロメート処理層の上にシランカップリング処理層を有する請求項1〜11のいずれか一項に記載の表面処理銅箔。 It has a roughening treatment layer on the copper foil surface, a rust prevention treatment layer on the roughening treatment layer, a chromate treatment layer on the rust prevention treatment layer, and a chromate treatment layer on the chromate treatment layer. The surface-treated copper foil according to any one of claims 1 to 11, which has a silane coupling-treated layer. 銅箔表面に粗化処理層を有し、前記粗化処理層の上にシランカップリング処理層を有する請求項1〜11のいずれか一項に記載の表面処理銅箔。 The surface-treated copper foil according to any one of claims 1 to 11, which has a roughening-treated layer on the surface of the copper foil and has a silane coupling-treated layer on the roughening-treated layer. 銅箔表面にシランカップリング処理層を有する請求項1〜11のいずれか一項に記載の表面処理銅箔。 The surface-treated copper foil according to any one of claims 1 to 11, which has a silane coupling-treated layer on the surface of the copper foil. 銅箔表面に粗化処理層を有し、前記粗化処理層が一次粒子層と、該一次粒子層の上に、二次粒子層を有する請求項1〜12、17〜20のいずれか一項に記載の表面処理銅箔。 Any one of claims 1 to 12, 17 to 20, which has a roughening-treated layer on the surface of a copper foil, and the roughening-treated layer has a primary particle layer and a secondary particle layer on the primary particle layer. The surface-treated copper foil described in the section. 前記二次粒子層が銅、コバルト及びニッケルからなる3元系合金で形成されている請求項22に記載の表面処理銅箔。 The surface-treated copper foil according to claim 22, wherein the secondary particle layer is formed of a ternary alloy composed of copper, cobalt, and nickel. 前記一次粒子層の平均粒子径が0.25〜0.45μmであり、前記二次粒子層の平均粒子径が0.05〜0.25μmである請求項22又は23に記載の表面処理銅箔。 The surface-treated copper foil according to claim 22 or 23, wherein the primary particle layer has an average particle size of 0.25 to 0.45 μm and the secondary particle layer has an average particle size of 0.05 to 0.25 μm. .. 請求項1〜24のいずれか一項に記載の表面処理銅箔の表面処理面を絶縁基材と貼り合わせてなる銅箔積層板。 A copper foil laminated plate obtained by laminating the surface-treated surface of the surface-treated copper foil according to any one of claims 1 to 24 with an insulating base material. 請求項1〜24のいずれか一項に記載の表面処理銅箔を用いたプリント配線板。 A printed wiring board using the surface-treated copper foil according to any one of claims 1 to 24. 請求項26に記載のプリント配線板を用いた電子機器。 An electronic device using the printed wiring board according to claim 26.
JP2016230684A 2016-01-04 2016-11-28 Surface-treated copper foil Active JP6854114B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
TW105140323A TWI623639B (en) 2016-01-04 2016-12-07 Surface treatment copper foil
KR1020170000901A KR102054044B1 (en) 2016-01-04 2017-01-03 Surface treated copper foil
CN201710001200.2A CN107018624B (en) 2016-01-04 2017-01-03 Surface treatment copper foil
US15/398,126 US10383222B2 (en) 2016-01-04 2017-01-04 Surface-treated copper foil
MYPI2017700033A MY190555A (en) 2016-01-04 2017-01-04 Surface-treated copper foil
PH12017000003A PH12017000003A1 (en) 2016-01-04 2017-01-04 Surface-treated copper foil

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016000119 2016-01-04
JP2016000119 2016-01-04

Publications (2)

Publication Number Publication Date
JP2017122274A JP2017122274A (en) 2017-07-13
JP6854114B2 true JP6854114B2 (en) 2021-04-07

Family

ID=59306830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016230684A Active JP6854114B2 (en) 2016-01-04 2016-11-28 Surface-treated copper foil

Country Status (6)

Country Link
JP (1) JP6854114B2 (en)
KR (1) KR102054044B1 (en)
CN (1) CN107018624B (en)
MY (1) MY190555A (en)
PH (1) PH12017000003A1 (en)
TW (1) TWI623639B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6413039B1 (en) * 2018-03-29 2018-10-24 Jx金属株式会社 Surface treated copper foil and copper clad laminate
WO2020071288A1 (en) 2018-10-05 2020-04-09 パナソニックIpマネジメント株式会社 Metal-clad laminate, wiring board, metal foil provided with resin, and resin composition
US10581081B1 (en) 2019-02-01 2020-03-03 Chang Chun Petrochemical Co., Ltd. Copper foil for negative electrode current collector of lithium ion secondary battery
LU101698B1 (en) 2020-03-18 2021-09-20 Circuit Foil Luxembourg Surface-treated copper foil for high-frequency circuit and method for producing same
CN115679312A (en) * 2022-09-21 2023-02-03 湖南龙智新材料科技有限公司 Coupling agent automatic control device and control method for copper foil production

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6034310B2 (en) * 1976-10-07 1985-08-08 株式会社東芝 Video special effects equipment
JP4295800B2 (en) 2002-05-13 2009-07-15 三井金属鉱業株式会社 Electrolytic copper foil
JP4115293B2 (en) * 2003-02-17 2008-07-09 古河サーキットフォイル株式会社 Copper foil for chip-on-film
JP4548828B2 (en) * 2004-10-29 2010-09-22 Dowaホールディングス株式会社 Method for manufacturing metal-coated substrate
JP2006182019A (en) * 2004-11-30 2006-07-13 Nippon Steel Chem Co Ltd Copper-clad laminate
TW200626358A (en) * 2004-11-30 2006-08-01 Nippon Steel Chemical Co Copper-clad laminate
CN102124823B (en) * 2009-06-30 2013-03-06 Jx日矿日石金属株式会社 Copper foil for printed wiring board
CN102482794B (en) * 2009-09-30 2014-10-22 Jx日矿日石金属株式会社 Tin-plated cu-ni-si-based alloy strip having excellent resistance to heat separation of the tin-plating
JP5345924B2 (en) 2009-11-27 2013-11-20 Jx日鉱日石金属株式会社 Copper foil for printed wiring boards
JP5242710B2 (en) 2010-01-22 2013-07-24 古河電気工業株式会社 Roughening copper foil, copper clad laminate and printed wiring board
SG183311A1 (en) 2010-05-07 2012-09-27 Jx Nippon Mining & Metals Corp Copper foil for printed circuit
JP5932638B2 (en) * 2010-05-19 2016-06-08 三井金属鉱業株式会社 Copper powder for conductive paste and conductive paste
JP5346054B2 (en) * 2011-03-18 2013-11-20 Jx日鉱日石金属株式会社 Copper foil for printed wiring board and laminated board using the same
KR101824827B1 (en) * 2012-03-29 2018-02-01 제이엑스금속주식회사 Surface-treated copper foil
CN107041064A (en) * 2012-03-29 2017-08-11 Jx日矿日石金属株式会社 Surface treatment copper foil
JP5481553B1 (en) * 2012-11-30 2014-04-23 Jx日鉱日石金属株式会社 Copper foil with carrier
JP6425401B2 (en) * 2013-04-26 2018-11-21 Jx金属株式会社 Copper foil for high frequency circuit, copper clad laminate for high frequency circuit, printed wiring board for high frequency circuit, copper foil with carrier for high frequency circuit, electronic device, and method of manufacturing printed wiring board
JP5914427B2 (en) * 2013-07-23 2016-05-11 京楽産業.株式会社 Game machine
WO2016174970A1 (en) * 2015-04-28 2016-11-03 三井金属鉱業株式会社 Surface-treated copper foil, manufacturing method therefor, printed circuit board copper-clad laminate, and printed circuit board

Also Published As

Publication number Publication date
TW201726961A (en) 2017-08-01
PH12017000003A1 (en) 2018-07-09
MY190555A (en) 2022-04-27
CN107018624B (en) 2019-05-07
KR20170081572A (en) 2017-07-12
CN107018624A (en) 2017-08-04
KR102054044B1 (en) 2019-12-09
TWI623639B (en) 2018-05-11
JP2017122274A (en) 2017-07-13

Similar Documents

Publication Publication Date Title
JP6854114B2 (en) Surface-treated copper foil
JP6149066B2 (en) Surface treated copper foil
JP6190846B2 (en) Surface treated copper foil
TWI645759B (en) Surface-treated copper foil for printed wiring board, copper-clad laminated board for printed wiring board, and printed wiring board
KR101920976B1 (en) Copper foil, copper foil with carrier foil, and copper-clad laminate
TWI627307B (en) Surface-treated copper foil for printed wiring board, copper-clad laminate for printed wiring board, and printed wiring board
WO2013187420A1 (en) Surface-treated copper foil and laminated sheet, printed wiring board, and electronic device using same, as well as method for producing printed wiring board
WO2013168646A1 (en) Surface-treated copper foil and laminate using same, copper foil, printed wiring board, electronic device, and process for producing printed wiring board
JP2011162860A (en) Surface-roughened copper foil, method of producing the same and copper-clad laminate plate
US10383222B2 (en) Surface-treated copper foil
KR20180064311A (en) Surface treated copper foil, copper foil with carrier, laminate, method for manufacturing printed wiring board, and method for manufacturing electronic device
JP5997080B2 (en) Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board
JP5576514B2 (en) Surface-treated copper foil, laminated board, printed wiring board and printed circuit board
JP2010141227A (en) Rolled copper foil for printed wiring board
CN114342571A (en) Metal laminated substrate with carrier layer and method for producing same, metal laminated substrate and method for producing same, and printed wiring board
JP2019019414A (en) Surface-treated copper foil, laminate and printed wiring board
JP2010218905A (en) Metal material for substrate, surface roughening treatment of metal material for substrate, and manufacturing method of metal material for substrate
WO2013118416A1 (en) Copper foil with carrier, manufacturing method for copper foil with carrier, printed wiring board, printed circuit board and copper clad laminate
JP2011129685A (en) Environmentally friendly copper foil for printed wiring board
JP2011014651A (en) Copper foil for printed wiring board
JP5373453B2 (en) Copper foil for printed wiring boards
JP2016008343A (en) Surface-treated copper foil, copper-clad laminate using the surface-treated copper foil, and production method of the surface-treated copper foil
JP6329727B2 (en) Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board
JP2011012297A (en) Copper foil for printed circuit board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200818

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20201006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210315

R151 Written notification of patent or utility model registration

Ref document number: 6854114

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250