WO2020195748A1 - Metal foil for printed wiring board, metal foil with carrier, and metal-clad laminate, and method for manufacturing printed wiring board using same - Google Patents

Metal foil for printed wiring board, metal foil with carrier, and metal-clad laminate, and method for manufacturing printed wiring board using same Download PDF

Info

Publication number
WO2020195748A1
WO2020195748A1 PCT/JP2020/010017 JP2020010017W WO2020195748A1 WO 2020195748 A1 WO2020195748 A1 WO 2020195748A1 JP 2020010017 W JP2020010017 W JP 2020010017W WO 2020195748 A1 WO2020195748 A1 WO 2020195748A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
etching
sacrificial layer
etching sacrificial
metal foil
Prior art date
Application number
PCT/JP2020/010017
Other languages
French (fr)
Japanese (ja)
Inventor
翼 加藤
光由 松田
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to CN202080023976.4A priority Critical patent/CN113646469A/en
Priority to KR1020217024157A priority patent/KR20210143727A/en
Priority to JP2021508964A priority patent/JP7449921B2/en
Publication of WO2020195748A1 publication Critical patent/WO2020195748A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates
    • H05K3/025Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates by transfer of thin metal foil formed on a temporary carrier, e.g. peel-apart copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material

Definitions

  • the present invention relates to a metal foil for manufacturing a printed wiring board, a metal foil with a carrier, a metal-clad laminate, and a method for manufacturing a printed wiring board using them.
  • the MSAP method (modified semi-additive method) has been widely adopted as a manufacturing method for printed wiring boards suitable for circuit miniaturization.
  • the MSAP method is a method suitable for forming an extremely fine circuit, and in order to take advantage of its characteristics, it is performed using a copper foil with a carrier.
  • the ultrathin copper foil 110 is pressed and adhered to the insulating resin substrate 111 having the lower layer circuit 111b on the base material 111a by using the prepreg 112 and the primer layer 113.
  • the carrier (not shown) is peeled off, and then the via hole 114 is formed by laser perforation if necessary (step (b)).
  • step (c) After applying the chemical copper plating 115 (step (c)), masking is performed in a predetermined pattern by exposure and development using the dry film 116 (step (d)), and electroplating 117 is applied (step (e)). ). After removing the dry film 116 to form the wiring portion 117a (step (f)), unnecessary ultrathin copper foil and the like between the adjacent wiring portions 117a and 117a are removed by etching over their entire thickness (step). (G)), the wiring 118 formed in a predetermined pattern is obtained.
  • the lower layer circuit 111b on the bottom surface of the via hole is cleaned and the splash adhering to the periphery of the via hole is removed.
  • Micro-etching Cu etching
  • the thickness of the ultrathin copper foil 110 is made thinner than before, and the seed layer (ultrathin copper foil 110) at the time after the microetching is about 0.3 ⁇ m. It has become desirable to have a thickness of.
  • Patent Document 1 International Publication No. 2017/141985
  • Patent Document 1 includes a first copper layer, an etching sacrificial layer made of a Cu—Zn alloy or the like, and a second copper layer (seed layer) in this order.
  • a copper foil for manufacturing a printed wiring board in which the ratio r of the etching rate of the etching sacrificial layer to the etching rate of is higher than 1.0 is disclosed. According to such a copper foil, as conceptually shown in FIG.
  • the etching sacrificial layer 212 is sandwiched between the two copper layers 213 and 211 to form a laminate of the metal foil 210 and the insulating layer 228. Even if the etching sacrificial layer 212 is non-uniformly melted during microetching and the second copper layer (seed layer) 213 is locally exposed, the etching sacrificial layer 212 is preferentially dissolved. As a result, the thickness of the second copper layer (seed layer) 213 is generally kept uniform, and it is said that defects are less likely to occur.
  • Patent Document 1 also discloses that a copper foil provided with the etching sacrificial layer can be preferably adopted for manufacturing a printed wiring board by a coreless build-up method.
  • a wiring layer (first wiring layer) is formed on a metal layer on the surface of a support (core), a build-up layer is further formed, and then the support (core) is removed to build up.
  • This is a method of forming a wiring board with only layers. Since the printed wiring board manufactured by such a method is of a type in which a circuit pattern is embedded in an insulating layer, this method is called an ETS (Embedded Trace Substrate) method.
  • ETS embedded Trace Substrate
  • the etching sacrificial layer 212 is non-uniformly dissolved during Cu etching and / or accidentally occurs in the etching sacrificial layer 212. Even if Cu (Cu of the second copper layer 213 or the first wiring layer 226) is locally exposed due to a pinhole or the like that may exist locally, the underlying second copper layer 213 or the first is due to the local battery reaction. Melting of one wiring layer 226 (copper layer) is suppressed. As a result, the second copper layer 213 is uniformly etched in the plane, and it is said that the occurrence of local circuit dents in the first wiring layer 226 can be suppressed. Moreover, according to this method, since the etching sacrificial layer 212 is dissolved and removed by Cu etching, an additional step for removing the etching sacrificial layer 212 becomes unnecessary, and productivity is also improved.
  • the copper foil provided with the etching sacrificial layer is highly useful from the viewpoint of significantly suppressing the occurrence of the seed layer defect and the circuit dent in the production of the printed wiring board.
  • resin residue may be generated at the bottom of the via hole 114 due to the formation of the via hole 114 by laser drilling or the like (step (b)).
  • a desmear treatment using a chemical solution is performed as a treatment for removing the resin residue. This desmear treatment can also be performed when forming the build-up layer in the above-mentioned ETS method.
  • the etching sacrificial layer 212 is exposed from the side surface of the via hole 214 after drilling, as conceptually shown in FIG. ..
  • the desmear treatment is performed in this state, the etching sacrificial layer 212 is protected by the first copper layer 211 in the portion other than the side surface of the via hole 214, but the chemical solution can erode from the exposed portion of the etching sacrificial layer 212 in the side surface portion of the via hole 214. .. Therefore, there is a possibility that the etching sacrificial layer 212 has already disappeared at the start of microetching.
  • the sacrificial effect that the etching sacrificial layer 212 dissolves preferentially over the seed layer (second copper layer 213) at the time of microetching is not sufficiently exhibited, and a defect 213a may occur in the seed layer.
  • the etching sacrificial layer 212 is transferred to the copper layers 211 and 213 as conceptually shown in FIG.
  • Metals eg, Zn
  • these layers can become an alloy layer 220 having a composition similar to that of the etching sacrificial layer 212 as a whole. Therefore, at the time of micro-etching, the sacrificial effect of the etching sacrificial layer 212 may not be sufficiently exhibited, and the etching sacrificial layer 212 and the seed layer (second copper layer 213) may be removed together.
  • the present inventors have now developed a second etching rate between the seed layer (copper layer) and the first etching sacrificial layer, which is higher than Cu and lower than the first etching sacrificial layer. It was found that by using a metal foil with an etching sacrificial layer interposed, it is possible to suppress the occurrence of defects in the seed layer even when the chemical treatment is performed after drilling. Further, by interposing a second etching sacrificial layer between the seed layer (copper layer) and the first etching sacrificial layer, even when high temperature press working is performed, the first etching sacrificial layer is transferred to the seed layer. It was also found that the diffusion of metals and the like can be effectively prevented, and as a result, the sacrificial effect inherent in the etching sacrificial layer can be exhibited.
  • a first object of the present invention is to provide a metal foil for manufacturing a printed wiring board, which can suppress the occurrence of a defect in the seed layer even when a chemical treatment is performed after drilling.
  • a second object of the present invention is to effectively prevent the diffusion of metals and the like from the first etching sacrificial layer to the seed layer even when high-temperature press working is performed, and as a result, the etching sacrificial layer is originally formed. It is an object of the present invention to provide a metal foil for manufacturing a printed wiring board, which can exert a sacrificial effect.
  • a metal foil for manufacturing a printed wiring board that satisfies r 1 > r 2 > 1.0 is provided.
  • a metal foil with a carrier provided with a carrier, a release layer, and the metal foil in this order is provided.
  • a metal-clad laminate provided with the metal foil is provided.
  • a method for manufacturing a printed wiring board which comprises using the metal foil or the metal foil with a carrier.
  • FIG. 6 It is a figure which shows the process of the first half in the conventional example of the manufacturing method of the printed wiring board using the MSAP method.
  • the latter half of the process following the process shown in FIG. 6 in the conventional example of the method of manufacturing a printed wiring board using the MSAP method is shown.
  • ETS method coreless build-up method
  • FIG. 11 It is a figure which shows the process of the first half in an example of the manufacturing method of the printed wiring board by the coreless build-up method (ETS method) using the metal foil of this invention.
  • the latter half of the process following the process shown in FIG. 11 in an example of the method for manufacturing a printed wiring board by the coreless build-up method (ETS method) using the metal foil of the present invention is shown.
  • the metal foil according to the present invention is a metal foil used for manufacturing printed wiring boards.
  • FIG. 1 shows a schematic cross-sectional view of the metal foil of the present invention.
  • the metal foil 10 includes a first etching sacrificial layer 11, a second etching sacrificial layer 12, and a copper layer (seed layer) 13 in this order.
  • the metal foil 10 may further include an additional copper layer 14 on the surface of the first etching sacrificial layer 11 opposite to the second etching sacrificial layer 12.
  • the metal foil 10 may further include a diffusion prevention layer 15 between the additional copper layer 14 and the first etching sacrificial layer 11.
  • the copper layer that does not adhere to the insulating resin is the "additional copper layer 14"
  • the copper layer that adheres to the insulating resin is the “copper layer 13”.
  • the copper layer on the side where the circuit pattern is not formed is the "additional copper layer 14”
  • the copper layer on the side where the circuit pattern is formed is the “copper layer”. 13 ".
  • the "copper layer 13" is a layer exclusively used for forming a circuit pattern, the "copper layer 13" may be referred to as a "seed layer 13" by paying attention to this function.
  • the first etching sacrificial layer 11 and the second etching sacrificial layer 12 may be copper alloy layers, they are not metallic copper layers, so that the metal foil 10 contains a metal or alloy other than copper as its inner layer or outer layer. .. Therefore, in the present invention, the metal foil 10 is referred to as a "metal foil for manufacturing a printed wiring board", but the metal foil 10 has the same application as a copper foil generally recognized as a copper foil for manufacturing a printed wiring board. It can be used for.
  • the order included in the names of the "first etching sacrificial layer" and the "second etching sacrificial layer” follows the order counted from the carrier side when there is a carrier.
  • the metal foil 10 is provided in the form of a metal leaf 16 with a carrier as shown in FIG. 1, a carrier 17, a release layer 18, an additional copper layer 14 (if present), and a diffusion prevention layer 15 (exist).
  • the first etching sacrificial layer 11, the second etching sacrificial layer 12, and the copper layer 13 (seed layer) are configured in this order.
  • the ratio of the etching rate of the first etching sacrificial layer 11 to the etching rate of Cu is set to r 1
  • the second etching sacrificial layer with respect to the etching rate of Cu is set to r 1
  • the ratio of the etching rates of 12 is r 2 , it is characterized by satisfying r 1 > r 2 > 1.0.
  • the etching sacrificial layer 212 is exposed from the side surface of the via hole 214.
  • the etching sacrificial layer 212 is protected by the first copper layer 211 in the portion other than the side surface of the via hole 214, but the chemical solution can erode from the exposed portion of the etching sacrificial layer 212 in the side surface portion of the via hole 214. ..
  • the etching sacrificial layer 212 is a layer that is more easily etched than the copper layers 211 and 213, it can be said that chemical erosion is likely to occur. Therefore, there is a possibility that the etching sacrificial layer 212 has already disappeared at the start of microetching. As a result, the sacrificial effect that the etching sacrificial layer 212 dissolves preferentially over the seed layer (second copper layer 213) at the time of microetching is not sufficiently exhibited, and a defect 213a may occur in the seed layer.
  • the metal foil 10 of the present invention by using the metal foil 10 of the present invention, the above technical problem can be conveniently solved. That is, as conceptually shown in FIG. 2, the metal foil 10 (including the additional copper layer 14, the first etching sacrificial layer 11, the second etching sacrificial layer 12, and the copper layer 13) and the insulating layer 28 are laminated. In the body, the second etching sacrificial layer 12 remains on the seed layer (copper layer 13) even when the desmear treatment is performed after the via hole 54 is formed by drilling.
  • the second etching sacrificial layer 12 is subjected to a local battery reaction during chemical treatment such as desmear.
  • the 1 etching sacrificial layer 11 dissolves preferentially over the 2nd etching sacrificial layer 12 and the like. In this way, the chemical erosion of the second etching sacrificial layer 12 is suppressed, and at the start of microetching, not only the seed layer 13 but also at least the second etching sacrificial layer 12 remains in the laminate.
  • the second etching sacrificial layer 12 can be preferentially dissolved by the local battery reaction, and as a result, the underlying seed layer 13 Dissolution is suppressed and defects are less likely to occur.
  • the second etching sacrificial layer 12 between the copper layer 13 and the first etching sacrificial layer 11, for example, even when high-temperature press working at 220 ° C. or higher is performed, the seed is seeded from the first etching sacrificial layer 11. It is possible to effectively prevent the diffusion of metals and the like into the layer (copper layer 13).
  • high-temperature press working is performed using a copper foil having one etching sacrificial layer composed of a Cu—Zn alloy or the like, as conceptually shown in FIG.
  • Metals (for example, Zn) and the like diffuse from the etching sacrificial layer 212 to the copper layers 211 and 213, and as a result, these layers can become an alloy layer 220 having a composition similar to that of the etching sacrificial layer 212 as a whole. Therefore, at the time of micro-etching, the sacrificial effect of the etching sacrificial layer 212 may not be sufficiently exhibited, and the etching sacrificial layer 212 and the seed layer (second copper layer 213) may be removed together.
  • the metal foil 10 of the present invention as conceptually shown in FIG.
  • the second etching sacrificial layer 12 is interposed between the first etching sacrificial layer 11 and the copper layer 13. Further, if necessary, a diffusion prevention layer 15 may be interposed between the first etching sacrificial layer 11 and the additional copper layer 14. Therefore, diffusion of the metal from the first etching sacrificial layer 11 is prevented by the second etching sacrificial layer 12 to the diffusion prevention layer 15 (if present). As a result, the seed layer 13 and the additional copper layer 14 (if present) can be prevented from alloying, and the above technical problems can be solved.
  • a low CTE base material having a low coefficient of thermal expansion (CTE) but a high curing temperature can be used as an insulating base material, and as a result, further miniaturization of circuits can be realized in the manufacture of printed wiring boards. It will be possible.
  • diffusion does not occur means that (i) the copper layer 13 before heating the metal leaf 10 contains only 1% by weight or less (including 0% by weight), and (ii) the metal leaf 10 is heated.
  • An element contained in at least one of the previous first etching sacrificial layer 11 and the second etching sacrificial layer 12 in an amount of 1% by weight or more (hereinafter referred to as “diffusion confirmation element”) is a predetermined value of the copper layer 13 after heating the metal foil 10. It means that the content is 1% by weight or less at the measurement point of. Therefore, for example, even if the carbon contents of the copper layer 13 before and after heating are 0.5% by weight and 2% by weight, respectively, in either the first etching sacrificial layer 11 or the second etching sacrificial layer 12.
  • the "measurement point of the copper layer 13 after heating the metal foil 10" is (a) the surface of the copper layer 13 opposite to the second etching sacrificial layer 12, or (b) the second etching of the copper layer 13. This refers to a point that is 0.3 ⁇ m away from the interface with the sacrificial layer 12 in the depth direction of the copper layer 13 and is closer to the second etching sacrificial layer 12.
  • the above (a) is the measurement point
  • the above (b) is the measurement point.
  • the boundary between the copper layer 13 and the second etching sacrificial layer 12 becomes indistinguishable in the heated metal foil 10, it is considered that diffusion has occurred.
  • another member for example, a support
  • a diffusion confirmation element is adhered to the surface of the copper layer 13 opposite to the second etching sacrificial layer 12. May be good.
  • the elemental content of each layer is set to a value specified by performing elemental analysis in the depth direction of the metal foil 10 using a glow discharge emission spectrometer (GD-OES) as referred to in Examples described later. ..
  • GD-OES glow discharge emission spectrometer
  • the first etching sacrificial layer 11 is not particularly limited as long as the etching rate is higher than that of Cu and the second etching sacrificial layer 12.
  • the ratio of the etching rate of the first etching sacrificial layer 11 to the etching rate of Cu r 1 (hereinafter referred to as the etching rate ratio r 1 ) and the etching rate of the second etching sacrificial layer 12 to the etching rate of Cu.
  • the ratio r 2 (hereinafter referred to as the etching rate ratio r 2 ) satisfies r 1 > r 2 > 1.0.
  • the first etching sacrificial layer 11 can be dissolved and removed at the same time as the seed layer 13 and the like by Cu etching, and the first etching sacrificial layer 11 and the second etching sacrificial layer 12 are non-uniformly dissolved. Even if the Cu is locally exposed, the dissolution of the underlying copper layer (seed layer) is suppressed by the local battery reaction. As a result, the seed layer can be uniformly etched in the plane, and it is possible to suppress the occurrence of the seed layer defect and local circuit dents and defects.
  • the local battery is used.
  • the first etching sacrificial layer 11 is dissolved preferentially over the second etching sacrificial layer 12 and the like.
  • the second etching sacrificial layer 12 can be left in a state where dissolution is suppressed, and as a result, even when the chemical solution treatment is performed after perforation, the seed layer may be damaged. Can be suppressed.
  • the etching rate of the first etching sacrificial layer 11 is such that a foil sample made of the same material as the first etching sacrificial layer 11 and a copper foil sample as a reference sample are subjected to the same time treatment in the etching step and etched. It is calculated by dividing the change in sample thickness by the dissolution time. The change in thickness may be determined by measuring the amount of weight loss of both samples and converting the density of each metal into a thickness.
  • the preferable etching rate ratio r 1 is 1.2 or more, more preferably 1.25 or more, and further preferably 1.3 or more from the viewpoint of obtaining a high sacrificial effect.
  • the upper limit of the etching rate ratio r 1 is not particularly limited, but the dissolution rate of the first etching sacrificial layer 11 in the plane is kept uniform, and the local battery reaction with the second etching sacrificial layer 12 to the copper layer 13 is made uniform in the plane.
  • the etching rate ratio r 1 is preferably 5.0 or less, more preferably 4.5 or less, more preferably 4.0 or less, particularly preferably 3.5 or less, most It is preferably 3.0 or less.
  • the etching solution a known solution capable of dissolving copper by a redox reaction can be adopted.
  • the etching solution examples include an aqueous solution of cupric chloride (CuCl 2 ), an aqueous solution of ferric chloride (FeCl 3 ), an aqueous solution of ammonium persulfate, an aqueous solution of sodium persulfate, an aqueous solution of potassium persulfate, and an aqueous solution of sulfuric acid / hydrogen peroxide. And so on.
  • FeCl 3 ferric chloride
  • an aqueous solution of ammonium persulfate an aqueous solution of sodium persulfate
  • an aqueous solution of potassium persulfate an aqueous solution of sulfuric acid / hydrogen peroxide.
  • sodium persulfate aqueous solution, potassium persulfate aqueous solution, and sulfuric acid / hydrogen peroxide solution are suitable from the viewpoint that the etching rate of Cu can be precisely controlled
  • sulfuric acid / hydrogen peroxide solution is most preferable.
  • a spray method, a dipping method or the like can be adopted.
  • the etching temperature can be appropriately set in the range of 25 ° C. or higher and 70 ° C. or lower.
  • the etching rate in the present invention is adjusted by the combination of the etching solution, the etching method, and the like, and the selection of the material of the first etching sacrificial layer 11 shown below.
  • the material constituting the first etching sacrificial layer 11 is preferably a metal that is electrochemically lower than Cu, and examples of such a preferable metal include Cu—Zn alloy, Cu—Sn alloy, Cu—Mn alloy, and Cu. -Al alloy, Cu-Mg alloy, Fe metal, Zn metal, Co metal, Mo metal and their oxides, and combinations thereof are mentioned, and Cu—Zn alloy is particularly preferable.
  • the Cu—Zn alloy that can form the first etching sacrificial layer 11 preferably has a Zn content of 40% by weight or more, more preferably 50% by weight or more, still more preferably 60, from the viewpoint of obtaining a high sacrificial effect. By weight or more, particularly preferably 70% by weight or more.
  • the Zn content in the Cu—Zn alloy is such that the in-plane dissolution rate of the first etching sacrificial layer 11 is uniformly maintained and the in-plane reaction of the local battery reaction with the second etching sacrificial layer 12 to the copper layer 13 is uniform. From the viewpoint of action, it is preferably 98% by weight or less, more preferably 96% by weight or less, and further preferably 94% by weight or less.
  • the first etching sacrificial layer 11 preferably has a thickness d 1 of 0.1 ⁇ m or more and 5 ⁇ m or less, and a more preferable thickness d 1 is 0.1 ⁇ m or more and 4.5 ⁇ m or less, more preferably 0.2 ⁇ m or more and 4 ⁇ m or less. It is particularly preferably 0.2 ⁇ m or more and 3.5 ⁇ m or less, and most preferably 0.3 ⁇ m or more and 3 ⁇ m or less.
  • the second etching sacrificial layer 12 is not particularly limited as long as it has an etching rate higher than Cu and lower than the first etching sacrificial layer 11 (that is, satisfying the above-mentioned relationship of r 1 > r 2 > 1.0). .. With the higher etching rate than Cu can be simultaneously dissolved and removed by (etching rate ratio r 2 is higher if more 1.0) Cu etching, Cu second etching sacrificial layer 12 is dissolved unevenly localized Even if it is exposed to the surface, the local battery reaction suppresses the dissolution of the underlying copper layer (seed layer), which enables uniform etching of the seed layer in the plane, as well as chipping of the seed layer and local circuit dents.
  • the etching rate ratio r 2 is lower than the etching rate ratio r 1 , when the chemical solution treatment is performed in a state where both the first etching sacrificial layer 11 and the second etching sacrificial layer 12 are locally exposed, the local battery is used. By the reaction, the first etching sacrificial layer 11 is dissolved preferentially over the second etching sacrificial layer 12 and the like. As a result, at the start of micro-etching, the second etching sacrificial layer 12 can be left in a state where dissolution is suppressed, and as a result, even when the chemical solution treatment is performed after perforation, the seed layer may be damaged.
  • the etching rate of the second etching sacrificial layer 12 is as described above with respect to the first etching sacrificial layer 11, and preferred embodiments such as an etching solution and an etching method also apply to the second etching sacrificial layer 12 as they are.
  • the preferable etching rate ratio r 2 is 1.2 or more, more preferably 1.25 or more, from the viewpoint of obtaining a high sacrificial effect.
  • the upper limit of the etching rate ratio r 2 is not particularly limited, but in order to keep the dissolution rate of the second etching sacrificial layer 12 in the plane uniform and allow the local battery reaction with the copper layer 13 to act uniformly in the plane, etching is performed.
  • the rate ratio r 2 is preferably 5.0 or less, more preferably 4.5 or less, still more preferably 4.0 or less, still more preferably 3.5 or less, and particularly preferably 3.0 or less. Yes, most preferably 2.7 or less.
  • the material constituting the second etching sacrificial layer 12 is preferably an electrochemically base metal rather than Cu from the viewpoint of obtaining a high sacrificial effect, and examples of such a preferable metal include Cu—Zn alloy and Cu—.
  • Sn alloys, Cu—Mn alloys, Cu—Al alloys, Cu—Mg alloys, Fe metals, Zn metals, Co metals, Mo metals and their oxides, and combinations thereof are mentioned, and more preferable examples thereof are Cu—.
  • Examples thereof include Zn alloys, Fe metals, oxides thereof, and combinations thereof, and Cu—Zn alloys are particularly preferable.
  • the Cu—Zn alloy that can form the second etching sacrificial layer 12 preferably has a Zn content of 40% by weight or more, more preferably 50% by weight or more, still more preferably 60, from the viewpoint of obtaining a high sacrificial effect. Weight% or more. Further, the Zn content in the Cu—Zn alloy is preferably set from the viewpoint of uniformly maintaining the in-plane dissolution rate of the second etching sacrificial layer 12 described above and the in-plane uniform action of the local battery reaction with the copper layer 13. It is 98% by weight or less, more preferably 96% by weight or less, still more preferably 94% by weight or less, and particularly preferably 92% by weight or less.
  • the second etching sacrificial layer 12 is selected from Fe metal, Fe—W alloy, Co metal, CoW alloy, Co—Ni alloy and oxides thereof, and a combination thereof. It is preferably composed of at least one kind, and more preferable examples include Fe metal, Fe-W alloy and oxides thereof, and a combination thereof, and Fe metal is particularly preferable.
  • the second etching sacrificial layer 12 preferably has a thickness d 2 of 0.05 ⁇ m or more and 2.5 ⁇ m or less, and a more preferable thickness d 2 is 0.06 ⁇ m or more and 2.0 ⁇ m or less, more preferably 0.06 ⁇ m or more 1 It is 5.5 ⁇ m or less, particularly preferably 0.07 ⁇ m or more and 1.0 ⁇ m or less, and most preferably 0.07 ⁇ m or more and 0.5 ⁇ m or less.
  • a desired sacrificial effect can be obtained and a further excellent diffusion prevention effect can be exhibited.
  • any combination of the above-mentioned metals or alloys can be selected so as to satisfy the above-mentioned relationship of r 1 > r 2 > 1.0. ..
  • the first etching sacrificial layer 11 and the second etching sacrificial layer 12 may be the same type of alloy, or may be different types of metals or alloys.
  • the ratio of the elements constituting each alloy so as to satisfy the relationship of r 1 > r 2 > 1.0. It is preferable to adjust.
  • each of the first etching sacrificial layer 11 and the second etching sacrificial layer 12 may be made of a Cu—Zn alloy, and the Zn content of the first etching sacrificial layer 11 is x, and the second etching sacrificial layer 12
  • the Zn content of the above is y
  • the first etching sacrificial layer 11 is made of Cu—Zn alloy or Zn metal
  • the second etching sacrificial layer 12 is made of Fe metal.
  • the copper layer 13 has a known structure and is not particularly limited.
  • the copper layer 13 may be formed by a wet film forming method such as an electroless plating method and an electrolytic plating method, a dry film forming method such as sputtering and chemical vapor deposition, or a combination thereof.
  • the copper layer 13 preferably has a thickness d 3 of 0.1 ⁇ m or more and 2.5 ⁇ m or less, and a more preferable thickness d 3 is 0.1 ⁇ m or more and 2 ⁇ m or less, more preferably 0.1 ⁇ m or more and 1.5 ⁇ m or less, particularly. It is preferably 0.2 ⁇ m or more and 1 ⁇ m or less, and most preferably 0.2 ⁇ m or more and 0.8 ⁇ m or less.
  • the thickness d 3 is within such a range, it is possible to more effectively prevent defects such as defects during Cu etching, even though the thickness is sufficiently thin for circuit formation.
  • the surface of the copper layer 13 is roughened.
  • the average particle size D of the roughened particles by image analysis is preferably 0.04 ⁇ m or more and 0.53 ⁇ m or less, more preferably 0.08 ⁇ m or more and 0.13 ⁇ m or less, and further preferably 0.09 ⁇ m or more and 0.12 ⁇ m. It is as follows.
  • the roughened surface is provided with an appropriate roughness to ensure excellent adhesion to the photoresist, and the opening property of the unnecessary region of the photoresist is opened during the photoresist development. It can be satisfactorily realized, and as a result, it is possible to effectively prevent line defects of the pattern plating 22 which may occur due to difficulty in plating due to the photoresist which has not been sufficiently opened. Therefore, if it is within the above-mentioned preferable range, it can be said that the photoresist developability and the pattern plating property are excellent, and therefore, it is suitable for fine formation of the wiring pattern 24.
  • the average particle size D obtained by image analysis of the coarsened particles is obtained by taking an image at a magnification in which a predetermined number of particles (for example, 1000 or more and 3000 or less) are contained in one field of a scanning electron microscope (SEM).
  • a predetermined number of particles for example, 1000 or more and 3000 or less
  • SEM scanning electron microscope
  • the coarsened particles preferably have a particle density ⁇ of 4 / ⁇ m 2 or more and 200 / ⁇ m 2 or less, more preferably 40 / ⁇ m 2 or more and 170 / ⁇ m 2 or less, 70 / ⁇ m / ⁇ m 2 or more. ⁇ m 2 or more and 100 pieces / ⁇ m 2 or less.
  • the roughened particles on the surface of the copper layer are dense and dense, the development residue of the photoresist is likely to be generated in the ETS method, but if it is within the above preferable range, such a development residue is generated. It is difficult, and therefore, the photoresist pattern 20 is also excellent in developability.
  • the wiring pattern 24 is suitable for fine formation if it is within the above-mentioned preferable range.
  • the particle density ⁇ obtained by image analysis of the roughened particles is obtained by taking an image at a magnification at which a predetermined number of particles (for example, 1000 or more and 3000 or less) are contained in one field of a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the surface of the copper layer 13 is preferably subjected to a rust preventive treatment such as nickel-zinc / chromate treatment and a coupling treatment with a silane coupling agent, in addition to the adhesion of roughened particles by the roughening treatment described above.
  • a rust preventive treatment such as nickel-zinc / chromate treatment
  • a coupling treatment with a silane coupling agent in addition to the adhesion of roughened particles by the roughening treatment described above.
  • the additional copper layer 14 provided as desired may have a known copper foil structure and is not particularly limited. By providing the additional copper layer 14, it is possible to control the first etching sacrificial layer 11 having a high dissolution rate so as not to be exposed in the pretreatment in the Cu etching step, and it is easy to peel off from the following peeling layer. There is an advantage that it can be made.
  • the additional copper layer 14 may be formed by a wet film forming method such as an electroless plating method and an electrolytic plating method, a dry film forming method such as sputtering and chemical vapor deposition, or a combination thereof.
  • Add copper layer 14 preferably has a thickness of less than d 3 '2.5 [mu] m or more 0.1 [mu] m, more preferably 0.1 [mu] m or more 2 ⁇ m or less, more preferably 0.2 ⁇ m or 1.5 ⁇ m or less, particularly preferably It is 0.2 ⁇ m or more and 1 ⁇ m or less, most preferably 0.3 ⁇ m or more and 0.8 ⁇ m or less.
  • the diffusion prevention layer 15 provided as desired is a layer having a function of preventing the diffusion of metals and the like from the first etching sacrificial layer 11 to the additional copper layer 14, and has a configuration similar to that of the second etching sacrificial layer 12. Can be done. Therefore, from the viewpoint of obtaining a high anti-diffusion effect, the anti-diffusion layer 15 is selected from Fe metals, Fe-W alloys, Co metals, Co-W alloys, Co-Ni alloys and oxides thereof, and combinations thereof. It is preferably composed of at least one kind, and more preferable examples include Fe metals, Fe-W alloys and oxides thereof, and combinations thereof, and Fe metal is particularly preferable.
  • Diffusion preventing layer 15 is preferably has a thickness of d 2 '2.5 [mu] m or more 0.05 .mu.m, more preferably 0.06 ⁇ m or 2.0 ⁇ m or less, more preferably 0.06 ⁇ m or 1.5 ⁇ m or less, particularly It is preferably 0.07 ⁇ m or more and 1.0 ⁇ m or less, and most preferably 0.07 ⁇ m or more and 0.5 ⁇ m or less.
  • the additional copper layer 14 and the diffusion prevention layer 15 can protect the first etching sacrificial layer 11 from dissolution by the chemical solution in a pre-etching step (for example, a chemical solution step such as desmear), or the first etching sacrificial layer. While it is possible to prevent the diffusion of metals and the like from 11, if it is excessively thick, the copper layer 13 (seed layer) after etching may be damaged.
  • the first etching sacrificial layer 11 and the second etching sacrificial layer 12 are collectively referred to as "etching sacrificial layers 11 and 12", or additional copper.
  • the layers 14, 14'and the diffusion prevention layers 15, 15' are sometimes collectively referred to as “additional copper layers 14, 14', etc.”
  • the additional copper layer 14'and the like are melted unevenly and the etching sacrificial layers 11 and 12 are exposed (FIG. 14).
  • the exposed etching sacrificial layers 11 and 12 can be immediately melted (priority over the remaining additional copper layer 14'etc.) to expose the seed layer 13 (FIG. 14 (c)).
  • the dissolution of the exposed seed layer 13 proceeds in parallel with the dissolution of the remaining additional copper layer 14'and the like (FIG. 14 (d)), and a defect 13a may occur in the seed layer 13 (FIG. FIG. 14 (e)).
  • the additional copper layer 14 and the like are moderately thin as shown in FIG.
  • the etching rate of the first etching sacrificial layer 11 is v 1
  • the etching rate of the second etching sacrificial layer 12 is v 2
  • the etching rate of the additional copper layer 14 is v 3 '
  • the etching rate of the diffusion prevention layer 15 is v 2.
  • the metal foil 10 preferably has 2 or less pinholes per unit area / mm 2 . By doing so, it is possible to further reduce defects such as defects due to chemical erosion during Cu etching.
  • the number of pinholes per unit area of the additional copper layer 14 (the first etching sacrificial layer 11 when the additional copper layer 14 does not exist) is preferably 2 pieces / mm 2 or less. This is because when the number of pinholes in the additional copper layer 14 is small as described above, the diffusion prevention layer 15, the first etching sacrificial layer 11, and the second etching sacrifice plated on the additional copper layer 14 in the manufacturing process of the metal foil 10 This is because the pinholes that can occur in the layer 12 and the copper layer 13 can also be reduced.
  • Metal foil 10 the thickness of the thickness d 1 of the first etching sacrificial layer 11, the thickness d 2 of the second etching sacrificial layer 12, the thickness d 3 of the copper layer 13, the diffusion preventing layer 15 (if present) d 2 ', and additional copper layer 14 thickness d 3 (if present)' is preferably a total thickness of d 1 + d 2 + d 3 + d 2 '+ d 3' is 3.0 ⁇ m or less, more preferably It is 0.3 ⁇ m or more and 2.8 ⁇ m or less, more preferably 0.6 ⁇ m or more and 2.8 ⁇ m or less, and particularly preferably 0.9 ⁇ m or more and 2.6 ⁇ m or less.
  • the total thickness within such a range means that the thickness of the metal foil 10 is sufficiently thin, and the direct laser perforation property of the metal foil 10 is improved.
  • the additional copper layer 14 and the anti-diffusion layer 15 between the anti-diffusion layer 15 and the first etching sacrificial layer 11, between the first etching sacrificial layer 11 and the second etching sacrificial layer 12, and /
  • another layer may be present between the second etching sacrificial layer 12 and the copper layer 13 as long as the sacrificial effects of the first etching sacrificial layer 11 and the second etching sacrificial layer 12 are not impaired.
  • Metal leaf with carrier Metal leaf 10 (ie, copper layer 13, second etching sacrificial layer 12, first etching sacrificial layer 11, diffusion prevention layer 15 if present, and additional copper layer 14 if present) ) May be provided in the form of a carrierless metal leaf, or may be provided in the form of a carrier-attached metal leaf 16, as shown in FIG. 1, but is provided in the form of a carrier-attached metal leaf 16. Is preferable.
  • the metal foil 16 with a carrier includes a carrier 17, a release layer 18, an additional copper layer 14 (if present), a diffusion prevention layer 15 (if present), a first etching sacrificial layer 11, and a second etching sacrificial layer 12.
  • a preferred metal foil with a carrier includes a carrier 17, a release layer 18, and a metal foil 10 in this order.
  • the carrier 17 is a layer (typically a foil) for supporting a metal foil and improving its handleability.
  • the carrier include an aluminum foil, a copper foil, a stainless foil, a resin film, a resin film having a metal coating on the surface, a glass plate, and the like, and a copper foil is preferable.
  • the copper foil may be either a rolled copper foil or an electrolytic copper foil.
  • the thickness of the carrier is typically 250 ⁇ m or less, preferably 12 ⁇ m or more and 200 ⁇ m or less.
  • the peeling layer 18 has a function of weakening the peeling strength of the carrier 17, ensuring the stability of the strength, and further suppressing mutual diffusion that may occur between the carrier and the metal foil during press molding at a high temperature.
  • the release layer is generally formed on one surface of the carrier, but may be formed on both sides.
  • the release layer may be either an organic release layer or an inorganic release layer.
  • the organic component used in the organic release layer include nitrogen-containing organic compounds, sulfur-containing organic compounds, and carboxylic acids.
  • the nitrogen-containing organic compound include a triazole compound and an imidazole compound, and among them, the triazole compound is preferable because the peelability is easily stable.
  • triazole compounds examples include 1,2,3-benzotriazole, carboxybenzotriazole, N', N'-bis (benzotriazolylmethyl) urea, 1H-1,2,4-triazole and 3-amino-. Examples thereof include 1H-1,2,4-triazole.
  • sulfur-containing organic compound examples include mercaptobenzothiazole, thiothianulic acid, 2-benzimidazole thiol and the like.
  • carboxylic acids include monocarboxylic acids and dicarboxylic acids.
  • examples of the inorganic component used in the inorganic release layer examples include Ni, Mo, Co, Cr, Fe, Ti, W, P, Zn, chromate-treated film, carbon layer and the like.
  • the release layer may be formed by bringing the release layer component-containing solution into contact with at least one surface of the carrier and adsorbing the release layer component on the surface of the carrier in the solution.
  • this contact may be performed by immersion in the release layer component-containing solution, spraying the release layer component-containing solution, flowing down the release layer component-containing solution, or the like.
  • a plating method such as electrolytic plating or electroless plating, or a vapor phase method such as vapor deposition or sputtering can be used to form a film of the release layer component.
  • the release layer component may be fixed to the carrier surface by drying the release layer component-containing solution, electrodeposition of the release layer component in the release layer component-containing solution, or the like.
  • the thickness of the release layer is typically 1 nm or more and 1 ⁇ m or less, preferably 5 nm or more and 500 nm or less.
  • the peel strength between the peeling layer 18 and the carrier is preferably 5 gf / cm or more and 50 gf / cm or less, more preferably 5 gf / cm or more and 40 gf / cm or less, and further preferably 6 gf / cm or more and 30 gf / cm or less. is there.
  • the metal foil of the present invention is preferably used for producing a metal-clad laminate for a printed wiring board. That is, according to a preferred embodiment of the present invention, a metal-clad laminate provided with the metal foil described above is provided.
  • the metal-clad laminate may include a metal foil in the form of a metal foil with a carrier. Further, the metal foil may be provided on one side of the resin layer or may be provided on both sides.
  • the resin layer typically comprises a resin, preferably an insulating resin.
  • the resin layer is preferably a prepreg and / or a resin sheet, more preferably a prepreg.
  • Prepreg is a general term for composite materials obtained by impregnating or laminating a base material such as a synthetic resin plate, a glass plate, a glass woven fabric, a glass non-woven fabric, or paper with a synthetic resin.
  • a base material such as a synthetic resin plate, a glass plate, a glass woven fabric, a glass non-woven fabric, or paper with a synthetic resin.
  • Preferred examples of the insulating resin impregnated in the prepreg include an epoxy resin, a cyanate resin, a bismaleimide triazine resin (BT resin), a polyphenylene ether resin, a phenol resin, a polyamide resin and the like.
  • examples of the insulating resin constituting the resin sheet include insulating resins such as epoxy resin, polyimide resin, and polyester resin (liquid crystal polymer).
  • the resin layer may contain filler particles made of various inorganic particles such as silica and alumina from the viewpoint of lowering the coefficient of thermal expansion and increasing the rigidity.
  • the thickness of the resin layer is not particularly limited, but is preferably 3 ⁇ m or more and 1000 ⁇ m or less, more preferably 5 ⁇ m or more and 400 ⁇ m or less, and further preferably 10 ⁇ m or more and 200 ⁇ m or less.
  • the resin layer may be composed of a plurality of layers.
  • a resin layer such as a prepreg and / or a resin sheet may be provided on the metal foil with a carrier via a primer resin layer previously applied to the surface of the metal foil.
  • a printed wiring board can be preferably manufactured by using the metal foil of the present invention or the metal foil with a carrier as described above.
  • Preferable examples of the method for manufacturing a printed wiring board include the MSAP method (modified semi-additive method) and the coreless build-up method (ETS method), but the method is not limited to these methods, and the metal foil of the present invention or the metal foil with a carrier is not limited to these methods.
  • MSAP method modified semi-additive method
  • ETS method coreless build-up method
  • a method of manufacturing a printed wiring board by a coreless build-up method (ETS method) using the metal foil of the present invention will be described below.
  • ETS method coreless build-up method
  • a metal leaf provided with an additional copper layer 14 (if present), a diffusion prevention layer 15 (if present), a first etching sacrificial layer 11, a second etching sacrificial layer 12, and a copper layer 13. 10 is used to obtain a support.
  • a build-up wiring layer including at least a first copper wiring layer 26 and an insulating layer 28 is formed on the copper layer 13 to obtain a laminate with a build-up wiring layer.
  • a build-up wiring layer as shown in FIG.
  • n is an integer of 2 or more
  • the additional copper layer 14 (if present), the diffusion prevention layer 15 (if present), the first etching sacrificial layer 11, the second etching sacrificial layer 12 and the copper layer 13 are removed by an etching solution to remove the first wiring layer. 26 is exposed, thereby obtaining a printed wiring board containing a build-up wiring layer.
  • FIGS. 11 and 12 are drawn so as to form the build-up wiring layer 42 by providing the metal foil 16 with a carrier on one side of the coreless support 19 for simplification of the description. It is desirable to provide the metal foil 16 with a carrier on both sides of the support 19 to form the build-up wiring layer 42 on both sides.
  • a metal foil 10 or a metal foil 16 with a carrier containing the metal foil 10 is prepared as a support.
  • the metal foil 10 additional copper layer 14 side
  • the carrier-attached metal foil 16 carrier 17 side
  • the coreless support 19 typically comprises a resin, preferably an insulating resin.
  • the coreless support 19 is preferably a prepreg and / or a resin sheet, more preferably a prepreg. That is, the coreless support 19 corresponds to the resin layer in the above-mentioned metal-clad laminate, and therefore, the above-mentioned preferred embodiment with respect to the metal-clad laminate or the resin layer applies to the coreless support 19 as it is.
  • a build-up wiring layer 42 including at least a first copper wiring layer 26 and an insulating layer 28 is formed on the copper layer 13 to form a laminate with a build-up wiring layer.
  • the insulating layer 28 may be made of the insulating resin as described above.
  • the build-up wiring layer 42 may be formed according to a known method for manufacturing a printed wiring board, and is not particularly limited. According to a preferred embodiment of the present invention, as described below, (i) a photoresist pattern is formed, (ii) electrolytic copper plating, and (iii) the photoresist pattern is peeled off to form the first wiring layer 26. After that, the (iv) build-up wiring layer 42 is formed.
  • a photoresist pattern 20 is formed on the surface of the copper layer 13.
  • the photoresist pattern 20 may be formed by either a negative resist or a positive resist, and the photoresist may be either a film type or a liquid type.
  • the developing solution may be a developing solution such as sodium carbonate, sodium hydroxide, or an amine-based aqueous solution, and is not particularly limited as long as it is carried out according to various methods and conditions generally used for producing a printed wiring board.
  • the electrolytic copper plating 22 is applied to the copper layer 13 on which the photoresist pattern 20 is formed.
  • the formation of the electrolytic copper plating 22 is not particularly limited as long as it is carried out according to various pattern plating methods and conditions generally used for producing a printed wiring board such as a copper sulfate plating solution or a copper pyrophosphate plating solution.
  • the photoresist pattern 20 is peeled off to form a wiring pattern 24.
  • the peeling of the photoresist pattern 20 is not particularly limited as long as an aqueous solution of sodium hydroxide, an amine solution or an aqueous solution thereof or the like is adopted and various peeling methods and conditions generally used for manufacturing a printed wiring board are followed. In this way, the wiring pattern 24 in which the wiring portions (lines) made of the first wiring layer 26 are arranged with the gaps (spaces) separated from each other is directly formed on the surface of the copper layer 13.
  • the line / space (L / S) is highly fine to the extent of 13 ⁇ m or less / 13 ⁇ m or less (for example, 12 ⁇ m / 12 ⁇ m, 10 ⁇ m / 10 ⁇ m, 5 ⁇ m / 5 ⁇ m, 2 ⁇ m / 2 ⁇ m). It is preferable to form a modified wiring pattern.
  • a build-up wiring layer 42 is formed on the copper layer 13 to prepare a laminate with a build-up wiring layer.
  • the insulating layer 28 and the second wiring layer 38 can be formed in this order to form the build-up wiring layer 42.
  • the insulating layer 28 and the copper foil 30 with a carrier are laminated to form the build-up wiring layer 42, and the carrier 32 is peeled off.
  • the copper foil 36 and the insulating layer 28 immediately below the copper foil 36 may be laser-processed by a carbon dioxide gas laser or the like.
  • N may be an integer of 2 or more).
  • the construction method for forming the build-up layer after the second wiring layer 38 is not limited to the above method, but is limited to the subtractive method, the MSAP (modified semi-additive process) method, the SAP (semi-additive) method, and the full additive method. Etc. can be used. For example, when a resin layer and a metal foil typified by a copper foil are simultaneously pressed together, the panel plating layer and the metal foil are etched in combination with the formation of via holes and the formation of interlayer conduction means such as panel plating. The wiring pattern can be formed. Further, when only the resin layer is bonded to the surface of the copper layer 13 by pressing or laminating, a wiring pattern can be formed on the surface by a semi-additive method.
  • a build-up wiring layer is formed in which resin layers and wiring layers including wiring patterns are alternately laminated, and a build-up wiring layer formed up to the nth wiring layer 40 (n is an integer of 2 or more) is attached. It is preferable to obtain a laminate.
  • This step may be repeated until a desired number of build-up wiring layers are formed.
  • a solder resist, bumps for mounting pillars, or the like may be formed on the outer layer surface. Further, the outermost layer surface of the build-up wiring layer may form an outer layer wiring pattern in a later outer layer processing step.
  • the laminate with build-up wiring layer is peeled off. It can be separated by such as.
  • the metal foil with a carrier includes a carrier 17, a release layer 18, an additional copper layer 14, a diffusion prevention layer 15, a first etching sacrificial layer 11, a second etching sacrificial layer 12, and a copper layer 13 in this order, the method of the present invention. It is preferable that the laminated body with the build-up wiring layer is separated by the release layer 18 to expose the additional copper layer 14 prior to the removal by the etching solution described later.
  • the method of separation is preferably physical peeling, and as the method of peeling, a method of machine or jig, manual work, or a combination thereof can be adopted.
  • the metal foil with a carrier includes a carrier 17, an additional copper layer 14, a first etching sacrificial layer 11, a second etching sacrificial layer 12, and a copper layer 13 in this order (that is, the peeling layer 18 is used as a single layer). If not), the method of the present invention adds a laminate with a build-up wiring layer between the carrier 17 and the additional copper layer 14 or inside the additional copper layer 14 prior to removal by the etching solution described later. It is preferable to expose the copper layer 14.
  • the additional copper layer 14, the diffusion prevention layer 15, the first etching sacrificial layer 11, the second etching sacrificial layer 12, and the copper layer 13 are subjected to the etching solution. It is removed to expose the first wiring layer 26, thereby obtaining a printed wiring board 46 including the build-up wiring layer 42.
  • the printed wiring board 46 is preferably a multilayer printed wiring board. In any case, due to the presence of the first etching sacrificial layer 11 and the second etching sacrificial layer 12, the removal of each layer by etching can be efficiently performed uniformly in the plane by Cu etching without requiring an additional etching step.
  • the additional copper layer 14, the diffusion prevention layer 15, the first etching sacrificial layer 11, the second etching sacrificial layer 12, and the copper layer 13 can be removed by the etching solution in one step. it can.
  • the etching solution and etching method used at this time are as described above.
  • the outer layer of the printed wiring board 46 as shown in FIG. 12 can be processed by various construction methods.
  • an insulating layer as a build-up wiring layer and a wiring layer may be further laminated on the first wiring layer 26 of the printed wiring board 46 as an arbitrary number of layers, or a solder-resist layer may be laminated on the surface of the first wiring layer 26.
  • May be formed and surface-treated as an outer layer pad such as Ni-Au plating, Ni-Pd-Au plating, and water-soluble preflux treatment.
  • columnar pillars or the like may be provided on the outer layer pad.
  • the first wiring layer 26 created by using the etching sacrificial layer in the present invention can maintain the uniformity of the circuit thickness in the plane, and the surface of the first wiring layer 26 has a local circuit recess. Will be less likely to occur. For this reason, the occurrence rate of defects such as local processing defects in the surface treatment process due to extremely thin circuit thickness or circuit dents, solder resist residue defects, and mounting defects due to unevenness of the mounting pad is low. , A printed wiring board with excellent mounting reliability can be obtained.
  • the method for manufacturing the printed wiring board described above is based on the coreless build-up method (ETS method), but the method for manufacturing the printed wiring board by the MSAP method is described in the conventional MSAP method described with reference to FIGS. 6 and 7.
  • ETS method coreless build-up method
  • the metal foil 10 of the present invention instead of the ultrathin copper foil 110, a printed wiring board can be preferably manufactured.
  • carrier A titanium electrode whose surface was polished with a # 2000 buff was prepared as a cathode.
  • DSA dimensional stability anode
  • the electrode is immersed in a copper sulfate solution having a copper concentration of 80 g / L and a sulfuric acid concentration of 260 g / L, electrolyzed at a solution temperature of 45 ° C. and a current density of 55 A / dm 2 , and an electrolytic copper foil having a thickness of 18 ⁇ m is used as a carrier.
  • a copper sulfate solution having a copper concentration of 80 g / L and a sulfuric acid concentration of 260 g / L
  • electrolyzed at a solution temperature of 45 ° C. and a current density of 55 A / dm 2
  • an electrolytic copper foil having a thickness of 18 ⁇ m is used as a carrier.
  • the pickled carrier is immersed in a CBTA solution having a CBTA (carboxybenzotriazole) concentration of 1 g / L, a sulfuric acid concentration of 150 g / L, and a copper concentration of 10 g / L at a liquid temperature of 30 ° C. for 30 seconds. Then, the CBTA component was adsorbed on the electrode surface of the carrier. In this way, the CBTA layer was formed as an organic release layer on the surface of the electrode surface of the carrier.
  • CBTA carboxybenzotriazole
  • the carrier on which the organic exfoliation layer is formed is immersed in a solution having a nickel concentration of 20 g / L prepared using nickel sulfate, and the liquid temperature is 45 ° C., pH is 3, and the current density is 5 A / dm. Under the condition of 2 , an adhering amount of nickel corresponding to a thickness of 0.001 ⁇ m was adhered on the organic release layer. In this way, a nickel layer was formed as an auxiliary metal layer on the organic exfoliation layer.
  • Example 4 Formation of Additional Copper Layer
  • the carrier on which the auxiliary metal layer was formed was immersed in a copper sulfate solution having a copper concentration of 60 g / L and a sulfuric acid concentration of 200 g / L, and the solution temperature was 50 ° C. Electrolysis was performed at a current density of 5 A / dm 2 or more and 30 A / dm 2 or less to form an additional copper layer having a thickness of 0.3 ⁇ m on the auxiliary metal layer. On the other hand, in Example 4, no additional copper layer was formed.
  • Example 3 Formation of First Etching Sacrificial Layer
  • a carrier on which a diffusion prevention layer is formed (Examples 1 and 2) or a carrier on which an additional copper layer is formed (Example 3) is immersed in the plating bath shown in Table 1.
  • the first etching sacrificial layer having the composition and thickness shown in Table 2 was formed on the anti-diffusion layer or the additional copper layer by electrolysis under the plating conditions shown in Table 1. On the other hand, in Example 4, the first etching sacrificial layer was not formed.
  • This roughening treatment comprises a burn-plating step of depositing and adhering fine copper particles on the copper layer, and a covering plating step for preventing the fine copper grains from falling off.
  • a roughening treatment was performed using an acidic copper sulfate solution containing a copper concentration of 10 g / L and a sulfuric acid concentration of 120 g / L at a liquid temperature of 25 ° C. and a current density of 15 A / dm 2 .
  • electrodeposition was performed using an acidic copper sulfate solution containing a copper concentration of 70 g / L and a sulfuric acid concentration of 120 g / L under smooth plating conditions of a liquid temperature of 40 ° C. and a current density of 15 A / dm 2 .
  • the surface subjected to the zinc-nickel alloy plating treatment was subjected to chromate treatment under the conditions of pH 10 and a current density of 5 A / dm 2 .
  • silane coupling agent Silane coupling by adsorbing an aqueous solution containing 2 g / L of 3-glycidoxypropyltrimethoxysilane on the surface of the metal foil with a carrier on the copper layer side and evaporating the water content with an electric heater. Agent treatment was performed. At this time, the silane coupling agent treatment was not performed on the carrier side.
  • Evaluation 1 etch rate ratio r 2 of the etching rate ratio diffusion preventing layer ', etching rate ratio r 1 of the first etching sacrificial layer, and the etching rate ratio r 2 of the second etching sacrificial layer was measured as follows.
  • a commercially available concentrated sulfuric acid (95% by weight) and a hydrogen peroxide solution (30% by weight) are dissolved in water to prepare an etching solution having a sulfuric acid concentration of 5.9% by weight and a hydrogen peroxide concentration of 2.1% by weight.
  • Each carrier-attached metal foil sample is masked so that the carrier side is not etched, immersed in an etching solution at 25 ° C. for a certain period of time to dissolve it, and the change in the thickness of the plating film before and after dissolution is measured by a fluorescent X-ray film thickness meter (Fisher Instruments). It was measured with a Fisherscape X-Ray XDAL-FD manufactured by the same company.
  • the etching rate of each target plating film was determined by dividing the obtained thickness change by the dissolution time.
  • the etching rate of the sample (iv) of Example 4 thus obtained is the etching rate of Cu
  • the etching rates of the samples (i), (ii) and (iii) in Examples 1 to 3 are the diffusion prevention layers and the first. It is the etching rate of 1 etching sacrificial layer and each 2nd etching sacrificial layer.
  • the diffusion preventing layer by dividing the etching rate of Cu etching rate of the first etching sacrificial layer and the second etching sacrificial layer, respectively, the etching rate ratio r 2 of the diffusion preventing layer ', etching of the first etching sacrificial layer
  • the rate ratio r 1 and the etching rate ratio r 2 of the second etching sacrificial layer were calculated. The results are as shown in Table 2.
  • Evaluation 2 Number of pinholes per unit area
  • a copper foil with a carrier that is, thickness
  • An intermediate product an intermediate product in which an additional copper layer of 0.3 ⁇ m was formed and the diffusion prevention layer was not formed and the subsequent treatment was not performed was prepared.
  • This copper foil with a carrier is laminated on an insulating resin base material (prepreg manufactured by Panasonic Corporation, R-1661, thickness 0.1 mm) so that the additional copper layer side is in contact with each other, and heat is applied at a pressure of 4.0 MPa and a temperature of 190 ° C. for 90 minutes. It was crimped.
  • the carrier was peeled off to obtain a laminated board.
  • This laminated board was observed with an optical microscope while being backlit in a dark room, and the number of pinholes was counted.
  • the number of pinholes per 1 mm 2 was measured in this way, the number of pinholes per unit area of the additional copper layer was 2 or less per mm 2 in all of Examples 1 to 3.
  • the copper layer contains only 1% by weight or less (including 0% by weight), and at least one of the first etching sacrificial layer and the second etching sacrificial layer (if present) contains 1% by weight or more.
  • the contained element was defined as a diffusion confirmation element.
  • the following points (A) The surface of the copper layer opposite to the second etching sacrificial layer (the surface of the copper layer opposite to the first etching sacrificial layer in the absence of the second etching sacrificial layer), or (b) the copper layer Of the points 0.3 ⁇ m away from the interface with the second etching sacrificial layer (the interface between the copper layer and the first etching sacrificial layer when the second etching sacrificial layer does not exist) in the depth direction of the copper layer.
  • the content of all diffusion-confirmed elements is 1% by weight or less at the point closer to the second etching sacrificial layer (the first etching sacrificial layer if the second etching sacrificial layer does not exist). was determined to be non-diffusion, and those not were determined to be diffused. It was also determined that there was diffusion even when the boundary between the copper layer and the second etching sacrificial layer could not be determined. The results are as shown in Table 2.
  • Evaluation 4 Defect of seed layer On the surface of the inner layer substrate, the metal foil with a carrier obtained in (11) above was applied to an insulating resin base material (prepreg manufactured by Mitsubishi Gas Chemicals Corporation, GHPL-830NS, thickness 0.1 mm). The copper layers were laminated so as to be close to each other, and thermocompression bonded at a pressure of 4.0 MPa and a temperature of 220 ° C. for 90 minutes. The carrier of the metal-clad laminate thus obtained is peeled off, cut into a size of 10 cm ⁇ 10 cm, and the first etching sacrificial layer and the second etching sacrificial layer (if present) are completely contained in the etching solution prepared in Evaluation 1.
  • an insulating resin base material prepreg manufactured by Mitsubishi Gas Chemicals Corporation, GHPL-830NS, thickness 0.1 mm.
  • the copper layers were laminated so as to be close to each other, and thermocompression bonded at a pressure of 4.0 MPa and a temperature of 220 ° C

Abstract

Provided is a metal foil for manufacturing a printed wiring board, whereby the occurrence of seed layer defects can be suppressed even when chemical processing is performed after perforation. Also provided is a metal foil for manufacturing a printed wiring board, whereby diffusion of metal or the like into a seed layer from a first etching sacrificial layer is effectively prevented even when high-temperature pressing is performed, and, as a result, the sacrificial effect inherent to the etching sacrificial layer can be exhibited. This metal foil for manufacturing a printed wiring board is provided with a first etching sacrificial layer, a second etching sacrificial layer, and a copper layer in this order, and satisfies the expression r1 > r2 > 1.0, where r1 is the ratio of the etching rate of the first etching sacrificial layer to the etching rate of Cu, and r2 is the etching rate of the second etching sacrificial layer to the etching rate of Cu.

Description

プリント配線板用金属箔、キャリア付金属箔及び金属張積層板、並びにそれらを用いたプリント配線板の製造方法A metal foil for a printed wiring board, a metal foil with a carrier, a metal-clad laminate, and a method for manufacturing a printed wiring board using them.
 本発明は、プリント配線板製造用金属箔、キャリア付金属箔及び金属張積層板、並びにそれらを用いたプリント配線板の製造方法に関する。 The present invention relates to a metal foil for manufacturing a printed wiring board, a metal foil with a carrier, a metal-clad laminate, and a method for manufacturing a printed wiring board using them.
 近年、回路の微細化に適したプリント配線板の製造工法として、MSAP法(モディファイドセミアディティブ法)が広く採用されている。MSAP法は、極めて微細な回路を形成するのに適した手法であり、その特徴を活かすため、キャリア付銅箔を用いて行われている。例えば、図6及び7に示されるように、下地基材111a上に下層回路111bを備えた絶縁樹脂基板111上にプリプレグ112とプライマー層113を用いて、極薄銅箔110をプレスして密着させ(工程(a))、キャリア(図示せず)を引き剥がした後、必要に応じてレーザー穿孔によりビアホール114を形成する(工程(b))。次いで、化学銅めっき115を施した(工程(c))後に、ドライフィルム116を用いた露光及び現像により所定のパターンでマスキングし(工程(d))、電気めっき117を施す(工程(e))。ドライフィルム116を除去して配線部分117aを形成した後(工程(f))、隣り合う配線部分117a,117a間の不要な極薄銅箔等をそれらの厚み全体にわたってエッチングにより除去して(工程(g))、所定のパターンで形成された配線118を得る。 In recent years, the MSAP method (modified semi-additive method) has been widely adopted as a manufacturing method for printed wiring boards suitable for circuit miniaturization. The MSAP method is a method suitable for forming an extremely fine circuit, and in order to take advantage of its characteristics, it is performed using a copper foil with a carrier. For example, as shown in FIGS. 6 and 7, the ultrathin copper foil 110 is pressed and adhered to the insulating resin substrate 111 having the lower layer circuit 111b on the base material 111a by using the prepreg 112 and the primer layer 113. (Step (a)), the carrier (not shown) is peeled off, and then the via hole 114 is formed by laser perforation if necessary (step (b)). Next, after applying the chemical copper plating 115 (step (c)), masking is performed in a predetermined pattern by exposure and development using the dry film 116 (step (d)), and electroplating 117 is applied (step (e)). ). After removing the dry film 116 to form the wiring portion 117a (step (f)), unnecessary ultrathin copper foil and the like between the adjacent wiring portions 117a and 117a are removed by etching over their entire thickness (step). (G)), the wiring 118 formed in a predetermined pattern is obtained.
 ここで、ビアホール114の形成(工程(b))後で、かつ、化学銅めっき115の形成(工程(c))前に、ビアホール底面の下層回路111bのクリーニングやビアホール周囲に付着したスプラッシュの除去を目的としてマイクロエッチング(Cuエッチング)が行われる場合がある。近年、回路を微細化する観点から、従来よりも極薄銅箔110の厚さを予め薄くしておき、前記マイクロエッチング後の時点でのシード層(極薄銅箔110)が0.3μm程度の厚さとなるようにすることが望まれるようになってきた。しかしながら、このように薄くされた極薄銅箔110と絶縁樹脂基板111との積層体をマイクロエッチングしようとすると、図8に概念的に示されるように、マイクロエッチング中、マイクロエッチングの面内ばらつきにより部分的に極薄銅箔110(シード層)に欠損110aが生じることがある。 Here, after the formation of the via hole 114 (step (b)) and before the formation of the chemical copper plating 115 (step (c)), the lower layer circuit 111b on the bottom surface of the via hole is cleaned and the splash adhering to the periphery of the via hole is removed. Micro-etching (Cu etching) may be performed for the purpose of. In recent years, from the viewpoint of miniaturizing the circuit, the thickness of the ultrathin copper foil 110 is made thinner than before, and the seed layer (ultrathin copper foil 110) at the time after the microetching is about 0.3 μm. It has become desirable to have a thickness of. However, when trying to micro-etch the laminate of the ultrathin copper foil 110 and the insulating resin substrate 111 thinned in this way, as conceptually shown in FIG. 8, in-plane variation of the micro-etching during the micro-etching. As a result, a defect 110a may partially occur in the ultrathin copper foil 110 (seed layer).
 そこで、Cuよりもエッチングされやすいエッチング犠牲層を備えた極薄銅箔を用いることで、マイクロエッチングの面内ばらつきを有意に低減させる手法が提案されている。例えば、特許文献1(国際公開第2017/141985号)には、第一銅層、Cu-Zn合金等で構成されるエッチング犠牲層、及び第二銅層(シード層)をこの順に備え、Cuのエッチングレートに対する、エッチング犠牲層のエッチングレートの比rが1.0よりも高いプリント配線板製造用銅箔が開示されている。かかる銅箔によれば、図9に概念的に示されるように、エッチング犠牲層212が2つの銅層213,211間にサンドイッチされることで、金属箔210と絶縁層228との積層体に対するマイクロエッチング中、エッチング犠牲層212が不均一に溶解して第二銅層(シード層)213が局所的に露出しても、エッチング犠牲層212が優先的に溶解する。その結果、第二銅層(シード層)213の厚さは概して均一に保たれることになり、欠損が発生しにくくなるとされている。 Therefore, a method has been proposed in which the in-plane variation of microetching is significantly reduced by using an ultrathin copper foil provided with an etching sacrificial layer that is easier to etch than Cu. For example, Patent Document 1 (International Publication No. 2017/141985) includes a first copper layer, an etching sacrificial layer made of a Cu—Zn alloy or the like, and a second copper layer (seed layer) in this order. A copper foil for manufacturing a printed wiring board in which the ratio r of the etching rate of the etching sacrificial layer to the etching rate of is higher than 1.0 is disclosed. According to such a copper foil, as conceptually shown in FIG. 9, the etching sacrificial layer 212 is sandwiched between the two copper layers 213 and 211 to form a laminate of the metal foil 210 and the insulating layer 228. Even if the etching sacrificial layer 212 is non-uniformly melted during microetching and the second copper layer (seed layer) 213 is locally exposed, the etching sacrificial layer 212 is preferentially dissolved. As a result, the thickness of the second copper layer (seed layer) 213 is generally kept uniform, and it is said that defects are less likely to occur.
 一方、特許文献1には、上記エッチング犠牲層を備えた銅箔をコアレスビルドアップ法によるプリント配線板の製造に好ましく採用できることも開示されている。コアレスビルドアップ法とは、支持体(コア)表面の金属層上に配線層(第一配線層)を形成し、更にビルドアップ層を形成した後、支持体(コア)を除去してビルドアップ層のみで配線板を形成する方法である。かかる方法により製造されるプリント配線板は回路パターンが絶縁層の中に埋め込まれているタイプのものであるため、この工法はETS(Embedded Trace Substrate)工法と呼ばれている。特許文献1によれば、図10(b)及び(c)に概念的に示されるように、Cuエッチングの際にエッチング犠牲層212が不均一に溶解して且つ/又はエッチング犠牲層212に偶発的に存在しうるピンホール等に起因してCu(第二銅層213又は第一配線層226のCu)が局所的に露出したとしても、局部電池反応により下地の第二銅層213又は第一配線層226(銅層)の溶解が抑制される。その結果、面内で均一に第二銅層213がエッチングされるとともに、第一配線層226の局所的な回路凹みの発生を抑制することができるとされている。しかも、この方法によれば、エッチング犠牲層212はCuエッチングに伴い溶解除去されるので、エッチング犠牲層212を除去するための追加工程が不要になり、生産性も向上するとされている。 On the other hand, Patent Document 1 also discloses that a copper foil provided with the etching sacrificial layer can be preferably adopted for manufacturing a printed wiring board by a coreless build-up method. In the coreless build-up method, a wiring layer (first wiring layer) is formed on a metal layer on the surface of a support (core), a build-up layer is further formed, and then the support (core) is removed to build up. This is a method of forming a wiring board with only layers. Since the printed wiring board manufactured by such a method is of a type in which a circuit pattern is embedded in an insulating layer, this method is called an ETS (Embedded Trace Substrate) method. According to Patent Document 1, as conceptually shown in FIGS. 10B and 10C, the etching sacrificial layer 212 is non-uniformly dissolved during Cu etching and / or accidentally occurs in the etching sacrificial layer 212. Even if Cu (Cu of the second copper layer 213 or the first wiring layer 226) is locally exposed due to a pinhole or the like that may exist locally, the underlying second copper layer 213 or the first is due to the local battery reaction. Melting of one wiring layer 226 (copper layer) is suppressed. As a result, the second copper layer 213 is uniformly etched in the plane, and it is said that the occurrence of local circuit dents in the first wiring layer 226 can be suppressed. Moreover, according to this method, since the etching sacrificial layer 212 is dissolved and removed by Cu etching, an additional step for removing the etching sacrificial layer 212 becomes unnecessary, and productivity is also improved.
国際公開第2017/141985号International Publication No. 2017/14 1985
 このように、プリント配線板の製造において、シード層の欠損や回路凹みの発生を有意に抑制できるという観点から、エッチング犠牲層を備えた銅箔は有用性が高いといえる。 ところで、MSAP法(図6及び7を参照)において、レーザー穿孔等によるビアホール114の形成(工程(b))に起因して、樹脂残渣(スミア)がビアホール114底部等に生じる場合があり、かかる樹脂残渣を除去する処理として、薬液を用いたデスミア処理が行われている。このデスミア処理は、上述したETS工法におけるビルドアップ層形成の際にも行われうる。一方、極薄銅箔としてエッチング犠牲層を備えた銅箔を採用する場合、図3に概念的に示されるように、穿孔後において、エッチング犠牲層212がビアホール214の側面から露出した状態となる。この状態でデスミア処理を行うと、ビアホール214側面以外の部分では第一銅層211によってエッチング犠牲層212が保護されるものの、ビアホール214側面部ではエッチング犠牲層212の露出部分から薬液が浸食しうる。このため、マイクロエッチングの開始時点において、既にエッチング犠牲層212が消失しているおそれがある。その結果、マイクロエッチング時にエッチング犠牲層212がシード層(第二銅層213)よりも優先的に溶解するという犠牲効果が十分に発揮されず、シード層に欠損213aが発生しうる。 As described above, it can be said that the copper foil provided with the etching sacrificial layer is highly useful from the viewpoint of significantly suppressing the occurrence of the seed layer defect and the circuit dent in the production of the printed wiring board. By the way, in the MSAP method (see FIGS. 6 and 7), resin residue (smear) may be generated at the bottom of the via hole 114 due to the formation of the via hole 114 by laser drilling or the like (step (b)). As a treatment for removing the resin residue, a desmear treatment using a chemical solution is performed. This desmear treatment can also be performed when forming the build-up layer in the above-mentioned ETS method. On the other hand, when a copper foil provided with an etching sacrificial layer is used as the ultrathin copper foil, the etching sacrificial layer 212 is exposed from the side surface of the via hole 214 after drilling, as conceptually shown in FIG. .. When the desmear treatment is performed in this state, the etching sacrificial layer 212 is protected by the first copper layer 211 in the portion other than the side surface of the via hole 214, but the chemical solution can erode from the exposed portion of the etching sacrificial layer 212 in the side surface portion of the via hole 214. .. Therefore, there is a possibility that the etching sacrificial layer 212 has already disappeared at the start of microetching. As a result, the sacrificial effect that the etching sacrificial layer 212 dissolves preferentially over the seed layer (second copper layer 213) at the time of microetching is not sufficiently exhibited, and a defect 213a may occur in the seed layer.
 一方、近年プリント配線板に要求される回路の更なる微細化に伴い、銅配線と絶縁樹脂材料との熱膨張差によって引き起こされる回路破断等の不具合を防止すべく、絶縁基材として低い熱膨張係数(CTE)を有する低CTE基材が広く採用されている。しかしながら、低CTE基材は概して硬化温度が高いため、銅箔と密着させる際のプレス温度が高温(例えば220℃以上)となりやすい。この点、Cu-Zn合金等のエッチング犠牲層を備えた銅箔を使用して高温プレス加工を行う場合、図5に概念的に示されるように、エッチング犠牲層212から銅層211,213に金属(例えばZn)等が拡散し、結果としてこれらの層が全体としてエッチング犠牲層212と類似した組成の合金層220となりうる。このため、マイクロエッチング時に、エッチング犠牲層212の犠牲効果が十分に発揮されず、エッチング犠牲層212とシード層(第二銅層213)とが一体として除去されるおそれがある。 On the other hand, with the further miniaturization of circuits required for printed wiring boards in recent years, low thermal expansion as an insulating base material is required to prevent problems such as circuit breakage caused by the difference in thermal expansion between copper wiring and insulating resin material. Low CTE substrates with a coefficient (CTE) are widely used. However, since the low CTE substrate generally has a high curing temperature, the press temperature at the time of adhering to the copper foil tends to be high (for example, 220 ° C. or higher). In this regard, when high-temperature press working is performed using a copper foil provided with an etching sacrificial layer such as a Cu—Zn alloy, the etching sacrificial layer 212 is transferred to the copper layers 211 and 213 as conceptually shown in FIG. Metals (eg, Zn) and the like are diffused, and as a result, these layers can become an alloy layer 220 having a composition similar to that of the etching sacrificial layer 212 as a whole. Therefore, at the time of micro-etching, the sacrificial effect of the etching sacrificial layer 212 may not be sufficiently exhibited, and the etching sacrificial layer 212 and the seed layer (second copper layer 213) may be removed together.
 本発明者らは、今般、プリント配線板の製造において、シード層(銅層)と第一のエッチング犠牲層との間に、エッチングレートがCuより高く第一のエッチング犠牲層より低い第二のエッチング犠牲層を介在させた金属箔を用いることで、穿孔後に薬液処理を行った場合でも、シード層の欠損の発生を抑制できるとの知見を得た。また、シード層(銅層)と第一のエッチング犠牲層との間に第二のエッチング犠牲層を介在させることで、高温プレス加工を行った場合でも、第一のエッチング犠牲層からシード層への金属等の拡散を効果的に防止し、その結果、エッチング犠牲層が本来有する犠牲効果を発揮できるとの知見も得た。 In the manufacture of printed wiring boards, the present inventors have now developed a second etching rate between the seed layer (copper layer) and the first etching sacrificial layer, which is higher than Cu and lower than the first etching sacrificial layer. It was found that by using a metal foil with an etching sacrificial layer interposed, it is possible to suppress the occurrence of defects in the seed layer even when the chemical treatment is performed after drilling. Further, by interposing a second etching sacrificial layer between the seed layer (copper layer) and the first etching sacrificial layer, even when high temperature press working is performed, the first etching sacrificial layer is transferred to the seed layer. It was also found that the diffusion of metals and the like can be effectively prevented, and as a result, the sacrificial effect inherent in the etching sacrificial layer can be exhibited.
 したがって、本発明の第一の目的は、穿孔後に薬液処理を行った場合でも、シード層の欠損の発生を抑制可能な、プリント配線板製造用金属箔を提供することにある。また、本発明の第二の目的は、高温プレス加工を行った場合でも、第一のエッチング犠牲層からシード層への金属等の拡散を効果的に防止し、その結果、エッチング犠牲層が本来有する犠牲効果を発揮可能な、プリント配線板製造用金属箔を提供することにある。 Therefore, a first object of the present invention is to provide a metal foil for manufacturing a printed wiring board, which can suppress the occurrence of a defect in the seed layer even when a chemical treatment is performed after drilling. A second object of the present invention is to effectively prevent the diffusion of metals and the like from the first etching sacrificial layer to the seed layer even when high-temperature press working is performed, and as a result, the etching sacrificial layer is originally formed. It is an object of the present invention to provide a metal foil for manufacturing a printed wiring board, which can exert a sacrificial effect.
 本発明の一態様によれば、第1エッチング犠牲層、第2エッチング犠牲層、及び銅層をこの順に備え、Cuのエッチングレートに対する、前記第1エッチング犠牲層のエッチングレートの比をrとし、Cuのエッチングレートに対する、前記第2エッチング犠牲層のエッチングレートの比をrとした場合、r>r>1.0を満たす、プリント配線板製造用金属箔が提供される。 According to one aspect of the present invention, the first etching sacrificial layer, the second etching sacrificial layer, and comprises a copper layer in this order, to the etching rate of Cu, the ratio of the etching rate of the first etching sacrificial layer and r 1 When the ratio of the etching rate of the second etching sacrificial layer to the etching rate of Cu is r 2 , a metal foil for manufacturing a printed wiring board that satisfies r 1 > r 2 > 1.0 is provided.
 本発明の他の一態様によれば、キャリア、剥離層、及び前記金属箔をこの順に備えた、キャリア付金属箔が提供される。 According to another aspect of the present invention, a metal foil with a carrier provided with a carrier, a release layer, and the metal foil in this order is provided.
 本発明の他の一態様によれば、前記金属箔を備えた、金属張積層板が提供される。 According to another aspect of the present invention, a metal-clad laminate provided with the metal foil is provided.
 本発明の他の一態様によれば、前記金属箔又は前記キャリア付金属箔を用いることを特徴とする、プリント配線板の製造方法が提供される。 According to another aspect of the present invention, there is provided a method for manufacturing a printed wiring board, which comprises using the metal foil or the metal foil with a carrier.
本発明の金属箔を含むキャリア付金属箔の一例を示す断面模式図である。It is sectional drawing which shows an example of the metal foil with a carrier containing the metal foil of this invention. エッチング犠牲層が2層の積層体における穿孔後の薬液浸食を説明するための断面模式図である。It is sectional drawing for demonstrating the chemical solution erosion after perforation in the laminated body which has two etching sacrificial layers. エッチング犠牲層が1層の積層体における穿孔後の薬液浸食を説明するための断面模式図である。It is sectional drawing for demonstrating the chemical solution erosion after perforation in the laminated body having one etching sacrificial layer. エッチング犠牲層が2層の積層体における高温プレス加工時の拡散を説明するための断面模式図である。It is sectional drawing for demonstrating the diffusion at the time of high temperature press working in the laminated body which has two etching sacrificial layers. エッチング犠牲層が1層の積層体における高温プレス加工時の拡散を説明するための断面模式図である。It is sectional drawing for demonstrating the diffusion at the time of high temperature press working in the laminated body with one etching sacrificial layer. MSAP法を用いたプリント配線板の製造方法の従来例における、前半の工程を示す図である。It is a figure which shows the process of the first half in the conventional example of the manufacturing method of the printed wiring board using the MSAP method. MSAP法を用いたプリント配線板の製造方法の従来例における、図6に示される工程に続く後半の工程を示す。The latter half of the process following the process shown in FIG. 6 in the conventional example of the method of manufacturing a printed wiring board using the MSAP method is shown. 従来の銅箔を用いたMSAP法におけるシード層(極薄銅箔)の不均一エッチングを説明するための断面模式図である。It is sectional drawing for demonstrating the non-uniform etching of the seed layer (ultra-thin copper foil) in the MSAP method using the conventional copper foil. MSAP法におけるエッチング犠牲層の機能を説明するための断面模式図である。It is sectional drawing for demonstrating the function of the etching sacrificial layer in the MSAP method. コアレスビルドアップ法(ETS工法)におけるエッチング犠牲層の機能を説明するための断面模式図である。It is sectional drawing for demonstrating the function of the etching sacrifice layer in the coreless build-up method (ETS method). 本発明の金属箔を用いたコアレスビルドアップ法(ETS工法)によるプリント配線板の製造方法の一例における、前半の工程を示す図である。It is a figure which shows the process of the first half in an example of the manufacturing method of the printed wiring board by the coreless build-up method (ETS method) using the metal foil of this invention. 本発明の金属箔を用いたコアレスビルドアップ法(ETS工法)によるプリント配線板の製造方法の一例における、図11に示される工程に続く後半の工程を示す。The latter half of the process following the process shown in FIG. 11 in an example of the method for manufacturing a printed wiring board by the coreless build-up method (ETS method) using the metal foil of the present invention is shown. シード層に欠損が生じない場合のエッチング過程を説明する図である。It is a figure explaining the etching process when a defect does not occur in a seed layer. 追加銅層の残存がシード層の欠損を引き起こす場合のエッチング過程を概念的に説明する図である。It is a figure which conceptually explains the etching process when the residual of an additional copper layer causes the defect of a seed layer.
 プリント配線板製造用金属箔
 本発明による金属箔は、プリント配線板の製造に用いられる金属箔である。図1に本発明の金属箔の模式断面図が示される。図1に示されるように、金属箔10は、第1エッチング犠牲層11、第2エッチング犠牲層12、及び銅層(シード層)13をこの順に備える。金属箔10は、必要に応じて第1エッチング犠牲層11の第2エッチング犠牲層12と反対側の表面に、追加銅層14をさらに備えてもよい。また、金属箔10は、追加銅層14と第1エッチング犠牲層11との間に拡散防止層15をさらに備えてもよい。一般的には金属箔10の絶縁樹脂との積層の際、絶縁樹脂と密着しない銅層が「追加銅層14」であり、絶縁樹脂と密着する銅層が「銅層13」である。なお、本発明の金属箔10をETS工法に適用する場合は、回路パターンが形成されない側の銅層が「追加銅層14」であり、回路パターンが形成される側の銅層が「銅層13」である。本明細書において、「銅層13」は専ら回路パターンの形成に用いられる層であるため、この機能に着目して「銅層13」を「シード層13」と称することがある。
Metal Foil for Manufacturing Printed Wiring Boards The metal foil according to the present invention is a metal foil used for manufacturing printed wiring boards. FIG. 1 shows a schematic cross-sectional view of the metal foil of the present invention. As shown in FIG. 1, the metal foil 10 includes a first etching sacrificial layer 11, a second etching sacrificial layer 12, and a copper layer (seed layer) 13 in this order. If necessary, the metal foil 10 may further include an additional copper layer 14 on the surface of the first etching sacrificial layer 11 opposite to the second etching sacrificial layer 12. Further, the metal foil 10 may further include a diffusion prevention layer 15 between the additional copper layer 14 and the first etching sacrificial layer 11. Generally, when the metal foil 10 is laminated with the insulating resin, the copper layer that does not adhere to the insulating resin is the "additional copper layer 14", and the copper layer that adheres to the insulating resin is the "copper layer 13". When the metal leaf 10 of the present invention is applied to the ETS method, the copper layer on the side where the circuit pattern is not formed is the "additional copper layer 14", and the copper layer on the side where the circuit pattern is formed is the "copper layer". 13 ". In the present specification, since the "copper layer 13" is a layer exclusively used for forming a circuit pattern, the "copper layer 13" may be referred to as a "seed layer 13" by paying attention to this function.
 第1エッチング犠牲層11及び第2エッチング犠牲層12は銅合金層ではありうるとしても、金属銅層ではないため、金属箔10はその内層ないし外層として銅以外の金属又は合金を含むことになる。このため、本発明では金属箔10を「プリント配線板製造用金属箔」と称しているが、この金属箔10は一般的にプリント配線板製造用銅箔として認識される銅箔と同様の用途に使用することが可能である。また、「第1エッチング犠牲層」及び「第2エッチング犠牲層」の名称に含まれる序列はキャリアがある場合にキャリア側から数えた順序に従ったものである。例えば、金属箔10が図1に示されるようなキャリア付金属箔16の形態で供される場合、キャリア17、剥離層18、追加銅層14(存在する場合)、拡散防止層15(存在する場合)、第1エッチング犠牲層11、第2エッチング犠牲層12、及び銅層13(シード層)の順に構成されていることになる。 Although the first etching sacrificial layer 11 and the second etching sacrificial layer 12 may be copper alloy layers, they are not metallic copper layers, so that the metal foil 10 contains a metal or alloy other than copper as its inner layer or outer layer. .. Therefore, in the present invention, the metal foil 10 is referred to as a "metal foil for manufacturing a printed wiring board", but the metal foil 10 has the same application as a copper foil generally recognized as a copper foil for manufacturing a printed wiring board. It can be used for. In addition, the order included in the names of the "first etching sacrificial layer" and the "second etching sacrificial layer" follows the order counted from the carrier side when there is a carrier. For example, when the metal foil 10 is provided in the form of a metal leaf 16 with a carrier as shown in FIG. 1, a carrier 17, a release layer 18, an additional copper layer 14 (if present), and a diffusion prevention layer 15 (exist). Case), the first etching sacrificial layer 11, the second etching sacrificial layer 12, and the copper layer 13 (seed layer) are configured in this order.
 そして、第1エッチング犠牲層11及び第2エッチング犠牲層12は、Cuのエッチングレートに対する、第1エッチング犠牲層11のエッチングレートの比をrとし、Cuのエッチングレートに対する、第2エッチング犠牲層12のエッチングレートの比をrとした場合、r>r>1.0を満たすことによって特徴付けられる。このように、プリント配線板の製造において、銅層13と第1エッチング犠牲層11との間に、エッチングレート比が第1エッチング犠牲層11より低い第2エッチング犠牲層12を介在させた金属箔を用いることで、穿孔後に薬液処理を行った場合でも、シード層の欠損等の発生を抑制できる。 Then, in the first etching sacrificial layer 11 and the second etching sacrificial layer 12, the ratio of the etching rate of the first etching sacrificial layer 11 to the etching rate of Cu is set to r 1, and the second etching sacrificial layer with respect to the etching rate of Cu. Assuming that the ratio of the etching rates of 12 is r 2 , it is characterized by satisfying r 1 > r 2 > 1.0. As described above, in the production of the printed wiring board, a metal foil in which a second etching sacrificial layer 12 having an etching rate ratio lower than that of the first etching sacrificial layer 11 is interposed between the copper layer 13 and the first etching sacrificial layer 11. By using the above, it is possible to suppress the occurrence of defects in the seed layer even when the chemical treatment is performed after the perforation.
 前述のとおり、図3に概念的に示されるように、銅層211、213間に1層のエッチング犠牲層212が介在された従来の金属箔210と絶縁層228との積層体では、穿孔後において、エッチング犠牲層212がビアホール214の側面から露出した状態となる。この状態でデスミア処理を行うと、ビアホール214側面以外の部分では第一銅層211によってエッチング犠牲層212が保護されるものの、ビアホール214側面部ではエッチング犠牲層212の露出部分から薬液が浸食しうる。とりわけ、エッチング犠牲層212は、銅層211,213と比べてエッチングされやすい層であるため、薬液浸食が起こりやすいといえる。このため、マイクロエッチングの開始時点において、既にエッチング犠牲層212が消失しているおそれがある。その結果、マイクロエッチング時にエッチング犠牲層212がシード層(第二銅層213)よりも優先的に溶解するという犠牲効果が十分に発揮されず、シード層に欠損213aが発生しうる。 As described above, as conceptually shown in FIG. 3, in the conventional laminate of the metal foil 210 and the insulating layer 228 in which one etching sacrificial layer 212 is interposed between the copper layers 211 and 213, after drilling. The etching sacrificial layer 212 is exposed from the side surface of the via hole 214. When desmear treatment is performed in this state, the etching sacrificial layer 212 is protected by the first copper layer 211 in the portion other than the side surface of the via hole 214, but the chemical solution can erode from the exposed portion of the etching sacrificial layer 212 in the side surface portion of the via hole 214. .. In particular, since the etching sacrificial layer 212 is a layer that is more easily etched than the copper layers 211 and 213, it can be said that chemical erosion is likely to occur. Therefore, there is a possibility that the etching sacrificial layer 212 has already disappeared at the start of microetching. As a result, the sacrificial effect that the etching sacrificial layer 212 dissolves preferentially over the seed layer (second copper layer 213) at the time of microetching is not sufficiently exhibited, and a defect 213a may occur in the seed layer.
 これに対して、本発明の金属箔10を用いることで、上記技術的課題を好都合に解消することができる。すなわち、図2に概念的に示されるように、金属箔10(追加銅層14、第1エッチング犠牲層11、第2エッチング犠牲層12、及び銅層13を備える)と絶縁層28との積層体では、穿孔によるビアホール54形成後にデスミア処理を行った場合でも、第2エッチング犠牲層12がシード層(銅層13)上に残存する。換言すれば、第2エッチング犠牲層12は、そのエッチングレート比rが第1エッチング犠牲層11のエッチングレート比rよりも低いため、デスミア等の薬液処理の際に、局部電池反応により第1エッチング犠牲層11が第2エッチング犠牲層12等よりも優先的に溶解する。こうして、第2エッチング犠牲層12の薬液浸食が抑制され、マイクロエッチングの開始時点において、積層体にはシード層13のみならず少なくとも第2エッチング犠牲層12が残存することになる。これにより、マイクロエッチング時にCuが局部的に露出する状況が生じてしまっても、局部電池反応により第2エッチング犠牲層12が優先的に溶解することができ、その結果、下地のシード層13の溶解が抑制され、欠損の発生が生じにくくなる。 On the other hand, by using the metal foil 10 of the present invention, the above technical problem can be conveniently solved. That is, as conceptually shown in FIG. 2, the metal foil 10 (including the additional copper layer 14, the first etching sacrificial layer 11, the second etching sacrificial layer 12, and the copper layer 13) and the insulating layer 28 are laminated. In the body, the second etching sacrificial layer 12 remains on the seed layer (copper layer 13) even when the desmear treatment is performed after the via hole 54 is formed by drilling. In other words, since the etching rate ratio r 2 of the second etching sacrificial layer 12 is lower than the etching rate ratio r 1 of the first etching sacrificial layer 11, the second etching sacrificial layer 12 is subjected to a local battery reaction during chemical treatment such as desmear. The 1 etching sacrificial layer 11 dissolves preferentially over the 2nd etching sacrificial layer 12 and the like. In this way, the chemical erosion of the second etching sacrificial layer 12 is suppressed, and at the start of microetching, not only the seed layer 13 but also at least the second etching sacrificial layer 12 remains in the laminate. As a result, even if a situation occurs in which Cu is locally exposed during micro-etching, the second etching sacrificial layer 12 can be preferentially dissolved by the local battery reaction, and as a result, the underlying seed layer 13 Dissolution is suppressed and defects are less likely to occur.
 また、銅層13と第1エッチング犠牲層11との間に第2エッチング犠牲層12を介在させることで、例えば220℃以上の高温プレス加工を行った場合でも、第1エッチング犠牲層11からシード層(銅層13)への金属等の拡散を効果的に防止できる。この点、前述したように、Cu-Zn合金等で構成される1層のエッチング犠牲層を備えた銅箔を使用して高温プレス加工を行う場合、図5に概念的に示されるように、エッチング犠牲層212から銅層211,213に金属(例えばZn)等が拡散し、結果としてこれらの層が全体としてエッチング犠牲層212と類似した組成の合金層220となりうる。このため、マイクロエッチング時に、エッチング犠牲層212の犠牲効果が十分に発揮されず、エッチング犠牲層212とシード層(第二銅層213)とが一体として除去されるおそれがある。これに対して、本発明の金属箔10においては、図4に概念的に示されるように、第1エッチング犠牲層11と銅層13との間に第2エッチング犠牲層12が介在する。また、必要に応じて、第1エッチング犠牲層11と追加銅層14との間に拡散防止層15が介在しうる。このため、第1エッチング犠牲層11からの金属の拡散が第2エッチング犠牲層12ないし拡散防止層15(存在する場合)で防止される。その結果、シード層13及び追加銅層14(存在する場合)が合金化するのを抑制でき、上記技術的課題を解消することができる。これにより、低い熱膨張係数(CTE)を有するが硬化温度が高い低CTE基材を絶縁基材として用いることができ、結果としてプリント配線板の製造において回路の更なる微細化を実現することが可能となる。 Further, by interposing the second etching sacrificial layer 12 between the copper layer 13 and the first etching sacrificial layer 11, for example, even when high-temperature press working at 220 ° C. or higher is performed, the seed is seeded from the first etching sacrificial layer 11. It is possible to effectively prevent the diffusion of metals and the like into the layer (copper layer 13). In this regard, as described above, when high-temperature press working is performed using a copper foil having one etching sacrificial layer composed of a Cu—Zn alloy or the like, as conceptually shown in FIG. Metals (for example, Zn) and the like diffuse from the etching sacrificial layer 212 to the copper layers 211 and 213, and as a result, these layers can become an alloy layer 220 having a composition similar to that of the etching sacrificial layer 212 as a whole. Therefore, at the time of micro-etching, the sacrificial effect of the etching sacrificial layer 212 may not be sufficiently exhibited, and the etching sacrificial layer 212 and the seed layer (second copper layer 213) may be removed together. On the other hand, in the metal foil 10 of the present invention, as conceptually shown in FIG. 4, the second etching sacrificial layer 12 is interposed between the first etching sacrificial layer 11 and the copper layer 13. Further, if necessary, a diffusion prevention layer 15 may be interposed between the first etching sacrificial layer 11 and the additional copper layer 14. Therefore, diffusion of the metal from the first etching sacrificial layer 11 is prevented by the second etching sacrificial layer 12 to the diffusion prevention layer 15 (if present). As a result, the seed layer 13 and the additional copper layer 14 (if present) can be prevented from alloying, and the above technical problems can be solved. As a result, a low CTE base material having a low coefficient of thermal expansion (CTE) but a high curing temperature can be used as an insulating base material, and as a result, further miniaturization of circuits can be realized in the manufacture of printed wiring boards. It will be possible.
 金属箔10は高温プレス加工などのプロセスを経るため、真空中、220℃で2時間加熱した後においても、第1エッチング犠牲層11からシード層13への拡散が起こらないことが好ましい。本明細書において「拡散が起こらない」とは、(i)金属箔10加熱前の銅層13に1重量%以下(0重量%を含む)しか含まれず、かつ、(ii)金属箔10加熱前の第1エッチング犠牲層11及び第2エッチング犠牲層12の少なくとも一方に1重量%以上含まれる元素(以下、「拡散確認元素」とする)が、金属箔10加熱後の銅層13の所定の測定地点において1重量%以下の含有率であることをいう。したがって、例えば、銅層13における加熱前及び加熱後の炭素含有率がそれぞれ0.5重量%及び2重量%であったとしても、第1エッチング犠牲層11及び第2エッチング犠牲層12のいずれにおいても、加熱前の炭素含有率が1重量%未満である場合には、炭素は拡散確認元素に該当しない(上記(ii)を満足しない)ため、このことにより拡散が起こったとはみなされない。ここで、「金属箔10加熱後の銅層13の測定地点」とは、(a)銅層13の第2エッチング犠牲層12と反対側の表面、又は(b)銅層13の第2エッチング犠牲層12との境界面から銅層13の深さ方向に0.3μm離れた地点のうち、第2エッチング犠牲層12からの距離が近い方の地点をいう。すなわち、銅層13の厚さが0.3μm以下の場合は上記(a)が測定地点となり、銅層13の厚さが0.3μmを超える場合は上記(b)が測定地点となる。加熱後の金属箔10において、銅層13と第2エッチング犠牲層12との境界が判別不可能となった場合には、拡散が起こったとみなすものとする。なお、金属箔10の加熱時に、銅層13の第2エッチング犠牲層12と反対側の面には、拡散確認元素を実質的に含まない別の部材(例えば支持体等)が接着されていてもよい。各層の元素含有率は、後述する実施例で言及されるように、グロー放電発光分析装置(GD-OES)を用いて金属箔10の深さ方向元素分析を行うことにより特定される値とする。 Since the metal foil 10 undergoes a process such as high-temperature press working, it is preferable that diffusion from the first etching sacrificial layer 11 to the seed layer 13 does not occur even after heating at 220 ° C. for 2 hours in vacuum. In the present specification, "diffusion does not occur" means that (i) the copper layer 13 before heating the metal leaf 10 contains only 1% by weight or less (including 0% by weight), and (ii) the metal leaf 10 is heated. An element contained in at least one of the previous first etching sacrificial layer 11 and the second etching sacrificial layer 12 in an amount of 1% by weight or more (hereinafter referred to as “diffusion confirmation element”) is a predetermined value of the copper layer 13 after heating the metal foil 10. It means that the content is 1% by weight or less at the measurement point of. Therefore, for example, even if the carbon contents of the copper layer 13 before and after heating are 0.5% by weight and 2% by weight, respectively, in either the first etching sacrificial layer 11 or the second etching sacrificial layer 12. However, when the carbon content before heating is less than 1% by weight, carbon does not correspond to a diffusion confirmation element (does not satisfy the above (ii)), and therefore it is not considered that diffusion has occurred due to this. Here, the "measurement point of the copper layer 13 after heating the metal foil 10" is (a) the surface of the copper layer 13 opposite to the second etching sacrificial layer 12, or (b) the second etching of the copper layer 13. This refers to a point that is 0.3 μm away from the interface with the sacrificial layer 12 in the depth direction of the copper layer 13 and is closer to the second etching sacrificial layer 12. That is, when the thickness of the copper layer 13 is 0.3 μm or less, the above (a) is the measurement point, and when the thickness of the copper layer 13 exceeds 0.3 μm, the above (b) is the measurement point. When the boundary between the copper layer 13 and the second etching sacrificial layer 12 becomes indistinguishable in the heated metal foil 10, it is considered that diffusion has occurred. When the metal foil 10 is heated, another member (for example, a support) that does not substantially contain a diffusion confirmation element is adhered to the surface of the copper layer 13 opposite to the second etching sacrificial layer 12. May be good. The elemental content of each layer is set to a value specified by performing elemental analysis in the depth direction of the metal foil 10 using a glow discharge emission spectrometer (GD-OES) as referred to in Examples described later. ..
 第1エッチング犠牲層11は、エッチングレートがCu及び第2エッチング犠牲層12よりも高いものであれば特に限定されない。換言すれば、Cuのエッチングレートに対する、第1エッチング犠牲層11のエッチングレートの比r(以下、エッチングレート比rという)と、Cuのエッチングレートに対する、第2エッチング犠牲層12のエッチングレートの比r(以下、エッチングレート比rという)とが、r>r>1.0を満たす。この関係を満たすことで、Cuエッチングによって第1エッチング犠牲層11をシード層13等と同時に溶解除去することができるとともに、第1エッチング犠牲層11及び第2エッチング犠牲層12が不均一に溶解してCuが局所的に露出したとしても、局部電池反応により下地の銅層(シード層)の溶解が抑制される。それにより面内で均一にシード層のエッチングを行えるとともに、シード層の欠損や局所的な回路凹みや欠損の発生を抑制することができる。また、上記関係を満たすことで、穿孔後のデスミア処理のように、第1エッチング犠牲層11及び第2エッチング犠牲層12の両方が局所的に露出した状態で薬液処理を行う場合に、局部電池反応により第1エッチング犠牲層11が第2エッチング犠牲層12等よりも優先的に溶解される。これにより、マイクロエッチング開始時点において、第2エッチング犠牲層12を溶解が抑制された状態で残存させることができ、その結果、穿孔後に薬液処理を行った場合でも、シード層の欠損等の発生を抑制できる。 The first etching sacrificial layer 11 is not particularly limited as long as the etching rate is higher than that of Cu and the second etching sacrificial layer 12. In other words, the ratio of the etching rate of the first etching sacrificial layer 11 to the etching rate of Cu r 1 (hereinafter referred to as the etching rate ratio r 1 ) and the etching rate of the second etching sacrificial layer 12 to the etching rate of Cu. The ratio r 2 (hereinafter referred to as the etching rate ratio r 2 ) satisfies r 1 > r 2 > 1.0. By satisfying this relationship, the first etching sacrificial layer 11 can be dissolved and removed at the same time as the seed layer 13 and the like by Cu etching, and the first etching sacrificial layer 11 and the second etching sacrificial layer 12 are non-uniformly dissolved. Even if the Cu is locally exposed, the dissolution of the underlying copper layer (seed layer) is suppressed by the local battery reaction. As a result, the seed layer can be uniformly etched in the plane, and it is possible to suppress the occurrence of the seed layer defect and local circuit dents and defects. Further, by satisfying the above relationship, when the chemical solution treatment is performed with both the first etching sacrificial layer 11 and the second etching sacrificial layer 12 locally exposed as in the desmear treatment after perforation, the local battery is used. By the reaction, the first etching sacrificial layer 11 is dissolved preferentially over the second etching sacrificial layer 12 and the like. As a result, at the start of micro-etching, the second etching sacrificial layer 12 can be left in a state where dissolution is suppressed, and as a result, even when the chemical solution treatment is performed after perforation, the seed layer may be damaged. Can be suppressed.
 第1エッチング犠牲層11のエッチングレートは、第1エッチング犠牲層11と同じ材料で構成される箔サンプルと、参照試料としての銅箔サンプルとを、エッチング工程において同じ時間処理を行い、エッチングによる各サンプルの厚み変化を溶解時間で除することにより算出されるものである。なお、厚み変化は両サンプルの重量減少量を測定して、それぞれの金属の密度から厚さに換算することにより決定されてもよい。好ましいエッチングレート比rは、高い犠牲効果を得る観点から、1.2以上であり、より好ましくは1.25以上、さらに好ましくは1.3以上である。エッチングレート比rの上限は特に限定されないが、面内における第1エッチング犠牲層11の溶解速度を均一に保ち、第2エッチング犠牲層12ないし銅層13との局部電池反応を面内均一に作用させるためには、エッチングレート比rは5.0以下が好ましく、より好ましくは4.5以下であり、さらに好ましくは4.0以下であり、特に好ましくは3.5以下であり、最も好ましくは3.0以下である。ここで、エッチング液としては、酸化還元反応により銅を溶解できる公知の液が採用可能である。エッチング液の例としては、塩化第二銅(CuCl)水溶液、塩化第二鉄(FeCl)水溶液、過硫酸アンモニウム水溶液、過硫酸ナトリウム水溶液、過硫酸カリウム水溶液、硫酸/過酸化水素水等の水溶液等が挙げられる。この中でもCuのエッチングレートを精密に制御でき、第1エッチング犠牲層11とのエッチング時間差を確保するのに好適な点から、過硫酸ナトリウム水溶液、過硫酸カリウム水溶液、及び硫酸/過酸化水素水が好ましく、この中でも硫酸/過酸化水素水が最も好ましい。エッチング方式としては、スプレー法、浸漬法等が採用できる。また、エッチング温度としては、25℃以上70℃以下の範囲で適宜設定されうるものである。本発明におけるエッチングレートは、上記エッチング液やエッチング方式等の組合せと、下記に示す第1エッチング犠牲層11の材料の選択とによって調整されるものである。 The etching rate of the first etching sacrificial layer 11 is such that a foil sample made of the same material as the first etching sacrificial layer 11 and a copper foil sample as a reference sample are subjected to the same time treatment in the etching step and etched. It is calculated by dividing the change in sample thickness by the dissolution time. The change in thickness may be determined by measuring the amount of weight loss of both samples and converting the density of each metal into a thickness. The preferable etching rate ratio r 1 is 1.2 or more, more preferably 1.25 or more, and further preferably 1.3 or more from the viewpoint of obtaining a high sacrificial effect. The upper limit of the etching rate ratio r 1 is not particularly limited, but the dissolution rate of the first etching sacrificial layer 11 in the plane is kept uniform, and the local battery reaction with the second etching sacrificial layer 12 to the copper layer 13 is made uniform in the plane. to effect the etching rate ratio r 1 is preferably 5.0 or less, more preferably 4.5 or less, more preferably 4.0 or less, particularly preferably 3.5 or less, most It is preferably 3.0 or less. Here, as the etching solution, a known solution capable of dissolving copper by a redox reaction can be adopted. Examples of the etching solution include an aqueous solution of cupric chloride (CuCl 2 ), an aqueous solution of ferric chloride (FeCl 3 ), an aqueous solution of ammonium persulfate, an aqueous solution of sodium persulfate, an aqueous solution of potassium persulfate, and an aqueous solution of sulfuric acid / hydrogen peroxide. And so on. Among these, sodium persulfate aqueous solution, potassium persulfate aqueous solution, and sulfuric acid / hydrogen peroxide solution are suitable from the viewpoint that the etching rate of Cu can be precisely controlled and the etching time difference from the first etching sacrificial layer 11 is secured. Of these, sulfuric acid / hydrogen peroxide solution is most preferable. As the etching method, a spray method, a dipping method or the like can be adopted. The etching temperature can be appropriately set in the range of 25 ° C. or higher and 70 ° C. or lower. The etching rate in the present invention is adjusted by the combination of the etching solution, the etching method, and the like, and the selection of the material of the first etching sacrificial layer 11 shown below.
 第1エッチング犠牲層11を構成する材料はCuよりも電気化学的に卑な金属が好ましく、そのような好ましい金属の例としては、Cu-Zn合金、Cu-Sn合金、Cu-Mn合金、Cu-Al合金、Cu-Mg合金、Fe金属、Zn金属、Co金属、Mo金属及びこれらの酸化物、並びにこれらの組合せが挙げられ、特に好ましくはCu-Zn合金である。第1エッチング犠牲層11を構成しうるCu-Zn合金は、高い犠牲効果を得る観点から、Zn含有量が40重量%以上であることが好ましく、より好ましくは50重量%以上、さらに好ましくは60重量%以上、特に好ましくは70重量%以上である。また、Cu-Zn合金におけるZn含有量は、上述した第1エッチング犠牲層11の面内溶解速度の均一な保持、及び第2エッチング犠牲層12ないし銅層13との局部電池反応の面内均一作用の観点から、好ましくは98重量%以下、より好ましくは96重量%以下であり、さらに好ましくは94%重量%以下である。第1エッチング犠牲層11は0.1μm以上5μm以下の厚さdを有するのが好ましく、より好ましい厚さdは0.1μm以上4.5μm以下、さらに好ましくは0.2μm以上4μm以下、特に好ましくは0.2μm以上3.5μm以下、最も好ましくは0.3μm以上3μm以下である。 The material constituting the first etching sacrificial layer 11 is preferably a metal that is electrochemically lower than Cu, and examples of such a preferable metal include Cu—Zn alloy, Cu—Sn alloy, Cu—Mn alloy, and Cu. -Al alloy, Cu-Mg alloy, Fe metal, Zn metal, Co metal, Mo metal and their oxides, and combinations thereof are mentioned, and Cu—Zn alloy is particularly preferable. The Cu—Zn alloy that can form the first etching sacrificial layer 11 preferably has a Zn content of 40% by weight or more, more preferably 50% by weight or more, still more preferably 60, from the viewpoint of obtaining a high sacrificial effect. By weight or more, particularly preferably 70% by weight or more. Further, the Zn content in the Cu—Zn alloy is such that the in-plane dissolution rate of the first etching sacrificial layer 11 is uniformly maintained and the in-plane reaction of the local battery reaction with the second etching sacrificial layer 12 to the copper layer 13 is uniform. From the viewpoint of action, it is preferably 98% by weight or less, more preferably 96% by weight or less, and further preferably 94% by weight or less. The first etching sacrificial layer 11 preferably has a thickness d 1 of 0.1 μm or more and 5 μm or less, and a more preferable thickness d 1 is 0.1 μm or more and 4.5 μm or less, more preferably 0.2 μm or more and 4 μm or less. It is particularly preferably 0.2 μm or more and 3.5 μm or less, and most preferably 0.3 μm or more and 3 μm or less.
 第2エッチング犠牲層12は、エッチングレートがCuより高く、かつ、第1エッチング犠牲層11より低い(すなわち前述したr>r>1.0の関係を満たす)ものであれば特に限定されない。エッチングレートがCuより高ければ(エッチングレート比rが1.0より高ければ)Cuエッチングによって同時に溶解除去することができるとともに、第2エッチング犠牲層12が不均一に溶解してCuが局所的に露出したとしても、局部電池反応により下地の銅層(シード層)の溶解が抑制され、それにより面内で均一にシード層のエッチングを行えるとともに、シード層の欠損や局所的な回路凹みや欠損の発生を抑制することができる。また、エッチングレート比rがエッチングレート比rより低いことで、第1エッチング犠牲層11及び第2エッチング犠牲層12の両方が局所的に露出した状態で薬液処理を行う場合に、局部電池反応により第1エッチング犠牲層11が第2エッチング犠牲層12等よりも優先的に溶解される。これにより、マイクロエッチング開始時点において、第2エッチング犠牲層12を溶解が抑制された状態で残存させることができ、その結果、穿孔後に薬液処理を行った場合でも、シード層の欠損等の発生を抑制できる。第2エッチング犠牲層12のエッチングレートは、第1エッチング犠牲層11に関して上述したとおりであり、エッチング液やエッチング方式等の好ましい態様は、第2エッチング犠牲層12にもそのまま当てはまる。好ましいエッチングレート比rは、高い犠牲効果を得る観点から、1.2以上であり、より好ましくは1.25以上である。エッチングレート比rの上限は特に限定されないが、面内における第2エッチング犠牲層12の溶解速度を均一に保ち、銅層13との局部電池反応を面内均一に作用させるためには、エッチングレート比rは5.0以下が好ましく、より好ましくは4.5以下であり、さらに好ましくは4.0以下であり、さらに好ましくは3.5以下であり、特に好ましくは3.0以下であり、最も好ましくは2.7以下である。 The second etching sacrificial layer 12 is not particularly limited as long as it has an etching rate higher than Cu and lower than the first etching sacrificial layer 11 (that is, satisfying the above-mentioned relationship of r 1 > r 2 > 1.0). .. With the higher etching rate than Cu can be simultaneously dissolved and removed by (etching rate ratio r 2 is higher if more 1.0) Cu etching, Cu second etching sacrificial layer 12 is dissolved unevenly localized Even if it is exposed to the surface, the local battery reaction suppresses the dissolution of the underlying copper layer (seed layer), which enables uniform etching of the seed layer in the plane, as well as chipping of the seed layer and local circuit dents. The occurrence of defects can be suppressed. Further, since the etching rate ratio r 2 is lower than the etching rate ratio r 1 , when the chemical solution treatment is performed in a state where both the first etching sacrificial layer 11 and the second etching sacrificial layer 12 are locally exposed, the local battery is used. By the reaction, the first etching sacrificial layer 11 is dissolved preferentially over the second etching sacrificial layer 12 and the like. As a result, at the start of micro-etching, the second etching sacrificial layer 12 can be left in a state where dissolution is suppressed, and as a result, even when the chemical solution treatment is performed after perforation, the seed layer may be damaged. Can be suppressed. The etching rate of the second etching sacrificial layer 12 is as described above with respect to the first etching sacrificial layer 11, and preferred embodiments such as an etching solution and an etching method also apply to the second etching sacrificial layer 12 as they are. The preferable etching rate ratio r 2 is 1.2 or more, more preferably 1.25 or more, from the viewpoint of obtaining a high sacrificial effect. The upper limit of the etching rate ratio r 2 is not particularly limited, but in order to keep the dissolution rate of the second etching sacrificial layer 12 in the plane uniform and allow the local battery reaction with the copper layer 13 to act uniformly in the plane, etching is performed. The rate ratio r 2 is preferably 5.0 or less, more preferably 4.5 or less, still more preferably 4.0 or less, still more preferably 3.5 or less, and particularly preferably 3.0 or less. Yes, most preferably 2.7 or less.
 第2エッチング犠牲層12を構成する材料は、高い犠牲効果を得る観点から、Cuよりも電気化学的に卑な金属が好ましく、そのような好ましい金属の例としては、Cu-Zn合金、Cu-Sn合金、Cu-Mn合金、Cu-Al合金、Cu-Mg合金、Fe金属、Zn金属、Co金属、Mo金属及びこれらの酸化物、並びにこれらの組合せが挙げられ、より好ましい例としてはCu-Zn合金、Fe金属及びこれらの酸化物、並びにこれらの組合せが挙げられ、特に好ましくはCu-Zn合金が挙げられる。第2エッチング犠牲層12を構成しうるCu-Zn合金は、高い犠牲効果を得る観点から、Zn含有量が40重量%以上であることが好ましく、より好ましくは50重量%以上、さらに好ましくは60重量%以上である。また、Cu-Zn合金におけるZn含有量は、上述した第2エッチング犠牲層12の面内溶解速度の均一な保持、及び銅層13との局部電池反応の面内均一作用の観点から、好ましくは98重量%以下、より好ましくは96重量%以下であり、さらに好ましくは94重量%以下、特に好ましくは92重量%以下である。 The material constituting the second etching sacrificial layer 12 is preferably an electrochemically base metal rather than Cu from the viewpoint of obtaining a high sacrificial effect, and examples of such a preferable metal include Cu—Zn alloy and Cu—. Sn alloys, Cu—Mn alloys, Cu—Al alloys, Cu—Mg alloys, Fe metals, Zn metals, Co metals, Mo metals and their oxides, and combinations thereof are mentioned, and more preferable examples thereof are Cu—. Examples thereof include Zn alloys, Fe metals, oxides thereof, and combinations thereof, and Cu—Zn alloys are particularly preferable. The Cu—Zn alloy that can form the second etching sacrificial layer 12 preferably has a Zn content of 40% by weight or more, more preferably 50% by weight or more, still more preferably 60, from the viewpoint of obtaining a high sacrificial effect. Weight% or more. Further, the Zn content in the Cu—Zn alloy is preferably set from the viewpoint of uniformly maintaining the in-plane dissolution rate of the second etching sacrificial layer 12 described above and the in-plane uniform action of the local battery reaction with the copper layer 13. It is 98% by weight or less, more preferably 96% by weight or less, still more preferably 94% by weight or less, and particularly preferably 92% by weight or less.
 高い拡散防止効果を得る観点から、第2エッチング犠牲層12はFe金属、Fe-W合金、Co金属、Co-W合金、Co-Ni合金及びこれらの酸化物、並びにこれらの組合せから選択される少なくとも1種で構成されるのも好ましく、より好ましい例としてはFe金属、Fe-W合金及びこれらの酸化物、並びにこれらの組合せが挙げられ、特に好ましくはFe金属が挙げられる。第2エッチング犠牲層12は0.05μm以上2.5μm以下の厚さdを有するのが好ましく、より好ましい厚さdは0.06μm以上2.0μm以下、さらに好ましくは0.06μm以上1.5μm以下、特に好ましくは0.07μm以上1.0μm以下、最も好ましくは0.07μm以上0.5μm以下である。このような範囲内の厚さdであると、所望の犠牲効果を得られるとともに、より一層優れた拡散防止効果を発揮することができる。 From the viewpoint of obtaining a high diffusion prevention effect, the second etching sacrificial layer 12 is selected from Fe metal, Fe—W alloy, Co metal, CoW alloy, Co—Ni alloy and oxides thereof, and a combination thereof. It is preferably composed of at least one kind, and more preferable examples include Fe metal, Fe-W alloy and oxides thereof, and a combination thereof, and Fe metal is particularly preferable. The second etching sacrificial layer 12 preferably has a thickness d 2 of 0.05 μm or more and 2.5 μm or less, and a more preferable thickness d 2 is 0.06 μm or more and 2.0 μm or less, more preferably 0.06 μm or more 1 It is 5.5 μm or less, particularly preferably 0.07 μm or more and 1.0 μm or less, and most preferably 0.07 μm or more and 0.5 μm or less. When the thickness d 2 is within such a range, a desired sacrificial effect can be obtained and a further excellent diffusion prevention effect can be exhibited.
 第1エッチング犠牲層11と第2エッチング犠牲層12とは、上述したr>r>1.0の関係を満たすように、例えば上述した金属ないし合金の任意の組合せを選択することができる。第1エッチング犠牲層11及び第2エッチング犠牲層12は同一種類の合金であってもよいし、異なる種類の金属ないし合金であってもよい。第1エッチング犠牲層11及び第2エッチング犠牲層12が同一種類の合金で構成される場合には、r>r>1.0の関係を満たすように各々の合金を構成する元素の割合を調整するのが好ましい。例えば、第1エッチング犠牲層11及び第2エッチング犠牲層12の各々が、Cu-Zn合金で構成されてもよく、第1エッチング犠牲層11のZn含有量をxとし、第2エッチング犠牲層12のZn含有量をyとした場合に、x>y≧50重量%を満たすのが高い犠牲効果を得る観点から好ましい。また、第1エッチング犠牲層11がCu-Zn合金又はZn金属で構成され、かつ、第2エッチング犠牲層12がFe金属で構成されるのも好ましく、こうすることで、第1エッチング犠牲層11からのZnの拡散を第2エッチング犠牲層12でより一層効果的に防止できる。 For the first etching sacrificial layer 11 and the second etching sacrificial layer 12, for example, any combination of the above-mentioned metals or alloys can be selected so as to satisfy the above-mentioned relationship of r 1 > r 2 > 1.0. .. The first etching sacrificial layer 11 and the second etching sacrificial layer 12 may be the same type of alloy, or may be different types of metals or alloys. When the first etching sacrificial layer 11 and the second etching sacrificial layer 12 are composed of the same type of alloy, the ratio of the elements constituting each alloy so as to satisfy the relationship of r 1 > r 2 > 1.0. It is preferable to adjust. For example, each of the first etching sacrificial layer 11 and the second etching sacrificial layer 12 may be made of a Cu—Zn alloy, and the Zn content of the first etching sacrificial layer 11 is x, and the second etching sacrificial layer 12 When the Zn content of the above is y, it is preferable to satisfy x> y ≧ 50% by weight from the viewpoint of obtaining a high sacrificial effect. Further, it is also preferable that the first etching sacrificial layer 11 is made of Cu—Zn alloy or Zn metal, and the second etching sacrificial layer 12 is made of Fe metal. By doing so, the first etching sacrificial layer 11 The diffusion of Zn from the second etching sacrificial layer 12 can be prevented more effectively.
 銅層13は、公知の構成であってよく特に限定されない。例えば、銅層13は、無電解めっき法及び電解めっき法等の湿式成膜法、スパッタリング及び化学蒸着等の乾式成膜法、又はそれらの組合せにより形成したものであってよい。銅層13は0.1μm以上2.5μm以下の厚さdを有するのが好ましく、より好ましい厚さdは0.1μm以上2μm以下、さらに好ましくは0.1μm以上1.5μm以下、特に好ましくは0.2μm以上1μm以下、最も好ましくは0.2μm以上0.8μm以下である。このような範囲内の厚さdであると、回路形成に好都合な十分な薄さでありながらも、Cuエッチング時の欠損等の不具合をより効果的に防止することができる。 The copper layer 13 has a known structure and is not particularly limited. For example, the copper layer 13 may be formed by a wet film forming method such as an electroless plating method and an electrolytic plating method, a dry film forming method such as sputtering and chemical vapor deposition, or a combination thereof. The copper layer 13 preferably has a thickness d 3 of 0.1 μm or more and 2.5 μm or less, and a more preferable thickness d 3 is 0.1 μm or more and 2 μm or less, more preferably 0.1 μm or more and 1.5 μm or less, particularly. It is preferably 0.2 μm or more and 1 μm or less, and most preferably 0.2 μm or more and 0.8 μm or less. When the thickness d 3 is within such a range, it is possible to more effectively prevent defects such as defects during Cu etching, even though the thickness is sufficiently thin for circuit formation.
 銅層13の表面には、粗化処理がされていることが好ましい。このように銅層の表面に粗化処理により形成された粗化粒子が付着されていることで、金属張積層板やプリント配線板製造時における絶縁樹脂層との密着性を向上することができる。また、ETS工法において、配線パターン形成後の画像検査をしやすくするとともにフォトレジストパターン20との密着性を向上することができる。粗化粒子は画像解析による平均粒径Dが0.04μm以上0.53μm以下であるのが好ましく、より好ましくは0.08μm以上0.13μm以下であり、さらに好ましくは0.09μm以上0.12μm以下である。上記好適範囲内であると、ETS工法において、粗化面に適度な粗さを持たせてフォトレジストとの優れた密着性を確保しながら、フォトレジスト現像時にフォトレジストの不要領域の開口性を良好に実現することができ、その結果、十分に開口しきれなかったフォトレジストに起因してめっきされにくくなることで生じうるパターンめっき22のライン欠損を効果的に防止することができる。したがって、上記好適範囲内であるとフォトレジスト現像性とパターンめっき性に優れるといえ、それ故、配線パターン24の微細形成に適する。なお、粗化粒子の画像解析による平均粒径Dは、走査型電子顕微鏡(SEM)の一視野に粒子が所定数(例えば1000個以上3000個以下)入る倍率にて像を撮影し、その像に対して市販の画像解析ソフトで画像処理を行うことにより測定するのが好ましく、例えば任意に選択した200個の粒子を対象とし、それら粒子の平均直径を平均粒径Dとして採用すればよい。 It is preferable that the surface of the copper layer 13 is roughened. By adhering the roughened particles formed by the roughening treatment to the surface of the copper layer in this way, it is possible to improve the adhesion to the insulating resin layer at the time of manufacturing a metal-clad laminate or a printed wiring board. .. Further, in the ETS method, it is possible to facilitate image inspection after forming the wiring pattern and improve the adhesion to the photoresist pattern 20. The average particle size D of the roughened particles by image analysis is preferably 0.04 μm or more and 0.53 μm or less, more preferably 0.08 μm or more and 0.13 μm or less, and further preferably 0.09 μm or more and 0.12 μm. It is as follows. When it is within the above-mentioned preferable range, in the ETS method, the roughened surface is provided with an appropriate roughness to ensure excellent adhesion to the photoresist, and the opening property of the unnecessary region of the photoresist is opened during the photoresist development. It can be satisfactorily realized, and as a result, it is possible to effectively prevent line defects of the pattern plating 22 which may occur due to difficulty in plating due to the photoresist which has not been sufficiently opened. Therefore, if it is within the above-mentioned preferable range, it can be said that the photoresist developability and the pattern plating property are excellent, and therefore, it is suitable for fine formation of the wiring pattern 24. The average particle size D obtained by image analysis of the coarsened particles is obtained by taking an image at a magnification in which a predetermined number of particles (for example, 1000 or more and 3000 or less) are contained in one field of a scanning electron microscope (SEM). However, it is preferable to measure by performing image processing with commercially available image analysis software. For example, 200 particles arbitrarily selected may be targeted, and the average diameter of these particles may be adopted as the average particle size D.
 また、粗化粒子は画像解析による粒子密度ρが4個/μm以上200個/μm以下であるのが好ましく、より好ましくは40個/μm以上170個/μm以下、70個/μm以上100個/μm以下である。また、銅層表面の粗化粒子が緻密で密集している場合には、ETS工法において、フォトレジストの現像残渣が発生しやすいが、上記好適範囲内であるとそのような現像残渣が発生しにくく、それ故、フォトレジストパターン20の現像性にも優れる。したがって、上記好適範囲内であると配線パターン24の微細形成に適するといえる。なお、粗化粒子の画像解析による粒子密度ρは、走査型電子顕微鏡(SEM)の一視野に粒子が所定数(例えば1000個以上3000個以下)入る倍率にて像を撮影し、その像に対して市販の画像解析ソフトを用いて画像処理を行うことにより測定するのが好ましく、例えば粒子200個が入る視野においてそれらの粒子個数(例えば200個)を視野面積で除算した値を粒子密度ρとして採用すればよい。 Further, the coarsened particles preferably have a particle density ρ of 4 / μm 2 or more and 200 / μm 2 or less, more preferably 40 / μm 2 or more and 170 / μm 2 or less, 70 / μm / μm 2 or more. μm 2 or more and 100 pieces / μm 2 or less. Further, when the roughened particles on the surface of the copper layer are dense and dense, the development residue of the photoresist is likely to be generated in the ETS method, but if it is within the above preferable range, such a development residue is generated. It is difficult, and therefore, the photoresist pattern 20 is also excellent in developability. Therefore, it can be said that the wiring pattern 24 is suitable for fine formation if it is within the above-mentioned preferable range. The particle density ρ obtained by image analysis of the roughened particles is obtained by taking an image at a magnification at which a predetermined number of particles (for example, 1000 or more and 3000 or less) are contained in one field of a scanning electron microscope (SEM). On the other hand, it is preferable to measure by performing image processing using commercially available image analysis software. For example, in a field containing 200 particles, the number of particles (for example, 200) divided by the field area is divided by the field area to obtain the particle density ρ. It may be adopted as.
 銅層13の表面は、上述した粗化処理による粗化粒子の付着の他、ニッケル-亜鉛/クロメート処理等の防錆処理や、シランカップリング剤によるカップリング処理等を施すことも好ましい。これらの表面処理により銅層表面の化学的安定性の向上や、絶縁層積層時の密着性の向上を図ることができる。 The surface of the copper layer 13 is preferably subjected to a rust preventive treatment such as nickel-zinc / chromate treatment and a coupling treatment with a silane coupling agent, in addition to the adhesion of roughened particles by the roughening treatment described above. By these surface treatments, it is possible to improve the chemical stability of the copper layer surface and the adhesion at the time of laminating the insulating layer.
 所望により設けられる追加銅層14は公知の銅箔構成であってよく特に限定されない。追加銅層14を備えることでCuエッチング工程における前処理等で溶解速度の速い第1エッチング犠牲層11を露出させないように制御することが可能になる、また、下記剥離層との剥離を容易なものとすることができるといった利点がある。追加銅層14は、無電解めっき法及び電解めっき法等の湿式成膜法、スパッタリング及び化学蒸着等の乾式成膜法、又はそれらの組合せにより形成したものであってよい。追加銅層14は0.1μm以上2.5μm以下の厚さd’を有するのが好ましく、より好ましくは0.1μm以上2μm以下、さらに好ましくは0.2μm以上1.5μm以下、特に好ましくは0.2μm以上1μm以下、最も好ましくは0.3μm以上0.8μm以下である。このような範囲内の厚さd’であるとCuエッチングの前工程(例えばデスミア等の薬液工程)において第1エッチング犠牲層11をより効果的に保護できるとともに、後述するd/r+d/r≧d’+d’/r’及び/又はd+d+d+d’+d’≦3.0μmの条件を満たしやすくなり、その結果、Cuエッチング時の欠損等の不具合をより効果的に防止することができる。 The additional copper layer 14 provided as desired may have a known copper foil structure and is not particularly limited. By providing the additional copper layer 14, it is possible to control the first etching sacrificial layer 11 having a high dissolution rate so as not to be exposed in the pretreatment in the Cu etching step, and it is easy to peel off from the following peeling layer. There is an advantage that it can be made. The additional copper layer 14 may be formed by a wet film forming method such as an electroless plating method and an electrolytic plating method, a dry film forming method such as sputtering and chemical vapor deposition, or a combination thereof. Add copper layer 14 preferably has a thickness of less than d 3 '2.5 [mu] m or more 0.1 [mu] m, more preferably 0.1 [mu] m or more 2μm or less, more preferably 0.2μm or 1.5μm or less, particularly preferably It is 0.2 μm or more and 1 μm or less, most preferably 0.3 μm or more and 0.8 μm or less. With the first etching sacrificial layer 11 can be more effectively protected in such a range of thickness d 3 'in which the Cu etching of the previous step (e.g. desmearing such chemical liquid process), d 1 / r 1 to be described later + d 2 / r 2 ≧ d 3 '+ d 2' / r 2 ' and / or d 1 + d 2 + d 3 + d 3' + d 2 ' easily meet ≦ 3.0 [mu] m of conditions, resulting, defects at the time of Cu etch It is possible to prevent such problems more effectively.
 所望により設けられる拡散防止層15は、第1エッチング犠牲層11から追加銅層14への金属等の拡散を防止する機能を有する層であり、第2エッチング犠牲層12に準じた構成とすることができる。したがって、高い拡散防止効果を得る観点から、拡散防止層15はFe金属、Fe-W合金、Co金属、Co-W合金、Co-Ni合金及びこれらの酸化物、並びにこれらの組合せから選択される少なくとも1種で構成されるのが好ましく、より好ましい例としてはFe金属、Fe-W合金及びこれらの酸化物、並びにこれらの組合せが挙げられ、特に好ましくはFe金属が挙げられる。拡散防止層15は0.05μm以上2.5μm以下の厚さd’を有するのが好ましく、より好ましくは0.06μm以上2.0μm以下、さらに好ましくは0.06μm以上1.5μm以下、特に好ましくは0.07μm以上1.0μm以下、最も好ましくは0.07μm以上0.5μm以下である。このような範囲内の厚さd’であると、第1エッチング犠牲層11からの金属等の拡散をより効果的に防止できるととともに、後述するd/r+d/r≧d’+d’/r’及び/又はd+d+d+d’+d’≦3.0μmの条件を満たしやすくなり、その結果、Cuエッチング時の欠損等の不具合をより効果的に防止することができる。 The diffusion prevention layer 15 provided as desired is a layer having a function of preventing the diffusion of metals and the like from the first etching sacrificial layer 11 to the additional copper layer 14, and has a configuration similar to that of the second etching sacrificial layer 12. Can be done. Therefore, from the viewpoint of obtaining a high anti-diffusion effect, the anti-diffusion layer 15 is selected from Fe metals, Fe-W alloys, Co metals, Co-W alloys, Co-Ni alloys and oxides thereof, and combinations thereof. It is preferably composed of at least one kind, and more preferable examples include Fe metals, Fe-W alloys and oxides thereof, and combinations thereof, and Fe metal is particularly preferable. Diffusion preventing layer 15 is preferably has a thickness of d 2 '2.5 [mu] m or more 0.05 .mu.m, more preferably 0.06μm or 2.0μm or less, more preferably 0.06μm or 1.5μm or less, particularly It is preferably 0.07 μm or more and 1.0 μm or less, and most preferably 0.07 μm or more and 0.5 μm or less. With such a thickness d 2 in the range ', together with the diffusion of metals from the first etching sacrificial layer 11 it can be more effectively prevented, which will be described later d 1 / r 1 + d 2 / r 2 ≧ d 3 '+ d 2' / r 2 ' and / or d 1 + d 2 + d 3 + d 3' + d 2 ' easily meet ≦ 3.0 [mu] m of conditions, resulting in more effective defect defects or the like during Cu etching Can be prevented.
 ところで、追加銅層14及び拡散防止層15は、Cuエッチングの前工程(例えばデスミア等の薬液工程)で薬液による溶解から第1エッチング犠牲層11を保護することができる、あるいは第1エッチング犠牲層11からの金属等の拡散を防止できる一方で、過剰に厚い場合はエッチング後の銅層13(シード層)に欠損が生じることがある。かかる欠損を効果的に防止する観点から、Cuのエッチングレートに対する拡散防止層15のエッチングレートの比をr’とした場合、第1エッチング犠牲層11のエッチングレート比rに対する厚さdの比d/r、第2エッチング犠牲層12のエッチングレート比rに対する厚さdの比d/r、追加銅層14の厚さd’、及び拡散防止層15(存在する場合)の比r’に対する厚さd’の比d’/r’が、d/r+d/r≧d’+d’/r’を満たすのが好ましい。このことは図13及び14に概念的に示される金属箔10,10’と絶縁層28との積層体を参照しながら以下のように説明される。なお、説明の便宜のため、図13及び14並びに以下の説明において、第1エッチング犠牲層11及び第2エッチング犠牲層12を合わせて単に「エッチング犠牲層11,12」と称することや、追加銅層14、14’及び拡散防止層15、15’を合わせて「追加銅層14、14’等」と称することがある。まず、図14(a)に示されるように追加銅層14’等が過剰に厚い場合には、追加銅層14’等が不均一に溶解してエッチング犠牲層11,12が露出し(図14(b))、露出したエッチング犠牲層11,12が直ちに(残った追加銅層14’等よりも優先的に)溶解してシード層13が露出しうる(図14(c))。その結果、残存した追加銅層14’等の溶解と並行して、露出したシード層13の溶解が進行してしまい(図14(d))、シード層13に欠損13aが発生しうる(図14(e)参照)。これに対して、図13(a)に示されるように追加銅層14等が適度に薄い場合には、追加銅層14等が薄いが故に溶解時のばらつきが少なく(図13(b))、エッチング犠牲層11,12が溶解してシード層13が露出する前に追加銅層14等が溶け切ることになる(図13(c))。その結果、エッチング犠牲層11,12とシード層13が同時にエッチング液に接触することにより、エッチング犠牲層11,12による犠牲効果が発現し(図13(d))、シード層13には欠損が生じないこととなる(図13(e))。してみると、追加銅層14及び拡散防止層15が溶け切る時間が、第1エッチング犠牲層11及び第2エッチング犠牲層12が溶け切る時間よりも短いことが欠損防止の観点から望ましいといえる。したがって、第1エッチング犠牲層11のエッチングレートをv、第2エッチング犠牲層12のエッチングレートをv、追加銅層14のエッチングレートをv’、拡散防止層15のエッチングレートをv’とした場合、以下の関係:
   d/v+d/v≧d’/v’+d’/v
 ⇔ d×v’/v+d×v’/v≧d’+d’×v’/v
 ⇔ d/r+d/r≧d’+d’/r
を満たすのが望ましいといえる。すなわち、追加銅層14のエッチングレートv’はCuに対するエッチングレートに他ならないことから、前述したエッチングレート比rを用いると、v/v’=r、v/v’=r、v’/v’=r’である。よって、上記のとおりd/r+d/r≧d’+d’/r’を満たすのが好ましいといえる。
By the way, the additional copper layer 14 and the diffusion prevention layer 15 can protect the first etching sacrificial layer 11 from dissolution by the chemical solution in a pre-etching step (for example, a chemical solution step such as desmear), or the first etching sacrificial layer. While it is possible to prevent the diffusion of metals and the like from 11, if it is excessively thick, the copper layer 13 (seed layer) after etching may be damaged. From the standpoint of preventing such defects effectively, if the ratio of the etch rate of the diffusion preventing layer 15 to the etching rate of Cu was r 2 ', the thickness to the etching rate ratio r 1 of the first etching sacrificial layer 11 d 1 the ratio d 1 / r 1 of the ratio d 2 / r 2 of the thickness d 2 to the etch rate ratio r 2 of the second etching sacrificial layer 12, the thickness d 3 of the additional copper layer 14 ', and a diffusion preventing layer 15 ( the ratio d 2 'of the thickness d 2 for' the ratio r 2, if present) '/ r 2' is, to satisfy the d 1 / r 1 + d 2 / r 2 ≧ d 3 '+ d 2' / r 2 ' Is preferable. This is explained as follows with reference to the laminate of the metal foils 10, 10'and the insulating layer 28 conceptually shown in FIGS. 13 and 14. For convenience of explanation, in FIGS. 13 and 14 and the following description, the first etching sacrificial layer 11 and the second etching sacrificial layer 12 are collectively referred to as "etching sacrificial layers 11 and 12", or additional copper. The layers 14, 14'and the diffusion prevention layers 15, 15'are sometimes collectively referred to as "additional copper layers 14, 14', etc." First, when the additional copper layer 14'and the like are excessively thick as shown in FIG. 14A, the additional copper layer 14'and the like are melted unevenly and the etching sacrificial layers 11 and 12 are exposed (FIG. 14). 14 (b)), the exposed etching sacrificial layers 11 and 12 can be immediately melted (priority over the remaining additional copper layer 14'etc.) to expose the seed layer 13 (FIG. 14 (c)). As a result, the dissolution of the exposed seed layer 13 proceeds in parallel with the dissolution of the remaining additional copper layer 14'and the like (FIG. 14 (d)), and a defect 13a may occur in the seed layer 13 (FIG. FIG. 14 (e)). On the other hand, when the additional copper layer 14 and the like are moderately thin as shown in FIG. 13 (a), there is little variation during melting because the additional copper layer 14 and the like are thin (FIG. 13 (b)). The additional copper layer 14 and the like are completely melted before the etching sacrificial layers 11 and 12 are melted and the seed layer 13 is exposed (FIG. 13 (c)). As a result, when the etching sacrificial layers 11 and 12 and the seed layer 13 come into contact with the etching solution at the same time, the sacrificial effect of the etching sacrificial layers 11 and 12 is exhibited (FIG. 13 (d)), and the seed layer 13 is defective. It will not occur (FIG. 13 (e)). Therefore, it can be said that it is desirable from the viewpoint of preventing defects that the time for the additional copper layer 14 and the diffusion prevention layer 15 to be completely melted is shorter than the time for the first etching sacrificial layer 11 and the second etching sacrificial layer 12 to be completely melted. .. Therefore, the etching rate of the first etching sacrificial layer 11 is v 1 , the etching rate of the second etching sacrificial layer 12 is v 2 , the etching rate of the additional copper layer 14 is v 3 ', and the etching rate of the diffusion prevention layer 15 is v 2. If, then the following relationship:
d 1 / v 1 + d 2 / v 2 ≧ d 3 '/ v 3 '+ d 2 '/ v 2 '
⇔ d 1 × v 3 '/ v 1 + d 2 × v 3 '/ v 2 ≧ d 3 '+ d 2 '× v 3 '/ v 2 '
⇔ d 1 / r 1 + d 2 / r 2 ≧ d 3 '+ d 2 '/ r 2 '
It can be said that it is desirable to satisfy. That is, the etching rate v 3 additional copper layer 14 'because it is not but an etching rate for Cu, the use of the etching rate ratio r as described above, v 1 / v 3' = r 1, v 2 / v 3 '= r 2 , v 2 '/ v 3 '= r 2 '. Therefore, it can be said that preferably meets the above as d 1 / r 1 + d 2 / r 2 ≧ d 3 '+ d 2' / r 2 '.
 金属箔10は、単位面積当たりのピンホール数が2個/mm以下であるのが好ましい。こうすることで、Cuエッチング時の薬液浸食による欠損等の不具合をより一層低減することができる。特に、追加銅層14(追加銅層14が存在しない場合には第1エッチング犠牲層11)の単位面積当たりのピンホール数が2個/mm以下であるのが好ましい。これは、追加銅層14におけるピンホール数が上記のとおり少ないと、金属箔10の製造プロセスにおいて、追加銅層14にめっきされる拡散防止層15、第1エッチング犠牲層11、第2エッチング犠牲層12及び銅層13において発生しうるピンホールもまた少なくすることができるためである。 The metal foil 10 preferably has 2 or less pinholes per unit area / mm 2 . By doing so, it is possible to further reduce defects such as defects due to chemical erosion during Cu etching. In particular, the number of pinholes per unit area of the additional copper layer 14 (the first etching sacrificial layer 11 when the additional copper layer 14 does not exist) is preferably 2 pieces / mm 2 or less. This is because when the number of pinholes in the additional copper layer 14 is small as described above, the diffusion prevention layer 15, the first etching sacrificial layer 11, and the second etching sacrifice plated on the additional copper layer 14 in the manufacturing process of the metal foil 10 This is because the pinholes that can occur in the layer 12 and the copper layer 13 can also be reduced.
 金属箔10は、第1エッチング犠牲層11の厚さd、第2エッチング犠牲層12の厚さd、銅層13の厚さd、拡散防止層15(存在する場合)の厚さd’、及び追加銅層14(存在する場合)の厚さd’の合計厚さd+d+d+d’+d’が3.0μm以下であるのが好ましく、より好ましくは0.3μm以上2.8μm以下、さらに好ましくは0.6μm以上2.8μm以下、特に好ましくは0.9μm以上2.6μm以下である。このような範囲内の合計厚さは金属箔10の厚さが十分に薄いことを意味し、金属箔10のダイレクトレーザー孔開け性が向上する。 Metal foil 10, the thickness of the thickness d 1 of the first etching sacrificial layer 11, the thickness d 2 of the second etching sacrificial layer 12, the thickness d 3 of the copper layer 13, the diffusion preventing layer 15 (if present) d 2 ', and additional copper layer 14 thickness d 3 (if present)' is preferably a total thickness of d 1 + d 2 + d 3 + d 2 '+ d 3' is 3.0μm or less, more preferably It is 0.3 μm or more and 2.8 μm or less, more preferably 0.6 μm or more and 2.8 μm or less, and particularly preferably 0.9 μm or more and 2.6 μm or less. The total thickness within such a range means that the thickness of the metal foil 10 is sufficiently thin, and the direct laser perforation property of the metal foil 10 is improved.
 所望により、追加銅層14と拡散防止層15との間、拡散防止層15と第1エッチング犠牲層11との間、第1エッチング犠牲層11と第2エッチング犠牲層12との間、及び/又は第2エッチング犠牲層12と銅層13との間には、第1エッチング犠牲層11及び第2エッチング犠牲層12の犠牲効果を妨げないかぎり、別の層が存在していてもよい。 If desired, between the additional copper layer 14 and the anti-diffusion layer 15, between the anti-diffusion layer 15 and the first etching sacrificial layer 11, between the first etching sacrificial layer 11 and the second etching sacrificial layer 12, and / Alternatively, another layer may be present between the second etching sacrificial layer 12 and the copper layer 13 as long as the sacrificial effects of the first etching sacrificial layer 11 and the second etching sacrificial layer 12 are not impaired.
 キャリア付金属箔
 金属箔10(すなわち銅層13、第2エッチング犠牲層12、第1エッチング犠牲層11、存在する場合には拡散防止層15、及び存在する場合には追加銅層14の積層体)は、キャリア無し金属箔の形態で提供されてもよいし、図1に示されるようにキャリア付金属箔16の形態で提供されてもよいが、キャリア付金属箔16の形態で提供されるのが好ましい。この場合、キャリア付金属箔16は、キャリア17、剥離層18、追加銅層14(存在する場合)、拡散防止層15(存在する場合)、第1エッチング犠牲層11、第2エッチング犠牲層12、及び銅層13を順に備えるものであってもよいし、あるいはキャリア17、追加銅層14(存在する場合)、拡散防止層15(存在する場合)、第1エッチング犠牲層11、第2エッチング犠牲層12、及び銅層13を順に備えるものであってもよい。すなわち、剥離層18を有していてもよいし、剥離層18を単独の層として有しない構成であってもよい。好ましいキャリア付金属箔は、キャリア17、剥離層18、及び金属箔10をこの順に備えたものである。
Metal leaf with carrier Metal leaf 10 (ie, copper layer 13, second etching sacrificial layer 12, first etching sacrificial layer 11, diffusion prevention layer 15 if present, and additional copper layer 14 if present) ) May be provided in the form of a carrierless metal leaf, or may be provided in the form of a carrier-attached metal leaf 16, as shown in FIG. 1, but is provided in the form of a carrier-attached metal leaf 16. Is preferable. In this case, the metal foil 16 with a carrier includes a carrier 17, a release layer 18, an additional copper layer 14 (if present), a diffusion prevention layer 15 (if present), a first etching sacrificial layer 11, and a second etching sacrificial layer 12. , And the copper layer 13 in this order, or a carrier 17, an additional copper layer 14 (if present), a diffusion prevention layer 15 (if present), a first etching sacrificial layer 11, and a second etching. The sacrificial layer 12 and the copper layer 13 may be provided in this order. That is, the release layer 18 may be provided, or the release layer 18 may not be provided as a single layer. A preferred metal foil with a carrier includes a carrier 17, a release layer 18, and a metal foil 10 in this order.
 キャリア17は、金属箔を支持してそのハンドリング性を向上させるための層(典型的には箔)である。キャリアの例としては、アルミニウム箔、銅箔、ステンレス箔、樹脂フィルム、表面をメタルコーティングした樹脂フィルム、ガラス板等が挙げられ、好ましくは銅箔である。銅箔は圧延銅箔及び電解銅箔のいずれであってもよい。キャリアの厚さは典型的には250μm以下であり、好ましくは12μm以上200μm以下である。 The carrier 17 is a layer (typically a foil) for supporting a metal foil and improving its handleability. Examples of the carrier include an aluminum foil, a copper foil, a stainless foil, a resin film, a resin film having a metal coating on the surface, a glass plate, and the like, and a copper foil is preferable. The copper foil may be either a rolled copper foil or an electrolytic copper foil. The thickness of the carrier is typically 250 μm or less, preferably 12 μm or more and 200 μm or less.
 剥離層18は、キャリア17の引き剥がし強度を弱くし、該強度の安定性を担保し、さらには高温でのプレス成形時にキャリアと金属箔の間で起こりうる相互拡散を抑制する機能を有する層である。剥離層は、キャリアの一方の面に形成されるのが一般的であるが、両面に形成されてもよい。剥離層は、有機剥離層及び無機剥離層のいずれであってもよい。有機剥離層に用いられる有機成分の例としては、窒素含有有機化合物、硫黄含有有機化合物、カルボン酸等が挙げられる。窒素含有有機化合物の例としては、トリアゾール化合物、イミダゾール化合物等が挙げられ、中でもトリアゾール化合物は剥離性が安定し易い点で好ましい。トリアゾール化合物の例としては、1,2,3-ベンゾトリアゾール、カルボキシベンゾトリアゾール、N’,N’-ビス(ベンゾトリアゾリルメチル)ユリア、1H-1,2,4-トリアゾール及び3-アミノ-1H-1,2,4-トリアゾール等が挙げられる。硫黄含有有機化合物の例としては、メルカプトベンゾチアゾール、チオシアヌル酸、2-ベンズイミダゾールチオール等が挙げられる。カルボン酸の例としては、モノカルボン酸、ジカルボン酸等が挙げられる。一方、無機剥離層に用いられる無機成分の例としては、Ni、Mo、Co、Cr、Fe、Ti、W、P、Zn、クロメート処理膜、炭素層等が挙げられる。なお、剥離層の形成はキャリアの少なくとも一方の表面に剥離層成分含有溶液を接触させ、剥離層成分をキャリアの表面に溶液中で吸着されること等により行えばよい。キャリアを剥離層成分含有溶液に接触させる場合、この接触は、剥離層成分含有溶液への浸漬、剥離層成分含有溶液の噴霧、剥離層成分含有溶液の流下等により行えばよい。その他、電解めっきや無電解めっき等のめっき法、蒸着やスパッタリング等による気相法で剥離層成分を被膜形成する方法も採用可能である。また、剥離層成分のキャリア表面への固定は、剥離層成分含有溶液の乾燥、剥離層成分含有溶液中の剥離層成分の電着等により行えばよい。剥離層の厚さは、典型的には1nm以上1μm以下であり、好ましくは5nm以上500nm以下である。なお、剥離層18とキャリアとの剥離強度は5gf/cm以上50gf/cm以下であることが好ましく、より好ましくは5gf/cm以上40gf/cm以下、さらに好ましくは6gf/cm以上30gf/cm以下である。 The peeling layer 18 has a function of weakening the peeling strength of the carrier 17, ensuring the stability of the strength, and further suppressing mutual diffusion that may occur between the carrier and the metal foil during press molding at a high temperature. Is. The release layer is generally formed on one surface of the carrier, but may be formed on both sides. The release layer may be either an organic release layer or an inorganic release layer. Examples of the organic component used in the organic release layer include nitrogen-containing organic compounds, sulfur-containing organic compounds, and carboxylic acids. Examples of the nitrogen-containing organic compound include a triazole compound and an imidazole compound, and among them, the triazole compound is preferable because the peelability is easily stable. Examples of triazole compounds include 1,2,3-benzotriazole, carboxybenzotriazole, N', N'-bis (benzotriazolylmethyl) urea, 1H-1,2,4-triazole and 3-amino-. Examples thereof include 1H-1,2,4-triazole. Examples of the sulfur-containing organic compound include mercaptobenzothiazole, thiothianulic acid, 2-benzimidazole thiol and the like. Examples of carboxylic acids include monocarboxylic acids and dicarboxylic acids. On the other hand, examples of the inorganic component used in the inorganic release layer include Ni, Mo, Co, Cr, Fe, Ti, W, P, Zn, chromate-treated film, carbon layer and the like. The release layer may be formed by bringing the release layer component-containing solution into contact with at least one surface of the carrier and adsorbing the release layer component on the surface of the carrier in the solution. When the carrier is brought into contact with the release layer component-containing solution, this contact may be performed by immersion in the release layer component-containing solution, spraying the release layer component-containing solution, flowing down the release layer component-containing solution, or the like. In addition, a plating method such as electrolytic plating or electroless plating, or a vapor phase method such as vapor deposition or sputtering can be used to form a film of the release layer component. Further, the release layer component may be fixed to the carrier surface by drying the release layer component-containing solution, electrodeposition of the release layer component in the release layer component-containing solution, or the like. The thickness of the release layer is typically 1 nm or more and 1 μm or less, preferably 5 nm or more and 500 nm or less. The peel strength between the peeling layer 18 and the carrier is preferably 5 gf / cm or more and 50 gf / cm or less, more preferably 5 gf / cm or more and 40 gf / cm or less, and further preferably 6 gf / cm or more and 30 gf / cm or less. is there.
 金属張積層板
 本発明の金属箔はプリント配線板用金属張積層板の作製に用いられるのが好ましい。すなわち、本発明の好ましい態様によれば、上述した金属箔を備えた金属張積層板が提供される。金属張積層板は金属箔をキャリア付金属箔の形態で備えていてもよい。また、金属箔は樹脂層の片面に設けられてもよいし、両面に設けられてもよい。樹脂層は、典型的には樹脂、好ましくは絶縁樹脂を含んでなる。樹脂層はプリプレグ及び/又は樹脂シートであるのが好ましく、より好ましくはプリプレグである。プリプレグとは、合成樹脂板、ガラス板、ガラス織布、ガラス不織布、紙等の基材に合成樹脂を含浸又は積層させた複合材料の総称である。プリプレグに含浸される絶縁樹脂の好ましい例としては、エポキシ樹脂、シアネート樹脂、ビスマレイミドトリアジン樹脂(BT樹脂)、ポリフェニレンエーテル樹脂、フェノール樹脂、ポリアミド樹脂等が挙げられる。また、樹脂シートを構成する絶縁樹脂の例としては、エポキシ樹脂、ポリイミド樹脂、ポリエステル樹脂(液晶ポリマー)等の絶縁樹脂が挙げられる。また、樹脂層には熱膨脹係数を下げ、剛性を上げる等の観点からシリカ、アルミナ等の各種無機粒子からなるフィラー粒子等が含有されていてもよい。樹脂層の厚さは特に限定されないが、3μm以上1000μm以下が好ましく、より好ましくは5μm以上400μm以下であり、さらに好ましくは10μm以上200μm以下である。樹脂層は複数の層で構成されていてよい。プリプレグ及び/又は樹脂シート等の樹脂層は予め金属箔表面に塗布されるプライマー樹脂層を介してキャリア付金属箔に設けられていてもよい。
Metal-clad laminate The metal foil of the present invention is preferably used for producing a metal-clad laminate for a printed wiring board. That is, according to a preferred embodiment of the present invention, a metal-clad laminate provided with the metal foil described above is provided. The metal-clad laminate may include a metal foil in the form of a metal foil with a carrier. Further, the metal foil may be provided on one side of the resin layer or may be provided on both sides. The resin layer typically comprises a resin, preferably an insulating resin. The resin layer is preferably a prepreg and / or a resin sheet, more preferably a prepreg. Prepreg is a general term for composite materials obtained by impregnating or laminating a base material such as a synthetic resin plate, a glass plate, a glass woven fabric, a glass non-woven fabric, or paper with a synthetic resin. Preferred examples of the insulating resin impregnated in the prepreg include an epoxy resin, a cyanate resin, a bismaleimide triazine resin (BT resin), a polyphenylene ether resin, a phenol resin, a polyamide resin and the like. In addition, examples of the insulating resin constituting the resin sheet include insulating resins such as epoxy resin, polyimide resin, and polyester resin (liquid crystal polymer). Further, the resin layer may contain filler particles made of various inorganic particles such as silica and alumina from the viewpoint of lowering the coefficient of thermal expansion and increasing the rigidity. The thickness of the resin layer is not particularly limited, but is preferably 3 μm or more and 1000 μm or less, more preferably 5 μm or more and 400 μm or less, and further preferably 10 μm or more and 200 μm or less. The resin layer may be composed of a plurality of layers. A resin layer such as a prepreg and / or a resin sheet may be provided on the metal foil with a carrier via a primer resin layer previously applied to the surface of the metal foil.
 プリント配線板の製造方法
 上述したような本発明の金属箔又はキャリア付金属箔を用いてプリント配線板を好ましく製造することができる。プリント配線板の製造方法の好ましい例として、MSAP法(モディファイドセミアディティブ法)及びコアレスビルドアップ法(ETS工法)が挙げられるが、これらの工法に限らず、本発明の金属箔又はキャリア付金属箔は、第1エッチング犠牲層11及び第2エッチング犠牲層12の犠牲効果による何らかの利点を期待できる様々な工法に採用可能である。
Method for Manufacturing a Printed Wiring Board A printed wiring board can be preferably manufactured by using the metal foil of the present invention or the metal foil with a carrier as described above. Preferable examples of the method for manufacturing a printed wiring board include the MSAP method (modified semi-additive method) and the coreless build-up method (ETS method), but the method is not limited to these methods, and the metal foil of the present invention or the metal foil with a carrier is not limited to these methods. Can be adopted in various construction methods in which some advantage due to the sacrificial effect of the first etching sacrificial layer 11 and the second etching sacrificial layer 12 can be expected.
 一例として、本発明の金属箔を採用したコアレスビルドアップ法(ETS工法)によるプリント配線板の製造方法を以下に説明する。この方法においては、まず、追加銅層14(存在する場合)、拡散防止層15(存在する場合)、第1エッチング犠牲層11、第2エッチング犠牲層12、及び銅層13を備えた金属箔10を用いて支持体を得る。次いで、銅層13上に、銅製の第一配線層26と絶縁層28とを少なくとも含むビルドアップ配線層を形成してビルドアップ配線層付積層体を得る。なお、ビルドアップ配線層は、後述する図12に示されるように、第n配線層40(nは2以上の整数)まで形成された多層のビルドアップ配線層を採用可能であることはいうまでもない。その後、追加銅層14(存在する場合)、拡散防止層15(存在する場合)、第1エッチング犠牲層11、第2エッチング犠牲層12及び銅層13をエッチング液により除去して第一配線層26を露出させ、それによりビルドアップ配線層を含むプリント配線板を得る。 As an example, a method of manufacturing a printed wiring board by a coreless build-up method (ETS method) using the metal foil of the present invention will be described below. In this method, first, a metal leaf provided with an additional copper layer 14 (if present), a diffusion prevention layer 15 (if present), a first etching sacrificial layer 11, a second etching sacrificial layer 12, and a copper layer 13. 10 is used to obtain a support. Next, a build-up wiring layer including at least a first copper wiring layer 26 and an insulating layer 28 is formed on the copper layer 13 to obtain a laminate with a build-up wiring layer. As a build-up wiring layer, as shown in FIG. 12 described later, it goes without saying that a multi-layered build-up wiring layer formed up to the nth wiring layer 40 (n is an integer of 2 or more) can be adopted. Nor. After that, the additional copper layer 14 (if present), the diffusion prevention layer 15 (if present), the first etching sacrificial layer 11, the second etching sacrificial layer 12 and the copper layer 13 are removed by an etching solution to remove the first wiring layer. 26 is exposed, thereby obtaining a printed wiring board containing a build-up wiring layer.
 以下、図1に加え、図11及び12に示される工程図をも適宜参照しながら製造方法を説明する。なお、図11及び12に示される態様は説明の簡略化のためにコアレス支持体19の片面にキャリア付金属箔16を設けてビルドアップ配線層42を形成するように描かれているが、コアレス支持体19の両面にキャリア付金属箔16を設けて当該両面に対してビルドアップ配線層42を形成するのが望ましい。 Hereinafter, the manufacturing method will be described with reference to the process diagrams shown in FIGS. 11 and 12 in addition to FIG. The embodiments shown in FIGS. 11 and 12 are drawn so as to form the build-up wiring layer 42 by providing the metal foil 16 with a carrier on one side of the coreless support 19 for simplification of the description. It is desirable to provide the metal foil 16 with a carrier on both sides of the support 19 to form the build-up wiring layer 42 on both sides.
(1)金属箔を用いた支持体の用意
 金属箔10又はそれを含むキャリア付金属箔16を支持体として用意する。所望により、ビルドアップ配線層付積層体の形成に先立ち、金属箔10(追加銅層14側)又はキャリア付金属箔16(キャリア17側)をコアレス支持体19の片面又は両面に積層して積層体を形成してもよい。すなわち、この段階で、上述した金属張積層板を形成してもよい。この積層は、通常のプリント配線板製造プロセスにおいて銅箔とプリプレグ等との積層に採用される公知の条件及び手法に従って行えばよい。コアレス支持体19は、典型的には樹脂、好ましくは絶縁樹脂を含んでなる。コアレス支持体19はプリプレグ及び/又は樹脂シートであるのが好ましく、より好ましくはプリプレグである。すなわち、コアレス支持体19は上述した金属張積層板における樹脂層に相当するものであり、それ故、金属張積層板ないし樹脂層に関して上述した好ましい態様はそのままコアレス支持体19に当てはまる。
(1) Preparation of Support Using Metal Foil A metal foil 10 or a metal foil 16 with a carrier containing the metal foil 10 is prepared as a support. If desired, the metal foil 10 (additional copper layer 14 side) or the carrier-attached metal foil 16 (carrier 17 side) is laminated on one side or both sides of the coreless support 19 prior to forming the laminated body with the build-up wiring layer. You may form a body. That is, at this stage, the above-mentioned metal-clad laminate may be formed. This lamination may be carried out according to known conditions and methods adopted for laminating a copper foil and a prepreg or the like in a normal printed wiring board manufacturing process. The coreless support 19 typically comprises a resin, preferably an insulating resin. The coreless support 19 is preferably a prepreg and / or a resin sheet, more preferably a prepreg. That is, the coreless support 19 corresponds to the resin layer in the above-mentioned metal-clad laminate, and therefore, the above-mentioned preferred embodiment with respect to the metal-clad laminate or the resin layer applies to the coreless support 19 as it is.
(2)ビルドアップ配線層付積層体の形成
 銅層13上に、銅製の第一配線層26と絶縁層28とを少なくとも含むビルドアップ配線層42を形成してビルドアップ配線層付積層体を得る。絶縁層28は上述したような絶縁樹脂で構成すればよい。ビルドアップ配線層42の形成は、公知のプリント配線板の製造方法に従って行えばよく、特に限定されない。本発明の好ましい態様によれば、以下に述べるように、(i)フォトレジストパターンを形成、(ii)電気銅めっき、及び(iii)フォトレジストパターンの剥離を行って第一配線層26を形成した後、(iv)ビルドアップ配線層42が形成される。
(2) Formation of Laminate with Build-up Wiring Layer A build-up wiring layer 42 including at least a first copper wiring layer 26 and an insulating layer 28 is formed on the copper layer 13 to form a laminate with a build-up wiring layer. obtain. The insulating layer 28 may be made of the insulating resin as described above. The build-up wiring layer 42 may be formed according to a known method for manufacturing a printed wiring board, and is not particularly limited. According to a preferred embodiment of the present invention, as described below, (i) a photoresist pattern is formed, (ii) electrolytic copper plating, and (iii) the photoresist pattern is peeled off to form the first wiring layer 26. After that, the (iv) build-up wiring layer 42 is formed.
(i)フォトレジストパターンを形成
 まず、銅層13の表面にフォトレジストパターン20を形成する。フォトレジストパターン20の形成は、ネガレジスト及びポジレジストのいずれの方式で行ってもよく、フォトレジストはフィルムタイプ及び液状タイプのいずれであってもよい。また、現像液としては炭酸ナトリウム、水酸化ナトリウム、アミン系水溶液等の現像液であってよく、プリント配線板の製造に一般的に用いられる各種手法及び条件に従い行えばよく特に限定されない。
(I) Forming a photoresist pattern First, a photoresist pattern 20 is formed on the surface of the copper layer 13. The photoresist pattern 20 may be formed by either a negative resist or a positive resist, and the photoresist may be either a film type or a liquid type. The developing solution may be a developing solution such as sodium carbonate, sodium hydroxide, or an amine-based aqueous solution, and is not particularly limited as long as it is carried out according to various methods and conditions generally used for producing a printed wiring board.
(ii)電気銅めっき
 次に、フォトレジストパターン20が形成された銅層13に電気銅めっき22を施す。電気銅めっき22の形成は、例えば硫酸銅めっき液やピロリン酸銅めっき液等のプリント配線板の製造に一般的に用いられる各種パターンめっき手法及び条件に従い行えばよく特に限定されない。
(Ii) Electrocopper plating Next, the electrolytic copper plating 22 is applied to the copper layer 13 on which the photoresist pattern 20 is formed. The formation of the electrolytic copper plating 22 is not particularly limited as long as it is carried out according to various pattern plating methods and conditions generally used for producing a printed wiring board such as a copper sulfate plating solution or a copper pyrophosphate plating solution.
(iii)フォトレジストパターンの剥離
 フォトレジストパターン20を剥離して配線パターン24を形成する。フォトレジストパターン20の剥離は、水酸化ナトリウム水溶液や、アミン系溶液ないしその水溶液等が採用され、プリント配線板の製造に一般的に用いられる各種剥離手法及び条件に従い行えばよく特に限定されない。こうして、銅層13の表面には第一配線層26からなる配線部(ライン)が間隙部(スペース)を隔てて配列された配線パターン24が直接形成されることになる。例えば、回路の微細化のためには、ライン/スペース(L/S)が13μm以下/13μm以下(例えば12μm/12μm、10μm/10μm、5μm/5μm、2μm/2μm)といった程度にまで高度に微細化された配線パターンを形成することが好ましい。
(Iii) Peeling of the photoresist pattern The photoresist pattern 20 is peeled off to form a wiring pattern 24. The peeling of the photoresist pattern 20 is not particularly limited as long as an aqueous solution of sodium hydroxide, an amine solution or an aqueous solution thereof or the like is adopted and various peeling methods and conditions generally used for manufacturing a printed wiring board are followed. In this way, the wiring pattern 24 in which the wiring portions (lines) made of the first wiring layer 26 are arranged with the gaps (spaces) separated from each other is directly formed on the surface of the copper layer 13. For example, for circuit miniaturization, the line / space (L / S) is highly fine to the extent of 13 μm or less / 13 μm or less (for example, 12 μm / 12 μm, 10 μm / 10 μm, 5 μm / 5 μm, 2 μm / 2 μm). It is preferable to form a modified wiring pattern.
(iv)ビルドアップ配線層の形成
 銅層13上にビルドアップ配線層42を形成してビルドアップ配線層付積層体を作製する。例えば、銅層13上に既に形成されている第一配線層26に加え、絶縁層28及び第二配線層38が順に形成されてビルドアップ配線層42とされうる。例えば、図12に示されるように、ビルドアップ配線層42を形成すべく絶縁層28及びキャリア付銅箔30(キャリア32、剥離層34及び銅箔36を備える)を積層し、キャリア32を剥離し、かつ、炭酸ガスレーザー等により銅箔36及びその直下の絶縁層28をレーザー加工してもよい。続いて、化学銅めっき、フォトレジスト加工、電解銅めっき、フォトレジスト剥離及びフラッシュエッチング等によりパターニングを行って第二配線層38を形成し、このパターニングを必要に応じて繰り返して第n配線層40(nは2以上の整数)まで形成してもよい。
(Iv) Formation of Build-up Wiring Layer A build-up wiring layer 42 is formed on the copper layer 13 to prepare a laminate with a build-up wiring layer. For example, in addition to the first wiring layer 26 already formed on the copper layer 13, the insulating layer 28 and the second wiring layer 38 can be formed in this order to form the build-up wiring layer 42. For example, as shown in FIG. 12, the insulating layer 28 and the copper foil 30 with a carrier (including the carrier 32, the peeling layer 34, and the copper foil 36) are laminated to form the build-up wiring layer 42, and the carrier 32 is peeled off. Further, the copper foil 36 and the insulating layer 28 immediately below the copper foil 36 may be laser-processed by a carbon dioxide gas laser or the like. Subsequently, patterning is performed by chemical copper plating, photoresist processing, electrolytic copper plating, photoresist peeling, flash etching, etc. to form a second wiring layer 38, and this patterning is repeated as necessary to form the nth wiring layer 40. (N may be an integer of 2 or more).
 第二配線層38以降のビルドアップ層の形成方法についての工法は上記手法に限定されず、サブトラクティブ法、MSAP(モディファイド・セミ・アディティブ・プロセス)法、SAP(セミアディティブ)法、フルアディティブ法等が使用可能である。例えば、樹脂層及び銅箔に代表される金属箔を同時にプレス加工で張り合わせる場合は、ビアホール形成及びパネルめっき等の層間導通手段の形成と組み合わせて、当該パネルめっき層及び金属箔をエッチング加工して、配線パターンを形成することができる。また、銅層13の表面に樹脂層のみをプレス又はラミネート加工により張り合わせる場合は、その表面にセミアディティブ法で配線パターンを形成することもできる。 The construction method for forming the build-up layer after the second wiring layer 38 is not limited to the above method, but is limited to the subtractive method, the MSAP (modified semi-additive process) method, the SAP (semi-additive) method, and the full additive method. Etc. can be used. For example, when a resin layer and a metal foil typified by a copper foil are simultaneously pressed together, the panel plating layer and the metal foil are etched in combination with the formation of via holes and the formation of interlayer conduction means such as panel plating. The wiring pattern can be formed. Further, when only the resin layer is bonded to the surface of the copper layer 13 by pressing or laminating, a wiring pattern can be formed on the surface by a semi-additive method.
 上記工程を必要に応じて繰り返して、ビルドアップ配線層付積層体を得る。この工程では樹脂層と配線パターンを含む配線層とを交互に積層配置したビルドアップ配線層を形成して、第n配線層40(nは2以上の整数)まで形成されたビルドアップ配線層付積層体を得るのが好ましい。この工程の繰り返しは所望の層数のビルドアップ配線層が形成されるまで行えばよい。この段階で、必要に応じて、外層面にソルダーレジストや、ピラー等の実装用のバンプ等を形成してもよい。また、ビルドアップ配線層の最外層面は後の外層加工工程で外層配線パターンを形成してもよい。 The above process is repeated as necessary to obtain a laminate with a build-up wiring layer. In this step, a build-up wiring layer is formed in which resin layers and wiring layers including wiring patterns are alternately laminated, and a build-up wiring layer formed up to the nth wiring layer 40 (n is an integer of 2 or more) is attached. It is preferable to obtain a laminate. This step may be repeated until a desired number of build-up wiring layers are formed. At this stage, if necessary, a solder resist, bumps for mounting pillars, or the like may be formed on the outer layer surface. Further, the outermost layer surface of the build-up wiring layer may form an outer layer wiring pattern in a later outer layer processing step.
(3)ビルドアップ配線層を含むプリント配線板の形成
(i)ビルドアップ配線層付積層体の分離
 ビルドアップ配線層付積層体を形成した後は、ビルドアップ配線層付積層体を剥離層18等で分離することができる。キャリア付金属箔が、キャリア17、剥離層18、追加銅層14、拡散防止層15、第1エッチング犠牲層11、第2エッチング犠牲層12、及び銅層13を順に備える場合、本発明の方法は、後述のエッチング液による除去に先立ち、剥離層18でビルドアップ配線層付積層体を分離して追加銅層14を露出させるのが好ましい。分離の方法は、物理的な引き剥がしが好ましく、この引き剥がし方法については、機械若しくは冶具、手作業又はこれらの組合せによる方法が採用され得る。
(3) Formation of printed wiring board including build-up wiring layer (i) Separation of laminate with build-up wiring layer After forming the laminate with build-up wiring layer, the laminate with build-up wiring layer is peeled off. It can be separated by such as. When the metal foil with a carrier includes a carrier 17, a release layer 18, an additional copper layer 14, a diffusion prevention layer 15, a first etching sacrificial layer 11, a second etching sacrificial layer 12, and a copper layer 13 in this order, the method of the present invention. It is preferable that the laminated body with the build-up wiring layer is separated by the release layer 18 to expose the additional copper layer 14 prior to the removal by the etching solution described later. The method of separation is preferably physical peeling, and as the method of peeling, a method of machine or jig, manual work, or a combination thereof can be adopted.
 一方、キャリア付金属箔が、キャリア17、追加銅層14、第1エッチング犠牲層11、第2エッチング犠牲層12、及び銅層13を順に備えてなる場合(すなわち剥離層18を単独の層として有しない場合)、本発明の方法は、後述のエッチング液による除去に先立ち、キャリア17と追加銅層14との間又は追加銅層14内部でビルドアップ配線層付積層体を分離して、追加銅層14を露出させるのが好ましい。 On the other hand, when the metal foil with a carrier includes a carrier 17, an additional copper layer 14, a first etching sacrificial layer 11, a second etching sacrificial layer 12, and a copper layer 13 in this order (that is, the peeling layer 18 is used as a single layer). If not), the method of the present invention adds a laminate with a build-up wiring layer between the carrier 17 and the additional copper layer 14 or inside the additional copper layer 14 prior to removal by the etching solution described later. It is preferable to expose the copper layer 14.
(ii)エッチング犠牲層及び銅層のエッチング
 本発明の方法においては、追加銅層14、拡散防止層15、第1エッチング犠牲層11、第2エッチング犠牲層12、及び銅層13をエッチング液により除去して第一配線層26を露出させ、それによりビルドアップ配線層42を含むプリント配線板46を得る。プリント配線板46は好ましくは多層プリント配線板である。いずれにしても、第1エッチング犠牲層11及び第2エッチング犠牲層12の存在により、追加のエッチング工程を別途要することなく、Cuエッチングにより面内で均一に各層のエッチングによる除去を効率的に行えるとともに、局所的な回路凹みの発生を抑制することができる。したがって、本発明の方法によれば、追加銅層14、拡散防止層15、第1エッチング犠牲層11、第2エッチング犠牲層12、及び銅層13のエッチング液による除去を1工程で行うことができる。この際に用いるエッチング液及びエッチング工法は、上述したとおりである。
(Ii) Etching of the etching sacrificial layer and the copper layer In the method of the present invention, the additional copper layer 14, the diffusion prevention layer 15, the first etching sacrificial layer 11, the second etching sacrificial layer 12, and the copper layer 13 are subjected to the etching solution. It is removed to expose the first wiring layer 26, thereby obtaining a printed wiring board 46 including the build-up wiring layer 42. The printed wiring board 46 is preferably a multilayer printed wiring board. In any case, due to the presence of the first etching sacrificial layer 11 and the second etching sacrificial layer 12, the removal of each layer by etching can be efficiently performed uniformly in the plane by Cu etching without requiring an additional etching step. At the same time, it is possible to suppress the occurrence of local circuit dents. Therefore, according to the method of the present invention, the additional copper layer 14, the diffusion prevention layer 15, the first etching sacrificial layer 11, the second etching sacrificial layer 12, and the copper layer 13 can be removed by the etching solution in one step. it can. The etching solution and etching method used at this time are as described above.
(iii)外層加工
 図12に示されるようなプリント配線板46は様々な工法により外層を加工することが可能である。例えば、プリント配線板46の第一配線層26にさらにビルドアップ配線層としての絶縁層と配線層を任意の層数として積層してもよく、或いは第一配線層26の表面にソルダ―レジスト層を形成し、Ni-Auめっき、Ni-Pd-Auめっき、水溶性プレフラックス処理等の外層パッドとしての表面処理を施してもよい。さらには外層パッドに柱状のピラー等を設けてもよい。この際、本発明におけるエッチング犠牲層を用いて作成された第一配線層26は、面内で回路厚さの均一性を保持できるとともに、第一配線層26の表面は、局所的な回路凹みの発生が少ないものとなる。このため、回路厚さの極端に薄い部位や回路凹み等に起因する表面処理工程における局所的な処理不良やソルダ―レジスト残渣不良、更には実装パッドの凹凸による実装不良等の不具合発生率の少ない、実装信頼性に優れたプリント配線板を得ることができる。
(Iii) Outer layer processing The outer layer of the printed wiring board 46 as shown in FIG. 12 can be processed by various construction methods. For example, an insulating layer as a build-up wiring layer and a wiring layer may be further laminated on the first wiring layer 26 of the printed wiring board 46 as an arbitrary number of layers, or a solder-resist layer may be laminated on the surface of the first wiring layer 26. May be formed and surface-treated as an outer layer pad such as Ni-Au plating, Ni-Pd-Au plating, and water-soluble preflux treatment. Further, columnar pillars or the like may be provided on the outer layer pad. At this time, the first wiring layer 26 created by using the etching sacrificial layer in the present invention can maintain the uniformity of the circuit thickness in the plane, and the surface of the first wiring layer 26 has a local circuit recess. Will be less likely to occur. For this reason, the occurrence rate of defects such as local processing defects in the surface treatment process due to extremely thin circuit thickness or circuit dents, solder resist residue defects, and mounting defects due to unevenness of the mounting pad is low. , A printed wiring board with excellent mounting reliability can be obtained.
 上述したプリント配線板の製造方法は、コアレスビルドアップ法(ETS工法)によるものであるが、MSAP法によるプリント配線板の製造方法については、図6及び7に基づいて説明した従来のMSAP工法において、極薄銅箔110の代わりに本発明の金属箔10を用いることにより、プリント配線板を好ましく製造することができる。 The method for manufacturing the printed wiring board described above is based on the coreless build-up method (ETS method), but the method for manufacturing the printed wiring board by the MSAP method is described in the conventional MSAP method described with reference to FIGS. 6 and 7. By using the metal foil 10 of the present invention instead of the ultrathin copper foil 110, a printed wiring board can be preferably manufactured.
 本発明を以下の例によってさらに具体的に説明する。 The present invention will be described in more detail by the following examples.
 例1~4
 本発明のプリント配線板製造用金属箔の作製及び各種評価を以下のようにして行った。
Examples 1-4
The production of the metal foil for manufacturing the printed wiring board of the present invention and various evaluations were carried out as follows.
(1)キャリアの作製
 陰極として表面を#2000のバフで研磨したチタン製の電極を用意した。また、陽極としてDSA(寸法安定性陽極)を用意した。これらの電極を用い、銅濃度80g/L、硫酸濃度260g/Lの硫酸銅溶液に浸漬して、溶液温度45℃、電流密度55A/dmで電解し、厚さ18μmの電解銅箔をキャリアとして得た。
(1) Preparation of carrier A titanium electrode whose surface was polished with a # 2000 buff was prepared as a cathode. In addition, DSA (dimensional stability anode) was prepared as the anode. Using these electrodes, the electrode is immersed in a copper sulfate solution having a copper concentration of 80 g / L and a sulfuric acid concentration of 260 g / L, electrolyzed at a solution temperature of 45 ° C. and a current density of 55 A / dm 2 , and an electrolytic copper foil having a thickness of 18 μm is used as a carrier. Got as.
(2)剥離層の形成
 酸洗処理されたキャリアを、CBTA(カルボキシベンゾトリアゾール)濃度1g/L、硫酸濃度150g/L及び銅濃度10g/LのCBTA溶液に、液温30℃で30秒間浸漬し、CBTA成分をキャリアの電極面に吸着させた。こうして、キャリアの電極面の表面にCBTA層を有機剥離層として形成した。
(2) Formation of release layer The pickled carrier is immersed in a CBTA solution having a CBTA (carboxybenzotriazole) concentration of 1 g / L, a sulfuric acid concentration of 150 g / L, and a copper concentration of 10 g / L at a liquid temperature of 30 ° C. for 30 seconds. Then, the CBTA component was adsorbed on the electrode surface of the carrier. In this way, the CBTA layer was formed as an organic release layer on the surface of the electrode surface of the carrier.
(3)補助金属層の形成
 有機剥離層が形成されたキャリアを、硫酸ニッケルを用いて作製されたニッケル濃度20g/Lの溶液に浸漬して、液温45℃、pH3、電流密度5A/dmの条件で、厚さ0.001μm相当の付着量のニッケルを有機剥離層上に付着させた。こうして有機剥離層上にニッケル層を補助金属層として形成した。
(3) Formation of Auxiliary Metal Layer The carrier on which the organic exfoliation layer is formed is immersed in a solution having a nickel concentration of 20 g / L prepared using nickel sulfate, and the liquid temperature is 45 ° C., pH is 3, and the current density is 5 A / dm. Under the condition of 2 , an adhering amount of nickel corresponding to a thickness of 0.001 μm was adhered on the organic release layer. In this way, a nickel layer was formed as an auxiliary metal layer on the organic exfoliation layer.
(4)追加銅層の形成
 例1~3については、補助金属層が形成されたキャリアを、銅濃度60g/L、硫酸濃度200g/Lの硫酸銅溶液に浸漬して、溶液温度50℃、電流密度5A/dm以上30A/dm以下で電解し、厚さ0.3μmの追加銅層を補助金属層上に形成した。一方、例4については、追加銅層の形成を行わなかった。
(4) Formation of Additional Copper Layer For Examples 1 to 3, the carrier on which the auxiliary metal layer was formed was immersed in a copper sulfate solution having a copper concentration of 60 g / L and a sulfuric acid concentration of 200 g / L, and the solution temperature was 50 ° C. Electrolysis was performed at a current density of 5 A / dm 2 or more and 30 A / dm 2 or less to form an additional copper layer having a thickness of 0.3 μm on the auxiliary metal layer. On the other hand, in Example 4, no additional copper layer was formed.
(5)拡散防止層の形成
 例1及び2については、追加銅層が形成されたキャリアを、表1に示されるめっき浴に浸漬して、表1に示されるめっき条件で電解し、表2に示される組成及び厚さの拡散防止層を追加銅層上に形成した。一方、例3及び4については、拡散防止層の形成を行わなかった。
(5) Formation of Anti-Diffusion Layer For Examples 1 and 2, the carrier on which the additional copper layer was formed was immersed in the plating bath shown in Table 1 and electrolyzed under the plating conditions shown in Table 1 to form Table 2. An anti-diffusion layer having the composition and thickness shown in is formed on the additional copper layer. On the other hand, in Examples 3 and 4, the diffusion prevention layer was not formed.
(6)第1エッチング犠牲層の形成
 拡散防止層が形成されたキャリア(例1及び2)又は追加銅層が形成されたキャリア(例3)を、表1に示されるめっき浴に浸漬して、表1に示されるめっき条件で電解し、表2に示される組成及び厚さの第1エッチング犠牲層を拡散防止層上又は追加銅層上に形成した。一方、例4については、第1エッチング犠牲層の形成を行わなかった。
(6) Formation of First Etching Sacrificial Layer A carrier on which a diffusion prevention layer is formed (Examples 1 and 2) or a carrier on which an additional copper layer is formed (Example 3) is immersed in the plating bath shown in Table 1. , The first etching sacrificial layer having the composition and thickness shown in Table 2 was formed on the anti-diffusion layer or the additional copper layer by electrolysis under the plating conditions shown in Table 1. On the other hand, in Example 4, the first etching sacrificial layer was not formed.
(7)第2エッチング犠牲層の形成
 例1及び2については、第1エッチング犠牲層が形成されたキャリアを、表1に示されるめっき浴に浸漬して、表1に示されるめっき条件で電解し、表2に示される組成及び厚さの第2エッチング犠牲層を第1エッチング犠牲層上に形成した。一方、例3及び4については、第2エッチング犠牲層の形成を行わなかった。
(7) Formation of Second Etching Sacrificial Layer For Examples 1 and 2, the carrier on which the first etching sacrificial layer was formed was immersed in the plating bath shown in Table 1 and electrolyzed under the plating conditions shown in Table 1. Then, a second etching sacrificial layer having the composition and thickness shown in Table 2 was formed on the first etching sacrificial layer. On the other hand, in Examples 3 and 4, the second etching sacrificial layer was not formed.
(8)銅層(シード層)の形成
 第2エッチング犠牲層が形成されたキャリア(例1及び2)、第1エッチング犠牲層が形成されたキャリア(例3)、又は補助金属層が形成されたキャリア(例4)を、銅濃度60g/L、硫酸濃度145g/Lの硫酸銅溶液に浸漬して、溶液温度45℃、電流密度30A/dmで電解し、表2に示される厚さの銅層を第2エッチング犠牲層上、第1エッチング犠牲層上、又は補助金属層上に形成した。
(8) Formation of Copper Layer (Seed Layer) Carriers on which the second etching sacrificial layer was formed (Examples 1 and 2), carriers on which the first etching sacrificial layer was formed (Example 3), or auxiliary metal layers were formed. The carrier (Example 4) was immersed in a copper sulfate solution having a copper concentration of 60 g / L and a sulfuric acid concentration of 145 g / L, and electrolated at a solution temperature of 45 ° C. and a current density of 30 A / dm 2 , and the thicknesses shown in Table 2 were obtained. The copper layer was formed on the second etching sacrificial layer, the first etching sacrificial layer, or the auxiliary metal layer.
(9)粗化処理
 こうして形成されたキャリア付金属箔の表面に粗化処理を行った。この粗化処理は、銅層の上に微細銅粒を析出付着させる焼けめっき工程と、この微細銅粒の脱落を防止するための被せめっき工程とから構成される。焼けめっき工程では、銅濃度10g/L及び硫酸濃度120g/Lを含む酸性硫酸銅溶液を用いて、液温25℃、電流密度15A/dmで粗化処理を行った。その後の被せめっき工程では、銅濃度70g/L及び硫酸濃度120g/Lを含む酸性硫酸銅溶液を用いて、液温40℃及び電流密度15A/dmの平滑めっき条件で電着を行った。
(9) Roughing treatment The surface of the metal foil with a carrier thus formed was roughened. This roughening treatment comprises a burn-plating step of depositing and adhering fine copper particles on the copper layer, and a covering plating step for preventing the fine copper grains from falling off. In the burn-plating step, a roughening treatment was performed using an acidic copper sulfate solution containing a copper concentration of 10 g / L and a sulfuric acid concentration of 120 g / L at a liquid temperature of 25 ° C. and a current density of 15 A / dm 2 . In the subsequent cover plating step, electrodeposition was performed using an acidic copper sulfate solution containing a copper concentration of 70 g / L and a sulfuric acid concentration of 120 g / L under smooth plating conditions of a liquid temperature of 40 ° C. and a current density of 15 A / dm 2 .
(10)防錆処理
 得られたキャリア付金属箔の表面に、亜鉛-ニッケル合金めっき処理及びクロメート処理からなる防錆処理を行った。まず、亜鉛濃度0.2g/L、ニッケル濃度2g/L及びピロリン酸カリウム濃度300g/Lの電解液を用い、液温40℃、電流密度0.5A/dmの条件で、粗化処理層及びキャリアの表面に亜鉛-ニッケル合金めっき処理を行った。次いで、クロム酸3g/L水溶液を用い、pH10、電流密度5A/dmの条件で、亜鉛-ニッケル合金めっき処理を行った表面にクロメート処理を行った。
(10) Rust prevention treatment The surface of the obtained metal foil with a carrier was subjected to a rust prevention treatment consisting of a zinc-nickel alloy plating treatment and a chromate treatment. First, a roughening treatment layer was used under the conditions of a zinc concentration of 0.2 g / L, a nickel concentration of 2 g / L, and a potassium pyrophosphate concentration of 300 g / L at a liquid temperature of 40 ° C. and a current density of 0.5 A / dm 2. And the surface of the carrier was plated with a zinc-nickel alloy. Next, using a 3 g / L aqueous solution of chromic acid, the surface subjected to the zinc-nickel alloy plating treatment was subjected to chromate treatment under the conditions of pH 10 and a current density of 5 A / dm 2 .
(11)シランカップリング剤処理
 3-グリシドキシプロピルトリメトキシシラン2g/L含む水溶液をキャリア付金属箔の銅層側の表面に吸着させ、電熱器により水分を蒸発させることにより、シランカップリング剤処理を行った。このとき、シランカップリング剤処理はキャリア側には行わなかった。
(11) Treatment with silane coupling agent Silane coupling by adsorbing an aqueous solution containing 2 g / L of 3-glycidoxypropyltrimethoxysilane on the surface of the metal foil with a carrier on the copper layer side and evaporating the water content with an electric heater. Agent treatment was performed. At this time, the silane coupling agent treatment was not performed on the carrier side.
(12)評価
 こうして得られたキャリア付金属箔及びその構成層について、各種評価を以下のとおり行った。
(12) Evaluation Various evaluations were carried out on the metal foil with a carrier and its constituent layers thus obtained as follows.
 評価1:エッチングレート比
 拡散防止層のエッチングレート比r’、第1エッチング犠牲層のエッチングレート比r、及び第2エッチング犠牲層のエッチングレート比rを以下のようにして測定した。
Evaluation 1: etch rate ratio r 2 of the etching rate ratio diffusion preventing layer ', etching rate ratio r 1 of the first etching sacrificial layer, and the etching rate ratio r 2 of the second etching sacrificial layer was measured as follows.
 まず、例1及び2については以下のサンプル(i)~(iii)を、例3については以下のサンプル(ii)を用意した。また、例4については以下のサンプル(iv)を用意した。
(i)上記(5)で得られた最表面が拡散防止層であるキャリア付金属箔(すなわち拡散防止層までが形成され、第1エッチング犠牲層の形成及びその後の処理が行われていない中間製品)
(ii)上記(6)で得られた最表面が第1エッチング犠牲層であるキャリア付金属箔(すなわち第1エッチング犠牲層までが形成され、第2エッチング犠牲層の形成及びその後の処理が行われていない中間製品)
(iii)上記(7)で得られた最表面が第2エッチング犠牲層であるキャリア付金属箔(すなわち第2エッチング犠牲層までが形成され、銅層の形成及びその後の処理が行われていない中間製品)
(iv)上記(8)で得られた最表面が銅層であるキャリア付金属箔(すなわち銅層までが形成され、粗化処理及びその後の処理が行われていない中間製品)
First, the following samples (i) to (iii) were prepared for Examples 1 and 2, and the following samples (ii) were prepared for Example 3. In addition, the following sample (iv) was prepared for Example 4.
(I) An intermediate in which a metal foil with a carrier whose outermost surface obtained in (5) above is a diffusion prevention layer (that is, a diffusion prevention layer is formed, and a first etching sacrificial layer is not formed and subsequent treatment is not performed. Product)
(Ii) A metal foil with a carrier whose outermost surface obtained in (6) above is the first etching sacrificial layer (that is, up to the first etching sacrificial layer is formed, and the second etching sacrificial layer is formed and the subsequent treatment is performed. Intermediate products that have not been broken)
(Iii) A metal foil with a carrier (that is, up to the second etching sacrificial layer) whose outermost surface obtained in (7) above is the second etching sacrificial layer is formed, and the copper layer is not formed and the subsequent treatment is not performed. Intermediate product)
(Iv) A metal foil with a carrier whose outermost surface is a copper layer obtained in (8) above (that is, an intermediate product in which a copper layer is formed and roughening treatment and subsequent treatment are not performed).
 一方、水に市販の濃硫酸(95重量%)と過酸化水素水(30重量%)を溶解させて、硫酸濃度5.9重量%、過酸化水素濃度2.1重量%のエッチング液を作製した。各キャリア付金属箔サンプルをキャリア側がエッチングされないようにマスキングし、エッチング液に25℃で一定時間浸漬して溶解させ、溶解前後のめっき皮膜の厚み変化を蛍光X線膜厚計(フィッシャー・インストルメンツ社製、Fischerscope X-Ray XDAL-FD)で測定した。得られた厚み変化を溶解時間で除することにより、対象となる各めっき皮膜のエッチングレートを求めた。こうして求めた例4のサンプル(iv)のエッチングレートがCuのエッチングレートであり、例1~3におけるサンプル(i)、(ii)及び(iii)のエッチングレートがそれぞれ各拡散防止層、各第1エッチング犠牲層及び各第2エッチング犠牲層のエッチングレートである。そして、拡散防止層、第1エッチング犠牲層及び第2エッチング犠牲層のエッチングレートをそれぞれCuのエッチングレートで除することにより、拡散防止層のエッチングレート比r’、第1エッチング犠牲層のエッチングレート比r、及び第2エッチング犠牲層のエッチングレート比rを算出した。結果は表2に示されるとおりであった。 On the other hand, a commercially available concentrated sulfuric acid (95% by weight) and a hydrogen peroxide solution (30% by weight) are dissolved in water to prepare an etching solution having a sulfuric acid concentration of 5.9% by weight and a hydrogen peroxide concentration of 2.1% by weight. did. Each carrier-attached metal foil sample is masked so that the carrier side is not etched, immersed in an etching solution at 25 ° C. for a certain period of time to dissolve it, and the change in the thickness of the plating film before and after dissolution is measured by a fluorescent X-ray film thickness meter (Fisher Instruments). It was measured with a Fisherscape X-Ray XDAL-FD manufactured by the same company. The etching rate of each target plating film was determined by dividing the obtained thickness change by the dissolution time. The etching rate of the sample (iv) of Example 4 thus obtained is the etching rate of Cu, and the etching rates of the samples (i), (ii) and (iii) in Examples 1 to 3 are the diffusion prevention layers and the first. It is the etching rate of 1 etching sacrificial layer and each 2nd etching sacrificial layer. Then, the diffusion preventing layer, by dividing the etching rate of Cu etching rate of the first etching sacrificial layer and the second etching sacrificial layer, respectively, the etching rate ratio r 2 of the diffusion preventing layer ', etching of the first etching sacrificial layer The rate ratio r 1 and the etching rate ratio r 2 of the second etching sacrificial layer were calculated. The results are as shown in Table 2.
 評価2:単位面積当たりのピンホール数
 追加銅層の単位面積当たりのピンホール数を測定するために、上記(4)で得られた最表面が追加銅層であるキャリア付銅箔(すなわち厚み0.3μmの追加銅層までが形成され、拡散防止層の形成及びその後の処理が行われていない中間製品)を用意した。このキャリア付銅箔を絶縁樹脂基材(パナソニック株式会社製プリプレグ、R-1661、厚さ0.1mm)に追加銅層側が接するように積層し、圧力4.0MPa、温度190℃で90分間熱圧着した。その後、キャリアを剥離して積層板を得た。この積層板を、暗室中でバックライトを当てながら、光学顕微鏡で観察して、ピンホールの数を数えた。こうして1mmあたりのピンホール数を測定したところ、例1~3のいずれにおいても、追加銅層の単位面積当たりのピンホール数は2個/mm以下であった。
Evaluation 2 : Number of pinholes per unit area In order to measure the number of pinholes per unit area of the additional copper layer, a copper foil with a carrier (that is, thickness) in which the outermost surface obtained in (4) above is an additional copper layer. An intermediate product (an intermediate product) in which an additional copper layer of 0.3 μm was formed and the diffusion prevention layer was not formed and the subsequent treatment was not performed was prepared. This copper foil with a carrier is laminated on an insulating resin base material (prepreg manufactured by Panasonic Corporation, R-1661, thickness 0.1 mm) so that the additional copper layer side is in contact with each other, and heat is applied at a pressure of 4.0 MPa and a temperature of 190 ° C. for 90 minutes. It was crimped. Then, the carrier was peeled off to obtain a laminated board. This laminated board was observed with an optical microscope while being backlit in a dark room, and the number of pinholes was counted. When the number of pinholes per 1 mm 2 was measured in this way, the number of pinholes per unit area of the additional copper layer was 2 or less per mm 2 in all of Examples 1 to 3.
 評価3:銅層(シード層)への金属等の熱拡散
 熱拡散の評価を行うため、例1~3について、上記(8)で得られた最表面が銅層であるキャリア付金属箔(すなわち銅層までが形成され、粗化処理及びその後の処理が行われていない中間製品)を用意した。このキャリア付金属箔を真空中、温度220℃で2時間加熱し、加熱前後のキャリア付金属箔の組成分析をグロー放電発光分析装置(GD-OES)(株式会社堀場製作所製、JY-5000RF)により行った。加熱前のサンプルにおいて、銅層に1重量%以下(0重量%を含む)しか含まれず、かつ、第1エッチング犠牲層及び第2エッチング犠牲層(存在する場合)の少なくとも一方に1重量%以上含まれる元素を拡散確認元素と定義した。加熱後のサンプルについて、以下の地点:
(a)銅層の第2エッチング犠牲層と反対側の表面(第2エッチング犠牲層が存在しない場合には銅層の第1エッチング犠牲層と反対側の表面)、又は
(b)銅層と第2エッチング犠牲層との境界面(第2エッチング犠牲層が存在しない場合には銅層と第1エッチング犠牲層との境界面)から銅層の深さ方向に0.3μm離れた地点
のうち、第2エッチング犠牲層(第2エッチング犠牲層が存在しない場合には第1エッチング犠牲層)からの距離が近い方の地点における、全ての拡散確認元素の含有率が1重量%以下であるものを拡散無しと判定し、そうでないものを拡散有りと判定した。なお、銅層と第2エッチング犠牲層との境界の判別が不可能となったものについても拡散有りと判定した。結果は表2に示されるとおりであった。
Evaluation 3 : Thermal diffusion of metals and the like into the copper layer (seed layer) In order to evaluate thermal diffusion, in Examples 1 to 3, the metal foil with a carrier whose outermost surface obtained in (8) above is a copper layer ( That is, an intermediate product in which a copper layer is formed and roughening treatment and subsequent treatment are not performed) was prepared. This metal foil with a carrier is heated in a vacuum at a temperature of 220 ° C. for 2 hours, and the composition analysis of the metal foil with a carrier before and after heating is performed by a glow discharge emission analyzer (GD-OES) (manufactured by Horiba Seisakusho Co., Ltd., JY-5000RF). Was done by. In the sample before heating, the copper layer contains only 1% by weight or less (including 0% by weight), and at least one of the first etching sacrificial layer and the second etching sacrificial layer (if present) contains 1% by weight or more. The contained element was defined as a diffusion confirmation element. Regarding the sample after heating, the following points:
(A) The surface of the copper layer opposite to the second etching sacrificial layer (the surface of the copper layer opposite to the first etching sacrificial layer in the absence of the second etching sacrificial layer), or (b) the copper layer Of the points 0.3 μm away from the interface with the second etching sacrificial layer (the interface between the copper layer and the first etching sacrificial layer when the second etching sacrificial layer does not exist) in the depth direction of the copper layer. , The content of all diffusion-confirmed elements is 1% by weight or less at the point closer to the second etching sacrificial layer (the first etching sacrificial layer if the second etching sacrificial layer does not exist). Was determined to be non-diffusion, and those not were determined to be diffused. It was also determined that there was diffusion even when the boundary between the copper layer and the second etching sacrificial layer could not be determined. The results are as shown in Table 2.
 評価4:シード層の欠損
 内層基板の表面に、上記(11)で得られたキャリア付金属箔を、絶縁樹脂基材(三菱瓦斯化学株式会社製プリプレグ、GHPL-830NS、厚さ0.1mm)を介して銅層側が近接するように積層し、圧力4.0MPa、温度220℃で90分間熱圧着した。こうして得られた金属張積層板のキャリアを剥離し、10cm×10cmの大きさに切断し、評価1で作製したエッチング液に第1エッチング犠牲層及び第2エッチング犠牲層(存在する場合)が完全に消失するまで浸漬させた後、目視で欠損の有無を確認し、以下の基準に従い格付け評価した。なお、ここでいう欠損とは下地の基材が目視できる状態を指す。結果は表2に示されるとおりであった。
・評価A:銅層に欠損が無いもの
・評価B:銅層に1箇所以上3箇所以下の欠損が生じているもの
・評価C:銅層に4箇所以上の欠損が生じているもの
Evaluation 4 : Defect of seed layer On the surface of the inner layer substrate, the metal foil with a carrier obtained in (11) above was applied to an insulating resin base material (prepreg manufactured by Mitsubishi Gas Chemicals Corporation, GHPL-830NS, thickness 0.1 mm). The copper layers were laminated so as to be close to each other, and thermocompression bonded at a pressure of 4.0 MPa and a temperature of 220 ° C. for 90 minutes. The carrier of the metal-clad laminate thus obtained is peeled off, cut into a size of 10 cm × 10 cm, and the first etching sacrificial layer and the second etching sacrificial layer (if present) are completely contained in the etching solution prepared in Evaluation 1. After soaking until it disappeared, the presence or absence of defects was visually confirmed, and the rating was evaluated according to the following criteria. The term “deficiency” as used herein refers to a state in which the underlying base material can be visually recognized. The results are as shown in Table 2.
-Evaluation A: No defects in the copper layer-Evaluation B: One or more and three or less defects in the copper layer-Evaluation C: Four or more defects in the copper layer
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

Claims (18)

  1.  第1エッチング犠牲層、第2エッチング犠牲層、及び銅層をこの順に備え、Cuのエッチングレートに対する、前記第1エッチング犠牲層のエッチングレートの比をrとし、Cuのエッチングレートに対する、前記第2エッチング犠牲層のエッチングレートの比をrとした場合、r>r>1.0を満たす、プリント配線板製造用金属箔。 The first etching sacrificial layer, the second etching sacrificial layer, and the copper layer are provided in this order, the ratio of the etching rate of the first etching sacrificial layer to the etching rate of Cu is r1, and the first etching rate with respect to Cu. 2 A metal foil for manufacturing a printed wiring board that satisfies r 1 > r 2 > 1.0 when the ratio of the etching rates of the etching sacrificial layers is r 2 .
  2.  前記比rが1.2以上である、請求項1に記載の金属箔。 The metal foil according to claim 1, wherein the ratio r 1 is 1.2 or more.
  3.  前記比rが1.2以上である、請求項1又は2に記載の金属箔。 The metal foil according to claim 1 or 2, wherein the ratio r 2 is 1.2 or more.
  4.  前記第1エッチング犠牲層が、Cu-Zn合金、Cu-Sn合金、Cu-Mn合金、Cu-Al合金、Cu-Mg合金、Fe金属、Zn金属、Co金属、Mo金属及びこれらの酸化物からなる群から選択される少なくとも1種で構成され、かつ、前記第2エッチング犠牲層が、Cu-Zn合金、Cu-Sn合金、Cu-Mn合金、Cu-Al合金、Cu-Mg合金、Fe金属、Zn金属、Co金属、Mo金属及びこれらの酸化物からなる群から選択される少なくとも1種で構成される、請求項1~3のいずれか一項に記載の金属箔。 The first etching sacrificial layer is made of Cu—Zn alloy, Cu—Sn alloy, Cu—Mn alloy, Cu—Al alloy, Cu—Mg alloy, Fe metal, Zn metal, Co metal, Mo metal and oxides thereof. The second etching sacrificial layer is composed of at least one selected from the above group, and the second etching sacrificial layer is a Cu—Zn alloy, Cu—Sn alloy, Cu—Mn alloy, Cu—Al alloy, Cu—Mg alloy, Fe metal. The metal foil according to any one of claims 1 to 3, which is composed of at least one selected from the group consisting of Zn metal, Co metal, Mo metal and oxides thereof.
  5.  前記第1エッチング犠牲層及び前記第2エッチング犠牲層の各々が、Cu-Zn合金で構成され、前記第1エッチング犠牲層のZn含有量をxとし、前記第2エッチング犠牲層のZn含有量をyとした場合、x>y≧50重量%を満たす、請求項1~4のいずれか一項に記載の金属箔。 Each of the first etching sacrificial layer and the second etching sacrificial layer is composed of a Cu—Zn alloy, the Zn content of the first etching sacrificial layer is x, and the Zn content of the second etching sacrificial layer is defined as x. The metal foil according to any one of claims 1 to 4, wherein when y is satisfied, x> y ≧ 50% by weight.
  6.  前記第1エッチング犠牲層がCu-Zn合金又はZn金属で構成され、かつ、前記第2エッチング犠牲層がFe金属で構成される、請求項1~4のいずれか一項に記載の金属箔。 The metal foil according to any one of claims 1 to 4, wherein the first etching sacrificial layer is made of Cu—Zn alloy or Zn metal, and the second etching sacrificial layer is made of Fe metal.
  7.  前記第1エッチング犠牲層の前記第2エッチング犠牲層と反対側の表面に追加銅層をさらに備えた、請求項1~6のいずれか一項に記載の金属箔。 The metal foil according to any one of claims 1 to 6, further comprising an additional copper layer on the surface of the first etching sacrificial layer opposite to the second etching sacrificial layer.
  8.  前記追加銅層と前記第1エッチング犠牲層との間に拡散防止層をさらに備えた、請求項7に記載の金属箔。 The metal foil according to claim 7, further comprising a diffusion prevention layer between the additional copper layer and the first etching sacrificial layer.
  9.  前記拡散防止層が、Fe金属、Fe-W合金、Co金属、Co-W合金、Co-Ni合金及びこれらの酸化物からなる群から選択される少なくとも1種で構成される、請求項8に記載の金属箔。 According to claim 8, the anti-diffusion layer is composed of at least one selected from the group consisting of Fe metal, Fe-W alloy, Co metal, Co-W alloy, Co-Ni alloy and oxides thereof. The described metal foil.
  10.  前記金属箔の単位面積当たりのピンホール数が2個/mm以下である、請求項1~9のいずれか一項に記載の金属箔。 The metal foil according to any one of claims 1 to 9, wherein the number of pinholes per unit area of the metal foil is 2 pieces / mm 2 or less.
  11.  前記第1エッチング犠牲層の厚さd、前記第2エッチング犠牲層の厚さd、前記銅層の厚さd、存在する場合には前記拡散防止層の厚さd’、及び存在する場合には前記追加銅層の厚さd’の合計厚さd+d+d+d’+d’が3.0μm以下である、請求項1~10のいずれか一項に記載の金属箔。 The thickness d 1 of the first etching sacrificial layer, the thickness d 2 of the second etching sacrificial layer, the copper layer having a thickness of d 3, the thickness d 2 of the diffusion barrier layer, if present ', and when present the additional copper thickness d 3 of the layer 'total thickness of d 1 + d 2 + d 3 + d 2' + d 3 ' is 3.0μm or less, in any one of claims 1 to 10 The metal leaf described.
  12.  前記第2エッチング犠牲層の厚さdが0.05μm以上2.5μm以下である、請求項1~11のいずれか一項に記載の金属箔。 The metal foil according to any one of claims 1 to 11, wherein the thickness d 2 of the second etching sacrificial layer is 0.05 μm or more and 2.5 μm or less.
  13.  前記銅層の厚さdが0.1μm以上2.5μm以下である、請求項1~12のいずれか一項に記載の金属箔。 The metal foil according to any one of claims 1 to 12, wherein the thickness d 3 of the copper layer is 0.1 μm or more and 2.5 μm or less.
  14.  前記追加銅層の厚さd’が0.1μm以上2.5μm以下である、請求項7~13のいずれか一項に記載の金属箔。 The additional thickness d 3 of the copper layer 'is 0.1μm or more 2.5μm or less, the metal foil according to any one of claims 7 to 13.
  15.  Cuのエッチングレートに対する、前記拡散防止層のエッチングレートの比をr’とした場合、前記第1エッチング犠牲層の前記比rに対する前記厚さdの比d/r、前記第2エッチング犠牲層の前記比rに対する前記厚さdの比d/r、前記追加銅層の厚さd’、及び存在する場合には前記拡散防止層の前記比r’に対する前記厚さd’の比d’/r’が、d/r+d/r≧d’+d’/r’を満たす、請求項7~14のいずれか一項に記載の金属箔。 When the ratio of the etching rate of the diffusion prevention layer to the etching rate of Cu is r 2 ', the ratio of the thickness d 1 to the ratio r 1 of the first etching sacrificial layer is d 1 / r 1 , the first . 2 the ratio d 2 / r 2 of the relative said ratio r 2 of the etching sacrificial layer thickness d 2, the thickness d 3 of the additional copper layer ', and the ratio r 2 of the diffusion barrier layer, if present' for the 'is, d 1 / r 1 + d 2 / r 2 ≧ d 3' / r 2 ' ratio d 2' of the thickness d 2 satisfy + d 2 '/ r 2', claim 7-14 The metal foil described in item 1.
  16.  キャリア、剥離層、及び請求項1~15のいずれか一項の金属箔をこの順に備えた、キャリア付金属箔。 A metal foil with a carrier provided with a carrier, a release layer, and a metal foil according to any one of claims 1 to 15 in this order.
  17.  請求項1~15のいずれか一項に記載の金属箔を備えた、金属張積層板。 A metal-clad laminate provided with the metal foil according to any one of claims 1 to 15.
  18.  請求項1~15のいずれか一項に記載の金属箔又は請求項16に記載のキャリア付金属箔を用いることを特徴とする、プリント配線板の製造方法。
     

     
    A method for manufacturing a printed wiring board, which comprises using the metal foil according to any one of claims 1 to 15 or the metal foil with a carrier according to claim 16.


PCT/JP2020/010017 2019-03-27 2020-03-09 Metal foil for printed wiring board, metal foil with carrier, and metal-clad laminate, and method for manufacturing printed wiring board using same WO2020195748A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080023976.4A CN113646469A (en) 2019-03-27 2020-03-09 Metal foil for printed wiring board, metal foil with carrier, metal-clad laminate, and method for manufacturing printed wiring board using same
KR1020217024157A KR20210143727A (en) 2019-03-27 2020-03-09 Metal foil for printed wiring board, metal foil provided with carrier, and metal clad laminated board, and manufacturing method of a printed wiring board using them
JP2021508964A JP7449921B2 (en) 2019-03-27 2020-03-09 Metal foil for printed wiring boards, metal foil with carrier, metal-clad laminate, and method for manufacturing printed wiring boards using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-060651 2019-03-27
JP2019060651 2019-03-27

Publications (1)

Publication Number Publication Date
WO2020195748A1 true WO2020195748A1 (en) 2020-10-01

Family

ID=72610535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/010017 WO2020195748A1 (en) 2019-03-27 2020-03-09 Metal foil for printed wiring board, metal foil with carrier, and metal-clad laminate, and method for manufacturing printed wiring board using same

Country Status (5)

Country Link
JP (1) JP7449921B2 (en)
KR (1) KR20210143727A (en)
CN (1) CN113646469A (en)
TW (1) TW202041119A (en)
WO (1) WO2020195748A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112911804A (en) * 2021-01-13 2021-06-04 柏承科技(昆山)股份有限公司 Film-stripping, glue-removing and copper-melting three-in-one process capable of preventing and removing glue pollution

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017141985A1 (en) * 2016-02-18 2017-08-24 三井金属鉱業株式会社 Copper foil for printed circuit board production, copper foil with carrier, and copper-clad laminate plate, and printed circuit board production method using copper foil for printed circuit board production, copper foil with carrier, and copper-clad laminate plate

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4515652A (en) * 1984-03-20 1985-05-07 Harris Corporation Plasma sculpturing with a non-planar sacrificial layer
US6242078B1 (en) * 1998-07-28 2001-06-05 Isola Laminate Systems Corp. High density printed circuit substrate and method of fabrication
TW513777B (en) * 2001-04-19 2002-12-11 Macronix Int Co Ltd Manufacture process of dual damascene
US6806204B1 (en) * 2003-06-30 2004-10-19 Intel Corporation Semiconductor etch speed modification
EP1985406A1 (en) * 2007-04-25 2008-10-29 NV Bekaert SA A method to provide coil shaved metal fibers
KR20090054120A (en) * 2007-11-26 2009-05-29 엘에스엠트론 주식회사 Copper clad laminate with high etch factor
CN103430642B (en) 2011-03-30 2016-04-06 三井金属矿业株式会社 The manufacture method of multilayer printed circuit board
WO2013133269A1 (en) * 2012-03-09 2013-09-12 三井金属鉱業株式会社 Method for manufacturing printed wiring board and copper foil for laser processing
JP5358740B1 (en) * 2012-10-26 2013-12-04 Jx日鉱日石金属株式会社 Copper foil with carrier, copper-clad laminate using the same, printed wiring board, printed circuit board, and printed wiring board manufacturing method
CN105189829B (en) * 2013-06-13 2018-06-01 Jx日矿日石金属株式会社 The copper foil of appendix body, copper-cover laminated plate, printed circuit board (PCB), the manufacturing method of e-machine and printed circuit board (PCB)
WO2015099156A1 (en) * 2013-12-27 2015-07-02 三井金属鉱業株式会社 Composite metal foil, composite metal foil with carrier, metal-clad laminate obtained using said composite metal foil or said composite metal foil with carrier, and printed wiring board
CN103904035B (en) * 2014-03-05 2016-09-21 清华大学 Tcat structure and forming method thereof
JP6546526B2 (en) * 2015-12-25 2019-07-17 三井金属鉱業株式会社 Patent application title: Copper foil with carrier, laminate for coreless support, coreless support with wiring layer, and method for producing printed wiring board
KR20180113987A (en) * 2016-02-18 2018-10-17 미쓰이금속광업주식회사 Manufacturing method of printed wiring board
JP6471140B2 (en) * 2016-11-30 2019-02-13 福田金属箔粉工業株式会社 Composite metal foil, copper-clad laminate using the composite metal foil, and method for producing the copper-clad laminate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017141985A1 (en) * 2016-02-18 2017-08-24 三井金属鉱業株式会社 Copper foil for printed circuit board production, copper foil with carrier, and copper-clad laminate plate, and printed circuit board production method using copper foil for printed circuit board production, copper foil with carrier, and copper-clad laminate plate

Also Published As

Publication number Publication date
JP7449921B2 (en) 2024-03-14
JPWO2020195748A1 (en) 2020-10-01
TW202041119A (en) 2020-11-01
KR20210143727A (en) 2021-11-29
CN113646469A (en) 2021-11-12

Similar Documents

Publication Publication Date Title
KR102480377B1 (en) Roughened copper foil, copper foil with carrier, copper-clad laminate and printed wiring board
JP6836580B2 (en) Copper foil for manufacturing printed wiring boards, copper foil with carriers and copper-clad laminates, and methods for manufacturing printed wiring boards using them.
TW201722219A (en) Carrier-Attached Copper Foil, Laminate, Method For Producing Printed Wiring Board, And Method For Producing Electronic Device
JP2015199355A (en) Carrier-provided copper foil, printed wiring board, laminate, laminate sheet, electronic equipment and method of producing printed wiring board
WO2015030256A1 (en) Copper foil provided with carrier, copper-clad laminated board, printed wiring board, electronic device, and method for manufacturing printed wiring board
WO2019188712A1 (en) Roughened copper foil, copper foil with carrier, copper-clad multi-layer board, and printed wiring board
JP6836579B2 (en) Manufacturing method of printed wiring board
JP6131395B1 (en) Method for manufacturing printed wiring board
WO2020195748A1 (en) Metal foil for printed wiring board, metal foil with carrier, and metal-clad laminate, and method for manufacturing printed wiring board using same
JP6140480B2 (en) Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board
JP2014193592A (en) Carrier-fitted copper foil, method for manufacturing carrier-fitted copper foil, printed wiring board, printed circuit board, copper-clad laminate sheet, and method for manufacturing printed wiring board
JP2014193591A (en) Carrier-fitted copper foil, method for manufacturing carrier-fitted copper foil, printed wiring board, printed circuit board, copper-clad laminate sheet, and method for manufacturing printed wiring board
JP6329727B2 (en) Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board
JP6176948B2 (en) Copper foil with carrier, method for producing copper foil with carrier, method for producing printed circuit board, method for producing copper-clad laminate, and method for producing printed wiring board
WO2023189566A1 (en) Metal foil with carrier, metal-clad laminate, and printed wiring board
WO2023189565A1 (en) Carrier-attached metal foil, metal-clad laminate, and printed wiring board
JP6336142B2 (en) Copper foil with carrier, method for producing copper foil with carrier, method for producing printed circuit board, method for producing copper-clad laminate, and method for producing printed wiring board
KR20230159393A (en) Carrier equipped with copper foil, copper clad laminate and printed wiring board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20780063

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021508964

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20780063

Country of ref document: EP

Kind code of ref document: A1