WO2023189565A1 - Carrier-attached metal foil, metal-clad laminate, and printed wiring board - Google Patents

Carrier-attached metal foil, metal-clad laminate, and printed wiring board Download PDF

Info

Publication number
WO2023189565A1
WO2023189565A1 PCT/JP2023/009939 JP2023009939W WO2023189565A1 WO 2023189565 A1 WO2023189565 A1 WO 2023189565A1 JP 2023009939 W JP2023009939 W JP 2023009939W WO 2023189565 A1 WO2023189565 A1 WO 2023189565A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
metal foil
metal
foil
kgf
Prior art date
Application number
PCT/JP2023/009939
Other languages
French (fr)
Japanese (ja)
Inventor
佑太 佐々木
哲聡 ▲高▼梨
和広 吉川
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Publication of WO2023189565A1 publication Critical patent/WO2023189565A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/16Electroplating with layers of varying thickness
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Definitions

  • the present invention relates to a metal foil with a carrier, a metal-clad laminate, and a printed wiring board.
  • Metal foil with a carrier is widely used as a material for manufacturing printed wiring boards.
  • Metal foil with a carrier typically has a structure comprising a carrier, a release layer, and a metal foil (for example, ultra-thin copper foil) in this order, and is made of an insulating resin such as a glass-epoxy base material, a phenol base material, or a polyimide base material. It is bonded to a base material (resin layer) by hot pressing to form a metal-clad laminate (for example, a copper-clad laminate), and is used in the manufacture of printed wiring boards.
  • a base material resin layer
  • Patent Document 1 International Publication No. 2015/080052
  • a metal foil with a carrier of 40 kgf/mm 2 is used as a carrier after heat treatment at 250° C. for 60 minutes.
  • a carrier-attached copper foil characterized by using an electrolytic copper foil having the above tensile strength is disclosed. According to such a copper foil with a carrier, formation of a connecting portion in the bonding interface layer between the carrier and the copper foil is suppressed, and the carrier can be easily peeled off from the copper foil.
  • the present inventors have recently developed a metal foil with a carrier that has a tensile strength of the carrier of 50.0 kgf/mm 2 or more and a tensile strength of the metal foil of 50.0 kgf/mm 2 or more. It was found that the occurrence of breakage or cracks in metal foil can be suppressed.
  • an object of the present invention is to provide a metal foil with a carrier that can suppress the occurrence of breakage or cracking of the metal foil during handling.
  • a carrier-attached metal foil comprising a carrier, a release layer, and a metal foil in this order, A metal foil with a carrier, wherein the carrier has a tensile strength of 50.0 kgf/mm 2 or more, and the metal foil has a tensile strength of 50.0 kgf/mm 2 or more.
  • the carrier has a tensile strength of 45.0 kgf/mm 2 or more and/or the metal foil has a tensile strength of 45.0 kgf/mm 2 or more after heating at 250° C. for 60 minutes. metal foil with carrier.
  • a metal-clad laminate comprising the carrier-attached metal foil according to any one of aspects 1 to 7.
  • a printed wiring board comprising the carrier-attached metal foil according to any one of aspects 1 to 7.
  • a method for manufacturing a printed wiring board comprising manufacturing a printed wiring board using the carrier-attached metal foil according to any one of aspects 1 to 7.
  • the metal foil with carrier according to the present invention includes a carrier, a release layer, and a metal foil in this order.
  • the carrier has a tensile strength of 50.0 kgf/mm 2 or more
  • the metal foil has a tensile strength of 50.0 kgf/mm 2 or more.
  • the metal foil can be It is possible to suppress the occurrence of breakage or cracks.
  • a metal-clad laminate 20 shown in FIG. 1(ii) is obtained by laminating a resin layer 16 (for example, prepreg) on the surface of the carrier-attached metal foil 10 on the metal foil 14 side and hot pressing.
  • the peripheral portion of the broken portion B of the metal foil 14 may be buried in the resin layer 16.
  • the carrier 12 is peeled off from the metal-clad laminate 20, and the metal foil 14 is subjected to patterning including an etching process.
  • the peripheral part of the broken part B of the metal foil 14 is buried in the resin layer 16, when etching the metal foil 14, the part surrounding the broken part B of the metal foil 14 is exposed to the surface.
  • a portion of the resin layer 16 ends up functioning as a resist for etching. As a result, it becomes difficult to remove the peripheral portion of the fractured portion B in the metal foil 14 by etching, and residual metal is generated.
  • the carrier-attached metal foil of the present invention By increasing the tensile strength of the carrier to 50.0 kgf/mm 2 or more, it is possible to firmly support the metal foil and ensure stability during handling, and also to increase the tensile strength of the metal foil to 50.0 kgf/mm 2 or more. By setting it as high as /mm 2 or more, it is possible to improve the durability against direct loads on the metal foil when handling the metal foil with a carrier. In this way, in the present invention, rather than controlling the tensile strength of either the carrier or the metal foil, the tensile strength of both is controlled to a high value, thereby extremely effectively preventing metal foil from breaking and cracking. can suppress the occurrence of
  • the tensile strength of the carrier is 50.0 kgf/mm 2 or more, preferably 50.0 kgf/mm 2 or more and 100.0 kgf/mm 2 or less, more preferably 50.0 kgf/mm 2 or more and 80.0 kgf/mm 2 below, it is more preferably 55.0 kgf/mm 2 or more and 70.0 kgf/mm 2 or less, particularly preferably 55.0 kgf/mm 2 or more and 65.0 kgf/mm 2 or less.
  • Each numerical value of tensile strength in this specification shall mean a value measured in accordance with IPC-TM-650 2.4.18.
  • the tensile strength of the metal foil is 50.0 kgf/mm 2 or more, preferably 50.0 kgf/mm 2 or more and 100.0 kgf/mm 2 or less, more preferably 55.0 kgf/mm 2 or more and 80.0 kgf/mm 2 or more. 2 or less, more preferably 60.0 kgf/mm 2 or more and 70.0 kgf/mm 2 or less, particularly preferably 60.0 kgf/mm 2 or more and 65.0 kgf/mm 2 or less.
  • the tensile strength of the metal foil can be preferably calculated by the procedure shown in the Examples described later.
  • the ratio of the tensile strength TS 2 of the metal foil to the tensile strength TS 1 of the carrier is preferably 0.70 or more and 1.40 or less, more preferably 0.80 or more and 1.30 or less. , more preferably 0.90 or more and 1.20 or less, particularly preferably 0.95 or more and 1.15 or less.
  • the carrier-attached metal foil is designed so that the carrier and/or the metal foil maintains a predetermined tensile strength even after heat treatment. It is preferable that Therefore, the tensile strength (peeling strength after heating) of the carrier after heating the carrier-attached metal foil at 250°C for 60 minutes is preferably 45.0 kgf/mm 2 or more, more preferably 45.0 kgf/mm 2 or more.
  • the tensile strength (peeling strength after heating) of the metal foil after heating the carrier-attached metal foil at 250°C for 60 minutes is preferably 45.0 kgf/mm 2 or more, more preferably 45.0 kgf/mm 2 95.0 kgf/mm 2 or more, more preferably 50.0 kgf/mm 2 or more and 75.0 kgf/mm 2 or less, particularly preferably 55.0 kgf/mm 2 or more and 65.0 kgf/mm 2 or less, most preferably 55.0 kgf/mm 2 or more and 65.0 kgf/mm 2 or less. 0 kgf/mm 2 or more and 60.0 kgf/mm 2 or less.
  • a carrier is a support for supporting a metal foil to improve its handling properties, and a typical carrier includes a metal layer.
  • a typical carrier includes a metal layer.
  • Examples of such carriers include aluminum foil, copper foil, stainless steel (SUS) foil, resin films whose surfaces are coated with metal such as copper, and glass, with copper foil being preferred.
  • the copper foil may be either a rolled copper foil or an electrolytic copper foil, but preferably an electrolytic copper foil.
  • the thickness of the carrier is typically 250 ⁇ m or less, more typically 200 ⁇ m or less, and from the viewpoint of reducing CO2 during manufacturing, it is preferably 6 ⁇ m or more and 18 ⁇ m or less, more preferably 7 ⁇ m or more and 16 ⁇ m or less, and even more preferably The thickness is 8 ⁇ m or more and 14 ⁇ m or less, particularly preferably 8 ⁇ m or more and 12 ⁇ m or less. A preferred method for measuring the thickness of the carrier will be shown in the Examples described below.
  • the metal foil is preferably a copper foil or a copper alloy foil, and more preferably a copper foil.
  • the metal foil may be either an electrolytic foil or a rolled foil, but is preferably an electrolytic foil (particularly preferably an electrolytic copper foil).
  • the thickness of the metal foil is typically 18 ⁇ m or less, and from the viewpoint of thinning the circuit and improving laser processability, it is preferably 0.1 ⁇ m or more and 6 ⁇ m or less, more preferably 0.1 ⁇ m or more and 4 ⁇ m or less, and even more preferably The thickness is 0.3 ⁇ m or more and 3 ⁇ m or less, particularly preferably 0.5 ⁇ m or more and 2.5 ⁇ m or less.
  • a copper foil having a thickness within the above range may be referred to as an ultra-thin copper foil.
  • the carrier-attached metal foil includes an auxiliary layer between the release layer and the metal foil or on the metal foil (for example, a roughening layer, a rust prevention treatment layer, a silane coupling agent layer, an auxiliary metal layer, etc. described below), The thickness of this auxiliary layer shall be included in the thickness of the metal foil. A preferred method for measuring the thickness of the metal foil will be shown in the Examples described below.
  • the surface of the metal foil may be subjected to a roughening treatment to form a roughened layer.
  • a roughening treatment to form a roughened layer.
  • the roughening layer includes a plurality of roughening particles (bumps), and each of the plurality of roughening particles preferably consists of metal particles, and preferably copper particles.
  • the copper particles may be made of metallic copper or may be made of a copper alloy.
  • the roughening treatment for forming the roughened surface can be preferably performed by forming roughening particles of metal or alloy on the metal foil.
  • roughening treatment is performed according to a plating method that involves at least two types of plating processes, including a baking plating process in which fine metal particles are precipitated and adhered to the metal foil, and a cover plating process to prevent the fine metal particles from falling off. is preferably carried out.
  • the surface of the metal foil may be subjected to rust prevention treatment to form a rust prevention treatment layer.
  • the rust prevention treatment includes plating treatment using zinc.
  • the plating treatment using zinc may be either a zinc plating treatment or a zinc alloy plating treatment, and the zinc alloy plating treatment is particularly preferably a zinc-nickel alloy treatment.
  • the zinc-nickel alloy treatment may be a plating treatment that contains at least Ni and Zn, and may further contain other elements such as Sn, Cr, and Co.
  • the Ni/Zn adhesion ratio in zinc-nickel alloy plating is preferably 1.2 or more and 10 or less, more preferably 2 or more and 7 or less, and even more preferably 2.7 or more and 4 or less, in terms of mass ratio.
  • the rust prevention treatment further includes chromate treatment, and it is more preferable that this chromate treatment is performed on the surface of the plating containing zinc after the plating treatment using zinc.
  • a particularly preferred anticorrosion treatment is a combination of zinc-nickel alloy plating treatment followed by chromate treatment.
  • the surface of the metal foil may be treated with a silane coupling agent to form a silane coupling agent layer.
  • a silane coupling agent layer can be formed by appropriately diluting a silane coupling agent, applying it, and drying it.
  • silane coupling agents include epoxy-functional silane coupling agents such as 4-glycidylbutyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, or 3-aminopropyltrimethoxysilane, N-(2- aminoethyl)-3-aminopropyltrimethoxysilane, N-3-(4-(3-aminopropoxy)butoxy)propyl-3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, etc.
  • epoxy-functional silane coupling agents such as 4-glycidylbutyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, or 3-aminopropyltrimethoxysilane, N-(2- aminoethyl)-3-aminopropyltrimethoxysilane, N-3-(4-(3-aminopropoxy)but
  • Amino-functional silane coupling agents or mercapto-functional silane coupling agents such as 3-mercaptopropyltrimethoxysilane, or olefin-functional silane coupling agents such as vinyltrimethoxysilane, vinylphenyltrimethoxysilane, or 3-methacrylic Examples include acrylic-functional silane coupling agents such as roxypropyltrimethoxysilane, or imidazole-functional silane coupling agents such as imidazole silane, or triazine-functional silane coupling agents such as triazine silane.
  • the carrier-attached metal foil further includes at least one layer selected from the group consisting of a roughening layer composed of a plurality of roughening particles, a rust prevention treatment layer, and a silane coupling agent layer on the metal foil. It is preferable to prepare.
  • the metal foil with a carrier further includes a roughened layer, a rust prevention treatment layer, and a silane coupling agent layer
  • the order of construction of these layers is not particularly limited, but the roughened layer is formed on the metal foil.
  • the anticorrosive layer and the silane coupling agent layer are preferably laminated in this order.
  • the metal foil with a carrier has a release layer on the carrier.
  • the peeling layer is a layer that has the function of weakening the peeling strength of the carrier, ensuring the stability of this strength, and further suppressing mutual diffusion that may occur between the carrier and metal foil during press molding at high temperatures.
  • the release layer is generally formed on one side of the carrier, it may be formed on both sides.
  • the release layer may be either an organic release layer or an inorganic release layer. Examples of organic components used in the organic release layer include nitrogen-containing organic compounds, sulfur-containing organic compounds, carboxylic acids, and the like. Examples of the nitrogen-containing organic compound include triazole compounds, imidazole compounds, etc. Among them, triazole compounds are preferred because they have easy releasability.
  • Examples of triazole compounds include 1,2,3-benzotriazole, carboxybenzotriazole, N',N'-bis(benzotriazolylmethyl)urea, 1H-1,2,4-triazole and 3-amino- Examples include 1H-1,2,4-triazole.
  • Examples of sulfur-containing organic compounds include mercaptobenzothiazole, thiocyanuric acid, 2-benzimidazolethiol, and the like.
  • Examples of carboxylic acids include monocarboxylic acids, dicarboxylic acids, and the like.
  • examples of inorganic components used in the inorganic release layer include Ni, Mo, Co, Cr, Fe, Ti, W, P, Zn, and a chromate-treated film. The thickness of the release layer is typically 1 nm or more and 1 ⁇ m or less, preferably 5 nm or more and 500 nm or less.
  • auxiliary metal layers may be provided between the release layer and the carrier and/or metal foil.
  • other functional layers include auxiliary metal layers.
  • the auxiliary metal layer consists of nickel and/or cobalt.
  • the thickness of the auxiliary metal layer is preferably 0.001 ⁇ m or more and 3 ⁇ m or less.
  • the metal foil with carrier of the present invention can be produced by (1) preparing a carrier, (2) forming a release layer on the carrier, and (3) forming a metal foil on the release layer. can be manufactured.
  • a preferred method for manufacturing the carrier-attached metal foil according to the present invention will be described.
  • Typical carriers include metal layers.
  • examples of such carriers include, as described above, aluminum foil, copper foil, stainless steel (SUS) foil, resin films whose surfaces are coated with metal such as copper, and glass, with copper foil being preferred.
  • the copper foil may be either a rolled copper foil or an electrolytic copper foil, but preferably an electrolytic copper foil.
  • the conditions for electrolytically forming the foil are as follows. That is, the copper concentration is 60 g/L or more and 85 g/L or less (more preferably 50 g/L or more and 70 g/L or less), and the sulfuric acid concentration is 100 g/L or more and 250 g/L or less (more preferably 200 g/L or more and 250 g/L or less). ), the chlorine concentration is 1 mg/L or more and 3 mg/L or less (more preferably 1 mg/L or more and 2 mg/L or less), and the concentration of gelatin as an additive is 0.3 mg/L or more and 5 mg/L or less (more preferably 1 mg/L or more).
  • Electrolytic copper foil having a desired tensile strength can be preferably obtained by electrolyzing at a current density of 30 A/dm 2 or more and 75 A/dm 2 or less (more preferably 40 A/dm 2 or more and 60 A/dm 2 or less). can.
  • potassium iodide iodine concentration: 1 mg/L or more and 10 mg/L or less
  • polyethyleneimine with a molecular weight of 3000 or more (concentration: 30 mg/L or more and 200 mg/L or less)
  • gelatin or the like as an additive to the electrolytic solution and performing electrolytic foil forming while controlling the electrolytic conditions within the above range, it becomes easier to form a carrier having high tensile strength.
  • the carrier-attached copper foil is subjected to heat treatment, a decrease in the tensile strength of the carrier can be suppressed.
  • the release layer may be either an organic release layer or an inorganic release layer. Preferred examples of the organic release layer and the inorganic release layer are as described above.
  • the release layer may be formed by bringing a release layer component-containing solution into contact with at least one surface of the carrier to fix the release layer component to the surface of the carrier. When the carrier is brought into contact with the release layer component-containing solution, this contact may be carried out by dipping the carrier in the release layer component-containing solution, spraying the release layer component-containing solution, flowing down the release layer component-containing solution, or the like.
  • the release layer component may be fixed to the carrier surface by adsorption or drying of a solution containing the release layer component, or by electrodeposition of the release layer component in the solution containing the release layer component.
  • the metal foil is formed on the release layer.
  • the metal foil may be formed by wet film forming methods such as electroless metal plating and electrolytic metal plating, dry film forming methods such as sputtering and chemical vapor deposition, or a combination thereof.
  • the ultra-thin copper foil is formed by electrolytic copper plating.
  • the conditions for electrolytically forming the ultra-thin copper foil are as follows.
  • the copper concentration is 40 g/L or more and 80 g/L or less (more preferably 50 g/L or more and 70 g/L or less), and the sulfuric acid concentration is 180 g/L or more and 260 g/L or less (more preferably 200 g/L or more and 250 g/L or less).
  • a sulfuric acid-based copper electrolyte with the concentration of carboxybenzotriazole (CBTA) adjusted to more than 0 ppm and less than 200 ppm as an additive, and a DSA (dimensionally stable anode) as the anode, with a liquid temperature of 35°C or more and 60°C.
  • CBTA carboxybenzotriazole
  • the CBTA concentration in the electrolyte is more preferably 0.1 ppm or more and 100 ppm or less, even more preferably 0.1 ppm or more and 50 ppm or less, particularly preferably 0.1 ppm or more and 30 ppm or less, and most preferably 0.1 ppm or more and 10 ppm or less. be.
  • CBTA carboxybenzotriazole
  • the surface of the metal foil is subjected to roughening treatment, rust prevention treatment and/or silane coupling agent treatment to form a roughened layer consisting of a plurality of roughened particles, a rust prevention treatment layer and/or a silane coupling agent layer. may be formed.
  • the carrier-attached metal foil of the present invention is preferably used for producing a metal-clad laminate for printed wiring boards. That is, according to a preferred embodiment of the present invention, a metal-clad laminate (more preferably a copper-clad laminate) including the above-mentioned carrier-attached metal foil is provided.
  • a metal-clad laminate includes a metal foil with a carrier, which includes a carrier, a release layer, and metal foil in this order, and a surface of the metal foil of the metal foil with a carrier (the surface opposite to the release layer of the metal foil). and a resin layer.
  • the preferred embodiments of the carrier-attached metal foil described above also apply to the carrier-attached metal foil included in the metal-clad laminate.
  • the carrier-attached metal foil may be provided on one side or both sides of the resin layer.
  • the resin layer contains a resin, preferably an insulating resin.
  • the resin layer is a prepreg and/or a resin sheet.
  • Prepreg is a general term for composite materials in which a base material such as a synthetic resin plate, glass plate, glass woven fabric, glass nonwoven fabric, or paper is impregnated with synthetic resin.
  • Preferred examples of the insulating resin include epoxy resin, cyanate resin, bismaleimide triazine resin (BT resin), polyphenylene ether resin, and phenol resin.
  • examples of the insulating resin constituting the resin sheet include insulating resins such as epoxy resin, polyimide resin, and polyester resin.
  • the resin layer may contain filler particles made of various inorganic particles such as silica and alumina from the viewpoint of improving insulation properties.
  • the thickness of the resin layer is not particularly limited, but is preferably 1 ⁇ m or more and 1000 ⁇ m or less, more preferably 2 ⁇ m or more and 400 ⁇ m or less, and still more preferably 3 ⁇ m or more and 200 ⁇ m or less.
  • the resin layer may be composed of multiple layers.
  • a resin layer such as a prepreg and/or a resin sheet may be provided on the carrier-attached metal foil via a primer resin layer that is previously applied to the surface of the metal foil.
  • the carrier-attached metal foil of the present invention is preferably used for producing a printed wiring board. That is, according to a preferred embodiment of the present invention, there is provided a printed wiring board provided with the above metal foil with a carrier, or a method for manufacturing the same.
  • the printed wiring board according to this embodiment includes a layered structure in which a resin layer and a metal layer are laminated in this order. Further, the resin layer is as described above for the metal-clad laminate. In any case, a known layer structure can be used for the printed wiring board.
  • printed wiring boards include single-sided or double-sided printed wiring boards in which the metal foil of the present invention is adhered to one or both sides of a prepreg and cured to form a laminate, and circuits are formed thereon, and multilayer printed wiring in which these are multilayered. Examples include boards. Further, other specific examples include flexible printed wiring boards, COF, TAB tapes, etc. in which a circuit is formed by forming the metal foil of the present invention on a resin film.
  • a resin-coated metal foil is formed by applying the above-mentioned resin layer to the metal foil of the present invention, and the resin layer is laminated on the above-mentioned printed wiring board as an insulating adhesive layer, and then the metal foil is coated with the above-mentioned printed wiring board.
  • Build-up wiring boards where circuits are formed using methods such as modified semi-additive method (MSAP) or subtractive method as all or part of the wiring layer, or circuits are formed using semi-additive method (SAP) by removing metal foil.
  • MSAP modified semi-additive method
  • SAP semi-additive method
  • Direct build-up on wafer in which lamination of resin-coated metal foil and circuit formation are alternately repeated on a semiconductor integrated circuit.
  • the carrier-attached metal foil of the present invention can also be preferably used in a manufacturing method using a coreless build-up method in which insulating resin layers and conductor layers are alternately laminated without using a so-called core substrate.
  • Examples 1 to 11 A carrier-attached copper foil was produced and evaluated as follows.
  • a copper electrolyte having the composition shown below, a cathode, and a DSA (dimensionally stable anode) as an anode were used at a solution temperature of 50°C and a current density of 70A/ dm2 .
  • Electrolysis was performed to obtain an electrolytic copper foil of a predetermined thickness as a carrier.
  • auxiliary metal layer Formation of auxiliary metal layer
  • the carrier on which the organic release layer was formed was immersed in a solution containing 20 g/L of nickel prepared using nickel sulfate at a liquid temperature of 45°C, pH 3, and a current density of 5 A/L.
  • Nickel was deposited on the organic release layer in an amount equivalent to a thickness of 0.001 ⁇ m under conditions of dm 2 . In this way, a nickel layer was formed as an auxiliary metal layer on the organic release layer.
  • Roughening treatment The surface of the ultra-thin copper foil thus formed was subjected to a roughening treatment to form a roughened copper foil, thereby obtaining a carrier-attached copper foil.
  • This roughening treatment consists of a baking plating process in which fine copper grains are precipitated and adhered to the ultra-thin copper foil, and a covering plating process to prevent the fine copper grains from falling off.
  • 9-phenylacridine (9PA) and chlorine are added to an acidic copper sulfate solution at a temperature of 25°C containing a copper concentration of 10 g/L and a sulfuric acid concentration of 200 g/L so that the 9PA concentration is 60 ppm and the chlorine concentration is 50 ppm.
  • electrodeposition was performed using an acidic copper sulfate solution containing a copper concentration of 70 g/L and a sulfuric acid concentration of 240 g/L under smooth plating conditions of a liquid temperature of 52° C. and a current density of 15 A/dm 2 .
  • the roughened surface of the obtained carrier-attached copper foil was subjected to rust prevention treatment consisting of zinc-nickel alloy plating treatment and chromate treatment.
  • rust prevention treatment consisting of zinc-nickel alloy plating treatment and chromate treatment.
  • the roughened layer and carrier were The surface was subjected to zinc-nickel alloy plating treatment.
  • the surface subjected to the zinc-nickel alloy plating treatment was subjected to chromate treatment using an aqueous solution containing 1 g/L of chromic acid under conditions of pH 12 and current density of 1 A/dm 2 .
  • Silane coupling agent treatment is performed by adsorbing an aqueous solution containing a commercially available silane coupling agent on the surface of the roughened copper foil side of the carrier-coated copper foil, and evaporating the water using an electric heater. I did it. At this time, the carrier side was not treated with a silane coupling agent.
  • the tensile strength of the carrier and ultra-thin copper foil was measured as follows. First, the tensile strength TS 3 (kgf/mm 2 ) of the carrier-attached copper foil was measured in accordance with IPC-TM650 2.4.18. Next, the carrier was peeled off from the carrier-attached copper foil, and the tensile strength TS 1 (kgf/mm 2 ) of the carrier was measured in accordance with IPC-TM650 2.4.18. Since it is difficult to measure the tensile strength of ultra-thin copper foil using a similar method due to its thinness, the tensile strength was calculated as follows.
  • the values obtained by multiplying TS 3 (kgf/mm 2 ) and TS 1 (kgf/mm 2 ) by the cross-sectional area of each test piece are defined as TS 3 '(kgf) and TS 1 '(kgf), and the The tensile strength of the ultra-thin copper foil was defined as the value calculated by the formula (TS 3 ′-TS 1 ′)/A, where the cross-sectional area of the test piece was A (mm 2 ). The results were as shown in Table 1.
  • the number of cracks was measured as follows. First, as shown in FIG. 2, the carrier-attached copper foil was cut into a 150 mm square. Next, one side of the cut out carrier-attached copper foil 30 was fixed to a width of 25 mm. Then, one side opposite to the one fixed side was grasped, and the carrier-attached copper foil 30 was twisted twice in each direction. As shown in FIGS. 3(i) to (iii), this twisting was performed from a state in which the carrier-attached copper foil 30 was horizontal until it was at an angle of 45° with respect to the horizontal plane.
  • the carrier-attached copper foil 30 was rotated 90 degrees, and the above-mentioned twist imparting step was performed again. In this way, the twist imparting step was performed on all four sides of the carrier-attached copper foil 30.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)

Abstract

Provided is a carrier-attached metal foil in which the occurrence of fractures or cracks in the metal foil during handling thereof can be suppressed. The carrier-attached metal foil comprises a carrier, a release layer, and a metal foil in this order, wherein the tensile strength of the carrier is not less than 50.0 kgf/mm2 and the tensile strength of the metal foil is not less than 50.0 kgf/mm2.

Description

キャリア付金属箔、金属張積層板及びプリント配線板Metal foil with carrier, metal clad laminate and printed wiring board
 本発明は、キャリア付金属箔、金属張積層板及びプリント配線板に関する。 The present invention relates to a metal foil with a carrier, a metal-clad laminate, and a printed wiring board.
 プリント配線板製造のための材料として、キャリア付金属箔が広く用いられている。キャリア付金属箔は、キャリア、剥離層及び金属箔(例えば極薄銅箔)をこの順に備えた構成を典型的に有しており、ガラス-エポキシ基材、フェノール基材、ポリイミド等の絶縁樹脂基材(樹脂層)とホットプレスにて張り合わされて金属張積層板(例えば銅張積層板)とされ、プリント配線板の製造に用いられている。 Metal foil with a carrier is widely used as a material for manufacturing printed wiring boards. Metal foil with a carrier typically has a structure comprising a carrier, a release layer, and a metal foil (for example, ultra-thin copper foil) in this order, and is made of an insulating resin such as a glass-epoxy base material, a phenol base material, or a polyimide base material. It is bonded to a base material (resin layer) by hot pressing to form a metal-clad laminate (for example, a copper-clad laminate), and is used in the manufacture of printed wiring boards.
 キャリア付金属箔に対して高温(例えば250℃以上)でのホットプレスが行われる場合、キャリア及び金属箔間の剥離強度が増大し、金属箔からキャリアを引き剥がすことが困難になるとの問題がある。かかる問題に対処したキャリア付金属箔が知られており、例えば特許文献1(国際公開第2015/080052号)には、キャリアとして、250℃×60分の加熱処理を行った後に40kgf/mm以上の引張強さを備える電解銅箔を用いることを特徴とするキャリア付銅箔が開示されている。かかるキャリア付銅箔によれば、キャリアと銅箔との間の接合界面層に連結部が形成されることが抑制され、銅箔からキャリアを容易に引き剥がすことが可能とされている。 When a metal foil with a carrier is hot pressed at high temperatures (for example, 250°C or higher), the peel strength between the carrier and the metal foil increases, and there is a problem that it becomes difficult to peel off the carrier from the metal foil. be. Metal foils with carriers that deal with such problems are known, and for example, in Patent Document 1 (International Publication No. 2015/080052), a metal foil with a carrier of 40 kgf/mm 2 is used as a carrier after heat treatment at 250° C. for 60 minutes. A carrier-attached copper foil characterized by using an electrolytic copper foil having the above tensile strength is disclosed. According to such a copper foil with a carrier, formation of a connecting portion in the bonding interface layer between the carrier and the copper foil is suppressed, and the carrier can be easily peeled off from the copper foil.
国際公開第2015/080052号International Publication No. 2015/080052
 ところで、近年のSDGs(持続可能な開発目標)への取り組みやカーボンニュートラルの推進により、製造時のCO削減等を目的として、キャリア付金属箔におけるキャリアの薄化が進むことが想定される。この点、キャリアの薄化等に伴い、キャリア付金属箔ハンドリング時における金属箔の破断や亀裂等の発生リスクが上昇するとの懸念がある。特に、ハンドリング時における金属箔の破断ないし亀裂の発生は、プリント配線板製造工程における残留金属の不具合につながるおそれがあり、改善が求められる。 By the way, due to recent efforts towards SDGs (Sustainable Development Goals) and promotion of carbon neutrality, it is expected that carriers in metal foils with carriers will become thinner for the purpose of reducing CO2 during manufacturing. In this regard, there is a concern that as the carrier becomes thinner, the risk of breakage or cracking of the metal foil when handling the metal foil with the carrier increases. In particular, breakage or cracking of the metal foil during handling may lead to defects due to residual metal in the printed wiring board manufacturing process, and improvements are required.
 本発明者らは、今般、キャリア付金属箔において、キャリアの引張強度を50.0kgf/mm以上とし、かつ、金属箔の引張強度も50.0kgf/mm以上とすることで、ハンドリング時における金属箔の破断ないし亀裂の発生を抑制できるとの知見を得た。 The present inventors have recently developed a metal foil with a carrier that has a tensile strength of the carrier of 50.0 kgf/mm 2 or more and a tensile strength of the metal foil of 50.0 kgf/mm 2 or more. It was found that the occurrence of breakage or cracks in metal foil can be suppressed.
 したがって、本発明の目的は、ハンドリング時における金属箔の破断ないし亀裂の発生を抑制可能な、キャリア付金属箔を提供することにある。 Therefore, an object of the present invention is to provide a metal foil with a carrier that can suppress the occurrence of breakage or cracking of the metal foil during handling.
 本発明によれば、以下の態様が提供される。
[態様1]
 キャリア、剥離層及び金属箔をこの順に備えたキャリア付金属箔であって、
 前記キャリアの引張強度が50.0kgf/mm以上であり、かつ、前記金属箔の引張強度が50.0kgf/mm以上である、キャリア付金属箔。
[態様2]
 250℃で60分加熱した後において、前記キャリアの引張強度が45.0kgf/mm以上である、且つ/又は前記金属箔の引張強度が45.0kgf/mm以上である、態様1に記載のキャリア付金属箔。
[態様3]
 前記キャリア及び前記金属箔がいずれも銅箔である、態様1又は2に記載のキャリア付金属箔。
[態様4]
 前記キャリアの厚さが6μm以上18μm以下である、態様1~3のいずれか一つに記載のキャリア付金属箔。
[態様5]
 前記金属箔の厚さが0.1μm以上6μm以下である、態様1~4のいずれか一つに記載のキャリア付金属箔。
[態様6]
 前記金属箔上に、複数の粗化粒子で構成される粗化層、防錆処理層、及びシランカップリング剤層からなる群から選択される少なくとも1種の層をさらに備えた、態様1~5のいずれか一つに記載のキャリア付金属箔。
[態様7]
 前記剥離層と前記キャリア及び/又は前記金属箔の間に補助金属層をさらに備えた、態様1~6のいずれか一つに記載のキャリア付金属箔。
[態様8]
 態様1~7のいずれか一つに記載のキャリア付金属箔を備えた、金属張積層板。
[態様9]
 態様1~7のいずれか一つに記載のキャリア付金属箔を備えた、プリント配線板。
[態様10]
 態様1~7のいずれか一つに記載のキャリア付金属箔を用いてプリント配線板を製造することを特徴とする、プリント配線板の製造方法。
According to the present invention, the following aspects are provided.
[Aspect 1]
A carrier-attached metal foil comprising a carrier, a release layer, and a metal foil in this order,
A metal foil with a carrier, wherein the carrier has a tensile strength of 50.0 kgf/mm 2 or more, and the metal foil has a tensile strength of 50.0 kgf/mm 2 or more.
[Aspect 2]
According to aspect 1, the carrier has a tensile strength of 45.0 kgf/mm 2 or more and/or the metal foil has a tensile strength of 45.0 kgf/mm 2 or more after heating at 250° C. for 60 minutes. metal foil with carrier.
[Aspect 3]
The metal foil with a carrier according to aspect 1 or 2, wherein both the carrier and the metal foil are copper foils.
[Aspect 4]
The metal foil with a carrier according to any one of aspects 1 to 3, wherein the carrier has a thickness of 6 μm or more and 18 μm or less.
[Aspect 5]
The metal foil with a carrier according to any one of aspects 1 to 4, wherein the metal foil has a thickness of 0.1 μm or more and 6 μm or less.
[Aspect 6]
Embodiments 1 to 1, further comprising, on the metal foil, at least one layer selected from the group consisting of a roughening layer composed of a plurality of roughening particles, a rust prevention treatment layer, and a silane coupling agent layer. 5. The carrier-attached metal foil according to any one of 5.
[Aspect 7]
The carrier-attached metal foil according to any one of aspects 1 to 6, further comprising an auxiliary metal layer between the release layer and the carrier and/or the metal foil.
[Aspect 8]
A metal-clad laminate comprising the carrier-attached metal foil according to any one of aspects 1 to 7.
[Aspect 9]
A printed wiring board comprising the carrier-attached metal foil according to any one of aspects 1 to 7.
[Aspect 10]
A method for manufacturing a printed wiring board, comprising manufacturing a printed wiring board using the carrier-attached metal foil according to any one of aspects 1 to 7.
キャリア付金属箔を用いて金属張積層板を作製する工程流れ図であり、金属箔に形成された破断部により残留金属が発生するメカニズムを説明するための図である。It is a process flowchart for producing a metal-clad laminate using a metal foil with a carrier, and is a diagram for explaining a mechanism in which residual metal is generated by a fractured portion formed in the metal foil. 実施例における亀裂数測定で使用する、切り出したキャリア付銅箔の上面図であり、固定エリア及び試験エリアを示す。It is a top view of the cut out copper foil with a carrier used for the crack number measurement in an example, and shows a fixed area and a test area. 図2のキャリア付銅箔に対して行われるひねり付与工程の流れ図である。It is a flowchart of the twist|twisting process performed to the copper foil with a carrier of FIG.
 キャリア付金属箔
 本発明によるキャリア付金属箔は、キャリア、剥離層、及び金属箔をこの順に備えたものである。このキャリア付金属箔は、キャリアの引張強度が50.0kgf/mm以上であり、かつ、金属箔の引張強度が50.0kgf/mm以上である。このように、キャリア付金属箔において、キャリアの引張強度を50.0kgf/mm以上とし、かつ、金属箔の引張強度も50.0kgf/mm以上とすることで、ハンドリング時における金属箔の破断ないし亀裂の発生を抑制することができる。
Metal foil with carrier The metal foil with carrier according to the present invention includes a carrier, a release layer, and a metal foil in this order. In this metal foil with a carrier, the carrier has a tensile strength of 50.0 kgf/mm 2 or more, and the metal foil has a tensile strength of 50.0 kgf/mm 2 or more. In this way, in the metal foil with a carrier, by setting the tensile strength of the carrier to 50.0 kgf/mm 2 or more and also setting the tensile strength of the metal foil to 50.0 kgf/mm 2 or more, the metal foil can be It is possible to suppress the occurrence of breakage or cracks.
 上述したとおり、キャリア付金属箔のハンドリング時における金属箔の破断ないし亀裂の発生は、プリント配線板製造工程における残留金属の不具合につながるおそれがある。ここで、金属箔の破断等により残留金属が発生するメカニズムを、図1を参照しつつ説明する。図1(i)に示されるように、キャリア12、剥離層(図示せず)及び金属箔14を備えたキャリア付金属箔10をハンドリングする際、金属箔14が破断して、破断部Bが形成されることが起こりうる。このキャリア付金属箔10の金属箔14側の面に、樹脂層16(例えばプリプレグ)を積層してホットプレスを行うことで、図1(ii)に示す金属張積層板20が得られる。ここで、図1(ii)に示されるように、金属箔14に破断部Bが存在する場合、金属箔14の破断部Bの周辺部分が樹脂層16内に埋没しうることになる。そして、金属張積層板作製後のプリント配線板製造工程では、金属張積層板20からキャリア12を剥離し、金属箔14に対してエッチング工程を含むパターニングを施すことになる。しかしながら、金属箔14の破断部Bの周辺部分は樹脂層16内に埋没しているため、金属箔14に対してエッチングを行う際に、金属箔14の破断部Bを越えて表面に露出した樹脂層16の一部がエッチングに対するレジストとして機能してしまう。その結果、金属箔14における破断部Bの周辺部分をエッチングで除去することが困難となり、残留金属が発生する。 As mentioned above, breakage or cracking of the metal foil during handling of the metal foil with a carrier may lead to defects due to residual metal in the printed wiring board manufacturing process. Here, the mechanism by which residual metal is generated due to breakage of metal foil, etc. will be explained with reference to FIG. 1. As shown in FIG. 1(i), when the carrier-attached metal foil 10 including the carrier 12, a release layer (not shown), and the metal foil 14 is handled, the metal foil 14 is broken and a broken part B is formed. It can happen that it is formed. A metal-clad laminate 20 shown in FIG. 1(ii) is obtained by laminating a resin layer 16 (for example, prepreg) on the surface of the carrier-attached metal foil 10 on the metal foil 14 side and hot pressing. Here, as shown in FIG. 1(ii), if the metal foil 14 has a broken portion B, the peripheral portion of the broken portion B of the metal foil 14 may be buried in the resin layer 16. In the printed wiring board manufacturing process after manufacturing the metal-clad laminate, the carrier 12 is peeled off from the metal-clad laminate 20, and the metal foil 14 is subjected to patterning including an etching process. However, since the peripheral part of the broken part B of the metal foil 14 is buried in the resin layer 16, when etching the metal foil 14, the part surrounding the broken part B of the metal foil 14 is exposed to the surface. A portion of the resin layer 16 ends up functioning as a resist for etching. As a result, it becomes difficult to remove the peripheral portion of the fractured portion B in the metal foil 14 by etching, and residual metal is generated.
 かかる問題が本発明のキャリア付金属箔により効果的に解決される。すなわち、キャリアの引張強度を50.0kgf/mm以上と高くすることで、金属箔を強固に支持してハンドリング時の安定性を担保することができるとともに、金属箔の引張強度を50.0kgf/mm以上と高くすることで、キャリア付金属箔のハンドリングの際に、金属箔への直接的な負荷に対する耐久性を向上することができる。このように、本発明ではキャリア及び金属箔のいずれか一方の引張強度を制御するのではなく、両方の引張強度を高い値に制御しており、これにより極めて効果的に金属箔の破断及び亀裂の発生を抑制できる。 Such problems are effectively solved by the carrier-attached metal foil of the present invention. In other words, by increasing the tensile strength of the carrier to 50.0 kgf/mm 2 or more, it is possible to firmly support the metal foil and ensure stability during handling, and also to increase the tensile strength of the metal foil to 50.0 kgf/mm 2 or more. By setting it as high as /mm 2 or more, it is possible to improve the durability against direct loads on the metal foil when handling the metal foil with a carrier. In this way, in the present invention, rather than controlling the tensile strength of either the carrier or the metal foil, the tensile strength of both is controlled to a high value, thereby extremely effectively preventing metal foil from breaking and cracking. can suppress the occurrence of
 したがって、キャリアの引張強度は50.0kgf/mm以上であり、好ましくは50.0kgf/mm以上100.0kgf/mm以下、より好ましくは50.0kgf/mm以上80.0kgf/mm以下、さらに好ましくは55.0kgf/mm以上70.0kgf/mm以下、特に好ましくは55.0kgf/mm以上65.0kgf/mm以下である。本明細書における各引張強度の数値は、IPC-TM-650 2.4.18に準拠して測定される値を意味するものとする。 Therefore, the tensile strength of the carrier is 50.0 kgf/mm 2 or more, preferably 50.0 kgf/mm 2 or more and 100.0 kgf/mm 2 or less, more preferably 50.0 kgf/mm 2 or more and 80.0 kgf/mm 2 Below, it is more preferably 55.0 kgf/mm 2 or more and 70.0 kgf/mm 2 or less, particularly preferably 55.0 kgf/mm 2 or more and 65.0 kgf/mm 2 or less. Each numerical value of tensile strength in this specification shall mean a value measured in accordance with IPC-TM-650 2.4.18.
 また、金属箔の引張強度は50.0kgf/mm以上であり、好ましくは50.0kgf/mm以上100.0kgf/mm以下、より好ましくは55.0kgf/mm以上80.0kgf/mm以下、さらに好ましくは60.0kgf/mm以上70.0kgf/mm以下、特に好ましくは60.0kgf/mm以上65.0kgf/mm以下である。なお、金属箔単体での引張強度測定がその薄さから困難である場合、後述する実施例に示す手順により、金属箔の引張強度を好ましく算出することができる。 Further, the tensile strength of the metal foil is 50.0 kgf/mm 2 or more, preferably 50.0 kgf/mm 2 or more and 100.0 kgf/mm 2 or less, more preferably 55.0 kgf/mm 2 or more and 80.0 kgf/mm 2 or more. 2 or less, more preferably 60.0 kgf/mm 2 or more and 70.0 kgf/mm 2 or less, particularly preferably 60.0 kgf/mm 2 or more and 65.0 kgf/mm 2 or less. In addition, when it is difficult to measure the tensile strength of a single metal foil due to its thinness, the tensile strength of the metal foil can be preferably calculated by the procedure shown in the Examples described later.
 キャリアの引張強度TSに対する金属箔の引張強度TSの比(=TS/TS)は0.70以上1.40以下であるのが好ましく、より好ましくは0.80以上1.30以下、さらに好ましくは0.90以上1.20以下、特に好ましくは0.95以上1.15以下である。この範囲内となるようにキャリア及び金属箔の両方の引張強度を制御することで、金属箔の破断及び亀裂の発生をより一層効果的に抑制できる。 The ratio of the tensile strength TS 2 of the metal foil to the tensile strength TS 1 of the carrier (=TS 2 /TS 1 ) is preferably 0.70 or more and 1.40 or less, more preferably 0.80 or more and 1.30 or less. , more preferably 0.90 or more and 1.20 or less, particularly preferably 0.95 or more and 1.15 or less. By controlling the tensile strength of both the carrier and the metal foil to fall within this range, it is possible to more effectively suppress the occurrence of breakage and cracks in the metal foil.
 プリント配線板製造工程における金属箔の破断及び亀裂の発生をより一層効果的に抑制する観点から、キャリア付金属箔は、加熱処理後においてもキャリア及び/又は金属箔が所定の引張強度を維持していることが好ましい。したがって、キャリア付金属箔を250℃で60分加熱した後におけるキャリアの引張強度(加熱後剥離強度)は45.0kgf/mm以上であるのが好ましく、より好ましくは45.0kgf/mm以上95.0kgf/mm以下、さらに好ましくは45.0kgf/mm以上75.0kgf/mm以下、特に好ましくは50.0kgf/mm以上65.0kgf/mm以下、最も好ましくは50.0kgf/mm以上60.0kgf/mm以下である。また、キャリア付金属箔を250℃で60分加熱した後における金属箔の引張強度(加熱後剥離強度)は45.0kgf/mm以上であるのが好ましく、より好ましくは45.0kgf/mm以上95.0kgf/mm以下、さらに好ましくは50.0kgf/mm以上75.0kgf/mm以下、特に好ましくは55.0kgf/mm以上65.0kgf/mm以下、最も好ましくは55.0kgf/mm以上60.0kgf/mm以下である。 In order to more effectively suppress the occurrence of breaks and cracks in the metal foil during the printed wiring board manufacturing process, the carrier-attached metal foil is designed so that the carrier and/or the metal foil maintains a predetermined tensile strength even after heat treatment. It is preferable that Therefore, the tensile strength (peeling strength after heating) of the carrier after heating the carrier-attached metal foil at 250°C for 60 minutes is preferably 45.0 kgf/mm 2 or more, more preferably 45.0 kgf/mm 2 or more. 95.0 kgf/mm 2 or less, more preferably 45.0 kgf/mm 2 or more and 75.0 kgf/mm 2 or less, particularly preferably 50.0 kgf/mm 2 or more and 65.0 kgf/mm 2 or less, most preferably 50.0 kgf/mm / mm2 or more and 60.0 kgf/ mm2 or less. Further, the tensile strength (peeling strength after heating) of the metal foil after heating the carrier-attached metal foil at 250°C for 60 minutes is preferably 45.0 kgf/mm 2 or more, more preferably 45.0 kgf/mm 2 95.0 kgf/mm 2 or more, more preferably 50.0 kgf/mm 2 or more and 75.0 kgf/mm 2 or less, particularly preferably 55.0 kgf/mm 2 or more and 65.0 kgf/mm 2 or less, most preferably 55.0 kgf/mm 2 or more and 65.0 kgf/mm 2 or less. 0 kgf/mm 2 or more and 60.0 kgf/mm 2 or less.
 キャリアは、金属箔を支持してそのハンドリング性を向上させるための支持体であり、典型的なキャリアは金属層を含む。このようなキャリアの例としては、アルミニウム箔、銅箔、ステンレス(SUS)箔、表面を銅等でメタルコーティングした樹脂フィルムやガラス等が挙げられ、好ましくは銅箔である。銅箔は圧延銅箔及び電解銅箔のいずれであってもよいが、好ましくは電解銅箔である。キャリアの厚さは典型的には250μm以下、より典型的には200μm以下であり、製造時のCO削減等の観点から好ましくは6μm以上18μm以下、より好ましくは7μm以上16μm以下、さらに好ましくは8μm以上14μm以下、特に好ましくは8μm以上12μm以下である。キャリアの厚さの好ましい測定方法については後述する実施例に示すものとする。 A carrier is a support for supporting a metal foil to improve its handling properties, and a typical carrier includes a metal layer. Examples of such carriers include aluminum foil, copper foil, stainless steel (SUS) foil, resin films whose surfaces are coated with metal such as copper, and glass, with copper foil being preferred. The copper foil may be either a rolled copper foil or an electrolytic copper foil, but preferably an electrolytic copper foil. The thickness of the carrier is typically 250 μm or less, more typically 200 μm or less, and from the viewpoint of reducing CO2 during manufacturing, it is preferably 6 μm or more and 18 μm or less, more preferably 7 μm or more and 16 μm or less, and even more preferably The thickness is 8 μm or more and 14 μm or less, particularly preferably 8 μm or more and 12 μm or less. A preferred method for measuring the thickness of the carrier will be shown in the Examples described below.
 金属箔は、銅箔又は銅合金箔であるのが好ましく、より好ましくは銅箔である。金属箔は電解箔及び圧延箔のいずれであってもよいが、好ましくは電解箔(特に好ましくは電解銅箔)である。金属箔の厚さは典型的には18μm以下であり、回路の細線化やレーザー加工性向上等の観点から好ましくは0.1μm以上6μm以下、より好ましくは0.1μm以上4μm以下、さらに好ましくは0.3μm以上3μm以下、特に好ましくは0.5μm以上2.5μm以下である。なお、本明細書において、上記範囲の厚さを有する銅箔のことを極薄銅箔ということがある。キャリア付金属箔が剥離層と金属箔との間、又は金属箔上に補助層(例えば、後述する粗化層、防錆処理層、シランカップリング剤層、補助金属層等)を含む場合、この補助層の厚さを金属箔の厚さに算入するものとする。金属箔の厚さの好ましい測定方法については後述する実施例に示すものとする。 The metal foil is preferably a copper foil or a copper alloy foil, and more preferably a copper foil. The metal foil may be either an electrolytic foil or a rolled foil, but is preferably an electrolytic foil (particularly preferably an electrolytic copper foil). The thickness of the metal foil is typically 18 μm or less, and from the viewpoint of thinning the circuit and improving laser processability, it is preferably 0.1 μm or more and 6 μm or less, more preferably 0.1 μm or more and 4 μm or less, and even more preferably The thickness is 0.3 μm or more and 3 μm or less, particularly preferably 0.5 μm or more and 2.5 μm or less. Note that in this specification, a copper foil having a thickness within the above range may be referred to as an ultra-thin copper foil. When the carrier-attached metal foil includes an auxiliary layer between the release layer and the metal foil or on the metal foil (for example, a roughening layer, a rust prevention treatment layer, a silane coupling agent layer, an auxiliary metal layer, etc. described below), The thickness of this auxiliary layer shall be included in the thickness of the metal foil. A preferred method for measuring the thickness of the metal foil will be shown in the Examples described below.
 所望により、金属箔の表面には粗化処理が施され、粗化層が形成されていてもよい。金属箔上に粗化層を備えることで、金属張積層板ないしプリント配線板製造時における樹脂層との密着性を向上することができる。この粗化層は、複数の粗化粒子(コブ)を備えてなり、これら複数の粗化粒子はそれぞれ金属粒子からなるのが好ましく、銅粒子からなるのが好ましい。銅粒子は金属銅からなるものであってもよいし、銅合金からなるものであってもよい。粗化処理面を形成するための粗化処理は、金属箔の上に金属又は合金で粗化粒子を形成することにより好ましく行うことができる。例えば、金属箔の上に微細金属粒を析出付着させる焼けめっき工程と、この微細金属粒の脱落を防止するための被せめっき工程とを含む少なくとも2種類のめっき工程を経るめっき手法に従って粗化処理が行われるのが好ましい。 If desired, the surface of the metal foil may be subjected to a roughening treatment to form a roughened layer. By providing a roughened layer on the metal foil, it is possible to improve the adhesion with the resin layer during the production of metal-clad laminates or printed wiring boards. The roughening layer includes a plurality of roughening particles (bumps), and each of the plurality of roughening particles preferably consists of metal particles, and preferably copper particles. The copper particles may be made of metallic copper or may be made of a copper alloy. The roughening treatment for forming the roughened surface can be preferably performed by forming roughening particles of metal or alloy on the metal foil. For example, roughening treatment is performed according to a plating method that involves at least two types of plating processes, including a baking plating process in which fine metal particles are precipitated and adhered to the metal foil, and a cover plating process to prevent the fine metal particles from falling off. is preferably carried out.
 所望により、金属箔の表面には防錆処理が施され、防錆処理層が形成されていてもよい。防錆処理は、亜鉛を用いためっき処理を含むのが好ましい。亜鉛を用いためっき処理は、亜鉛めっき処理及び亜鉛合金めっき処理のいずれであってもよく、亜鉛合金めっき処理は亜鉛-ニッケル合金処理が特に好ましい。亜鉛-ニッケル合金処理は少なくともNi及びZnを含むめっき処理であればよく、Sn、Cr、Co等の他の元素をさらに含んでいてもよい。亜鉛-ニッケル合金めっきにおけるNi/Zn付着比率は、質量比で、1.2以上10以下が好ましく、より好ましくは2以上7以下、さらに好ましくは2.7以上4以下である。また、防錆処理はクロメート処理をさらに含むのが好ましく、このクロメート処理は亜鉛を用いためっき処理の後に、亜鉛を含むめっきの表面に行われるのがより好ましい。こうすることで防錆性をさらに向上させることができる。特に好ましい防錆処理は、亜鉛-ニッケル合金めっき処理とその後のクロメート処理との組合せである。 If desired, the surface of the metal foil may be subjected to rust prevention treatment to form a rust prevention treatment layer. Preferably, the rust prevention treatment includes plating treatment using zinc. The plating treatment using zinc may be either a zinc plating treatment or a zinc alloy plating treatment, and the zinc alloy plating treatment is particularly preferably a zinc-nickel alloy treatment. The zinc-nickel alloy treatment may be a plating treatment that contains at least Ni and Zn, and may further contain other elements such as Sn, Cr, and Co. The Ni/Zn adhesion ratio in zinc-nickel alloy plating is preferably 1.2 or more and 10 or less, more preferably 2 or more and 7 or less, and even more preferably 2.7 or more and 4 or less, in terms of mass ratio. Moreover, it is preferable that the rust prevention treatment further includes chromate treatment, and it is more preferable that this chromate treatment is performed on the surface of the plating containing zinc after the plating treatment using zinc. By doing so, the rust prevention properties can be further improved. A particularly preferred anticorrosion treatment is a combination of zinc-nickel alloy plating treatment followed by chromate treatment.
 所望により、金属箔の表面にはシランカップリング剤処理が施され、シランカップリング剤層が形成されたものであってもよい。これにより耐湿性、耐薬品性及び接着剤等との密着性等を向上することができる。シランカップリング剤層は、シランカップリング剤を適宜希釈して塗布し、乾燥させることにより形成することができる。シランカップリング剤の例としては、4-グリシジルブチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン等のエポキシ官能性シランカップリング剤、又は3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-3-(4-(3-アミノプロポキシ)ブトキシ)プロピル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン等のアミノ官能性シランカップリング剤、又は3-メルカプトプロピルトリメトキシシラン等のメルカプト官能性シランカップリング剤又はビニルトリメトキシシラン、ビニルフェニルトリメトキシシラン等のオレフィン官能性シランカップリング剤、又は3-メタクリロキシプロピルトリメトキシシラン等のアクリル官能性シランカップリング剤、又はイミダゾールシラン等のイミダゾール官能性シランカップリング剤、又はトリアジンシラン等のトリアジン官能性シランカップリング剤等が挙げられる。 If desired, the surface of the metal foil may be treated with a silane coupling agent to form a silane coupling agent layer. This makes it possible to improve moisture resistance, chemical resistance, adhesion to adhesives, and the like. The silane coupling agent layer can be formed by appropriately diluting a silane coupling agent, applying it, and drying it. Examples of silane coupling agents include epoxy-functional silane coupling agents such as 4-glycidylbutyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, or 3-aminopropyltrimethoxysilane, N-(2- aminoethyl)-3-aminopropyltrimethoxysilane, N-3-(4-(3-aminopropoxy)butoxy)propyl-3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, etc. Amino-functional silane coupling agents, or mercapto-functional silane coupling agents such as 3-mercaptopropyltrimethoxysilane, or olefin-functional silane coupling agents such as vinyltrimethoxysilane, vinylphenyltrimethoxysilane, or 3-methacrylic Examples include acrylic-functional silane coupling agents such as roxypropyltrimethoxysilane, or imidazole-functional silane coupling agents such as imidazole silane, or triazine-functional silane coupling agents such as triazine silane.
 したがって、キャリア付金属箔は、金属箔上に複数の粗化粒子で構成される粗化層、防錆処理層、及びシランカップリング剤層からなる群から選択される少なくとも1種の層をさらに備えるのが好ましい。例えば、キャリア付金属箔が粗化層、防錆処理層及びシランカップリング剤層をさらに備える場合、これらの層の構成順序については特に限定されるものではないが、金属箔上に粗化層、防錆処理層及びシランカップリング剤層がこの順で積層されるのが好ましい。 Therefore, the carrier-attached metal foil further includes at least one layer selected from the group consisting of a roughening layer composed of a plurality of roughening particles, a rust prevention treatment layer, and a silane coupling agent layer on the metal foil. It is preferable to prepare. For example, when the metal foil with a carrier further includes a roughened layer, a rust prevention treatment layer, and a silane coupling agent layer, the order of construction of these layers is not particularly limited, but the roughened layer is formed on the metal foil. , the anticorrosive layer and the silane coupling agent layer are preferably laminated in this order.
 キャリア付金属箔はキャリア上に剥離層を備える。剥離層は、キャリアの引き剥がし強度を弱くし、該強度の安定性を担保し、さらには高温でのプレス成形時にキャリアと金属箔の間で起こりうる相互拡散を抑制する機能を有する層である。剥離層は、キャリアの一方の面に形成されるのが一般的であるが、両面に形成されてもよい。剥離層は、有機剥離層及び無機剥離層のいずれであってもよい。有機剥離層に用いられる有機成分の例としては、窒素含有有機化合物、硫黄含有有機化合物、カルボン酸等が挙げられる。窒素含有有機化合物の例としては、トリアゾール化合物、イミダゾール化合物等が挙げられ、中でもトリアゾール化合物は剥離性が安定し易い点で好ましい。トリアゾール化合物の例としては、1,2,3-ベンゾトリアゾール、カルボキシベンゾトリアゾール、N’,N’-ビス(ベンゾトリアゾリルメチル)ユリア、1H-1,2,4-トリアゾール及び3-アミノ-1H-1,2,4-トリアゾール等が挙げられる。硫黄含有有機化合物の例としては、メルカプトベンゾチアゾール、チオシアヌル酸、2-ベンズイミダゾールチオール等が挙げられる。カルボン酸の例としては、モノカルボン酸、ジカルボン酸等が挙げられる。一方、無機剥離層に用いられる無機成分の例としては、Ni、Mo、Co、Cr、Fe、Ti、W、P、Zn、クロメート処理膜等が挙げられる。剥離層の厚さは、典型的には1nm以上1μm以下であり、好ましくは5nm以上500nm以下である。 The metal foil with a carrier has a release layer on the carrier. The peeling layer is a layer that has the function of weakening the peeling strength of the carrier, ensuring the stability of this strength, and further suppressing mutual diffusion that may occur between the carrier and metal foil during press molding at high temperatures. . Although the release layer is generally formed on one side of the carrier, it may be formed on both sides. The release layer may be either an organic release layer or an inorganic release layer. Examples of organic components used in the organic release layer include nitrogen-containing organic compounds, sulfur-containing organic compounds, carboxylic acids, and the like. Examples of the nitrogen-containing organic compound include triazole compounds, imidazole compounds, etc. Among them, triazole compounds are preferred because they have easy releasability. Examples of triazole compounds include 1,2,3-benzotriazole, carboxybenzotriazole, N',N'-bis(benzotriazolylmethyl)urea, 1H-1,2,4-triazole and 3-amino- Examples include 1H-1,2,4-triazole. Examples of sulfur-containing organic compounds include mercaptobenzothiazole, thiocyanuric acid, 2-benzimidazolethiol, and the like. Examples of carboxylic acids include monocarboxylic acids, dicarboxylic acids, and the like. On the other hand, examples of inorganic components used in the inorganic release layer include Ni, Mo, Co, Cr, Fe, Ti, W, P, Zn, and a chromate-treated film. The thickness of the release layer is typically 1 nm or more and 1 μm or less, preferably 5 nm or more and 500 nm or less.
 剥離層とキャリア及び/又は金属箔の間に他の機能層を設けてもよい。そのような他の機能層の例としては補助金属層が挙げられる。補助金属層はニッケル及び/又はコバルトからなるのが好ましい。このような補助金属層をキャリアの表面側及び/又は金属箔の表面側に形成することで、高温又は長時間のホットプレス成形時にキャリアと金属箔の間で起こりうる相互拡散をより一層抑制し、キャリアの引き剥がし強度の安定性を担保することができる。補助金属層の厚さは、0.001μm以上3μm以下とするのが好ましい。 Other functional layers may be provided between the release layer and the carrier and/or metal foil. Examples of such other functional layers include auxiliary metal layers. Preferably, the auxiliary metal layer consists of nickel and/or cobalt. By forming such an auxiliary metal layer on the surface side of the carrier and/or the surface side of the metal foil, mutual diffusion that may occur between the carrier and the metal foil during hot press molding at high temperatures or for a long time can be further suppressed. , the stability of the peel strength of the carrier can be ensured. The thickness of the auxiliary metal layer is preferably 0.001 μm or more and 3 μm or less.
 キャリア付金属箔の製造方法
 本発明のキャリア付金属箔は、(1)キャリアを用意し、(2)キャリア上に剥離層を形成し、(3)剥離層上に金属箔を形成することにより製造することができる。以下、本発明によるキャリア付金属箔の好ましい製造方法の一例を説明する。
Method for manufacturing metal foil with carrier The metal foil with carrier of the present invention can be produced by (1) preparing a carrier, (2) forming a release layer on the carrier, and (3) forming a metal foil on the release layer. can be manufactured. Hereinafter, one example of a preferred method for manufacturing the carrier-attached metal foil according to the present invention will be described.
(1)キャリアの用意
 まず、支持体としてのキャリアを用意する。典型的なキャリアは金属層を含む。このようなキャリアの例としては、前述したとおり、アルミニウム箔、銅箔、ステンレス(SUS)箔、表面を銅等でメタルコーティングした樹脂フィルムやガラス等が挙げられ、好ましくは、銅箔である。銅箔は圧延銅箔及び電解銅箔のいずれであってもよいが、好ましくは電解銅箔である。
(1) Preparation of carrier First, prepare a carrier as a support. Typical carriers include metal layers. Examples of such carriers include, as described above, aluminum foil, copper foil, stainless steel (SUS) foil, resin films whose surfaces are coated with metal such as copper, and glass, with copper foil being preferred. The copper foil may be either a rolled copper foil or an electrolytic copper foil, but preferably an electrolytic copper foil.
 電解銅箔をキャリアとして用いる場合、電解製箔する際の条件を、以下のようにすることが好ましい。すなわち、銅濃度を60g/L以上85g/L以下(より好ましくは50g/L以上70g/L以下)、硫酸濃度を100g/L以上250g/L以下(より好ましくは200g/L以上250g/L以下)、塩素濃度を1mg/L以上3mg/L以下(より好ましくは1mg/L以上2mg/L以下)とし、添加剤としてゼラチンの濃度を0.3mg/L以上5mg/L以下(より好ましくは1mg/L以上3mg/L以下)に調整した硫酸系銅電解液を用い、陽極にはDSA(寸法安定性陽極)を用いて、液温40℃以上60℃以下(より好ましくは50℃以上60℃以下)、電流密度30A/dm以上75A/dm以下(より好ましくは40A/dm以上60A/dm以下)で電解することにより、所望の引張強度を有する電解銅箔を好ましく得ることができる。添加剤としては、ゼラチンに代えて、ヨウ化カリウム(ヨウ素濃度1mg/L以上10mg/L以下)、又は分子量3000以上のポリエチレンイミン(濃度30mg/L以上200mg/L以下)を用いてもよい。このように電解液中に添加剤としてゼラチン等を添加し、電解条件を上記範囲内に制御して電解製箔を行うことで、高い引張強度を有するキャリアを形成しやすくなる。また、キャリア付銅箔に対して加熱処理を行った際に、キャリアの引張強度の低下を抑制することができる。 When using electrolytic copper foil as a carrier, it is preferable that the conditions for electrolytically forming the foil are as follows. That is, the copper concentration is 60 g/L or more and 85 g/L or less (more preferably 50 g/L or more and 70 g/L or less), and the sulfuric acid concentration is 100 g/L or more and 250 g/L or less (more preferably 200 g/L or more and 250 g/L or less). ), the chlorine concentration is 1 mg/L or more and 3 mg/L or less (more preferably 1 mg/L or more and 2 mg/L or less), and the concentration of gelatin as an additive is 0.3 mg/L or more and 5 mg/L or less (more preferably 1 mg/L or more). Use a sulfuric acid-based copper electrolyte adjusted to a temperature of 40°C to 60°C (more preferably 50°C to 60°C), and use DSA (dimensionally stable anode) as the anode. Electrolytic copper foil having a desired tensile strength can be preferably obtained by electrolyzing at a current density of 30 A/dm 2 or more and 75 A/dm 2 or less (more preferably 40 A/dm 2 or more and 60 A/dm 2 or less). can. As an additive, instead of gelatin, potassium iodide (iodine concentration: 1 mg/L or more and 10 mg/L or less) or polyethyleneimine with a molecular weight of 3000 or more (concentration: 30 mg/L or more and 200 mg/L or less) may be used. By adding gelatin or the like as an additive to the electrolytic solution and performing electrolytic foil forming while controlling the electrolytic conditions within the above range, it becomes easier to form a carrier having high tensile strength. Furthermore, when the carrier-attached copper foil is subjected to heat treatment, a decrease in the tensile strength of the carrier can be suppressed.
(2)剥離層の形成
 キャリア上に剥離層を形成する。剥離層は、有機剥離層及び無機剥離層のいずれであってもよい。有機剥離層及び無機剥離層の好ましい例については前述したとおりである。剥離層の形成はキャリアの少なくとも一方の表面に剥離層成分含有溶液を接触させ、剥離層成分をキャリアの表面に固定させること等により行えばよい。キャリアを剥離層成分含有溶液に接触させる場合、この接触は、剥離層成分含有溶液への浸漬、剥離層成分含有溶液の噴霧、剥離層成分含有溶液の流下等により行えばよい。その他、蒸着やスパッタリング等による気相法で剥離層成分を被膜形成する方法も採用可能である。また、剥離層成分のキャリア表面への固定は、剥離層成分含有溶液の吸着や乾燥、剥離層成分含有溶液中の剥離層成分の電着等により行えばよい。
(2) Formation of release layer A release layer is formed on the carrier. The release layer may be either an organic release layer or an inorganic release layer. Preferred examples of the organic release layer and the inorganic release layer are as described above. The release layer may be formed by bringing a release layer component-containing solution into contact with at least one surface of the carrier to fix the release layer component to the surface of the carrier. When the carrier is brought into contact with the release layer component-containing solution, this contact may be carried out by dipping the carrier in the release layer component-containing solution, spraying the release layer component-containing solution, flowing down the release layer component-containing solution, or the like. In addition, it is also possible to adopt a method of forming a film with the release layer component by a vapor phase method such as vapor deposition or sputtering. Further, the release layer component may be fixed to the carrier surface by adsorption or drying of a solution containing the release layer component, or by electrodeposition of the release layer component in the solution containing the release layer component.
(3)金属箔の形成
 剥離層上に金属箔を形成する。例えば、無電解金属めっき法及び電解金属めっき法等の湿式成膜法、スパッタリング及び化学蒸着等の乾式成膜法、又はそれらの組合せにより金属箔を形成してもよい。好ましくは、電解銅めっき法により極薄銅箔を形成する。とりわけ極薄銅箔の引張強度を向上させる観点から、極薄銅箔を電解製箔する際の条件を、以下のようにすることが好ましい。すなわち、銅濃度を40g/L以上80g/L以下(より好ましくは50g/L以上70g/L以下)、硫酸濃度を180g/L以上260g/L以下(より好ましくは200g/L以上250g/L以下)とし、添加剤としてカルボキシベンゾトリアゾール(CBTA)の濃度を0ppm超200ppm以下に調整した硫酸系銅電解液を用い、陽極にはDSA(寸法安定性陽極)を用いて、液温35℃以上60℃以下(より好ましくは40℃以上55℃以下)、電流密度3A/dm以上80A/dm以下(より好ましくは5A/dm以上80A/dm以下、さらに好ましくは6A/dm以上75A/dm以下)で電解することにより、所望の電解銅箔を好ましく得ることができる。電解液中のCBTA濃度は0.1ppm以上100ppm以下とするのがより好ましく、さらに好ましくは0.1ppm以上50ppm以下、特に好ましくは0.1ppm以上30ppm以下、最も好ましくは0.1ppm以上10ppm以下である。このように電解液中に添加剤としてカルボキシベンゾトリアゾール(CBTA)を添加し、電解条件を上記範囲内に制御して電解製箔を行うことで、高い引張強度を有する金属箔を形成しやすくなる。また、キャリア付銅箔に対して加熱処理を行った際に、金属箔の引張強度の低下を抑制することができる。
(3) Formation of metal foil A metal foil is formed on the release layer. For example, the metal foil may be formed by wet film forming methods such as electroless metal plating and electrolytic metal plating, dry film forming methods such as sputtering and chemical vapor deposition, or a combination thereof. Preferably, the ultra-thin copper foil is formed by electrolytic copper plating. In particular, from the viewpoint of improving the tensile strength of the ultra-thin copper foil, it is preferable that the conditions for electrolytically forming the ultra-thin copper foil are as follows. That is, the copper concentration is 40 g/L or more and 80 g/L or less (more preferably 50 g/L or more and 70 g/L or less), and the sulfuric acid concentration is 180 g/L or more and 260 g/L or less (more preferably 200 g/L or more and 250 g/L or less). ), a sulfuric acid-based copper electrolyte with the concentration of carboxybenzotriazole (CBTA) adjusted to more than 0 ppm and less than 200 ppm as an additive, and a DSA (dimensionally stable anode) as the anode, with a liquid temperature of 35°C or more and 60°C. ℃ or less (more preferably 40°C or more and 55°C or less), current density 3 A/dm 2 or more and 80 A/dm 2 or less (more preferably 5 A/dm 2 or more and 80 A/dm 2 or less, even more preferably 6 A/dm 2 or more and 75 A) /dm 2 or less), a desired electrolytic copper foil can be preferably obtained. The CBTA concentration in the electrolyte is more preferably 0.1 ppm or more and 100 ppm or less, even more preferably 0.1 ppm or more and 50 ppm or less, particularly preferably 0.1 ppm or more and 30 ppm or less, and most preferably 0.1 ppm or more and 10 ppm or less. be. By adding carboxybenzotriazole (CBTA) as an additive to the electrolytic solution and performing electrolytic foil forming by controlling the electrolytic conditions within the above range, it becomes easier to form metal foil with high tensile strength. . Further, when the carrier-attached copper foil is subjected to heat treatment, a decrease in the tensile strength of the metal foil can be suppressed.
 所望により、金属箔の表面に粗化処理、防錆処理及び/又はシランカップリング剤処理を行って、複数の粗化粒子からなる粗化層、防錆処理層及び/又はシランカップリング剤層を形成してもよい。これらの処理については前述したとおりである。 If desired, the surface of the metal foil is subjected to roughening treatment, rust prevention treatment and/or silane coupling agent treatment to form a roughened layer consisting of a plurality of roughened particles, a rust prevention treatment layer and/or a silane coupling agent layer. may be formed. These processes are as described above.
 金属張積層板
 本発明のキャリア付金属箔は、プリント配線板用金属張積層板の作製に用いられるのが好ましい。すなわち、本発明の好ましい態様によれば、上記キャリア付金属箔を備えた金属張積層板(より好ましくは銅張積層板)が提供される。金属張積層板は、キャリア、剥離層、及び金属箔をこの順に備えたキャリア付金属箔と、このキャリア付金属箔の金属箔の表面(金属箔の剥離層と反対側の面)に設けられる樹脂層とを備える。上述したキャリア付金属箔の好ましい態様は、金属張積層板が備えるキャリア付金属箔にもそのまま当てはまる。キャリア付金属箔は樹脂層の片面に設けられてもよいし、両面に設けられてもよい。樹脂層は、樹脂、好ましくは絶縁性樹脂を含んでなる。樹脂層はプリプレグ及び/又は樹脂シートであるのが好ましい。プリプレグとは、合成樹脂板、ガラス板、ガラス織布、ガラス不織布、紙等の基材に合成樹脂を含浸させた複合材料の総称である。絶縁性樹脂の好ましい例としては、エポキシ樹脂、シアネート樹脂、ビスマレイミドトリアジン樹脂(BT樹脂)、ポリフェニレンエーテル樹脂、フェノール樹脂等が挙げられる。また、樹脂シートを構成する絶縁性樹脂の例としては、エポキシ樹脂、ポリイミド樹脂、ポリエステル樹脂等の絶縁樹脂が挙げられる。また、樹脂層には絶縁性を向上させる等の観点からシリカ、アルミナ等の各種無機粒子からなるフィラー粒子等が含有されていてもよい。樹脂層の厚さは特に限定されないが、1μm以上1000μm以下が好ましく、より好ましくは2μm以上400μm以下であり、さらに好ましくは3μm以上200μm以下である。樹脂層は複数の層で構成されていてよい。プリプレグ及び/又は樹脂シート等の樹脂層は予め金属箔表面に塗布されるプライマー樹脂層を介してキャリア付金属箔に設けられていてもよい。
Metal-clad laminate The carrier-attached metal foil of the present invention is preferably used for producing a metal-clad laminate for printed wiring boards. That is, according to a preferred embodiment of the present invention, a metal-clad laminate (more preferably a copper-clad laminate) including the above-mentioned carrier-attached metal foil is provided. A metal-clad laminate includes a metal foil with a carrier, which includes a carrier, a release layer, and metal foil in this order, and a surface of the metal foil of the metal foil with a carrier (the surface opposite to the release layer of the metal foil). and a resin layer. The preferred embodiments of the carrier-attached metal foil described above also apply to the carrier-attached metal foil included in the metal-clad laminate. The carrier-attached metal foil may be provided on one side or both sides of the resin layer. The resin layer contains a resin, preferably an insulating resin. Preferably, the resin layer is a prepreg and/or a resin sheet. Prepreg is a general term for composite materials in which a base material such as a synthetic resin plate, glass plate, glass woven fabric, glass nonwoven fabric, or paper is impregnated with synthetic resin. Preferred examples of the insulating resin include epoxy resin, cyanate resin, bismaleimide triazine resin (BT resin), polyphenylene ether resin, and phenol resin. Furthermore, examples of the insulating resin constituting the resin sheet include insulating resins such as epoxy resin, polyimide resin, and polyester resin. Further, the resin layer may contain filler particles made of various inorganic particles such as silica and alumina from the viewpoint of improving insulation properties. The thickness of the resin layer is not particularly limited, but is preferably 1 μm or more and 1000 μm or less, more preferably 2 μm or more and 400 μm or less, and still more preferably 3 μm or more and 200 μm or less. The resin layer may be composed of multiple layers. A resin layer such as a prepreg and/or a resin sheet may be provided on the carrier-attached metal foil via a primer resin layer that is previously applied to the surface of the metal foil.
 プリント配線板
 本発明のキャリア付金属箔はプリント配線板の作製に用いられるのが好ましい。すなわち、本発明の好ましい態様によれば、上記キャリア付金属箔を備えたプリント配線板、又はその製造方法が提供される。本態様によるプリント配線板は、樹脂層と、金属層とがこの順に積層された層構成を含んでなる。また、樹脂層については金属張積層板に関して上述したとおりである。いずれにしても、プリント配線板は公知の層構成が採用可能である。プリント配線板に関する具体例としては、プリプレグの片面又は両面に本発明の金属箔を接着させ硬化した積層体とした上で回路形成した片面又は両面プリント配線板や、これらを多層化した多層プリント配線板等が挙げられる。また、他の具体例としては、樹脂フィルム上に本発明の金属箔を形成して回路を形成するフレキシブルプリント配線板、COF、TABテープ等も挙げられる。さらに他の具体例としては、本発明の金属箔に上述の樹脂層を塗布した樹脂付金属箔を形成し、樹脂層を絶縁接着材層として上述のプリント配線板に積層した後、金属箔を配線層の全部又は一部としてモディファイド・セミ・アディティブ法(MSAP)、サブトラクティブ法等の手法で回路を形成したビルドアップ配線板や、金属箔を除去してセミ・アディティブ法(SAP)で回路を形成したビルドアップ配線板、半導体集積回路上へ樹脂付金属箔の積層と回路形成を交互に繰りかえすダイレクト・ビルドアップ・オン・ウェハー等が挙げられる。本発明のキャリア付金属箔は、いわゆるコア基板を用いることなく、絶縁樹脂層と導体層とが交互に積層されるコアレスビルドアップ法を用いた製造方法にも好ましく用いることができる。
Printed Wiring Board The carrier-attached metal foil of the present invention is preferably used for producing a printed wiring board. That is, according to a preferred embodiment of the present invention, there is provided a printed wiring board provided with the above metal foil with a carrier, or a method for manufacturing the same. The printed wiring board according to this embodiment includes a layered structure in which a resin layer and a metal layer are laminated in this order. Further, the resin layer is as described above for the metal-clad laminate. In any case, a known layer structure can be used for the printed wiring board. Specific examples of printed wiring boards include single-sided or double-sided printed wiring boards in which the metal foil of the present invention is adhered to one or both sides of a prepreg and cured to form a laminate, and circuits are formed thereon, and multilayer printed wiring in which these are multilayered. Examples include boards. Further, other specific examples include flexible printed wiring boards, COF, TAB tapes, etc. in which a circuit is formed by forming the metal foil of the present invention on a resin film. As another specific example, a resin-coated metal foil is formed by applying the above-mentioned resin layer to the metal foil of the present invention, and the resin layer is laminated on the above-mentioned printed wiring board as an insulating adhesive layer, and then the metal foil is coated with the above-mentioned printed wiring board. Build-up wiring boards where circuits are formed using methods such as modified semi-additive method (MSAP) or subtractive method as all or part of the wiring layer, or circuits are formed using semi-additive method (SAP) by removing metal foil. Direct build-up on wafer, in which lamination of resin-coated metal foil and circuit formation are alternately repeated on a semiconductor integrated circuit. The carrier-attached metal foil of the present invention can also be preferably used in a manufacturing method using a coreless build-up method in which insulating resin layers and conductor layers are alternately laminated without using a so-called core substrate.
 本発明を以下の例によってさらに具体的に説明する。 The present invention will be explained in more detail with reference to the following examples.
 例1~11
 キャリア付銅箔を以下のようにして作製及び評価した。
Examples 1 to 11
A carrier-attached copper foil was produced and evaluated as follows.
(1)キャリアの準備
 例1~6及び11については、以下に示される組成の銅電解液と、陰極と、陽極としてのDSA(寸法安定性陽極)とを用いて、溶液温度50℃、電流密度60A/dmで電解し、所定厚さの電解銅箔をキャリアとして得た。
<銅電解液の組成>
‐ 銅濃度:80g/L
‐ 硫酸濃度:250g/L
‐ 塩素濃度:1.5mg/L
‐ ゼラチン濃度:2mg/L
(1) Preparation of carrier For Examples 1 to 6 and 11, a copper electrolyte having the composition shown below, a cathode, and a DSA (dimensionally stable anode) as an anode were used at a solution temperature of 50°C and a current of Electrolysis was carried out at a density of 60 A/dm 2 to obtain an electrolytic copper foil of a predetermined thickness as a carrier.
<Composition of copper electrolyte>
- Copper concentration: 80g/L
- Sulfuric acid concentration: 250g/L
- Chlorine concentration: 1.5mg/L
- Gelatin concentration: 2mg/L
 一方、例7~10については、以下に示される組成の銅電解液と、陰極と、陽極としてのDSA(寸法安定性陽極)とを用いて、溶液温度50℃、電流密度70A/dmで電解し、所定厚さの電解銅箔をキャリアとして得た。
<銅電解液の組成>
‐ 銅濃度:80g/L
‐ 硫酸濃度:300g/L
‐ 塩素濃度:30mg/L
‐ 膠濃度:5mg/L
On the other hand, for Examples 7 to 10, a copper electrolyte having the composition shown below, a cathode, and a DSA (dimensionally stable anode) as an anode were used at a solution temperature of 50°C and a current density of 70A/ dm2 . Electrolysis was performed to obtain an electrolytic copper foil of a predetermined thickness as a carrier.
<Composition of copper electrolyte>
- Copper concentration: 80g/L
- Sulfuric acid concentration: 300g/L
- Chlorine concentration: 30mg/L
- Glue concentration: 5mg/L
(2)剥離層の形成
 酸洗処理されたキャリアの電極面を、カルボキシベンゾトリアゾール(CBTA)濃度1g/L、硫酸濃度150g/L及び銅濃度10g/Lを含むCBTA水溶液に、液温30℃で30秒間浸漬し、CBTA成分をキャリアの電極面に吸着させた。こうして、キャリアの電極面にCBTA層を有機剥離層として形成した。
(2) Formation of release layer The electrode surface of the pickled carrier is placed in a CBTA aqueous solution containing carboxybenzotriazole (CBTA) at a concentration of 1 g/L, sulfuric acid concentration of 150 g/L, and copper concentration of 10 g/L at a temperature of 30°C. The carrier was immersed for 30 seconds to adsorb the CBTA component onto the electrode surface of the carrier. In this way, a CBTA layer was formed as an organic release layer on the electrode surface of the carrier.
(3)補助金属層の形成
 有機剥離層が形成されたキャリアを、硫酸ニッケルを用いて作製されたニッケル濃度20g/Lを含む溶液に浸漬して、液温45℃、pH3、電流密度5A/dmの条件で、厚さ0.001μm相当の付着量のニッケルを有機剥離層上に付着させた。こうして、有機剥離層上にニッケル層を補助金属層として形成した。
(3) Formation of auxiliary metal layer The carrier on which the organic release layer was formed was immersed in a solution containing 20 g/L of nickel prepared using nickel sulfate at a liquid temperature of 45°C, pH 3, and a current density of 5 A/L. Nickel was deposited on the organic release layer in an amount equivalent to a thickness of 0.001 μm under conditions of dm 2 . In this way, a nickel layer was formed as an auxiliary metal layer on the organic release layer.
(4)極薄銅箔の形成
 補助金属層が形成されたキャリアを、以下に示される組成の銅溶液に浸漬して、溶液温度50℃、電流密度5A/dm以上40A/dm以下(例1~10)又は70A/dm(例11)で電解し、所定厚さの極薄銅箔を補助金属層上に形成した。
<溶液の組成>
‐ 銅濃度:60g/L
‐ 硫酸濃度:200g/L
‐ CBTA濃度:5.0ppm(例1、4~8及び11)又は0ppm(例2、3、9及び10)
(4) Formation of ultra-thin copper foil The carrier on which the auxiliary metal layer has been formed is immersed in a copper solution having the composition shown below . Examples 1 to 10) or 70 A/dm 2 (Example 11) to form an ultra-thin copper foil of a predetermined thickness on the auxiliary metal layer.
<Solution composition>
- Copper concentration: 60g/L
- Sulfuric acid concentration: 200g/L
- CBTA concentration: 5.0 ppm (Examples 1, 4-8 and 11) or 0 ppm (Examples 2, 3, 9 and 10)
(5)粗化処理
 こうして形成された極薄銅箔の表面に粗化処理を行うことで粗化処理銅箔を形成し、これによりキャリア付銅箔を得た。この粗化処理は、極薄銅箔の上に微細銅粒を析出付着させる焼けめっき工程と、この微細銅粒の脱落を防止するための被せめっき工程とから構成される。焼けめっき工程では、銅濃度10g/L及び硫酸濃度200g/Lを含む液温25℃の酸性硫酸銅溶液に、9-フェニルアクリジン(9PA)及び塩素を、9PA濃度60ppm及び塩素濃度50ppmとなるようにそれぞれ添加し、電流密度20A/dmで粗化処理を行った。その後の被せめっき工程では、銅濃度70g/L及び硫酸濃度240g/Lを含む酸性硫酸銅溶液を用いて、液温52℃及び電流密度15A/dmの平滑めっき条件で電着を行った。
(5) Roughening treatment The surface of the ultra-thin copper foil thus formed was subjected to a roughening treatment to form a roughened copper foil, thereby obtaining a carrier-attached copper foil. This roughening treatment consists of a baking plating process in which fine copper grains are precipitated and adhered to the ultra-thin copper foil, and a covering plating process to prevent the fine copper grains from falling off. In the baking process, 9-phenylacridine (9PA) and chlorine are added to an acidic copper sulfate solution at a temperature of 25°C containing a copper concentration of 10 g/L and a sulfuric acid concentration of 200 g/L so that the 9PA concentration is 60 ppm and the chlorine concentration is 50 ppm. and roughening treatment was performed at a current density of 20 A/dm 2 . In the subsequent cover plating step, electrodeposition was performed using an acidic copper sulfate solution containing a copper concentration of 70 g/L and a sulfuric acid concentration of 240 g/L under smooth plating conditions of a liquid temperature of 52° C. and a current density of 15 A/dm 2 .
(6)防錆処理
 得られたキャリア付銅箔の粗化処理表面に、亜鉛-ニッケル合金めっき処理及びクロメート処理からなる防錆処理を行った。まず、亜鉛濃度1g/L、ニッケル濃度2g/L及びピロリン酸カリウム濃度80g/Lを含む溶液を用い、液温40℃、電流密度0.5A/dmの条件で、粗化層及びキャリアの表面に亜鉛-ニッケル合金めっき処理を行った。次いで、クロム酸1g/Lを含む水溶液を用い、pH12、電流密度1A/dmの条件で、亜鉛-ニッケル合金めっき処理を行った表面にクロメート処理を行った。
(6) Rust prevention treatment The roughened surface of the obtained carrier-attached copper foil was subjected to rust prevention treatment consisting of zinc-nickel alloy plating treatment and chromate treatment. First, using a solution containing a zinc concentration of 1 g/L, a nickel concentration of 2 g/L, and a potassium pyrophosphate concentration of 80 g/L, the roughened layer and carrier were The surface was subjected to zinc-nickel alloy plating treatment. Next, the surface subjected to the zinc-nickel alloy plating treatment was subjected to chromate treatment using an aqueous solution containing 1 g/L of chromic acid under conditions of pH 12 and current density of 1 A/dm 2 .
(7)シランカップリング剤処理
 市販のシランカップリング剤を含む水溶液をキャリア付銅箔の粗化処理銅箔側の表面に吸着させ、電熱器により水分を蒸発させることにより、シランカップリング剤処理を行った。このとき、シランカップリング剤処理はキャリア側には行わなかった。
(7) Silane coupling agent treatment A silane coupling agent treatment is performed by adsorbing an aqueous solution containing a commercially available silane coupling agent on the surface of the roughened copper foil side of the carrier-coated copper foil, and evaporating the water using an electric heater. I did it. At this time, the carrier side was not treated with a silane coupling agent.
(8)熱処理
 例3及び10について、シランカップリング剤処理後のキャリア付銅箔に対して175℃で5分間の熱処理を行った。一方、例1、2及び4~9については、この熱処理は行わなかった。
(8) Heat Treatment For Examples 3 and 10, the carrier-attached copper foil treated with the silane coupling agent was heat treated at 175° C. for 5 minutes. On the other hand, for Examples 1, 2, and 4 to 9, this heat treatment was not performed.
(9)評価
 こうして得られたキャリア付銅箔について、各種特性の評価を以下のとおり行った。
(9) Evaluation Various characteristics of the carrier-attached copper foil thus obtained were evaluated as follows.
(9a)厚さ
 キャリア付銅箔が備えるキャリア及び極薄銅箔について、それぞれの厚さを以下のとおり測定した。まず、キャリア付銅箔を100mm角に切り出し、その重量Wを電子天秤にて測定した。次いで、キャリア付銅箔からキャリアを引き剥がし、キャリアの重量Wを電子天秤にて測定した。そして、重量W及び銅の比重からキャリアの厚さを算出するとともに、重量W及び重量Wの差(=W-W)並びに銅の比重から極薄銅箔の厚さを算出した。結果は表1に示されるとおりであった。
(9a) Thickness The thickness of each of the carrier and ultra-thin copper foil included in the carrier-attached copper foil was measured as follows. First, a carrier-attached copper foil was cut into a 100 mm square, and its weight WA was measured using an electronic balance. Next, the carrier was peeled off from the carrier-attached copper foil, and the weight WB of the carrier was measured using an electronic balance. Then, the thickness of the carrier is calculated from the weight W B and the specific gravity of copper, and the thickness of the ultra-thin copper foil is calculated from the difference between the weights W A and W B (=W A - W B ) and the specific gravity of copper. did. The results were as shown in Table 1.
(9b)常態引張強度
 キャリア及び極薄銅箔の引張強度を以下のとおり測定した。まず、キャリア付銅箔の引張強度TS(kgf/mm)をIPC-TM650 2.4.18に準拠して測定した。次いで、キャリア付銅箔からキャリアを引き剥がし、キャリアの引張強度TS(kgf/mm)をIPC-TM650 2.4.18に準拠して測定した。極薄銅箔はその薄さから同様の手法での引張強度測定が困難であるため、以下の通り算出した。TS(kgf/mm)、TS(kgf/mm)にそれぞれの試験片の断面積を乗じた値をTS’(kgf)、TS’(kgf)とし、極薄銅箔の試験片断面積をA(mm)として、(TS’-TS’) / Aの式により算出される値を極薄銅箔の引張強度とした。結果は表1に示されるとおりであった。
(9b) Normal tensile strength The tensile strength of the carrier and ultra-thin copper foil was measured as follows. First, the tensile strength TS 3 (kgf/mm 2 ) of the carrier-attached copper foil was measured in accordance with IPC-TM650 2.4.18. Next, the carrier was peeled off from the carrier-attached copper foil, and the tensile strength TS 1 (kgf/mm 2 ) of the carrier was measured in accordance with IPC-TM650 2.4.18. Since it is difficult to measure the tensile strength of ultra-thin copper foil using a similar method due to its thinness, the tensile strength was calculated as follows. The values obtained by multiplying TS 3 (kgf/mm 2 ) and TS 1 (kgf/mm 2 ) by the cross-sectional area of each test piece are defined as TS 3 '(kgf) and TS 1 '(kgf), and the The tensile strength of the ultra-thin copper foil was defined as the value calculated by the formula (TS 3 ′-TS 1 ′)/A, where the cross-sectional area of the test piece was A (mm 2 ). The results were as shown in Table 1.
(9c)加熱後引張強度
 引張強度の測定に先立ち、キャリア付銅箔に対して、大気雰囲気中、オーブンにて250℃で60分間の加熱処理を行った後、室温まで放冷したこと以外は、上述した常態引張強度と同様の手順により、キャリア及び極薄銅箔の加熱後引張強度を測定した。なお、例2、3、9及び10についてはキャリアの加熱後引張強度の測定のみ実施し、極薄銅箔の加熱後引張強度は算出しなかった。また、例11についてはキャリア及び極薄銅箔の加熱後引張強度の測定は行わなかった。結果は表1に示されるとおりであった。
(9c) Tensile strength after heating Prior to measuring tensile strength, the copper foil with a carrier was heat-treated in an oven at 250°C for 60 minutes in the air, and then allowed to cool to room temperature. The tensile strength after heating of the carrier and the ultra-thin copper foil was measured by the same procedure as the normal tensile strength described above. For Examples 2, 3, 9, and 10, only the tensile strength after heating of the carrier was measured, and the tensile strength after heating of the ultra-thin copper foil was not calculated. Further, in Example 11, the tensile strength of the carrier and the ultra-thin copper foil after heating was not measured. The results were as shown in Table 1.
(9d)亀裂数測定
 極薄銅箔の破れ耐性の指標として、亀裂数の測定を以下のようにして行った。まず、図2に示されるように、キャリア付銅箔を150mm角に切り出した。次いで、切り出したキャリア付銅箔30の1辺を25mm幅で固定した。そして、固定した1辺と逆側の1辺を把持し、キャリア付銅箔30に対して左右に2回ずつひねりを加えた。このひねり付与は、図3(i)~(iii)に示されるように、キャリア付銅箔30を水平とした状態から、この水平面に対して45°の角度となるまで行った。固定を解除した後、キャリア付銅箔30を90°回転させ、上記ひねり付与工程を再度実施した。このようにして、キャリア付銅箔30の4辺全てについてひねり付与工程を実施した。その後、図2に示されるように、切り出したキャリア付銅箔30の中央部である100mm×100mm(=1dm)の試験エリアについて、極薄銅箔側の表面に発生した亀裂数を光学顕微鏡にてカウントした。以上の操作を各例につき3回ずつ行い、その平均値を亀裂数とした。結果は表1に示されるとおりであった。
(9d) Measurement of the number of cracks As an index of the tear resistance of ultra-thin copper foil, the number of cracks was measured as follows. First, as shown in FIG. 2, the carrier-attached copper foil was cut into a 150 mm square. Next, one side of the cut out carrier-attached copper foil 30 was fixed to a width of 25 mm. Then, one side opposite to the one fixed side was grasped, and the carrier-attached copper foil 30 was twisted twice in each direction. As shown in FIGS. 3(i) to (iii), this twisting was performed from a state in which the carrier-attached copper foil 30 was horizontal until it was at an angle of 45° with respect to the horizontal plane. After releasing the fixation, the carrier-attached copper foil 30 was rotated 90 degrees, and the above-mentioned twist imparting step was performed again. In this way, the twist imparting step was performed on all four sides of the carrier-attached copper foil 30. After that, as shown in FIG. 2, the number of cracks that occurred on the surface of the ultra-thin copper foil was measured using an optical microscope in a test area of 100 mm x 100 mm (=1 dm 2 ), which is the center of the cut out copper foil with carrier 30. It was counted at. The above operation was performed three times for each example, and the average value was taken as the number of cracks. The results were as shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

Claims (10)

  1.  キャリア、剥離層及び金属箔をこの順に備えたキャリア付金属箔であって、
     前記キャリアの引張強度が50.0kgf/mm以上であり、かつ、前記金属箔の引張強度が50.0kgf/mm以上である、キャリア付金属箔。
    A carrier-attached metal foil comprising a carrier, a release layer, and a metal foil in this order,
    A metal foil with a carrier, wherein the carrier has a tensile strength of 50.0 kgf/mm 2 or more, and the metal foil has a tensile strength of 50.0 kgf/mm 2 or more.
  2.  250℃で60分加熱した後において、前記キャリアの引張強度が45.0kgf/mm以上である、且つ/又は前記金属箔の引張強度が45.0kgf/mm以上である、請求項1に記載のキャリア付金属箔。 After heating at 250° C. for 60 minutes, the carrier has a tensile strength of 45.0 kgf/mm 2 or more, and/or the metal foil has a tensile strength of 45.0 kgf/mm 2 or more. Metal foil with carrier as described.
  3.  前記キャリア及び前記金属箔がいずれも銅箔である、請求項1又は2に記載のキャリア付金属箔。 The metal foil with a carrier according to claim 1 or 2, wherein the carrier and the metal foil are both copper foils.
  4.  前記キャリアの厚さが6μm以上18μm以下である、請求項1又は2に記載のキャリア付金属箔。 The metal foil with a carrier according to claim 1 or 2, wherein the carrier has a thickness of 6 μm or more and 18 μm or less.
  5.  前記金属箔の厚さが0.1μm以上6μm以下である、請求項1又は2に記載のキャリア付金属箔。 The metal foil with a carrier according to claim 1 or 2, wherein the metal foil has a thickness of 0.1 μm or more and 6 μm or less.
  6.  前記金属箔上に、複数の粗化粒子で構成される粗化層、防錆処理層、及びシランカップリング剤層からなる群から選択される少なくとも1種の層をさらに備えた、請求項1又は2に記載のキャリア付金属箔。 1 . The metal foil further comprises at least one layer selected from the group consisting of a roughening layer composed of a plurality of roughening particles, a rust prevention treatment layer, and a silane coupling agent layer. Or the metal foil with a carrier according to 2.
  7.  前記剥離層と前記キャリア及び/又は前記金属箔の間に補助金属層をさらに備えた、請求項1又は2に記載のキャリア付金属箔。 The metal foil with a carrier according to claim 1 or 2, further comprising an auxiliary metal layer between the release layer and the carrier and/or the metal foil.
  8.  請求項1又は2に記載のキャリア付金属箔を備えた、金属張積層板。 A metal-clad laminate comprising the carrier-attached metal foil according to claim 1 or 2.
  9.  請求項1又は2に記載のキャリア付金属箔を備えた、プリント配線板。 A printed wiring board comprising the carrier-attached metal foil according to claim 1 or 2.
  10.  請求項1又は2に記載のキャリア付金属箔を用いてプリント配線板を製造することを特徴とする、プリント配線板の製造方法。 A method for manufacturing a printed wiring board, comprising manufacturing a printed wiring board using the carrier-attached metal foil according to claim 1 or 2.
PCT/JP2023/009939 2022-03-29 2023-03-14 Carrier-attached metal foil, metal-clad laminate, and printed wiring board WO2023189565A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022054360 2022-03-29
JP2022-054360 2022-03-29

Publications (1)

Publication Number Publication Date
WO2023189565A1 true WO2023189565A1 (en) 2023-10-05

Family

ID=88201583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/009939 WO2023189565A1 (en) 2022-03-29 2023-03-14 Carrier-attached metal foil, metal-clad laminate, and printed wiring board

Country Status (2)

Country Link
TW (1) TW202346098A (en)
WO (1) WO2023189565A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006107043A1 (en) * 2005-04-04 2006-10-12 Ube Industries, Ltd. Copper clad laminate
JP2014005507A (en) * 2012-06-25 2014-01-16 Ajinomoto Co Inc Metal film-attached adhesive film
WO2015080052A1 (en) * 2013-11-27 2015-06-04 三井金属鉱業株式会社 Copper foil with attached carrier foil and copper-clad laminate
JP2016050324A (en) * 2014-08-29 2016-04-11 Jx金属株式会社 Method for producing carrier-fitted copper foil, method for producing copper-clad laminate, method for producing printed wiring board, electronic equipment and carrier-fitted copper foil
WO2016152390A1 (en) * 2015-03-24 2016-09-29 三井金属鉱業株式会社 Ultra-thin copper foil with carrier, manufacturing method therefor, copper-clad laminate, and printed wiring board
JP2020183565A (en) * 2019-05-08 2020-11-12 古河電気工業株式会社 Electrolytic copper foil, surface-treated copper foil using electrolytic copper foil, copper-clad laminate using surface-treated copper foil, and printed circuit board

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006107043A1 (en) * 2005-04-04 2006-10-12 Ube Industries, Ltd. Copper clad laminate
JP2014005507A (en) * 2012-06-25 2014-01-16 Ajinomoto Co Inc Metal film-attached adhesive film
WO2015080052A1 (en) * 2013-11-27 2015-06-04 三井金属鉱業株式会社 Copper foil with attached carrier foil and copper-clad laminate
JP2016050324A (en) * 2014-08-29 2016-04-11 Jx金属株式会社 Method for producing carrier-fitted copper foil, method for producing copper-clad laminate, method for producing printed wiring board, electronic equipment and carrier-fitted copper foil
WO2016152390A1 (en) * 2015-03-24 2016-09-29 三井金属鉱業株式会社 Ultra-thin copper foil with carrier, manufacturing method therefor, copper-clad laminate, and printed wiring board
JP2020183565A (en) * 2019-05-08 2020-11-12 古河電気工業株式会社 Electrolytic copper foil, surface-treated copper foil using electrolytic copper foil, copper-clad laminate using surface-treated copper foil, and printed circuit board

Also Published As

Publication number Publication date
TW202346098A (en) 2023-12-01

Similar Documents

Publication Publication Date Title
KR102480377B1 (en) Roughened copper foil, copper foil with carrier, copper-clad laminate and printed wiring board
JP6342356B2 (en) Copper foil with carrier, printed wiring board, laminate, laminated board, electronic device and method for producing printed wiring board
US10280501B2 (en) Roughened copper foil, copper clad laminate, and printed circuit board
WO2017141985A1 (en) Copper foil for printed circuit board production, copper foil with carrier, and copper-clad laminate plate, and printed circuit board production method using copper foil for printed circuit board production, copper foil with carrier, and copper-clad laminate plate
WO2019188712A1 (en) Roughened copper foil, copper foil with carrier, copper-clad multi-layer board, and printed wiring board
WO2014192895A1 (en) Copper foil, copper foil with carrier, copper-clad laminate, printed circuit board, circuit forming substrate for semiconductor package, semiconductor package, electronic device, resin substrate, circuit forming method, semiadditive method, and printed circuit board manufacturing method
KR102316978B1 (en) Copper foil with carrier, copper-clad laminate and printed wiring board
JP7259093B2 (en) Roughened copper foil, copper foil with carrier, copper clad laminate and printed wiring board
WO2019188837A1 (en) Surface-treated copper foil, copper-cladded laminate, and manufacturing method for printed wiring board
KR102531073B1 (en) Ultra-thin copper foil with carrier, manufacturing method therefor, copper-clad laminate, and printed wiring board
WO2023189565A1 (en) Carrier-attached metal foil, metal-clad laminate, and printed wiring board
WO2023189566A1 (en) Metal foil with carrier, metal-clad laminate, and printed wiring board
WO2020195748A1 (en) Metal foil for printed wiring board, metal foil with carrier, and metal-clad laminate, and method for manufacturing printed wiring board using same
JP5859078B1 (en) Method for producing copper foil with carrier, method for producing copper-clad laminate, method for producing printed wiring board, and method for producing electronic device
WO2022202539A1 (en) Copper foil with carrier, copper-clad laminate, and printed wiring board
JP6329727B2 (en) Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board
JP6462940B1 (en) Copper foil with carrier, copper-clad laminate and printed wiring board
TW202135605A (en) Surface-treated metal foil and metal-clad laminate
JPH05191045A (en) Manufacture of multilayer printed wiring board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23779583

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024511736

Country of ref document: JP

Kind code of ref document: A