WO2015080052A1 - Copper foil with attached carrier foil and copper-clad laminate - Google Patents

Copper foil with attached carrier foil and copper-clad laminate Download PDF

Info

Publication number
WO2015080052A1
WO2015080052A1 PCT/JP2014/080921 JP2014080921W WO2015080052A1 WO 2015080052 A1 WO2015080052 A1 WO 2015080052A1 JP 2014080921 W JP2014080921 W JP 2014080921W WO 2015080052 A1 WO2015080052 A1 WO 2015080052A1
Authority
WO
WIPO (PCT)
Prior art keywords
foil
copper foil
carrier foil
copper
carrier
Prior art date
Application number
PCT/JP2014/080921
Other languages
French (fr)
Japanese (ja)
Inventor
哲広 松永
光由 松田
哲聡 高梨
信之 河合
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to MYPI2016701883A priority Critical patent/MY187285A/en
Priority to JP2015515308A priority patent/JP6855164B2/en
Priority to KR1020167013705A priority patent/KR102272762B1/en
Priority to CN201480063573.7A priority patent/CN105745360B/en
Priority to KR1020217009146A priority patent/KR102356179B1/en
Publication of WO2015080052A1 publication Critical patent/WO2015080052A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates
    • H05K3/025Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates by transfer of thin metal foil formed on a temporary carrier, e.g. peel-apart copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • B32B2311/12Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/615Microstructure of the layers, e.g. mixed structure
    • C25D5/617Crystalline layers

Definitions

  • This application relates to copper foil with carrier foil.
  • the present invention relates to a peelable copper foil with a carrier foil that can be easily peeled off even after being subjected to a high temperature load.
  • the present applicant has proposed a copper foil with a carrier foil disclosed in Patent Document 1 or the like as a raw material for producing a printed wiring board having a fine pitch circuit.
  • the copper foil with a carrier foil disclosed in Patent Document 1 is a copper foil with a so-called peelable carrier foil, and a bonding interface layer formed using an organic agent is formed on the surface of the carrier foil. It is characterized in that an electrolytic copper foil layer is deposited on the interface layer. According to the copper foil with the carrier foil, the peeling strength of the bonding interface layer can be kept low and stabilized, so that the instability of the peeling strength of the carrier foil after press molding is eliminated and small It is possible to peel off the carrier foil stably with force.
  • the press temperature at the time of bonding the copper foil with carrier foil and the insulating layer constituting material tends to be higher.
  • a temperature exceeding 300 ° C. may be applied.
  • the carrier foil and the electrolytic copper foil are connected to each other by the mutual diffusion of the metal of the carrier foil and the electrolytic copper foil due to a high temperature load.
  • the carrier foil cannot be peeled off from the electrolytic copper foil.
  • the present applicant has disclosed the carrier described in Patent Document 2 as a copper foil with a carrier foil that can be peeled off with a small force even when a temperature exceeding 300 ° C. is applied.
  • the copper foil with a carrier disclosed in Patent Document 2 is formed by forming a bonding interface layer using thiocyanuric acid so that the carrier foil and the electrolytic copper foil are heated before heating and after heating in the range of 225 to 360 ° C.
  • the peel strength at the bonding interface has achieved a level of 200 gf / cm or less.
  • the carrier foil is extremely small compared to the conventional copper foil with a peelable carrier foil, and the carrier foil can be removed stably.
  • the present applicant forms an organic bonding interface layer using an organic agent on the surface of the carrier foil, and nickel, nickel alloy, cobalt, or cobalt alloy is formed on the organic bonding interface layer.
  • a method for producing a copper foil with a carrier foil has been proposed in which a dissimilar metal layer is formed using a copper and an electrolytic copper foil layer is provided on the dissimilar metal layer.
  • the copper foil with carrier foil obtained by this production method has a layer configuration of “carrier foil / organic bonding interface layer / dissimilar metal layer such as nickel and cobalt / electrolytic copper foil layer”.
  • the carrier foil-attached copper foil can more stably prevent the carrier foil and the electrolytic copper foil from being connected when a temperature exceeding 300 ° C. is applied.
  • carrier foil peeling strength When the carrier foil peel strength of the copper foil with carrier foil is increased as described above, the carrier foil and the electrolytic copper foil are connected as described above, and the carrier foil cannot be easily peeled off from the electrolytic copper foil. I was able to confirm the phenomenon.
  • FIG. 2 shows a cross-section of a conventional copper foil with a carrier foil after heat treatment at 250 ° C. for 60 minutes.
  • a relatively large interdiffusion site formed by a high temperature load can be confirmed in the enlarged bonding interface layer in the lower stage of FIG.
  • FIG. 3 schematically shows the situation at this time in an easy-to-understand manner.
  • an interdiffusion site hereinafter simply referred to as “connecting portion 5” formed by high-temperature loading through the bonding interface layer 4 between the carrier foil 2 and the copper foil 3.
  • connecting portion 5 formed by high-temperature loading through the bonding interface layer 4 between the carrier foil 2 and the copper foil 3.
  • the present invention can easily peel off the carrier foil from the copper foil even when it is used for the production of a copper clad laminate in which a temperature of 250 ° C. or higher is loaded, and the carrier with less variation in the lot.
  • the purpose is to provide copper foil with foil.
  • the carrier foil and the copper are provided with certain conditions described below. It was conceived that the formation of the connecting portion in the bonding interface layer with the foil was suppressed, and the carrier foil could be easily peeled off from the copper foil. Hereinafter, this technical idea will be described.
  • Copper foil with carrier foil has a layer configuration of carrier foil / bonding interface layer / copper foil layer, and after performing heat treatment at 250 ° C. for 60 minutes as the carrier foil.
  • An electrolytic copper foil having a tensile strength of 40 kgf / mm 2 or more is used.
  • Copper-clad laminate The copper-clad laminate according to the present application is obtained by using the above-described copper foil with a carrier foil.
  • Printed wiring board The printed wiring board according to the present application is obtained using the copper foil with carrier foil described above.
  • the copper foil with carrier foil according to the present application can easily peel off the carrier foil from the electrolytic copper foil even when a temperature of 250 ° C. or higher is applied, and can reduce lot-to-lot variations. Therefore, it can be suitably used in the production of a copper clad laminate in which a temperature of 250 ° C. or higher is loaded.
  • Example 2 250 ° C. ⁇ 60 minutes of a copper foil with a carrier foil using an electrolytic copper foil having a tensile strength of “40 kgf / mm 2 or more after performing a heat treatment at 250 ° C. for 60 minutes” as a carrier foil. It is a cross-sectional observation photograph after performing this heat processing.
  • Form of copper foil with carrier foil The copper foil with carrier foil according to the present application has a layer configuration of carrier foil / bonding interface layer / copper foil layer. And as this carrier foil, after performing the heat processing for 250 degreeC x 60 minutes, the electrolytic copper foil provided with the tensile strength of 40 kgf / mm ⁇ 2 > or more is used.
  • the heating condition of “250 ° C. ⁇ 60 minutes” corresponds to the heating condition generally employed when a copper clad laminate is manufactured by laminating a copper foil for printed wiring boards and an insulating layer constituent material such as a prepreg. To do.
  • an electrolytic copper foil having a tensile strength of 40 kgf / mm 2 or more after being subjected to a heat treatment at 250 ° C. for 60 minutes is adopted as the carrier foil, heating is performed by inhibiting the crystal growth of the carrier foil in the heating process. The diffusion of copper on the carrier foil side in the process can be slowed, and the formation of a connecting portion can be prevented. As a result, the peeling strength when the carrier foil is peeled off from the copper foil layer after heating can be stably reduced to 200 gf / cm or less, preferably 50 gf / cm or less without variation within the lot.
  • an electrolytic copper foil having a tensile strength of less than 40 kgf / mm 2 after performing a heat treatment at 250 ° C. for 60 minutes is used as the carrier foil, the connecting portion is formed depending on the lot, and the copper is heated after heating.
  • the peeling strength when peeling the carrier foil from the foil layer may exceed 200 gf / cm.
  • a copper foil layer may be torn and it may remain on the surface of carrier foil. For these reasons, it is not preferable to use an electrolytic copper foil having a tensile strength of less than 40 kgf / mm 2 as the carrier foil after the heat treatment under the above heating conditions because the peeling work may be difficult. .
  • the carrier foil according to the present application only needs to have the tensile strength after heating under the above heating conditions in the above specific range, and the tensile strength before heating of the carrier foil is not particularly limited.
  • an electrolytic copper foil coated with a metal component such as zinc or tin can be used before heating. If an electrolytic copper foil coated with a metal component such as zinc or tin is heated at about 250 to 400 ° C., the coated metal component diffuses into the electrolytic copper foil, and crystal growth of the carrier foil in the heating process is inhibited. The mechanical strength before heating can be maintained. Therefore, such an electrolytic copper foil is also suitable as a carrier foil for a copper foil with a carrier foil according to the present application.
  • the said electrolytic copper foil is "the average crystal grain diameter after performing a heat processing for 250 degreeC x 60 minutes is less than 1.0 micrometer.”
  • the crystal structure of the electrolytic copper foil There is a certain correlation between the crystal structure of the electrolytic copper foil and the tensile strength. When the crystal grains constituting the crystal structure are fine, the tensile strength of the electrolytic copper foil shows a relatively high value.
  • An electrolytic copper foil composed of fine crystal grains having an average crystal grain size of less than 1.0 ⁇ m generally exhibits a high tensile strength of 40 kgf / mm 2 or more.
  • the average crystal grain size in the present application is determined by EBSD analysis of image data representing the crystal state of the cross section of the electrolytic copper foil according to the EBSD method. In addition, an example of a specific measuring method is demonstrated in an Example.
  • the copper foil with carrier foil according to the present application preferably includes a connecting portion for connecting the carrier foil and the copper foil layer in the bonding interface layer, and the maximum connecting portion diameter is preferably 200 nm or less. If there is a portion where the maximum connecting portion diameter exceeds 200 nm, it may be difficult to peel off the carrier foil at that portion, and if the carrier foil is forcibly peeled off, the connecting portion exceeding 200 nm may cause a copper foil. There is a higher tendency for the layers to tear and remain on the surface of the carrier foil.
  • the connecting portion means that when the copper is diffused between the carrier foil and the copper foil layer when heated under the above heating conditions, the bonding interface. The interdiffusion site
  • the copper foil with carrier foil according to the present application is present in the bonding interface layer corresponding to 2000 nm when the direction perpendicular to the thickness direction of the copper foil with carrier foil is the length direction as described above. It is preferable that the total length of the connecting portions to be performed is 500 nm or less. In addition, the total length of this connection part is corresponded to the total length of each connection part diameter of each connection part which exists in the joining interface layer of the width
  • the copper foil with carrier foil which concerns on this application is the said junction interface equivalent to length 2000nm in the cross section of the said junction interface layer after performing the heat processing for 250 degreeC x 60 minutes to the said copper foil with carrier foil.
  • the average connection part diameter which exists in a layer is 50 nm or less. If the average connecting portion diameter exceeds 50 nm, the peeling strength when peeling the carrier foil from the copper foil layer may exceed 200 gf / cm, and the copper foil layer may be broken and remain on the surface of the carrier foil. This is not preferable.
  • what is indicated by reference numeral 5 in FIG. 3 is a “connecting portion” formed by diffusion of copper that occurs between the carrier foil 2 and the copper foil layer 3 by heating.
  • R2, R3, R4, R5, R6 is the “connecting portion diameter”.
  • the “average connecting portion diameter” in the case of FIG. 3 is a value obtained by dividing the sum of the six connecting portion diameters R1, R2, R3, R4, R5, and R6 by 6.
  • the bonding interface layer of the copper foil with carrier foil according to the present application described above preferably has a thickness of 5 nm to 60 nm. If the thickness of the bonding interface layer is less than 5 nm, the distance between the carrier foil and the copper foil layer becomes too close, and copper diffusion occurring between the carrier foil and the copper foil layer becomes easy. On the other hand, when the thickness of the bonding interface layer exceeds 60 nm, it is not preferable because the carrier foil becomes unstable to hold the copper foil layer.
  • the bonding interface layer is more preferably 5 nm to 30 nm in thickness.
  • the bonding interface layer has a thickness of 30 nm or less, variations in the thickness of the bonding interface layer are reduced, and the distribution of the connecting portions formed in the bonding interface by heating becomes extremely uniform. This is because the peeling strength at the time of peeling is stabilized.
  • the bonding interface layer of the copper foil with carrier foil according to the present application includes an “organic bonding interface layer” formed using an organic component and an “inorganic bonding interface layer” formed using an inorganic component.
  • an organic component containing at least one compound selected from the group consisting of nitrogen-containing organic compounds, sulfur-containing organic compounds and carboxylic acids should be used.
  • the nitrogen-containing organic compound here includes a nitrogen-containing organic compound having a substituent.
  • examples of the nitrogen-containing organic compound include 1,2,3-benzotriazole, carboxybenzotriazole, N ′, N′-bis (benzotriazolylmethyl) urea, which are triazole compounds having a substituent, and 1H. It is preferable to use -1,2,4-triazole, 3-amino-1H-1,2,4-triazole and the like.
  • the sulfur-containing organic compound it is preferable to use mercaptobenzothiazole, thiocyanuric acid, 2-benzimidazolethiol, or the like.
  • carboxylic acid monocarboxylic acid is preferably used, and oleic acid, linoleic acid, linolenic acid, and the like are particularly preferable. This is because these organic components are excellent in heat resistance at high temperatures, and it is easy to form a bonding interface layer having a thickness of 5 nm to 60 nm on the surface of the carrier foil.
  • inorganic bonding interface layer when adopting “inorganic bonding interface layer”, it is selected from the group consisting of Ni, Mo, Co, Cr, Fe, Ti, W, P as an inorganic component, or an alloy or compound mainly composed of these. It is possible to use at least one or more of them.
  • These inorganic bonding interface layers can be formed by using a known method such as a wet film formation method such as an electrolytic plating method or an electroless plating method, or a dry film formation method such as a sputtering method or a vapor deposition method. is there.
  • the copper foil with carrier foil according to the present application described above has a layer structure of carrier foil / bonding interface layer / copper foil layer.
  • the copper foil with carrier foil according to the present application is provided with a heat-resistant metal layer between the carrier foil and the copper foil layer in order to suppress copper diffusion due to heating. It is preferable.
  • the copper foil with carrier foil includes “carrier foil / bonding interface layer / heat-resistant metal layer / copper foil layer”, “carrier foil / heat-resistant metal layer / bonding interface layer / copper foil layer”, etc. It is preferable to have the layer configuration of
  • This heat-resistant metal layer is made of nickel, nickel-phosphorus, nickel-chromium, nickel-molybdenum, nickel-molybdenum-cobalt, nickel-cobalt, nickel-tungsten, nickel-tin-phosphorus in consideration of heat stability.
  • a nickel alloy such as cobalt, cobalt-phosphorus, cobalt-molybdenum, cobalt-tungsten, cobalt-copper, cobalt-nickel-phosphorus, cobalt-tin-phosphorus, etc. preferable.
  • This heat-resistant metal layer can be formed using a known method such as a wet film formation method such as an electrolytic plating method or an electroless plating method, or a dry film formation method such as a sputtering method or a vapor deposition method.
  • the thickness of the refractory metal layer is preferably 1 nm to 50 nm.
  • the thickness of the carrier foil there is no particular limitation on the thickness of the carrier foil, and it is sufficient that the thickness is 9 ⁇ m to 200 ⁇ m that can function as the carrier foil. Also, the thickness of the copper foil layer is not particularly limited, but it can be considered as a thin copper foil that requires a carrier foil and a thickness of about 0.1 ⁇ m to 18 ⁇ m.
  • the copper foil with carrier foil described above uses “electrolytic copper foil with a tensile strength of 40 kgf / mm 2 or more after heat treatment at 250 ° C. for 60 minutes” as the carrier foil. What is necessary is just to provide the layer structure of an interface layer / copper foil layer, and it does not specifically limit about the copper foil which comprises a copper foil layer, There is no limitation also about the manufacturing method.
  • the copper foil layer may be a copper layer formed by an electroplating method or a wet film forming method such as an electroless plating method, or may be formed by a dry film forming method such as a sputtering method or an evaporation method.
  • a copper layer may be used, and these manufacturing methods may be used in combination, and the copper foil layer may be formed of a plurality of copper layers having different manufacturing methods.
  • a copper layer formed by a wet film forming method is preferable because the manufacturing cost is low compared to the dry film forming method.
  • the electrolytic copper foil has a crystal structure suitable for etching processing, and is suitable for use as a circuit forming layer such as a printed wiring board.
  • the copper foil with a carrier foil can be manufactured by, for example, the manufacturing method disclosed in Patent Document 1 described above. That is, the surface of the carrier foil is cleaned by pickling or the like, a bonding interface layer is formed on the surface of the cleaned carrier foil, a copper foil layer is formed on the bonding interface layer, and if necessary, the copper foil It can be produced by subjecting the surface of the layer to a roughening treatment, an antirust treatment, a silane coupling agent treatment and the like, followed by a drying treatment.
  • the copper foil with carrier foil according to the present application can be used when manufacturing a copper-clad laminate and a printed wiring board described later.
  • the said copper foil with a carrier foil can be used as a support substrate. Specifically, a build-up layer having the required number of layers is formed on the surface of the support substrate obtained by laminating the copper foil with carrier foil and the prepreg. Thereafter, the carrier foil and the copper foil layer are peeled off at the bonding interface layer of the copper foil with carrier foil, and the buildup layer is separated. By such a process, a coreless build-up multilayer printed wiring board can be obtained.
  • the copper foil with a carrier foil is used as a support substrate, even when heated at a temperature of 250 ° C. or higher when laminating an insulating layer on the copper foil with a carrier foil, as described above, The diffusion of copper into the layer is slow, and the formation of the connecting portion can be suppressed. For this reason, when peeling carrier foil and a copper foil layer, carrier foil can be peeled stably. Therefore, after forming the build-up layer, when the carrier foil and the copper foil layer are peeled off, problems such as the copper foil layer remaining on the carrier foil side do not occur, and the yield reduction can be suppressed.
  • the copper foil with a carrier foil according to the present application has high tensile strength of the carrier foil, so that it can satisfy the mechanical strength required for the support substrate and prevent warpage of the support substrate. Can be handled easily. Further, even if the thickness of the carrier foil of the copper foil with carrier foil is thin, the mechanical strength required for the support substrate can be satisfied, so that the thickness of the carrier foil is used to prevent warpage of the support substrate. It is not necessary to increase the thickness, and wasteful consumption of resources can be suppressed.
  • the copper-clad laminate according to the present application is a laminate of the copper foil with carrier foil and the insulating layer constituent material according to the present application, which is a rigid copper-clad laminate and a flexible copper-clad laminate. Including both. That is, there is no particular limitation on the type of insulating layer constituent material here. If the copper foil with carrier foil according to the present application is used, even when heated to a temperature of 250 ° C. or higher when laminated to the insulating layer constituting material, the connecting portion is difficult to be formed as described above. Can be peeled off. In addition, even if the thickness of the carrier foil is thin, it has sufficient mechanical strength, so when handling the copper-clad laminate, the copper-clad laminate is less likely to be warped and handling becomes easy. .
  • the printed wiring board according to the present application was obtained using the copper foil with carrier foil according to the present application described above. Both the rigid type printed wiring board and the flexible type printed wiring board Including.
  • the printed wiring board according to the present application includes all printed wiring boards such as a single-sided printed wiring board, a double-sided printed wiring board, and a multilayer printed wiring board.
  • a bonding interface layer was formed on the surface of the carrier foil as follows.
  • the carrier foil is immersed for 30 seconds in an organic agent-containing dilute sulfuric acid aqueous solution of sulfuric acid 150 g / L, copper concentration 10 g / L, carboxybenzotriazole (CBTA) concentration 800 mg / L, and liquid temperature 30 ° C. While pickling and removing, CBTA was adsorbed on the surface of the carrier foil, and a bonding interface layer made of CBTA was formed on the surface of the carrier foil to obtain a “carrier foil having a bonding interface layer”.
  • the “carrier foil having a bonding interface layer” is cathodically polarized, and a copper foil layer is formed on the surface of the bonding interface layer to obtain a copper foil with a carrier foil. It was.
  • the copper foil layer is formed by electrolysis at a current density of 30 A / dm 2 using a copper sulfate solution having a copper concentration of 70 g / L, a free sulfuric acid concentration of 150 g / L, and a liquid temperature of 45 ° C., and a thickness of 3 ⁇ m. Formed.
  • Zinc-nickel alloy rust preventive layer is formed on the surface of the copper foil layer of the copper foil with carrier foil obtained above without roughening, electrolytic chromate treatment, amino system A silane coupling agent treatment was performed to obtain a surface-treated copper foil with a carrier foil.
  • Average crystal grain measurement For measuring the crystal grain diameter of the carrier foil, an FE gun type scanning electron microscope (SUPRA 55VP, manufactured by Carl Zeiss Co., Ltd.) equipped with an EBSD evaluation device (OIM Analysis, manufactured by TSL Solutions Co., Ltd.) ) And the attached EBSD analyzer. Using this apparatus, image data of the crystal state of the cross section of the copper foil was obtained according to the EBSD method for the sample that was appropriately cross-section processed, and this image data was obtained from the EBSD analysis program (OIM Analysis, Inc. The average crystal grain size was quantified in the analysis menu of TSL Solutions. In this evaluation, an orientation difference of 5 ° or more was regarded as a crystal grain boundary. The conditions of the scanning electron microscope during observation were as follows: acceleration voltage: 20 kV, aperture diameter: 60 mm, high current mode, sample angle: 70 °. The measurement results are summarized in Table 1.
  • the peel strength of the carrier foil after normal heating and heating was measured according to IPC-TM-650.
  • a plate-shaped test piece prepared by the following method was used. First, an insulating resin layer constituent material was bonded to the surface of the copper foil layer of the copper foil with carrier foil described above using an adhesive to prepare a copper clad laminate. At this time, a cured prepreg having a thickness of 100 ⁇ m was used as the insulating layer constituent material. And the carrier foil in the surface of this copper clad laminated board was cut, and the plate-shaped test piece of width 10mm x length 10cm was produced.
  • Example 2 differs from Example 1 only in that a step of “formation of a refractory metal layer” is provided between “formation of a bonding interface layer” and “formation of a copper foil layer”. Therefore, only “formation of the refractory metal layer” will be described.
  • a nickel layer was formed as a heat-resistant metal layer on the surface of the bonding interface layer.
  • This heat-resistant metal layer is formed by using nickel sulfate (NiSO 4 .6H 2 O) 330 g / L, nickel chloride (NiCl 2 .6H 2 O) 45 g / L, boric acid 35 g / L, and liquid temperature 45. Electrolysis was performed at a current density of 2.5 A / dm 2 using a Watt bath at 0 ° C. and a pH of 3 to form a nickel layer having a converted thickness of 10 nm.
  • Example 1 a copper foil layer is formed on the surface where the heat resistant metal layer and the bonding interface layer of the “carrier foil including the heat resistant metal layer and the bonding interface layer” are present, and the surface of the copper foil layer is the surface.
  • the copper foil with carrier foil was obtained by processing.
  • a cross-sectional observation photograph of the electrolytic copper foil with carrier foil obtained in Example 2 is shown in FIG.
  • Example 3 is different from Example 1 only in the carrier foil. Therefore, only the manufacture of a carrier foil different from that in Example 1 will be described.
  • carrier foil sulfuric acid system having a copper concentration of 80 g / L, a free sulfuric acid concentration of 140 g / L, a chlorine concentration of 0.25 mg / L, an iodine concentration of 5.0 mg / L using potassium iodide (KI), and a solution temperature of 50 ° C. Electrolysis was performed using a copper electrolyte at a current density of 75 A / dm 2 to produce an electrolytic copper foil having a thickness of 18 ⁇ m, which was used as a carrier foil. Tensile strength of normal electrodeposited copper foil in this case the tensile strength after the heat treatment of 48.7kgf / mm 2, 250 °C ⁇ 60 minutes was 45.0kgf / mm 2.
  • Example 4 is different from Example 1 only in the carrier foil. Therefore, only the manufacture of a carrier foil different from that in Example 1 will be described.
  • Example 5 is different from Example 1 only in the carrier foil. Therefore, only the manufacture of a carrier foil different from that in Example 1 will be described.
  • Example 5 an acidic copper electrolyte with a copper concentration of 80 g / L, a sulfuric acid concentration of 140 g / L, a molecular weight of 10000 polyethyleneimine, a chlorine concentration of 1.0 mg / L, and a liquid temperature of 50 ° C. Then, electrolysis was performed at a current density of 70 A / dm 2 to produce an electrolytic copper foil having a thickness of 18 ⁇ m, which was used as a carrier foil. The normal tensile strength of the electrolytic copper foil at this time was 79.0 kgf / mm 2 , and the tensile strength after the heat treatment at 250 ° C. for 60 minutes was 55.4 kgf / mm 2 .
  • the tensile strength after carrying out the heat treatment at a normal tensile strength of 40.3 kgf / mm 2 and 250 ° C. ⁇ 60 minutes is An electrolytic copper foil of 35.0 kgf / mm 2 was used as a carrier foil.
  • a copper foil with a carrier foil as a comparative example was obtained in the same manner as in Example 2.
  • the average crystal grain of the carrier foil, the peeling strength of the carrier foil, and the diameter of the connecting portion were measured in the same manner as in the examples. The measurement results are summarized in Table 1.
  • the cross-sectional observation photograph of the electrolytic copper foil with a carrier foil obtained by the comparative example is shown in FIG.
  • the carrier foil “electrolytic copper foil having a tensile strength of 40 kgf / mm 2 or more after being subjected to a heat treatment at 250 ° C. ⁇ 60 minutes” Is used.
  • the comparative example has only a tensile strength of 35.0 kgf / mm 2 after the heat treatment at 250 ° C. for 60 minutes.
  • the maximum connecting portion diameter is 200 nm or less among the connecting portions existing in the bonding interface layer”
  • the connection existing in the bonding interface layer corresponding to the length of 2000 nm. The total length of the part was 500 nm or less.
  • the maximum connecting part diameter exceeds 200 nm, and the total length of the connecting part also exceeds 500 nm. Therefore, it can be understood that the peeling strength and variation of the carrier foil of the comparative example are extremely high values as compared with the example. In the case of the peeling strength of the carrier foil of this comparative example level, since these variations occur, it may be difficult to peel off the carrier foil.
  • the copper foil with carrier foil according to the present application is capable of easily peeling the carrier foil from the electrolytic copper foil even when a temperature of 250 ° C. or higher is applied. It can be suitably used in the production of tension laminates. Since the peeling strength when peeling the carrier foil from the copper foil layer is stable at a low level, the carrier foil can be easily peeled off.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

In order to provide a copper foil having an attached carrier foil, whereby the carrier foil can be easily peeled off a copper foil layer even when used during copper-clad laminate production using temperatures of at least 250°C, a copper foil having an attached carrier foil is provided that comprises a layer structure including a carrier foil, a bonded interface layer, and a copper foil layer. The copper foil having the attached carrier foil is characterized by using as the carrier foil an electrolytic copper foil that, after heat treatment for 60 minutes at 250°C, has a tensile strength of at least 40 kgf/mm2.

Description

キャリア箔付銅箔及び銅張積層板Copper foil with carrier foil and copper clad laminate
 本件出願は、キャリア箔付銅箔に関する。特に、高温負荷を受けた後でも、キャリア箔を容易に引き剥がすことの可能なピーラブルタイプのキャリア箔付銅箔に関する。 This application relates to copper foil with carrier foil. In particular, the present invention relates to a peelable copper foil with a carrier foil that can be easily peeled off even after being subjected to a high temperature load.
 従来より、本件出願人は、ファインピッチ回路を備えるプリント配線板の製造原料として特許文献1等に開示のキャリア箔付銅箔を提案してきた。特許文献1に開示のキャリア箔付銅箔は、いわゆるピーラブルタイプのキャリア箔付銅箔であり、キャリア箔の表面上に、有機系剤を用いて形成した接合界面層を形成し、その接合界面層上に電解銅箔層を析出形成させたことを特徴としている。当該キャリア箔付銅箔によれば、接合界面層の剥離強度を低く維持し、しかも安定化させることができるため、プレス成形した後のキャリア箔の引き剥がし強度の不安定さを解消し、小さな力で安定したキャリア箔の引き剥がしをすることが可能になる。 Conventionally, the present applicant has proposed a copper foil with a carrier foil disclosed in Patent Document 1 or the like as a raw material for producing a printed wiring board having a fine pitch circuit. The copper foil with a carrier foil disclosed in Patent Document 1 is a copper foil with a so-called peelable carrier foil, and a bonding interface layer formed using an organic agent is formed on the surface of the carrier foil. It is characterized in that an electrolytic copper foil layer is deposited on the interface layer. According to the copper foil with the carrier foil, the peeling strength of the bonding interface layer can be kept low and stabilized, so that the instability of the peeling strength of the carrier foil after press molding is eliminated and small It is possible to peel off the carrier foil stably with force.
 しかしながら、近年、プリント配線板製造プロセスにおいて、キャリア箔付銅箔と絶縁層構成材との張り合わせる際のプレス温度が、より高くなる傾向にある。特に、300℃を超える温度が負荷される場合もある。このような場合には、特許文献1に開示のキャリア箔付銅箔では、高温負荷によりキャリア箔と電解銅箔の金属同士が相互に拡散することにより、キャリア箔と電解銅箔とが連結して、電解銅箔からキャリア箔を引き剥がせなくなる。 However, in recent years, in the printed wiring board manufacturing process, the press temperature at the time of bonding the copper foil with carrier foil and the insulating layer constituting material tends to be higher. In particular, a temperature exceeding 300 ° C. may be applied. In such a case, in the copper foil with a carrier foil disclosed in Patent Document 1, the carrier foil and the electrolytic copper foil are connected to each other by the mutual diffusion of the metal of the carrier foil and the electrolytic copper foil due to a high temperature load. Thus, the carrier foil cannot be peeled off from the electrolytic copper foil.
 そこで、本件出願人は、300℃を越える温度が負荷される場合にも、小さな力で安定したキャリア箔の引き剥がしをすることが可能なキャリア箔付銅箔として、特許文献2に記載のキャリア箔付銅箔を提案してきた。この特許文献2に開示のキャリア付銅箔は、チオシアヌル酸を用いて接合界面層を形成することにより、加熱前及び225~360℃の範囲での加熱後において、キャリア箔と電解銅箔との接合界面での引き剥がし強度が200gf/cm以下のレベルを実現している。当該キャリア箔付銅箔によれば、従来のピーラブルタイプのキャリア箔付銅箔に比べ極めて小さく、しかも安定したキャリア箔の除去が可能になる。 Therefore, the present applicant has disclosed the carrier described in Patent Document 2 as a copper foil with a carrier foil that can be peeled off with a small force even when a temperature exceeding 300 ° C. is applied. We have proposed copper foil with foil. The copper foil with a carrier disclosed in Patent Document 2 is formed by forming a bonding interface layer using thiocyanuric acid so that the carrier foil and the electrolytic copper foil are heated before heating and after heating in the range of 225 to 360 ° C. The peel strength at the bonding interface has achieved a level of 200 gf / cm or less. According to the copper foil with a carrier foil, the carrier foil is extremely small compared to the conventional copper foil with a peelable carrier foil, and the carrier foil can be removed stably.
 さらに、本件出願人は、特許文献3において、キャリア箔の表面に有機剤を用いて有機接合界面層を形成し、その有機接合界面層の上にニッケル、ニッケル合金、コバルト、コバルト合金のいずれかを用いた異種金属層を形成し、その異種金属層の上に電解銅箔層を備えるキャリア箔付銅箔の製造方法等を提案してきた。この製造方法により得られるキャリア箔付銅箔は、「キャリア箔/有機接合界面層/ニッケル、コバルト等の異種金属層/電解銅箔層」の層構成を備える。当該キャリア箔付銅箔は、異種金属層を備えることにより、300℃を超える温度が負荷される場合にキャリア箔と電解銅箔とが連結するのをより安定的に防止することができる。 Further, in the case of Patent Document 3, the present applicant forms an organic bonding interface layer using an organic agent on the surface of the carrier foil, and nickel, nickel alloy, cobalt, or cobalt alloy is formed on the organic bonding interface layer. A method for producing a copper foil with a carrier foil has been proposed in which a dissimilar metal layer is formed using a copper and an electrolytic copper foil layer is provided on the dissimilar metal layer. The copper foil with carrier foil obtained by this production method has a layer configuration of “carrier foil / organic bonding interface layer / dissimilar metal layer such as nickel and cobalt / electrolytic copper foil layer”. By providing the dissimilar metal layer, the carrier foil-attached copper foil can more stably prevent the carrier foil and the electrolytic copper foil from being connected when a temperature exceeding 300 ° C. is applied.
特開2000-309898号公報JP 2000-309898 A 特開2001-068804号公報JP 2001-068804 A 特開2003-328178号公報JP 2003-328178 A
 しかしながら、250℃以上の温度が負荷された場合には、特許文献2及び特許文献3に開示のキャリア箔付銅箔であっても、キャリア箔付銅箔のキャリア箔を電解銅箔から引き剥がす際の引き剥がし強さ(以下、単に「キャリア箔引き剥がし強さ」と称する。)に大きなロット内ばらつきが生じていた。そして、このようにキャリア箔付銅箔のキャリア箔引き剥がし強さが大きくなるときには、上述のようにキャリア箔と電解銅箔とが連結し、電解銅箔からキャリア箔を容易に引き剥がせなくなるという現象が確認できた。 However, when a temperature of 250 ° C. or higher is applied, the carrier foil of the copper foil with carrier foil is peeled off from the electrolytic copper foil even if the copper foil with carrier foil disclosed in Patent Document 2 and Patent Document 3 is used. There was a large in-lot variation in peeling strength (hereinafter simply referred to as “carrier foil peeling strength”). When the carrier foil peel strength of the copper foil with carrier foil is increased as described above, the carrier foil and the electrolytic copper foil are connected as described above, and the carrier foil cannot be easily peeled off from the electrolytic copper foil. I was able to confirm the phenomenon.
 この様子を示すのが図2である。この図2は、従来のキャリア箔付銅箔に対して、250℃×60分の加熱処理を行った後、その断面を観察したものである。この図2の下段の拡大した接合界面層の中には、高温負荷により形成された、比較的大きな相互拡散部位が確認できる。このときの様子を模式的に分かりやすく示したのが図3である。この図3の中には、キャリア箔2と銅箔3との間の接合界面層4を貫通して、高温負荷により形成された相互拡散部位(以下、単に「連結部5」と称する。)を示している。この連結部5が大きく、且つ、多くなると、銅箔からキャリア箔を容易に引き剥がせなくなることが判明してきた。 This is shown in FIG. FIG. 2 shows a cross-section of a conventional copper foil with a carrier foil after heat treatment at 250 ° C. for 60 minutes. A relatively large interdiffusion site formed by a high temperature load can be confirmed in the enlarged bonding interface layer in the lower stage of FIG. FIG. 3 schematically shows the situation at this time in an easy-to-understand manner. In FIG. 3, an interdiffusion site (hereinafter simply referred to as “connecting portion 5”) formed by high-temperature loading through the bonding interface layer 4 between the carrier foil 2 and the copper foil 3. Is shown. It has been found that if the connecting portion 5 is large and increases, the carrier foil cannot be easily peeled off from the copper foil.
 以上のことから、本件発明は、250℃以上の温度が負荷される銅張積層板製造に用いても、銅箔からキャリア箔を容易に引き剥がすことが可能であり、ロット内ばらつきの少ないキャリア箔付銅箔の提供を目的とする。 From the above, the present invention can easily peel off the carrier foil from the copper foil even when it is used for the production of a copper clad laminate in which a temperature of 250 ° C. or higher is loaded, and the carrier with less variation in the lot. The purpose is to provide copper foil with foil.
 そこで、本件発明者等の鋭意研究の結果、250℃以上の温度で加熱処理を行った後のキャリア箔付銅箔において、キャリア箔が以下に述べる一定の条件を備えることにより、キャリア箔と銅箔との間の接合界面層に連結部が形成されることが抑制され、銅箔からキャリア箔を容易に引き剥がすことが可能であることに想到した。以下、この技術思想について説明する。 Therefore, as a result of intensive studies by the present inventors, in the copper foil with carrier foil after the heat treatment at a temperature of 250 ° C. or higher, the carrier foil and the copper are provided with certain conditions described below. It was conceived that the formation of the connecting portion in the bonding interface layer with the foil was suppressed, and the carrier foil could be easily peeled off from the copper foil. Hereinafter, this technical idea will be described.
キャリア箔付銅箔: 本件出願に係るキャリア箔付銅箔は、キャリア箔/接合界面層/銅箔層の層構成を備え、当該キャリア箔として、250℃×60分の加熱処理を行った後に40kgf/mm以上の引張強さを備える電解銅箔を用いたことを特徴とする。 Copper foil with carrier foil: The copper foil with carrier foil according to the present application has a layer configuration of carrier foil / bonding interface layer / copper foil layer, and after performing heat treatment at 250 ° C. for 60 minutes as the carrier foil. An electrolytic copper foil having a tensile strength of 40 kgf / mm 2 or more is used.
銅張積層板: 本件出願に係る銅張積層板は、上述のキャリア箔付銅箔を用いて得られることを特徴とする。 Copper-clad laminate: The copper-clad laminate according to the present application is obtained by using the above-described copper foil with a carrier foil.
プリント配線板: 本件出願に係るプリント配線板は、上述のキャリア箔付銅箔を用いて得られることを特徴とする。 Printed wiring board: The printed wiring board according to the present application is obtained using the copper foil with carrier foil described above.
 本件出願に係るキャリア箔付銅箔は、250℃以上の温度が負荷されても、電解銅箔からキャリア箔を容易に引き剥がすことが可能であり、ロット内ばらつきを少なくすることができる。よって、250℃以上の温度が負荷される銅張積層板製造において好適に使用できる。 The copper foil with carrier foil according to the present application can easily peel off the carrier foil from the electrolytic copper foil even when a temperature of 250 ° C. or higher is applied, and can reduce lot-to-lot variations. Therefore, it can be suitably used in the production of a copper clad laminate in which a temperature of 250 ° C. or higher is loaded.
実施例2において、キャリア箔として「250℃×60分の加熱処理を行った後に40kgf/mm以上」の引張強さを備える電解銅箔を用いたキャリア箔付銅箔の250℃×60分の加熱処理を行った後の断面観察写真である。In Example 2, 250 ° C. × 60 minutes of a copper foil with a carrier foil using an electrolytic copper foil having a tensile strength of “40 kgf / mm 2 or more after performing a heat treatment at 250 ° C. for 60 minutes” as a carrier foil. It is a cross-sectional observation photograph after performing this heat processing. 比較例において、キャリア箔として「250℃×60分の加熱処理を行った後に40kgf/mm未満」の引張強さを備える電解銅箔を用いたキャリア箔付銅箔の250℃×60分の加熱処理を行った後の断面観察写真である。In a comparative example, 250 ° C. × 60 minutes of a copper foil with a carrier foil using an electrolytic copper foil having a tensile strength of “less than 40 kgf / mm 2 after performing a heat treatment at 250 ° C. × 60 minutes” as a carrier foil. It is a cross-sectional observation photograph after heat-processing. キャリア箔付銅箔に対して、250℃×60分の加熱処理を行った後に、所定の接合界面中に存在する連結部が6個の場合を想定した断面模式図である。It is a cross-sectional schematic diagram supposing the case where six connection parts exist in a predetermined joining interface, after performing heat processing with respect to copper foil with a carrier foil for 250 degreeC x 60 minutes.
 以下、本件出願に係る「キャリア箔付銅箔」及び「銅張積層板」の形態に関して説明する。 Hereinafter, the forms of “copper foil with carrier foil” and “copper-clad laminate” according to the present application will be described.
キャリア箔付銅箔の形態: 本件出願に係るキャリア箔付銅箔は、キャリア箔/接合界面層/銅箔層の層構成を備えている。そして、このキャリア箔として、250℃×60分の加熱処理を行った後に40kgf/mm以上の引張強さを備える電解銅箔を用いることを特徴としている。なお、「250℃×60分」という加熱条件は、プリント配線板用銅箔とプリプレグ等の絶縁層構成材とを積層して銅張積層板を製造する際に一般に採用される加熱条件に相当する。 Form of copper foil with carrier foil: The copper foil with carrier foil according to the present application has a layer configuration of carrier foil / bonding interface layer / copper foil layer. And as this carrier foil, after performing the heat processing for 250 degreeC x 60 minutes, the electrolytic copper foil provided with the tensile strength of 40 kgf / mm < 2 > or more is used. The heating condition of “250 ° C. × 60 minutes” corresponds to the heating condition generally employed when a copper clad laminate is manufactured by laminating a copper foil for printed wiring boards and an insulating layer constituent material such as a prepreg. To do.
 キャリア箔として「250℃×60分の加熱処理を行った後の引張強さが40kgf/mm以上」の電解銅箔を採用すれば、加熱工程におけるキャリア箔の結晶成長を阻害することにより加熱工程におけるキャリア箔側の銅の拡散を遅くすることができ、連結部が形成されるのを防止することができる。その結果、ロット内ばらつきなく加熱後に銅箔層からキャリア箔を引き剥がす際の引き剥がし強さが安定して200gf/cm以下となり、好ましくは50gf/cm以下に抑制することができる。一方、キャリア箔として、250℃×60分の加熱処理を行った後の引張強さが40kgf/mm未満の電解銅箔を用いると、ロットによっては、上記連結部が形成され、加熱後に銅箔層からキャリア箔を引き剥がす際の引き剥がし強さが200gf/cmを超える場合がある。また、連結部が形成された箇所においては、銅箔層が破れて、キャリア箔の表面に残留する場合もある。これらのことから、上記加熱条件で加熱処理を行った後の引張強さが40kgf/mm未満の電解銅箔をキャリア箔として用いることは、引き剥がし作業が困難になる場合があるため好ましくない。 If an electrolytic copper foil having a tensile strength of 40 kgf / mm 2 or more after being subjected to a heat treatment at 250 ° C. for 60 minutes is adopted as the carrier foil, heating is performed by inhibiting the crystal growth of the carrier foil in the heating process. The diffusion of copper on the carrier foil side in the process can be slowed, and the formation of a connecting portion can be prevented. As a result, the peeling strength when the carrier foil is peeled off from the copper foil layer after heating can be stably reduced to 200 gf / cm or less, preferably 50 gf / cm or less without variation within the lot. On the other hand, when an electrolytic copper foil having a tensile strength of less than 40 kgf / mm 2 after performing a heat treatment at 250 ° C. for 60 minutes is used as the carrier foil, the connecting portion is formed depending on the lot, and the copper is heated after heating. The peeling strength when peeling the carrier foil from the foil layer may exceed 200 gf / cm. Moreover, in the location in which the connection part was formed, a copper foil layer may be torn and it may remain on the surface of carrier foil. For these reasons, it is not preferable to use an electrolytic copper foil having a tensile strength of less than 40 kgf / mm 2 as the carrier foil after the heat treatment under the above heating conditions because the peeling work may be difficult. .
 本件出願に係るキャリア箔は、上記加熱条件での加熱後の引張り強さが上記特定の範囲にあればよく、当該キャリア箔の加熱前の引張り強さは特に限定されるものではない。当該キャリア箔として、加熱前の状態において、亜鉛やスズ等の金属成分により被覆された電解銅箔も使用可能である。亜鉛やスズ等の金属成分により被覆された電解銅箔を250~400℃程度で加熱すれば、被覆金属成分が電解銅箔内に拡散し、加熱工程におけるキャリア箔の結晶成長が阻害されるため、加熱前の機械的強度を維持することができる。従って、このような電解銅箔も本件出願に係るキャリア箔付銅箔のキャリア箔として好適である。 The carrier foil according to the present application only needs to have the tensile strength after heating under the above heating conditions in the above specific range, and the tensile strength before heating of the carrier foil is not particularly limited. As the carrier foil, an electrolytic copper foil coated with a metal component such as zinc or tin can be used before heating. If an electrolytic copper foil coated with a metal component such as zinc or tin is heated at about 250 to 400 ° C., the coated metal component diffuses into the electrolytic copper foil, and crystal growth of the carrier foil in the heating process is inhibited. The mechanical strength before heating can be maintained. Therefore, such an electrolytic copper foil is also suitable as a carrier foil for a copper foil with a carrier foil according to the present application.
 また、当該電解銅箔は、「250℃×60分の加熱処理を行った後の平均結晶粒径が1.0μm未満」であることが好ましい。電解銅箔の結晶組織と、引張り強さとの間には一定の相関関係があり、結晶組織を構成する結晶粒が微細であると、その電解銅箔の引張強さは比較的高い値を示す。平均結晶粒径が1.0μm未満という微細な結晶粒により構成される電解銅箔は、概ね40kgf/mm以上の高い引張強さを示す。なお、本件出願における平均結晶粒径とは、EBSD法に準じて、電解銅箔の断面の結晶状態を表す画像データをEBSD解析することにより行う。なお、具体的な測定方法の一例については、実施例の中で説明する。 Moreover, it is preferable that the said electrolytic copper foil is "the average crystal grain diameter after performing a heat processing for 250 degreeC x 60 minutes is less than 1.0 micrometer." There is a certain correlation between the crystal structure of the electrolytic copper foil and the tensile strength. When the crystal grains constituting the crystal structure are fine, the tensile strength of the electrolytic copper foil shows a relatively high value. . An electrolytic copper foil composed of fine crystal grains having an average crystal grain size of less than 1.0 μm generally exhibits a high tensile strength of 40 kgf / mm 2 or more. The average crystal grain size in the present application is determined by EBSD analysis of image data representing the crystal state of the cross section of the electrolytic copper foil according to the EBSD method. In addition, an example of a specific measuring method is demonstrated in an Example.
 本件出願に係るキャリア箔付銅箔は、当該接合界面層内にキャリア箔と銅箔層とを連結する連結部を備え、その最大連結部径が200nm以下であることが好ましい。この最大連結部径が200nmを超えた部位が存在すると、その部位でキャリア箔を引き剥がすことが困難になる場合があり、キャリア箔を無理に引き剥がすと、200nmを超えた連結部で銅箔層が破れて、キャリア箔の表面に残留する傾向が高くなる。但し、本件出願に係るキャリア箔付銅箔において連結部とは、上記加熱条件等により加熱された際に、キャリア箔と銅箔層との間で銅が相互に拡散することにより、当該接合界面層を貫通して、当該キャリア箔と当該銅箔層とを連結する相互拡散部位を示している。 The copper foil with carrier foil according to the present application preferably includes a connecting portion for connecting the carrier foil and the copper foil layer in the bonding interface layer, and the maximum connecting portion diameter is preferably 200 nm or less. If there is a portion where the maximum connecting portion diameter exceeds 200 nm, it may be difficult to peel off the carrier foil at that portion, and if the carrier foil is forcibly peeled off, the connecting portion exceeding 200 nm may cause a copper foil. There is a higher tendency for the layers to tear and remain on the surface of the carrier foil. However, in the copper foil with a carrier foil according to the present application, the connecting portion means that when the copper is diffused between the carrier foil and the copper foil layer when heated under the above heating conditions, the bonding interface. The interdiffusion site | part which penetrates the layer and connects the said carrier foil and the said copper foil layer is shown.
 また、本件出願に係るキャリア箔付銅箔は、上述のように当該キャリア箔付銅箔の厚さ方向に直行する方向を長さ方向としたときに、2000nmに相当する接合界面層内に存在する連結部のトータル長さが500nm以下であることが好ましい。なお、この連結部のトータル長さは、2000nmの幅の接合界面層内に存在する各連結部の各連結部径の合計長さに相当する。この連結部のトータル長さが500nmを超えると、加熱による相互拡散が過剰に起きていることになり、キャリア箔の引き剥がしが困難になる場合があり好ましくない。 The copper foil with carrier foil according to the present application is present in the bonding interface layer corresponding to 2000 nm when the direction perpendicular to the thickness direction of the copper foil with carrier foil is the length direction as described above. It is preferable that the total length of the connecting portions to be performed is 500 nm or less. In addition, the total length of this connection part is corresponded to the total length of each connection part diameter of each connection part which exists in the joining interface layer of the width | variety of 2000 nm. When the total length of the connecting portion exceeds 500 nm, mutual diffusion due to heating occurs excessively, and it may be difficult to peel off the carrier foil.
 そして、本件出願に係るキャリア箔付銅箔は、前記キャリア箔付銅箔に250℃×60分の加熱処理を行った後の当該接合界面層の断面において、長さ2000nmに相当する当該接合界面層内に存在する平均連結部径が50nm以下であることが好ましい。この平均連結部径が50nmを超えると、銅箔層からキャリア箔を引き剥がす際の引き剥がし強さが200gf/cmを超える場合があり、銅箔層が破れてキャリア箔の表面に残留するようになるため好ましくない。ここで、図3の符号5で示したのが、加熱によりキャリア箔2と銅箔層3との間で起きた銅の拡散により形成した「連結部」であり、図3に符号「R1,R2,R3,R4,R5,R6」で示したのが「連結部径」である。そして、図3の場合の「平均連結部径」とは、6つの連結部径R1,R2,R3,R4,R5,R6を足した和の値を、6で割った値となる。 And the copper foil with carrier foil which concerns on this application is the said junction interface equivalent to length 2000nm in the cross section of the said junction interface layer after performing the heat processing for 250 degreeC x 60 minutes to the said copper foil with carrier foil. It is preferable that the average connection part diameter which exists in a layer is 50 nm or less. If the average connecting portion diameter exceeds 50 nm, the peeling strength when peeling the carrier foil from the copper foil layer may exceed 200 gf / cm, and the copper foil layer may be broken and remain on the surface of the carrier foil. This is not preferable. Here, what is indicated by reference numeral 5 in FIG. 3 is a “connecting portion” formed by diffusion of copper that occurs between the carrier foil 2 and the copper foil layer 3 by heating. In FIG. What is indicated by “R2, R3, R4, R5, R6” is the “connecting portion diameter”. The “average connecting portion diameter” in the case of FIG. 3 is a value obtained by dividing the sum of the six connecting portion diameters R1, R2, R3, R4, R5, and R6 by 6.
 以上に述べてきた本件出願に係るキャリア箔付銅箔の前記接合界面層は、厚さ5nm~60nmであることが好ましい。この接合界面層が厚さ5nm未満になると、キャリア箔と銅箔層との距離が近くなり過ぎて、キャリア箔と銅箔層との間で起こる銅の拡散が容易になるため好ましくない。一方、接合界面層が厚さ60nmを超えると、キャリア箔が銅箔層を保持することが不安定になるため好ましくない。そして、当該接合界面層は、厚さ5nm~30nmであることが、より好ましい。当該接合界面層が厚さ30nm以下の場合、接合界面層の厚さのばらつきが少なくなり、加熱によって接合界面内に形成される連結部の分布が極めて均一になるため、銅箔層からキャリア箔を引き剥がす際の引き剥がし強さが安定するからである。 The bonding interface layer of the copper foil with carrier foil according to the present application described above preferably has a thickness of 5 nm to 60 nm. If the thickness of the bonding interface layer is less than 5 nm, the distance between the carrier foil and the copper foil layer becomes too close, and copper diffusion occurring between the carrier foil and the copper foil layer becomes easy. On the other hand, when the thickness of the bonding interface layer exceeds 60 nm, it is not preferable because the carrier foil becomes unstable to hold the copper foil layer. The bonding interface layer is more preferably 5 nm to 30 nm in thickness. When the bonding interface layer has a thickness of 30 nm or less, variations in the thickness of the bonding interface layer are reduced, and the distribution of the connecting portions formed in the bonding interface by heating becomes extremely uniform. This is because the peeling strength at the time of peeling is stabilized.
 本件出願に係るキャリア箔付銅箔の前記接合界面層は、有機成分を用いて形成する「有機系接合界面層」と、無機成分を用いて形成する「無機系接合界面層」とがある。 The bonding interface layer of the copper foil with carrier foil according to the present application includes an “organic bonding interface layer” formed using an organic component and an “inorganic bonding interface layer” formed using an inorganic component.
 そして、「有機系接合界面層」を採用する場合は、有機成分として、窒素含有有機化合物、硫黄含有有機化合物及びカルボン酸からなる群から選択される化合物の少なくとも一つ以上を含むものを用いることが好ましい。ここでいう窒素含有有機化合物には、置換基を有する窒素含有有機化合物を含んでいる。具体的には、窒素含有有機化合物としては、置換基を有するトリアゾール化合物である1,2,3-ベンゾトリアゾール、カルボキシベンゾトリアゾール、N’,N’-ビス(ベンゾトリアゾリルメチル)ユリア、1H-1,2,4-トリアゾール及び3-アミノ-1H-1,2,4-トリアゾール等を用いることが好ましい。そして、硫黄含有有機化合物としては、メルカプトベンゾチアゾール、チオシアヌル酸及び2-ベンズイミダゾールチオール等を用いることが好ましい。また、カルボン酸としては、モノカルボン酸を用いることが好ましく、中でもオレイン酸、リノール酸及びリノレイン酸等を用いることが好ましい。これらの有機成分は、高温耐熱性に優れ、キャリア箔の表面に厚さ5nm~60nmの接合界面層を形成することが容易だからである。 And when employing the “organic bonding interface layer”, an organic component containing at least one compound selected from the group consisting of nitrogen-containing organic compounds, sulfur-containing organic compounds and carboxylic acids should be used. Is preferred. The nitrogen-containing organic compound here includes a nitrogen-containing organic compound having a substituent. Specifically, examples of the nitrogen-containing organic compound include 1,2,3-benzotriazole, carboxybenzotriazole, N ′, N′-bis (benzotriazolylmethyl) urea, which are triazole compounds having a substituent, and 1H. It is preferable to use -1,2,4-triazole, 3-amino-1H-1,2,4-triazole and the like. As the sulfur-containing organic compound, it is preferable to use mercaptobenzothiazole, thiocyanuric acid, 2-benzimidazolethiol, or the like. As the carboxylic acid, monocarboxylic acid is preferably used, and oleic acid, linoleic acid, linolenic acid, and the like are particularly preferable. This is because these organic components are excellent in heat resistance at high temperatures, and it is easy to form a bonding interface layer having a thickness of 5 nm to 60 nm on the surface of the carrier foil.
 そして、「無機系接合界面層」を採用する場合には、無機成分としてNi、Mo、Co、Cr、Fe、Ti、W、P又は、これらを主成分とする合金又は化合物からなる群から選択される少なくとも一種以上を用いることが可能である。これらの無機系接合界面層の場合、電解めっき法、無電解めっき法等の湿式成膜法やスパッタ法、蒸着法等の乾式成膜法等の公知の手法を用いて形成することが可能である。 And, when adopting “inorganic bonding interface layer”, it is selected from the group consisting of Ni, Mo, Co, Cr, Fe, Ti, W, P as an inorganic component, or an alloy or compound mainly composed of these. It is possible to use at least one or more of them. These inorganic bonding interface layers can be formed by using a known method such as a wet film formation method such as an electrolytic plating method or an electroless plating method, or a dry film formation method such as a sputtering method or a vapor deposition method. is there.
 以上に述べてきた本件出願に係るキャリア箔付銅箔は、キャリア箔/接合界面層/銅箔層の層構成を備える。加熱後に銅箔層からキャリア箔を安定して引き剥がし可能とするには、上述のとおり、接合界面層を介してキャリア箔と銅箔層との間における銅の拡散を抑制する必要がある。この銅の拡散挙動をより効果的に抑制するため、本件出願に係るキャリア箔付銅箔は、キャリア箔と銅箔層との間に、加熱による銅の拡散を抑制するため耐熱金属層を設けることが好ましい。具体的には、本件出願に係るキャリア箔付銅箔は、「キャリア箔/接合界面層/耐熱金属層/銅箔層」、「キャリア箔/耐熱金属層/接合界面層/銅箔層」等の層構成を備えることが好ましい。 The copper foil with carrier foil according to the present application described above has a layer structure of carrier foil / bonding interface layer / copper foil layer. In order to stably peel off the carrier foil from the copper foil layer after heating, it is necessary to suppress the diffusion of copper between the carrier foil and the copper foil layer via the bonding interface layer as described above. In order to more effectively suppress the copper diffusion behavior, the copper foil with carrier foil according to the present application is provided with a heat-resistant metal layer between the carrier foil and the copper foil layer in order to suppress copper diffusion due to heating. It is preferable. Specifically, the copper foil with carrier foil according to the present application includes “carrier foil / bonding interface layer / heat-resistant metal layer / copper foil layer”, “carrier foil / heat-resistant metal layer / bonding interface layer / copper foil layer”, etc. It is preferable to have the layer configuration of
 そして、この耐熱金属層は、耐熱安定性を考慮して、ニッケルや、ニッケル-燐、ニッケル-クロム、ニッケル-モリブデン、ニッケル-モリブデン-コバルト、ニッケル-コバルト、ニッケル-タングステン、ニッケル-錫-燐等のニッケル合金、コバルト、コバルト-燐、コバルト-モリブデン、コバルト-タングステン、コバルト-銅、コバルト-ニッケル-燐、コバルト-錫-燐等のコバルト合金のいずれかで構成されたものを用いることが好ましい。この耐熱金属層は、電解めっき法、無電解めっき法等の湿式成膜法やスパッタ法、蒸着法等の乾式成膜法等の公知の手法を用いて形成することが可能である。そして、耐熱金属層の厚さは、1nm~50nmとすることが好ましい。 This heat-resistant metal layer is made of nickel, nickel-phosphorus, nickel-chromium, nickel-molybdenum, nickel-molybdenum-cobalt, nickel-cobalt, nickel-tungsten, nickel-tin-phosphorus in consideration of heat stability. A nickel alloy such as cobalt, cobalt-phosphorus, cobalt-molybdenum, cobalt-tungsten, cobalt-copper, cobalt-nickel-phosphorus, cobalt-tin-phosphorus, etc. preferable. This heat-resistant metal layer can be formed using a known method such as a wet film formation method such as an electrolytic plating method or an electroless plating method, or a dry film formation method such as a sputtering method or a vapor deposition method. The thickness of the refractory metal layer is preferably 1 nm to 50 nm.
 なお、本件出願に係るキャリア箔付銅箔において、キャリア箔の厚さに関して、特段の限定は無く、キャリア箔としての機能可能な9μm~200μmの厚さと考えれば足りる。また、銅箔層の厚さに関しても、特段の限定は無いが、キャリア箔を必要とする薄い銅箔と考え、0.1μm~18μm程度の厚さと考えればよい。 In the copper foil with carrier foil according to the present application, there is no particular limitation on the thickness of the carrier foil, and it is sufficient that the thickness is 9 μm to 200 μm that can function as the carrier foil. Also, the thickness of the copper foil layer is not particularly limited, but it can be considered as a thin copper foil that requires a carrier foil and a thickness of about 0.1 μm to 18 μm.
 以上に述べてきたキャリア箔付銅箔は、キャリア箔として「250℃×60分の加熱処理を行った後に40kgf/mm以上の引張強さを備える電解銅箔」を用い、キャリア箔/接合界面層/銅箔層の層構成を備えればよく、銅箔層を構成する銅箔については特に限定されるものではなく、その製法についても限定はない。例えば、銅箔層は、電解めっき法、或いは、無電解めっき法等の湿式成膜法により形成された銅層であってもよいし、スパッタ法、蒸着法等の乾式成膜法により形成された銅層であってもよく、これらの製法を適宜併用して、銅箔層を製法の異なる複数の銅層により形成してもよい。しかしながら、乾式成膜法と比較すると製造コストが安価であることなどから、湿式成膜法により形成された銅層であることが好ましい。また、無電解めっき法と比較すると、所定の厚みの銅層を工業的製造速度に見合った速さで成膜することができるという観点から、電解めっき法により形成した電解銅箔層であることが好ましい。電解銅箔は、その結晶組織がエッチング加工に適したものとなり、プリント配線板等の回路形成層として用いるのに適している。銅箔層を電解めっき法により成膜する場合、本件出願に係るキャリア箔付銅箔は、例えば、上述の特許文献1に開示した製造方法で製造できる。即ち、キャリア箔表面を酸洗処理等で清浄化し、清浄化したキャリア箔の表面に接合界面層を形成し、その接合界面層の上に銅箔層を形成し、必要に応じて当該銅箔層の表面に粗化処理、防錆処理、シランカップリング剤処理等を施して、乾燥処理して製造することができる。 The copper foil with carrier foil described above uses “electrolytic copper foil with a tensile strength of 40 kgf / mm 2 or more after heat treatment at 250 ° C. for 60 minutes” as the carrier foil. What is necessary is just to provide the layer structure of an interface layer / copper foil layer, and it does not specifically limit about the copper foil which comprises a copper foil layer, There is no limitation also about the manufacturing method. For example, the copper foil layer may be a copper layer formed by an electroplating method or a wet film forming method such as an electroless plating method, or may be formed by a dry film forming method such as a sputtering method or an evaporation method. A copper layer may be used, and these manufacturing methods may be used in combination, and the copper foil layer may be formed of a plurality of copper layers having different manufacturing methods. However, a copper layer formed by a wet film forming method is preferable because the manufacturing cost is low compared to the dry film forming method. In addition, compared to the electroless plating method, it is an electrolytic copper foil layer formed by an electrolytic plating method from the viewpoint that a copper layer having a predetermined thickness can be formed at a rate commensurate with the industrial production rate. Is preferred. The electrolytic copper foil has a crystal structure suitable for etching processing, and is suitable for use as a circuit forming layer such as a printed wiring board. When forming a copper foil layer by an electrolytic plating method, the copper foil with a carrier foil according to the present application can be manufactured by, for example, the manufacturing method disclosed in Patent Document 1 described above. That is, the surface of the carrier foil is cleaned by pickling or the like, a bonding interface layer is formed on the surface of the cleaned carrier foil, a copper foil layer is formed on the bonding interface layer, and if necessary, the copper foil It can be produced by subjecting the surface of the layer to a roughening treatment, an antirust treatment, a silane coupling agent treatment and the like, followed by a drying treatment.
 本件出願に係るキャリア箔付銅箔は、後述する銅張積層板、プリント配線板を製造する際に用いることができる。また、コアレスビルドアップ多層プリント配線板を製造する際に、当該キャリア箔付銅箔を支持基板として用いることができる。具体的には、当該キャリア箔付銅箔とプリプレグ等とを積層した支持基板の表面に、ビルドアップ法により必要な層数のビルドアップ層を形成する。その後、当該キャリア箔付銅箔の接合界面層でキャリア箔と銅箔層とを剥離して、ビルドアップ層を分離する。このような工程により、コアレスビルドアップ多層プリント配線板を得ることができる。当該キャリア箔付銅箔を支持基板として用いれば、当該キャリア箔付銅箔上に絶縁層を積層する際等に、250℃以上の温度で加熱されても、上述したとおり、キャリア箔から銅箔層への銅の拡散が遅く、上記連結部が形成されるのを抑制することができる。このため、キャリア箔と銅箔層とを剥離する際に、キャリア箔を安定的に引き剥がすことができる。従って、ビルドアップ層を形成した後、キャリア箔と銅箔層とを剥離する際に銅箔層がキャリア箔側に残留する等の不具合が生じず、歩留まりの低下を抑制することができる。更に、本件出願に係るキャリア箔付銅箔は、上述したとおり、キャリア箔の引張強さが高いため、支持基板に要求される機械的強度を満足することができ、支持基板の反り等を防いでハンドリングを容易にすることができる。また、当該キャリア箔付銅箔のキャリア箔の厚さが薄くとも、支持基板に要求される機械的強度を満足することができるため、支持基板の反り等を防止するためにキャリア箔の厚さを厚くする必要がなく、資源の無駄な消費を抑制することができる。 The copper foil with carrier foil according to the present application can be used when manufacturing a copper-clad laminate and a printed wiring board described later. Moreover, when manufacturing a coreless buildup multilayer printed wiring board, the said copper foil with a carrier foil can be used as a support substrate. Specifically, a build-up layer having the required number of layers is formed on the surface of the support substrate obtained by laminating the copper foil with carrier foil and the prepreg. Thereafter, the carrier foil and the copper foil layer are peeled off at the bonding interface layer of the copper foil with carrier foil, and the buildup layer is separated. By such a process, a coreless build-up multilayer printed wiring board can be obtained. If the copper foil with a carrier foil is used as a support substrate, even when heated at a temperature of 250 ° C. or higher when laminating an insulating layer on the copper foil with a carrier foil, as described above, The diffusion of copper into the layer is slow, and the formation of the connecting portion can be suppressed. For this reason, when peeling carrier foil and a copper foil layer, carrier foil can be peeled stably. Therefore, after forming the build-up layer, when the carrier foil and the copper foil layer are peeled off, problems such as the copper foil layer remaining on the carrier foil side do not occur, and the yield reduction can be suppressed. Furthermore, as described above, the copper foil with a carrier foil according to the present application has high tensile strength of the carrier foil, so that it can satisfy the mechanical strength required for the support substrate and prevent warpage of the support substrate. Can be handled easily. Further, even if the thickness of the carrier foil of the copper foil with carrier foil is thin, the mechanical strength required for the support substrate can be satisfied, so that the thickness of the carrier foil is used to prevent warpage of the support substrate. It is not necessary to increase the thickness, and wasteful consumption of resources can be suppressed.
銅張積層板: 本件出願に係る銅張積層板は、上述の本件出願に係るキャリア箔付銅箔と絶縁層構成材とを張り合わせたものであり、リジッド銅張積層板、フレキシブル銅張積層板の双方を含む。即ち、ここでいう絶縁層構成材の種類に関しては、特段の限定は無い。本件出願に係るキャリア箔付銅箔を用いれば、絶縁層構成材に張り合わせる際に、250℃以上の温度で加熱されても、上述のとおり、連結部が形成されにくいため、キャリア箔を安定的に引き剥がすことができる。また、キャリア箔の厚さが薄くても、十分な機械的強度を有するため、当該銅張積層板をハンドリングする際に、銅張積層板が反り等の不具合が生じにくく、ハンドリングが容易になる。 Copper-clad laminate: The copper-clad laminate according to the present application is a laminate of the copper foil with carrier foil and the insulating layer constituent material according to the present application, which is a rigid copper-clad laminate and a flexible copper-clad laminate. Including both. That is, there is no particular limitation on the type of insulating layer constituent material here. If the copper foil with carrier foil according to the present application is used, even when heated to a temperature of 250 ° C. or higher when laminated to the insulating layer constituting material, the connecting portion is difficult to be formed as described above. Can be peeled off. In addition, even if the thickness of the carrier foil is thin, it has sufficient mechanical strength, so when handling the copper-clad laminate, the copper-clad laminate is less likely to be warped and handling becomes easy. .
プリント配線板: 本件出願に係るプリント配線板は、上述の本件出願に係るキャリア箔付銅箔を用いて得られたものであり、リジッドタイプのプリント配線板、フレキシブルタイプのプリント配線板の双方を含む。また、本件出願に係るプリント配線板は、片面プリント配線板、両面プリント配線板、多層プリント配線板等、全てのプリント配線板を含む。 Printed wiring board: The printed wiring board according to the present application was obtained using the copper foil with carrier foil according to the present application described above. Both the rigid type printed wiring board and the flexible type printed wiring board Including. The printed wiring board according to the present application includes all printed wiring boards such as a single-sided printed wiring board, a double-sided printed wiring board, and a multilayer printed wiring board.
キャリア箔の製造: 銅濃度80g/L、フリー硫酸濃度250g/L、塩素濃度2mg/L、ゼラチン濃度2mg/L、液温50℃の硫酸系銅電解液を用いて、電流密度60A/dmで電解し、厚さ18μmの電解銅箔を製造し、これをキャリア箔として用いた。このときの電解銅箔の常態の引張強さが43.8kgf/mm、250℃×60分の加熱処理を行った後の引張強さは42.2kgf/mmであった。なお、キャリア箔の常態および加熱後の引張強さの測定は、IPC-TM-650に準拠して行った。以下の実施例及び比較例において同様である。 Production of carrier foil: Current density 60 A / dm 2 using a sulfuric acid-based copper electrolyte having a copper concentration of 80 g / L, a free sulfuric acid concentration of 250 g / L, a chlorine concentration of 2 mg / L, a gelatin concentration of 2 mg / L, and a liquid temperature of 50 ° C. To produce an electrolytic copper foil having a thickness of 18 μm, which was used as a carrier foil. The normal tensile strength of the electrolytic copper foil at this time was 43.8 kgf / mm 2 , and the tensile strength after the heat treatment at 250 ° C. for 60 minutes was 42.2 kgf / mm 2 . The normal state of the carrier foil and the tensile strength after heating were measured according to IPC-TM-650. The same applies to the following examples and comparative examples.
接合界面層の形成: 上記キャリア箔の表面に接合界面層を次のようにして形成した。硫酸150g/L、銅濃度10g/L、カルボキシベンゾトリアゾール(CBTA)濃度800mg/L、液温30℃の有機剤含有希硫酸水溶液にキャリア箔を30秒間浸漬し、キャリア箔に付いた汚染成分を酸洗除去すると共に、キャリア箔の表面にCBTAを吸着させ、キャリア箔の表面にCBTAからなる接合界面層を形成し、「接合界面層を備えるキャリア箔」とした。 Formation of bonding interface layer: A bonding interface layer was formed on the surface of the carrier foil as follows. The carrier foil is immersed for 30 seconds in an organic agent-containing dilute sulfuric acid aqueous solution of sulfuric acid 150 g / L, copper concentration 10 g / L, carboxybenzotriazole (CBTA) concentration 800 mg / L, and liquid temperature 30 ° C. While pickling and removing, CBTA was adsorbed on the surface of the carrier foil, and a bonding interface layer made of CBTA was formed on the surface of the carrier foil to obtain a “carrier foil having a bonding interface layer”.
銅箔層の形成: 次に、銅電解液中で、「接合界面層を備えるキャリア箔」をカソード分極し、接合界面層の表面に、銅箔層を形成してキャリア箔付銅箔を得た。この銅箔層の形成は、銅濃度70g/L、フリー硫酸濃度150g/L、液温45℃の硫酸銅溶液を用いて、電流密度30A/dmで電解し、厚さ3μmの銅箔層を形成した。 Formation of the copper foil layer: Next, in the copper electrolyte, the “carrier foil having a bonding interface layer” is cathodically polarized, and a copper foil layer is formed on the surface of the bonding interface layer to obtain a copper foil with a carrier foil. It was. The copper foil layer is formed by electrolysis at a current density of 30 A / dm 2 using a copper sulfate solution having a copper concentration of 70 g / L, a free sulfuric acid concentration of 150 g / L, and a liquid temperature of 45 ° C., and a thickness of 3 μm. Formed.
銅箔層の表面処理: 上記で得られたキャリア箔付銅箔の銅箔層の表面に、粗化処理を施すことなく、亜鉛-ニッケル合金防錆層を形成し、電解クロメート処理、アミノ系シランカップリング剤処理を施し、表面処理したキャリア箔付銅箔を得た。 Surface treatment of copper foil layer: Zinc-nickel alloy rust preventive layer is formed on the surface of the copper foil layer of the copper foil with carrier foil obtained above without roughening, electrolytic chromate treatment, amino system A silane coupling agent treatment was performed to obtain a surface-treated copper foil with a carrier foil.
平均結晶粒の測定: キャリア箔の結晶粒径の測定には、EBSD評価装置(OIM Analysis、株式会社TSLソリューションズ製)を搭載したFE銃型の走査型電子顕微鏡(SUPRA 55VP、カールツァイス株式会社製)及び付属のEBSD解析装置を用いた。この装置を用いて、適切に断面加工された当該サンプルについて、EBSD法に準じて、銅箔の断面の結晶状態の画像データを得て、この画像データを、EBSD解析プログラム(OIM Analysis、株式会社TSLソリューションズ製)の分析メニューにて、平均結晶粒径の数値化を行った。本評価においては、方位差5°以上を、結晶粒界とみなした。また、観察時の走査型電子顕微鏡の条件は、加速電圧:20kV、アパーチャー径:60mm、High Current mode、試料角度:70°とした。この測定結果を表1に纏めて示す。 Average crystal grain measurement: For measuring the crystal grain diameter of the carrier foil, an FE gun type scanning electron microscope (SUPRA 55VP, manufactured by Carl Zeiss Co., Ltd.) equipped with an EBSD evaluation device (OIM Analysis, manufactured by TSL Solutions Co., Ltd.) ) And the attached EBSD analyzer. Using this apparatus, image data of the crystal state of the cross section of the copper foil was obtained according to the EBSD method for the sample that was appropriately cross-section processed, and this image data was obtained from the EBSD analysis program (OIM Analysis, Inc. The average crystal grain size was quantified in the analysis menu of TSL Solutions. In this evaluation, an orientation difference of 5 ° or more was regarded as a crystal grain boundary. The conditions of the scanning electron microscope during observation were as follows: acceleration voltage: 20 kV, aperture diameter: 60 mm, high current mode, sample angle: 70 °. The measurement results are summarized in Table 1.
引き剥がし強さの測定:常態及び加熱後のキャリア箔の引き剥がし強さを、IPC-TM-650に準拠して行った。測定の際には、次の方法で作製した板状試験片を用いた。まず、上述のキャリア箔付銅箔の銅箔層の表面に、接着剤を用いて絶縁樹脂層構成材を張り合わせて、銅張積層板を作製した。このとき、絶縁層構成材として、厚さ100μmの硬化したプリプレグを用いた。そして、この銅張積層板の表面にあるキャリア箔をカッティングして、幅10mm×長さ10cmの板状試験片を作製した。なお、常態引き剥がし強さ測定用の試料を作製する場合には、加熱処理前のキャリア箔付銅箔を用い、加熱後の引き剥がし強さ測定用の試料を作製する場合は、予め250℃×60分の加熱処理を行ったキャリア箔付銅箔を用いた。なお、加熱後のキャリア箔の引き剥がし強さに関しては、キャリア箔付銅箔の異なる5箇所から採取してそれぞれ測定を行い、5回の測定値の範囲を示した。この測定結果を表1に纏めて示す。 Measurement of peel strength: The peel strength of the carrier foil after normal heating and heating was measured according to IPC-TM-650. In the measurement, a plate-shaped test piece prepared by the following method was used. First, an insulating resin layer constituent material was bonded to the surface of the copper foil layer of the copper foil with carrier foil described above using an adhesive to prepare a copper clad laminate. At this time, a cured prepreg having a thickness of 100 μm was used as the insulating layer constituent material. And the carrier foil in the surface of this copper clad laminated board was cut, and the plate-shaped test piece of width 10mm x length 10cm was produced. When preparing a sample for measuring the normal peel strength, a copper foil with a carrier foil before heat treatment is used, and when preparing a sample for measuring the peel strength after heating, 250 ° C. in advance. A copper foil with a carrier foil subjected to a heat treatment of × 60 minutes was used. In addition, about the peeling strength of the carrier foil after a heating, it sampled from five different places of copper foil with carrier foil, each measured, and the range of the measured value of 5 times was shown. The measurement results are summarized in Table 1.
連結部径の測定:平均結晶粒の測定に用いた上記銅箔の断面の結晶状態の画像データに基づき、上記で得られたキャリア箔付銅箔に250℃×60分の加熱処理を行った後の接合界面層の断面において、図3に模式的に示した方法と同様にして、長さ2000nmに相当する接合界面層内に存在する連結部径を求め、平均連結部径、連結部のトータル長さ、最大連結部径を求めた。この測定結果を表1に纏めて示す。 Measurement of connecting part diameter: Based on the image data of the crystal state of the cross section of the copper foil used for the measurement of the average crystal grain, the copper foil with the carrier foil obtained above was subjected to a heat treatment at 250 ° C. for 60 minutes. In the cross section of the subsequent bonding interface layer, in the same manner as the method schematically shown in FIG. 3, the diameter of the connecting portion existing in the bonding interface layer corresponding to the length of 2000 nm is obtained. The total length and the maximum joint diameter were determined. The measurement results are summarized in Table 1.
 実施例2は、実施例1の「接合界面層の形成」と「銅箔層の形成」との間に、「耐熱金属層の形成」の工程を設けた点が異なるのみである。よって、「耐熱金属層の形成」に関してのみ述べる。 Example 2 differs from Example 1 only in that a step of “formation of a refractory metal layer” is provided between “formation of a bonding interface layer” and “formation of a copper foil layer”. Therefore, only “formation of the refractory metal layer” will be described.
耐熱金属層の形成: 次に、接合界面層の表面に耐熱金属層としてニッケル層を形成した。この耐熱金属層の形成は、ニッケル電解液として、硫酸ニッケル(NiSO・6HO)330g/L、塩化ニッケル(NiCl・6HO)45g/L、ホウ酸35g/L、液温45℃、pH3のワット浴を用い、電流密度2.5A/dmで電解し、換算厚さ10nmのニッケル層を形成した。 Formation of heat-resistant metal layer: Next, a nickel layer was formed as a heat-resistant metal layer on the surface of the bonding interface layer. This heat-resistant metal layer is formed by using nickel sulfate (NiSO 4 .6H 2 O) 330 g / L, nickel chloride (NiCl 2 .6H 2 O) 45 g / L, boric acid 35 g / L, and liquid temperature 45. Electrolysis was performed at a current density of 2.5 A / dm 2 using a Watt bath at 0 ° C. and a pH of 3 to form a nickel layer having a converted thickness of 10 nm.
 以下、実施例1と同様に、「耐熱金属層及び接合界面層を備えるキャリア箔」の耐熱金属層及び接合界面層が存在する表面に銅箔層を形成し、その銅箔層の表面に表面処理を施してキャリア箔付銅箔を得た。実施例2で得たキャリア箔付電解銅箔の断面観察写真を図1に示す。 Hereinafter, as in Example 1, a copper foil layer is formed on the surface where the heat resistant metal layer and the bonding interface layer of the “carrier foil including the heat resistant metal layer and the bonding interface layer” are present, and the surface of the copper foil layer is the surface. The copper foil with carrier foil was obtained by processing. A cross-sectional observation photograph of the electrolytic copper foil with carrier foil obtained in Example 2 is shown in FIG.
 実施例3は、実施例1とキャリア箔が異なるのみである。よって、実施例1と異なるキャリア箔の製造に関してのみ述べる。 Example 3 is different from Example 1 only in the carrier foil. Therefore, only the manufacture of a carrier foil different from that in Example 1 will be described.
キャリア箔の製造: 銅濃度80g/L、フリー硫酸濃度140g/L、塩素濃度0.25mg/L、ヨウ化カリウム(KI)を用いたヨウ素濃度5.0mg/L、溶液温度50℃の硫酸系銅電解液を用いて、電流密度75A/dmで電解し、厚さ18μmの電解銅箔を製造し、これをキャリア箔として用いた。このときの電解銅箔の常態の引張強さは48.7kgf/mm、250℃×60分の加熱処理を行った後の引張強さは45.0kgf/mmであった。 Production of carrier foil: sulfuric acid system having a copper concentration of 80 g / L, a free sulfuric acid concentration of 140 g / L, a chlorine concentration of 0.25 mg / L, an iodine concentration of 5.0 mg / L using potassium iodide (KI), and a solution temperature of 50 ° C. Electrolysis was performed using a copper electrolyte at a current density of 75 A / dm 2 to produce an electrolytic copper foil having a thickness of 18 μm, which was used as a carrier foil. Tensile strength of normal electrodeposited copper foil in this case the tensile strength after the heat treatment of 48.7kgf / mm 2, 250 ℃ × 60 minutes was 45.0kgf / mm 2.
 実施例4は、実施例1とキャリア箔が異なるのみである。よって、実施例1と異なるキャリア箔の製造に関してのみ述べる。 Example 4 is different from Example 1 only in the carrier foil. Therefore, only the manufacture of a carrier foil different from that in Example 1 will be described.
キャリア箔の製造: 銅濃度80g/L、硫酸濃度140g/L、分子量10000のポリエチレンイミン53mg/L、塩素濃度2.2mg/L、液温50℃の硫酸系銅電解液を用いて、電流密度70A/dmで電解し、厚さ18μmの電解銅箔を製造し、これをキャリア箔として用いた。このときの電解銅箔の常態の引張強さは62.2kgf/mm、250℃×60分の加熱処理を行った後の引張強さは48.1kgf/mmであった。 Production of carrier foil: Current density using a sulfuric acid-based copper electrolyte having a copper concentration of 80 g / L, a sulfuric acid concentration of 140 g / L, a molecular weight of polyethyleneimine of 53 mg / L, a chlorine concentration of 2.2 mg / L, and a liquid temperature of 50 ° C. Electrolysis was performed at 70 A / dm 2 to produce an electrolytic copper foil having a thickness of 18 μm, which was used as a carrier foil. The normal tensile strength of the electrolytic copper foil at this time was 62.2 kgf / mm 2 , and the tensile strength after the heat treatment at 250 ° C. for 60 minutes was 48.1 kgf / mm 2 .
 実施例5は、実施例1とキャリア箔が異なるのみである。よって、実施例1と異なるキャリア箔の製造に関してのみ述べる。 Example 5 is different from Example 1 only in the carrier foil. Therefore, only the manufacture of a carrier foil different from that in Example 1 will be described.
キャリア箔の製造: 実施例5では、銅濃度80g/L、硫酸濃度140g/L、分子量10000のポリエチレンイミン100mg/L、塩素濃度1.0mg/L、液温50℃の硫酸酸性銅電解液を用いて、電流密度70A/dmで電解し、厚さ18μmの電解銅箔を製造し、これをキャリア箔として用いた。このときの電解銅箔の常態の引張強さは79.0kgf/mm、250℃×60分の加熱処理を行った後の引張強さは55.4kgf/mmであった。 Production of carrier foil: In Example 5, an acidic copper electrolyte with a copper concentration of 80 g / L, a sulfuric acid concentration of 140 g / L, a molecular weight of 10000 polyethyleneimine, a chlorine concentration of 1.0 mg / L, and a liquid temperature of 50 ° C. Then, electrolysis was performed at a current density of 70 A / dm 2 to produce an electrolytic copper foil having a thickness of 18 μm, which was used as a carrier foil. The normal tensile strength of the electrolytic copper foil at this time was 79.0 kgf / mm 2 , and the tensile strength after the heat treatment at 250 ° C. for 60 minutes was 55.4 kgf / mm 2 .
比較例Comparative example
 比較例では、実施例1でキャリア箔として使用した電解銅箔に代えて、常態の引張強さが40.3kgf/mm、250℃×60分の加熱処理を行った後の引張強さが35.0kgf/mmの電解銅箔をキャリア箔として用いた。その他の工程に関しては、実施例2と同様にして、比較例としてのキャリア箔付銅箔を得た。そして、実施例と同様にャリア箔の平均結晶粒、キャリア箔の引き剥がし強さ、連結部径を測定した。各測定結果を、表1に纏めて示す。また、比較例で得たキャリア箔付電解銅箔の断面観察写真を図1に示す。 In the comparative example, instead of the electrolytic copper foil used as the carrier foil in Example 1, the tensile strength after carrying out the heat treatment at a normal tensile strength of 40.3 kgf / mm 2 and 250 ° C. × 60 minutes is An electrolytic copper foil of 35.0 kgf / mm 2 was used as a carrier foil. Regarding other processes, a copper foil with a carrier foil as a comparative example was obtained in the same manner as in Example 2. And the average crystal grain of the carrier foil, the peeling strength of the carrier foil, and the diameter of the connecting portion were measured in the same manner as in the examples. The measurement results are summarized in Table 1. Moreover, the cross-sectional observation photograph of the electrolytic copper foil with a carrier foil obtained by the comparative example is shown in FIG.
[実施例と比較例との対比]
Figure JPOXMLDOC01-appb-T000001
[Contrast between Example and Comparative Example]
Figure JPOXMLDOC01-appb-T000001
 この表1から理解できるように、実施例1~実施例5に関しては、キャリア箔として「250℃×60分の加熱処理を行った後に40kgf/mm以上の引張強さを備える電解銅箔」を用いている。これに対し、比較例は、250℃×60分の加熱処理を行った後に35.0kgf/mmの引張強さしか備えていない。その結果、実施例1~実施例5に関しては、「接合界面層中に存在する連結部の内、最大連結部径が200nm以下」、「長さ2000nmに相当する接合界面層中に存在する連結部のトータル長さが500nm以下」となった。ところが、比較例の場合、上記最大連結部径が200nmを超え、上記連結部のトータル長さも500nmを超えている。よって、比較例のキャリア箔の引き剥がし強さ及びばらつきが実施例に比べて極めて高い値になっていることが理解できる。この比較例レベルのキャリア箔の引き剥がし強さの場合、これらのばらつきが生じることからキャリア箔の引き剥がしが困難となる場合がある。 As can be understood from Table 1, with respect to Examples 1 to 5, as the carrier foil, “electrolytic copper foil having a tensile strength of 40 kgf / mm 2 or more after being subjected to a heat treatment at 250 ° C. × 60 minutes” Is used. On the other hand, the comparative example has only a tensile strength of 35.0 kgf / mm 2 after the heat treatment at 250 ° C. for 60 minutes. As a result, with respect to Examples 1 to 5, “the maximum connecting portion diameter is 200 nm or less among the connecting portions existing in the bonding interface layer”, “the connection existing in the bonding interface layer corresponding to the length of 2000 nm. The total length of the part was 500 nm or less. However, in the case of the comparative example, the maximum connecting part diameter exceeds 200 nm, and the total length of the connecting part also exceeds 500 nm. Therefore, it can be understood that the peeling strength and variation of the carrier foil of the comparative example are extremely high values as compared with the example. In the case of the peeling strength of the carrier foil of this comparative example level, since these variations occur, it may be difficult to peel off the carrier foil.
 本件出願に係るキャリア箔付銅箔は、250℃以上の温度が負荷されても、電解銅箔からキャリア箔を容易に引き剥がすことが可能であるから、250℃以上の温度が負荷される銅張積層板製造において好適に使用できる。銅箔層からキャリア箔を引き剥がす際の引き剥がし強さが低位で安定するため、キャリア箔の引き剥がし作業が容易に行える。 The copper foil with carrier foil according to the present application is capable of easily peeling the carrier foil from the electrolytic copper foil even when a temperature of 250 ° C. or higher is applied. It can be suitably used in the production of tension laminates. Since the peeling strength when peeling the carrier foil from the copper foil layer is stable at a low level, the carrier foil can be easily peeled off.
1 キャリア箔付銅箔
2 キャリア箔
3 銅箔層
4 接合界面層
5 連結部

 
DESCRIPTION OF SYMBOLS 1 Copper foil with carrier foil 2 Carrier foil 3 Copper foil layer 4 Bonding interface layer 5 Connection part

Claims (11)

  1. キャリア箔/接合界面層/銅箔層の層構成を備えるキャリア箔付銅箔であって、
     当該キャリア箔として、250℃×60分の加熱処理を行った後に40kgf/mm以上の引張強さを備える電解銅箔を用いたことを特徴とするキャリア箔付銅箔。
    A copper foil with a carrier foil comprising a layer configuration of carrier foil / bonding interface layer / copper foil layer,
    A copper foil with a carrier foil, characterized in that an electrolytic copper foil having a tensile strength of 40 kgf / mm 2 or more after heat treatment at 250 ° C. for 60 minutes is used as the carrier foil.
  2. 前記接合界面層内にキャリア箔と前記銅箔層とを連結する連結部を備え、その最大連結部径が200nm以下である請求項1に記載のキャリア箔付銅箔。 2. The copper foil with carrier foil according to claim 1, further comprising a connecting portion for connecting the carrier foil and the copper foil layer in the bonding interface layer, wherein the maximum connecting portion diameter is 200 nm or less.
  3. 当該キャリア箔付銅箔の厚さ方向に直行する方向を長さ方向としたときに、長さ2000nmに相当する接合界面層内に存在する連結部のトータル長さが500nm以下である請求項1又は請求項2に記載のキャリア箔付銅箔。 The total length of the connecting portions existing in the bonding interface layer corresponding to a length of 2000 nm is 500 nm or less, where the length direction is a direction perpendicular to the thickness direction of the copper foil with carrier foil. Or the copper foil with a carrier foil of Claim 2.
  4. 前記接合界面層は、厚さ5nm~60nmである請求項1~請求項3のいずれか一項に記載のキャリア箔付銅箔。 The copper foil with a carrier foil according to any one of claims 1 to 3, wherein the bonding interface layer has a thickness of 5 nm to 60 nm.
  5. 前記接合界面層は、有機成分を用いて形成したものである請求項1~請求項4のいずれか一項に記載のキャリア箔付銅箔。 The copper foil with a carrier foil according to any one of claims 1 to 4, wherein the bonding interface layer is formed using an organic component.
  6. 前記接合界面層の有機成分は、窒素含有化合物、硫黄含有化合物及びカルボン酸からなる群から選択される化合物の少なくとも一つ以上を含むものである請求項5に記載のキャリア箔付銅箔。 The copper foil with a carrier foil according to claim 5, wherein the organic component of the bonding interface layer includes at least one compound selected from the group consisting of a nitrogen-containing compound, a sulfur-containing compound, and a carboxylic acid.
  7. 前記接合界面層は、無機成分を用いて形成したものである請求項1~請求項4のいずれか一項に記載のキャリア箔付銅箔。 The copper foil with a carrier foil according to any one of claims 1 to 4, wherein the bonding interface layer is formed using an inorganic component.
  8. 前記接合界面層の無機成分は、Ni、Mo、Co、Cr、Fe、Ti、W、P又は、これらを主成分とする合金又は化合物からなる群から選択される少なくとも一種以上を含むものである請求項7に記載のキャリア箔付銅箔。 The inorganic component of the bonding interface layer includes at least one selected from the group consisting of Ni, Mo, Co, Cr, Fe, Ti, W, P, or an alloy or compound containing these as a main component. 8. Copper foil with carrier foil according to 7.
  9. キャリア箔付銅箔を構成する前記キャリア箔と前記銅箔層との間に耐熱金属層を備える請求項1~請求項8のいずれかに記載のキャリア箔付銅箔。 The copper foil with carrier foil according to any one of claims 1 to 8, further comprising a heat-resistant metal layer between the carrier foil and the copper foil layer constituting the copper foil with carrier foil.
  10. 請求項1~請求項9のいずれか一項に記載のキャリア箔付銅箔を用いて得られることを特徴とする銅張積層板。 A copper clad laminate obtained by using the copper foil with a carrier foil according to any one of claims 1 to 9.
  11. 請求項1~請求項9のいずれか一項に記載のキャリア箔付銅箔を用いて得られることを特徴とするプリント配線板。 A printed wiring board obtained by using the copper foil with a carrier foil according to any one of claims 1 to 9.
PCT/JP2014/080921 2013-11-27 2014-11-21 Copper foil with attached carrier foil and copper-clad laminate WO2015080052A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
MYPI2016701883A MY187285A (en) 2013-11-27 2014-11-21 Copper foil provided with carrier foil, copper clad laminate and printed wiring board
JP2015515308A JP6855164B2 (en) 2013-11-27 2014-11-21 Copper foil with carrier foil and copper-clad laminate
KR1020167013705A KR102272762B1 (en) 2013-11-27 2014-11-21 Copper foil with carrier foil, copper clad laminate and printed wiring board
CN201480063573.7A CN105745360B (en) 2013-11-27 2014-11-21 Copper foil, copper clad laminate and printed substrate with carrier foils
KR1020217009146A KR102356179B1 (en) 2013-11-27 2014-11-21 Copper foil with attached carrier foil, copper-clad laminate and printed wiring board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013245256 2013-11-27
JP2013-245256 2013-11-27

Publications (1)

Publication Number Publication Date
WO2015080052A1 true WO2015080052A1 (en) 2015-06-04

Family

ID=53198993

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080921 WO2015080052A1 (en) 2013-11-27 2014-11-21 Copper foil with attached carrier foil and copper-clad laminate

Country Status (6)

Country Link
JP (2) JP6855164B2 (en)
KR (2) KR102272762B1 (en)
CN (1) CN105745360B (en)
MY (1) MY187285A (en)
TW (1) TWI644995B (en)
WO (1) WO2015080052A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017114070A (en) * 2015-12-25 2017-06-29 三井金属鉱業株式会社 Carrier-fitted copper foil, laminated sheet for core-less supporting body, wiring layer-fitted core-less supporting body, and method for producing print circuit board
CN113684506A (en) * 2021-08-30 2021-11-23 广东嘉元科技股份有限公司 Foil producing machine with edge tearing online winding device
JP2023504808A (en) * 2019-11-27 2023-02-07 ワイエムティー カンパニー リミテッド METAL FOIL WITH CARRIER Foil, MANUFACTURING METHOD THEREOF, AND LAMINATE CONTAINED THEREOF
WO2023189566A1 (en) * 2022-03-29 2023-10-05 三井金属鉱業株式会社 Metal foil with carrier, metal-clad laminate, and printed wiring board
WO2023189565A1 (en) * 2022-03-29 2023-10-05 三井金属鉱業株式会社 Carrier-attached metal foil, metal-clad laminate, and printed wiring board

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107248591A (en) * 2017-06-14 2017-10-13 深圳先进技术研究院 Flexible all solid-state thin-film lithium battery and preparation method thereof
WO2020145003A1 (en) * 2019-01-11 2020-07-16 三井金属鉱業株式会社 Laminate body
US10697082B1 (en) * 2019-08-12 2020-06-30 Chang Chun Petrochemical Co., Ltd. Surface-treated copper foil

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001062955A (en) * 1999-08-24 2001-03-13 Mitsui Mining & Smelting Co Ltd Electrolytic copper foil with carrier foil and copper-clad laminate using the electrolytic copper foil
JP2007217791A (en) * 2005-03-31 2007-08-30 Mitsui Mining & Smelting Co Ltd Electrolytic copper foil, surface-treated electrolytic copper foil obtained by using the electrolytic copper foil, copper-clad laminate using the surface-treated electrolytic copper foil, and printed circuit board
JP2007294923A (en) * 2006-03-31 2007-11-08 Nikko Kinzoku Kk Manufacturing method of copper strip or copper foil having excellent strength, electric conductivity, and bendability, and electronic component using the same
JP2010222657A (en) * 2009-03-24 2010-10-07 Mitsui Mining & Smelting Co Ltd Electrolytic copper foil with carrier foil, method of manufacturing electrolytic copper foil with carrier foil and copper-clad laminate obtained by using electrolytic copper foil with carrier foil

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3466506B2 (en) 1999-04-23 2003-11-10 三井金属鉱業株式会社 Electrolytic copper foil with carrier foil, method for producing the electrolytic copper foil, and copper-clad laminate using the electrolytic copper foil
JP2001068804A (en) 1999-08-31 2001-03-16 Mitsui Mining & Smelting Co Ltd Electrolytic copper foil with carrier foil and its manufacture, and copper plated laminate provided therewith
JP3670179B2 (en) * 1999-11-11 2005-07-13 三井金属鉱業株式会社 Electrolytic copper foil with carrier foil and copper-clad laminate using the electrolytic copper foil with carrier foil
JP4073248B2 (en) 2002-05-14 2008-04-09 三井金属鉱業株式会社 Method for producing electrolytic copper foil with carrier foil for high temperature and heat resistance and electrolytic copper foil with carrier foil for high temperature and heat obtained by the production method
JP2005288856A (en) * 2004-03-31 2005-10-20 Mitsui Mining & Smelting Co Ltd Electrolytic copper foil with carrier foil and method for manufacturing the same and copper-clad laminated sheet using electrolytic copper foil with carrier foil
JP2005307270A (en) * 2004-04-21 2005-11-04 Mitsui Mining & Smelting Co Ltd Carrier foil-fitted electrolytic copper foil and method for producing the carrier foil-fitted electrolytic copper foil
KR100975491B1 (en) * 2005-03-31 2010-08-11 미쓰이 긴조꾸 고교 가부시키가이샤 Electrolytic copper foil and process for producing electrolytic copper foil
TWI394659B (en) * 2005-07-27 2013-05-01 Nippon Steel Chemical Co Method for making high anti-flexion flexible copper clad laminate board
TW200804626A (en) * 2006-05-19 2008-01-16 Mitsui Mining & Smelting Co Copper foil provided with carrier sheet, method for fabricating copper foil provided with carrier sheet, surface-treated copper foil provided with carrier sheet, and copper-clad laminate using the surface-treated copper foil provided with carrier she
JP4777206B2 (en) * 2006-09-29 2011-09-21 新日鐵化学株式会社 Method for producing flexible copper-clad laminate
JP5588607B2 (en) * 2007-10-31 2014-09-10 三井金属鉱業株式会社 Electrolytic copper foil and method for producing the electrolytic copper foil
KR101385760B1 (en) * 2010-07-01 2014-04-17 미쓰이금속광업주식회사 Electrodeposited copper foil and process for production thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001062955A (en) * 1999-08-24 2001-03-13 Mitsui Mining & Smelting Co Ltd Electrolytic copper foil with carrier foil and copper-clad laminate using the electrolytic copper foil
JP2007217791A (en) * 2005-03-31 2007-08-30 Mitsui Mining & Smelting Co Ltd Electrolytic copper foil, surface-treated electrolytic copper foil obtained by using the electrolytic copper foil, copper-clad laminate using the surface-treated electrolytic copper foil, and printed circuit board
JP2007294923A (en) * 2006-03-31 2007-11-08 Nikko Kinzoku Kk Manufacturing method of copper strip or copper foil having excellent strength, electric conductivity, and bendability, and electronic component using the same
JP2010222657A (en) * 2009-03-24 2010-10-07 Mitsui Mining & Smelting Co Ltd Electrolytic copper foil with carrier foil, method of manufacturing electrolytic copper foil with carrier foil and copper-clad laminate obtained by using electrolytic copper foil with carrier foil

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017114070A (en) * 2015-12-25 2017-06-29 三井金属鉱業株式会社 Carrier-fitted copper foil, laminated sheet for core-less supporting body, wiring layer-fitted core-less supporting body, and method for producing print circuit board
JP2023504808A (en) * 2019-11-27 2023-02-07 ワイエムティー カンパニー リミテッド METAL FOIL WITH CARRIER Foil, MANUFACTURING METHOD THEREOF, AND LAMINATE CONTAINED THEREOF
JP7527677B2 (en) 2019-11-27 2024-08-05 ワイエムティー カンパニー リミテッド Metal foil with carrier foil, its manufacturing method, and laminate including same
CN113684506A (en) * 2021-08-30 2021-11-23 广东嘉元科技股份有限公司 Foil producing machine with edge tearing online winding device
CN113684506B (en) * 2021-08-30 2022-02-11 广东嘉元科技股份有限公司 Foil producing machine with edge tearing online winding device
WO2023189566A1 (en) * 2022-03-29 2023-10-05 三井金属鉱業株式会社 Metal foil with carrier, metal-clad laminate, and printed wiring board
WO2023189565A1 (en) * 2022-03-29 2023-10-05 三井金属鉱業株式会社 Carrier-attached metal foil, metal-clad laminate, and printed wiring board

Also Published As

Publication number Publication date
MY187285A (en) 2021-09-19
TW201536876A (en) 2015-10-01
KR102272762B1 (en) 2021-07-05
JP2019178431A (en) 2019-10-17
JP6784806B2 (en) 2020-11-11
JP6855164B2 (en) 2021-04-07
KR102356179B1 (en) 2022-02-08
KR20210037020A (en) 2021-04-05
CN105745360A (en) 2016-07-06
JPWO2015080052A1 (en) 2017-03-16
KR20160090818A (en) 2016-08-01
CN105745360B (en) 2017-12-08
TWI644995B (en) 2018-12-21

Similar Documents

Publication Publication Date Title
JP6784806B2 (en) Copper foil with carrier foil and copper-clad laminate
JP4927963B2 (en) Surface-treated copper foil, method for producing the same, and copper-clad laminate
JP3973197B2 (en) Electrolytic copper foil with carrier foil and method for producing the same
US8512873B2 (en) Surface treated copper foil and copper clad laminate
KR101607381B1 (en) Copper foil for high frequency circuit, copper clad laminate for high frequency circuit, printed wiring board for high frequency circuit, copper foil attached with carrier for high frequency circuit, electronic device, and method for manufacturing printed wiring board
WO2015030256A1 (en) Copper foil provided with carrier, copper-clad laminated board, printed wiring board, electronic device, and method for manufacturing printed wiring board
JP2014100905A (en) Copper foil with carrier, copper-clad laminate using the same, printed wiring board, printed circuit board and method producing printed wiring board
JP2014100903A (en) Copper foil with carrier, copper-clad laminate using the same, printed wiring board, printed circuit board and method producing printed wiring board
JP2012115989A (en) Composite metal foil and method for producing the same, and printed wiring board
JP5997080B2 (en) Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board
KR101992507B1 (en) Electrolysis copper alloy foil and electrolysis copper alloy foil with carrier foil
JP2005288856A (en) Electrolytic copper foil with carrier foil and method for manufacturing the same and copper-clad laminated sheet using electrolytic copper foil with carrier foil
WO2001034880A1 (en) Electrolytic copper foil with carrier foil and method for manufacturing the same
JP2006224571A (en) Copper-metallized film and its production method
JP3812834B2 (en) Electrolytic copper foil with carrier foil, method for producing the same, and copper-clad laminate using the electrolytic copper foil with carrier foil
JP6054523B2 (en) Copper foil with carrier, method for producing copper foil with carrier, copper-clad laminate obtained using copper foil with carrier, and method for producing printed wiring board
JP2014201829A (en) Copper foil with carrier, printed wiring board, printed circuit board, copper clad laminate sheet, and production method of printed wiring board
JP3891562B2 (en) Electrolytic copper foil with carrier foil, production method thereof, and copper-clad laminate using the electrolytic copper foil with carrier foil
JP2755058B2 (en) Metal foil for printed wiring board, method of manufacturing the same, and method of manufacturing wiring board using the metal foil
JP5628106B2 (en) Composite metal foil, method for producing the same, and printed wiring board
JP6329727B2 (en) Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board
JP6246486B2 (en) Copper foil with carrier and method for producing the same, method for producing copper-clad laminate and method for producing printed wiring board
JP6329731B2 (en) Copper foil with carrier, method for producing copper-clad laminate, and method for producing printed wiring board
JP6176948B2 (en) Copper foil with carrier, method for producing copper foil with carrier, method for producing printed circuit board, method for producing copper-clad laminate, and method for producing printed wiring board
JP6254357B2 (en) Copper foil with carrier

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015515308

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14866156

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167013705

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14866156

Country of ref document: EP

Kind code of ref document: A1