JP2007294923A - Manufacturing method of copper strip or copper foil having excellent strength, electric conductivity, and bendability, and electronic component using the same - Google Patents
Manufacturing method of copper strip or copper foil having excellent strength, electric conductivity, and bendability, and electronic component using the same Download PDFInfo
- Publication number
- JP2007294923A JP2007294923A JP2007080429A JP2007080429A JP2007294923A JP 2007294923 A JP2007294923 A JP 2007294923A JP 2007080429 A JP2007080429 A JP 2007080429A JP 2007080429 A JP2007080429 A JP 2007080429A JP 2007294923 A JP2007294923 A JP 2007294923A
- Authority
- JP
- Japan
- Prior art keywords
- copper foil
- copper
- copper strip
- strip
- electrolytic copper
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Parts Printed On Printed Circuit Boards (AREA)
- Electroplating And Plating Baths Therefor (AREA)
Abstract
Description
本発明は、例えばフレキシブルプリント基板やICテープキャリア等のプリント配線基板に使用される銅条又は銅箔の製造方法、銅条又は銅箔、及びそれを用いた電子部品に関する。 The present invention relates to a method for producing a copper strip or a copper foil used for a printed wiring board such as a flexible printed board or an IC tape carrier, a copper strip or a copper foil, and an electronic component using the same.
フレキシブルプリント基板(FPC)は可撓性を有し、電子機器内に屈曲して収納することにより機器の省スペースを図ることができるため、種々の分野で使用されている。又、LSIを液晶ディスプレイに接合する方法として、フィルム基板(キャリアテープ)が用いられている。
通常、FPCやキャリアテープ等のプリント配線基板は、導電性の銅箔の表面にポリイミド等の樹脂フィルムが形成されている。そして、プリント配線基板の折り曲げによって回路が切断しないよう、銅箔には高い強度と曲げ性が要求される。一方、従来から銅箔として電解銅箔が使用されてきたが、電解銅箔は圧延銅箔に比べて曲げ性が劣るため、プリント配線基板用としては適さなかった。そこで、電解銅箔を圧延して屈曲性を向上させる技術が報告されている(例えば、特許文献1、2参照)。
A flexible printed circuit board (FPC) has flexibility and is used in various fields because it can save space by being bent and housed in an electronic device. A film substrate (carrier tape) is used as a method for bonding the LSI to the liquid crystal display.
Usually, a printed wiring board such as an FPC or a carrier tape has a resin film such as polyimide formed on the surface of a conductive copper foil. And high intensity | strength and bendability are requested | required of copper foil so that a circuit may not be cut | disconnected by bending of a printed wiring board. On the other hand, although an electrolytic copper foil has been used as a copper foil, the electrolytic copper foil is not suitable for a printed wiring board because it is inferior in bending property to a rolled copper foil. Then, the technique which rolls an electrolytic copper foil and improves a flexibility is reported (for example, refer patent document 1, 2).
しかしながら、上記特許文献1、2記載の技術を用いた場合に、強度の向上効果が充分とはいえなかった。
一方、端子、コネクター等の電子部品用材料として、導電性に優れた銅(合金)条が一般に広く用いられている。これらの用途には素材の厚みが必要であるため、銅(合金)条は銅箔に比べて厚い(通常、50μm以上を条としている)。又、銅(合金)条には強度と曲げ加工性が要求されること等から、銅箔、特に電解銅箔とは市場や要求特性が異なり、製造も別に行われるのが通常である。
そこで、ほぼ同一の製造方法によって銅箔だけでなく、強度と曲げ加工性を要求される銅条を製造することができれば、これら銅箔や銅条を用いた電子部品用材料を提供するための優れた製造方法となりうる。
本発明は上記の課題を解決するためになされたものであり、強度、導電率、曲げ加工性に優れた銅条及び銅箔の製造方法、銅条及び銅箔、並びにそれを用いた電子部品の提供を目的とする。
However, when the techniques described in Patent Documents 1 and 2 are used, the effect of improving the strength is not sufficient.
On the other hand, copper (alloy) strips having excellent conductivity are generally widely used as materials for electronic parts such as terminals and connectors. Since the thickness of the material is required for these uses, the copper (alloy) strip is thicker than the copper foil (usually 50 μm or more). In addition, since copper (alloy) strips are required to have strength and bending workability, the market and required characteristics are different from copper foils, particularly electrolytic copper foils, and they are usually manufactured separately.
Therefore, if it is possible to manufacture not only copper foil but also copper strips that require strength and bending workability by substantially the same manufacturing method, it is possible to provide materials for electronic components using these copper foils and copper strips. It can be an excellent manufacturing method.
The present invention has been made to solve the above-described problems, and has a copper strip and a copper foil manufacturing method excellent in strength, electrical conductivity and bending workability, a copper strip and a copper foil, and an electronic component using the same. The purpose is to provide.
本発明者らは種々検討した結果、電解により結晶粒径を制御した銅条又は銅箔を所定の条件で圧延及び熱処理することにより、上記課題を解決できることを見出した。 As a result of various studies, the present inventors have found that the above problem can be solved by rolling and heat-treating a copper strip or copper foil whose crystal grain size is controlled by electrolysis under predetermined conditions.
上記の目的を達成するために、本発明の強度、導電率、曲げ加工性に優れた銅条又は銅箔の製造方法は、めっき添加剤を含むめっき浴を用いた電解により平均結晶粒径0.3μm以下の電解銅条又は電解銅箔を製造し、該電解銅条又は電解銅箔を冷間圧延した後、熱処理を行わないか又は熱処理を行うことを特徴とする。
電解で得られた平均結晶粒径0.3μm以下の微細組織は延性が低く、曲げ加工性が悪いだけでなく、粒界面積増大により導電率が低下するが、その後の圧延による動的再結晶で曲げ加工性を改善すると同時に、動的再結晶で粒径を大きくすることで粒界面積を低減し、導電率を向上させることができる。
ここで銅箔は、例えばフレキシブルプリント基板やICテープキャリア等のプリント配線基板に使用され、通常、3〜35μm程度の厚みのものを示し、銅条は、例えば端子、コネクター等の電子部品用材料に用いられ、通常50μm以上程度の厚みのものを示す。
In order to achieve the above object, the method for producing a copper strip or copper foil excellent in strength, electrical conductivity and bending workability according to the present invention has an average crystal grain size of 0 by electrolysis using a plating bath containing a plating additive. It is characterized in that an electrolytic copper strip or an electrolytic copper foil having a thickness of 3 μm or less is produced, and the electrolytic copper strip or the electrolytic copper foil is cold-rolled, and then heat treatment is not performed or heat treatment is performed.
The fine structure with an average crystal grain size of 0.3 μm or less obtained by electrolysis has low ductility and poor bending workability, and the conductivity decreases due to an increase in grain boundary area, but dynamic recrystallization by subsequent rolling In addition to improving the bending workability, the grain boundary area can be reduced by increasing the particle size by dynamic recrystallization, and the conductivity can be improved.
Here, the copper foil is used for a printed wiring board such as a flexible printed board or an IC tape carrier, and usually has a thickness of about 3 to 35 μm, and the copper strip is a material for electronic parts such as terminals and connectors. In general, it has a thickness of about 50 μm or more.
前記めっき添加剤としてチオ尿素、アリルチオ尿素、アセチルチオ尿素、フェニルチオ尿素、ベンゾトリアゾール、ゼラチン、ポリエチレンイミン、膠、ビス(3−スルホプロピル)ジスルフィド、及びヤヌスグリーンBの群から選ばれる1種または2種以上を用いることが好ましい。
前記冷間圧延の加工度が20%以上であることが好ましく、前記熱処理温度が300℃以下であることが好ましい。
One or two selected from the group consisting of thiourea, allylthiourea, acetylthiourea, phenylthiourea, benzotriazole, gelatin, polyethyleneimine, glue, bis (3-sulfopropyl) disulfide, and Janus Green B as the plating additive It is preferable to use the above.
The cold rolling workability is preferably 20% or more, and the heat treatment temperature is preferably 300 ° C. or less.
本発明の銅条又は銅箔は、前記銅条又は銅箔の製造方法により製造されたことを特徴とする。
本発明の銅条又は銅箔において、前記冷間圧延後の最終製品の平均結晶粒径が0.4μm以下であることが好ましく、導電率が80%IACS以上、引張強さが500MPa以上で、かつ最小曲げ半径比(MBR/tが5以下であることが好ましい。
ここで、MBR/tは、(割れの発生しない最小曲げ半径/試験片厚さ)で表される試験である。
The copper strip or the copper foil of the present invention is manufactured by the method for manufacturing the copper strip or the copper foil.
In the copper strip or copper foil of the present invention, the average crystal grain size of the final product after cold rolling is preferably 0.4 μm or less, the conductivity is 80% IACS or more, and the tensile strength is 500 MPa or more. The minimum bending radius ratio (MBR / t is preferably 5 or less.
Here, MBR / t is a test represented by (minimum bending radius at which cracking does not occur / test specimen thickness).
本発明の電子部品は、前記銅条又は銅箔を用いたことを特徴とする。 The electronic component of the present invention is characterized by using the copper strip or the copper foil.
本発明によれば、従来に比べて強度、導電率、曲げ加工性に優れた銅条及び銅箔が得られる。 According to the present invention, it is possible to obtain a copper strip and a copper foil that are superior in strength, electrical conductivity, and bending workability as compared with the prior art.
以下、本発明に係る銅条又は銅箔の製造方法の実施の形態について説明する。なお、本発明において%とは、特に断らない限り、質量%を示すものとする。
<電解銅条又は電解銅箔の製造>
本発明に係る銅条又は銅箔の製造方法において、まず電解銅条又は電解銅箔を製造する。電解銅条及び電解銅箔は、従来から公知の電解法(電気めっき法)によって製造される。本発明においては、平均結晶粒径0.3μm以下の電解銅条又は電解銅箔を得るため、めっき添加剤を含むめっき浴を用いて電解する。
めっき浴としては、従来公知の銅めっき浴(例えば硫酸銅浴)を用いることができ、電解条件(電流密度、温度)やアノード、カソード等も特に制限されない。例えば、アノードとして酸化イリジウム電極等の不溶性電極又は銅電極を用い、カソードとしてはドラムカソードを用いることができる。
Hereinafter, the embodiment of the manufacturing method of the copper strip or copper foil concerning the present invention is described. In the present invention, “%” means “% by mass” unless otherwise specified.
<Manufacture of electrolytic copper strip or electrolytic copper foil>
In the method for producing a copper strip or copper foil according to the present invention, an electrolytic copper strip or an electrolytic copper foil is first produced. The electrolytic copper strip and the electrolytic copper foil are produced by a conventionally known electrolytic method (electroplating method). In the present invention, electrolysis is performed using a plating bath containing a plating additive in order to obtain an electrolytic copper strip or an electrolytic copper foil having an average crystal grain size of 0.3 μm or less.
As the plating bath, a conventionally known copper plating bath (for example, a copper sulfate bath) can be used, and the electrolysis conditions (current density, temperature), anode, cathode and the like are not particularly limited. For example, an insoluble electrode such as an iridium oxide electrode or a copper electrode can be used as the anode, and a drum cathode can be used as the cathode.
めっき添加剤は、電析する銅の結晶を微細化するものであり、好ましくは、チオ尿素、アリルチオ尿素、アセチルチオ尿素、フェニルチオ尿素、ベンゾトリアゾール、ゼラチン、ポリエチレンイミン、膠、ビス(3−スルホプロピル)ジスルフィド、及びヤヌスグリーンBの群から選ばれる1種または2種以上を用いる。
これらのめっき添加剤は、めっき浴に対し合計で0.0001〜0.01質量%添加することが好ましい。めっき添加剤の添加量が0.0001質量%であると、結晶粒の微細化が充分でない場合があり、0.01質量%を超えても効果が飽和する傾向にある。
The plating additive refines the copper crystal to be electrodeposited, and preferably thiourea, allylthiourea, acetylthiourea, phenylthiourea, benzotriazole, gelatin, polyethyleneimine, glue, bis (3-sulfopropyl) ) One or more selected from the group of disulfide and Janus Green B are used.
These plating additives are preferably added in a total amount of 0.0001 to 0.01% by mass with respect to the plating bath. If the addition amount of the plating additive is 0.0001% by mass, the crystal grains may not be sufficiently refined, and even if the amount exceeds 0.01% by mass, the effect tends to be saturated.
このようにして、平均結晶粒径0.3μm以下の電解銅条又は電解銅箔を得る。電解銅条又は電解銅箔の結晶粒が微細になるほど強度が向上する。一方、平均結晶粒径が0.3μmを超えると、その後に圧延しても強度の高い銅条及び銅箔が得られない。なお、平均結晶粒径は小さいほど好ましいが、電解条件等との関係から、通常、下限は0.1μm程度である。 In this way, an electrolytic copper strip or an electrolytic copper foil having an average crystal grain size of 0.3 μm or less is obtained. The strength improves as the crystal grains of the electrolytic copper strip or the electrolytic copper foil become finer. On the other hand, if the average crystal grain size exceeds 0.3 μm, high strength copper strips and copper foils cannot be obtained even after rolling. In addition, although an average crystal grain size is so preferable that it is small, from a relationship with electrolysis conditions etc., a minimum is normally about 0.1 micrometer.
電解による銅条の厚みは、例えば0.1〜0.5mm程度であり、銅箔では、例えば10〜50μm程度である。圧延後の銅条の厚みは、例えば0.05〜0.3mm程度であり、銅箔では、例えば5〜35μm程度である。。電解銅条又は電解銅箔の成分組成としては、例えばC:0.001〜0.05%、S:0.001〜0.1%、O:0.001〜0.1%、N:0.001〜0.05%を含み、残部Cuおよび不可避的不純物からなるものが例示される。 The thickness of the copper strip by electrolysis is, for example, about 0.1 to 0.5 mm, and the thickness of the copper foil is, for example, about 10 to 50 μm. The thickness of the copper strip after rolling is, for example, about 0.05 to 0.3 mm, and the thickness of the copper foil is, for example, about 5 to 35 μm. . The component composition of the electrolytic copper strip or the electrolytic copper foil is, for example, C: 0.001 to 0.05%, S: 0.001 to 0.1%, O: 0.001 to 0.1%, N: 0. 0.001 to 0.05%, and the remaining Cu and inevitable impurities are exemplified.
<圧延>
次に、電解銅条又は電解銅箔を冷間圧延した後、熱処理を行わないか又は熱処理を行う。冷間圧延加工を施すことにより、曲げ加工性(屈曲性)を付与することができ、熱処理によって更に曲げ加工性(屈曲性)を向上させることができる。
さらに、電解で得られた平均結晶粒径0.3μm以下の微細組織は延性が低く、曲げ加工性が悪いだけでなく、粒界面積増大により導電率が低下するが、その後の圧延による動的再結晶で曲げ加工性を改善すると同時に、動的再結晶で粒径を大きくすることで粒界面積を低減し、導電率を向上させることができる。
上記したように電解銅条又は電解銅箔の平均結晶粒径は0.3μm以下であるが、圧延により、最終製品の平均結晶粒径は、通常0.4μm程度となる。但し、圧延後の最終製品の平均結晶粒径が1μm以下であることが好ましい。
<Rolled>
Next, after cold rolling the electrolytic copper strip or the electrolytic copper foil, heat treatment is not performed or heat treatment is performed. By performing cold rolling, bending workability (flexibility) can be imparted, and bending workability (flexibility) can be further improved by heat treatment.
Furthermore, a fine structure with an average crystal grain size of 0.3 μm or less obtained by electrolysis not only has low ductility and poor bending workability, but also decreases in conductivity due to an increase in grain boundary area. At the same time as improving the bending workability by recrystallization, the grain interface area can be reduced by increasing the particle size by dynamic recrystallization, and the conductivity can be improved.
As described above, the average crystal grain size of the electrolytic copper strip or the electrolytic copper foil is 0.3 μm or less, but the average crystal grain size of the final product is usually about 0.4 μm by rolling. However, the average crystal grain size of the final product after rolling is preferably 1 μm or less.
好ましくは加工度20%以上で冷間加工を行う。冷間加工度が20%未満であると、導電率や曲げ加工性(屈曲性)の向上効果が充分でない傾向にある。又、熱処理を行わなくとも、曲げ加工性は向上するが、300℃以下の熱処理を行うと、曲げ加工性が一層向上する。但し、熱処理温度が300℃を超えると、材料が軟化して強度が低下する傾向にある。なお、冷間加工度を複数パスで行った場合、総加工度を20%以上とすることが好ましい。 Preferably, cold working is performed at a working degree of 20% or more. If the degree of cold work is less than 20%, the effect of improving conductivity and bending workability (flexibility) tends to be insufficient. Further, the bending workability is improved without performing the heat treatment, but the bending workability is further improved by performing the heat treatment at 300 ° C. or lower. However, when the heat treatment temperature exceeds 300 ° C., the material tends to soften and the strength tends to decrease. In addition, when the cold work degree is performed by a plurality of passes, the total work degree is preferably 20% or more.
以上のようにして得られた銅条又は銅箔は、導電率80%IACS以上、引張強さ500MPa以上、かつMBR/tが5以下である。
又、得られた銅箔は、例えばフレキシブルプリント基板やICテープキャリア等のプリント配線基板に使用することができる。又、得られた銅条は、例えば端子、コネクター等の電子部品用材料に使用することができる。その場合、例えば、0.1〜0.5mm程度の電解銅条を圧延し0.05〜0.3mmの電子部品用材料を作製することができる。
The copper strip or copper foil obtained as described above has an electrical conductivity of 80% IACS or higher, a tensile strength of 500 MPa or higher, and an MBR / t of 5 or lower.
Moreover, the obtained copper foil can be used for printed wiring boards, such as a flexible printed circuit board and an IC tape carrier, for example. The obtained copper strip can be used for materials for electronic parts such as terminals and connectors. In that case, for example, an electrolytic copper strip of about 0.1 to 0.5 mm can be rolled to produce a material for electronic parts of 0.05 to 0.3 mm.
<実施例>
次に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。
<Example>
EXAMPLES Next, although an Example is given and this invention is demonstrated further in detail, this invention is not limited to these.
<電解銅条又は電解銅箔の製造>
電流密度5〜20A/dm2の定電流電解により、カソード上に面積70×70mm、板厚0.2〜0.25mmの電解銅条を作製した。アノードとして無酸素銅の圧延条(板厚:2〜3mm)を用い、カソードとしてステンレス(SUS304)板を用いた。めっき浴として、硫酸銅(CuSO4・5H2〇)270g/L、硫酸(H2SO4)100g/Lを含む硫酸銅浴を用いた。めっき添加剤として、チオ尿素、アリルチオ尿素、アセチルチオ尿素、フェニルチオ尿素、ベンゾトリアゾール、ゼラチン、ポリアクリルアミド、膠、ビス(3−スルホプロピル)ジスルフィド、及びヤヌスグリーンBの中から、表1のように1種を選んで添加し、それぞれ電解して各試料とした。めっき浴の温度は室温とし、電極間にめっき浴を流速2〜5m/s程度で流動させた。
<Manufacture of electrolytic copper strip or electrolytic copper foil>
An electrolytic copper strip having an area of 70 × 70 mm and a thickness of 0.2 to 0.25 mm was produced on the cathode by constant current electrolysis at a current density of 5 to 20 A / dm 2 . An oxygen-free copper rolled strip (plate thickness: 2 to 3 mm) was used as the anode, and a stainless steel (SUS304) plate was used as the cathode. As the plating bath, a copper sulfate bath containing 270 g / L of copper sulfate (CuSO 4 .5H 2 0) and 100 g / L of sulfuric acid (H 2 SO 4 ) was used. As the plating additive, thiourea, allylthiourea, acetylthiourea, phenylthiourea, benzotriazole, gelatin, polyacrylamide, glue, bis (3-sulfopropyl) disulfide, and Janus Green B 1 A seed was selected and added, and each sample was electrolyzed to give each sample. The temperature of the plating bath was room temperature, and the plating bath was flowed between the electrodes at a flow rate of about 2 to 5 m / s.
<圧延>
次に、各試料の電解銅条をラボ圧延機で50パス程度の条件で冷間圧延した後、アルゴンガス雰囲気中で熱処理を施した。各試料の圧延加工度と熱処理条件(温度と処理時間)は表2に示した。
<Rolled>
Next, the electrolytic copper strip of each sample was cold-rolled with a laboratory rolling mill under conditions of about 50 passes, and then heat-treated in an argon gas atmosphere. The rolling degree and heat treatment conditions (temperature and treatment time) of each sample are shown in Table 2.
<評価>
1.銅条又は銅箔の平均結晶粒径
圧延前の電解銅条、並びに圧延及び熱処理後の銅条のSIM(二次イオン)像をそれぞれ撮影した。この像の結晶粒の個数を目視で測定し、個数と測定面積とから下式を用い、円相当径として平均結晶粒径を計算した。
なお、図1は、めっき浴に対し、めっき添加剤としてチオ尿素を0.01%(10ppm)添加して電解した場合の、圧延前の電解銅条の断面組織を示すSIM像である。
<Evaluation>
1. Average crystal grain diameter of copper strip or copper foil SIM (secondary ion) images of the electrolytic copper strip before rolling and the copper strip after rolling and heat treatment were respectively photographed. The number of crystal grains in this image was visually measured, and the average crystal grain size was calculated as the equivalent circle diameter from the number and measurement area using the following formula.
FIG. 1 is a SIM image showing a cross-sectional structure of the electrolytic copper strip before rolling when 0.01% (10 ppm) of thiourea is added as a plating additive to the plating bath for electrolysis.
2.曲げ加工性
圧延及び熱処理後の銅条及び銅箔について、Bad Way方向(曲げ軸が圧延方向に平行な方向)の90°W曲げ試験(JIS H 3110)を行い、最小曲げ半径比MBR/t(割れの発生しない最小曲げ半径/試験片厚さ)を求めた。MBR/tが5以下であれば曲げ性が良好であると判断した。
3.強度(引張強さ)
圧延及び熱処理後の銅条及び銅箔について、引張方向を圧延直角方向として引張試験を行った。なお、試験片サイズは、幅10mm、長さ50mm、頚部の幅が5mmで頚部の長さが20mmのものを用いた。
4.導電率
ダブルブリッジによる体積抵抗率測定から導電率を測定した。
2. Bending workability Copper strips and copper foils after rolling and heat treatment were subjected to a 90 ° W bending test (JIS H 3110) in the Bad Way direction (direction in which the bending axis is parallel to the rolling direction), and the minimum bending radius ratio MBR / t (Minimum bending radius at which cracks do not occur / test specimen thickness) was determined. If MBR / t was 5 or less, it was judged that the bendability was good.
3. Strength (tensile strength)
About the copper strip and copper foil after rolling and heat processing, the tension test was done by making a tension direction into a rolling perpendicular direction. The test piece size was 10 mm in width, 50 mm in length, 5 mm in the neck width, and 20 mm in the neck length.
4). Electrical conductivity Electrical conductivity was measured from volume resistivity measurement using a double bridge.
得られた結果を表1、2に示す。 The obtained results are shown in Tables 1 and 2.
表1,2から明らかなように、発明例1〜28の試料は500MPa以上の強度を有し、かつ曲げ性に優れたものとなった。特に、冷間圧延後に300℃以下の熱処理を加えた発明例5,6、14、19の場合、強度を低下させずに曲げ性を一層向上させることができた。 As is apparent from Tables 1 and 2, the samples of Invention Examples 1 to 28 had a strength of 500 MPa or more and excellent bendability. In particular, in the case of Invention Examples 5, 6, 14, and 19 where heat treatment at 300 ° C. or less was applied after cold rolling, the bendability could be further improved without reducing the strength.
一方、電解銅条製造時にめっき添加剤を加えず、平均結晶粒径が0.3μmを超えた比較例1〜3の場合、強度が500MPa未満に低下した。
冷間圧延の加工度が20%未満である比較例4の場合、曲げ加工性が低下した。
冷間加工後に300℃を超える熱処理を行った比較例5の場合、強度が500MPa未満に低下した。
電解銅条製造時のめっき添加剤の添加量が適正値を超えた比較例6〜8の場合、電解銅条が脆くなり、圧延を行うことができなかった。例えば、添加剤(チオ尿素)の最適添加量は〜0.002%程度であるが(発明例7参照)、比較例6の場合の添加量は0.005%であった。
電解銅のかわりに溶解鋳造で作製したインゴットを圧延して銅箔とした比較例9〜14の場合、圧延前の素材の平均結晶粒径が0.3μmを大幅に超えたため、強度が500MPa未満に大幅に低下した。
On the other hand, in the case of Comparative Examples 1 to 3 in which the plating additive was not added during the production of the electrolytic copper strip and the average crystal grain size exceeded 0.3 μm, the strength decreased to less than 500 MPa.
In the case of Comparative Example 4 in which the degree of cold rolling was less than 20%, the bending workability was lowered.
In the case of the comparative example 5 which performed the heat processing exceeding 300 degreeC after cold working, intensity | strength fell to less than 500 MPa.
In the case of Comparative Examples 6 to 8 in which the addition amount of the plating additive during the production of the electrolytic copper strip exceeded the appropriate value, the electrolytic copper strip became brittle and could not be rolled. For example, the optimum addition amount of the additive (thiourea) is about .about.0.002% (see Invention Example 7), but the addition amount in Comparative Example 6 was 0.005%.
In the case of Comparative Examples 9 to 14 in which an ingot produced by melt casting instead of electrolytic copper was rolled into a copper foil, the average crystal grain size of the material before rolling greatly exceeded 0.3 μm, so the strength was less than 500 MPa. Dropped significantly.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007080429A JP2007294923A (en) | 2006-03-31 | 2007-03-27 | Manufacturing method of copper strip or copper foil having excellent strength, electric conductivity, and bendability, and electronic component using the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006096709 | 2006-03-31 | ||
JP2007080429A JP2007294923A (en) | 2006-03-31 | 2007-03-27 | Manufacturing method of copper strip or copper foil having excellent strength, electric conductivity, and bendability, and electronic component using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007294923A true JP2007294923A (en) | 2007-11-08 |
Family
ID=38765173
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007080429A Withdrawn JP2007294923A (en) | 2006-03-31 | 2007-03-27 | Manufacturing method of copper strip or copper foil having excellent strength, electric conductivity, and bendability, and electronic component using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007294923A (en) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009057688A1 (en) * | 2007-10-31 | 2009-05-07 | Mitsui Mining & Smelting Co., Ltd. | Electrolytic copper foil and process for producing the electrolytic copper foil |
KR100992959B1 (en) | 2008-01-25 | 2010-11-08 | 엘에스엠트론 주식회사 | A High Flexuous Copper Foil And Method For Producing The Same |
JP2012246567A (en) * | 2011-05-31 | 2012-12-13 | Nippon Denkai Kk | Ultrathin copper foil with support therefor, and method for manufacturing the same |
JP2013181236A (en) * | 2012-03-02 | 2013-09-12 | Jx Nippon Mining & Metals Corp | Electrolytic copper foil and negative electrode collector for secondary battery |
WO2013136729A1 (en) * | 2012-03-16 | 2013-09-19 | 住友ベークライト株式会社 | Manufacturing method for laminated board and printed wiring board |
CN103348041A (en) * | 2011-07-29 | 2013-10-09 | 古河电气工业株式会社 | Electrolytic copper alloy foil, method for producing same, electrolytic solution used for production of same, negative electrode collector for secondary batteries using same, secondary battery, and electrode of secondary battery |
KR101344065B1 (en) | 2012-02-08 | 2013-12-24 | 주식회사 호진플라텍 | Copper plating solusion |
WO2014002996A1 (en) * | 2012-06-27 | 2014-01-03 | 古河電気工業株式会社 | Electrolytic copper foil, negative electrode for lithium ion secondary battery, and lithium ion secondary battery |
JP2014009364A (en) * | 2012-06-27 | 2014-01-20 | Furukawa Electric Co Ltd:The | Electrolytic copper foil, negative pole electrode for lithium ion secondary battery and lithium ion secondary battery |
WO2014119355A1 (en) * | 2013-01-29 | 2014-08-07 | 古河電気工業株式会社 | Electrolytic copper foil and process for producing same |
JP2014224321A (en) * | 2007-10-31 | 2014-12-04 | 三井金属鉱業株式会社 | Electrolytic copper foil and method for producing the electrolytic copper foil |
CN104651884A (en) * | 2014-04-28 | 2015-05-27 | 雷磊 | Compound additive for electrolytic copper foil |
WO2015080052A1 (en) * | 2013-11-27 | 2015-06-04 | 三井金属鉱業株式会社 | Copper foil with attached carrier foil and copper-clad laminate |
CN106350836A (en) * | 2016-08-29 | 2017-01-25 | 灵宝华鑫铜箔有限责任公司 | Additive for electrodeposited copper foil and production technology for preparing electrodeposited copper foil for double-shiny battery |
JP2018111882A (en) * | 2017-01-13 | 2018-07-19 | エル エス エムトロン リミテッドLS Mtron Ltd. | Electrolytic copper foil substantially free from wrinkles, an electrode comprising the same, a secondary battery comprising the same, and a method for producing the same |
CN111286765A (en) * | 2018-12-06 | 2020-06-16 | 湖北工程学院 | Additive for electrolytic copper foil and application thereof, electrolytic copper foil and preparation method and application thereof, and lithium ion battery |
CN113444990A (en) * | 2021-06-02 | 2021-09-28 | 清远市进田企业有限公司 | Electrolytic copper recrystallization heat treatment process |
WO2023145661A1 (en) * | 2022-01-28 | 2023-08-03 | 三井金属鉱業株式会社 | Heat-generating body, laminated glass, and defroster |
WO2023145660A1 (en) * | 2022-01-28 | 2023-08-03 | 三井金属鉱業株式会社 | Heat-generating body, laminated glass, and defroster |
-
2007
- 2007-03-27 JP JP2007080429A patent/JP2007294923A/en not_active Withdrawn
Cited By (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014224321A (en) * | 2007-10-31 | 2014-12-04 | 三井金属鉱業株式会社 | Electrolytic copper foil and method for producing the electrolytic copper foil |
JP2009221592A (en) * | 2007-10-31 | 2009-10-01 | Mitsui Mining & Smelting Co Ltd | Electrolytic copper foil and process for producing the electrolytic copper foil |
WO2009057688A1 (en) * | 2007-10-31 | 2009-05-07 | Mitsui Mining & Smelting Co., Ltd. | Electrolytic copper foil and process for producing the electrolytic copper foil |
KR100992959B1 (en) | 2008-01-25 | 2010-11-08 | 엘에스엠트론 주식회사 | A High Flexuous Copper Foil And Method For Producing The Same |
JP2012246567A (en) * | 2011-05-31 | 2012-12-13 | Nippon Denkai Kk | Ultrathin copper foil with support therefor, and method for manufacturing the same |
CN103348041A (en) * | 2011-07-29 | 2013-10-09 | 古河电气工业株式会社 | Electrolytic copper alloy foil, method for producing same, electrolytic solution used for production of same, negative electrode collector for secondary batteries using same, secondary battery, and electrode of secondary battery |
US9890463B2 (en) | 2011-07-29 | 2018-02-13 | Furukawa Electric Co., Ltd. | Electrolysis copper-alloy foil, method of the same, electrolytic-solution using the production, negative electrode aggregation used the same, secondary battery, and electrode of the same |
EP2660359A4 (en) * | 2011-07-29 | 2015-08-05 | Furukawa Electric Co Ltd | Electrolytic copper alloy foil, method for producing same, electrolytic solution used for production of same, negative electrode collector for secondary batteries using same, secondary battery, and electrode of secondary battery |
KR101344065B1 (en) | 2012-02-08 | 2013-12-24 | 주식회사 호진플라텍 | Copper plating solusion |
JP2013181236A (en) * | 2012-03-02 | 2013-09-12 | Jx Nippon Mining & Metals Corp | Electrolytic copper foil and negative electrode collector for secondary battery |
WO2013136729A1 (en) * | 2012-03-16 | 2013-09-19 | 住友ベークライト株式会社 | Manufacturing method for laminated board and printed wiring board |
WO2014002996A1 (en) * | 2012-06-27 | 2014-01-03 | 古河電気工業株式会社 | Electrolytic copper foil, negative electrode for lithium ion secondary battery, and lithium ion secondary battery |
US20160013493A1 (en) * | 2012-06-27 | 2016-01-14 | Furukawa Electric Co., Ltd. | Electrolytic copper foil, negative electrode for lithium ion secondary battery, and lithium ion secondary battery |
JP5718476B2 (en) * | 2012-06-27 | 2015-05-13 | 古河電気工業株式会社 | Electrolytic copper foil for lithium ion secondary battery, negative electrode of lithium ion secondary battery, and lithium ion secondary battery |
US10050277B2 (en) | 2012-06-27 | 2018-08-14 | Furukawa Electric Co., Ltd. | Electrolytic copper foil, negative electrode for lithium ion secondary battery, and lithium ion secondary battery |
JP2014009364A (en) * | 2012-06-27 | 2014-01-20 | Furukawa Electric Co Ltd:The | Electrolytic copper foil, negative pole electrode for lithium ion secondary battery and lithium ion secondary battery |
CN104583461A (en) * | 2012-06-27 | 2015-04-29 | 古河电气工业株式会社 | Electrolytic copper foil, negative electrode for lithium ion secondary battery, and lithium ion secondary battery |
JPWO2014002996A1 (en) * | 2012-06-27 | 2016-06-02 | 古河電気工業株式会社 | Electrolytic copper foil for lithium ion secondary battery, negative electrode of lithium ion secondary battery, and lithium ion secondary battery |
JPWO2014119355A1 (en) * | 2013-01-29 | 2017-01-26 | 古河電気工業株式会社 | Electrolytic copper foil and method for producing the same |
JP5740052B2 (en) * | 2013-01-29 | 2015-06-24 | 古河電気工業株式会社 | Electrolytic copper foil and method for producing the same |
WO2014119355A1 (en) * | 2013-01-29 | 2014-08-07 | 古河電気工業株式会社 | Electrolytic copper foil and process for producing same |
JP2019178431A (en) * | 2013-11-27 | 2019-10-17 | 三井金属鉱業株式会社 | Copper foil with carrier foil and copper clad laminated sheet |
JPWO2015080052A1 (en) * | 2013-11-27 | 2017-03-16 | 三井金属鉱業株式会社 | Copper foil with carrier foil and copper clad laminate |
WO2015080052A1 (en) * | 2013-11-27 | 2015-06-04 | 三井金属鉱業株式会社 | Copper foil with attached carrier foil and copper-clad laminate |
TWI644995B (en) * | 2013-11-27 | 2018-12-21 | 日商三井金屬鑛業股份有限公司 | Copper foil with carrier foil, copper clad laminate and printed circuit board |
CN105745360A (en) * | 2013-11-27 | 2016-07-06 | 三井金属矿业株式会社 | Copper foil with attached carrier foil and copper-clad laminate |
CN104651884A (en) * | 2014-04-28 | 2015-05-27 | 雷磊 | Compound additive for electrolytic copper foil |
CN106350836A (en) * | 2016-08-29 | 2017-01-25 | 灵宝华鑫铜箔有限责任公司 | Additive for electrodeposited copper foil and production technology for preparing electrodeposited copper foil for double-shiny battery |
JP2018111882A (en) * | 2017-01-13 | 2018-07-19 | エル エス エムトロン リミテッドLS Mtron Ltd. | Electrolytic copper foil substantially free from wrinkles, an electrode comprising the same, a secondary battery comprising the same, and a method for producing the same |
CN111286765A (en) * | 2018-12-06 | 2020-06-16 | 湖北工程学院 | Additive for electrolytic copper foil and application thereof, electrolytic copper foil and preparation method and application thereof, and lithium ion battery |
CN111286765B (en) * | 2018-12-06 | 2021-11-19 | 湖北工程学院 | Electrolytic copper foil and preparation method and application thereof |
CN113444990A (en) * | 2021-06-02 | 2021-09-28 | 清远市进田企业有限公司 | Electrolytic copper recrystallization heat treatment process |
WO2023145661A1 (en) * | 2022-01-28 | 2023-08-03 | 三井金属鉱業株式会社 | Heat-generating body, laminated glass, and defroster |
WO2023145660A1 (en) * | 2022-01-28 | 2023-08-03 | 三井金属鉱業株式会社 | Heat-generating body, laminated glass, and defroster |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2007294923A (en) | Manufacturing method of copper strip or copper foil having excellent strength, electric conductivity, and bendability, and electronic component using the same | |
KR101779653B1 (en) | High strength, high heat-resistance electrolytic copper foil, and manufacturing method for same | |
JP4413992B2 (en) | Copper alloy sheet for electrical and electronic parts | |
JP4691573B2 (en) | Printed wiring board, method for producing the printed wiring board, and electrolytic copper foil for copper-clad laminate used for producing the printed wiring board | |
JPWO2013002275A1 (en) | Electrolytic copper foil, wiring board using the electrolytic copper foil, and flexible wiring board | |
JP2018141230A (en) | Electrolyte, electrolytic copper foil and production method thereof | |
JP2008101267A (en) | Electrolytic copper foil, surface treated copper foil using the electrolytic copper foil, copper-clad laminated plate using the surface treated copper foil, and method for manufacturing the electrolytic copper foil | |
TWI514937B (en) | Wiring circuit board | |
JP2007291458A (en) | Cu-Ni-Si ALLOY-TINNED STRIP | |
JP4006467B1 (en) | Copper alloy with high strength, high conductivity, and excellent bending workability | |
JP2006233314A (en) | High-strength copper alloy | |
JP2006291356A (en) | Ni-sn-p based copper alloy | |
JP2018159104A (en) | Copper alloy sheet having excellent strength and conductivity | |
JP2008075152A (en) | Copper alloy having high strength, high electroconductivity and superior bendability | |
TW201920699A (en) | Copper foil for flexible printed board, copper-clad laminate arranged by use thereof, flexible printed board, and electronic device | |
JP2016069713A (en) | Copper alloy material, connector terminal and manufacturing method of copper alloy material | |
JP2012007242A (en) | Cu-Ni-Si ALLOY-TINNED STRIP | |
TW201934767A (en) | Copper foil for flexible printed substrate, copper clad laminate using the same, flexible printed substrate and electronic machine having an aggregation degree represented by the X-ray diffraction intensity of 1.3 or more and less than 7.0 | |
CN107046763B (en) | Copper foil for flexible printed board and copper-clad laminate using same | |
JP5339995B2 (en) | Cu-Zn-Sn alloy plate and Cu-Zn-Sn alloy Sn plating strip | |
TWI625403B (en) | Cu-Ni-Si series copper alloy bar and manufacturing method thereof | |
JP5822895B2 (en) | Copper alloy plate and heat dissipating electronic component including the same | |
TW201920700A (en) | Copper foil for flexible printed circuit and copper clad laminate and flexible printed circuit and electronic device using the same | |
JP4020881B2 (en) | Cu-Ni-Si-Mg copper alloy strip | |
JP2008081836A (en) | Method for manufacturing copper alloy strip or copper alloy foil with excellent strength, electric conductivity and bendability, copper alloy strip or copper alloy foil, and electronic parts using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20100601 |