JP2008101267A - Electrolytic copper foil, surface treated copper foil using the electrolytic copper foil, copper-clad laminated plate using the surface treated copper foil, and method for manufacturing the electrolytic copper foil - Google Patents

Electrolytic copper foil, surface treated copper foil using the electrolytic copper foil, copper-clad laminated plate using the surface treated copper foil, and method for manufacturing the electrolytic copper foil Download PDF

Info

Publication number
JP2008101267A
JP2008101267A JP2007116707A JP2007116707A JP2008101267A JP 2008101267 A JP2008101267 A JP 2008101267A JP 2007116707 A JP2007116707 A JP 2007116707A JP 2007116707 A JP2007116707 A JP 2007116707A JP 2008101267 A JP2008101267 A JP 2008101267A
Authority
JP
Japan
Prior art keywords
copper foil
electrolytic copper
additive
electrolytic
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007116707A
Other languages
Japanese (ja)
Other versions
JP5255229B2 (en
Inventor
Hisao Sakai
久雄 酒井
Masaru Takahashi
勝 高橋
Mitsuyoshi Matsuda
光由 松田
Makoto Dobashi
誠 土橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2007116707A priority Critical patent/JP5255229B2/en
Publication of JP2008101267A publication Critical patent/JP2008101267A/en
Application granted granted Critical
Publication of JP5255229B2 publication Critical patent/JP5255229B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrolytic copper foil, which has a low profile surface equivalent to conventional low-profile electrolytic copper foil and has very large mechanical strength, and to provide a method for manufacturing the same. <P>SOLUTION: In order to solve the problem, the electrolytic copper foil comprises fine precipitated crystal particles of copper, of which the particle diameters have a small variation unattainable by a prior art technique. The electrolytic copper foil has a lustrous surface with a low profile, has a very large mechanical strength of 70 to 100 kgf/mm<SP>2</SP>in terms of a normal-state tensile strength value, and even after heating (180°C×60 minutes), has a tensile strength value of not less than 85% of the normal-state tensile strength value. The electrolytic copper foil is manufactured by an electrolytic method using a sulfuric acid-type copper electrolysis solution containing a compound having a structure comprising a sulfone group attached to the benzene ring, a sulfonic acid salt of an active sulfur compound, and a quaternary ammonium salt polymer having a cyclic structure. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本件発明は、電解銅箔、その電解銅箔を用いた表面処理銅箔及びその表面処理銅箔を用いた銅張積層板並びにその電解銅箔の製造方法に関する。特に、析出面が低プロファイルであり、且つ、機械的強度の大きな電解銅箔及びその製造方法に関する。   The present invention relates to an electrolytic copper foil, a surface-treated copper foil using the electrolytic copper foil, a copper-clad laminate using the surface-treated copper foil, and a method for producing the electrolytic copper foil. In particular, the present invention relates to an electrolytic copper foil having a low precipitation profile and high mechanical strength, and a method for manufacturing the same.

電子及び電気機器の小型化、軽量化等の所謂軽薄短小化に対する要求に併せて、近年のプリント配線板にも同様の要求が行われる。このプリント配線板には、限られた搭載スペースの中で小型化と高機能化に対応した回路形成が求められるため、回路のファインピッチ化を行い高密度化した回路とすることが必要となる。そして、このようなファインピッチ回路を得るためには、より薄い銅箔を採用し、且つ、当該銅箔の基材密着面の粗度を下げてオーバーエッチング時間を短縮することで対応してきた。   Along with the demands for so-called miniaturization and miniaturization such as miniaturization and weight reduction of electronic and electrical equipment, similar demands are made for recent printed wiring boards. Since this printed wiring board is required to form a circuit corresponding to miniaturization and high functionality within a limited mounting space, it is necessary to make the circuit finer by increasing the circuit pitch. . In order to obtain such a fine pitch circuit, a thinner copper foil has been adopted, and the roughness of the substrate contact surface of the copper foil has been reduced to shorten the overetching time.

このような目的には、一般的に低プロファイル電解銅箔を使用している。また、薄箔化しても、銅箔や銅張積層板のハンドリング性を良好にするため、機械強度をより大きくすることにも注力されてきた。このような低プロファイルで、且つ、機械的強度にも優れた電解銅箔は、特許文献1及び特許文献2に開示されている。以下、これらを簡単に説明する。   For this purpose, low profile electrolytic copper foil is generally used. Moreover, even if the foil is thinned, efforts have been made to increase the mechanical strength in order to improve the handling properties of the copper foil and the copper-clad laminate. Such an electrolytic copper foil having a low profile and excellent mechanical strength is disclosed in Patent Document 1 and Patent Document 2. These will be briefly described below.

特許文献1には、プリント配線板用途やリチウム二次電池用負極集電体用途に実用できる低粗面を持つと共に疲労屈曲性にも優れた低粗面電解銅箔、具体的には、粗面粗さRzが2.0μm以下で該粗面に凹凸のうねりがなく均一に低粗度化された粗面を持ち、且つ、180℃における伸び率が10.0%以上である低粗面電解銅箔を提供することを目的として、硫酸−硫酸銅水溶液を電解液とし、白金属元素又はその酸化物元素で被覆したチタン板からなる不溶性陽極と該陽極に対向する陰極にチタン製ドラムを用い、当該両極間に直流電流を通じる電解銅箔の製造方法が開示されている。この製造方法において、前記電解液にオキシエチレン系界面活性剤、ポリエチレンイミン又はその誘導体、活性有機イオウ化合物のスルホン酸塩及び塩素イオンを存在させることによって粗面粗さRzが2.0μm以下で該粗面に凹凸のうねりがなく均一に低粗度化された粗面を持ち、且つ、180℃における伸び率が10.0%以上である低粗面電解銅箔を得られるとしている。この特許文献1の実施例には、得られた電解銅箔の析出面の表面粗さ(Rz)が0.9μm〜2.0μm、常態伸び率の値が10%〜18%、180℃における伸び率の値が10%〜20%、常態引張り強さの値が340MPa〜500MPa、180℃における引張り強さの値が180MPa〜280MPaであったことが開示されている。更に、この電解銅箔の析出面の、幅方向に対する光沢度〔Gs(85°)〕は120〜132であったことが開示されている。   Patent Document 1 discloses a low rough surface electrolytic copper foil that has a low rough surface that is practical for use in printed wiring boards and negative electrode current collector applications for lithium secondary batteries and that is excellent in fatigue flexibility. A low roughness surface having a surface roughness Rz of 2.0 μm or less and having a rough surface with no unevenness and a uniform low roughness, and an elongation at 180 ° C. of 10.0% or more. For the purpose of providing an electrolytic copper foil, an aqueous solution of sulfuric acid-copper sulfate is used as an electrolytic solution, and an insoluble anode made of a titanium plate coated with a white metal element or its oxide element and a titanium drum on the cathode facing the anode. A method for producing an electrolytic copper foil that uses a direct current between both electrodes is disclosed. In this production method, the presence of an oxyethylene surfactant, polyethyleneimine or a derivative thereof, a sulfonic acid salt of an active organic sulfur compound, and a chloride ion in the electrolytic solution causes a roughness Rz of 2.0 μm or less. The rough surface has a rough surface with no unevenness and has a uniformly low roughness, and a low rough surface electrolytic copper foil having an elongation at 180 ° C. of 10.0% or more can be obtained. In the Example of this patent document 1, the surface roughness (Rz) of the deposition surface of the obtained electrolytic copper foil is 0.9 μm to 2.0 μm, the value of the normal elongation is 10% to 18%, at 180 ° C. It is disclosed that the elongation value was 10% to 20%, the normal tensile strength value was 340 MPa to 500 MPa, and the tensile strength value at 180 ° C. was 180 MPa to 280 MPa. Furthermore, it is disclosed that the glossiness [Gs (85 °)] in the width direction of the deposited surface of the electrolytic copper foil was 120 to 132.

また、特許文献2には、粗面が低粗度化され、時間経過又は加熱処理に伴う抗張力の低下率が低く、しかも高温における伸び率に優れた低粗面電解銅箔及びその製造方法を提供することを目的として、硫酸−硫酸銅水溶液からなる電解液にヒドロキシエチルセルロース、ポリエチレンイミン、アセチレングリコール、活性有機イオウ化合物のスルホン酸塩及び塩素イオンの五つの添加剤を存在させることより、電解銅箔の粗面粗さRzが2.5μm 以下であり、電着完了時点から20分以内に測定した25℃における抗張力が500MPa以上であると共に、電着完了時点から300分経過時に測定した25℃における抗張力の低下率が10%以下であり、又は、電着完了時点から100℃にて10分間加熱処理を施した後に測定した25℃における抗張力の低下率が10%以下であり、且つ、180℃における伸び率が6%以上である低粗面電解銅箔を得る技術が開示されている。   Patent Document 2 discloses a low-roughened electrolytic copper foil having a roughened surface that has a low roughness, a low rate of decrease in tensile strength with time or heat treatment, and an excellent elongation at high temperatures, and a method for producing the same. For the purpose of providing, an electrolytic solution comprising a sulfuric acid-copper sulfate aqueous solution contains five additives of hydroxyethyl cellulose, polyethyleneimine, acetylene glycol, sulfonate of an active organic sulfur compound, and chloride ion. The rough surface roughness Rz of the foil is 2.5 μm or less, the tensile strength at 25 ° C. measured within 20 minutes from the completion of electrodeposition is 500 MPa or more, and 25 ° C. measured after 300 minutes from the completion of electrodeposition. The rate of decrease in tensile strength at 10% or less, or 25 ° C. measured after heat treatment at 100 ° C. for 10 minutes from the completion of electrodeposition A technique for obtaining a low-roughened surface electrolytic copper foil having a tensile strength decrease rate of 10% or less and an elongation rate at 180 ° C. of 6% or more is disclosed.

この特許文献2の実施例には、硫酸(HSO):100g/L、硫酸銅五水和物(CuSO ・5HO):280g/Lの硫酸−硫酸銅水溶液からなる電解液を基本溶液とし、添加剤としてヒドロキシエチルセルロース、ポリエチレンイミン、3−メルカプト−1−プロパンスルホン酸ナトリウム、アセチレングリコール及び塩酸を添加し、この電解液を白金属酸化物にて被覆したチタンからなる不溶性陽極と陰極であるチタン製陰極ドラムとの間に充填し、電解電流密度:40A/dm、電解液温:40℃にて電析して得られた、厚さ18μmの電解銅箔は、析出面の表面粗さ(Rz)が1.5μm〜2.3μmであり、常態の抗張力が650MPa〜900MPa、100℃で10分間加熱後の抗張力の低下率が0%〜7.7%であったことが開示されている。 In an example of this Patent Document 2, an electrolytic solution comprising a sulfuric acid-copper sulfate aqueous solution of sulfuric acid (H 2 SO 4 ): 100 g / L, copper sulfate pentahydrate (CuSO 4 .5H 2 O): 280 g / L. Insoluble anode made of titanium, in which hydroxyethyl cellulose, polyethyleneimine, sodium 3-mercapto-1-propanesulfonate, acetylene glycol and hydrochloric acid are added as additives and the electrolyte is coated with a white metal oxide And an electrolytic copper foil having a thickness of 18 μm obtained by electrodeposition at an electrolytic current density of 40 A / dm 2 and an electrolyte temperature of 40 ° C. The surface roughness (Rz) of the surface is 1.5 μm to 2.3 μm, the normal tensile strength is 650 MPa to 900 MPa, and the rate of decrease in tensile strength after heating at 100 ° C. for 10 minutes is 0% to 7. % It had been at is disclosed.

上記のように、それぞれの実施例によれば、これらの製造方法を用いて製造された電解銅箔の析出面は低プロファイルである。そのレベルは、従来の低プロファイル電解銅箔としては優れており、ファインピッチ回路の形成には効果を発揮しうる。また、従来の電解銅箔よりも優れた機械的強度を得ることが可能なことも開示されている。尚、念のために記載するが、プリント配線板用銅箔における低プロファイルとは、銅箔の絶縁層構成材料との接合界面における凹凸が低いという意味で用いている。   As mentioned above, according to each Example, the precipitation surface of the electrolytic copper foil manufactured using these manufacturing methods is a low profile. The level is excellent as a conventional low profile electrolytic copper foil, and can be effective in forming a fine pitch circuit. It is also disclosed that mechanical strength superior to that of conventional electrolytic copper foil can be obtained. In addition, although it describes for convenience, the low profile in the copper foil for printed wiring boards is used in the meaning that the unevenness | corrugation in the joining interface with the insulating layer constituent material of copper foil is low.

特開2004−263289号公報JP 2004-263289 A 特開2004−339558号公報JP 2004-339558 A

前述のように、プリント配線板用電解銅箔には、種々の品質を備える、多くの製品及び品種が存在している。特に、ICチップ等のデバイス実装を直接行うテープ オートメーティド ボンディング(TAB)基板には、リジッドプリント配線板を遙かに超えるファインピッチ回路の形成が行われ、低プロファイル電解銅箔に対する要求が顕著であった。ところが、TAB基板は、図1に模式的に示すように、フライングリード1を有しており、この部分に直接デバイスを実装する。そのため、用いた電解銅箔の機械的強度が小さいと、ボンディング時の圧力により、フライングリード1が伸びるという欠点が現れる。尚、図1には、フライングリード1の他に、銅箔で形成された回路2、接着剤3、ベースフィルム(ポリイミドフィルム)4、ソルダーレジスト5、裏側ソルダーレジスト6、デバイス(ICチップ)7、IC接続部(デバイスホール)8、ギャングボンディング用支持台9、液晶ディスプレイパネル等との接続部となる第1端子部10、プリント配線板との接続部となる第2端子部11、折り曲げ部12からなる構成のTABのデバイスホール部分を含む断面を模式的に示した。   As described above, many products and varieties having various qualities exist in the electrolytic copper foil for printed wiring boards. In particular, tape automated bonding (TAB) substrates that directly mount devices such as IC chips are formed with fine pitch circuits that far exceed rigid printed wiring boards, and the demand for low profile electrolytic copper foil is remarkable. Met. However, the TAB substrate has a flying lead 1 as schematically shown in FIG. 1, and a device is directly mounted on this portion. Therefore, if the mechanical strength of the electrolytic copper foil used is small, there is a disadvantage that the flying lead 1 is extended by the pressure during bonding. In addition to the flying lead 1, FIG. 1 shows a circuit 2 made of copper foil, an adhesive 3, a base film (polyimide film) 4, a solder resist 5, a back side solder resist 6, and a device (IC chip) 7. , IC connection part (device hole) 8, gang bonding support base 9, first terminal part 10 as a connection part with a liquid crystal display panel, etc., second terminal part 11 as a connection part with a printed wiring board, bent part A cross section including a device hole portion of a TAB composed of 12 is schematically shown.

これに対し、電解銅箔の機械的強度の増大には限界があると判断し、TAB基板から、図2に模式的に示したフライングリードの無いCOF基板(チップ オン フィルム基板)へと製造製品がシフトする動きがある。COF基板へのデバイス実装が主流になると、当業者が保有してきたTAB基板用ボンディングマシンが有効に活用されず、社会資本の損失とも言える状態となる。この問題を解決するために、TAB基板での細線回路の形成が可能と考えられる、引張り強さが70kgf/mmを超えるような、リン青銅のハード材と同等の機械的強度が電解銅箔に望まれてきた。尚、図2には、ボンディングリード1の他に、銅箔で形成された回路2’、ベースフィルム(ポリイミドフィルム)4’、ソルダーレジスト5’、デバイス(ICチップ)7’、IC接続部8’、液晶ディスプレイパネル等との接続部となる第1端子部10’、プリント配線板との接続部となる第2端子部11’、折り曲げ部12’からなる構成のCOFの断面を模式的に示した。 On the other hand, it is judged that there is a limit to the increase in the mechanical strength of the electrolytic copper foil, and the product manufactured from the TAB substrate to the COF substrate (chip-on-film substrate) without flying leads schematically shown in FIG. There is a movement to shift. When device mounting on a COF substrate becomes mainstream, the TAB substrate bonding machine possessed by those skilled in the art is not effectively used, and it can be said that it is a loss of social capital. In order to solve this problem, it is considered that a fine wire circuit can be formed on a TAB substrate, and the mechanical strength equivalent to that of a phosphor bronze hard material having a tensile strength exceeding 70 kgf / mm 2 is an electrolytic copper foil. Has been desired. In addition to the bonding lead 1, FIG. 2 shows a circuit 2 ′ formed of copper foil, a base film (polyimide film) 4 ′, a solder resist 5 ′, a device (IC chip) 7 ′, an IC connection portion 8. A cross section of a COF having a configuration including a first terminal portion 10 'serving as a connection portion with a liquid crystal display panel, a second terminal portion 11' serving as a connection portion with a printed wiring board, and a bent portion 12 'is schematically illustrated. Indicated.

上記70kgf/mmを超えるような引張り強さの値を示す電解銅箔は、特許文献2に開示されている。ところが、後に比較例として示すトレース実験を実施しても、特許文献2に記載のレベルでの高強度は得られず、引張り強さの値は58kgf/mm程度にとどまる。従って、電解銅箔では、引張り強さの値が70kgf/mmを超えるような、リン青銅と同等の機械的強度を備える製品を安定して生産することは困難と言える。 An electrolytic copper foil showing a tensile strength value exceeding 70 kgf / mm 2 is disclosed in Patent Document 2. However, even if a trace experiment shown later as a comparative example is performed, high strength at the level described in Patent Document 2 cannot be obtained, and the value of tensile strength is only about 58 kgf / mm 2 . Therefore, with electrolytic copper foil, it can be said that it is difficult to stably produce a product having a mechanical strength equivalent to that of phosphor bronze having a tensile strength value exceeding 70 kgf / mm 2 .

以上のことから、プリント配線板業界では、低プロファイルの表面を備え、且つ、機械的強度が、従来に無いほど極めて大きな電解銅箔及びその安定した製造方法が望まれてきた。   From the above, in the printed wiring board industry, there has been a demand for an electrolytic copper foil having a low profile surface and having a mechanical strength that is extremely large as compared with the conventional one and a stable manufacturing method thereof.

そこで、本件発明者らは、鋭意研究の結果、銅の析出結晶粒子が微細で、その粒子径のバラツキを従来に無いレベルに小さくすることにより、低プロファイルで光沢を有する析出面を備え、機械的強度が極めて大きく、且つ、その機械的特性の経時変化が小さい電解銅箔、及び、その製造方法に想到したのである。   Therefore, as a result of diligent research, the inventors of the present invention have provided a precipitation surface having a gloss with a low profile by reducing the variation in the particle diameter to a level unprecedented as a result of fine copper crystal grains. The inventors have come up with an electrolytic copper foil having a very high mechanical strength and a small change in mechanical properties with time, and a method for producing the same.

本件発明に係る電解銅箔: 本件発明に係る電解銅箔は、銅電解液を電解することにより得られる電解銅箔において、常態引張り強さの値が70kgf/mm〜100kgf/mmであることを特徴とする。 Electrolytic copper foil according to the present invention: electrolytic copper foil according to the present invention, the electrodeposited copper foil obtained by electrolyzing a copper electrolyte, the value of the normal tensile strength is 70kgf / mm 2 ~100kgf / mm 2 It is characterized by that.

そして、本件発明に係る電解銅箔は、180℃×60分間の加熱後引張り強さの値が、常態引張り強さの値の85%以上であることが好ましい。   And as for the electrolytic copper foil which concerns on this invention, it is preferable that the value of the tensile strength after a heating for 180 degreeC x 60 minutes is 85% or more of the value of a normal state tensile strength.

また、本件発明に係る電解銅箔は、製造後30日経過後の常態引張り強さの値が65kgf/mm以上であることが好ましい。 In addition, the electrolytic copper foil according to the present invention preferably has a normal tensile strength value of 65 kgf / mm 2 or more after 30 days from the production.

更に、本件発明に係る電解銅箔は、常態伸び率の値が3%〜15%であることが好ましい。   Furthermore, the electrolytic copper foil according to the present invention preferably has a normal elongation value of 3% to 15%.

そして、本件発明に係る電解銅箔は、180℃×60分間の加熱後伸び率の値が、常態伸び率の値よりも低いことも特徴である。   And the electrolytic copper foil which concerns on this invention is also characterized by the value of 180 degreeC x 60 minute post-heating elongation being lower than the value of normal state elongation.

また、上記本件発明に係る電解銅箔は、析出面の幅方向に対して60°の入反射角で測定した光沢度〔Gs(60°)〕の値が、80以上であることが好ましい。   The electrolytic copper foil according to the present invention preferably has a glossiness [Gs (60 °)] value of 80 or more measured at an incident / reflection angle of 60 ° with respect to the width direction of the deposition surface.

本件発明に係る表面処理電解銅箔: 本件発明に係る表面処理電解銅箔は上記電解銅箔の表面に粗化処理、防錆処理、シランカップリング剤処理のいずれか1種又は2種以上を行ったことを特徴としている。 Surface-treated electrolytic copper foil according to the present invention: The surface-treated electrolytic copper foil according to the present invention comprises one or more of roughening treatment, rust prevention treatment, and silane coupling agent treatment on the surface of the electrolytic copper foil. It is characterized by what has been done.

本件発明に係る電解銅箔の製造方法: 本件発明に係る電解銅箔の製造方法は、硫酸系銅電解液を用いた電解法により電解銅箔を製造する方法において、当該硫酸系銅電解液は下記添加剤A〜添加剤Cを含むものを用いることを特徴としている。 Manufacturing method of electrolytic copper foil according to the present invention: The manufacturing method of the electrolytic copper foil according to the present invention is a method of manufacturing an electrolytic copper foil by an electrolytic method using a sulfuric acid-based copper electrolytic solution. What contains the following additive A-additive C is used, It is characterized by the above-mentioned.

添加剤A:ベンゼン環と窒素原子(N)を含む複素環とを備え、該複素環にはメルカプト基が結合している構造を有する化合物、又はチオ尿素系化合物。
添加剤B:活性硫黄化合物のスルホン酸塩。
添加剤C:環状構造を持つ4級アンモニウム塩重合体。
Additive A: a compound having a structure having a benzene ring and a heterocyclic ring containing a nitrogen atom (N), and a mercapto group bonded to the heterocyclic ring, or a thiourea compound.
Additive B: sulfonate salt of active sulfur compound.
Additive C: A quaternary ammonium salt polymer having a cyclic structure.

本件発明に係る電解銅箔の製造方法において、前記添加剤Aは、イミダゾール系化合物、チアゾール系化合物、テトラゾール系化合物、又は両端に有するアルカン基の炭素数が2以上であるチオ尿素系化合物のいずれか1種又は2種以上を用いることが好ましい。   In the method for producing an electrolytic copper foil according to the present invention, the additive A is any one of an imidazole compound, a thiazole compound, a tetrazole compound, or a thiourea compound having two or more alkane groups at both ends. It is preferable to use 1 type or 2 types or more.

本件発明に係る電解銅箔の製造方法で用いる前記添加剤Aは、そのベンゼン環にスルホン基が結合しているものであることがより好ましい。   As for the said additive A used with the manufacturing method of the electrolytic copper foil which concerns on this invention, it is more preferable that the sulfone group has couple | bonded with the benzene ring.

そして、前記添加剤Aは、2−メルカプト−5−ベンズイミダゾールスルホン酸、3(5−メルカプト−1H−テトラゾールイル)ベンゼンスルホナート、2−メルカプトベンゾチアゾール又はN−Nジエチルチオ尿素のいずれか1種又は2種以上であることが好ましい。   The additive A is any one of 2-mercapto-5-benzimidazolesulfonic acid, 3 (5-mercapto-1H-tetrazolyl) benzenesulfonate, 2-mercaptobenzothiazole, or NN diethylthiourea. Or it is preferable that they are 2 or more types.

また、前記添加剤Aの前記硫酸系銅電解液中における合算濃度は、1ppm〜50ppmであることが好ましい。   The total concentration of the additive A in the sulfuric acid-based copper electrolyte is preferably 1 ppm to 50 ppm.

本件発明に係る電解銅箔の製造方法における前記添加剤Bは、3−メルカプト−1−プロパンスルホン酸又はビス(3−スルホプロピル)ジスルフィドのいずれか又は混合物であることが好ましい。   The additive B in the method for producing an electrolytic copper foil according to the present invention is preferably any one or a mixture of 3-mercapto-1-propanesulfonic acid and bis (3-sulfopropyl) disulfide.

そして、前記添加剤Bの前記硫酸系銅電解液中における濃度は、1ppm〜80ppmであることが好ましい。   And it is preferable that the density | concentration in the said sulfuric acid type copper electrolyte solution of the said additive B is 1 ppm-80 ppm.

本件発明に係る電解銅箔の製造方法における前記添加剤Cは、ジアリルジメチルアンモニウムクロライド重合体であることが好ましい。   The additive C in the method for producing an electrolytic copper foil according to the present invention is preferably a diallyldimethylammonium chloride polymer.

そして、前記添加剤Cの前記硫酸系銅電解液中における濃度は、0.5ppm〜100ppmであることが好ましい。   And it is preferable that the density | concentration in the said sulfuric acid type copper electrolyte solution of the said additive C is 0.5 ppm-100 ppm.

更に、前記硫酸系銅電解液中における、前記添加剤Bの濃度と前記添加剤Cの濃度との比[(B濃度)/(C濃度)]の値が0.07〜1.4であることが好ましい。   Furthermore, the ratio [(B concentration) / (C concentration)] of the concentration of the additive B and the concentration of the additive C in the sulfuric acid-based copper electrolyte is 0.07 to 1.4. It is preferable.

本件発明に係る電解銅箔の製造方法における、前記硫酸系銅電解液中の塩素濃度は、5ppm〜100ppmであることが好ましい。   In the method for producing an electrolytic copper foil according to the present invention, the chlorine concentration in the sulfuric acid copper electrolyte is preferably 5 ppm to 100 ppm.

本件発明に係る銅張積層板: 本件発明に係る銅張積層板は、前記表面処理電解銅箔と絶縁層構成材料とを張合わせて得られるものである。そして、本件発明に係る銅張積層板を構成する前記絶縁層構成材料が、骨格材を含有する場合にはリジッド銅張積層板となる。一方、本件発明に係る銅張積層板を構成する前記絶縁層構成材料が、可撓性を有するフレキシブル素材である場合にはフレキシブル銅張積層板となる。 Copper-clad laminate according to the present invention: The copper-clad laminate according to the present invention is obtained by bonding the surface-treated electrolytic copper foil and the insulating layer constituting material. And when the said insulating-layer constituent material which comprises the copper clad laminated board which concerns on this invention contains frame | skeleton material, it becomes a rigid copper clad laminated board. On the other hand, when the insulating layer constituting material constituting the copper clad laminate according to the present invention is a flexible material having flexibility, it becomes a flexible copper clad laminate.

本件発明に係るプリント配線板: 本件発明に係る表面処理電解銅箔を用いて得られた銅張積層板に配線を形成するためのエッチング加工を施すことにより、本件発明に係るプリント配線板が得られる。即ち、上述のリジッド銅張積層板を用いることでリジッドプリント配線板が得られる。そして、上述のフレキシブル銅張積層板を用いることでフレキシブルプリント配線板が得られる。 Printed wiring board according to the present invention: A printed wiring board according to the present invention is obtained by performing an etching process for forming wiring on a copper-clad laminate obtained using the surface-treated electrolytic copper foil according to the present invention. It is done. That is, a rigid printed wiring board can be obtained by using the above-mentioned rigid copper clad laminate. And a flexible printed wiring board is obtained by using the above-mentioned flexible copper clad laminated board.

本件発明に係る電解銅箔は、銅の析出結晶粒子が微細で、その粒子径のバラツキが従来に無い程に小さいという特徴を備える。その結果、従来の低プロファイル電解銅箔と同等の低プロファイルで光沢を有する析出面を備え、且つ、極めて大きな機械的強度を有する。また、その機械的強度は、加熱しても大きく低下せず、製造後の経時変化も小さい。従って、当該電解銅箔を用いて得られる表面処理電解銅箔も、同様の大きな機械的強度と低プロファイルの表面を備えるものとなる。この表面処理電解銅箔を用いれば、基板強度の確保を優先した結果、銅箔層を薄くできなかったプリント配線板であっても、要求レベルに合わせた基板強度を確保しつつ銅箔層を薄くできる。よって、ファインピッチ回路の形成と同時に基板重量の軽量化が可能となる。   The electrolytic copper foil according to the present invention is characterized in that the precipitated crystal particles of copper are fine and the variation in the particle diameter is so small as never before. As a result, it has a precipitation surface having gloss with a low profile equivalent to that of a conventional low profile electrolytic copper foil, and has extremely high mechanical strength. Further, the mechanical strength does not decrease greatly even when heated, and the change with time after production is small. Therefore, the surface-treated electrolytic copper foil obtained using the electrolytic copper foil also has the same large mechanical strength and low profile surface. If this surface-treated electrolytic copper foil is used, priority is given to ensuring the strength of the board. As a result, even for printed wiring boards where the copper foil layer could not be thinned, the copper foil layer is secured while ensuring the board strength in accordance with the required level. Can be thin. Therefore, the weight of the substrate can be reduced simultaneously with the formation of the fine pitch circuit.

そして、この電解銅箔及び表面処理銅箔の製造方法は、使用する銅電解液の組成に特徴を備えている。従って、新たな設備を必要とせず、従来の設備の使用が可能で、生産性の低下も引き起こさない。しかも、その銅電解液は、溶液安定性に優れ、長期間の連続使用に耐えるため、経済的にも優れている。   And the manufacturing method of this electrolytic copper foil and surface treatment copper foil is equipped with the characteristic in the composition of the copper electrolyte solution to be used. Therefore, no new equipment is required, the conventional equipment can be used, and productivity is not reduced. In addition, the copper electrolyte is excellent in solution stability and is economically superior because it withstands long-term continuous use.

更に、当該表面処理電解銅箔を用いて得られる銅張積層板は、板厚が薄くても、電解銅箔の極めて大きな機械的強度により、取扱い時のたわみ、変形が小さくなり、取扱いやすくなる。特に、当該電解銅箔を絶縁層形成材であるフィルムと張合わせてフレキシブル銅張積層板とし、これをファインピッチ要求の顕著なTAB基板用途に用いれば、電解銅箔の機械的強度が極めて大きいため、従来は実用化不可能であった細線のフライングリードを備えるTAB基板の製造が可能となる。   Furthermore, the copper clad laminate obtained using the surface-treated electrolytic copper foil is easy to handle even when the plate thickness is thin, due to the extremely large mechanical strength of the electrolytic copper foil, which reduces deflection and deformation during handling. . In particular, if the electrolytic copper foil is laminated with a film which is an insulating layer forming material to form a flexible copper clad laminate, and this is used for a TAB substrate where remarkably fine pitch is required, the mechanical strength of the electrolytic copper foil is extremely high. Therefore, it is possible to manufacture a TAB substrate having a thin wire flying lead that has been impossible to put into practical use.

本件発明に係る電解銅箔の形態: 以下、本件発明に係る電解銅箔の説明を行う前に、説明の理解が容易となるように、一般的な電解銅箔の製造方法に関して述べる。本件発明に係る「電解銅箔」とは、何ら表面処理を行っていない状態のものであり「未処理銅箔」、「析離箔」等と称されることがある。本件明細書では、これを単に「電解銅箔」と称する。この電解銅箔の製造には、一般的に連続生産法が採用されており、ドラム形状をした回転陰極と、その回転陰極の形状に沿って対向配置された鉛系陽極又は寸法安定性陽極(Dimention Stable Anode:DSA)との間に硫酸系銅電解液を流し、電解反応を利用して銅を回転陰極の表面に析出させ、薄膜状に析出した銅を箔として回転陰極から連続して引き剥がして巻き取っている。 Form of electrolytic copper foil according to the present invention: Before describing the electrolytic copper foil according to the present invention, a general method for producing an electrolytic copper foil will be described so that the explanation can be easily understood. The “electrolytic copper foil” according to the present invention is a state in which no surface treatment is performed, and is sometimes referred to as “untreated copper foil”, “deposited foil” or the like. In the present specification, this is simply referred to as “electrolytic copper foil”. In the production of this electrolytic copper foil, a continuous production method is generally adopted, and a drum-shaped rotating cathode and a lead-based anode or a dimensionally stable anode (faced with the rotating cathode) are arranged along the shape of the rotating cathode. A sulfuric acid-based copper electrolyte is allowed to flow between the surface and the surface of the rotating cathode (Dimention Stable Anode: DSA), and copper is deposited on the surface of the rotating cathode using an electrolytic reaction. Removed and wound up.

この電解銅箔の、回転陰極と接触した状態から引き剥がされた側の表面形状は、研磨処理された回転陰極表面の形状が転写したものであり、光沢を有することからこの面を「光沢面」と称する。これに対し、析出サイドであった側の表面形状は、析出する銅の結晶成長速度が結晶面ごとに異なるために、通常は山形の凹凸形状を示すため「粗面」と称することが多い。しかし、本件発明では平滑な形状となるため、こちら側を「析出面」と称する。   The surface shape of the electrolytic copper foil that has been peeled off from the state in contact with the rotating cathode is a transfer of the shape of the surface of the rotating cathode that has been subjected to polishing treatment. ". On the other hand, the surface shape on the side of the precipitation side is often referred to as a “rough surface” because the crystal growth rate of the deposited copper differs depending on the crystal surface, and usually indicates a mountain-shaped uneven shape. However, since the present invention has a smooth shape, this side is referred to as a “deposition surface”.

このようにして得られた電解銅箔には、絶縁層構成材料との接着力を機械的なアンカー効果で補強するための粗化処理や、酸化防止のための防錆処理などの表面処理が施されて、市場に流通する表面処理電解銅箔となる。一方、用途によっては粗化処理を施さずに使用することもある。   The electrolytic copper foil thus obtained is subjected to a surface treatment such as a roughening treatment for reinforcing the adhesive strength with the insulating layer constituent material by a mechanical anchor effect and a rust prevention treatment for preventing oxidation. As a result, a surface-treated electrolytic copper foil distributed in the market is obtained. On the other hand, it may be used without being roughened depending on the application.

本件発明に係る電解銅箔は、常態引張り強さの値が70kgf/mm〜100kgf/mmという、従来に無い極めて大きな機械的強度を備える。この常態引張り強さとは、室温で一定速度での引張り試験を行い、破断に至るまでの荷重の推移を測定し、最大荷重から計算して得られる機械的な特性である。そして、上記引張り強さの値は、回転陰極から引き剥がされた電解銅箔に対して、何ら処理を加えないまま測定して得られた値である。この測定により、同時に常態伸び率の測定結果も得られる。従来の電解銅箔の場合、常態引張り強さの値が60kgf/mm以下(一般的には、30kgf/mm〜45kgf/mmの範囲にある。)と言うのが通常であり、70kgf/mmを超える常態引張り強さの値を示す製品は存在しなかった。即ち、本件発明に係る電解銅箔は、常態引張り強さの値が70kgf/mm〜100kgf/mmであり、リン青銅のハード材(質別:EH)と同等もしくは超えるレベルの高い引張り強さを備えている。しかも、後述するように、銅箔を加熱しても、この引張り強さの値の低下が少ない点にも特徴を有している。 Electrolytic copper foil according to the present invention, the value of the normal tensile strength provided that 70kgf / mm 2 ~100kgf / mm 2 , a very large mechanical strength unprecedented. This normal tensile strength is a mechanical characteristic obtained by conducting a tensile test at a constant speed at room temperature, measuring the transition of load until breakage, and calculating from the maximum load. The value of the tensile strength is a value obtained by measuring the electrolytic copper foil peeled off from the rotating cathode without any treatment. By this measurement, the measurement result of the normal elongation is obtained at the same time. For conventional electrolytic copper foil, the value of the normal tensile strength 60 kgf / mm 2 or less (generally, in the range of 30kgf / mm 2 ~45kgf / mm 2 .) And is usually to say, 70 kgf There was no product showing a value of normal tensile strength exceeding / mm 2 . That is, the electrolytic copper foil according to the present invention, the value of the normal tensile strength is 70kgf / mm 2 ~100kgf / mm 2 , a hard material of phosphor bronze (temper: EH) and high tensile strength of equal to or greater than the level Is equipped. Moreover, as will be described later, even when the copper foil is heated, there is a feature that the decrease in the value of the tensile strength is small.

そして、本件発明に係る電解銅箔は、非常に微細で均一な結晶粒を備える。従って、結晶粒が微細であるが故に、析出面は平坦化し、高光沢の表面となる。また、エッチングは結晶粒界を優先的に溶解させるため、結晶粒が微細になるほど配線のサイドエッチング性が向上し、形成される配線の直線性が向上する。   And the electrolytic copper foil which concerns on this invention is equipped with a very fine and uniform crystal grain. Therefore, since the crystal grains are fine, the precipitation surface is flattened and becomes a highly glossy surface. In addition, since the crystal grain boundary is preferentially dissolved in the etching, the finer the crystal grain, the better the side etching property of the wiring, and the linearity of the formed wiring.

更に、金属箔を耐折性能の測定や引張り試験に供した場合の破断メカニズムを考えてみる。破断は、試験中に試片や回路の縁端部にマイクロクラックが発生し、そのマイクロクラックに耐折応力又は引張り応力が集中し、クラックの伝播が起こって発生すると考えられる。このときのクラック伝播は、結晶粒界に沿った伝播が主となる。従って、微細な結晶粒を備えていると、クラックの伝播経路となる粒界距離が長く、クラックの伝播、即ち破断に対する抵抗力が大きくなる。この結果、70kgf/mmを超える高い引張り強さの値を示すのである。そして、より好ましい実施態様によれば、80kgf/mmを超える引張り強さの値を得ることができる。 Furthermore, consider the fracture mechanism when the metal foil is subjected to the measurement of folding resistance and the tensile test. It is considered that fracture occurs when microcracks occur at the edge of the specimen or circuit during the test, and bending stress or tensile stress concentrates on the microcracks, and crack propagation occurs. The crack propagation at this time is mainly propagation along the crystal grain boundary. Therefore, if fine crystal grains are provided, the grain boundary distance that becomes the propagation path of cracks is long, and the propagation of cracks, that is, the resistance to breakage, is increased. As a result, a high tensile strength value exceeding 70 kgf / mm 2 is exhibited. And according to a more preferred embodiment, a tensile strength value exceeding 80 kgf / mm 2 can be obtained.

このような大きな常態引張り強さの値を示す銅箔としては、加工度を高くした圧延銅箔が存在する。しかし、圧延銅箔は加熱による焼鈍効果が発揮されやすく、機械的強度は容易に低下してしまう。これに対し、本件発明に係る電解銅箔の場合、加熱しても引張り強さの値の低下が少ない。即ち、本件発明に係る電解銅箔は、180℃×60分間の加熱後引張り強さの値が、常態引張り強さの値の85%以上、より好ましくは90%以上を保持することができる。ここで、加熱後引張り強さとは、本件発明に係る電解銅箔を180℃×60分間の大気雰囲気中で加熱し、その後室温に放冷して測定した引張り強さのことである。従来の電解銅箔の場合、180℃×60分間の加熱後の加熱後引張り強さの値は、常態引張り強さの値の60%以下となるのが通常であった。本件発明に係る電解銅箔の、加熱後引張り強さの値の低下が少ないのは、本件発明に係る電解銅箔の結晶粒が微細であると同時に、結晶粒径のバラツキが小さいことで、電解時に内包される添加剤成分の結晶粒界への分布が均一になっているためと考えられる。この添加剤成分は、加熱時には金属銅の拡散バリアとして機能し、結晶粒の肥大化を抑制するため、結晶粒微細化の効果を加熱後も維持できると考える。尚、ここで180℃×60分間の加熱条件を選択したのは、最も一般的な銅張積層板製造に採用されている、ホットプレスの温度条件に近いからである。   As a copper foil exhibiting such a large value of normal tensile strength, there is a rolled copper foil having a high workability. However, the rolled copper foil tends to exhibit an annealing effect by heating, and the mechanical strength is easily lowered. On the other hand, in the case of the electrolytic copper foil according to the present invention, there is little decrease in the value of tensile strength even when heated. That is, the electrolytic copper foil according to the present invention can maintain a tensile strength value after heating at 180 ° C. for 60 minutes of 85% or more, more preferably 90% or more of the normal tensile strength value. Here, the tensile strength after heating is the tensile strength measured by heating the electrolytic copper foil according to the present invention in an air atmosphere at 180 ° C. for 60 minutes and then allowing it to cool to room temperature. In the case of a conventional electrolytic copper foil, the value of the tensile strength after heating after heating at 180 ° C. for 60 minutes was usually 60% or less of the value of the normal tensile strength. The decrease in the value of the tensile strength after heating of the electrolytic copper foil according to the present invention is small because the crystal grains of the electrolytic copper foil according to the present invention are fine and the variation in the crystal grain size is small. This is thought to be because the distribution of the additive component contained during the electrolysis to the grain boundaries is uniform. This additive component functions as a diffusion barrier for metallic copper during heating and suppresses the enlargement of crystal grains, so that the effect of crystal grain refinement can be maintained even after heating. The reason why the heating condition of 180 ° C. × 60 minutes is selected here is that it is close to the temperature condition of the hot press employed in the most general copper clad laminate production.

また、本件発明に係る電解銅箔は、製造後30日経過後の常態引張り強さの値が65kgf/mm以上であることが好ましい。一般的に、電解銅箔の品質保証期間としては、最低3ヶ月が要求されるため、製造後3ヵ月経過後の常態引張り強さで品質保証を行うことが好ましい。しかし、電解銅箔の機械的特性は、室温で保管しても、製造直後から経時的に変化して行き、製造後30日経過すると安定化し、その後室温で保管する限り顕著な機械的特性の変化が無くなる傾向がある。そこで、製造後30日経過した常態引張り強さを測定すれば、本件発明に係る電解銅箔の品質保証が事実上可能となる。ここでは、製造後30日経過後の常態引張り強さの値の上限を示していないが、結晶粒が微細であるほど経時的な変化が小さくなるため、常態の引張り強さの値と同程度、100kgf/mmと考えられる。 In addition, the electrolytic copper foil according to the present invention preferably has a normal tensile strength value of 65 kgf / mm 2 or more after 30 days from the production. Generally, the quality assurance period of the electrolytic copper foil is required to be at least 3 months. Therefore, it is preferable to perform quality assurance with the normal tensile strength after 3 months have passed since the production. However, the mechanical properties of electrolytic copper foil change over time even after storage at room temperature, stabilize after 30 days from manufacture, and stabilize as long as stored at room temperature. There tends to be no change. Then, if the normal state tensile strength 30 days after manufacture is measured, the quality assurance of the electrolytic copper foil according to the present invention becomes practically possible. Here, the upper limit of the value of the normal tensile strength after the lapse of 30 days after the production is not shown, but the change over time becomes smaller as the crystal grains are finer, so the same as the value of the normal tensile strength, 100 kgf / mm 2 is considered.

更に、本件発明に係る電解銅箔は、常態伸び率の値が3%〜15%の範囲の値を示す。常態伸び率の値が3%以上あれば、スルーホール基板を作成する際に、メカニカルドリルで銅張積層板に穴明け加工を行っても、フォイルクラックが発生しない。本件発明に係る電解銅箔の常態伸び率の値の上限は、結晶粒が微細であるため、経験的に15%程度となる。しかし、前記メカニカルドリルでの加工性を考慮すれば、10%以下であることがより好ましい。   Furthermore, the electrolytic copper foil which concerns on this invention shows the value of the range whose values of a normal state elongation rate are 3%-15%. If the value of the normal elongation is 3% or more, foil cracks do not occur even when a hole is formed in a copper-clad laminate with a mechanical drill when forming a through-hole substrate. The upper limit of the normal elongation of the electrolytic copper foil according to the present invention is about 15% empirically because the crystal grains are fine. However, considering workability with the mechanical drill, it is more preferably 10% or less.

更に、本件発明に係る電解銅箔は、180℃×60分間の加熱後伸び率の値が、常態伸び率の値よりも低いことも特徴である。ここで言っている加熱後伸び率とは、本件発明に係る電解銅箔を180℃×60分間の大気雰囲気中で加熱し、その後、室温に放冷してから測定した伸び率のことである。従来の電解銅箔の多くは、加熱すると焼鈍効果が現れる。中でも、低温アニール性が良い電解銅箔では、180℃×5分間〜15分間程度の加熱で伸び率の値の低下が見られるが、低下率は5%未満のレベルであり、180℃×60分間の加熱を行うと、加熱後伸び率の値は常態伸び率の値に比べて大きくなる。これに対し、本件発明に係る電解銅箔は、180℃×60分間の加熱後伸び率の値が、常態伸び率の値を基準として比較すると低い値を示すため、加熱による伸び率の挙動は、従来の電解銅箔とは異なる。   Furthermore, the electrolytic copper foil according to the present invention is also characterized in that the value of elongation after heating at 180 ° C. for 60 minutes is lower than the value of normal elongation. The elongation after heating referred to here is the elongation measured after heating the electrolytic copper foil according to the present invention in an air atmosphere at 180 ° C. for 60 minutes and then allowing it to cool to room temperature. . Many conventional electrolytic copper foils exhibit an annealing effect when heated. Among them, in the electrolytic copper foil having good low-temperature annealing property, a decrease in the elongation rate is observed by heating at 180 ° C. for 5 minutes to 15 minutes, but the decrease rate is a level of less than 5%, and 180 ° C. × 60 When heating for a minute, the value of the elongation after heating becomes larger than the value of the normal elongation. On the other hand, the electrolytic copper foil according to the present invention has a low elongation value after heating at 180 ° C. for 60 minutes when compared with the normal elongation value, so that the behavior of the elongation due to heating is Different from conventional electrolytic copper foil.

より具体的に言えば、本件発明に係る電解銅箔の加熱後伸び率は、常態伸び率の値を100%としたとき5%〜50%の範囲で伸び率の値が低下する。このような、加熱すると引張り強さの値と伸び率の値とが低下する現象は、伸銅品分野で言う焼鈍硬化と同様の現象と捉えることができる。従って、更に加熱を継続すると、加熱後引張り強さの値は低下を続け、加熱後伸び率はある時点から上昇する方向に転ずると考えられる。   More specifically, the elongation percentage after heating of the electrolytic copper foil according to the present invention decreases in the range of 5% to 50% when the normal elongation percentage is 100%. Such a phenomenon in which the value of tensile strength and the value of elongation decrease when heated can be regarded as a phenomenon similar to the annealing and hardening in the field of copper products. Therefore, it is considered that when heating is further continued, the value of tensile strength after heating continues to decrease, and the elongation after heating starts to increase from a certain point.

更に、上述の電解銅箔の製造方法を考えるに、得られる結晶粒が微細で均一であるということは、その析出面の凹凸形状が滑らかになる効果を発揮する。この本件発明に係る電解銅箔の析出面の滑らかさを示す指標として光沢度を採用すると、当該析出面の光沢度〔Gs(60°)〕は80以上となる。後述する製造方法を採用することを前提として、当該光沢度〔Gs(60°)〕が80以上の場合において、常態引張り強さの値が70kgf/mm〜100kgf/mm、180℃×60分間の加熱後の加熱後引張り強さの値が常態引張り強さの値の85%以上、より好ましくは90%以上という機械的特性を示す。 Furthermore, considering the above-described method for producing an electrolytic copper foil, the fact that the obtained crystal grains are fine and uniform exhibits the effect of smoothing the uneven shape of the precipitation surface. When the glossiness is employed as an index indicating the smoothness of the deposition surface of the electrolytic copper foil according to the present invention, the glossiness [Gs (60 °)] of the deposition surface is 80 or more. Assuming that the manufacturing method described later is adopted, when the glossiness [Gs (60 °)] is 80 or more, the value of the normal tensile strength is 70 kgf / mm 2 to 100 kgf / mm 2 , 180 ° C. × 60. It exhibits mechanical properties such that the value of tensile strength after heating for 85 minutes is 85% or more, more preferably 90% or more of the value of normal tensile strength.

本件発明に係る表面処理電解銅箔: 本件発明に係る表面処理電解銅箔は、上記電解銅箔の表面に粗化処理、防錆処理、シランカップリング剤処理のいずれか1種又は2種以上を施したものである。本件発明に係る表面処理電解銅箔に対して施す各種表面処理は、用途に応じての要求特性を考慮し、接着強度、耐薬品性や耐熱性等を付与する目的で表面への粗化処理、防錆処理、シランカップリング剤処理等が行われる。 Surface-treated electrolytic copper foil according to the present invention: The surface-treated electrolytic copper foil according to the present invention is one or more of roughening treatment, rust prevention treatment, and silane coupling agent treatment on the surface of the electrolytic copper foil. Is given. Various surface treatments applied to the surface-treated electrolytic copper foil according to the present invention include roughening treatments on the surface for the purpose of imparting adhesive strength, chemical resistance, heat resistance, etc. in consideration of required properties according to applications. Rust prevention treatment, silane coupling agent treatment, etc. are performed.

ここで言う粗化処理とは、絶縁層構成材料との密着性を物理的に向上させるための処理であり、析出面上に施されるのが一般的である。具体的には電解銅箔の表面に微細金属粒を付着形成させるか、エッチング法で粗化表面を形成するかのいずれかの方法が採用される。一般的には、前者の微細金属粒を付着形成する粗化処理工程が採用される。そして、この粗化処理工程は、電解銅箔の析出面上に、微細銅粒を析出付着させるヤケめっき工程と、この微細銅粒の脱落を防止するための被せめっき工程とで構成されるのが通常である。   The roughening treatment referred to here is a treatment for physically improving the adhesion with the insulating layer constituting material, and is generally performed on the deposition surface. Specifically, either a method of depositing fine metal particles on the surface of the electrolytic copper foil or a roughened surface by an etching method is employed. In general, the former roughening treatment step in which fine metal particles are formed by adhesion is employed. And this roughening treatment process is composed of a burn plating process for depositing and adhering fine copper grains on the deposition surface of the electrolytic copper foil, and a covering plating process for preventing the fine copper grains from falling off. Is normal.

次に、防錆処理に関して説明する。この防錆処理では、銅張積層板及びプリント配線板等の製造過程で、表面処理電解銅箔の表面が酸化腐食することを防止するための被覆層を設ける。防錆処理の手法は、ベンゾトリアゾール、イミダゾール等を用いる有機防錆、もしくは亜鉛、クロメート、亜鉛合金等を用いる無機防錆のいずれを採用しても問題は無く、使用目的に最適と考えられる防錆手法を選択すればよい。そして、防錆層の形成方法であるが、有機防錆の場合は、有機防錆剤の浸漬塗布法、シャワーリング塗布法、電着法等の手法を採用することが可能となる。無機防錆の場合は、電解法、無電解めっき法、スパッタリング法や置換析出法等を用い、防錆元素を電解銅箔層の表面上に析出させることが可能である。   Next, the rust prevention treatment will be described. In this rust prevention treatment, a coating layer is provided for preventing the surface of the surface-treated electrolytic copper foil from being oxidatively corroded in the course of manufacturing a copper-clad laminate and a printed wiring board. There are no problems with the rust-proofing method, either organic rust-proofing using benzotriazole, imidazole, etc., or inorganic rust-proofing using zinc, chromate, zinc alloy, etc. What is necessary is just to select the rust method. In the case of organic rust prevention, it is possible to adopt a technique such as a dip coating method, a shower ring coating method, or an electrodeposition method of an organic rust preventive agent. In the case of inorganic rust prevention, it is possible to deposit an antirust element on the surface of the electrolytic copper foil layer using an electrolysis method, an electroless plating method, a sputtering method, a displacement precipitation method, or the like.

そして、シランカップリング剤処理とは、粗化処理、防錆処理等が終了した後に、絶縁層構成材料との密着性を化学的に向上させるための処理である。ここで言う、シランカップリング剤処理に用いるシランカップリング剤としては、特に限定を要するものでは無く、使用する絶縁層構成材料、プリント配線板製造工程で使用するめっき液等の性状を考慮して、エポキシ系シランカップリング剤、アミノ系シランカップリング剤、メルカプト系シランカップリング剤等から任意に選択使用することができる。そして、シランカップリング剤層を形成するには、シランカップリング剤溶液を用いた浸漬塗布、シャワーリング塗布、電着等の手法を採用することができる。   And a silane coupling agent process is a process for improving the adhesiveness with an insulating layer constituent material chemically after a roughening process, a rust prevention process, etc. are complete | finished. As used herein, the silane coupling agent used for the silane coupling agent treatment is not particularly limited, considering the properties of the insulating layer constituent material used, the plating solution used in the printed wiring board manufacturing process, and the like. , An epoxy silane coupling agent, an amino silane coupling agent, a mercapto silane coupling agent, and the like. And in order to form a silane coupling agent layer, methods, such as immersion application | coating using the silane coupling agent solution, showering application | coating, electrodeposition, are employable.

本件発明に係る電解銅箔の製造形態: 本件発明に係る電解銅箔の製造方法は、硫酸系銅電解液を用い電解法により電解銅箔を製造する方法であって、当該硫酸系銅電解液に下記添加剤A〜添加剤Cを含むものを用いる点に特徴がある。そして、ここで言う硫酸系銅電解液中の銅濃度は50g/L〜120g/L、より好ましい範囲は50g/L〜80g/Lである。また、フリー硫酸濃度は60g/L〜250g/L、より好ましい範囲は80g/L〜150g/Lのレベルを想定している。以下、添加剤を順に説明する。 Manufacturing method of electrolytic copper foil according to the present invention: The manufacturing method of the electrolytic copper foil according to the present invention is a method of manufacturing an electrolytic copper foil by an electrolytic method using a sulfuric acid copper electrolytic solution, and the sulfuric acid copper electrolytic solution. Are characterized in that the following additives A to C are used. The copper concentration in the sulfuric acid-based copper electrolyte referred to here is 50 g / L to 120 g / L, and a more preferable range is 50 g / L to 80 g / L. The free sulfuric acid concentration is assumed to be 60 g / L to 250 g / L, and a more preferable range is assumed to be 80 g / L to 150 g / L. Hereinafter, the additives will be described in order.

添加剤Aの最も上位概念は、NとSを含む化合物であり、好ましくはベンゼン環とNを含む複素環とを備え、該複素環にはメルカプト基が結合している構造を有する化合物である。この添加剤Aは、得られる電解銅箔に高い引張り強さの値を付与するように作用する。添加剤Aは、電解銅箔の電析時に結晶粒界に均一に分布しやすく、析出銅の結晶粒の微細化を促進する効果に優れ、電解銅箔の製造の安定化に寄与する。これに対し、添加剤として同様の効果を示すことが知られているチオ尿素の場合は、チオ尿素の分解物が低分子量であり、その除去が困難で、電析した電解銅箔中への包含状態や、銅の析出状態の安定化が困難となる欠点がある。そこで、ベンゼン環という安定した構造を基本に有し、Nを含む複素環構造をとっている添加剤を用いると、硫酸銅溶液中で分解しにくく安定構造をとるため好ましい。そして、メルカプト基が複素環に結合し、スルホン基がベンゼン環に結合した構造をとれば、極性が大きくなり水溶液系で溶解が容易になり、硫酸系銅電解液に用いる添加剤としての効果とその安定性が維持できる。   The highest concept of the additive A is a compound containing N and S, preferably a compound having a structure in which a benzene ring and a heterocyclic ring containing N are provided, and a mercapto group is bonded to the heterocyclic ring. . This additive A acts so as to impart a high tensile strength value to the obtained electrolytic copper foil. Additive A is easily distributed uniformly at the grain boundaries during electrodeposition of the electrolytic copper foil, is excellent in the effect of promoting the refinement of the crystal grains of the deposited copper, and contributes to the stabilization of the production of the electrolytic copper foil. On the other hand, in the case of thiourea, which is known to show the same effect as an additive, the decomposition product of thiourea has a low molecular weight, and its removal is difficult, and it is difficult to remove it into the electrodeposited electrolytic copper foil. There is a drawback that it is difficult to stabilize the inclusion state and the copper precipitation state. Therefore, it is preferable to use an additive having a stable structure called a benzene ring and having a heterocyclic structure containing N because it is difficult to decompose in a copper sulfate solution and has a stable structure. And if the structure which the mercapto group couple | bonded with the heterocyclic ring and the sulfone group couple | bonded with the benzene ring is taken, the polarity will become large, and it will become easy to melt | dissolve in aqueous solution system, Its stability can be maintained.

そして、前記添加剤Aに共通の構造(ベンゼン環とNを含む複素環とを備え、該複素環にはメルカプト基が結合している構造)を備えていないチオ尿素系の化合物にも、同様の効果が見られるものがある。例えば、炭素数が2以上のアルカン基を両端に有するチオ尿素系化合物は、チオ尿素の極性がアルカン基により弱められる。従って、銅イオンとの反応性は[=S]の構造を有することの効果を保ちながら、電解反応時にはチオ尿素のような分解挙動を示しにくいと考えられる。従って、これらのチオ尿素系化合物を用いれば、チオ尿素そのものを用いた場合のような不具合は生じにくくなる。   The same applies to thiourea compounds that do not have a structure common to the additive A (a structure having a benzene ring and a heterocyclic ring containing N, and a structure in which a mercapto group is bonded to the heterocyclic ring). There are things that can be seen. For example, in a thiourea compound having an alkane group having 2 or more carbon atoms at both ends, the polarity of thiourea is weakened by the alkane group. Therefore, it is considered that the reactivity with copper ions does not exhibit the decomposition behavior like thiourea during the electrolytic reaction while maintaining the effect of having the structure of [= S]. Therefore, if these thiourea compounds are used, problems such as those when using thiourea itself are less likely to occur.

そして、前記ベンゼン環とNを含む複素環とを備え、該複素環にはメルカプト基が結合している構造を有する添加剤Aをより具体的に言えば、イミダゾール系化合物、チアゾール系化合物及びテトラゾール系化合物であり、トリアゾール系化合物及びオキサゾール系化合物なども同様の範疇に属する。そして、チオ尿素系の添加剤Aは炭素数が2以上の官能基を有するチオ尿素系化合物である。実際の使用にあたっては、上記の内いずれか1種又は2種以上を用いることが好ましい。   More specifically, the additive A having the benzene ring and a heterocyclic ring containing N, and having a structure in which a mercapto group is bonded to the heterocyclic ring, imidazole compounds, thiazole compounds and tetrazole Are triazole compounds, and triazole compounds and oxazole compounds belong to the same category. The thiourea additive A is a thiourea compound having a functional group having 2 or more carbon atoms. In actual use, it is preferable to use one or more of the above.

また、上記添加剤Aのベンゼン環にスルホン基が結合している構造のものを用いることも好ましい。ベンゼン環にスルホン基が結合した構造の化合物は、硫酸系銅電解液中で極めて良好な安定性を示し、電解状態が安定化し、溶液寿命も長くなる。   It is also preferable to use a material having a structure in which a sulfone group is bonded to the benzene ring of the additive A. A compound having a structure in which a sulfone group is bonded to a benzene ring exhibits extremely good stability in a sulfuric acid-based copper electrolyte, stabilizes the electrolytic state, and increases the solution life.

以下、上述した構造を有する添加剤Aとしてのイミダゾール類、チアゾール類やテトラゾール類等の中でも、前記ベンゼン環とNを含む複素環とを備え、該複素環にはメルカプト基が結合している構造を有するものとして、2−メルカプト−5−ベンズイミダゾールスルホン酸(以下、「2M−5S」と称する。)、3(5−メルカプト−1H−テトラゾールイル)ベンゼンスルホナート(以下、「MSPMT−C」と称する。)又は2−メルカプトベンゾチアゾール(以下、「WM」と称する。)を用いることが好ましい。以下、2M−5Sの構造式を化1に、MSPMT−Cの構造式を化2に、そして、WMの構造式を化3に示す。そして、実際の使用にあたっては、入手が容易である易水溶性の塩類、例えば後述する実施例と同様のNa塩等として用いるのが現実的である。   Hereinafter, among the imidazoles, thiazoles, tetrazoles and the like as the additive A having the above-described structure, the benzene ring and a heterocyclic ring containing N are provided, and a mercapto group is bonded to the heterocyclic ring. 2-mercapto-5-benzimidazolesulfonic acid (hereinafter referred to as “2M-5S”), 3 (5-mercapto-1H-tetrazolyl) benzenesulfonate (hereinafter referred to as “MSPMT-C”) Or 2-mercaptobenzothiazole (hereinafter referred to as “WM”) is preferably used. Hereinafter, the structural formula of 2M-5S is shown in Chemical Formula 1, the structural formula of MSPMT-C is shown in Chemical Formula 2, and the structural formula of WM is shown in Chemical Formula 3. In actual use, it is practical to use readily water-soluble salts that are easily available, for example, Na salts similar to those in the examples described later.

そして、炭素数が2以上のアルカン基を両端に有するチオ尿素系化合物は、その構造上安定性が見られるN、N−ジエチルチオ尿素(以下、「EUR」と称する。)を用いることが好ましい。EURの構造式を以下の化4に示す。EURは、N及びSがチオ尿素と同様の構造で含むことで、添加剤としての効果は明らかに有する。また、エチル基を両端に有していることで末端基の活性が弱く、電解液中での安定性が良好になっていると考えられる。尚、上記の添加剤は、効果が確認されたものを例示しているに過ぎず、同様の構造を有し、効果を確認できた化合物であればいずれをも用いうることを明記しておく。   For the thiourea compound having an alkane group having 2 or more carbon atoms at both ends, it is preferable to use N, N-diethylthiourea (hereinafter referred to as “EUR”), which is structurally stable. The structural formula of EUR is shown in the following chemical formula 4. The EUR clearly has an effect as an additive because N and S contain the same structure as thiourea. In addition, it is considered that having an ethyl group at both ends results in weak end group activity and good stability in the electrolytic solution. It should be noted that the above additives are merely examples of which the effect has been confirmed, and any compound having the same structure and having confirmed the effect can be used. .

Figure 2008101267
Figure 2008101267

Figure 2008101267
Figure 2008101267

Figure 2008101267
Figure 2008101267

Figure 2008101267
Figure 2008101267

そして、当該添加剤Aの硫酸系銅電解液中の合算濃度は、1ppm〜50ppmであることが好ましく、より好ましくは3ppm〜40ppmである。硫酸系銅電解液中での当該添加剤Aの合算濃度が1ppm未満の場合には、電解により析出する電解銅箔に取り込まれる添加剤Aの量が不足し、得られた電解銅箔が長期間にわたって大きな機械的強度を保つことが難しくなる。一方、当該添加剤Aの合算濃度が50ppmを越えると電解銅箔の析出面の滑らかさが損なわれ、光沢度が低下し、大きな機械的強度を得ることが困難になる。この銅電解液中の添加剤Aの含有量は、HPLC(High Performance Liquid Chromatograph)を用いて確認することができる。   And the combined density | concentration in the sulfuric acid type copper electrolyte solution of the said additive A is preferably 1-50 ppm, More preferably, it is 3-40 ppm. When the total concentration of the additive A in the sulfuric acid-based copper electrolyte is less than 1 ppm, the amount of the additive A taken into the electrolytic copper foil deposited by electrolysis is insufficient, and the obtained electrolytic copper foil is long. It becomes difficult to maintain a large mechanical strength over a period of time. On the other hand, when the total concentration of the additive A exceeds 50 ppm, the smoothness of the deposited surface of the electrolytic copper foil is impaired, the glossiness is lowered, and it is difficult to obtain a large mechanical strength. The content of the additive A in the copper electrolyte can be confirmed using HPLC (High Performance Liquid Chromatography).

添加剤Bは、活性硫黄化合物のスルホン酸塩である。この添加剤Bは、得られる電解銅箔の表面の光沢化を促進するよう作用する。そして、より具体的に言えば、添加剤Bは、3−メルカプト−1−プロパンスルホン酸(以下、「MPS」と称する。)又はビス(3−スルホプロピル)ジスルフィド(以下、「SPS」と称する。)のいずれか又は混合物を用いることが好ましい。当該電解液中で光沢剤としての効果を発揮しているのはSPSであると考えられる。しかし、このSPSは、硫酸系銅電解液中にMPSを添加すると、当該溶液中で2量体化して生成するものでもある。従って、SPSの直接添加を行うこと無く、MPSを添加しても構わないのである。ここで、MPSの構造式を化5、SPSの構造式を化6として以下に示す。これら構造式の比較から、SPSはMPSの2量体であることが理解できる。   Additive B is a sulfonate salt of an active sulfur compound. This additive B acts to promote glossing of the surface of the obtained electrolytic copper foil. More specifically, additive B is 3-mercapto-1-propanesulfonic acid (hereinafter referred to as “MPS”) or bis (3-sulfopropyl) disulfide (hereinafter referred to as “SPS”). .)) Or a mixture thereof is preferably used. It is considered that SPS exhibits the effect as a brightener in the electrolytic solution. However, this SPS is also formed by dimerization in the solution when MPS is added to the sulfuric acid copper electrolyte. Therefore, MPS may be added without directly adding SPS. Here, the structural formula of MPS is shown below as chemical formula 5 and the structural formula of SPS as chemical formula 6. From the comparison of these structural formulas, it can be understood that SPS is a dimer of MPS.

Figure 2008101267
Figure 2008101267

Figure 2008101267
Figure 2008101267

そして、当該MPS又は/及びSPSの硫酸系銅電解液中の濃度は1ppm〜80ppmであることが好ましく、より好ましい範囲は10ppm〜70ppm、更に好ましい範囲は10ppm〜60ppmである。当該濃度が1ppm未満の場合には、電解銅箔の析出面に光沢が得られにくく、大きな機械的強度の電解銅箔を安定して得ることが困難になる。一方、当該濃度が80ppmを超えると、銅の析出状態が不安定になる傾向にあり、大きな機械的強度の電解銅箔を安定して得ることが困難になる。尚、SPSの濃度は、濃度計算を容易にするために、現時点では最も入手が容易であるMPSのナトリウム塩(以下、「MPS−Na」と称する。)に換算した値を用いた。   The concentration of the MPS or / and SPS in the sulfuric acid copper electrolyte is preferably 1 ppm to 80 ppm, more preferably 10 ppm to 70 ppm, and still more preferably 10 ppm to 60 ppm. When the concentration is less than 1 ppm, it is difficult to obtain gloss on the deposition surface of the electrolytic copper foil, and it is difficult to stably obtain an electrolytic copper foil having a large mechanical strength. On the other hand, if the concentration exceeds 80 ppm, the copper deposition state tends to be unstable, and it becomes difficult to stably obtain an electrolytic copper foil having a large mechanical strength. The concentration of SPS used was a value converted to the sodium salt of MPS (hereinafter referred to as “MPS-Na”), which is most readily available at the present time, in order to facilitate concentration calculation.

添加剤Cは、環状構造を持つ4級アンモニウム塩重合体である。そして、この添加剤Cは、得られる電解銅箔の表面の平滑化を促進するように作用する。そして、具体的には、添加剤Cとして、ジアリルジメチルアンモニウムクロライド(以下、「DDAC」と称する。)重合体を用いることが好ましい。DDACは、重合体構造をとる際に環状構造を成すものであり、環状構造の一部は4級アンモニウムの窒素原子で構成されることになる。そして、DDAC重合体には前記環状構造が5員環や6員環のものなど複数の形態が存在し、実際の重合体は、合成条件によりそれらのいずれか又は混合物であると考えられている。従って、ここでは、これら重合体の内、5員環構造をとっている化合物を代表とし、塩素イオンを対イオンとしたものを化7として以下に示す。このDDAC重合体とは、以下に示す化7のように、DDACが2量体以上の重合体構造をとっているものである。   Additive C is a quaternary ammonium salt polymer having a cyclic structure. And this additive C acts so that the smoothness of the surface of the obtained electrolytic copper foil may be accelerated | stimulated. Specifically, it is preferable to use a diallyldimethylammonium chloride (hereinafter referred to as “DDAC”) polymer as the additive C. DDAC forms a cyclic structure when taking a polymer structure, and a part of the cyclic structure is composed of a quaternary ammonium nitrogen atom. In addition, the DDAC polymer has a plurality of forms such as those in which the cyclic structure is a 5-membered ring or a 6-membered ring, and the actual polymer is considered to be any one or a mixture thereof depending on the synthesis conditions. . Therefore, here, a compound having a five-membered ring structure as a representative of these polymers and a chloride ion as a counter ion is shown as chemical formula 7 below. This DDAC polymer has a polymer structure in which DDAC is a dimer or more as shown in Chemical Formula 7 below.

Figure 2008101267
Figure 2008101267

そして、当該DDAC重合体の、硫酸系銅電解液中の濃度は0.5ppm〜100ppmが好ましく、より好ましい範囲は10ppm〜80ppm、更に好ましくは20ppm〜70ppmである。硫酸系銅電解液中のDDAC重合体の濃度が0.5ppm未満の場合には、平滑化の効果が不十分となって、SPSの濃度をいかに高めても電析銅の析出面が粗くなり、大きな機械的強度を得るために必要な低プロファイル表面を得ることが困難になる。一方、当該DDAC重合体の濃度が100ppmを超えても、銅の析出面を平滑化する効果は向上せず、むしろ析出状態が不安定になって、大きな機械的強度を安定して得ることが困難になる。   The concentration of the DDAC polymer in the sulfuric acid copper electrolyte is preferably 0.5 ppm to 100 ppm, more preferably 10 ppm to 80 ppm, and still more preferably 20 ppm to 70 ppm. If the concentration of the DDAC polymer in the sulfuric acid-based copper electrolyte is less than 0.5 ppm, the smoothing effect will be insufficient, and the deposition surface of electrodeposited copper will become rough no matter how high the SPS concentration is. It becomes difficult to obtain a low profile surface necessary for obtaining a large mechanical strength. On the other hand, even if the concentration of the DDAC polymer exceeds 100 ppm, the effect of smoothing the copper precipitation surface is not improved, but rather the precipitation state becomes unstable, and a large mechanical strength can be stably obtained. It becomes difficult.

更に、前記硫酸系銅電解液中における、前記添加剤Bの濃度と前記添加剤Cの濃度との比[(B濃度)/(C濃度)]の値が0.07〜1.4であることが好ましい。前述のように、添加剤Bと添加剤Cとは、共に高濃度になると析出状態が不安定になるのであるが、この不安定になる傾向は、一方の成分のみが高濃度となったときに見られる。従って、前記添加剤Bの濃度と前記添加剤Cの濃度との比[(B濃度)/(C濃度)]の値が0.07〜1.4とすることによって、両添加剤が安定した効果を発揮できる。そして、[(B濃度)/(C濃度)]の値が0.07〜1.4であれば、後述する塩素添加の効果を発揮しやすいため、より好ましい。   Furthermore, the ratio [(B concentration) / (C concentration)] of the concentration of the additive B and the concentration of the additive C in the sulfuric acid-based copper electrolyte is 0.07 to 1.4. It is preferable. As described above, both additive B and additive C become unstable when the concentration is high, but this tendency to become unstable is when only one component becomes high concentration. Seen in. Therefore, when the value of the ratio [(B concentration) / (C concentration)] between the concentration of the additive B and the concentration of the additive C is 0.07 to 1.4, both additives are stabilized. The effect can be demonstrated. And if the value of [(B density | concentration) / (C density | concentration)] is 0.07-1.4, since the effect of the chlorine addition mentioned later is easy to be exhibited, it is more preferable.

このような、前記硫酸系銅電解液中の、添加剤A〜添加剤Cの成分バランスが最も重要である。これらの量的バランスが上記範囲を逸脱すると、平滑で光沢のある析出面が粗くなって低プロファイルを維持出きなくなり、結果として大きな機械的強度を得ることが困難になってしまう。従って、これらのバランスを良好に維持することで、安定して本件発明に係る極めて大きな機械的強度を有する電解銅箔の製造が可能となる。   The component balance of additive A to additive C in the sulfuric acid copper electrolyte is most important. When these quantitative balances deviate from the above range, the smooth and glossy precipitated surface becomes rough and the low profile cannot be maintained, and as a result, it becomes difficult to obtain a large mechanical strength. Therefore, by maintaining a good balance between these, it becomes possible to stably produce an electrolytic copper foil having an extremely large mechanical strength according to the present invention.

そして、前記硫酸系銅電解液中の塩素濃度は、添加剤A〜添加剤Cを添加済みの状態で、5ppm〜100ppmであることが好ましく、より好ましくは20ppm〜60ppmである。この、塩素濃度が5ppm未満の場合には、電解銅箔の機械的強度が低下しやすくなる。一方、塩素濃度が100ppmを超えると、電解銅箔の電析状態が安定しないために、大きな機械的強度を安定して得ることが困難になる。そして、この塩素濃度の調整には、塩酸又は塩化銅を用いることが好ましい。硫酸系銅電解液の性状を変動させないからである。   The chlorine concentration in the sulfuric acid-based copper electrolyte is preferably 5 ppm to 100 ppm, more preferably 20 ppm to 60 ppm, with the additives A to C already added. When the chlorine concentration is less than 5 ppm, the mechanical strength of the electrolytic copper foil tends to decrease. On the other hand, when the chlorine concentration exceeds 100 ppm, it is difficult to stably obtain a large mechanical strength because the electrodeposition state of the electrolytic copper foil is not stable. For adjusting the chlorine concentration, hydrochloric acid or copper chloride is preferably used. This is because the properties of the sulfuric acid-based copper electrolyte are not changed.

本件発明に係る銅張積層板及びプリント配線板の形態: 本件発明は、前記表面処理電解銅箔を絶縁層構成材料と張合わせてなる銅張積層板を提供する。これら銅張積層板の製造方法に関しては、リジッド銅張積層板であれば、ホットプレス方式や連続ラミネート方式を用いて製造することが可能である。そして、フレキシブル銅張積層板であれば、従来技術であるロールラミネート方式やキャスティング方式を用いることが可能である。 Forms of copper clad laminate and printed wiring board according to the present invention: The present invention provides a copper clad laminate obtained by bonding the surface-treated electrolytic copper foil with an insulating layer constituting material. Regarding the manufacturing method of these copper clad laminated boards, if it is a rigid copper clad laminated board, it can be manufactured using a hot press system or a continuous laminating system. And if it is a flexible copper clad laminated board, it is possible to use the roll lamination system and the casting system which are the prior art.

そして、前記絶縁層構成材料は骨格材を含有するものを用いたリジッド銅張積層板の場合には、使用する銅箔の厚さには特に制限は無く、通常は9μm〜300μm程度の厚さの銅箔が使用される。これに対し、前記絶縁層構成材料として可撓性を有するフレキシブル素材で構成したフレキシブル銅張積層板には、総じてファインピッチ回路の形成が求められるため、8μm〜20μmの厚さの銅箔を使用することが好ましい。   And in the case of the rigid copper clad laminated board using what contains the frame | skeleton material as the said insulating-layer constituent material, there is no restriction | limiting in particular in the thickness of the copper foil to be used, Usually, thickness of about 9 micrometers-about 300 micrometers. The copper foil is used. On the other hand, a flexible copper clad laminate composed of a flexible material having flexibility as the insulating layer constituent material is required to form a fine pitch circuit as a whole, so a copper foil having a thickness of 8 μm to 20 μm is used. It is preferable to do.

前記リジッド銅張積層板では、多層プリント配線板材料として絶縁層厚みをできるだけ薄くする取り組みがなされており、導体層は薄く低プロファイルであることが要求される。しかしながら、銅箔で絶縁層を挟み込んだ構造であっても、使用する銅箔の厚さが12μm以下のように薄い場合には、積層板の機械的強度が不足してハンドリング時に折れが発生する場合がある。しかし、本件発明に係る電解銅箔を用いた銅張積層板では、銅箔の機械的強度が通常電解銅箔の2倍以上のレベルであるため、例えば12μm銅箔を張合わせても、通常箔の35μm銅箔を貼ったものと同等に近い基板強度が得られハンドリング性が向上する。   In the rigid copper-clad laminate, efforts have been made to make the insulating layer thickness as thin as possible as a multilayer printed wiring board material, and the conductor layer is required to be thin and have a low profile. However, even when the insulating layer is sandwiched between copper foils, if the copper foil to be used is as thin as 12 μm or less, the mechanical strength of the laminated board is insufficient, and folding occurs during handling. There is a case. However, in the copper-clad laminate using the electrolytic copper foil according to the present invention, the mechanical strength of the copper foil is more than twice that of a normal electrolytic copper foil. Substrate strength close to that obtained by attaching a 35 μm copper foil is obtained, and handling is improved.

以上の本件発明に係る前記リジッド銅張積層板を用いて得られたリジッドプリント配線板は、電解銅箔層の機械的強度が極めて大きいため、物理的外力によるスクラッチ、断線不良等の少ない高品質なファインピッチ回路を備えることになる。尚、銅張積層板からプリント配線板への加工は、銅張積層板の銅箔表面に直接エッチングレジストを形成して不要部分の銅をエッチング除去するサブトラクティブ法や、パターンめっき用めっきレジストを形成後、スルーホール部分を含む必要配線部分に銅めっきを施し、その後不要である銅をエッチング除去するパターンめっき法等の公知のエッチング加工手法の全ての使用が可能である。   The above-mentioned rigid printed wiring board obtained by using the above-mentioned rigid copper clad laminate according to the present invention has high mechanical strength of the electrolytic copper foil layer, so that it has high quality with little scratches due to physical external force, poor disconnection, etc. A fine pitch circuit. The processing from copper-clad laminates to printed wiring boards can be accomplished by using a subtractive method in which an etching resist is formed directly on the copper foil surface of the copper-clad laminate and etching away unnecessary copper, or a plating resist for pattern plating. After the formation, it is possible to use all known etching techniques such as a pattern plating method in which copper is plated on a necessary wiring portion including a through-hole portion and then unnecessary copper is removed by etching.

また、前記フレキシブル銅張積層板は、その屈曲性と軽量性とが要求されるフレキシブルプリント配線板の製造に用いられる。そして、屈曲性と軽量性とを同時に向上させるために、絶縁層構成材料の薄層化が図られ、フレキシブル素材のフィルム強度が小さくなり、電解銅箔で形成した導体の機械的強度が屈曲性及び引張り強度を決定づける要因となってきた。従って、本件発明に係る電解銅箔を用いたフレキシブル銅張積層板は、形成した導体の機械的強度が極めて大きいため、高屈曲性及び大きい引張り強度を示すことになる。しかも、本件発明に係る電解銅箔は、低プロファイルであるため、フレキシブルプリント配線板に求められるレベルのファインパターン回路の形成にも好適となる。   The flexible copper-clad laminate is used for manufacturing a flexible printed wiring board that requires flexibility and lightness. In order to improve flexibility and lightness at the same time, the insulating layer constituent material is made thinner, the film strength of the flexible material is reduced, and the mechanical strength of the conductor made of electrolytic copper foil is flexible. And has become a factor in determining the tensile strength. Therefore, the flexible copper-clad laminate using the electrolytic copper foil according to the present invention exhibits high flexibility and high tensile strength because the mechanical strength of the formed conductor is extremely high. And since the electrolytic copper foil which concerns on this invention is a low profile, it becomes suitable also for formation of the fine pattern circuit of the level calculated | required by a flexible printed wiring board.

従って、本件発明に係る前記フレキシブル銅張積層板を用いて得られたフレキシブルプリント配線板は、前述の如くファインピッチ回路を備え、且つ、比較的大きな荷重が負荷される場合の配線板として好適である。より具体的に言えば、ICチップをボンディングする際のフライングリードの曲がり、IC等のボンディング時のボンディング圧による伸びが問題で作りえなかったファインピッチTAB等に好適である。   Therefore, the flexible printed wiring board obtained by using the flexible copper-clad laminate according to the present invention has a fine pitch circuit as described above and is suitable as a wiring board when a relatively large load is applied. is there. More specifically, it is suitable for a fine pitch TAB or the like in which flying lead bending when bonding an IC chip or elongation due to bonding pressure during bonding of an IC or the like could not be produced due to problems.

以上、実施の形態に関して述べてきたが、より本件発明に係る電解銅箔等の理解を容易にするため、以下に実施例を示す。   Although the embodiment has been described above, examples are shown below in order to facilitate understanding of the electrolytic copper foil and the like according to the present invention.

<実施例1〜実施例7>
硫酸系銅電解液として、硫酸銅溶液であって銅濃度80g/L、フリー硫酸濃度140g/Lに調整した基本溶液を用い、表1に示す添加剤濃度になるように調整した。濃度調整にはMPS−Na、DDAC重合体(センカ(株)製ユニセンスFPA100L)、添加剤AとしてWM、MSPMT−C、2M−5S及びEURから選択された1種及び塩酸を用いた。具体的には、実施例1〜実施例7として、添加剤の配合が異なる組成の硫酸系銅電解液を用いて複数の電解銅箔を製造した。上記実施例の液組成を、比較例の液組成と合わせて、後の表1に示す。
<Example 1 to Example 7>
As the sulfuric acid-based copper electrolyte, a basic solution which was a copper sulfate solution and was adjusted to have a copper concentration of 80 g / L and a free sulfuric acid concentration of 140 g / L was adjusted to the additive concentration shown in Table 1. For the concentration adjustment, MPS-Na, DDAC polymer (Unisense FPA100L manufactured by Senka Co., Ltd.), additive A, WM, MSPMT-C, 2M-5S, and one selected from EUR were used and hydrochloric acid. Specifically, as Examples 1 to 7, a plurality of electrolytic copper foils were produced using sulfuric acid-based copper electrolytes having different compositions of additives. The liquid compositions of the above examples are shown in Table 1 later together with the liquid compositions of the comparative examples.

電解銅箔の作成は、陰極として表面を#2000の研磨紙を用いて研磨を行ったチタン板電極を、陽極にはDSAを用いて、実施例1では液温50℃、電流密度60A/dmで電解し、厚さ15μmの電解銅箔を作成した。実施例2〜実施例7では液温50℃、電流密度51.5A/dmで電解し、厚さ12μm又は15μmの電解銅箔を作成した。特性の評価には、連続電解して3枚の電解銅箔を作成し、3枚目に得られた電解銅箔を用いた。この電解銅箔の光沢面の表面粗さ(Rzjis)は0.84μm、析出面の表面粗さ(Rzjis)は0.80μm〜1.71μm、光沢度〔Gs(60°)〕は121〜530であった。そして、常態引張り強さの値が80.8kgf/mm〜97.1kgf/mmであり、常態伸び率の値は4.0%〜6.0%であった。そして、この電解銅箔の加熱後引張り強さの値は78.8kgf/mm〜95.7kgf/mmとなり、加熱前引張り強さの値の89.1%〜98.6%に低下していた。また、加熱後伸び率の値は3.2%〜4.5%となり、加熱前伸び率の値の58.9%〜85.0%に低下していた。実施例における結果の詳細は、比較例1〜比較例3の結果と併せて、後の表2に纏めて示す。尚、表2では、これら加熱後の値の加熱前の値に対するパーセンテージを、「維持率(%)」と表記している。 The electrolytic copper foil was prepared by using a titanium plate electrode whose surface was polished with # 2000 polishing paper as the cathode, DSA as the anode, and a liquid temperature of 50 ° C. and a current density of 60 A / dm in Example 1. 2 was used to prepare an electrolytic copper foil having a thickness of 15 μm. In Examples 2 to 7, electrolysis was performed at a liquid temperature of 50 ° C. and a current density of 51.5 A / dm 2 to prepare an electrolytic copper foil having a thickness of 12 μm or 15 μm. For the evaluation of the characteristics, three electrolytic copper foils were prepared by continuous electrolysis, and the third obtained electrolytic copper foil was used. The surface roughness (Rzjis) of the glossy surface of this electrolytic copper foil is 0.84 μm, the surface roughness (Rzjis) of the deposited surface is 0.80 μm to 1.71 μm, and the glossiness [Gs (60 °)] is 121 to 530. Met. Then, the value of the normal tensile strength is 80.8kgf / mm 2 ~97.1kgf / mm 2 , the value of the normal growth rate was 4.0% to 6.0%. And the value of the tensile strength after heating of this electrolytic copper foil is 78.8 kgf / mm 2 to 95.7 kgf / mm 2 , which is reduced to 89.1% to 98.6% of the value of tensile strength before heating. It was. Moreover, the value of the elongation after heating was 3.2% to 4.5%, which was reduced to 58.9% to 85.0% of the value of the elongation before heating. Details of the results in the examples are shown in Table 2 later together with the results of Comparative Examples 1 to 3. In Table 2, the percentage of the value after heating with respect to the value before heating is expressed as “maintenance rate (%)”.

比較例Comparative example

〔比較例1〕
比較例1では実施例と同様の基本溶液として、硫酸銅溶液であって銅濃度80g/L、フリー硫酸濃度140g/Lに調整した。添加剤濃度の調整にはMPS−Na、DDAC重合体(センカ(株)製ユニセンスFPA100L)及び塩酸を用い、添加剤Aを含んでいないことを除いては、実施例と同様の電解液組成とした。上記液組成を、実施例の液組成と合わせて、後の表1に示す。
[Comparative Example 1]
In Comparative Example 1, the same basic solution as in the example was a copper sulfate solution, which was adjusted to have a copper concentration of 80 g / L and a free sulfuric acid concentration of 140 g / L. For the adjustment of the additive concentration, MPS-Na, DDAC polymer (Unicens FPA100L manufactured by Senka Co., Ltd.) and hydrochloric acid were used, and the same electrolyte solution composition as in the examples except that additive A was not included. did. The liquid composition is shown in Table 1 later together with the liquid composition of the examples.

電解銅箔の作成は、陰極として表面を#2000の研磨紙を用いて研磨を行ったチタン板電極を、陽極にはDSAを用いて、液温50℃、電流密度60A/dmで電解し、厚さ15μmの電解銅箔を作成した。特性の評価には実施例と同様に連続電解して3枚の電解銅箔を作成し、3枚目に得られた電解銅箔を用いた。この電解銅箔の光沢面の表面粗さ(Rzjis)は0.88μmであり、析出面の表面粗さ(Rzjis)は0.44μmで、光沢度〔Gs(60°)〕は600を超えていた。そして、常態引張り強さの値が35.4kgf/mmで、常態伸び率の値は14.3%であった。更に、この電解銅箔の加熱後引張り強さの値は30.7kgf/mmであり、加熱前引張り強さの値の86.7%に低下していた。そして、加熱後伸び率の値は14.8%であり、加熱前伸び率の値の103.5%に上昇した。実施例及び比較例2、比較例3の結果と併せて、後の表2に纏めて示す。 The electrolytic copper foil was prepared by electrolyzing a titanium plate electrode whose surface was polished with # 2000 polishing paper as the cathode and DSA as the anode at a liquid temperature of 50 ° C. and a current density of 60 A / dm 2. An electrolytic copper foil having a thickness of 15 μm was prepared. For the evaluation of the characteristics, three electrolytic copper foils were prepared by continuous electrolysis in the same manner as in the Examples, and the electrolytic copper foil obtained on the third sheet was used. The surface roughness (Rzjis) of the glossy surface of this electrolytic copper foil is 0.88 μm, the surface roughness (Rzjis) of the deposited surface is 0.44 μm, and the glossiness [Gs (60 °)] exceeds 600. It was. The normal tensile strength was 35.4 kgf / mm 2 and the normal elongation was 14.3%. Furthermore, the value of the tensile strength after heating of this electrolytic copper foil was 30.7 kgf / mm 2 , which was reduced to 86.7% of the value of tensile strength before heating. And the value of the elongation after heating was 14.8%, and increased to 103.5% of the value of the elongation before heating. The results are shown in Table 2 below together with the results of Examples and Comparative Examples 2 and 3.

〔比較例2〕
比較例2では、特許文献2に開示の実施例2をトレースした。具体的には、硫酸濃度を100g/L、硫酸銅五水和物濃度を280g/Lの硫酸系硫酸銅水溶液を調製し、添加剤としてヒドロキシエチルセルロース:80mg/L、ポリエチレンイミン:30mg/L、3−メルカプト−1− プロパンスルホン酸ナトリウム:170μmol/L、アセチレングリコール:0.7mg/L 及び塩素イオン:80mg/Lを含む電解液を調整した。
[Comparative Example 2]
In Comparative Example 2, Example 2 disclosed in Patent Document 2 was traced. Specifically, a sulfuric acid-based copper sulfate aqueous solution having a sulfuric acid concentration of 100 g / L and a copper sulfate pentahydrate concentration of 280 g / L was prepared, and hydroxyethyl cellulose: 80 mg / L, polyethyleneimine: 30 mg / L, as additives. An electrolytic solution containing sodium 3-mercapto-1-propanesulfonate: 170 μmol / L, acetylene glycol: 0.7 mg / L and chloride ion: 80 mg / L was prepared.

この電解液の液温を40℃とし、実施例と同様の装置を用いて、電解電流密度40A/dmで電解し、厚さ18μm の電解銅箔を作成した。特性の評価には、連続電解して3枚の電解銅箔を作成し、3枚目に得られた電解銅箔を用いた。この電解銅箔の光沢面の表面粗さ(Rzjis)は実施例と同じく、0.84μmであった。そして、析出面の表面粗さ(Rzjis)は1.94μm、常態引張り強さの値が57.7kgf/mm、常態伸び率の値は6.8%であった。また、この電解銅箔の加熱後引張り強さの値は54.7kgf/mmとなり、加熱前引張り強さの値の94.8%に低下した。更に、加熱後伸び率の値は7.3%となり、加熱前伸び率の値の107.4%に上昇した。実施例及び比較例1、比較例3の結果と併せて、後の表2に纏めて示す。 The temperature of this electrolytic solution was set to 40 ° C., and electrolysis was performed at an electrolytic current density of 40 A / dm 2 using the same apparatus as in the example, to prepare an electrolytic copper foil having a thickness of 18 μm. For the evaluation of the characteristics, three electrolytic copper foils were prepared by continuous electrolysis, and the third obtained electrolytic copper foil was used. The surface roughness (Rzjis) of the glossy surface of this electrolytic copper foil was 0.84 μm, as in the example. And the surface roughness (Rzjis) of the precipitation surface was 1.94 μm, the value of normal tensile strength was 57.7 kgf / mm 2 , and the value of normal elongation was 6.8%. Moreover, the value of the tensile strength after heating of this electrolytic copper foil was 54.7 kgf / mm 2 , which was reduced to 94.8% of the value of tensile strength before heating. Furthermore, the value of the elongation after heating was 7.3%, increasing to 107.4% of the value of the elongation before heating. Together with the results of Examples, Comparative Example 1 and Comparative Example 3, they are summarized in Table 2 below.

〔比較例3〕
比較例3では、特許文献2に開示の実施例3をトレースした。具体的には、硫酸濃度を100g/L、硫酸銅五水和物濃度を280g/Lの硫酸系硫酸銅水溶液を調製し、添加剤としてヒドロキシエチルセルロース:6mg/L、ポリエチレンイミン:12mg/L、3−メルカプト−1− プロパンスルホン酸ナトリウム:60μmol/L、アセチレングリコール:0.5mg/L 及び塩素イオン:30mg/Lを含む電解液を調整した。
[Comparative Example 3]
In Comparative Example 3, Example 3 disclosed in Patent Document 2 was traced. Specifically, a sulfuric acid-based copper sulfate aqueous solution having a sulfuric acid concentration of 100 g / L and a copper sulfate pentahydrate concentration of 280 g / L was prepared. Hydroxyethyl cellulose: 6 mg / L, polyethyleneimine: 12 mg / L, An electrolyte containing sodium 3-mercapto-1-propanesulfonate: 60 μmol / L, acetylene glycol: 0.5 mg / L and chloride ion: 30 mg / L was prepared.

この電解液の液温を40℃とし、実施例と同様の装置を用いて、電解電流密度40A/dmで電解し、厚さ18μm の電解銅箔を作成した。特性の評価には、連続電解して3枚の電解銅箔を作成し、3枚目に得られた電解銅箔を用いた。この電解銅箔の光沢面の表面粗さ(Rzjis)は実施例と同じく、0.84μmであった。そして、析出面の表面粗さ(Rzjis)は1.42μm、常態引張り強さの値が57.8kgf/mm、常態伸び率の値は6.4%であった。また、この電解銅箔の加熱後引張り強さの値は55.0kgf/mmとなり、加熱前引張り強さの値の95.2%に低下した。更に、加熱後伸び率の値は8.4%となり、加熱前伸び率の値の131.3%に上昇した。実施例及び比較例1、比較例2の結果と併せて、以下の表2に纏めて示す。 The temperature of this electrolytic solution was set to 40 ° C., and electrolysis was performed at an electrolytic current density of 40 A / dm 2 using the same apparatus as in the example, to prepare an electrolytic copper foil having a thickness of 18 μm. For the evaluation of the characteristics, three electrolytic copper foils were prepared by continuous electrolysis, and the third obtained electrolytic copper foil was used. The surface roughness (Rzjis) of the glossy surface of this electrolytic copper foil was 0.84 μm, as in the example. And the surface roughness (Rzjis) of the precipitation surface was 1.42 μm, the value of normal tensile strength was 57.8 kgf / mm 2 , and the value of normal elongation was 6.4%. Moreover, the value of the tensile strength after heating of this electrolytic copper foil was 55.0 kgf / mm 2 , which was reduced to 95.2% of the value of tensile strength before heating. Furthermore, the value of the elongation after heating was 8.4%, which was increased to 131.3% of the value of the elongation before heating. The results are shown in Table 2 below together with the results of Examples and Comparative Examples 1 and 2.

Figure 2008101267
Figure 2008101267

Figure 2008101267
Figure 2008101267

<実施例と比較例1との対比>
実施例と比較例1との違いは、表1に示すように、添加剤Aの有無であり、実施例で用いた電解液は、比較例で用いた電解液に添加剤A(WM、MSPMT−C、2M−5S、EUR)を含ませた構成となっている。従って、添加剤Aを含ませることにより、得られる電解銅箔の常態引張り強さの値が大きくなり、加熱による値の低下が小さくなっている。また、実施例の常態伸び率が比較例の常態伸び率に比べて小さな値を示すと同時に、実施例では加熱により更に伸び率の値が低下する傾向が現れている。この現象は、焼鈍硬化の効果が現れていると見ることもできる。即ち、実施例で得られた電解銅箔と、比較例1で得られた電解銅箔との違いは、表面粗さ、光沢度と焼鈍硬化の発現の可否とにおいて明確である。
<Contrast between Example and Comparative Example 1>
As shown in Table 1, the difference between the example and the comparative example 1 is the presence or absence of the additive A, and the electrolytic solution used in the example was added to the electrolytic solution used in the comparative example by adding the additive A (WM, MSPMT). -C, 2M-5S, and EUR). Therefore, by including the additive A, the value of the normal tensile strength of the obtained electrolytic copper foil is increased, and the decrease in the value due to heating is reduced. In addition, the normal elongation rate of the example shows a smaller value than the normal elongation rate of the comparative example, and at the same time, in the example, the value of the elongation rate tends to be further lowered by heating. This phenomenon can also be seen as an effect of annealing hardening. That is, the difference between the electrolytic copper foil obtained in the example and the electrolytic copper foil obtained in Comparative Example 1 is clear in terms of surface roughness, glossiness, and whether or not annealing hardening can be manifested.

<実施例と比較例2及び比較例3との対比>
比較例2及び比較例3では特許文献2に記載の製造条件をトレースした。しかし、表2に示すように、特許文献2の実施例に開示の常態引張り強さは得られなかった。特許文献2の実施例2では890MPaと記載されているが、565MPa(比較例2の結果を単位換算)しか得られていない。また、特許文献2の実施例3では900MPaと記載されているが、567MPa(比較例3の結果を単位換算)しか得られていない。そして、比較例2及び比較例3では加熱による伸び率の上昇が見られている。この点では、比較例1で得られた電解銅箔よりも大きな常態引張り強さの値は示すが、機械特性に関しては、比較例1で得られた電解銅箔と同様の特性傾向を有する電解銅箔であると言える。即ち、本件発明に係る電解銅箔と比較すると、析出面の表面粗さは同等であるが、光沢度と焼鈍硬化の発現傾向とにおいて違いが明確である。尚、比較例2及び比較例3は、電解銅箔の分野における当事者である本件発明者が、数ヶ月間にわたり条件を調整しながら繰り返し試験を実施した中でのベストデータである。
<Contrast of Example with Comparative Example 2 and Comparative Example 3>
In Comparative Example 2 and Comparative Example 3, the production conditions described in Patent Document 2 were traced. However, as shown in Table 2, the normal tensile strength disclosed in the examples of Patent Document 2 was not obtained. In Example 2 of Patent Document 2, it is described as 890 MPa, but only 565 MPa (the result of Comparative Example 2 is converted in units) is obtained. Moreover, although it is described as 900 MPa in Example 3 of Patent Document 2, only 567 MPa (the result of Comparative Example 3 is converted into a unit) is obtained. And in the comparative example 2 and the comparative example 3, the raise of the elongation rate by heating is seen. In this respect, the value of the normal tensile strength greater than that of the electrolytic copper foil obtained in Comparative Example 1 is shown, but regarding the mechanical properties, the electrolytic property having the same characteristic tendency as that of the electrolytic copper foil obtained in Comparative Example 1 is shown. It can be said that it is copper foil. That is, when compared with the electrolytic copper foil according to the present invention, the surface roughness of the deposited surface is the same, but the difference is clear in the glossiness and the tendency of annealing hardening. In addition, the comparative example 2 and the comparative example 3 are the best data in which this inventor who is a party in the field of the electrolytic copper foil repeatedly performed the test while adjusting the conditions for several months.

尚、上記実施例では、作成する電解銅箔の厚さを2種類とし、電解条件は、厚い15μm銅箔で高電流密度における電解を実施している。そして、表面粗さを管理するためには、高電流密度で厚物を作成する方が困難であると当業者は認識しているが、上記では15μm銅箔で表面粗さの小さなデータが得られている。従って、12μm銅箔と15μm銅箔の特性に与えている電解条件の影響はほとんど無いと考えられ、評価データは直接比較することができる。また、本件発明に係る電解銅箔の製造に際し、硫酸系銅電解液の銅濃度を50g/L〜120g/L、フリー硫酸濃度を60g/L〜250g/L程度とした電解液で良好な結果を得ているが、実操業にあたっては設備仕様等を考慮して、最適な範囲に組成変更を行うことも可能である。そして、上記実施例に記載の添加剤A及びMPS、DDAC重合体等の添加方法又は添加形態にはこだわらず、MPS−Naの代わりに他のアルカリ金属又はアルカリ土類金属塩を用いてもかまわず、可能であればSPS塩を用いることが好ましい。   In the above-described embodiment, the thickness of the electrolytic copper foil to be prepared is two types, and the electrolysis is carried out at a high current density with a thick 15 μm copper foil. In order to manage the surface roughness, those skilled in the art recognize that it is more difficult to create a thick material with a high current density. However, in the above, data with a small surface roughness is obtained with a 15 μm copper foil. It has been. Therefore, it is considered that there is almost no influence of the electrolysis conditions on the characteristics of the 12 μm copper foil and the 15 μm copper foil, and the evaluation data can be directly compared. In addition, in the production of the electrolytic copper foil according to the present invention, good results are obtained with an electrolytic solution in which the copper concentration of the sulfuric acid-based copper electrolytic solution is 50 g / L to 120 g / L and the free sulfuric acid concentration is about 60 g / L to 250 g / L. However, in actual operation, it is possible to change the composition within the optimum range in consideration of equipment specifications. Then, regardless of the addition method or addition form of additive A and MPS, DDAC polymer, etc. described in the above examples, other alkali metals or alkaline earth metal salts may be used instead of MPS-Na. If possible, it is preferable to use an SPS salt.

そして、本件発明に係る硫酸系銅電解液は、その他の添加剤類の存在を否定しているものでも無く、上記添加剤類の効果を更に際だたせたり、連続生産時の品質安定化に寄与できること等が確認されているものであれば任意に添加してかまわない。更に、工程内外での混入異物の除去を目的とする濾過設備はもちろんのこと、添加剤類の分解生成物の影響が懸念されるようであれば活性炭吸着等の手段を適切に用いることも有用である。   The sulfate-based copper electrolyte according to the present invention does not deny the presence of other additives, further enhances the effects of the additives, and contributes to quality stabilization during continuous production. If it is confirmed that it can be done, it may be added arbitrarily. In addition to filtration equipment for the purpose of removing foreign substances inside and outside the process, it is also useful to appropriately use means such as activated carbon adsorption if there is concern about the effects of decomposition products of additives. It is.

本件発明に係る電解銅箔は、銅の析出結晶粒子が微細で、その粒子径のバラツキが従来に無い程に小さいという特徴を備える。その結果、従来市場に供給されてきた低プロファイル電解銅箔と同等の低プロファイルで光沢を有する析出面を備え、且つ、極めて大きな機械的強度を有する。よって、その極めて大きな機械的強度故に、特にテープ オートメーティド ボンディング(TAB)基板のファインピッチ配線の形成に好適である。また、特許文献1に示されるような、リチウムイオン電池に代表される、非水電解液二次電池の集電体としても利用できる。特に、充放電時の体積変化が大きい、SiやSnを含む活物質を使用した負極の集電体として好適に用いることができる。   The electrolytic copper foil according to the present invention is characterized in that the precipitated crystal particles of copper are fine and the variation in the particle diameter is so small as never before. As a result, it has a precipitation surface having gloss with a low profile equivalent to that of a low profile electrolytic copper foil that has been supplied to the market, and has a very large mechanical strength. Therefore, because of its extremely high mechanical strength, it is particularly suitable for the formation of fine pitch wiring on a tape automated bonding (TAB) substrate. Moreover, it can utilize also as a collector of the nonaqueous electrolyte secondary battery represented by the lithium ion battery as shown by patent document 1. FIG. In particular, it can be suitably used as a current collector for a negative electrode using an active material containing Si or Sn, which has a large volume change during charge and discharge.

フライングリードを持つTABを用いたLCDパネル駆動用のデバイス(IC)の実装例を示す模式図である。It is a schematic diagram which shows the example of mounting of the device (IC) for LCD panel drive using TAB with a flying lead. フィルムによる裏打ちがあるCOFを用いたLCDパネル駆動用のデバイス(IC)の実装例を示す模式図である。It is a schematic diagram which shows the example of mounting of the device (IC) for LCD panel drive using COF with the backing by a film.

符号の説明Explanation of symbols

1 フライングリード
2、2’ 銅箔で形成された回路
3 接着剤
4、4’ ベースフィルム(ポリイミドフィルム)
5、5’ ソルダーレジスト
6 裏側ソルダーレジスト
7、7’ デバイス(ICチップ)
8、8’ IC接続部(図1ではデバイスホールとも言う。)
9 ギャングボンディング用支持台
10、10’ 第1端子部(液晶ディスプレイパネルとの接続部)
11、11’ 第2端子部(プリント配線板との接続部)
12、12’ 折り曲げ部
DESCRIPTION OF SYMBOLS 1 Flying lead 2, 2 'Circuit formed with copper foil 3 Adhesive 4, 4' Base film (polyimide film)
5, 5 'Solder resist 6 Back side solder resist 7, 7' Device (IC chip)
8, 8 ′ IC connection (also called device hole in FIG. 1)
9 Support base for gang bonding 10, 10 '1st terminal part (connection part with a liquid crystal display panel)
11, 11 '2nd terminal part (connection part with a printed wiring board)
12, 12 'bent part

Claims (23)

銅電解液を電解することにより得られる電解銅箔において、
常態における引張り強さ(以下、「常態引張り強さ」と称する。)の値が、70kgf/mm〜100kgf/mmである電解銅箔。
In the electrolytic copper foil obtained by electrolyzing the copper electrolyte,
Tensile at normal strength (hereinafter, referred to as "normal tensile strength".) The value of the electrolytic copper foil is 70kgf / mm 2 ~100kgf / mm 2 .
180℃で60分間加熱した後の引張り強さ(以下、「加熱後引張り強さ」と称する。)の値が、常態引張り強さの値の85%以上である請求項1に記載の電解銅箔。 The electrolytic copper according to claim 1, wherein the value of tensile strength after heating at 180 ° C for 60 minutes (hereinafter referred to as "tensile strength after heating") is 85% or more of the value of normal tensile strength. Foil. 製造後30日経過後の常態引張り強さの値が、65kgf/mm以上である請求項1又は請求項2に記載の電解銅箔。 The electrolytic copper foil according to claim 1 or 2 , wherein the value of the normal tensile strength after 30 days from the production is 65 kgf / mm 2 or more. 常態における伸び率(以下、「常態伸び率」と称する。)の値が、3%〜15%である請求項1〜請求項3のいずれかに記載の電解銅箔。 The electrolytic copper foil according to any one of claims 1 to 3, wherein a value of elongation in a normal state (hereinafter referred to as "normal elongation") is 3% to 15%. 180℃で60分間加熱した後の伸び率(以下、「加熱後伸び率」と称する。)の値が、常態伸び率の値以下である請求項1〜請求項4のいずれかに記載の電解銅箔。 5. The electrolysis according to claim 1, wherein a value of elongation after heating at 180 ° C. for 60 minutes (hereinafter referred to as “elongation after heating”) is not more than a value of normal elongation. Copper foil. 析出面の幅方向に対して60°の反射角で測定した光沢度(以下、「光沢度〔Gs(60°)〕」と称する。)の値が、80以上である請求項1〜請求項5のいずれかに記載の電解銅箔。 The value of glossiness (hereinafter referred to as “glossiness [Gs (60 °)]”) measured at a reflection angle of 60 ° with respect to the width direction of the deposition surface is 80 or more. The electrolytic copper foil in any one of 5. 請求項1〜請求項6のいずれかに係る電解銅箔の表面に粗化処理、防錆処理、シランカップリング剤処理のいずれか1種又は2種以上を行ったことを特徴とする表面処理電解銅箔。 The surface treatment which performed any 1 type, or 2 or more types of the roughening process, the antirust process, and the silane coupling agent process on the surface of the electrolytic copper foil which concerns on any one of Claims 1-6 Electrolytic copper foil. 硫酸系銅電解液を用いた電解法により電解銅箔を製造する方法において、
当該硫酸系銅電解液は、下記添加剤A〜添加剤Cを含むことを特徴とする請求項1〜請求項6のいずれかに記載の電解銅箔の製造方法。
添加剤A:ベンゼン環とNを含む複素環とを備え、該複素環にはメルカプト基が結合している構造を有する化合物又はチオ尿素系化合物。
添加剤B:活性硫黄化合物のスルホン酸塩。
添加剤C:環状構造を持つ4級アンモニウム塩重合体。
In a method for producing an electrolytic copper foil by an electrolytic method using a sulfuric acid-based copper electrolyte,
The said sulfuric acid-type copper electrolyte solution contains the following additive A-additive C, The manufacturing method of the electrolytic copper foil in any one of Claims 1-6 characterized by the above-mentioned.
Additive A: a compound or thiourea compound comprising a benzene ring and a heterocyclic ring containing N, and having a structure in which a mercapto group is bonded to the heterocyclic ring.
Additive B: sulfonate salt of active sulfur compound.
Additive C: A quaternary ammonium salt polymer having a cyclic structure.
前記添加剤Aは、イミダゾール系化合物、チアゾール系化合物、テトラゾール系化合物又は両端に有するアルカン基の炭素数が2以上であるチオ尿素系化合物のいずれか1種又は2種以上である請求項8に記載の電解銅箔の製造方法。 9. The additive A is any one or more of imidazole compounds, thiazole compounds, tetrazole compounds, or thiourea compounds having two or more alkane groups at both ends. The manufacturing method of the electrolytic copper foil of description. 前記添加剤Aは、そのベンゼン環にスルホン基が結合しているものである請求項8又は請求項9に記載の電解銅箔の製造方法。 The said additive A is a manufacturing method of the electrolytic copper foil of Claim 8 or Claim 9 in which the sulfone group has couple | bonded with the benzene ring. 前記添加剤Aは、2−メルカプト−5−ベンズイミダゾールスルホン酸、3(5−メルカプト−1H−テトラゾールイル)ベンゼンスルホナート、2−メルカプトベンゾチアゾール又はN−Nジエチルチオ尿素から選ばれる1種又は2種以上である請求項8〜請求項10のいずれかに記載の電解銅箔の製造方法。 The additive A is one or two selected from 2-mercapto-5-benzimidazolesulfonic acid, 3 (5-mercapto-1H-tetrazolyl) benzenesulfonate, 2-mercaptobenzothiazole, or NN diethylthiourea. It is a seed | species or more, The manufacturing method of the electrolytic copper foil in any one of Claims 8-10. 前記添加剤Aの前記硫酸系銅電解液中における合算濃度は、1ppm〜50ppmである請求項8〜請求項11のいずれかに記載の電解銅箔の製造方法。 The method for producing an electrolytic copper foil according to any one of claims 8 to 11, wherein a combined concentration of the additive A in the sulfuric acid-based copper electrolyte is 1 ppm to 50 ppm. 前記添加剤Bは、3−メルカプト−1−プロパンスルホン酸又はビス(3−スルホプロピル)ジスルフィドのいずれか又は混合物である請求項8〜請求項12のいずれかに記載の電解銅箔の製造方法。 The method for producing an electrolytic copper foil according to any one of claims 8 to 12, wherein the additive B is any one or a mixture of 3-mercapto-1-propanesulfonic acid and bis (3-sulfopropyl) disulfide. . 前記添加剤Bの前記硫酸系銅電解液中における濃度は、1ppm〜80ppmである請求項8〜請求項13のいずれかに記載の電解銅箔の製造方法。 The method for producing an electrolytic copper foil according to any one of claims 8 to 13, wherein the concentration of the additive B in the sulfuric acid-based copper electrolyte is 1 ppm to 80 ppm. 前記添加剤Cは、ジアリルジメチルアンモニウムクロライド重合体である請求項8〜請求項14のいずれかに記載の電解銅箔の製造方法。 The said additive C is a diallyldimethylammonium chloride polymer, The manufacturing method of the electrolytic copper foil in any one of Claims 8-14. 前記添加剤Cの前記硫酸系銅電解液中における濃度は、0.5ppm〜100ppmである請求項8〜請求項15のいずれかに記載の電解銅箔の製造方法。 The method for producing an electrolytic copper foil according to any one of claims 8 to 15, wherein a concentration of the additive C in the sulfuric acid-based copper electrolyte is 0.5 ppm to 100 ppm. 前記硫酸系銅電解液中における、前記添加剤Bの濃度と前記添加剤Cの濃度との比[(B濃度)/(C濃度)]の値が0.07〜1.4である請求項8〜請求項16のいずれかに記載の電解銅箔の製造方法。 The ratio [(B concentration) / (C concentration)] of the concentration of the additive B and the concentration of the additive C in the sulfuric acid-based copper electrolyte is 0.07 to 1.4. The manufacturing method of the electrolytic copper foil in any one of Claims 8-16. 前記硫酸系銅電解液中における塩素濃度は、5ppm〜100ppmである請求項8〜請求項17のいずれかに記載の電解銅箔の製造方法。 The method for producing an electrolytic copper foil according to any one of claims 8 to 17, wherein a chlorine concentration in the sulfuric acid-based copper electrolyte is 5 ppm to 100 ppm. 請求項7に記載の表面処理電解銅箔を絶縁層構成材料と張合わせてなる銅張積層板。 A copper clad laminate obtained by bonding the surface-treated electrolytic copper foil according to claim 7 to an insulating layer constituting material. 前記絶縁層構成材料は、骨格材を含有するものであることを特徴とする請求項19に記載のリジッド銅張積層板。 The rigid copper-clad laminate according to claim 19, wherein the insulating layer constituent material contains a skeleton material. 請求項20に記載のリジッド銅張積層板を用いて得られたリジッドプリント配線板。 A rigid printed wiring board obtained using the rigid copper clad laminate according to claim 20. 前記絶縁層構成材料は、可撓性を有するフレキシブル素材で構成したものであることを特徴とする請求項19に記載のフレキシブル銅張積層板。 20. The flexible copper clad laminate according to claim 19, wherein the insulating layer constituting material is constituted by a flexible material having flexibility. 請求項22に記載のフレキシブル銅張積層板を用いて得られたフレキシブルプリント配線板。 A flexible printed wiring board obtained using the flexible copper-clad laminate according to claim 22.
JP2007116707A 2006-04-28 2007-04-26 Electrolytic copper foil, surface-treated copper foil using the electrolytic copper foil, copper-clad laminate using the surface-treated copper foil, and method for producing the electrolytic copper foil Active JP5255229B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007116707A JP5255229B2 (en) 2006-04-28 2007-04-26 Electrolytic copper foil, surface-treated copper foil using the electrolytic copper foil, copper-clad laminate using the surface-treated copper foil, and method for producing the electrolytic copper foil

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2006126720 2006-04-28
JP2006126720 2006-04-28
JP2006252595 2006-09-19
JP2006252595 2006-09-19
JP2007116707A JP5255229B2 (en) 2006-04-28 2007-04-26 Electrolytic copper foil, surface-treated copper foil using the electrolytic copper foil, copper-clad laminate using the surface-treated copper foil, and method for producing the electrolytic copper foil

Publications (2)

Publication Number Publication Date
JP2008101267A true JP2008101267A (en) 2008-05-01
JP5255229B2 JP5255229B2 (en) 2013-08-07

Family

ID=39435817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007116707A Active JP5255229B2 (en) 2006-04-28 2007-04-26 Electrolytic copper foil, surface-treated copper foil using the electrolytic copper foil, copper-clad laminate using the surface-treated copper foil, and method for producing the electrolytic copper foil

Country Status (1)

Country Link
JP (1) JP5255229B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008285727A (en) * 2007-05-18 2008-11-27 Furukawa Circuit Foil Kk Electrolytic copper foil with high tensile-strength, and manufacturing method therefor
JP2009299100A (en) * 2008-06-10 2009-12-24 Mitsui Mining & Smelting Co Ltd Electrolytic copper foil and method for manufacturing electrolytic copper foil
WO2012070589A1 (en) * 2010-11-22 2012-05-31 三井金属鉱業株式会社 Surface treated copper foil
JP2012140660A (en) * 2010-12-28 2012-07-26 Nippon Denkai Kk Electrolytic copper foil, and method for manufacturing the same
JP2012172195A (en) * 2011-02-22 2012-09-10 Jx Nippon Mining & Metals Corp Copper electrolyte
WO2012133565A1 (en) 2011-03-30 2012-10-04 Jx日鉱日石金属株式会社 Electrolytic copper foil and method for producing electrolytic copper foil
WO2013002279A1 (en) * 2011-06-30 2013-01-03 古河電気工業株式会社 Electrolytic copper foil, method for producing electrolytic copper foil, and lithium ion secondary cell using electrolytic copper foil as collector
WO2013129664A1 (en) 2012-03-02 2013-09-06 Jx日鉱日石金属株式会社 Electrolytic copper foil, and negative electrode collector for secondary battery
JP2014037583A (en) * 2012-08-17 2014-02-27 Jx Nippon Mining & Metals Corp Electrolytic copper foil, and secondary battery collector and secondary battery using the same
WO2014119656A1 (en) * 2013-01-31 2014-08-07 三井金属鉱業株式会社 Electrolytic copper foil, processes for producing said electrolytic copper foil, and surface-treated copper foil obtained using said electrolytic copper foil
JP2020026562A (en) * 2018-08-16 2020-02-20 ケイシーエフ テクノロジース カンパニー リミテッド Copper foil having excellent workability and charge-discharge behavior, electrode comprising the same, secondary battery comprising the same, and manufacturing method therefor
US10658655B2 (en) 2017-06-28 2020-05-19 Kcf Technologies Co., Ltd. Copper foil having improved workability and charge/discharge characteristics, electrode including the same, secondary battery including the same and method for manufacturing the same
CN111455414A (en) * 2020-03-09 2020-07-28 深圳市惟华电子科技有限公司 Additive for producing gradual change type electrolytic copper foil
WO2021014778A1 (en) * 2019-07-22 2021-01-28 テックス・テクノロジー株式会社 Method for producing electrolytic copper foil
CN113832503A (en) * 2021-09-06 2021-12-24 九江德福科技股份有限公司 Composite additive for improving modulus of lithium-ion battery copper foil and electrolytic copper foil production method
WO2022054597A1 (en) * 2020-09-11 2022-03-17 古河電気工業株式会社 Electrolytic copper foil, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
CN114959803A (en) * 2022-04-25 2022-08-30 建滔(连州)铜箔有限公司 Outline-free electrolytic copper foil for PTFE ultrahigh frequency plate and production process thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07188969A (en) * 1993-10-22 1995-07-25 Gould Electron Inc Electrodeposited copper foil and its preparation
WO1997043466A1 (en) * 1996-05-13 1997-11-20 Mitsui Mining & Smelting Co., Ltd. High-tensile electrolytic copper foil and process for producing the same
JPH10330983A (en) * 1997-05-30 1998-12-15 Fukuda Metal Foil & Powder Co Ltd Electrolytic copper foil and its production
JPH11501268A (en) * 1996-08-23 1999-02-02 グールド エレクトロニクス インコーポレイテッド High performance flexible laminate
JP2001123289A (en) * 1999-10-27 2001-05-08 Dowa Mining Co Ltd Electrolytic copper foil and method for manufacturing the same
JP2001329390A (en) * 2000-05-18 2001-11-27 Mitsui Mining & Smelting Co Ltd Electrolyzer of electrolytic copper foil and electrolytic copper foil obtained in the electrolyzer
WO2004055246A1 (en) * 2002-12-18 2004-07-01 Nikko Materials Co., Ltd. Copper electrolytic solution and electrolytic copper foil produced therewith
JP2004339558A (en) * 2003-05-14 2004-12-02 Fukuda Metal Foil & Powder Co Ltd Low rough surface electrolytic copper foil, and its production method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07188969A (en) * 1993-10-22 1995-07-25 Gould Electron Inc Electrodeposited copper foil and its preparation
JP2002129373A (en) * 1993-10-22 2002-05-09 Ga Tek Inc Electrodeposited copper foil and manufacturing method therefor
WO1997043466A1 (en) * 1996-05-13 1997-11-20 Mitsui Mining & Smelting Co., Ltd. High-tensile electrolytic copper foil and process for producing the same
JPH11501268A (en) * 1996-08-23 1999-02-02 グールド エレクトロニクス インコーポレイテッド High performance flexible laminate
JPH10330983A (en) * 1997-05-30 1998-12-15 Fukuda Metal Foil & Powder Co Ltd Electrolytic copper foil and its production
JP2001123289A (en) * 1999-10-27 2001-05-08 Dowa Mining Co Ltd Electrolytic copper foil and method for manufacturing the same
JP2001329390A (en) * 2000-05-18 2001-11-27 Mitsui Mining & Smelting Co Ltd Electrolyzer of electrolytic copper foil and electrolytic copper foil obtained in the electrolyzer
WO2004055246A1 (en) * 2002-12-18 2004-07-01 Nikko Materials Co., Ltd. Copper electrolytic solution and electrolytic copper foil produced therewith
JP2004339558A (en) * 2003-05-14 2004-12-02 Fukuda Metal Foil & Powder Co Ltd Low rough surface electrolytic copper foil, and its production method

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008285727A (en) * 2007-05-18 2008-11-27 Furukawa Circuit Foil Kk Electrolytic copper foil with high tensile-strength, and manufacturing method therefor
JP2009299100A (en) * 2008-06-10 2009-12-24 Mitsui Mining & Smelting Co Ltd Electrolytic copper foil and method for manufacturing electrolytic copper foil
WO2012070591A1 (en) * 2010-11-22 2012-05-31 三井金属鉱業株式会社 Surface-treated copper foil
JPWO2012070589A1 (en) * 2010-11-22 2014-05-19 三井金属鉱業株式会社 Surface treated copper foil
WO2012070589A1 (en) * 2010-11-22 2012-05-31 三井金属鉱業株式会社 Surface treated copper foil
KR101593282B1 (en) 2010-11-22 2016-02-11 미쓰이금속광업주식회사 Surface-treated copper foil
US9138964B2 (en) 2010-11-22 2015-09-22 Mitsui Mining & Smelting Co., Ltd Surface-treated copper foil
JP5714575B2 (en) * 2010-11-22 2015-05-07 三井金属鉱業株式会社 Surface treated copper foil
KR20130121880A (en) * 2010-11-22 2013-11-06 미쓰이금속광업주식회사 Surface-treated copper foil
KR101482898B1 (en) * 2010-11-22 2015-01-15 미쓰이금속광업주식회사 Surface treated copper foil
JP5400960B2 (en) * 2010-11-22 2014-01-29 三井金属鉱業株式会社 Surface treated copper foil
JPWO2012070591A1 (en) * 2010-11-22 2014-05-19 三井金属鉱業株式会社 Surface treated copper foil
JP2012140660A (en) * 2010-12-28 2012-07-26 Nippon Denkai Kk Electrolytic copper foil, and method for manufacturing the same
JP2012172195A (en) * 2011-02-22 2012-09-10 Jx Nippon Mining & Metals Corp Copper electrolyte
CN103429793B (en) * 2011-03-30 2019-03-05 Jx日矿日石金属株式会社 The manufacturing method of electrolytic copper foil and electrolytic copper foil
KR20150080024A (en) 2011-03-30 2015-07-08 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Electrolytic copper foil and method for producing electrolytic copper foil
WO2012133565A1 (en) 2011-03-30 2012-10-04 Jx日鉱日石金属株式会社 Electrolytic copper foil and method for producing electrolytic copper foil
CN103429793A (en) * 2011-03-30 2013-12-04 Jx日矿日石金属株式会社 Electrolytic copper foil and method for producing electrolytic copper foil
US9966608B2 (en) 2011-06-30 2018-05-08 Furukawa Electric Co., Ltd. Electrolytic copper foil, method of producing electrolytic copper foil, lithium ion secondary cell using electrolytic copper foil as collector
WO2013002279A1 (en) * 2011-06-30 2013-01-03 古河電気工業株式会社 Electrolytic copper foil, method for producing electrolytic copper foil, and lithium ion secondary cell using electrolytic copper foil as collector
JP2013181236A (en) * 2012-03-02 2013-09-12 Jx Nippon Mining & Metals Corp Electrolytic copper foil and negative electrode collector for secondary battery
WO2013129664A1 (en) 2012-03-02 2013-09-06 Jx日鉱日石金属株式会社 Electrolytic copper foil, and negative electrode collector for secondary battery
KR20170012604A (en) 2012-03-02 2017-02-02 제이엑스금속주식회사 Electrolytic copper foil, and negative electrode collector for secondary battery
JP2014037583A (en) * 2012-08-17 2014-02-27 Jx Nippon Mining & Metals Corp Electrolytic copper foil, and secondary battery collector and secondary battery using the same
TWI490374B (en) * 2012-08-17 2015-07-01 Jx Nippon Mining & Metals Corp Electrolytic copper foil, and a secondary battery collector and a secondary battery using the same
WO2014119656A1 (en) * 2013-01-31 2014-08-07 三井金属鉱業株式会社 Electrolytic copper foil, processes for producing said electrolytic copper foil, and surface-treated copper foil obtained using said electrolytic copper foil
KR20190006075A (en) 2013-01-31 2019-01-16 미쓰이금속광업주식회사 Electrolytic copper foil, processes for producing said electrolytic copper foil, and surface-treated copper foil obtained using said electrolytic copper foil
KR20150114484A (en) 2013-01-31 2015-10-12 미쓰이금속광업주식회사 Electrolytic copper foil, processes for producing said electrolytic copper foil, and surface-treated copper foil obtained using said electrolytic copper foil
US10658655B2 (en) 2017-06-28 2020-05-19 Kcf Technologies Co., Ltd. Copper foil having improved workability and charge/discharge characteristics, electrode including the same, secondary battery including the same and method for manufacturing the same
JP2020026562A (en) * 2018-08-16 2020-02-20 ケイシーエフ テクノロジース カンパニー リミテッド Copper foil having excellent workability and charge-discharge behavior, electrode comprising the same, secondary battery comprising the same, and manufacturing method therefor
WO2021014778A1 (en) * 2019-07-22 2021-01-28 テックス・テクノロジー株式会社 Method for producing electrolytic copper foil
JP2021017630A (en) * 2019-07-22 2021-02-15 テックス・テクノロジー株式会社 Method for manufacturing electrolytic copper foil
US11773501B2 (en) 2019-07-22 2023-10-03 Tex Technology Inc. Method for producing electrolytic copper foil
CN111455414A (en) * 2020-03-09 2020-07-28 深圳市惟华电子科技有限公司 Additive for producing gradual change type electrolytic copper foil
WO2022054597A1 (en) * 2020-09-11 2022-03-17 古河電気工業株式会社 Electrolytic copper foil, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
CN113832503A (en) * 2021-09-06 2021-12-24 九江德福科技股份有限公司 Composite additive for improving modulus of lithium-ion battery copper foil and electrolytic copper foil production method
CN114959803A (en) * 2022-04-25 2022-08-30 建滔(连州)铜箔有限公司 Outline-free electrolytic copper foil for PTFE ultrahigh frequency plate and production process thereof

Also Published As

Publication number Publication date
JP5255229B2 (en) 2013-08-07

Similar Documents

Publication Publication Date Title
JP5255229B2 (en) Electrolytic copper foil, surface-treated copper foil using the electrolytic copper foil, copper-clad laminate using the surface-treated copper foil, and method for producing the electrolytic copper foil
KR101154203B1 (en) Electrolytic copper foil, surface treated copper foil using the electrolytic copper foil, copper-clad laminated plate using the surface treated copper foil, and method for manufacturing the electrolytic copper foil
JP5588607B2 (en) Electrolytic copper foil and method for producing the electrolytic copper foil
TWI434965B (en) A roughening method for copper foil, and a copper foil for a printed wiring board which is obtained by the roughening method
JP4916154B2 (en) Copper or copper alloy foil for circuit
KR101090199B1 (en) Copper foil for fine printed circuit and method for manufacturing the same
JP4827952B2 (en) Electrolytic copper foil and copper clad laminate
JP3910623B1 (en) Manufacturing method of electrolytic copper foil, electrolytic copper foil obtained by the manufacturing method, surface-treated electrolytic copper foil obtained using the electrolytic copper foil, copper-clad laminate and printed wiring using the surface-treated electrolytic copper foil Board
JP5301886B2 (en) Electrolytic copper foil and method for producing the electrolytic copper foil
JP2005344174A (en) Surface-treated copper foil, flexible copper-clad laminate manufactured using the same, and film carrier tape
JP2007186797A (en) Method for producing ultrathin copper foil with carrier, ultrathin copper foil produced by the production method, and printed circuit board, multilayer printed circuit board and wiring board for chip on film using the ultrathin copper foil
JP2004162172A (en) Electrolyte for manufacturing electrolytic copper foil, and method for manufacturing electrolytic copper foil by using the same
JP2007146289A (en) Method for manufacture of electrolytic copper foil, electrolytic copper foil manufactured by the method, surface-treated copper foil manufactured using the electrolytic copper foil, and copper-clad laminate manufactured using the electrolytic copper foil or surface-treated copper foil
KR100461660B1 (en) Electrolytic copper foil with carrier foil and copper-clad laminate using the electrolytic copper foil with carrier foil
JP5752301B2 (en) Electrolytic copper foil and method for producing the electrolytic copper foil
TWI514937B (en) Wiring circuit board
JP2008127618A (en) Method for treating surface of copper foil through feeding alternating current
JP2004263300A (en) Copper foil for fine pattern printed circuit and manufacturing method therefor
JP5075099B2 (en) Surface-treated copper foil, surface treatment method thereof, and laminated circuit board
JP4756637B2 (en) Sulfuric acid copper electrolyte and electrolytic copper foil obtained using the sulfuric acid copper electrolyte
JPS63310990A (en) Electrolytic copper foil and production thereof
JP2004263296A (en) Copper foil for fine pattern printed circuit and manufacturing method therefor
JP2006224571A (en) Copper-metallized film and its production method
JP2011091114A (en) Printed circuit board and method of manufacturing the same
JP2003034830A (en) Copper alloy foil for laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130419

R150 Certificate of patent or registration of utility model

Ref document number: 5255229

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250