JP4756637B2 - Sulfuric acid copper electrolyte and electrolytic copper foil obtained using the sulfuric acid copper electrolyte - Google Patents

Sulfuric acid copper electrolyte and electrolytic copper foil obtained using the sulfuric acid copper electrolyte Download PDF

Info

Publication number
JP4756637B2
JP4756637B2 JP2005325717A JP2005325717A JP4756637B2 JP 4756637 B2 JP4756637 B2 JP 4756637B2 JP 2005325717 A JP2005325717 A JP 2005325717A JP 2005325717 A JP2005325717 A JP 2005325717A JP 4756637 B2 JP4756637 B2 JP 4756637B2
Authority
JP
Japan
Prior art keywords
copper foil
copper
sulfuric acid
electrolytic
electrolytic copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005325717A
Other languages
Japanese (ja)
Other versions
JP2007131909A (en
JP2007131909A5 (en
Inventor
誠 土橋
光由 松田
久雄 酒井
咲子 朝長
智浩 坂田
歩 立岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2005325717A priority Critical patent/JP4756637B2/en
Publication of JP2007131909A publication Critical patent/JP2007131909A/en
Publication of JP2007131909A5 publication Critical patent/JP2007131909A5/en
Application granted granted Critical
Publication of JP4756637B2 publication Critical patent/JP4756637B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

本件発明は、電解銅箔の製造に用いられる銅電解液及び該銅電解液を用いて得られた電解銅箔、そして該電解銅箔から得られた表面処理銅箔並びに該表面処理銅箔を張り合わせて得られる銅張積層板に関する。特に、その析出面側が低プロファイルであることを特徴とする電解銅箔の安定した製造を可能とする銅電解液、及び該銅電解液を用いた電解銅箔の製造方法に関する。   The present invention relates to a copper electrolytic solution used in the production of an electrolytic copper foil, an electrolytic copper foil obtained using the copper electrolytic solution, a surface-treated copper foil obtained from the electrolytic copper foil, and the surface-treated copper foil. The present invention relates to a copper clad laminate obtained by bonding. In particular, the present invention relates to a copper electrolyte that enables stable production of an electrolytic copper foil characterized by having a low profile on the deposition surface side, and a method for producing an electrolytic copper foil using the copper electrolyte.

従来から、電解銅箔はプリント配線板の基礎材料として広く使用されてきた。そして、プリント配線板が多用される電子及び電気機器には、小型化、軽量化等の所謂軽薄短小化が求められている。従来、このような電子及び電気機器の軽薄短小化を実現するためには、信号回路を可能な限りファインピッチ化するため、より薄い銅箔を採用し、エッチングによって回路を形成する際のオーバーエッチングの設定時間を短縮し、形成する回路のエッチングファクターを向上させることが求められてきた。   Conventionally, electrolytic copper foil has been widely used as a basic material for printed wiring boards. In addition, electronic and electrical devices in which printed wiring boards are frequently used are required to be so-called light and thin, such as miniaturization and weight reduction. Conventionally, in order to realize such a light, thin and small electronic and electrical equipment, in order to make the signal circuit as fine pitch as possible, a thinner copper foil is used and overetching when forming a circuit by etching. Therefore, it has been demanded to shorten the set time and improve the etching factor of the circuit to be formed.

そして、一方で、小型化、軽量化される電子及び電気機器には、高機能化の要求も同時に行われる。従って、限られた基板面積の中で可能な限りの部品実装面積を確保するためにも、回路のエッチングファクターを良好にすることが求められてきた。特に、ICチップ等の直接搭載を行うテープ オートメーティド ボンディング(TAB)基板、チップ オン フレキシブル(COF)基板等には、通常のプリント配線板以上の低プロファイル電解銅箔が求められてきた。なお、ここで使用している低プロファイルという語句は、導体である金属層と基材樹脂との接合界面における凹凸(プロファイル)が低いという状態を示すものであり、従来から標準規格で採用されている蝕針式粗さ計で表面粗さ(Rzjis)を測定して得られた数値を指標として用いている。   On the other hand, electronic and electrical devices that are reduced in size and weight are also requested to be highly functional. Accordingly, in order to secure the component mounting area as much as possible within the limited substrate area, it has been required to improve the etching factor of the circuit. In particular, tape-automated bonding (TAB) substrates, chip-on-flexible (COF) substrates, and the like that directly mount IC chips and the like have been required to have low profile electrolytic copper foils that are more than ordinary printed wiring boards. In addition, the phrase “low profile” used here indicates a state in which the unevenness (profile) at the bonding interface between the metal layer as a conductor and the base resin is low, and has been conventionally adopted in the standard. A numerical value obtained by measuring the surface roughness (Rzjis) with a stylus roughness meter is used as an index.

このような問題を解決すべく、特許文献1〜特許文献5に開示されているように、硫酸酸性銅めっき液の電気分解による電解銅箔の製造方法において、各種添加剤を含有する硫酸酸性銅めっき液を用いることを特徴とする電解銅箔の製造方法が提唱されている。これらの製造方法を用いて、電解銅箔を製造すると、確かに低プロファイルの析出面が形成され、従来用途の低プロファイル電解銅箔としては、極めて優れた性質を示す。   In order to solve such problems, as disclosed in Patent Document 1 to Patent Document 5, in the method for producing an electrolytic copper foil by electrolysis of a sulfuric acid copper plating solution, acidic copper sulfate containing various additives A method for producing an electrolytic copper foil characterized by using a plating solution has been proposed. When an electrolytic copper foil is manufactured using these manufacturing methods, a low profile precipitation surface is surely formed, and shows extremely excellent properties as a low profile electrolytic copper foil for conventional use.

特開2004−35918号公報JP 2004-35918 A 特開2004−162144号公報JP 2004-162144 A 特開2004−107786号公報JP 2004-107786 A 特開2004−137588号公報JP 2004-137588 A 特開平9−143785号公報JP 9-143785 A

しかしながら、電子又は電気機器の代表であるパーソナルコンピュータのクロック周波数も画像処理の普及に対応して急激に上昇し、演算速度が飛躍的に速くなっている。すなわち、従来のコンピュータとしての本来の役割である単なるデータ処理に止まらず、コンピュータ自体をAV機器と同様に使用する機能も付加されてきている。そして、対象とされる機能は音楽再生機能に止まらず、DVDの録画再生機能、TV受像録画機能、テレビ電話機能等であり、これらが次々に付加されている。   However, the clock frequency of a personal computer, which is representative of electronic or electrical equipment, has also increased rapidly in response to the widespread use of image processing, and the calculation speed has increased dramatically. That is, the function of using the computer itself in the same manner as an AV device has been added, not just data processing, which is the original role of a conventional computer. The target functions are not limited to the music playback function, but are a DVD recording / playback function, a TV image recording function, a videophone function, and the like, which are added one after another.

これに伴い、パーソナルコンピュータのモニタに要求される機能も、単なるデータモニタではなくなり、映画等の画像を写しても長時間の視聴に耐えるだけの画質が要求されてきている。従って、このような高品質のモニタを安価に且つ大量に供給することが求められている。そして、現在の当該モニタにはCRTに替わって液晶パネルが多用されてきており、この液晶パネルは既に家庭用テレビのフラットパネルディスプレイの分野に於いても主流商品になりつつある。これら液晶パネルのドライバには、前記テープ オートメーティド ボンディング(TAB)基板やチップ オン フレキシブル(COF)基板が一般的に用いられている。そして、ディスプレイのハイビジョン化を図るためには、走査線の数の増加に対応すべく前記ドライバ基板にもよりファインな回路の形成が求められるようになっている。   Along with this, functions required for monitors of personal computers are no longer just data monitors, and image quality that can withstand long-time viewing is required even when images of movies and the like are taken. Therefore, it is required to supply such a high quality monitor at a low price and in large quantities. In addition, a liquid crystal panel has been frequently used in place of the CRT in the present monitor, and this liquid crystal panel is already becoming a mainstream product in the field of flat panel displays for home televisions. As the driver of these liquid crystal panels, the tape automated bonding (TAB) substrate or the chip on flexible (COF) substrate is generally used. In order to achieve a high-definition display, it is required to form finer circuits on the driver board in order to cope with an increase in the number of scanning lines.

また、リチウムイオン電池用の集電体として使用する際にも表面が平滑な銅箔を用いることが好ましい。すなわち、銅箔上に活物質を塗工する際に、活物質含有スラリーを均一な塗膜厚で銅箔上に塗工するためには表面が平滑な銅箔を集電体として使用することが有利なのである。更に、銅箔上にキャパシタ用誘電体層をゾルゲル法で形成させる際にも、表面が平滑な銅箔を用いることは同様に有利である。   Moreover, when using as a collector for lithium ion batteries, it is preferable to use copper foil with a smooth surface. That is, when applying an active material on a copper foil, a copper foil with a smooth surface should be used as a current collector in order to apply the active material-containing slurry onto the copper foil with a uniform coating thickness. Is advantageous. Further, when a capacitor dielectric layer is formed on a copper foil by a sol-gel method, it is similarly advantageous to use a copper foil having a smooth surface.

以上のことから、従来市場に供給されてきた低プロファイル電解銅箔と比べて、更に低プロファイルの電解銅箔に対する要求が存在したのである。   From the above, there has been a demand for a lower profile electrolytic copper foil as compared to the low profile electrolytic copper foil that has been supplied to the market.

硫酸系銅電解液: 本件発明は、3−メルカプト−1−プロパンスルホン酸と環状構造を持つ4級アンモニウム塩重合体と塩素とを含む硫酸系銅電解液であって、ヤヌスグリーンを含むことを特徴とする硫酸系銅電解液を提供する。 Sulfate-based copper electrolyte : The present invention is a sulfate-based copper electrolyte containing 3 -mercapto-1-propanesulfonic acid, a quaternary ammonium salt polymer having a cyclic structure, and chlorine, and contains Janus Green. Provided is a sulfate-based copper electrolyte.

そして、前記硫酸系銅電解液中のヤヌスグリーン濃度が2ppm〜30ppmであることが好ましい。   And it is preferable that the Janus green density | concentration in the said sulfuric acid type copper electrolyte solution is 2 ppm-30 ppm.

電解銅箔の製造方法: 本件発明は、前記硫酸系銅電解液を用い、液温20℃〜60℃、電流密度30A/dm〜90A/dmで電解することを特徴とする電解銅箔の製造方法を提供する。 Method of manufacturing an electrolytic copper foil: present invention, an electrolytic copper foil, characterized in that using the sulfuric acid base copper electrolytic solution, a solution temperature of 20 ° C. to 60 ° C., to electrolysis at a current density of 30A / dm 2 ~90A / dm 2 A manufacturing method is provided.

電解銅箔: 本件発明に係る電解銅箔は、上記「3−メルカプト−1−プロパンスルホン酸と環状構造を持つ4級アンモニウム塩重合体と塩素とを含む硫酸系銅電解液であってヤヌスグリーンを含むことを特徴とする硫酸系銅電解液」を用いて電解することにより得られた電解銅箔である。 Electrolytic Copper Foil: The electrolytic copper foil according to the present invention is a sulfuric acid copper electrolytic solution containing the above-mentioned “3-mercapto-1-propanesulfonic acid, a quaternary ammonium salt polymer having a cyclic structure, and chlorine, and is Janus Green. It is the electrolytic copper foil obtained by electrolyzing using the sulfuric acid type copper electrolyte solution characterized by including.

表面処理銅箔: 本件発明に係る表面処理銅箔は、上記「3−メルカプト−1−プロパンスルホン酸と環状構造を持つ4級アンモニウム塩重合体と塩素とを含む硫酸系銅電解液であってヤヌスグリーンを含むことを特徴とする硫酸系銅電解液を用いて電解することにより得られた電解銅箔」の析出面に粗化処理、防錆処理、シランカップリング剤処理のいずれか一種又は二種以上を行ったものである。 Surface-treated copper foil: The surface-treated copper foil according to the present invention is a sulfuric acid-based copper electrolyte containing the above-mentioned “3-mercapto-1-propanesulfonic acid, a quaternary ammonium salt polymer having a cyclic structure, and chlorine. Any one of roughening treatment, rust prevention treatment, silane coupling agent treatment on the precipitation surface of the "electrolytic copper foil obtained by electrolysis using a sulfuric acid copper electrolyte characterized by containing Janus Green" or Two or more types have been performed.

そして、前記表面処理銅箔の絶縁樹脂基材との張り合わせ面の表面粗さ(Rzjis)が5μm以下の低プロファイルを備えることを特徴とする。   And the surface roughness (Rzjis) of the bonding surface with the insulating resin base material of the said surface treatment copper foil is provided with the low profile of 5 micrometers or less.

銅張積層板: 本件発明に係る銅張積層板は、前記表面処理銅箔を絶縁樹脂基材と張り合わせてなることを特徴とする。   Copper-clad laminate: The copper-clad laminate according to the present invention is characterized in that the surface-treated copper foil is laminated with an insulating resin base material.

本件発明に係る硫酸系銅電解液は、3−メルカプト−1−プロパンスルホン酸、環状構造を持つ4級アンモニウム塩重合体、塩素、ヤヌスグリーンを含むことを特徴とした硫酸系銅電解液である。そして、この硫酸系銅電解液は、従来市場に供給されてきた低プロファイル電解銅箔の製造に用いられてきた銅電解液に比べ、更に低プロファイルな電解銅箔の安定した製造を可能にするものである。また、該硫酸系銅電解液の組成は、従来の低プロファイルの電解銅箔の製造に用いられていたものとは異なり、溶液安定性にも優れ、安定した長期電解が可能で、廃液処理を考慮してもコスト上昇を招かない。 The sulfate-based copper electrolyte according to the present invention is a sulfate-based copper electrolyte characterized by containing 3-mercapto-1-propanesulfonic acid, a quaternary ammonium salt polymer having a cyclic structure, chlorine, and Janus Green. . This sulfate-based copper electrolytic solution enables stable production of an electrolytic copper foil having a lower profile as compared with the copper electrolytic solution used for producing a low profile electrolytic copper foil that has been supplied to the market. Is. In addition, the composition of the sulfuric acid-based copper electrolyte is different from that used in the manufacture of conventional low profile electrolytic copper foils, and it has excellent solution stability, enables stable long-term electrolysis, and enables waste liquid treatment. Even if it considers, it does not cause an increase in cost.

そして、該硫酸系銅電解液を用いて得られた低プロファイルの電解銅箔の析出面に表面処理を施した表面処理銅箔は、低プロファイル要求の顕著なテープ オートメーティド ボンディング(TAB)基板やチップ オン フレキシブル(COF)基板へのファインピッチ回路の形成に適している。そして、キャパシタ用誘電体層を銅箔上にゾルゲル法で形成させる用途やリチウムイオン二次電池の負極を構成する集電材としての使用にも適している。   And the surface treatment copper foil which surface-treated to the deposition surface of the low profile electrolytic copper foil obtained using this sulfuric acid system copper electrolytic solution is a tape automated bonding (TAB) board | substrate with outstanding low profile request | requirement And suitable for forming fine pitch circuits on chip-on-flexible (COF) substrates. And it is suitable also for the use which forms the dielectric material layer for capacitors on a copper foil by the sol-gel method, and the use as a current collection material which comprises the negative electrode of a lithium ion secondary battery.

さらに、本件発明に係る硫酸系銅電解液はその優れた付廻り性の良さと平滑めっき性により平滑電解銅箔の製造用途のみならずプリント配線板の製造プロセスにおける電気銅めっき工程、例えばスルーホールめっきやビアフィリングへの適用も可能であり、また異形材表面に均一な厚みの平滑銅めっきを施す電鋳分野においても高電流密度での操業を可能にするなどの効果も期待できる。   Furthermore, the sulfuric acid-based copper electrolyte according to the present invention is not only used for the production of smooth electrolytic copper foil but also for an electro copper plating process in the production process of a printed wiring board, for example, through-holes, due to its excellent throwing power and smooth plating properties. It can be applied to plating and via filling, and can also be expected to have the effect of enabling operation at a high current density even in the electroforming field in which smooth copper plating with a uniform thickness is applied to the surface of a deformed material.

<本件発明に係る電解銅箔製造用の硫酸系銅電解液>
本件発明に係る硫酸系銅電解液は、3−メルカプト−1−プロパンスルホン酸(以降MPSと記す)、ジアリルジメチルアンモニウムクロライド(以降DDACと記す)等の環状構造を持つ4級アンモニウム塩重合体、そして塩素とを含む硫酸系銅電解液であって、ヤヌスグリーンを含むことを特徴とする硫酸系銅電解液である。硫酸系銅電解液としてはMPS、DDAC重合体及び塩素を含んでいるものを用いても従来市場に供給されてきた低プロファイル電解銅箔に比べて、より低プロファイルの電解銅箔の製造は可能となる。ところが、ヤヌスグリーンを含む硫酸系銅電解液とすることにより、前記添加剤DDACの重合体構造違いなどがあった場合でも、その効果を得ることができる。従って、原材料の選択肢が広がるうえ、陰極表面の凹凸形状の電解銅箔析出面粗さへの影響も緩和でき更に低プロファイル化された電解銅箔の安定した製造が可能になるのである。
<Sulfate-based copper electrolyte for producing electrolytic copper foil according to the present invention>
The sulfuric acid-based copper electrolyte according to the present invention is a quaternary ammonium salt polymer having a cyclic structure such as 3-mercapto-1-propanesulfonic acid (hereinafter referred to as MPS), diallyldimethylammonium chloride (hereinafter referred to as DDAC), And it is a sulfuric acid type copper electrolyte containing chlorine, and is a sulfuric acid type copper electrolyte characterized by including Janus green. MPS as sulfuric acid base copper electrolytic solution, even with one containing DDAC polymer, and chlorine, as compared with low-profile electrodeposited copper foil which has been supplied to the conventional market, the production of electrolytic copper foil having a lower profile It becomes possible . However , by using a sulfuric acid-based copper electrolyte containing Janus Green , the effect can be obtained even when there is a difference in the polymer structure of the additive DDAC . Therefore, the choices of raw materials are widened, and the influence of the uneven shape of the cathode surface on the electrolytic copper foil deposition surface roughness can be mitigated , and stable production of a low profile electrolytic copper foil becomes possible.

このヤヌスグリーン(Janus Green:C3031ClN)の構造式を化1として以下に示す。 The structural formula of this Janus Green (Janus Green: C 30 H 31 ClN 6 ) is shown below as chemical formula 1.

そして、本件発明に係る硫酸系銅電解液に基本的に含まれている添加剤濃度の好ましい範囲は、MPSでは0.5〜50ppm、DDAC重合体では1ppm〜50ppm、そして塩素では5ppm〜60ppmであり、ヤヌスグリーンを2ppm〜30ppm含むことが更に好ましいのである。そして、更に好ましいヤヌスグリーンの濃度範囲は5ppm〜15ppmである。なお、MPSは電解液中で2量体化することがあるが、ここで言うMPSには当該2量体及びはじめから2量体として添加した場合をも含む概念で記載している。 And the preferable range of the additive concentration basically contained in the sulfuric acid-based copper electrolyte according to the present invention is 0.5 to 50 ppm for MPS, 1 to 50 ppm for DDAC polymer, and 5 to 60 ppm for chlorine. Yes, it is more preferable to contain Janus Green 2 ppm to 30 ppm. A more preferable Janus Green concentration range is 5 ppm to 15 ppm. Note that MPS may dimerize in the electrolyte solution, but the MPS referred to here is described with the concept including the dimer and the case where it is added as a dimer from the beginning.

ヤヌスグリーン濃度が2ppmを下回るとDDAC重合体構造の違いを平準化する効果が得られなくなるとともに低プロファイル化の効果及び陰極表面の凹凸形状の析出面粗さへの影響緩和が十分に得られないのである。そして、30ppmを超えて添加してもDDAC重合体構造の違いを平準化する効果及び析出面の低プロファイル化の効果及び陰極表面の凹凸形状の析出面粗さへの影響緩和がともに飽和状態に達してしまっており有用とは言えないのである。 If the Janus Green concentration is less than 2 ppm, the effect of leveling the difference in the DDAC polymer structure cannot be obtained, and the effect of reducing the profile and the influence of the unevenness of the cathode surface on the precipitation surface roughness cannot be sufficiently obtained. It is. And even if added over 30 ppm, both the effect of leveling the difference in the DDAC polymer structure, the effect of lowering the profile of the precipitation surface, and the effect of reducing the unevenness of the cathode surface on the precipitation surface roughness are saturated. It has been reached and cannot be said to be useful.

<本件発明に係る電解銅箔の製造方法>
本件発明に係る電解銅箔の製造方法は、当該硫酸系銅電解液の銅濃度50g/l〜120g/l、フリー硫酸濃度60g/l〜250g/l程度で液温20℃〜60℃とし、電流密度30A/dm〜90A/dmで電解するのである。液温は20℃〜60℃、より好ましくは40℃〜55℃である。液温が20℃未満の場合には析出速度が低下し伸び率及び引張り強さ等の機械的特性のバラツキが大きくなる。一方、液温が60℃を超えると蒸発水分量が増加して液濃度の変動が速く、得られる電解銅箔の析出面が良好な平滑性を維持出来ない。また、電流密度は30A/dm〜90A/dmが好ましく、より好ましくは40A/dm〜70A/dmである。電流密度が30A/dm未満の場合には銅の析出速度が小さく工業的生産性が劣る。一方、電流密度が90A/dmを超える場合には、得られる電解銅箔の析出面の粗さが大きくなり、低プロファイルを維持出来ない。
<The manufacturing method of the electrolytic copper foil which concerns on this invention>
The method for producing an electrolytic copper foil according to the present invention includes a copper concentration of 50 g / l to 120 g / l, a free sulfuric acid concentration of about 60 g / l to 250 g / l, and a liquid temperature of 20 ° C. to 60 ° C. it is to electrolysis at a current density of 30A / dm 2 ~90A / dm 2 . The liquid temperature is 20 ° C to 60 ° C, more preferably 40 ° C to 55 ° C. When the liquid temperature is less than 20 ° C., the deposition rate decreases, and the variation in mechanical properties such as elongation and tensile strength increases. On the other hand, when the liquid temperature exceeds 60 ° C., the amount of evaporated water increases and the liquid concentration fluctuates quickly, and the deposited surface of the obtained electrolytic copper foil cannot maintain good smoothness. The current density is preferably 30A / dm 2 ~90A / dm 2 , more preferably from 40A / dm 2 ~70A / dm 2 . When the current density is less than 30 A / dm 2 , the copper deposition rate is small and the industrial productivity is poor. On the other hand, when the current density exceeds 90 A / dm 2 , the roughness of the deposited surface of the obtained electrolytic copper foil increases, and the low profile cannot be maintained.

<本件発明に係る電解銅箔>
本件発明に言う「電解銅箔」とは、何ら表面処理を行っていない状態のものであり「未処理銅箔」、「析離箔」等と称されることがある。本件明細書では、これを単に「電解銅箔」と称する。この電解銅箔は、一般的に連続生産法が採用され、ドラム形状をした回転陰極と、その回転陰極の形状に沿って対向配置された鉛系陽極又は不溶性陽極(DSA)との間に、硫酸系銅電解液を流し、電解反応を利用して銅を回転陰極のドラム表面に析出させ、この析出した銅を回転陰極から連続して引き剥がして箔状態のまま巻き取ることにより生産される。この段階では、防錆処理等の表面処理は何ら行われていない状況であり、電析直後の銅は活性化した状態にあり空気中の酸素により、非常に酸化しやすい状態にある。
<Electrolytic copper foil according to the present invention>
The “electrolytic copper foil” referred to in the present invention is a state in which no surface treatment is performed, and is sometimes referred to as “untreated copper foil”, “deposited foil” or the like. In the present specification, this is simply referred to as “electrolytic copper foil”. This electrolytic copper foil generally adopts a continuous production method, and between a drum-shaped rotating cathode and a lead-based anode or an insoluble anode (DSA) arranged to face each other along the shape of the rotating cathode, It is produced by flowing a sulfuric acid-based copper electrolyte, depositing copper on the drum surface of the rotating cathode using an electrolytic reaction, and continuously peeling the deposited copper from the rotating cathode and winding it in a foil state. . At this stage, no surface treatment such as rust prevention treatment has been performed, and copper immediately after electrodeposition is in an activated state and is very easily oxidized by oxygen in the air.

この回転陰極から引き剥がされた電解銅箔の回転陰極と接触していた面は、鏡面仕上げされた回転陰極表面の形状が転写したものとなり、光沢を持ち滑らかな面であるため光沢面と称する。これに対し、析出サイドであった側の表面形状は、析出する銅の結晶成長速度が結晶面ごとに異なるため、山形の凹凸形状を示すものとなり、これを粗面又は析出面と称する。この析出面が銅張積層板を製造する際の絶縁層との張り合わせ面となる。そして、この析出面の表面粗さが小さいほど、優れた低プロファイルの電解銅箔と言う。そして、本件発明に係る電解銅箔では、この析出面の表面粗さが一般的な回転陰極を使用して製造された銅箔の光沢面より平滑となるため粗面という用語は使用せず、本件明細書では「析出面」と称している。   The surface of the electrolytic copper foil that has been peeled off from the rotating cathode is in contact with the rotating cathode. The surface of the rotating cathode surface that is mirror-finished is a transfer surface, and is glossy and smooth. . On the other hand, the surface shape on the side that was the precipitation side shows a mountain-shaped uneven shape because the crystal growth rate of the deposited copper differs for each crystal surface, and this is called a rough surface or a precipitation surface. This deposited surface serves as a bonding surface with the insulating layer when the copper clad laminate is manufactured. And the smaller the surface roughness of the deposited surface, the better the low profile electrolytic copper foil. And, in the electrolytic copper foil according to the present invention, the surface roughness of this deposited surface is smoother than the glossy surface of the copper foil produced using a general rotating cathode, so the term rough surface is not used, In the present specification, this is referred to as “deposition surface”.

従来市場に供給されてきた低プロファイル電解銅箔との比較を実施するために上記特許文献1〜特許文献5に開示の製造方法をトレースして、厚さ12μmの電解銅箔を製造してみると、比較例1に示すとおり、陰極表面の粗さを適正化した場合の析出面側の表面粗さ(Rzjis)の値は低プロファイルであっても0.8μmを超えるレベルである。これに対して、本件発明に係る電解銅箔は、実施例1に示すとおり、陰極表面の粗さを適正化することにより析出面側の表面粗さRzjis=0.6μm以下の低プロファイルを得ることが可能となる。ここでは特に下限値を限定していないが、前記蝕針式粗さ計による表面粗さ測定の下限値は経験的にRzjisでは0.1μm程度である。   In order to make a comparison with the low profile electrolytic copper foil that has been supplied to the market in the past, the manufacturing method disclosed in Patent Document 1 to Patent Document 5 described above is traced, and an electrolytic copper foil having a thickness of 12 μm is manufactured. As shown in Comparative Example 1, the value of the surface roughness (Rzjis) on the deposition surface side when the roughness of the cathode surface is optimized is a level exceeding 0.8 μm even in the low profile. On the other hand, as shown in Example 1, the electrolytic copper foil according to the present invention obtains a low profile with a surface roughness Rzjis = 0.6 μm or less on the deposition surface side by optimizing the roughness of the cathode surface. It becomes possible. Here, the lower limit value is not particularly limited, but the lower limit value of the surface roughness measurement by the stylus roughness meter is empirically about 0.1 μm in Rzjis.

また、本件発明に係る電解銅箔の析出面の滑らかさを示す指標として、光沢度を用いることにより、従来の低プロファイル電解銅箔との差異を明瞭に捉えることが出来る。本件発明で用いた光沢度の測定は、電解銅箔の流れ方向(MD方向)に沿って、当該銅箔の表面に入射角60°で測定光を照射し、反射角60°で跳ね返った光の強度を測定したものであり、日本電色工学株式会社製デジタル変角光沢計VG−1D型を用いて、光沢度の測定方法であるJIS Z 8741−1983に基づいて測定した。そして、上記特許文献1〜特許文献5に開示の製造方法をトレースして製造した12μm厚さの電解銅箔の析出面の光沢度[Gs(60°)]を測定すると、250〜380程度の範囲に入る光沢度の大きなものも見受けられる。これに対し、本件発明に係る電解銅箔は陰極表面の粗さを適正化する等条件の最適化により光沢度[Gs(60°)]500以上も可能となる。なお、ここでも、光沢度の上限値を定めていないが、経験的に780程度が上限となるようである。   Moreover, the difference with the conventional low profile electrolytic copper foil can be caught clearly by using glossiness as a parameter | index which shows the smoothness of the precipitation surface of the electrolytic copper foil which concerns on this invention. The glossiness used in the present invention was measured by irradiating the surface of the copper foil with measurement light at an incident angle of 60 ° and bounced off at a reflection angle of 60 ° along the flow direction (MD direction) of the electrolytic copper foil. The measurement was performed based on JIS Z 8741-1983, which is a method for measuring glossiness, using a digital variable angle gloss meter VG-1D manufactured by Nippon Denshoku Engineering Co., Ltd. And when the glossiness [Gs (60 °)] of the precipitation surface of the electrolytic copper foil having a thickness of 12 μm manufactured by tracing the manufacturing method disclosed in Patent Document 1 to Patent Document 5 is measured, it is about 250 to 380. Some glossiness is within the range. On the other hand, the electrolytic copper foil according to the present invention can achieve a glossiness [Gs (60 °)] of 500 or more by optimizing conditions such as optimizing the roughness of the cathode surface. Here, the upper limit value of glossiness is not defined, but it seems that the upper limit is about 780 empirically.

更に、ここで得られた電解銅箔の析出面表面粗さはほぼ陰極表面粗さレベルもしくはそれ以下となっているために、従来から標準規格で採用されてきた蝕針式粗さ計では測定のばらつきの影響が大きくなりすぎて表面形状の違いを検出しきれないと考え、Zygo社製表面解析装置にても表面形状の評価を実施し、参考データとして掲載している。   Furthermore, since the surface roughness of the deposited surface of the electrolytic copper foil obtained here is almost equal to or less than the surface roughness of the cathode, it is measured with a stylus-type roughness meter that has been conventionally adopted as a standard. The surface shape is evaluated by a surface analysis device manufactured by Zygo, and is published as reference data.

<本件発明に係る表面処理銅箔>
本件発明に係る硫酸系銅電解液を用いて製造された電解銅箔は、表面処理工程において用途に応じた析出面への粗化処理、防錆処理、シランカップリング剤処理のいずれか一種又は二種以上を行った表面処理銅箔として、プリント配線板の絶縁層構成材と張り合わせる用途に使用されることが一般的でありこれを「表面処理銅箔」と称する。
<Surface-treated copper foil according to the present invention>
The electrolytic copper foil produced using the sulfuric acid-based copper electrolyte solution according to the present invention is any one of roughening treatment, rust prevention treatment, and silane coupling agent treatment on the precipitation surface according to the use in the surface treatment step or As the surface-treated copper foil subjected to two or more kinds, it is generally used for bonding to the insulating layer constituting material of the printed wiring board, and this is referred to as “surface-treated copper foil”.

上記表面処理工程に於いて、前述のようにして得られた滑らかな析出面に対して粗化処理を行い、更に防錆処理等を行っても従来の低プロファイル表面処理銅箔よりも、更に低プロファイルの粗化処理面を備える表面処理銅箔が得られるのは当然である。   In the surface treatment step, roughening treatment is performed on the smooth precipitation surface obtained as described above, and even if rust prevention treatment is performed, the conventional low profile surface treatment copper foil is further. Naturally, a surface-treated copper foil having a low profile roughened surface can be obtained.

ここで、粗化処理とは、電解銅箔の析出面に微細金属粒を付着形成させるか、エッチング法で粗化表面を形成するかのいずれかの方法が一般的に採用される。ここで、前者の微細金属粒を付着形成する方法に関して例示しておく。この粗化処理工程は、電解銅箔の析出面上に微細銅粒を析出付着させるヤケめっき工程と、この微細銅粒の脱落を防止するための被せめっき工程とで構成される。   Here, the roughening treatment generally employs either a method in which fine metal particles are adhered to the deposited surface of the electrolytic copper foil or a roughened surface is formed by an etching method. Here, the former method for depositing and forming fine metal particles will be exemplified. This roughening treatment process includes a burn plating process for depositing and adhering fine copper grains on the deposition surface of the electrolytic copper foil, and a covering plating process for preventing the fine copper grains from falling off.

電解銅箔の析出面上に微細銅粒を析出付着させる工程では、電解条件としてヤケめっきの条件が採用される。従って、一般的に微細銅粒を析出付着させる工程で用いる溶液中の銅濃度は、ヤケめっき条件を作り出しやすいよう低い濃度設定となっている。このヤケめっき条件は特に限定されるものではなく、生産ラインの特質を考慮して定められるものである。例えば、硫酸銅系溶液を用いるのであれば、銅濃度5〜20g/l、フリー硫酸濃度50〜200g/l、その他必要に応じて添加剤(α−ナフトキノリン、デキストリン、膠、チオ尿素等)を加え、液温15〜40℃、電流密度10〜50A/dmの条件とする等して電解めっきするのである。 In the step of depositing and adhering fine copper particles on the deposition surface of the electrolytic copper foil, the condition of burnt plating is adopted as the electrolysis condition. Therefore, generally, the copper concentration in the solution used in the step of depositing and adhering fine copper particles is set to a low concentration so that the burn plating conditions can be easily created. The burn plating conditions are not particularly limited, and are determined in consideration of the characteristics of the production line. For example, if a copper sulfate-based solution is used, a copper concentration of 5 to 20 g / l, a free sulfuric acid concentration of 50 to 200 g / l, and other additives (α-naphthoquinoline, dextrin, glue, thiourea, etc.) as necessary In addition, electrolytic plating is performed under the conditions of a liquid temperature of 15 to 40 ° C. and a current density of 10 to 50 A / dm 2 .

そして、微細銅粒の脱落を防止するための被せめっき工程は、ヤケめっきで析出付着させた微細銅粒の脱落を防止するために、平滑めっき条件で微細銅粒を被覆するように銅を均一析出させるための工程である。従って、ここでは前述の電解銅箔の製造工程で用いたと同様の溶液を銅イオンの供給源として用いることができる。この平滑めっき条件は、特に限定されるものではなく、生産ラインの特質を考慮して定められるものである。例えば、硫酸銅系溶液を用いるのであれば、銅濃度50〜80g/l、フリー硫酸濃度50〜150g/l、液温40〜50℃、電流密度10〜50A/dmの条件とする等して電解めっきするのである。 In addition, the covering plating process for preventing the fine copper grains from falling off is to uniformly coat the copper so as to cover the fine copper grains under smooth plating conditions in order to prevent the fine copper grains deposited and deposited by the burn plating. It is a process for making it precipitate. Therefore, here, the same solution as that used in the above-described electrolytic copper foil manufacturing process can be used as a copper ion supply source. The smooth plating conditions are not particularly limited and are determined in consideration of the characteristics of the production line. For example, if a copper sulfate solution is used, the copper concentration is 50-80 g / l, the free sulfuric acid concentration is 50-150 g / l, the liquid temperature is 40-50 ° C., and the current density is 10-50 A / dm 2. Electrolytic plating.

次に、防錆処理層を形成する方法に関して説明する。この防錆処理層は、銅張積層板及びプリント配線板の製造過程で支障をきたすことの無いよう、表面処理銅箔の表面が酸化腐食することを防止するためのものである。防錆処理に用いられる方法は、ベンゾトリアゾール、イミダゾール等を用いる有機防錆、若しくは亜鉛、クロメート、亜鉛合金等を用いる無機防錆のいずれを採用しても問題はない。表面処理銅箔の使用目的に合わせた防錆を選択すればよい。有機防錆の場合は、有機防錆剤を浸漬塗布、シャワーリング塗布、電着法等の手法を採用することが可能となる。無機防錆の場合は、電解で防錆元素を電解銅箔層の表面上に析出させる方法、その他いわゆる置換析出法等を用いることが可能である。例えば、亜鉛防錆処理を行うとして、ピロ燐酸亜鉛めっき浴、シアン化亜鉛めっき浴、硫酸亜鉛めっき浴等を用いることが可能である。例えば、ピロ燐酸亜鉛めっき浴であれば、亜鉛濃度5〜30g/l、ピロ燐酸カリウム濃度50〜500g/l、液温20〜50℃、pH9〜12、電流密度0.3〜10A/dmの条件とする等して電解めっきするのである。 Next, a method for forming a rust prevention treatment layer will be described. The rust-proofing layer is for preventing the surface of the surface-treated copper foil from being oxidatively corroded so as not to hinder the manufacturing process of the copper-clad laminate and the printed wiring board. The method used for the rust prevention treatment may be any of organic rust prevention using benzotriazole, imidazole or the like, or inorganic rust prevention using zinc, chromate, zinc alloy or the like. What is necessary is just to select the rust prevention according to the intended purpose of the surface-treated copper foil. In the case of organic rust prevention, it is possible to employ techniques such as dip coating, shower ring coating, and electrodeposition method with an organic rust preventive. In the case of inorganic rust prevention, it is possible to use a method of depositing a rust-preventive element on the surface of the electrolytic copper foil layer by electrolysis or other so-called substitution deposition method. For example, a zinc pyrophosphate plating bath, a zinc cyanide plating bath, a zinc sulfate plating bath, or the like can be used for the zinc rust prevention treatment. For example, in the case of a zinc pyrophosphate plating bath, the zinc concentration is 5 to 30 g / l, the potassium pyrophosphate concentration is 50 to 500 g / l, the liquid temperature is 20 to 50 ° C., the pH is 9 to 12, and the current density is 0.3 to 10 A / dm 2. The electrolytic plating is performed under the above conditions.

そして、シランカップリング剤処理とは、粗化処理、防錆処理等が終了した後に、絶縁層構成材との密着性を化学的に向上させるための処理である。ここで言う、シランカップリング剤処理に用いるシランカップリング剤としては、特に限定を要するものではなく、使用する絶縁層構成材、プリント配線板製造工程で使用するめっき液等の性状を考慮して、エポキシ系シランカップリング剤、アミノ系シランカップリング剤、メルカプト系シランカップリング剤等から任意に選択使用することが可能となる。   And a silane coupling agent process is a process for improving the adhesiveness with an insulating-layer constituent material chemically after a roughening process, a rust prevention process, etc. are complete | finished. As used herein, the silane coupling agent used for the silane coupling agent treatment is not particularly limited, considering the properties of the insulating layer constituting material used, the plating solution used in the printed wiring board manufacturing process, and the like. , An epoxy silane coupling agent, an amino silane coupling agent, a mercapto silane coupling agent and the like can be arbitrarily selected and used.

より具体的には、プリント配線板用にプリプレグのガラスクロスに用いられると同様のカップリング剤を中心にビニルトリメトキシシラン、ビニルフェニルトリメトキシラン、γ−メタクリロキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、4−グリシジルブチルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、N−β(アミノエチル)γ−アミノプロピルトリメトキシシラン、N−3−(4−(3−アミノプロポキシ)プトキシ)プロピル−3−アミノプロピルトリメトキシシラン、イミダゾールシラン、トリアジンシラン、γ−メルカプトプロピルトリメトキシシラン等を用いることが可能である。   More specifically, vinyl trimethoxy silane, vinyl phenyl trimethoxy lane, γ-methacryloxypropyl trimethoxy silane, γ-glycol are mainly used for the same coupling agent as used for prepreg glass cloth for printed wiring boards. Sidoxypropyltrimethoxysilane, 4-glycidylbutyltrimethoxysilane, γ-aminopropyltriethoxysilane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane, N-3- (4- (3-aminopropoxy) ) Putoxy) propyl-3-aminopropyltrimethoxysilane, imidazole silane, triazine silane, γ-mercaptopropyltrimethoxysilane and the like can be used.

そして、当該表面処理銅箔は、その絶縁樹脂基材との張り合わせ面の表面粗さ(Rzjis)が5μm以下の低プロファイルを備えることが好ましい。このような低プロファイルの粗化処理面を備えることで、絶縁層構成材に張り合わせたときに実用上支障のない密着性を確保することが可能で、基板として実用上支障のない耐熱特性、耐薬品性、引き剥がし強さ等を得ることが可能である。   And it is preferable that the said surface treatment copper foil is provided with the low profile whose surface roughness (Rzjis) of the bonding surface with the insulating resin base material is 5 micrometers or less. By providing such a low-profile roughened surface, it is possible to ensure adhesiveness that does not impede practical use when bonded to the insulating layer constituent material, and as a substrate there is no practical impediment to heat resistance and resistance. It is possible to obtain chemical properties and peel strength.

そして、本件発明に係る銅張積層板は、前記表面処理銅箔を絶縁樹脂基材と張り合わせたものであることを特徴とする。ここで、絶縁樹脂基材との張り合わせの工程であるが、本件発明に係る前記表面処理銅箔には特有の条件設定などは必要とされず、ホットプレス、フィルムラミネート、そしてキャスティングなどの公知の方法が適用可能である。そして、前記のような低プロファイルの表面処理銅箔を張り合わせた本件発明に係る銅張積層板を用いることにより、従来作成が困難とされていたファインピッチプリント配線板の製造が可能となるのである。   And the copper clad laminated board which concerns on this invention is what bonded the said surface-treated copper foil with the insulating resin base material, It is characterized by the above-mentioned. Here, although it is a process of pasting with an insulating resin base material, the surface treatment copper foil according to the present invention does not require special condition setting, etc., and is known in the art such as hot pressing, film laminating, and casting. The method is applicable. And, by using the copper clad laminate according to the present invention in which the low-profile surface-treated copper foil as described above is laminated, it becomes possible to produce a fine pitch printed wiring board that has been conventionally difficult to produce. .

この実施例では、硫酸系銅電解液として、硫酸銅溶液であって、銅濃度80g/l、フリー硫酸濃度140g/l、そして表1に記載のMPS濃度、DDAC重合体(センカ(株)製ユニセンスFPA100L:以降DDAC−Aと称する、及び日東紡績(株)製PAS−H−1L:以降DDAC−Bと称する、の2種類を使用)濃度、塩素濃度、ヤヌスグリーン−B濃度としたものを用いた。   In this example, as a sulfuric acid-based copper electrolyte, a copper sulfate solution having a copper concentration of 80 g / l, a free sulfuric acid concentration of 140 g / l, and an MPS concentration described in Table 1, DDAC polymer (manufactured by Senca Co., Ltd.) Unisense FPA100L: hereinafter referred to as DDAC-A, and Nittobo Co., Ltd. PAS-H-1L: hereinafter referred to as DDAC-B)) concentration, chlorine concentration, Janus Green-B concentration Using.

ここで、用いた2種類のDDACの違いについて説明を加える。DDAC−AとDDAC−BはともにDDAC同士が結合した重合体構造を採っているものではあるがDDAC−AとDDAC−Bではその結合状態が異なっているものである。具体的には、
DDAC−A:〔−DDAC−〕
DDAC−B:〔−DDAC−SO−〕
である。
Here, the difference between the two types of DDAC used will be described. Both DDAC-A and DDAC-B have a polymer structure in which DDACs are bonded to each other, but DDAC-A and DDAC-B have different bonding states. In particular,
DDAC-A: [-DDAC-] n
DDAC-B: [-DDAC-SO 2- ] n
It is.

そして、前述の液温50℃とした硫酸系銅電解液を用いて、チタン製陰極にはA(表面粗さRzjis=0.86μm)及びB(表面粗さRzjis=2.50μm)の2種類を使用して電流密度60A/dmで電解し、12μm厚さで4種類の電解銅箔を得た。 Then, using the above-described sulfuric acid-based copper electrolyte having a liquid temperature of 50 ° C., two types of titanium (A (surface roughness Rzjis = 0.86 μm) and B (surface roughness Rzjis = 2.50 μm)) are used for the titanium cathode. Was used for electrolysis at a current density of 60 A / dm 2 to obtain four types of electrolytic copper foils with a thickness of 12 μm.

この電解銅箔の片面は、チタン製陰極の表面形状の転写した光沢面であり、他面側である析出面の表面粗さ、光沢度及びZygo社製表面解析装置による表面形状の評価データ(参考値)等を表2及び図1に示す。   One surface of the electrolytic copper foil is a glossy surface to which the surface shape of the titanium cathode is transferred, and the surface roughness and glossiness of the deposited surface on the other surface side, and surface shape evaluation data by a surface analysis device manufactured by Zygo ( Reference values) are shown in Table 2 and FIG.

そして、上述の種々の電解銅箔の表面処理として、当該析出面に、微細銅粒を析出付着させて、粗化処理面を形成した。この粗化処理面の形成の前に、当該電解銅箔の表面を酸洗処理して、清浄化を行った。この酸洗処理条件は、濃度100g/l、液温30℃の希硫酸溶液を用い、浸漬時間30秒とした。   And as a surface treatment of the above-mentioned various electrolytic copper foils, fine copper particles were deposited on the precipitation surface to form a roughened surface. Prior to the formation of the roughened surface, the surface of the electrolytic copper foil was pickled and cleaned. The pickling treatment conditions were a dilute sulfuric acid solution having a concentration of 100 g / l and a liquid temperature of 30 ° C., and an immersion time of 30 seconds.

そして、酸洗処理が終了すると、次には電解銅箔の析出面に微細銅粒を形成する工程として、析出面上に微細銅粒を析出付着させる工程と、この微細銅粒の脱落を防止するための被せめっき工程とを施した。前者の微細銅粒を析出付着させる工程では、硫酸銅系溶液であって、銅濃度7g/l、フリー硫酸濃度100g/l、液温25℃、電流密度10A/dmの条件で、10秒間電解した。 Then, after the pickling process is finished, the next step is to form fine copper particles on the precipitation surface of the electrolytic copper foil, the step of depositing fine copper particles on the precipitation surface, and preventing the fine copper particles from falling off. The covering plating process for performing was performed. In the former process of depositing fine copper particles, the solution is a copper sulfate-based solution, which has a copper concentration of 7 g / l, a free sulfuric acid concentration of 100 g / l, a liquid temperature of 25 ° C., and a current density of 10 A / dm 2 for 10 seconds. Electrolyzed.

そして、析出面に微細銅粒を付着形成すると、微細銅粒の脱落を防止するための被せめっき工程として平滑めっき条件で微細銅粒を被覆するように銅を均一析出させた。ここでは平滑めっき条件として、硫酸銅系溶液であって、銅濃度60g/l、フリー硫酸濃度150g/l、液温45℃、電流密度15A/dmの条件とし、20秒間電解した。 Then, when fine copper particles were adhered and formed on the precipitation surface, copper was uniformly deposited so as to cover the fine copper particles under smooth plating conditions as a covering plating process for preventing the fine copper particles from falling off. Here, as the smooth plating conditions, a copper sulfate solution was used, and the conditions were a copper concentration of 60 g / l, a free sulfuric acid concentration of 150 g / l, a liquid temperature of 45 ° C., and a current density of 15 A / dm 2 .

上述した粗化処理が終了すると、次には当該銅箔の両面に防錆処理を施した、ここでは以下に述べる条件の無機防錆を採用した。硫酸亜鉛浴を用い、フリー硫酸濃度70g/l、亜鉛濃度20g/lとし、液温40℃、電流密度15A/dmとして電解めっきし、亜鉛防錆層を形成した。 When the above-described roughening treatment was completed, next, the rust prevention treatment was performed on both surfaces of the copper foil. Here, the inorganic rust prevention under the conditions described below was employed. Using a zinc sulfate bath, electrolytic plating was performed at a free sulfuric acid concentration of 70 g / l, a zinc concentration of 20 g / l, a liquid temperature of 40 ° C., and a current density of 15 A / dm 2 to form a zinc rust prevention layer.

更に、本実施例の場合、前記亜鉛防錆層の上に、電解でクロメート層を形成した。このとき、クロム酸濃度5.0g/l、pH 11.5、液温35℃の液を用い、電解条件は電流密度8A/dm、電解時間5秒とした。 Further, in the case of this example, a chromate layer was formed by electrolysis on the zinc rust preventive layer. At this time, a solution having a chromic acid concentration of 5.0 g / l, a pH of 11.5, and a liquid temperature of 35 ° C. was used, and electrolysis conditions were a current density of 8 A / dm 2 and an electrolysis time of 5 seconds.

以上のように防錆処理が完了すると水洗後、直ちにシランカップリング剤処理槽で、粗化した面の防錆処理層の上にシランカップリング剤の吸着を行った。このときの溶液組成は、イオン交換水を溶媒として、γ−グリシドキシプロピルトリメトキシシランを5g/lの濃度となるよう加えたものとした。そして、この溶液をシャワーリングにて吹き付けることにより吸着処理した。   When the rust prevention treatment was completed as described above, the silane coupling agent was adsorbed on the roughened rust prevention treatment layer immediately after washing with water in the silane coupling agent treatment tank. The solution composition at this time was such that ion-exchanged water was used as a solvent and γ-glycidoxypropyltrimethoxysilane was added to a concentration of 5 g / l. The solution was adsorbed by spraying with a shower ring.

シランカップリング剤処理が終了すると、最終的に、電熱器により箔温度が140℃となるよう、雰囲気温度を調整加熱した炉内を4秒かけて通過し、水分をとばし、シランカップリング剤の縮合反応を促進し、完成した4種類の表面処理銅箔(表中には実施例1−1〜実施例1−4として各表面処理銅箔を特定している。)とした。この表面処理後の粗化処理面の表面粗さを表2に示す。   When the treatment with the silane coupling agent is completed, it is finally passed through a furnace in which the atmospheric temperature is adjusted and heated so that the foil temperature becomes 140 ° C. with an electric heater over 4 seconds, moisture is removed, and the silane coupling agent The condensation reaction was promoted to obtain four types of surface-treated copper foils (each surface-treated copper foil was identified as Example 1-1 to Example 1-4 in the table). Table 2 shows the surface roughness of the roughened surface after the surface treatment.

比較例Comparative example

[比較例1]
比較例1では従来技術による低プロファイル銅箔の製造を実施した。ここで得られた電解銅箔析出面の特性は従来法で比較しても実施例1及び比較例2と明らかに異なっていることが明らかであるため、Zygo社製表面解析装置による表面形状の評価は実施していない。
[Comparative Example 1]
In Comparative Example 1, a low profile copper foil according to the prior art was manufactured. Since the characteristics of the electrolytic copper foil deposition surface obtained here are clearly different from those of Example 1 and Comparative Example 2 even when compared with the conventional method, the surface shape of the surface analysis apparatus manufactured by Zygo Co., Ltd. Evaluation is not conducted.

比較例1−1: 特許文献1に開示の実施例1−1のトレース実験として、硫酸銅(試薬)と硫酸(試薬)とをイオン交換水に溶解し、硫酸銅(5水和物換算)280g/l、フリー硫酸濃度90g/lとし、ジアリルジアルキルアンモニウム塩と二酸化硫黄との共重合体(日東紡績株式会社製、商品名PAS−A−5、重量平均分子量4000:4ppm)とポリエチレングリコール(平均分子量1000:10ppm)と3−メルカプト−1−プロパンスルホン酸(1ppm)とを添加し、更に塩化ナトリウムを用いて塩素濃度を20ppmに調製して、硫酸酸性銅めっき液を調製した。そして、チタン製陰極にはAを用い、液温40℃、電流密度50A/dmで電解を行い、12μm厚さの電解銅箔を得た。この電解銅箔の表面粗さRzjisは0.85μmであり光沢度Gs(60°)は283であった。その後、実施例1と同様にして表面処理銅箔を得、その粗化処理面の表面粗さRzjisは4.5μmであった。詳細には表2に実施例と共に示す。 Comparative Example 1-1: As a trace experiment of Example 1-1 disclosed in Patent Document 1, copper sulfate (reagent) and sulfuric acid (reagent) were dissolved in ion-exchanged water, and copper sulfate (pentahydrate conversion) 280 g / l, free sulfuric acid concentration 90 g / l, a copolymer of diallyldialkylammonium salt and sulfur dioxide (manufactured by Nitto Boseki Co., Ltd., trade name PAS-A-5, weight average molecular weight 4000: 4 ppm) and polyethylene glycol ( Average molecular weight 1000: 10 ppm) and 3-mercapto-1-propanesulfonic acid (1 ppm) were added, and the chlorine concentration was further adjusted to 20 ppm using sodium chloride to prepare a sulfuric acid copper plating solution. Then, A was used for the titanium cathode, and electrolysis was performed at a liquid temperature of 40 ° C. and a current density of 50 A / dm 2 to obtain an electrolytic copper foil having a thickness of 12 μm. The surface roughness Rzjis of this electrolytic copper foil was 0.85 μm, and the glossiness Gs (60 °) was 283. Thereafter, a surface-treated copper foil was obtained in the same manner as in Example 1, and the surface roughness Rzjis of the roughened surface was 4.5 μm. Details are shown in Table 2 together with examples.

比較例1−2: 銅濃度90g/l、フリー硫酸濃度110g/lの硫酸系銅電解液を、活性炭フィルターに通して清浄処理した。ついで、この電解液に3−メルカプト1−プロパンスルホン酸ナトリウム(1ppm)と、高分子多糖類としてヒドロキシエチルセルロース(5ppm)及び低分子量膠(数平均分子量1560:4ppm)と、塩素濃度30ppmとなるように塩化ナトリウムをそれぞれ添加して電解液を調製した。そしてチタン製陰極にはAを用いて、液温58℃、電流密度50A/dmで電解を行い、12μm厚さの電解銅箔を得た。この電解銅箔の表面粗さRzjisは0.83μmであり光沢度Gs(60°)は374であった。その後、実施例1と同様にして表面処理銅箔を得、その粗化処理面の表面粗さRzjisは4.8μmであった。詳細には表2に実施例と共に示す。 Comparative Example 1-2: A sulfuric acid-based copper electrolytic solution having a copper concentration of 90 g / l and a free sulfuric acid concentration of 110 g / l was passed through an activated carbon filter for cleaning treatment. Next, sodium 3-mercapto-1-propanesulfonate (1 ppm), hydroxyethyl cellulose (5 ppm) and low molecular weight glue (number average molecular weight 1560: 4 ppm) as the polymer polysaccharide, and a chlorine concentration of 30 ppm are added to the electrolyte. Sodium chloride was added to each to prepare an electrolyte solution. Then, A was used as the titanium cathode, and electrolysis was performed at a liquid temperature of 58 ° C. and a current density of 50 A / dm 2 to obtain an electrolytic copper foil having a thickness of 12 μm. The surface roughness Rzjis of this electrolytic copper foil was 0.83 μm, and the glossiness Gs (60 °) was 374. Thereafter, a surface-treated copper foil was obtained in the same manner as in Example 1, and the surface roughness Rzjis of the roughened surface was 4.8 μm. Details are shown in Table 2 together with examples.

比較例1−3: この比較例では、硫酸系銅電解液として、硫酸銅溶液であって、銅濃度80g/l、フリー硫酸140g/l、ジアリルジメチルアンモニウムクロライド濃度4ppm(センカ(株)製ユニセンスFPA100Lを使用)、塩素濃度15ppm、の溶液を用い、チタン製陰極にはAを用いて電流密度60A/dmで電解し、12μm厚さの電解銅箔を得た。この電解銅箔の表面粗さRzjisは3.60μmであり光沢度Gs(60°)は0.7であった。その後、実施例1と同様にして表面処理銅箔を得、その粗化処理面の表面粗さRzjisは8.2μmであった。詳細には表2に実施例と共に示す。 Comparative Example 1-3: In this comparative example, as the sulfuric acid-based copper electrolyte, a copper sulfate solution having a copper concentration of 80 g / l, free sulfuric acid 140 g / l, diallyldimethylammonium chloride concentration of 4 ppm (Unisense manufactured by Senca Co., Ltd.) FPA100L was used), and a chlorine concentration of 15 ppm was used, and a titanium cathode was electrolyzed using A at a current density of 60 A / dm 2 to obtain an electrolytic copper foil having a thickness of 12 μm. The surface roughness Rzjis of this electrolytic copper foil was 3.60 μm, and the glossiness Gs (60 °) was 0.7. Thereafter, a surface-treated copper foil was obtained in the same manner as in Example 1, and the surface roughness Rzjis of the roughened surface was 8.2 μm. Details are shown in Table 2 together with examples.

比較例1−4: この比較例では、硫酸系銅電解液として、硫酸銅溶液であって、銅濃度80g/l、フリー硫酸140g/l、ジアリルジメチルアンモニウムクロライド濃度4ppm(センカ(株)製ユニセンスFPA100Lを使用)、低分子量膠(数平均分子量1560:6ppm)、塩素濃度15ppm、液温50℃の溶液を用い、チタン製陰極にはAを用いて電流密度60A/dmで電解し、12μm厚さの電解銅箔を得た。この電解銅箔の表面粗さRzjisは3.59μmであり光沢度Gs(60°)は1.0であった。その後、実施例1と同様にして表面処理銅箔を得、その粗化処理面の表面粗さRzjisは8.0μmであった。詳細には表2に実施例と共に示す。 Comparative Example 1-4: In this comparative example, as the sulfuric acid-based copper electrolyte, a copper sulfate solution having a copper concentration of 80 g / l, free sulfuric acid 140 g / l, diallyldimethylammonium chloride concentration of 4 ppm (Unisense manufactured by Senca Co., Ltd.) FPA100L is used), low molecular weight glue (number average molecular weight 1560: 6 ppm), chlorine concentration 15 ppm, solution temperature 50 ° C. A titanium cathode is electrolyzed at a current density of 60 A / dm 2 using A, 12 μm A thick electrolytic copper foil was obtained. The surface roughness Rzjis of this electrolytic copper foil was 3.59 μm, and the glossiness Gs (60 °) was 1.0. Thereafter, a surface-treated copper foil was obtained in the same manner as in Example 1, and the surface roughness Rzjis of the roughened surface was 8.0 μm. Details are shown in Table 2 together with examples.

[比較例2]
電解銅箔の製造: この比較例では、硫酸系銅電解液として、硫酸銅溶液であって、銅濃度80g/l、フリー硫酸濃度140g/l、そして表1に記載のMPS濃度、DDAC(センカ(株)製ユニセンスFPA100L:DDAC−A及び日東紡績(株)製PAS−H−1L:DDAC−Bの2種類を使用)濃度、塩素濃度としたものを用いた。すなわち、実施例1の浴組成に対して、ヤヌスグリーン−Bを含んでいないものとしている。
[Comparative Example 2]
Production of Electrolytic Copper Foil: In this comparative example, the sulfuric acid-based copper electrolyte was a copper sulfate solution having a copper concentration of 80 g / l, a free sulfuric acid concentration of 140 g / l, and the MPS concentration and DDAC (SENCA) described in Table 1. Unisense FPA100L: DDAC-A manufactured by Nittobo Co., Ltd. and PAS-H-1L: DDAC-B manufactured by Nitto Boseki Co., Ltd.) were used in a concentration and chlorine concentration. That is, Janus Green-B is not included in the bath composition of Example 1.

そして、前述の液温50℃とした硫酸系銅電解液を用いて、チタン製陰極にはA(Rzjis=0.86μm)及びB(Rzjis=2.50μm)の2種類を使用して電流密度60A/dmで電解し、12μm厚さで4種の電解銅箔を得た。この電解銅箔の片面は、チタン製陰極の表面形状の転写した光沢面であり、他面側である析出面の表面粗さ、光沢度及びZygo社製表面解析装置による表面形状の評価データ(参考値)等を表2及び図2に示す。 Then, using the above-described sulfuric acid-based copper electrolytic solution with a liquid temperature of 50 ° C., two types of current density A (Rzjis = 0.86 μm) and B (Rzjis = 2.50 μm) were used for the titanium cathode. Electrolysis was performed at 60 A / dm 2 to obtain four types of electrolytic copper foils with a thickness of 12 μm. One surface of the electrolytic copper foil is a glossy surface to which the surface shape of the titanium cathode is transferred, and the surface roughness and glossiness of the deposited surface on the other surface side, and surface shape evaluation data by a surface analysis device manufactured by Zygo ( Reference values) are shown in Table 2 and FIG.

その後、微小銅粒の観察されていた比較例2−2及び比較例2−4は対象外として実施例1と同様にして2種類の表面処理銅箔とした。その粗化処理面の表面粗さRzjisは2.76μm及び4.18μmであった。詳細には表2に実施例と共に示す。   Thereafter, Comparative Example 2-2 and Comparative Example 2-4, in which fine copper particles were observed, were excluded, and two types of surface-treated copper foils were formed in the same manner as in Example 1. The surface roughness Rzjis of the roughened surface was 2.76 μm and 4.18 μm. Details are shown in Table 2 together with examples.

<比較例2と比較例1との対比>
チタン製陰極にAを共通使用して得られた電解箔の析出面表面粗さRzjisを対比すると、比較例2に記載した電解銅箔の析出面表面粗さRzjisと、比較例1の電解銅箔の析出面表面粗さRzjisには、添加剤の構成によると考えられる大きな違いが見られている。粗化処理後の銅箔を触針式粗さ計を用いて測定したプロファイルから判断する限り、比較例1−3及び比較例1−4の表面処理銅箔ではRzjisで8.0μm及び8.2μmとかろうじて低プロファイルと言える状態である。そして、比較例1−1及び比較例1−2の表面処理銅箔ではRzjisで4.8μm及び4.5μmと比較的良好な低プロファイル銅箔が出来ているとは言うものの、比較例2−1の表面処理銅箔ではRzjis=2.76μmと更に良好な低プロファイル化が達成されており、そのレベルの違いは明らかである。
<Comparison between Comparative Example 2 and Comparative Example 1>
When comparing the precipitation surface roughness Rzjis of the electrolytic foil obtained by commonly using A to the cathode made of titanium, the precipitation surface roughness Rzjis of the electrolytic copper foil described in Comparative Example 2 and the electrolytic copper of Comparative Example 1 There is a large difference in the surface roughness Rzjis of the foil, which is considered to be due to the composition of the additive. As long as the copper foil after the roughening treatment is judged from the profile measured using a stylus type roughness meter, the surface-treated copper foils of Comparative Example 1-3 and Comparative Example 1-4 have Rzjis of 8.0 μm and 8. It is a state that can be said to be a low profile at 2 μm. And although the surface-treated copper foils of Comparative Example 1-1 and Comparative Example 1-2 have comparatively good low profile copper foils of 4.8 μm and 4.5 μm in Rzjis, Comparative Example 2- In the surface-treated copper foil No. 1, Rzjis = 2.76 μm, which is a better profile reduction, the level difference is clear.

更に、ここで光沢度を見るに、比較例1の析出面光沢度が高くても283〜374の範囲にあるのに対し、比較例2−1の析出面光沢度は630という全く異なる値を示している。このことから、比較例1の電解銅箔と比べ、比較例2の電解銅箔は、より平坦で鏡面に近い析出面を備えていると言える。この点において前述の如く硫酸系銅電解液としてはMPSとDDAC重合体と塩素とを含んでいるものを用いても従来市場に供給されてきた低プロファイル電解銅箔に比べてもより低プロファイルの電解銅箔の製造は可能になるとしているのである。   Further, when looking at the glossiness here, even if the precipitation surface glossiness of Comparative Example 1 is high, it is in the range of 283 to 374, whereas the precipitation surface glossiness of Comparative Example 2-1 is a completely different value of 630. Show. From this, it can be said that the electrolytic copper foil of Comparative Example 2 has a flatter and nearly mirror-deposited surface compared to the electrolytic copper foil of Comparative Example 1. In this respect, as described above, the sulfuric acid-based copper electrolytic solution containing MPS, DDAC polymer, and chlorine has a lower profile than the low profile electrolytic copper foil that has been supplied to the market. It is said that it is possible to produce electrolytic copper foil.

<実施例1と比較例2との対比>
上記比較例同士の対比に加え、実施例1と比較例2(微小銅粒の観察されている比較例2−2及び比較例2−4を除く)とを対比した結果、電解銅箔の析出面表面粗さRzjisは本件発明に係る実施例1では0.38μm〜1.58μmそして比較例2では0.56μm〜2.06μmが得られていてともに低プロファイルである。そして、光沢度はチタン製陰極の表面粗さの影響を受けにくい状態で作成されたサンプル同士を比較した場合実施例1−1では570〜654、比較例2−1では630を示しており、ともに従来技術から得られる比較例1の電解銅箔に比べて大きな数値を示している。
<Contrast between Example 1 and Comparative Example 2>
As a result of comparing Example 1 and Comparative Example 2 (excluding Comparative Example 2-2 and Comparative Example 2-4 in which fine copper particles are observed) in addition to the comparison between the comparative examples, precipitation of electrolytic copper foil The surface surface roughness Rzjis is 0.38 μm to 1.58 μm in Example 1 according to the present invention and 0.56 μm to 2.06 μm in Comparative Example 2, both of which have a low profile. When the samples prepared in a state where the glossiness is not easily affected by the surface roughness of the titanium cathode are compared with each other, Example 1-1 shows 570 to 654, and Comparative Example 2-1 shows 630. Both show larger numerical values than the electrolytic copper foil of Comparative Example 1 obtained from the prior art.

しかしながら、外観等その他の特性を加味してみると実施例1と比較例2で得られた電解銅箔が示す特性のレベルはヤヌスグリーン添加の有無によって異なっていることが表2に明らかである。具体的には以下に説明する。   However, when other characteristics such as appearance are taken into consideration, it is clear in Table 2 that the level of characteristics exhibited by the electrolytic copper foils obtained in Example 1 and Comparative Example 2 varies depending on whether or not Janus Green is added. . Specifically, this will be described below.

チタン電極の表面粗さの影響: DDAC−Aを添加した銅電解液と表面粗さが大きめのチタン電極Bとの組み合わせから得られた12ミクロン銅箔を比較すると、ヤヌスグリーンの添加のない銅電解液を用いたものではチタン電極面の表面粗さRzjis=2.50μmに対して析出面粗さRzjis=2.06μmと粗さの緩和が不十分であるのに対し、ヤヌスグリーンを添加した銅電解液から得られた銅箔では析出面粗さRzjis=1.58μmでありチタン電極面の表面粗さを低減させている。この結果は、12ミクロン銅箔という薄い箔を触針式粗さ計で測定する場合には被測定面のプロファイルのみではなく裏面のプロファイルの影響が加わったデータが得られることが経験的に判明していることを併せ考えると、ヤヌスグリーンの添加によりチタン電極面への付廻り性が良くなって電極表面の凹凸が埋め込まれ、平滑な電着表面が得られていることを示している。 Influence of the surface roughness of the titanium electrode: When comparing the 12 micron copper foil obtained from the combination of the copper electrolyte added with DDAC-A and the titanium electrode B with a larger surface roughness, the copper without the addition of Janus Green In the case of using the electrolytic solution, the surface roughness Rzjis = 2.50 μm of the titanium electrode surface is insufficient with respect to the roughness of the precipitation surface Rzjis = 2.06 μm, whereas Janus Green was added. In the copper foil obtained from the copper electrolyte, the precipitation surface roughness Rzjis = 1.58 μm, which reduces the surface roughness of the titanium electrode surface. As a result, it has been empirically found that when a thin foil of 12 micron copper foil is measured with a stylus type roughness meter, not only the profile of the measured surface but also the influence of the profile of the back surface can be obtained. In addition, the addition of Janus Green improves the ability to circulate on the titanium electrode surface, burying the unevenness of the electrode surface, and indicates that a smooth electrodeposition surface is obtained.

また、DDAC−Aを添加した銅電解液と表面粗さが小さなチタン電極Aとの組み合わせから得られた12ミクロン銅箔を比較すると、ヤヌスグリーンの添加のない銅電解液を用いたものではチタン電極面の表面粗さRzjis=0.86μmに対して電解銅箔析出面粗さRzjis=0.56μmとチタン電極面の表面粗さからわずかに改善されたレベルとなっているのに対し、ヤヌスグリーンを添加した液系から得られた銅箔では電解銅箔析出面粗さRzjis=0.38μmとなっており、チタン電極面粗さの電解銅箔析出面粗さへの影響を低減して平滑化する効果に明らかな違いが見られている。   In addition, when comparing a 12 micron copper foil obtained from a combination of a copper electrolyte added with DDAC-A and a titanium electrode A having a small surface roughness, the one using a copper electrolyte without addition of Janus Green is titanium. While the surface roughness Rzjis = 0.86 μm of the electrode surface, the electrolytic copper foil deposition surface roughness Rzjis = 0.56 μm, which is a slightly improved level from the surface roughness of the titanium electrode surface, Janus In the copper foil obtained from the liquid system to which green was added, the electrolytic copper foil deposition surface roughness Rzjis = 0.38 μm, and the influence of the titanium electrode surface roughness on the electrolytic copper foil deposition surface roughness was reduced. There is a clear difference in the smoothing effect.

DDAC重合体の構造の違い: DDAC−Aを添加した液系と表面粗さが小さなチタン電極Aとの組み合わせから得られた12ミクロン銅箔を実施例1−1と比較例2−1で比較すると、前述の如くDDAC−Aが添加された液系では、ヤヌスグリーンを添加した銅電解液から得られた電解銅箔析出面のRzjisが0.38μmであり光沢度が654であるのに対してヤヌスグリーンの添加のない銅電解液を用いて得られた電解銅箔の析出面ではRzjisで0.18ミクロン大きく、光沢度は約20低いものの大きな品質レベル差があるとは言えないものとなっている。しかし、DDAC−Bが添加された液系では、ヤヌスグリーンを添加した銅電解液から得られた実施例1−2及び実施例1−4の電解銅箔ではDDAC−Aを添加した液系とほぼ同レベルの電解銅箔が得られているのに対し、ヤヌスグリーンが添加がされていない液系から得られた比較例2−2及び比較例2−4の電解銅箔には微小銅粒の存在が見受けられている。 Difference in structure of DDAC polymer: A 12-micron copper foil obtained from a combination of a liquid system to which DDAC-A was added and a titanium electrode A having a small surface roughness was compared in Example 1-1 and Comparative Example 2-1. Then, in the liquid system to which DDAC-A was added as described above, the Rzjis of the electrolytic copper foil deposition surface obtained from the copper electrolytic solution to which Janus Green was added was 0.38 μm and the glossiness was 654. The deposited surface of the electrolytic copper foil obtained using the copper electrolyte without the addition of Janus Green had a large Rzjis of 0.18 microns and a glossiness of about 20 but could not be said to have a large quality level difference. It has become. However, in the liquid system to which DDAC-B was added, the liquid system to which DDAC-A was added in the electrolytic copper foils of Examples 1-2 and 1-4 obtained from the copper electrolytic solution to which Janus Green was added Although the electrolytic copper foil of almost the same level is obtained, the electrolytic copper foils of Comparative Example 2-2 and Comparative Example 2-4 obtained from the liquid system to which Janus Green is not added have fine copper particles. The existence of is seen.

即ち、DDAC−Bを使用してもヤヌスグリーンの添加によりDDAC−Aを使用した場合と同等の平滑化効果が得られることになり、DDACの重合体構造の違いによる低プロファイル化の効果の違いをヤヌスグリーンを存在させることで平準化出来ていることが分かる。   That is, even if DDAC-B is used, the smoothing effect equivalent to the case where DDAC-A is used can be obtained by adding Janus Green, and the difference in the effect of reducing the profile due to the difference in the polymer structure of DDAC. It can be seen that leveling is possible by the presence of Janus Green.

Zygo画像の比較: 表2における一般的な評価におけるデータ上では実施例1−1の電解銅箔と比較例2−1の電解銅箔間の違いはわずかであるが、図1と図2を比較してみると、ヤヌスグリーンを添加して製造された図1の電解銅箔析出面は図2の電解銅箔析出面に比べて凹凸深さがやや小さく、また図1の表面形状は図2に比べうねりが小さくなっている。このことが粗さが小さいことと相まって光沢度が大きくなる要因であると考察される。 Comparison of Zygo images: Although the difference between the electrolytic copper foil of Example 1-1 and the electrolytic copper foil of Comparative Example 2-1 is slight on the data in the general evaluation in Table 2, FIG. 1 and FIG. In comparison, the electrolytic copper foil deposited surface of FIG. 1 manufactured by adding Janus Green has a slightly smaller irregularity depth than the electrolytic copper foil deposited surface of FIG. 2, and the surface shape of FIG. The swell is smaller than 2. It is considered that this is a factor that increases glossiness in combination with small roughness.

上記比較から、ヤヌスグリーンを含むことを特徴とする硫酸系銅電解液を用いて得られた実施例1の電解銅箔は、チタン製陰極の表面形状の析出面形状への影響が緩和されており、また添加剤であるDDACの重合体構造が異なる場合に於いてもその違いが析出面形状の違いとして現われていない。従って、ヤヌスグリーン添加の効果はDDAC重合体のみの添加では得ることのできない析出面のさらなる平滑化効果及び使用できる添加剤の制約低減効果であることが明らかである。   From the above comparison, the electrolytic copper foil of Example 1 obtained using the sulfuric acid-based copper electrolyte characterized by containing Janus Green is less affected by the surface shape of the titanium cathode on the precipitation surface shape. In addition, even when the polymer structure of the DDAC as an additive is different, the difference does not appear as a difference in the shape of the precipitation surface. Therefore, it is clear that the effect of adding Janus Green is a further smoothing effect of the precipitation surface that cannot be obtained by adding only the DDAC polymer, and an effect of reducing restrictions on the additive that can be used.

本件発明に係る銅電解液を用いることで、低プロファイルの銅の析出面を得ることが出来る。従って、この銅電解液を用いて製造される電解銅箔は、従来市場に供給されてきた低プロファイル電解銅箔に比べ、更に低プロファイルであり、且つ、一般的な工程管理項目である添加剤の素性と陰極表面形状のばらつきの影響をミニマイズできている。従って、その析出面に上記表面処理を施し、粗化処理を施した場合でも、従来に無いレベルの低プロファイルの表面処理銅箔を安定的に、容易に得ることが出来る。従って、当該硫酸系銅電解液は、テープ オートメーティド ボンディング(TAB)基板やチップ オン フレキシブル(COF)基板等のファインピッチ回路の形成を要求される用途に好適な電解銅箔を製造するのに好適な銅電解液である。 By using the copper electrolyte solution according to the present invention , a low profile copper deposition surface can be obtained. Therefore, the electrolytic copper foil manufactured using this copper electrolyte has a lower profile than the low profile electrolytic copper foil that has been supplied to the market, and is an additive that is a general process control item. The effect of variations in the characteristics of the cathode and the surface shape of the cathode can be minimized. Therefore, even when the surface treatment is performed on the precipitation surface and the roughening treatment is performed, a low-profile surface-treated copper foil with a level that is not conventionally obtained can be obtained stably and easily. Therefore, the sulfuric acid-based copper electrolyte can be used to produce an electrolytic copper foil suitable for applications that require the formation of fine pitch circuits such as tape automated bonding (TAB) substrates and chip-on-flexible (COF) substrates. It is a suitable copper electrolyte.

実施例1−1で得られた12ミクロン電解銅箔析出面のZygo画像である。It is a Zygo image of the 12 micron electrolytic copper foil precipitation surface obtained in Example 1-1. 比較例2−1で得られた12ミクロン電解銅箔析出面のZygo画像である。It is a Zygo image of the 12 micron electrolytic copper foil precipitation surface obtained by the comparative example 2-1.

Claims (7)

電解銅箔の製造に用いる3−メルカプト−1−プロパンスルホン酸と環状構造を持つ4級アンモニウム塩重合体と塩素とを含む硫酸系銅電解液であって、
ヤヌスグリーンを含むことを特徴とする硫酸系銅電解液
A sulfuric acid-based copper electrolytic solution containing 3-mercapto-1-propanesulfonic acid, a quaternary ammonium salt polymer having a cyclic structure, and chlorine, which are used for producing an electrolytic copper foil,
A sulfuric acid-based copper electrolyte containing Janus Green.
前記硫酸系銅電解液中のヤヌスグリーン濃度が2ppm〜30ppmである請求項1に記載の硫酸系銅電解液 Sulfuric acid base copper electrolytic solution according to claim 1 Janus Green B concentrations of the sulfuric acid base copper electrolytic solution is 2Ppm~30ppm. 請求項1又は請求項2のいずれかに係る硫酸系銅電解液を用い、液温20℃〜60℃とし、電流密度30A/dm〜90A/dmで電解することを特徴とする電解銅箔の製造方法。 Electrolytic copper characterized by electrolyzing at a current density of 30 A / dm 2 to 90 A / dm 2 at a liquid temperature of 20 ° C. to 60 ° C. using the sulfuric acid-based copper electrolytic solution according to claim 1. Foil manufacturing method. 請求項3に係る製造方法により得られた電解銅箔。 An electrolytic copper foil obtained by the production method according to claim 3. 請求項4に係る電解銅箔の析出面に粗化処理、防錆処理、シランカップリング剤処理のいずれか一種又は二種以上を行った表面処理銅箔。 The surface-treated copper foil which performed any 1 type, or 2 or more types of the roughening process, the antirust process, and the silane coupling agent process to the precipitation surface of the electrolytic copper foil which concerns on Claim 4. 前記表面処理銅箔の、絶縁樹脂基材との張り合わせ面の表面粗さ(Rzjis)が5μm以下の低プロファイルであることを特徴とする請求項5に記載の表面処理銅箔。 The surface-treated copper foil according to claim 5, wherein the surface-treated copper foil has a low profile having a surface roughness (Rzjis) of a surface to be bonded to the insulating resin base material of 5 μm or less. 請求項5又は請求項6に係る表面処理銅箔を絶縁樹脂基材と張り合わせてなることを特徴とする銅張積層板。 A copper clad laminate comprising the surface-treated copper foil according to claim 5 or 6 and an insulating resin substrate.
JP2005325717A 2005-11-10 2005-11-10 Sulfuric acid copper electrolyte and electrolytic copper foil obtained using the sulfuric acid copper electrolyte Expired - Fee Related JP4756637B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005325717A JP4756637B2 (en) 2005-11-10 2005-11-10 Sulfuric acid copper electrolyte and electrolytic copper foil obtained using the sulfuric acid copper electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005325717A JP4756637B2 (en) 2005-11-10 2005-11-10 Sulfuric acid copper electrolyte and electrolytic copper foil obtained using the sulfuric acid copper electrolyte

Publications (3)

Publication Number Publication Date
JP2007131909A JP2007131909A (en) 2007-05-31
JP2007131909A5 JP2007131909A5 (en) 2009-02-12
JP4756637B2 true JP4756637B2 (en) 2011-08-24

Family

ID=38153803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005325717A Expired - Fee Related JP4756637B2 (en) 2005-11-10 2005-11-10 Sulfuric acid copper electrolyte and electrolytic copper foil obtained using the sulfuric acid copper electrolyte

Country Status (1)

Country Link
JP (1) JP4756637B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4999126B2 (en) * 2010-06-15 2012-08-15 古河電気工業株式会社 Circuit parts
KR20170104648A (en) * 2013-11-22 2017-09-15 미쓰이금속광업주식회사 Coreless buildup support substrate and printed wiring board manufactured using said coreless buildup support substrate
US20180142369A1 (en) * 2015-06-26 2018-05-24 Sumitimo Metal Mining Co., Ltd. Electrically conductive substrate
KR102433032B1 (en) * 2017-07-31 2022-08-16 에스케이넥실리스 주식회사 Copper foil free from generation of wrinkle, electrode comprisng the same, secondary battery comprising the same and method for manufacturing the same
CN112839436B (en) * 2020-12-30 2022-08-05 广东嘉元科技股份有限公司 Electrolytic copper foil for high-frequency high-speed printed circuit board and preparation method thereof
CN113322497B (en) * 2021-04-25 2022-05-24 浙江花园新能源股份有限公司 Double-sided light ultrathin electrolytic copper foil for lithium battery and manufacturing method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4931415B1 (en) * 1970-07-10 1974-08-21
JPS527819A (en) * 1975-07-10 1977-01-21 Furukawa Electric Co Ltd:The Process for smooth electrodeposition of copper
JP4354139B2 (en) * 2001-11-02 2009-10-28 凸版印刷株式会社 Wiring board manufacturing method
JP4113519B2 (en) * 2003-06-18 2008-07-09 鶴見曹達株式会社 Copper plating material and copper plating method

Also Published As

Publication number Publication date
JP2007131909A (en) 2007-05-31

Similar Documents

Publication Publication Date Title
KR101050016B1 (en) Copper foil laminated board obtained using the manufacturing method of an electrolytic copper foil, the electrolytic copper foil obtained by this manufacturing method, the surface-treated copper foil obtained using this electrolytic copper foil, and an electrolytic copper foil or a surface-treated copper foil.
JP3910623B1 (en) Manufacturing method of electrolytic copper foil, electrolytic copper foil obtained by the manufacturing method, surface-treated electrolytic copper foil obtained using the electrolytic copper foil, copper-clad laminate and printed wiring using the surface-treated electrolytic copper foil Board
JP5180815B2 (en) Surface-treated electrolytic copper foil and method for producing the same
JP4065004B2 (en) Electrolytic copper foil, surface-treated electrolytic copper foil obtained using the electrolytic copper foil, copper-clad laminate and printed wiring board using the surface-treated electrolytic copper foil
EP1876266B1 (en) Electrodeposited copper foil and process for producing electrodeposited copper foil
JP5255229B2 (en) Electrolytic copper foil, surface-treated copper foil using the electrolytic copper foil, copper-clad laminate using the surface-treated copper foil, and method for producing the electrolytic copper foil
US9307639B2 (en) Electro-deposited copper foil, surface-treated copper foil using the electro-deposited copper foil and copper clad laminate using the surface-treated copper foil, and a method for manufacturing the electro-deposited copper foil
JP2013019056A5 (en)
JP4756637B2 (en) Sulfuric acid copper electrolyte and electrolytic copper foil obtained using the sulfuric acid copper electrolyte
JP3306404B2 (en) Method for producing surface-treated copper foil and copper-clad laminate using surface-treated copper foil obtained by the method
JPWO2007007870A1 (en) Blackened surface treated copper foil and electromagnetic shielding conductive mesh for front panel of plasma display using the blackened surface treated copper foil
JP2008127618A (en) Method for treating surface of copper foil through feeding alternating current
TWI328623B (en)
JP2007131946A (en) Flexible copper clad laminate, flexible printed wiring board obtained by using flexible copper clad laminate thereof, film carrier tape obtained by using flexible copper clad laminate thereof, semiconductor device obtained by using flexible copper clad laminate thereof, method of manufacturing flexible copper clad laminate and method of manufacturing film carrier tape
JPWO2013065713A1 (en) Copper foil for printed circuit, copper-clad laminate, printed wiring board, and electronic equipment
JP4976725B2 (en) Copper electrolyte and method for forming electrodeposited copper film using the copper electrolyte
JP6845382B1 (en) Surface-treated copper foil, copper-clad laminate, and printed wiring board
JP2006274361A (en) Electrolytic copper foil and production method of the electrolytic copper foil
JP2005340635A (en) Rolled copper foil for printed wiring board, and its production process
JP2008091596A (en) Copper-coated polyimide substrate with smooth surface, and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110527

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees