JP3910623B1 - Manufacturing method of electrolytic copper foil, electrolytic copper foil obtained by the manufacturing method, surface-treated electrolytic copper foil obtained using the electrolytic copper foil, copper-clad laminate and printed wiring using the surface-treated electrolytic copper foil Board - Google Patents

Manufacturing method of electrolytic copper foil, electrolytic copper foil obtained by the manufacturing method, surface-treated electrolytic copper foil obtained using the electrolytic copper foil, copper-clad laminate and printed wiring using the surface-treated electrolytic copper foil Board Download PDF

Info

Publication number
JP3910623B1
JP3910623B1 JP2006100228A JP2006100228A JP3910623B1 JP 3910623 B1 JP3910623 B1 JP 3910623B1 JP 2006100228 A JP2006100228 A JP 2006100228A JP 2006100228 A JP2006100228 A JP 2006100228A JP 3910623 B1 JP3910623 B1 JP 3910623B1
Authority
JP
Japan
Prior art keywords
copper foil
electrolytic copper
electrolytic
treated
sulfuric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006100228A
Other languages
Japanese (ja)
Other versions
JP2007217787A (en
Inventor
光由 松田
久雄 酒井
咲子 朝長
誠 土橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2006100228A priority Critical patent/JP3910623B1/en
Application granted granted Critical
Publication of JP3910623B1 publication Critical patent/JP3910623B1/en
Publication of JP2007217787A publication Critical patent/JP2007217787A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

【課題】従来市場に供給されてきた低プロファイル電解銅箔と比べて、更に低プロファイルで光沢のある電解銅箔を提供する。
【解決手段】上記課題を解決するために、電解銅箔は厚さによらずに析出面側の表面粗さ(Rzjis)は1.0μm未満の超低プロファイルであり、且つ、当該析出面の光沢度[Gs(60°)]は400以上である電解銅箔とする。そしてこの電解銅箔は3−メルカプト−1−プロパンスルホン酸及び/又はビス(3−スルホプロピル)ジスルフィドと環状構造を持つ4級アンモニウム塩重合体と塩素とを添加して得られた硫酸系銅電解液を用い電解して得る。
【選択図】図1
The present invention provides an electrolytic copper foil having a lower profile and gloss than a low profile electrolytic copper foil that has been supplied to the market.
In order to solve the above problems, the electrolytic copper foil has an ultra-low profile with a surface roughness (Rzjis) of less than 1.0 μm on the surface of the deposited surface regardless of the thickness, and The electrolytic copper foil having a glossiness [Gs (60 °)] of 400 or more is used. This electrolytic copper foil is obtained by adding 3-mercapto-1-propanesulfonic acid and / or bis (3-sulfopropyl) disulfide, a quaternary ammonium salt polymer having a cyclic structure, and chlorine to obtain a sulfuric acid-based copper. It is obtained by electrolysis using an electrolytic solution.
[Selection] Figure 1

Description

本件発明は、電解銅箔の製造方法、その製造方法で得られた電解銅箔、その電解銅箔を用いて得られた表面処理電解銅箔、その表面処理電解銅箔を用いた銅張積層板及びプリント配線板に関する。特に、その電解銅箔の絶縁層構成材料との張合わせ面が低プロファイルで高光沢を有している電解銅箔に関する。 The present invention is a method for producing an electrolytic copper foil, an electrolytic copper foil obtained by the production method, a surface-treated electrolytic copper foil obtained by using the electrolytic copper foil, and a copper-clad laminate using the surface-treated electrolytic copper foil The present invention relates to a board and a printed wiring board. In particular, the present invention relates to an electrolytic copper foil having a low profile and high gloss on the surface of the electrolytic copper foil bonded to the insulating layer constituting material.

金属銅は電気の良導体であり比較的安価で取り扱いも容易であることから、電解銅箔はプリント配線板の基礎材料として広く使用されている。そして、プリント配線板が多用される電子及び電気機器には、小型化、軽量化等の所謂軽薄短小化が求められている。従来、このような電子及び電気機器の軽薄短小化を実現するためには、信号回路を可能な限りファインピッチ化した配線にする必要があり、製造者等はより薄い銅箔を採用してエッチングによって配線を形成する際のオーバーエッチングの設定時間を短縮し、形成する配線のエッチングファクターを向上させることで対応してきた。   Since copper metal is a good electrical conductor, is relatively inexpensive and easy to handle, electrolytic copper foil is widely used as a basic material for printed wiring boards. In addition, electronic and electrical devices in which printed wiring boards are frequently used are required to be so-called light and thin, such as miniaturization and weight reduction. Conventionally, in order to realize such a light, thin and small electronic and electrical device, it is necessary to make the signal circuit a wiring with a fine pitch as much as possible, and manufacturers etc. adopt etching using thinner copper foil. In order to cope with this problem, the setting time of over-etching when forming the wiring is shortened and the etching factor of the wiring to be formed is improved.

そして、小型化、軽量化される電子及び電気機器には、高機能化の要求も同時に行われている。従って、表面実装方式の普及によって限られた基板面積の中に可能な限り大きな部品実装面積を確保するためには、プリント配線板の配線のエッチングファクターを良好にする対応が必要とされてきた。その目的で、特にICチップ等の直接搭載を行う所謂インターポーザー基板であるテープ オートメーティド ボンディング(TAB)基板、チップ オン フィルム(COF)基板には、通常のプリント配線板用途以上の低プロファイル電解銅箔が求められてきた。なお、プロファイルとはプリント配線板用銅箔に関する規格において絶縁層形成材料との張合わせ界面である接着面(本件出願では以降「張合わせ界面」を用いず「接着面」に呼称を統一する)の表面粗さRzjisをJIS B 0601−2001に準拠してTD方向に測定した値で規定されるものであり、低プロファイルとは接着面の表面粗さRzjisが小さなことを意味している。   In addition, electronic and electrical devices that are reduced in size and weight are also demanded to be highly functional. Therefore, in order to secure a component mounting area as large as possible within a limited board area due to the spread of the surface mounting method, it has been necessary to take measures to improve the etching factor of the wiring of the printed wiring board. For this purpose, tape automated bonding (TAB) substrates and chip-on-film (COF) substrates, which are so-called interposer substrates that directly mount IC chips and the like, have low profile electrolysis that is more than the usual printed wiring board applications. Copper foil has been sought. Note that the profile is the adhesive surface that is the bonding interface with the insulating layer forming material in the standard for copper foil for printed wiring boards (in the present application, the term “bonding surface” will be unified without using the “bonding interface”) The surface roughness Rzjis is defined by a value measured in the TD direction in accordance with JIS B 0601-2001, and the low profile means that the surface roughness Rzjis of the bonded surface is small.

このような問題を解決すべく、特許文献1には未処理電解銅箔の析出面の表面粗度Rzが該未処理電解銅箔の光沢面の表面粗度Rzと同じか、それより小さい箔の析出面上に粗化処理を施して接着面とすることを特徴とする表面処理電解銅箔が開示されている。そして、前記未処理電解銅箔の製造には、メルカプト基を持つ化合物、塩化物イオン、分子量10000以下の低分子量膠及び高分子多糖類を添加した電解液を用いている。具体的にはメルカプト基を持つ化合物は3−メルカプト1−プロパンスルホン酸塩、低分子量膠の分子量は3000以下、そして高分子多糖類はヒドロキシエチルセルロースである。   In order to solve such a problem, Patent Document 1 discloses that the surface roughness Rz of the deposited surface of the untreated electrolytic copper foil is equal to or smaller than the surface roughness Rz of the glossy surface of the untreated electrolytic copper foil. A surface-treated electrolytic copper foil is disclosed in which a roughening treatment is performed on the deposited surface to form an adhesive surface. For the production of the untreated electrolytic copper foil, an electrolytic solution to which a compound having a mercapto group, chloride ions, a low molecular weight glue having a molecular weight of 10,000 or less and a high molecular weight polysaccharide are added is used. Specifically, the compound having a mercapto group is 3-mercapto 1-propanesulfonate, the molecular weight of the low molecular weight glue is 3000 or less, and the high molecular polysaccharide is hydroxyethyl cellulose.

また、特許文献2には、硫酸酸性銅めっき液の電気分解による電解銅箔の製造方法において、ジアリルジアルキルアンモニウム塩と二酸化硫黄との共重合体を含有する硫酸酸性銅めっき液を用いることを特徴とする電解銅箔の製造方法が開示されている。当該硫酸酸性銅めっき液には、ポリエチレングリコールと塩素と3−メルカプト−1−スルホン酸とを含有することが好ましいとされている。そして、絶縁基材との接着面とする析出面粗さが小さく、厚さ10μmの電解銅箔では十点平均粗さRzが1.0μm±0.5μm程度の低プロファイルが得られるとしている。   Moreover, in patent document 2, in the manufacturing method of the electrolytic copper foil by electrolysis of a sulfuric acid acidic copper plating solution, the sulfuric acid copper plating solution containing the copolymer of a diallyl dialkyl ammonium salt and sulfur dioxide is used. A method for producing an electrolytic copper foil is disclosed. The sulfuric acid copper plating solution preferably contains polyethylene glycol, chlorine and 3-mercapto-1-sulfonic acid. And the precipitation surface roughness used as an adhesive surface with an insulation base material is small, and it is supposed that the low profile whose 10-point average roughness Rz is about 1.0 micrometer +/- 0.5 micrometer will be obtained in the 10-micrometer-thick electrolytic copper foil.

そして、これらの製造方法を用いて電解銅箔を製造すると確かに低プロファイルの析出面が形成され、従来の低プロファイル電解銅箔としては良好な特性は有している。   And when an electrolytic copper foil is manufactured using these manufacturing methods, a low profile precipitation surface is surely formed, and the conventional low profile electrolytic copper foil has good characteristics.

特開平9−143785号公報JP 9-143785 A 特開2004−35918号公報JP 2004-35918 A

一方、電子又は電気機器の代表であるパーソナルコンピュータのクロック周波数は上昇し、演算速度が飛躍的に速くなっている。そして、従来はコンピュータとしての本来の役割である単なるデータ処理に止まらず、コンピュータ自体をAV機器と同様に使用する機能も付加されている。すなわち、音楽再生機能だけではなく、DVDの録画再生機能、TV受像録画機能、テレビ電話機能等が次々に付加されている。   On the other hand, the clock frequency of a personal computer, which is representative of electronic or electric equipment, has increased, and the calculation speed has been dramatically increased. Conventionally, it is not limited to mere data processing, which is the original role as a computer, and a function of using the computer itself in the same manner as an AV device is added. That is, not only a music playback function but also a DVD recording / playback function, a TV image recording function, a videophone function, and the like are added one after another.

すなわち、パーソナルコンピュータのモニタは単なるデータモニタ機能を満足するだけでは不十分となっており、映画等の画像を表示しても長時間の視聴に耐えるだけの画質が要求されている。そして、このような品質のモニタを安価に且つ大量に供給することが求められている。現在の当該モニタには液晶モニタが多用されており、この液晶パネルのドライバ素子を搭載するには、前記テープ オートメーティド ボンディング(TAB)基板やチップ オン フィルム(COF)基板を用いるのが一般的である。そして、モニタのハイビジョン化を図るためには、走査線数の増加に見合うよう前記ドライバ基板にもよりファインな回路の形成が求められるようになる。そして、パネルサイズの大型化に伴って外縁部の幅を可能な限り狭くして製品寸法を抑える取り組みが為されている。ドライバを背面に配置するためにはTAB基板又はCOF基板を折り曲げて設置する必要があり、当初から屈曲性が良好であることも求められていた。そして、COFではTABと違ってファイン化されたボンディング用リード部分がフィルムで裏打ちされている。そのためにフィルムが無いTABに比べて屈曲性の点で不利となっており、従来以上に屈曲性の良好な材料を用いることが断線の防止に有効なのである。   That is, it is not sufficient for a monitor of a personal computer to satisfy a simple data monitoring function, and an image quality that can withstand long-time viewing is required even if an image such as a movie is displayed. And it is demanded to supply such quality monitors at low cost and in large quantities. A liquid crystal monitor is often used for the current monitor, and the tape automated bonding (TAB) substrate or the chip on film (COF) substrate is generally used to mount the driver element of the liquid crystal panel. It is. In order to achieve a high-definition monitor, it is required to form a finer circuit on the driver board to meet the increase in the number of scanning lines. As the panel size increases, efforts have been made to reduce the product dimensions by reducing the width of the outer edge as much as possible. In order to dispose the driver on the back surface, it is necessary to fold and install the TAB substrate or the COF substrate, and from the beginning, the flexibility is also required to be good. In the COF, unlike the TAB, a finer bonding lead portion is lined with a film. Therefore, it is disadvantageous in terms of flexibility compared to TAB without a film, and it is effective to prevent disconnection by using a material having better flexibility than before.

一方、車載用の電子回路ではハイブリッド化の普及と燃料電池車の開発に伴って大電流に対応せざるを得なくなってきている。車載用では必要とされる導体厚さが将来的にも200μmを超えると推測されているにもかかわらず、省スペースの観点からフレキシブル配線板として用いられる。このような厚い銅箔をフレキシブル基板に適用するためには当該銅箔の接着面粗さが小さいことが必須になり、従来の電解銅箔では対応できないとして圧延銅箔も検討されているのである。すなわち、従来の電解銅箔の場合には、厚さが厚くなるほど基材との接着面粗さが大きくなっていたからである。   On the other hand, in-vehicle electronic circuits have to cope with large currents due to the spread of hybridization and the development of fuel cell vehicles. Although it is estimated that the conductor thickness required for in-vehicle use will exceed 200 μm in the future, it is used as a flexible wiring board from the viewpoint of space saving. In order to apply such a thick copper foil to a flexible substrate, it is essential that the adhesive surface roughness of the copper foil is small, and rolled copper foil is also being considered as it cannot be handled by conventional electrolytic copper foil. . That is, in the case of the conventional electrolytic copper foil, the roughness of the adhesive surface with the base material increases as the thickness increases.

また、リチウムイオン電池用の負極集電体として使用する際にも表面が平滑な銅箔を用いることが好ましい。すなわち、銅箔上に活物質を塗工する際に、活物質含有スラリーを均一な塗膜厚で銅箔上に塗工するためには表面が平滑な銅箔を集電体として使用することが有利なのである。そして、当該負極活物質は、充放電時に膨張収縮を繰り返すため集電材としての銅箔の寸法変化も大きく、その膨張収縮に銅箔膨張収縮挙動が追随できず破断する現象が発生する。従って、集電材である銅箔の機械的な特性は、繰り返しの膨張収縮挙動に耐えるため、引張り強さと伸び率との良好なバランスが求められる。更に、銅箔上にキャパシタ用誘電体層をゾル−ゲル法で形成させる際にも、表面が平滑な銅箔を用いることは同様に有利である。   Moreover, when using as a negative electrode electrical power collector for lithium ion batteries, it is preferable to use copper foil with a smooth surface. That is, when applying an active material on a copper foil, a copper foil with a smooth surface should be used as a current collector in order to apply the active material-containing slurry onto the copper foil with a uniform coating thickness. Is advantageous. And since the said negative electrode active material repeats expansion and contraction at the time of charging / discharging, the dimensional change of the copper foil as a current collection material is also large, and the phenomenon that copper foil expansion and contraction behavior cannot follow the expansion and contraction occurs. Therefore, the mechanical properties of the copper foil as a current collector are required to have a good balance between tensile strength and elongation rate in order to withstand repeated expansion and contraction behavior. Further, when a capacitor dielectric layer is formed on a copper foil by a sol-gel method, it is also advantageous to use a copper foil having a smooth surface.

以上のように電解銅箔に対してはプリント配線板用途から市場の拡大が図られてきている。その結果、従来市場に供給されてきたプリント配線板用途の低プロファイル電解銅箔と比べて、450μm以下の厚さにおいて更に低プロファイルであり、屈曲性も良好な電解銅箔に対する要求の存在が明らかとなったのである。   As described above, the market for electrolytic copper foil has been expanded from the use of printed wiring boards. As a result, it is clear that there is a need for an electrolytic copper foil that has a lower profile at a thickness of 450 μm or less and a good bendability compared to the low profile electrolytic copper foil for printed wiring boards that has been supplied to the market. It became.

上記背景から、本件発明者らは鋭意研究の結果、従来の電解銅箔生産技術と遜色のない生産性を持つ低プロファイル電解銅箔の製造方法に想到したのである。   From the above background, as a result of earnest research, the present inventors have come up with a method for producing a low profile electrolytic copper foil having productivity comparable to that of conventional electrolytic copper foil production technology.

本件発明に係る電解銅箔の製造方法: 本件発明に係る電解銅箔の製造方法は、硫酸系銅電解液を用いた電解法により陰極表面に析出させた銅を剥取って電解銅箔を製造する方法であって、当該硫酸系銅電解液は3−メルカプト−1−プロパンスルホン酸(本件出願では以降「MPS」と称する)又はビス(3−スルホプロピル)ジスルフィド(本件出願では以降「SPS」と称する)から選択された少なくとも一種と環状構造を持つ4級アンモニウム塩重合体であるジアリルジメチルアンモニウムクロライド(本件出願では以降「DDAC」と称する)重合体と塩素とを含むものであることを特徴とするものである。 Manufacturing method of electrolytic copper foil according to the present invention: The manufacturing method of the electrolytic copper foil according to the present invention is to manufacture an electrolytic copper foil by stripping copper deposited on the cathode surface by an electrolytic method using a sulfuric acid-based copper electrolyte. The sulfuric acid-based copper electrolyte is 3-mercapto-1-propanesulfonic acid (hereinafter referred to as “MPS” in the present application) or bis (3-sulfopropyl) disulfide (hereinafter referred to as “SPS” in the present application). A diallyldimethylammonium chloride polymer (hereinafter referred to as “DDAC” in the present application ), which is a quaternary ammonium salt polymer having a cyclic structure, and chlorine. Is.

本件発明に係る電解銅箔の製造方法において、前記硫酸系銅電解液中のMPS及び/又はSPSの合算濃度が0.5ppm〜100ppmである事が好ましい。   In the manufacturing method of the electrolytic copper foil which concerns on this invention, it is preferable that the sum total density | concentration of MPS and / or SPS in the said sulfuric acid type copper electrolyte solution is 0.5 ppm-100 ppm.

本件発明に係る電解銅箔の製造方法において、前記硫酸系銅電解液中の環状構造を持つ4級アンモニウム塩重合体濃度が1ppm〜150ppmである事が望ましい。   In the method for producing an electrolytic copper foil according to the present invention, the concentration of the quaternary ammonium salt polymer having a cyclic structure in the sulfuric acid-based copper electrolyte is preferably 1 ppm to 150 ppm.

更に、本件発明に係る電解銅箔の製造方法において、前記硫酸系銅電解液中の塩素濃度が5ppm〜120ppmであることが好ましい。   Furthermore, in the manufacturing method of the electrolytic copper foil which concerns on this invention, it is preferable that the chlorine concentration in the said sulfuric-type copper electrolyte solution is 5 ppm-120 ppm.

本件発明に係る電解銅箔: 本件発明に係る電解銅箔は、上記電解銅箔の製造方法により製造されたことを特徴とする電解銅箔である。 Electrolytic copper foil according to the present invention: The electrolytic copper foil according to the present invention is an electrolytic copper foil produced by the method for producing an electrolytic copper foil.

本件発明に係る表面処理電解銅箔: 本件発明に係る表面処理電解銅箔は、上述した電解銅箔の表面に防錆処理、シランカップリング剤処理のいずれか一種以上を行ったものである。 Surface-treated electrolytic copper foil according to the present invention: The surface-treated electrolytic copper foil according to the present invention is obtained by performing at least one of rust prevention treatment and silane coupling agent treatment on the surface of the above-described electrolytic copper foil.

そして、本件発明に係る表面処理電解銅箔の絶縁層構成材料との接着面の表面粗さ(Rzjis)は1.5μm以下であることが好ましい。   And it is preferable that the surface roughness (Rzjis) of an adhesive surface with the insulating-layer constituent material of the surface treatment electrolytic copper foil which concerns on this invention is 1.5 micrometers or less.

また、本件発明に係る表面処理電解銅箔の絶縁層構成材料との接着面として、光沢度[Gs(60°)]が250以上のものを用いることが好ましい。   Moreover, it is preferable to use a surface with the glossiness [Gs (60 °)] of 250 or more as an adhesive surface with the insulating layer constituting material of the surface-treated electrolytic copper foil according to the present invention.

更に、本件発明に係る表面処理電解銅箔において、前記表面処理電解銅箔の絶縁層構成材料との接着面側に粗化処理を施すことも好ましい。   Furthermore, in the surface-treated electrolytic copper foil according to the present invention, it is also preferable to subject the surface-treated electrolytic copper foil to a bonding surface side with the insulating layer constituting material.

そして、本件発明に係る表面処理電解銅箔の絶縁層構成材料との接着面には、上記電解銅箔の析出面を用いるのが好ましい。   And it is preferable to use the deposition surface of the said electrolytic copper foil for the adhesive surface with the insulating-layer constituent material of the surface treatment electrolytic copper foil which concerns on this invention.

本件発明に係る銅張積層板: 本件発明に係る銅張積層板は、前記表面処理電解銅箔と絶縁層構成材料とを張合わせて得られるものである。そして、本件発明に係る銅張積層板を構成する前記絶縁層構成材料が、骨格材を含有する場合にはリジッド銅張積層板となる。一方、本件発明に係る銅張積層板を構成する前記絶縁層構成材料が、可撓性を有するフレキシブル素材である場合にはフレキシブル銅張積層板となる。 Copper-clad laminate according to the present invention: The copper-clad laminate according to the present invention is obtained by bonding the surface-treated electrolytic copper foil and the insulating layer constituting material. And when the said insulating-layer constituent material which comprises the copper clad laminated board which concerns on this invention contains frame | skeleton material, it becomes a rigid copper clad laminated board. On the other hand, when the insulating layer constituting material constituting the copper clad laminate according to the present invention is a flexible material having flexibility, it becomes a flexible copper clad laminate.

本件発明に係るプリント配線板: 本件発明に係る表面処理電解銅箔を用いて、銅張積層板を得ることができ、この銅張積層板にエッチング加工を施すことにより、本件発明に係るプリント配線板が得られる。即ち、上述のリジッド銅張積層板を用いることでリジッドプリント配線板が得られる。そして、上述のフレキシブル銅張積層板を用いることでフレキシブルプリント配線板が得られる。 Printed wiring board according to the present invention: By using the surface-treated electrolytic copper foil according to the present invention, a copper-clad laminate can be obtained, and by etching the copper-clad laminate, the printed wiring according to the present invention is obtained. A board is obtained. That is, a rigid printed wiring board can be obtained by using the above-mentioned rigid copper clad laminate. And a flexible printed wiring board is obtained by using the above-mentioned flexible copper clad laminated board.

本件発明に係る電解銅箔の製造方法は、電解液として当該硫酸系銅電解液にMPS又はSPSから選択された少なくとも一種と環状構造を持つ4級アンモニウム塩重合体であるDDAC重合体と塩素とを含むものである。そして、この製造方法で得られる電解銅箔は、従来市場に供給されてきた低プロファイル電解銅箔に比べ、更に良好な低プロファイル特性を備える。この結果、本件発明に係る電解銅箔の製造方法は、製造する電解銅箔としての厚さが増加するほど、低プロファイル化が顕著となる。この傾向は、厚さが増加するほど高プロファイル化してしまう従来の電解銅箔とは正反対の性質である。 The method for producing an electrolytic copper foil according to the present invention includes a DDAC polymer that is a quaternary ammonium salt polymer having a cyclic structure and at least one selected from MPS or SPS in the sulfuric acid copper electrolytic solution as an electrolytic solution, and chlorine. Is included. And the electrolytic copper foil obtained by this manufacturing method is provided with a more favorable low profile characteristic compared with the low profile electrolytic copper foil currently supplied to the market. As a result, in the method for producing an electrolytic copper foil according to the present invention, as the thickness of the produced electrolytic copper foil increases, the profile reduction becomes more prominent. This tendency is a property opposite to that of a conventional electrolytic copper foil that has a higher profile as the thickness increases.

また、この電解銅箔が、現実に市場に供給される場合には、大気雰囲気による酸化防止、基材との密着性向上のために種々の表面処理が施され、一般的には表面処理電解銅箔として供給される。本件発明に係る電解銅箔を用いることで、このような表面処理が適正に施される限り、表面処理が施されてもなお、市場に流通する表面処理の施された低プロファイル電解銅箔を超える低プロファイル化が可能となる。   In addition, when this electrolytic copper foil is actually supplied to the market, various surface treatments are applied to prevent oxidation by the air atmosphere and to improve the adhesion to the base material. Supplied as copper foil. By using the electrolytic copper foil according to the present invention, as long as such a surface treatment is appropriately performed, even if the surface treatment is performed, the low profile electrolytic copper foil subjected to the surface treatment distributed in the market is used. Low profile exceeding can be achieved.

従って、本件発明に係る表面処理電解銅箔を銅張積層板に用いると、本件発明に係る表面処理電解銅箔で構成した導体層間に位置する絶縁層の厚さ均一性に優れ、薄い絶縁層を用いても短絡を起こすことなく層間の絶縁信頼性が飛躍的に向上する。特に、均一な粗化処理が行われれば、高周波対応の銅張積層板に好適となる。   Therefore, when the surface-treated electrolytic copper foil according to the present invention is used for a copper-clad laminate, the insulating layer located between the conductor layers composed of the surface-treated electrolytic copper foil according to the present invention has excellent thickness uniformity, and a thin insulating layer Even if the layer is used, the insulation reliability between layers is dramatically improved without causing a short circuit. In particular, if a uniform roughening treatment is performed, it is suitable for a copper clad laminate for high frequency.

更に、本件発明に係る銅張積層板を用いて、これをエッチング加工して得られるプリント配線板は、銅張積層板に用いた本件発明に係る表面処理電解銅箔の低プロファイル化が可能であるため、ファインピッチ回路の形成に好適である。   Furthermore, the printed wiring board obtained by etching the copper-clad laminate according to the present invention can reduce the profile of the surface-treated electrolytic copper foil according to the present invention used for the copper-clad laminate. Therefore, it is suitable for forming a fine pitch circuit.

[本件発明に係る電解銅箔の製造方法の形態]
本件発明に係る電解銅箔の製造方法の説明を行う前に、説明の理解が容易となるように、一般的な電解銅箔の製造方法に関して述べる。本件発明に係る「電解銅箔」とは、何ら表面処理を行っていない状態のものであり「未処理銅箔」、「析離箔」等と称されることがある。本件明細書では、これを単に「電解銅箔」と称する。この電解銅箔の製造には一般的に連続生産法が採用されており、ドラム形状をした回転陰極と、その回転陰極の形状に沿って対向配置された鉛系陽極又は寸法安定性陽極(DSA)との間に硫酸系銅電解液を流し、電解反応を利用して銅を回転陰極の表面に析出させ、この析出した銅を箔状態として回転陰極から連続して引き剥がして巻き取っている。このようにして得られた電解銅箔は、一定幅で巻き取られたロール状となるため、特性の測定などに際して方向を示すには回転陰極の回転方向(ウェブの長さ方向)をMD(Machine Direction)、MDに対して直角方向である幅方向をTD(Transverse Direction)と称する。
[Mode of manufacturing electrolytic copper foil according to the present invention]
Before explaining the method for producing an electrolytic copper foil according to the present invention , a general method for producing an electrolytic copper foil will be described so that the explanation can be easily understood. The “electrolytic copper foil” according to the present invention is a state in which no surface treatment is performed, and is sometimes referred to as “untreated copper foil”, “deposited foil” or the like. In the present specification, this is simply referred to as “electrolytic copper foil”. In general, a continuous production method is adopted for the production of the electrolytic copper foil, and a drum-shaped rotating cathode and a lead-based anode or a dimensionally stable anode (DSA) arranged opposite to each other along the shape of the rotating cathode. ) And a sulfuric acid-based copper electrolytic solution is allowed to flow between them and copper is deposited on the surface of the rotating cathode using an electrolytic reaction, and the deposited copper is continuously peeled off from the rotating cathode as a foil. . The electrolytic copper foil obtained in this way is in the form of a roll wound up with a constant width. Therefore, the direction of rotation of the rotating cathode (the length direction of the web) is set to MD ( Machine Direction), the width direction perpendicular to MD is referred to as TD (Transverse Direction).

この電解銅箔の回転陰極と接触した状態から引き剥がされた側の表面形状は研磨処理された回転陰極表面の形状が転写したものとなり、光沢を有することからこの面を「光沢面」と称してきた。これに対し、析出サイドであった側の表面形状は、通常は析出する銅の結晶成長速度が結晶面ごとに異なるために山形の凹凸形状を示しており、こちら側を「析出面」と称する。そして、一般的には、析出面の粗度が光沢面の粗度より大きく、電解銅箔に表面処理を施す際には析出面側に粗化処理を施すことが多く、この析出面側が銅張積層板を製造する際の絶縁層構成材料との張合わせ面となる。従って、この接着面の表面粗さが小さいほど優れた低プロファイルの表面処理電解銅箔となる。   The surface shape of the electrolytic copper foil that has been peeled off from the state in contact with the rotating cathode is a transfer of the shape of the polished rotating cathode surface, and this surface is called a “glossy surface” because it has gloss. I have done it. On the other hand, the surface shape on the side that was the precipitation side usually shows a mountain-shaped uneven shape because the crystal growth rate of precipitated copper differs for each crystal surface, and this side is referred to as a “deposition surface”. . In general, the roughness of the precipitation surface is greater than the roughness of the glossy surface, and when the electrolytic copper foil is subjected to surface treatment, the precipitation surface side is often subjected to a roughening treatment. It becomes a bonding surface with the insulating layer constituting material when the tension laminate is manufactured. Accordingly, the smaller the surface roughness of the bonded surface, the better the low profile surface-treated electrolytic copper foil.

このように電解銅箔には絶縁層構成材料との接着力を機械的なアンカー効果で補強するための粗化処理や酸化防止などの表面処理が施されて、市場を流通する電解銅箔が完成するのであるが、用途によっては粗化処理を施さずに使用する場合もある。次いで、以下に本件発明に係る電解銅箔の製造方法について説明する。   In this way, the electrolytic copper foil is subjected to surface treatments such as roughening treatment and oxidation prevention to reinforce the adhesive strength with the insulating layer constituent material by mechanical anchor effect, and the electrolytic copper foil that circulates in the market is Although it is completed, it may be used without roughening depending on the application. Subsequently, the manufacturing method of the electrolytic copper foil which concerns on this invention below is demonstrated.

本件発明に係る電解銅箔の製造方法は、硫酸系銅電解液を用いた電解法により陰極表面に析出させた銅を剥取って電解銅箔を製造する方法であって、当該硫酸系銅電解液はMPS又はSPSから選択された少なくとも一種と環状構造を持つ4級アンモニウム塩重合体であるDDAC重合体と塩素とを含むものであることを特徴とするものである。この組成の硫酸系銅電解液を用いることで、本件発明に係る低プロファイルの電解銅箔を安定して製造することが可能となる。さらに、電解条件を最適化することにより、光沢度[Gs(60°)]が700を超える電解銅箔を得ることができる。そして、この硫酸系銅電解液中の銅濃度は40g/l〜120g/l、より好ましい範囲は50g/l〜80g/lである。また、当該硫酸系銅電解液中のフリー硫酸濃度は60g/l〜220g/l、より好ましい範囲は80g/l〜150g/lである。 The method for producing an electrolytic copper foil according to the present invention is a method for producing an electrolytic copper foil by stripping copper deposited on the cathode surface by an electrolytic method using a sulfuric acid-based copper electrolytic solution, the sulfuric acid-based copper electrolysis The liquid is characterized in that it contains at least one selected from MPS or SPS and a DDAC polymer which is a quaternary ammonium salt polymer having a cyclic structure and chlorine. By using the sulfuric acid-based copper electrolytic solution having this composition, the low profile electrolytic copper foil according to the present invention can be stably produced. Furthermore, by optimizing the electrolysis conditions, an electrolytic copper foil having a gloss [Gs (60 °)] exceeding 700 can be obtained. And the copper concentration in this sulfuric acid system copper electrolytic solution is 40 g / l-120 g / l, and a more preferred range is 50 g / l-80 g / l. The free sulfuric acid concentration in the sulfuric acid-based copper electrolyte is 60 g / l to 220 g / l, and a more preferable range is 80 g / l to 150 g / l.

本件発明に係る硫酸系銅電解液中のMPS及び/又はSPSの合算濃度は0.5ppm〜100ppmである事が好ましく、より好ましくは0.5ppm〜50ppm、更に好ましくは1ppm〜30ppmである。このMPS及び/又はSPSの濃度が0.5ppm未満の場合には、電解銅箔の析出面が粗くなり、低プロファイル電解銅箔を得ることが困難となる。一方、MPS及び/又はSPSの濃度が100ppmを越えても、得られる電解銅箔の析出面が平滑化する効果は向上せず、廃液処理のコスト増加を招くだけである。なお、本件発明で言うMPS及び/又はSPSとは、それぞれの塩をも含む意味で使用しており、濃度の記載値は、ナトリウム塩としての3−メルカプト−1−プロパンスルホン酸ナトリウム(本件出願では以降「MPS−Na」と称する)としての換算値である。そして、MPSは本件発明に係る硫酸系銅電解液中では2量体化することでSPS構造をとるものである。従って、MPS又はSPSの濃度とは、3−メルカプト−1−プロパンスルホン酸単体やMPS−Na等塩類の他、SPSとして添加されたもの及びMPSとして電解液中に添加された後にSPS等に重合化した変性物をも含む濃度である。MPSの構造式を化1として、SPSの構造式を化2として以下に示す。これら構造式の比較から、SPS構造体はMPSの2量体であることがわかる。 The combined concentration of MPS and / or SPS in the sulfuric acid-based copper electrolyte according to the present invention is preferably 0.5 ppm to 100 ppm, more preferably 0.5 ppm to 50 ppm, and still more preferably 1 ppm to 30 ppm. When the concentration of MPS and / or SPS is less than 0.5 ppm, the deposited surface of the electrolytic copper foil becomes rough, making it difficult to obtain a low profile electrolytic copper foil. On the other hand, even if the concentration of MPS and / or SPS exceeds 100 ppm, the effect of smoothing the deposited surface of the obtained electrolytic copper foil is not improved, and only the cost of waste liquid treatment is increased. In addition, MPS and / or SPS referred to in the present invention are used in the meaning including each salt, and the stated value of concentration is sodium 3-mercapto-1-propanesulfonate as a sodium salt (the present application) (Hereinafter referred to as “MPS-Na”). And MPS takes an SPS structure by dimerizing in the sulfuric acid system copper electrolyte concerning the present invention. Therefore, the concentration of MPS or SPS means that 3-mercapto-1-propanesulfonic acid alone or salts such as MPS-Na, as well as those added as SPS and MPS as polymerized into SPS after being added to the electrolyte. The concentration also includes the modified product . The structural formula of MPS is shown as chemical formula 1, and the structural formula of SPS is shown as chemical formula 2 below. From the comparison of these structural formulas, it can be seen that the SPS structure is a dimer of MPS.

そして、本件発明に係る硫酸系銅電解液中の環状構造を持つ4級アンモニウム塩重合体は、濃度が1ppm〜150ppmである事が好ましく、より好ましくは10ppm〜120ppm、更に好ましくは15ppm〜40ppmである。ここで、環状構造を持つ4級アンモニウム塩重合体として、種々のものを用いることが可能である。しかし、低プロファイルの析出面を形成する効果を考えると、DDAC重合体を用いることが最も好ましい。DDACは重合体構造を取る際に環状構造を成すものであり、環状構造の一部が4級アンモニウムの窒素原子で構成されることになる。そして、DDAC重合体は前記環状構造が4員環〜7員環のいずれか又はそれらの混合物であると考えられ、これら重合体の内、5員環構造を取っている化合物を、代表的に化3として以下に示した。このDDAC重合体は、化3から明らかに理解できるように、DDACが2量体以上の重合体構造を取っているものであるThe quaternary ammonium salt polymer having a cyclic structure in the sulfuric acid-based copper electrolyte according to the present invention preferably has a concentration of 1 ppm to 150 ppm, more preferably 10 ppm to 120 ppm, and still more preferably 15 ppm to 40 ppm. is there. Here, various quaternary ammonium salt polymers having a cyclic structure can be used . However, considering the effect of forming a low profile precipitation surface, it is most preferable to use a DDAC polymer. DDAC forms a cyclic structure when taking a polymer structure, and a part of the cyclic structure is composed of a quaternary ammonium nitrogen atom. The DDAC polymer is considered to be a compound in which the cyclic structure is a 4-membered ring to a 7-membered ring or a mixture thereof, and among these polymers, a compound having a 5-membered ring structure is representative. The following is shown as chemical formula 3. As can be clearly understood from the chemical formula 3, the DDAC polymer has a polymer structure of a dimer or higher .

そして、このDDAC重合体の硫酸系銅電解液中の濃度は、1ppm〜150ppmである事が好ましく、より好ましくは10ppm〜120ppm、更に好ましくは15ppm〜40ppmである。DDAC重合体の硫酸系銅電解液中の濃度が1ppm未満の場合には、MPS又はSPSの濃度を如何に高めても電析銅の析出面が粗くなり、低プロファイル電解銅箔を得ることが困難となる。一方、DDAC重合体の硫酸系銅電解液中の濃度が150ppmを超えると、銅の析出状態が不安定になり、低プロファイル電解銅箔を得ることが困難となる。 And it is preferable that the density | concentration in this sulfuric acid type | system | group copper electrolyte solution of this DDAC polymer is 1 ppm-150 ppm, More preferably, it is 10 ppm-120 ppm, More preferably, it is 15 ppm-40 ppm. When the concentration of the DDAC polymer in the sulfuric acid-based copper electrolyte is less than 1 ppm, the deposition surface of electrodeposited copper becomes rough no matter how high the MPS or SPS concentration is, and a low profile electrolytic copper foil can be obtained. It becomes difficult. On the other hand, when the concentration of the DDAC polymer in the sulfuric acid-based copper electrolyte exceeds 150 ppm , the copper deposition state becomes unstable, and it becomes difficult to obtain a low profile electrolytic copper foil.

更に、前記硫酸系銅電解液中の塩素濃度は、5ppm〜120ppmである事が好ましく、更に好ましくは10ppm〜60ppmである。この塩素濃度が5ppm未満の場合には、電解銅箔の析出面が粗くなり低プロファイルを維持できなくなる。一方、塩素濃度が120ppmを超えても、電解銅箔の析出面が粗くなり、電析状態が安定せず、低プロファイルの析出面を形成出来なくなる。 Furthermore, the chlorine concentration in the sulfuric acid-based copper electrolyte is preferably 5 ppm to 120 ppm, more preferably 10 ppm to 60 ppm. When the chlorine concentration is less than 5 ppm, the deposited surface of the electrolytic copper foil becomes rough and the low profile cannot be maintained. On the other hand, even if the chlorine concentration exceeds 120 ppm , the deposited surface of the electrolytic copper foil becomes rough, the electrodeposition state is not stable, and a low profile deposited surface cannot be formed.

以上のように、前記硫酸系銅電解液中のMPS及び/又はSPSとDDAC重合体と塩素との成分バランスが最も重要であり、これらの量的バランスが上記範囲を逸脱すると、結果として電解銅箔の析出面が粗くなり、低プロファイルを維持できなくなる。 As described above, the component balance of MPS and / or SPS, DDAC polymer and chlorine in the sulfuric acid-based copper electrolytic solution is the most important, and if these quantitative balances deviate from the above range, as a result, electrolytic copper The deposited surface of the foil becomes rough and the low profile cannot be maintained.

そして、前記硫酸系銅電解液を用いて電解銅箔を製造する場合には、表面粗さが所定の範囲に調整された陰極と不溶性陽極とを用いて電解する。このとき液温は20℃〜60℃、より好ましくは40℃〜55℃とし、電流密度は15A/dm〜90A/dm、より好ましくは50A/dm〜70A/dm とすることが好ましい。 And when manufacturing an electrolytic copper foil using the said sulfuric acid system copper electrolyte solution, it electrolyzes using the cathode and insoluble anode whose surface roughness was adjusted to the predetermined range . At this time the liquid temperature is 20 ° C. to 60 ° C., more preferably between 40 ° C. to 55 ° C., a current density of 15A / dm 2 ~90A / dm 2 , more preferably to 50A / dm 2 ~70A / dm 2 preferable.

そして、本件発明に係る電解銅箔の製造方法の場合、上記電解銅箔に求められる特性を安定的に得るため、その製造を行う場合の陰極表面状態も管理すべきである。プリント配線板用電解銅箔の規格であるJIS C 6515を参照すると、電解銅箔に求める光沢面の表面粗さ(Rzjis)は、最大2.4μmであると規定している。この電解銅箔の製造用の陰極として、チタン(Ti)材質の回転陰極ドラムを用いる場合には、連続使用している間に表面酸化による外観変化及び金属相の変化が起こる。従って、定期的な表面ポリッシュ、状態に応じての研磨又は切削という機械的な加工作業が必要となる。そして、このような陰極表面の機械的加工は、陰極を回転しつつ実施するため円周方向に筋状の加工模様が不可避的に発生する。このため、光沢面の表面粗さ(Rzjis)を小さいままに定常状態維持することが困難であり、コストの観点とプリント配線板製造上の支障を生じないことを前提とした前記規格値が許容されている。 And in the case of the manufacturing method of the electrolytic copper foil which concerns on this invention, in order to acquire the characteristic calculated | required by the said electrolytic copper foil stably, the cathode surface state at the time of manufacturing should also be managed. Referring to JIS C 6515, which is a standard for electrolytic copper foil for printed wiring boards, the surface roughness (Rzjis) of the glossy surface required for the electrolytic copper foil is specified to be a maximum of 2.4 μm. When a rotating cathode drum made of titanium (Ti) is used as a cathode for producing this electrolytic copper foil, the appearance change and the metal phase change due to surface oxidation occur during continuous use. Therefore, mechanical work such as periodic surface polishing and polishing or cutting depending on the state is required. Such mechanical machining of the cathode surface is carried out while rotating the cathode, so that a streak pattern is inevitably generated in the circumferential direction. For this reason, it is difficult to maintain the surface roughness (Rzjis) of the glossy surface in a small state , and the standard value is based on the premise that there is no problem in terms of cost and printed wiring board production. Is allowed.

従来の電解銅箔の場合には、厚さが厚くなるほど、析出面粗さが大きくなる傾向を示す。そして、その他の要因として、前記規格値の上限レベル又はそれ以上の表面粗さを備える陰極ドラムを使用すると、陰極の表面形状の影響を受けて、得られる電解銅箔の析出面の粗さが大きくなる傾向がある。これに対し、上記硫酸銅系電解液を用いると、陰極表面の凹凸を埋めつつ膜厚が成長していく過程で、陰極面形状の影響を受けにくくなり、平坦な析出表面の形成が可能となる。即ち、従来の電解銅箔の製造に用いた銅電解液に比べ、上記硫酸銅系電解液を用いて電解銅箔を製造すると、陰極表面の形状の影響を受けにくく、表面が粗い陰極の使用も可能となる。In the case of the conventional electrolytic copper foil, the precipitation surface roughness tends to increase as the thickness increases. As another factor, when a cathode drum having a surface roughness higher than the upper limit level of the standard value is used, the roughness of the deposited surface of the obtained electrolytic copper foil is affected by the surface shape of the cathode. There is a tendency to grow. On the other hand, when the above copper sulfate electrolyte is used, it becomes difficult to be influenced by the shape of the cathode surface in the process of growing the film thickness while filling the unevenness of the cathode surface, and a flat deposition surface can be formed. Become. In other words, compared to the conventional copper electrolyte used for the production of electrolytic copper foil, the production of an electrolytic copper foil using the above-mentioned copper sulfate-based electrolytic solution is less affected by the shape of the cathode surface and the use of a cathode with a rough surface Is also possible.

例えば、20μm未満の厚さの電解銅箔を製造する場合において、得られる電解銅箔の析出面粗さ(Rzjis)を1.0μm未満とする場合には、その電解銅箔の光沢面の表面粗さ(Rzjis)は、2.0μm未満で光沢度[Gs(60°)]が70以上となるような、表面状態の陰極を用いることが、TD方向とMD方向での機械的特性及び表面特性の差を小さくする観点から好ましい。そして、より好ましくは、電解銅箔の光沢面の表面粗さ(Rzjis)は、1.7μm未満で光沢度[Gs(60°)]が100以上となるような、表面状態の陰極を用いることが、同様の観点から好ましい。For example, in the case of producing an electrolytic copper foil having a thickness of less than 20 μm, when the precipitation surface roughness (Rzjis) of the obtained electrolytic copper foil is less than 1.0 μm, the surface of the glossy surface of the electrolytic copper foil Roughness (Rzjis) is less than 2.0 μm, and using a cathode in a surface state such that glossiness [Gs (60 °)] is 70 or more, the mechanical properties and surface in the TD direction and MD direction are used. This is preferable from the viewpoint of reducing the difference in characteristics. More preferably, a cathode having a surface state such that the surface roughness (Rzjis) of the glossy surface of the electrolytic copper foil is less than 1.7 μm and the glossiness [Gs (60 °)] is 100 or more is used. Is preferable from the same viewpoint.

[本件発明に係る電解銅箔の形態]
本件発明に係る電解銅箔は、上記電解銅箔の製造方法により製造されたことを特徴とするものである。この製造方法で得られる電解銅箔の諸特性に関して、以下に述べておく。
[Form of electrolytic copper foil according to the present invention]
The electrolytic copper foil which concerns on this invention was manufactured by the manufacturing method of the said electrolytic copper foil. Various characteristics of the electrolytic copper foil obtained by this manufacturing method will be described below.

本件発明に係る電解銅箔は、その析出面側の表面粗さ(Rzjis)が1.0μm未満、且つ、光沢度[Gs(60°)]が400以上の特性を備える。そして、より好ましくは、表面粗さ(Rzjis)は0.6μm未満、光沢度[Gs(60°)]は600以上である。最初に、光沢度に関して説明する。ここで、[Gs(60°)]の光沢度とは、電解銅箔の表面に入射角60°で測定光を照射し、反射角60°で跳ね返った光の強度を測定したものである。ここで言う入射角は、光の照射面に対する垂直方向を0°としている。そして、JIS Z 8741−1997によれば、入射角の異なる5つの鏡面光沢度測定方法が記載されており、試料の光沢度に応じて最適な入射角を選択すべきとされている。中でも、入射角を60°とすることで低光沢度の試料から高光沢度の試料まで幅広く測定可能であるとされている。従って、本件発明に係る電解銅箔などの光沢度測定には主として60°を採用したのである。   The electrolytic copper foil according to the present invention has the characteristics that the surface roughness (Rzjis) on the deposition surface side is less than 1.0 μm and the glossiness [Gs (60 °)] is 400 or more. More preferably, the surface roughness (Rzjis) is less than 0.6 μm, and the glossiness [Gs (60 °)] is 600 or more. First, the glossiness will be described. Here, the glossiness of [Gs (60 °)] is obtained by measuring the intensity of light bounced at a reflection angle of 60 ° by irradiating the surface of the electrolytic copper foil with measurement light at an incident angle of 60 °. The incident angle referred to here is 0 ° in the direction perpendicular to the light irradiation surface. According to JIS Z 8741-1997, five specular gloss measurement methods having different incident angles are described, and an optimal incident angle should be selected according to the gloss of the sample. In particular, it is said that by setting the incident angle to 60 °, it is possible to measure a wide range of samples from low gloss samples to high gloss samples. Therefore, 60 ° is mainly used for the glossiness measurement of the electrolytic copper foil according to the present invention.

一般的に、電解銅箔の析出面の平滑性の評価には表面粗さRzjisがパラメーターとして用いられてきた。しかしながら、Rzjisだけでは高さ方向の凹凸情報しか得られず、凹凸の周期やうねりと言った情報を得ることができない。光沢度は両者の情報を反映したパラメータであるため、Rzjisと併用することで表面の粗さ周期、うねり、それらの面内での均一性等の種々のパラメータを総合して判断することができる。   In general, the surface roughness Rzjis has been used as a parameter for evaluating the smoothness of the deposited surface of the electrolytic copper foil. However, with Rzjis alone, only the unevenness information in the height direction can be obtained, and information such as the unevenness period and waviness cannot be obtained. Since the glossiness is a parameter reflecting both information, it can be comprehensively determined by using Rzjis in combination with various parameters such as surface roughness period, waviness, and uniformity within the surface. .

本件発明に係る電解銅箔の場合、析出面側の表面粗さ(Rzjis)が1.0μm未満であり、且つ、当該析出面の光沢度[Gs(60°)]が400以上であるという条件を満たす。即ち、このような範囲で品質が保証でき、市場に供給可能な電解銅箔は、従来存在しなかった。そして、後述する製造方法を適正に用いることで、表面粗さ(Rzjis)は0.6μm未満、光沢度[Gs(60°)]は700以上の析出面を備える電解銅箔の提供も可能となる。また、ここでは、光沢度の上限値を定めていないが、経験的に判断して[Gs(60°)]で780程度が上限となる。なお、本件発明における光沢度は、日本電色工業株式会社製光沢計VG−2000型を用い、光沢度の測定方法であるJIS Z 8741−1997に準拠して測定した。   In the case of the electrolytic copper foil according to the present invention, the condition that the surface roughness (Rzjis) on the deposition surface side is less than 1.0 μm and the glossiness [Gs (60 °)] of the deposition surface is 400 or more. Meet. That is, there has been no electrolytic copper foil that can guarantee quality in such a range and can be supplied to the market. And by using the manufacturing method mentioned later appropriately, it is possible to provide an electrolytic copper foil having a precipitation surface with a surface roughness (Rzjis) of less than 0.6 μm and a glossiness [Gs (60 °)] of 700 or more. Become. Here, the upper limit value of the glossiness is not defined, but it is determined empirically that the upper limit is about 780 in [Gs (60 °)]. In addition, the glossiness in this invention was measured based on JIS Z8741-1997 which is a measuring method of glossiness using the Nippon Denshoku Industries Co., Ltd. gloss meter VG-2000 type.

そして、ここで言う電解銅箔に関して、厚さの限定は行っていない。何故なら、厚くなるほど、当該析出面の粗度が小さく、光沢度も上昇すると言う好ましい傾向にあるためである。敢えて、上限を定めるとするならば、電解銅箔を工業的に製造しても採算を取れる限度である450μm厚さ以下の電解銅箔を対象としている。   The thickness of the electrolytic copper foil referred to here is not limited. This is because, as the thickness increases, the roughness of the precipitation surface decreases, and the glossiness tends to increase. If the upper limit is determined, it is intended for an electrolytic copper foil having a thickness of 450 μm or less, which is the limit that can be profitable even if the electrolytic copper foil is manufactured industrially.

また、ここでは析出面側の表面粗さ(Rzjis)の下限値を限定していない。測定器の感度にもよるが、経験的に表面粗さの下限値は0.1μm程度である。しかし、実際の測定においては、バラツキが見られ、保証できる測定値としての下限は0.2μm程度であると考える。   Further, the lower limit value of the surface roughness (Rzjis) on the precipitation surface side is not limited here. Although it depends on the sensitivity of the measuring instrument, the lower limit of the surface roughness is empirically about 0.1 μm. However, in actual measurement, variation is observed, and the lower limit of the measurement value that can be guaranteed is considered to be about 0.2 μm.

また、本件発明に係る電解銅箔は、前記析出面側の光沢度[Gs(60°)]を、幅方向で測定したTD光沢度と、流れ方向で測定したMD光沢度とに分けて捉え、この比([TD光沢度]/[MD光沢度])を採ると0.9〜1.1の範囲となる。即ち、幅方向と流れ方向との差が非常に小さいことを意味している。   In the electrolytic copper foil according to the present invention, the glossiness [Gs (60 °)] on the deposition surface side is divided into TD glossiness measured in the width direction and MD glossiness measured in the flow direction. When this ratio ([TD glossiness] / [MD glossiness]) is taken, it is in the range of 0.9 to 1.1. That is, the difference between the width direction and the flow direction is very small.

即ち、電解銅箔は、陰極である回転ドラムの表面にある研磨スジ等の影響により、幅方向(TD)と流れ方向(MD)との機械的特性が異なるというのが一般通念であった。しかし、本件発明に係る電解銅箔は、厚みによらずより均一で滑らかな析出面側表面をもち、その外観としての光沢度[Gs(60°)]は、[TD光沢度]/[MD光沢度]の値が0.9〜1.1であり、変化幅が10%以内と小さく、本件発明に係る電解銅箔のTD方向とMD方向との表面形状のバラツキが極めて小さな事を意味している。   That is, it is a general idea that the electrolytic copper foil has different mechanical characteristics in the width direction (TD) and the flow direction (MD) due to the influence of polishing stripes on the surface of the rotating drum as the cathode. However, the electrolytic copper foil according to the present invention has a more uniform and smooth deposition surface side surface regardless of the thickness, and the glossiness [Gs (60 °)] as its appearance is [TD glossiness] / [MD The value of [Glossiness] is 0.9 to 1.1, the change width is as small as 10% or less, and the variation in the surface shape between the TD direction and the MD direction of the electrolytic copper foil according to the present invention is extremely small. is doing.

そして、更に言えば、外観上の差異がTD方向及びMD方向に無いと言うことは、均一な電解が出来ており、結晶組織的に見ても均一であることを意味している。即ち、TD方向及びMD方向による引張り強さ及び伸び率等の機械的特性差も小さくなることを意味している。このようにTD方向とMD方向とでの機械特性差が小さいと、プリント配線板を製造する際の銅箔の方向性による基板の寸法変化率や回路の直線性等に与える影響が小さくなり好ましい。ちなみに、表面が平滑である銅箔の代表ともいえる圧延銅箔の場合には、その加工方法に起因してTD方向とMD方向との機械的特性が異なることが広く知られている。その結果、本件発明が想定している用途であるフィルムキャリアテープ市場、薄物リジッドプリント配線板等において寸法変化率が大きく、ファインパターン用途には不適であるとの評価がほぼ定着している。   And further speaking, the fact that there is no difference in appearance between the TD direction and the MD direction means that uniform electrolysis has been achieved and that the crystal structure is uniform. That is, it means that mechanical property differences such as tensile strength and elongation in the TD direction and MD direction are also reduced. Thus, it is preferable that the difference in mechanical characteristics between the TD direction and the MD direction is small because the influence on the dimensional change rate of the substrate and the linearity of the circuit due to the directionality of the copper foil when manufacturing the printed wiring board is reduced. . Incidentally, in the case of a rolled copper foil that can be said to be a representative copper foil with a smooth surface, it is widely known that the mechanical properties in the TD direction and the MD direction differ due to the processing method. As a result, the rate of dimensional change is large in the film carrier tape market, thin rigid printed wiring boards, and the like, which are the applications envisaged by the present invention, and the evaluation of being unsuitable for fine pattern applications is almost firmly established.

また、光沢度として[Gs(20°)]と[Gs(60°)]とを用いることにより、従来の低プロファイル電解銅箔との差異を、より明瞭に捉えることが出来る。具体的には、本件発明に係る電解銅箔は、前記析出面側が光沢度[Gs(20°)]>光沢度[Gs(60°)]の関係を備えることができる。同じ物質であれば一つの入射角度を選択して光沢度を評価すれば十分と予想されるが、同じ物質であっても入射角に応じて、反射率が異なるため、入射角が変化すれば、被測定表面の表面の凹凸に応じて、反射光の空間分布が変化して、光沢度に差を生じるのである。このような事実に基づき、本件発明者等が検討した結果、経験的に次の傾向があることを見いだしたのである。即ち、高光沢且つ低表面粗さの電解銅箔の場合には、光沢度[Gs(20°)]>光沢度[Gs(60°)]>光沢度[Gs(85°)]の関係が成立し、低光沢且つ低表面粗さの電解銅箔の場合には、光沢度[Gs(60°)]>光沢度[Gs(20°)]>光沢度[Gs(85°)]の関係が成立する。更に、無光沢且つ低表面粗さの電解銅箔の場合には、光沢度[Gs(85°)]>光沢度[Gs(60°)]>光沢度[Gs(20°)]の関係が成立する。以上のことから分かるように、一定の入射角による光沢度の絶対値の他に、異なる入射角での光沢度測定値との関係により平滑性を評価することが有意義なのである。   Further, by using [Gs (20 °)] and [Gs (60 °)] as the glossiness, the difference from the conventional low profile electrolytic copper foil can be grasped more clearly. Specifically, as for the electrolytic copper foil which concerns on this invention, the said precipitation surface side can be provided with the relationship of glossiness [Gs (20 degrees)]> glossiness [Gs (60 degrees)]. If it is the same material, it is expected that it is sufficient to select one incident angle and evaluate the glossiness, but even with the same material, the reflectivity varies depending on the incident angle, so if the incident angle changes The spatial distribution of the reflected light changes according to the surface irregularities of the surface to be measured, resulting in a difference in glossiness. Based on this fact, as a result of studies by the present inventors, it has been found from experience that there is the following tendency. That is, in the case of an electrolytic copper foil having high gloss and low surface roughness, there is a relationship of gloss [Gs (20 °)]> gloss [Gs (60 °)]> gloss [Gs (85 °)]. In the case of an electrolytic copper foil with low gloss and low surface roughness, the relationship of gloss [Gs (60 °)]> gloss [Gs (20 °)]> gloss [Gs (85 °)] Is established. Further, in the case of an electrolytic copper foil having a dull and low surface roughness, there is a relationship of gloss [Gs (85 °)]> gloss [Gs (60 °)]> gloss [Gs (20 °)]. To establish. As can be seen from the above, it is meaningful to evaluate the smoothness based on the relationship with the measured glossiness at different incident angles in addition to the absolute value of the glossiness at a constant incident angle.

そして、本件発明に係る電解銅箔の場合、その光沢面の表面状態も重要となる。この光沢面には、本件発明に係る電解銅箔の析出面に近いレベルの表面粗さ(Rzjis)及び光沢度[Gs(60°)]が求められる。即ち、本件発明に係る電解銅箔において、光沢面側は、その表面粗さ(Rzjis)が2.0μm未満であり、且つ、光沢度[Gs(60°)]が70以上であることが好ましい。より好ましくは、表面粗さ(Rzjis)が1.7μm未満、光沢度[Gs(60°)]が100以上であることが望ましい。当該光沢面の光沢度[Gs(60°)]の上限値は規定していないが、経験的に言えば500位である。即ち、ここまで述べてきた析出面の表面状態を得るためには、光沢面にここで述べるような表面状態を形成する事が好ましい。この条件を外れると、TD方向及びMD方向での表面状態に差が生じやすく、TD方向及びMD方向での引張り強さ及び伸び率等の機械的特性差も生じやすくなる。この光沢面の表面状態は、その電析面である陰極の表面状態の転写であり、陰極の表面状態により定まる。従って、特に薄い電解銅箔を製造するときは、陰極表面に表面粗さ(Rzjis)が2.0μm未満という特性が求められる。   And in the case of the electrolytic copper foil which concerns on this invention, the surface state of the glossy surface is also important. The glossy surface is required to have a level of surface roughness (Rzjis) and glossiness [Gs (60 °)] close to the deposited surface of the electrolytic copper foil according to the present invention. That is, in the electrolytic copper foil according to the present invention, the glossy surface side preferably has a surface roughness (Rzjis) of less than 2.0 μm and a glossiness [Gs (60 °)] of 70 or more. . More preferably, the surface roughness (Rzjis) is less than 1.7 μm and the glossiness [Gs (60 °)] is 100 or more. Although the upper limit of the glossiness [Gs (60 °)] of the glossy surface is not specified, it is empirically about 500. That is, in order to obtain the surface state of the precipitation surface described so far, it is preferable to form the surface state described here on the glossy surface. If this condition is not satisfied, a difference in the surface state in the TD direction and the MD direction tends to occur, and mechanical characteristics such as tensile strength and elongation in the TD direction and MD direction also tend to occur. The surface state of the glossy surface is a transfer of the surface state of the cathode, which is the electrodeposited surface, and is determined by the surface state of the cathode. Therefore, when manufacturing a thin electrolytic copper foil, the cathode surface is required to have a surface roughness (Rzjis) of less than 2.0 μm.

本件発明に係る電解銅箔の機械的特性としては、常態における引張り強さが33kgf/mm以上、伸び率が5%以上となる。そして、加熱後(180℃×60分、大気雰囲気)では引張り強さが30kgf/mm以上、伸び率が8%以上であることが好ましい。 As the mechanical properties of the electrolytic copper foil according to the present invention, the tensile strength in a normal state is 33 kgf / mm 2 or more, and the elongation is 5% or more. And after heating (180 degreeC x 60 minutes, air atmosphere), it is preferable that tensile strength is 30 kgf / mm < 2 > or more and elongation rate is 8% or more.

そして、本件発明においては、製造条件を最適化することにより、常態の引張り強さが38kgf/mm以上、加熱後(180℃×60分、大気雰囲気)の引張り強さが33kgf/mm以上という、より優れた機械的特性を備えるものとできる。従って、この良好な機械的特性は、フレキシブルプリント配線板の折り曲げ使用にも十分に耐えうるものであるのみならず、膨張収縮挙動を受けるリチウムイオン二次電池等の負極を構成する集電材用途にも好適である。 And in this invention, by optimizing manufacturing conditions, normal tensile strength is 38 kgf / mm 2 or more, and tensile strength after heating (180 ° C. × 60 minutes, air atmosphere) is 33 kgf / mm 2 or more. It can be said to have more excellent mechanical properties. Therefore, this good mechanical property not only can withstand bending use of flexible printed wiring boards, but also for current collector applications that constitute negative electrodes such as lithium ion secondary batteries that undergo expansion and contraction behavior. Is also suitable.

[本件発明に係る表面処理電解銅箔の形態]
本件発明に係る表面処理電解銅箔は、上述した電解銅箔の表面に防錆処理、シランカップリング剤処理のいずれか一種以上を行った表面処理電解銅箔を提供する。この防錆処理層は、銅張積層板及びプリント配線板の製造過程で支障をきたすことの無いよう、電解銅箔の表面が酸化腐食することを防止するためのものである。そして絶縁層構成材料との密着性を阻害せず、可能であれば向上させる構成であることが推奨される。防錆処理に用いられる方法は、ベンゾトリアゾール、イミダゾール等を用いる有機防錆、若しくは亜鉛、クロメート、亜鉛合金等を用いる無機防錆のいずれか又は両者を組み合わせて使用しても目的用途に適合していれば問題はない。
[Form of surface-treated electrolytic copper foil according to the present invention]
The surface-treated electrolytic copper foil according to the present invention provides a surface-treated electrolytic copper foil obtained by performing at least one of rust prevention treatment and silane coupling agent treatment on the surface of the above-described electrolytic copper foil. This antirust treatment layer is for preventing the surface of the electrolytic copper foil from being oxidatively corroded so as not to hinder the manufacturing process of the copper clad laminate and the printed wiring board. And it is recommended that it is the structure which improves if possible, without inhibiting adhesiveness with an insulating-layer constituent material. The method used for the rust prevention treatment is suitable for the intended use even if either organic rust prevention using benzotriazole, imidazole, etc., or inorganic rust prevention using zinc, chromate, zinc alloy, etc., or a combination of both is used. If so, there is no problem.

そして、シランカップリング剤処理とは、防錆処理が終了した後に、絶縁層構成材料との密着性を化学的に向上させるための処理である。   And a silane coupling agent process is a process for improving the adhesiveness with an insulating-layer constituent material chemically after a rust prevention process is complete | finished.

次に、防錆処理層を形成する方法に関して説明する。有機防錆の場合は、有機防錆剤の溶液を浸漬塗布、シャワーリング塗布、電着法等の手法を採用して形成することが可能となる。無機防錆の場合は、防錆元素を電解銅箔の表面上に電解析出させる方法、その他いわゆる置換析出法等を用いることが可能である。例えば、亜鉛防錆処理を行うときには、ピロ燐酸亜鉛めっき浴、シアン化亜鉛めっき浴、硫酸亜鉛めっき浴等を用いることが可能である。例えば、ピロ燐酸亜鉛めっき浴であれば、濃度は亜鉛5g/l〜30g/l、ピロ燐酸カリウム50g/l〜500g/l、液温20℃〜50℃、pH9〜12、電流密度0.3A/dm〜10A/dmの条件とする等である。 Next, a method for forming a rust prevention treatment layer will be described. In the case of organic rust prevention, it becomes possible to form a solution of an organic rust prevention agent by employing techniques such as dip coating, showering coating, and electrodeposition. In the case of inorganic rust prevention, a method of electrolytically depositing a rust-preventive element on the surface of the electrolytic copper foil, other so-called substitution deposition methods, and the like can be used. For example, when the zinc rust prevention treatment is performed, a zinc pyrophosphate plating bath, a zinc cyanide plating bath, a zinc sulfate plating bath, or the like can be used. For example, in the case of a zinc pyrophosphate plating bath, the concentrations are 5 g / l to 30 g / l zinc, 50 g / l to 500 g / l potassium pyrophosphate, liquid temperature 20 ° C. to 50 ° C., pH 9 to 12, and current density 0.3A. / Dm 2 to 10 A / dm 2 .

そして、上記シランカップリング剤処理に用いるシランカップリング剤は特に限定を要するものではなく、使用する絶縁層構成材料、プリント配線板製造工程で使用するめっき液等の性状を考慮して、エポキシ系シランカップリング剤、アミノ系シランカップリング剤、メルカプト系シランカップリング剤等から任意に選択使用することが可能となる。そして、シランカップリング剤処理は、シランカップリング剤の溶液を浸漬塗布、シャワーリング塗布、電着法等の手法を採用して実施することができる。   And the silane coupling agent used for the said silane coupling agent process does not require limitation in particular, Considering properties, such as an insulating-layer constituent material to be used, and the plating solution used at a printed wiring board manufacturing process, it is an epoxy type. A silane coupling agent, an amino silane coupling agent, a mercapto silane coupling agent, and the like can be arbitrarily selected and used. And a silane coupling agent process can employ | adopt methods, such as dip coating, showering application | coating, and an electrodeposition method, for the solution of a silane coupling agent.

より具体的には、プリント配線板用にプリプレグのガラスクロスに用いられると同様のカップリング剤を中心にビニルトリメトキシシラン、ビニルフェニルトリメトキシラン、γ−メタクリロキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、4−グリシジルブチルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、N−β(アミノエチル)γ−アミノプロピルトリメトキシシラン、N−3−(4−(3−アミノプロポキシ)プトキシ)プロピル−3−アミノプロピルトリメトキシシラン、イミダゾールシラン、トリアジンシラン、γ−メルカプトプロピルトリメトキシシラン等を用いることが可能である。   More specifically, vinyl trimethoxy silane, vinyl phenyl trimethoxy lane, γ-methacryloxypropyl trimethoxy silane, γ-glycol are mainly used for the same coupling agent as used for prepreg glass cloth for printed wiring boards. Sidoxypropyltrimethoxysilane, 4-glycidylbutyltrimethoxysilane, γ-aminopropyltriethoxysilane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane, N-3- (4- (3-aminopropoxy) ) Putoxy) propyl-3-aminopropyltrimethoxysilane, imidazole silane, triazine silane, γ-mercaptopropyltrimethoxysilane and the like can be used.

そして、前記表面処理電解銅箔の絶縁層構成材料との接着面の表面粗さ(Rzjis)は1.5μm以下の低プロファイルであることが好ましい。この範囲に表面粗さが調整されていることによりファインピッチ回路形成に適した表面処理銅箔となる。   And it is preferable that the surface roughness (Rzjis) of the adhesive surface with the insulating-layer constituent material of the said surface treatment electrolytic copper foil is a low profile of 1.5 micrometers or less. By adjusting the surface roughness within this range, a surface-treated copper foil suitable for fine pitch circuit formation is obtained.

また、前記表面処理電解銅箔の絶縁層構成材料との接着面の光沢度[Gs(60°)]は250以上であることも好ましい。表面処理により、防錆被膜やシランカップリング剤被膜が形成されるため、表面粗さの変化が検出されないレベルであっても、表面処理前後の比較においては光の反射率等が変動することが考えられる。したがって、表面処理後に光沢度の絶対値が変動することはあるが、表面処理電解銅箔の接着面で得られる光沢度[Gs(60°)]が250以上を維持していれば表面処理被膜が適正な厚さで形成されていると判断できるのである。   Moreover, it is also preferable that the glossiness [Gs (60 °)] of the adhesion surface between the surface-treated electrolytic copper foil and the insulating layer constituting material is 250 or more. The surface treatment forms a rust-preventive coating or a silane coupling agent coating, so even if the surface roughness change is not detected, the light reflectance may vary in the comparison before and after the surface treatment. Conceivable. Therefore, although the absolute value of the glossiness may fluctuate after the surface treatment, if the glossiness [Gs (60 °)] obtained on the adhesive surface of the surface-treated electrolytic copper foil is maintained at 250 or more, the surface-treated film Can be determined to be formed with an appropriate thickness.

前記表面処理電解銅箔の絶縁層構成材料との接着面に粗化処理を施してあることも好ましい。粗化処理は公知技術を適用できるものであって、防錆技術との組み合わせから必要最低限の粗化処理を実施すれば足りるのである。しかし、本件発明に係る表面処理電解銅箔が好ましく用いられる25μmピッチを下回るようなファインピッチ配線の形成においては、粗化処理を施していないことが、必要とされるオーバーエッチング時間の設定精度を上げるためには好ましいのである。   It is also preferable that the surface of the surface-treated electrolytic copper foil that has been subjected to a roughening treatment is bonded to the insulating layer constituting material. For the roughening treatment, a publicly-known technique can be applied, and it is sufficient to perform the minimum necessary roughening treatment in combination with the rust prevention technique. However, in the formation of fine pitch wiring that is less than 25 μm pitch in which the surface-treated electrolytic copper foil according to the present invention is preferably used, the rough etching treatment is not performed, and the required overetching time setting accuracy is achieved. It is preferable for raising.

そして、粗化処理を施す方法としては、電解銅箔の表面に微細金属粒を付着形成させるか、エッチング法で粗化表面を形成するか、いずれかの方法が採用される。ここで、前者の微細金属粒を付着形成する方法として、銅微細粒を表面に付着形成する方法に関して例示しておく。この粗化処理工程は、電解銅箔の表面上に微細銅粒を析出付着させる工程と、この微細銅粒の脱落を防止するための被せめっき工程とで構成される。   And as a method of performing a roughening process, either a fine metal particle is made to adhere and form on the surface of electrolytic copper foil, or a roughened surface is formed by the etching method, and any method is employ | adopted. Here, as the former method of depositing and forming fine metal particles, a method of depositing and forming copper fine particles on the surface will be exemplified. This roughening treatment step includes a step of depositing and adhering fine copper particles on the surface of the electrolytic copper foil, and a covering plating step for preventing the fine copper particles from falling off.

電解銅箔の表面上に微細銅粒を析出付着させる工程では、電解条件としてヤケめっきの条件が採用される。従って、一般的に微細銅粒を析出付着させる工程で用いる溶液濃度は、ヤケめっき条件を作り出しやすいよう、低い濃度となっている。このヤケめっき条件は、特に限定されるものではなく、生産ラインの特質を考慮して定められるものである。例えば、硫酸銅系溶液を用いるのであれば、濃度が銅5〜20g/l、フリー硫酸50〜200g/l、その他必要に応じた添加剤(α−ナフトキノリン、デキストリン、膠、チオ尿素等)、液温15〜40℃、電流密度10〜50A/dmの条件とする等である。 In the step of depositing and adhering fine copper particles on the surface of the electrolytic copper foil, the condition of burnt plating is adopted as the electrolysis condition. Therefore, the solution concentration used in the step of depositing and adhering fine copper particles is generally low so that the burn plating conditions can be easily created. The burn plating conditions are not particularly limited, and are determined in consideration of the characteristics of the production line. For example, if a copper sulfate-based solution is used, the concentration of copper is 5 to 20 g / l, free sulfuric acid is 50 to 200 g / l, and other additives as necessary (α-naphthoquinoline, dextrin, glue, thiourea, etc.), For example, the liquid temperature is 15 to 40 ° C. and the current density is 10 to 50 A / dm 2 .

そして、微細銅粒の脱落を防止するための被せめっき工程は、平滑めっき条件により微細銅粒を被覆するように銅を均一析出させるための工程である。従って、ここでは前述の電解銅箔の製造工程で用いたものと同様の銅電解液を銅イオンの供給源として用いることができる。この平滑めっき条件は、特に限定されるものではなく、生産ラインの特質を考慮して定められるものである。例えば、硫酸銅系溶液を用いるのであれば、濃度が銅50〜80g/l、フリー硫酸50〜150g/l、液温40〜50℃、電流密度10〜50A/dmの条件とする等である。 The covering plating process for preventing the fine copper grains from falling off is a process for uniformly depositing copper so as to cover the fine copper grains under smooth plating conditions. Therefore, here, a copper electrolyte similar to that used in the above-described electrolytic copper foil manufacturing process can be used as a source of copper ions. The smooth plating conditions are not particularly limited and are determined in consideration of the characteristics of the production line. For example, if a copper sulfate-based solution is used, the concentration is 50 to 80 g / l copper, free sulfuric acid 50 to 150 g / l, liquid temperature 40 to 50 ° C., and current density 10 to 50 A / dm 2. is there.

そして、前記表面処理電解銅箔の絶縁層構成材料との接着面が析出面側であることが好ましいとしている。前述のように、光沢面側は陰極ドラムの表面形状が転写した形状であるためにTD方向/MD方向の違いを皆無にすることは困難である。そのため、接着面の形状がTD/MDで方向性を持っている場合に起こる配線端面の直線性のバラツキを僅少にするためには析出面側を接着面とすることが好ましいのである。   And it is said that it is preferable that the adhesion surface with the insulating-layer constituent material of the said surface treatment electrolytic copper foil is a deposition surface side. As described above, it is difficult to eliminate the difference between the TD direction and the MD direction on the glossy surface side because the surface shape of the cathode drum is a transferred shape. For this reason, in order to minimize the variation in the linearity of the wiring end surface that occurs when the shape of the bonding surface is TD / MD and has directionality, it is preferable that the deposition surface side be the bonding surface.

[本件発明に係る銅張積層板の形態]
本件発明は、前記表面処理電解銅箔を絶縁層構成材料と張合わせてなる銅張積層板を提供する。これら銅張積層板の製造方法に関してはフレキシブル銅張積層板であれば従来技術であるロールラミネート方式やキャスティング方式を用いることが可能であり、リジッド銅張積層板であればホットプレス方式や連続ラミネート方式を用いて製造することが可能である。なお、本件発明に言うフレキシブル銅張積層板及びリジッド銅張積層板は、片面銅張積層板、両面銅張積層板、多層銅張積層板の全てを含む概念である。ここで、多層銅張積層板の場合には、外層に本件発明に係る表面処理銅箔を用い、その内層には内層回路を備える内層コア材が含まれた構成のものである。以下の銅張積層板の説明上は、これらを区別しての説明は行わない。重複したものとなるからである。
[Form of copper clad laminate according to the present invention]
The present invention provides a copper clad laminate obtained by laminating the surface-treated electrolytic copper foil with an insulating layer constituting material. As for the production method of these copper clad laminates, conventional roll laminating method and casting method can be used as long as they are flexible copper clad laminates, and hot press method and continuous laminating are used for rigid copper clad laminates. It is possible to manufacture using a method. The flexible copper-clad laminate and the rigid copper-clad laminate referred to in the present invention are concepts including all of a single-sided copper-clad laminate, a double-sided copper-clad laminate, and a multilayer copper-clad laminate. Here, in the case of a multilayer copper-clad laminate, the surface-treated copper foil according to the present invention is used for the outer layer, and the inner layer includes an inner layer core material having an inner layer circuit. In the explanation of the following copper-clad laminate, these are not explained separately. This is because it becomes a duplicate.

本件発明は、前記絶縁層構成材料は骨格材を含有するものであるリジッド銅張積層板を提供する。従来のリジッド銅張積層板で用いられていた骨格材はガラス織布又はガラス不織布が大半を占めており、銅箔接着面の粗さが影響するのは10μm超レベルでは層間絶縁性に、10μm以下でも骨格材であるガラス繊維と回路が直接接触することによる耐マイグレーション性が問題になりうるとの報告がなされている。そして、5μmレベルであれば問題にする必要がないと言われてきた。しかしながら、近年では電子部品が直接搭載されるパッケージ基板である例えばBGAやCSPにも従来無かったレベルのファインパターンが要求され、骨格材としてガラス繊維よりも細いアラミド繊維を不織布で用いるなど表面の平坦化を図ってきている。そして、クロック周波数が高くなっている部品などを搭載した場合、回路の直線性、断面形状が理想状態からかけ離れていると特に高周波域における信号の伝送特性が満足できないのである。従って、本件発明に係る銅張積層板はファインパターンはもとより特に高周波信号の伝送回路を有するプリント配線板の製造用途に好適なのである。   The present invention provides a rigid copper clad laminate in which the insulating layer constituting material contains a skeleton material. Most of the skeletal materials used in conventional rigid copper clad laminates are glass woven fabrics or glass nonwoven fabrics, and the roughness of the copper foil bonding surface affects the interlayer insulation at a level exceeding 10 μm. In the following, it has been reported that the migration resistance due to the direct contact between the glass fiber, which is a skeleton material, and the circuit can be a problem. And it has been said that there is no need to make it a problem if the level is 5 μm. However, recently, for example, BGA and CSP, which are package substrates on which electronic components are directly mounted, require a fine pattern of a level that has never existed before, and the surface is flat, for example, aramid fibers thinner than glass fibers are used as a skeleton material. We are trying to make it. When a component with a high clock frequency is mounted, the signal transmission characteristics in the high frequency range cannot be satisfied particularly when the linearity and cross-sectional shape of the circuit are far from the ideal state. Therefore, the copper-clad laminate according to the present invention is suitable not only for fine patterns but also for manufacturing printed wiring boards having a high-frequency signal transmission circuit.

また、本件発明は前記絶縁層構成材料は可撓性を有するフレキシブル素材で構成したものであるフレキシブル銅張積層板を提供する。フレキシブル銅張積層板は前述のリジッド銅張積層板とはその屈曲性と軽量性でその用途の棲み分けが為されてきたものであり、絶縁層構成材料は軽量化と高屈曲性達成のために薄肉化が図られている。そして同時に導体層にも薄肉化が要求され、電解銅箔が主要な材料となっている。そして、肉薄フィルムにおける絶縁信頼性確保、特に多層フレキシブル基板用途においては、接着面に対しては絶縁層厚みの1/10以下の低プロファイルが要求されるため、従来品であれば上記表面粗さRzjis=5μm程度が使用上限であった。しかしながら、本件発明の電解銅箔を用いたフレキシブル銅張積層板は更にフィルム厚さを減じても絶縁信頼性が確保できるものなのである。そして、従来の低プロファイル電解銅箔を用いたフレキシブル銅張積層板に比べ屈曲性にも優れており、この点においても信頼性が向上した銅張積層板なのである。   The present invention also provides a flexible copper clad laminate in which the insulating layer constituting material is constituted by a flexible material having flexibility. The flexible copper-clad laminate has been divided into its use by the flexibility and light weight of the above-mentioned rigid copper-clad laminate, and the insulating layer constituent material is for weight reduction and high flexibility. Thinning is attempted. At the same time, the conductor layer is also required to be thin, and electrolytic copper foil is the main material. And, in order to ensure insulation reliability in thin films, especially for multilayer flexible substrates, a low profile of 1/10 or less of the insulating layer thickness is required for the adhesive surface. Rzjis = about 5 μm was the upper limit of use. However, the flexible copper clad laminate using the electrolytic copper foil of the present invention can ensure insulation reliability even if the film thickness is further reduced. And it is excellent in the flexibility compared with the flexible copper clad laminated board using the conventional low profile electrolytic copper foil, It is a copper clad laminated board which improved the reliability also in this point.

ここでリジッド銅張積層板及びフレキシブル銅張積層板の製造方法を具体的に例示しておく。リジッド銅張積層板又はフレキシブル銅張積層板を製造する場合には、本件発明に係る表面処理電解銅箔、FR−4クラスのプリプレグ等のリジッド絶縁層形成材又はポリイミド樹脂フィルム等のフレキシブル絶縁層形成材、鏡板を用いて、所望のレイアップ状態を形成し、170℃〜200℃の熱間でプレス成形する。   Here, the manufacturing method of a rigid copper clad laminated board and a flexible copper clad laminated board is illustrated concretely. When manufacturing rigid copper clad laminates or flexible copper clad laminates, surface treatment electrolytic copper foil according to the present invention, rigid insulation layer forming material such as FR-4 class prepreg, or flexible insulation layer such as polyimide resin film Using the forming material and the end plate, a desired lay-up state is formed and press-molded between 170 ° C. and 200 ° C. hot.

一方、フレキシブル銅張積層板の場合には、上述のようなロールラミネート方式やキャスティング方式の採用が可能である。このロールラミネート方式とは、本件発明に係る表面処理銅箔のロールと、ポリイミド樹脂フィルムやPETフィルム等の樹脂フィルムロールとを用いて、Roll to Roll方式で加熱ロールの圧力で熱圧着させる方法である。そして、キャスティング方式とは、本件発明に係る表面処理銅箔の表面に、ポリアミック酸等の加熱によりポリイミド樹脂化する樹脂組成膜を形成し、加熱し縮合反応を起こさせることで、表面処理銅箔の表面にポリイミド樹脂皮膜を直接形成するものである。   On the other hand, in the case of a flexible copper-clad laminate, it is possible to adopt the roll laminating method or the casting method as described above. This roll laminating method is a method in which a roll of surface-treated copper foil according to the present invention and a resin film roll such as a polyimide resin film or a PET film are thermocompression-bonded by the pressure of a heating roll in the Roll to Roll method. is there. And the casting method means that the surface-treated copper foil is formed by forming a resin composition film that is converted into a polyimide resin by heating such as polyamic acid on the surface of the surface-treated copper foil according to the present invention, and causing a condensation reaction by heating. A polyimide resin film is directly formed on the surface of the film.

[本件発明に係るプリント配線板の形態]
そして、本件発明は、前記リジッド銅張積層板を用いて得られたことを特徴とするリジッドプリント配線板を提供する。前述のように本件発明に係る接着面が平滑な電解銅箔を用いた銅張積層板を使用したプリント配線板の製造には、サブトラクティブ法はもちろんパターンめっき/フラッシュエッチング法も用いることができ、どちらの場合でもオーバーエッチング時間の設定を短くできるために、得られた回路の端面はより直線的に、断面はより矩形に近くなるのである。したがって、ファインパターンでの回路間絶縁信頼性に優れていると同時に、特に表皮効果により回路表面近くを流れる高周波領域の信号伝達特性に優れ、またクロストークなどのノイズも発生しにくい、総合的な信頼性に優れたプリント配線板なのである。
[Form of printed wiring board according to the present invention]
And this invention provides the rigid printed wiring board characterized by being obtained using the said rigid copper clad laminated board. As described above, not only the subtractive method but also the pattern plating / flash etching method can be used for the production of the printed wiring board using the copper-clad laminate using the electrolytic copper foil having a smooth adhesive surface according to the present invention. In either case, since the setting of the overetching time can be shortened, the end face of the obtained circuit is more linear and the cross section is closer to a rectangle. Therefore, it is excellent in insulation reliability between circuits with fine patterns, and at the same time has excellent signal transmission characteristics in the high frequency region that flows near the circuit surface due to the skin effect, and it is also difficult to generate noise such as crosstalk. It is a printed wiring board with excellent reliability.

また、本件発明は前記フレキシブル銅張積層板を用いて得られたことを特徴とするフレキシブルプリント配線板を提供する。当該プリント配線板の製造には、前述のリジッドプリント配線板と同様サブトラクティブ法はもちろんパターンめっき/フラッシュエッチング法も用いることができ、どちらの場合でもオーバーエッチング時間の設定を短くできるために、得られた回路の端面はより直線的に、断面はより矩形に近くなるのである。従って高周波領域の信号伝達特性に優れ、またクロストークなどのノイズも発生しにくい、信頼性の優れたプリント配線板であると同時に、絶縁信頼性、屈曲性に優れたものであり、特に部品を直接実装するフィルムキャリアとした時に最もその優位性を発揮できるものなのである。   Moreover, this invention provides the flexible printed wiring board characterized by using the said flexible copper clad laminated board. For the production of the printed wiring board, the pattern plating / flash etching method as well as the subtractive method as well as the above-mentioned rigid printed wiring board can be used. In both cases, the setting of the overetching time can be shortened. The end face of the resulting circuit is more linear and the cross section is more rectangular. Therefore, it is a highly reliable printed wiring board that has excellent signal transmission characteristics in the high frequency range and that does not easily generate noise such as crosstalk. At the same time, it has excellent insulation reliability and flexibility. The film carrier that can be directly mounted can demonstrate its superiority.

ここで、上記リジッド銅張積層板又はフレキシブル銅張積層板(以下、単に「銅張積層板」と称する。)のいずれかを用いてプリント配線板に加工する場合の一般的加工方法の一例を、念のために述べておく。最初に、銅張積層板表面へエッチングレジスト層を形成し、エッチング回路パターンを露光し、現像し、エッチングレジストパターンを形成する。このときのエッチングレジスト層は、ドライフィルム、液体レジスト等の感光性樹脂が用いられる。その他、露光はUV露光が一般的であり、定法に基づいたエッチングレジストパターンの形成方法が採用できる。   Here, an example of a general processing method in the case of processing into a printed wiring board using either the above-mentioned rigid copper-clad laminate or flexible copper-clad laminate (hereinafter simply referred to as “copper-clad laminate”). , Just in case. First, an etching resist layer is formed on the surface of the copper clad laminate, and the etching circuit pattern is exposed and developed to form an etching resist pattern. At this time, a photosensitive resin such as a dry film or a liquid resist is used for the etching resist layer. In addition, UV exposure is generally used for exposure, and an etching resist pattern forming method based on a conventional method can be employed.

そして、銅エッチング液を用いて電解銅箔を回路形状にエッチング加工し、エッチングレジスト剥離を行うことで、リジッド基材又はフレキシブル基材の表面に所望の回路形状を形成する。このときのエッチング液に関しても、酸性銅エッチング液、アルカリ性銅エッチング液等の全ての銅エッチング液の使用が可能である。   Then, the electrolytic copper foil is etched into a circuit shape using a copper etchant, and the etching resist is removed to form a desired circuit shape on the surface of the rigid base material or the flexible base material. Regarding the etching solution at this time, all copper etching solutions such as an acidic copper etching solution and an alkaline copper etching solution can be used.

上述のように本件発明に言う銅張積層板は、片面銅張積層板、両面銅張積層板、内部に内層回路を備える多層銅張積層板の全てを含む概念として記載している。従って、両面銅張積層板及び多層銅張積層板の場合には、その層間での導通を確保することが必要な場合があり、係る場合には、定法によるスルーホール、ビアホール等の形状形成を行い、その後層間導通を得るための導通メッキ処理が施される。一般的に、この導通メッキ処理には、パラジウム触媒による活性化処理を行い銅無電解メッキが施され、その後電解銅メッキで膜厚成長を行うものである。   As described above, the copper-clad laminate referred to in the present invention is described as a concept including all of a single-sided copper-clad laminate, a double-sided copper-clad laminate, and a multilayer copper-clad laminate having an internal circuit inside. Therefore, in the case of double-sided copper-clad laminates and multilayer copper-clad laminates, it may be necessary to ensure electrical continuity between the layers. In such a case, shape formation of through holes, via holes, etc. by a regular method is required. After that, a conduction plating process for obtaining interlayer conduction is performed. In general, this conductive plating treatment is an activation treatment using a palladium catalyst to perform a copper electroless plating, and then a film thickness is grown by electrolytic copper plating.

銅エッチングが終了すると、十分に水洗を行い、乾燥、その他必要に応じて防錆処理等が施されて、リジッドプリント配線板又はフレキシブルプリント配線板となる。   When the copper etching is completed, the substrate is sufficiently washed with water, dried, and subjected to other rust-proofing treatment as necessary to obtain a rigid printed wiring board or a flexible printed wiring board.

実施例と比較例では陰極の表面形状の影響が出ないことに配慮し、表面を2000番の研磨紙で研磨を行って表面粗さをRzjisで0.85μmに調整したチタン板電極を用いた。   In consideration of the fact that the surface shape of the cathode is not affected in the examples and the comparative examples, a titanium plate electrode whose surface was polished with No. 2000 polishing paper and the surface roughness was adjusted to 0.85 μm with Rzjis was used. .

[第一実施群]
この第1実施群では、実施例1〜実施例8を行った。この実施例1〜実施例8では、硫酸系銅電解液として、硫酸銅溶液であって銅濃度80g/l、フリー硫酸濃度140g/l、そして表1に記載のMPSの濃度、DDAC重合体(センカ(株)製ユニセンスFPA100L)濃度、塩素濃度に調整した溶液を用いた。そして、実施例9ではMPSの代替品としてMPSの2量体であるSPSを用いた。
[First Implementation Group]
In the first working group, Examples 1 to 8 were performed. In Examples 1 to 8, the sulfuric acid-based copper electrolyte was a copper sulfate solution having a copper concentration of 80 g / l, a free sulfuric acid concentration of 140 g / l, and the MPS concentration and DDAC polymer (Table 1). A solution adjusted to a concentration and a chlorine concentration was used. In Example 9, SPS, which is a dimer of MPS, was used as an alternative to MPS.

電解銅箔の作成は陽極にDSAを用いて、液温50℃、電流密度60A/dmで電解し、12μm及び210μm厚さの9種の電解銅箔を得た。この中から12μm電解銅箔に限定して銅箔の機械的特性を評価した。結果を表2に示す。 The electrolytic copper foil was prepared by using DSA as an anode and electrolyzing at a liquid temperature of 50 ° C. and a current density of 60 A / dm 2 to obtain nine types of electrolytic copper foils having a thickness of 12 μm and 210 μm. The mechanical properties of the copper foil were evaluated by limiting to the 12 μm electrolytic copper foil. The results are shown in Table 2.

次に当該電解銅箔の両面に防錆処理を施した、ここでは以下に述べる条件の無機防錆を採用した。硫酸亜鉛浴を用い、フリー硫酸濃度70g/l、亜鉛濃度20g/lとし、液温40℃、電流密度15A/dmとし、亜鉛防錆処理を施した。 Next, the both sides of the electrolytic copper foil were subjected to rust prevention treatment, and here, inorganic rust prevention under the conditions described below was adopted. Using a zinc sulfate bath, a free sulfuric acid concentration of 70 g / l, a zinc concentration of 20 g / l, a liquid temperature of 40 ° C., a current density of 15 A / dm 2 were applied, and a zinc rust prevention treatment was performed.

更に、本実施例の場合、前記亜鉛防錆層の上に、電解でクロメート層を形成した。このときの電解条件は、クロム酸濃度5.0g/l、pH 11.5、液温35℃、電流密度8A/dm、電解時間5秒とした。 Further, in the case of this example, a chromate layer was formed by electrolysis on the zinc rust preventive layer. The electrolysis conditions at this time were chromic acid concentration 5.0 g / l, pH 11.5, liquid temperature 35 ° C., current density 8 A / dm 2 , and electrolysis time 5 seconds.

以上のように防錆処理が完了すると水洗後、直ちにシランカップリング剤処理槽で、析出面側の防錆処理層の上にシランカップリング剤の吸着を行った。このときの溶液組成は、純水を溶媒として、γ−グリシドキシプロピルトリメトキシシラン濃度を5g/lとした。そして、この溶液をシャワーリングにて吹き付けることにより吸着処理した。   When the rust prevention treatment was completed as described above, the silane coupling agent was adsorbed on the rust prevention treatment layer on the deposition surface side immediately in the silane coupling agent treatment tank after washing with water. The solution composition at this time was such that the concentration of γ-glycidoxypropyltrimethoxysilane was 5 g / l using pure water as a solvent. The solution was adsorbed by spraying with a shower ring.

シランカップリング剤処理が終了すると、最終的に電熱器により水分を気散させ、9種類の表面処理電解銅箔を得た。なお、得られた電解銅箔の結晶構造解析によると、平均結晶粒子径は従来のフィルムキャリアテープに用いられている微細結晶化により低プロファイルとしている電解銅箔が有している平均結晶粒子径よりも大きく、また双晶の存在も確認された。 上記から得られた電解銅箔の析出面の表面粗さ(Rzjis)と光沢度[Gs(20°)]、[Gs(60°)]及び[Gs(85°)]、そして表面処理電解銅箔の析出面の表面粗さ(Rzjis)と光沢度[Gs(60°)]を表3に示す。   When the silane coupling agent treatment was completed, water was finally diffused by an electric heater to obtain nine types of surface-treated electrolytic copper foil. In addition, according to the crystal structure analysis of the obtained electrolytic copper foil, the average crystal particle diameter is the average crystal particle diameter of the electrolytic copper foil having a low profile due to the fine crystallization used in the conventional film carrier tape. The presence of twins was also confirmed. Surface roughness (Rzjis) and glossiness [Gs (20 °)], [Gs (60 °)] and [Gs (85 °)] of the deposited surface of the electrolytic copper foil obtained from the above, and surface-treated electrolytic copper Table 3 shows the surface roughness (Rzjis) and glossiness [Gs (60 °)] of the deposited surface of the foil.

[第二実施群]
ここでは実施例10〜実施例14とし、硫酸系銅電解液として銅濃度80g/l、フリー硫酸濃度140g/l、そして表4に記載のSPSの濃度、DDAC重合体(センカ(株)製ユニセンスFPA100L)濃度、塩素濃度に調整した溶液を用いた。
[Second implementation group]
Here, Examples 10 to 14 were used, and as the sulfuric acid-based copper electrolyte, the copper concentration was 80 g / l, the free sulfuric acid concentration was 140 g / l, and the SPS concentrations shown in Table 4, DDAC polymer (Unisense manufactured by Senka Co., Ltd.) FPA100L) A solution adjusted to a concentration and a chlorine concentration was used.

電解銅箔の作成は陽極にDSAを用いて、液温50℃、電流密度60A/dmで電解し、実施例10では12μm及び70μm厚さの2種の電解銅箔を、実施例11〜実施例14では4種の12μm厚さの電解銅箔を得た。 The electrolytic copper foil was prepared by using DSA as an anode, electrolyzing at a liquid temperature of 50 ° C., and a current density of 60 A / dm 2. In Example 10, two types of electrolytic copper foils having a thickness of 12 μm and 70 μm were used in Examples 11 to 11. In Example 14, four types of electrolytic copper foils having a thickness of 12 μm were obtained.

そして、実施例10で得られた12μm及び70μm電解銅箔の常態及び180℃×60min.加熱後の引張り強さ、伸び率を表5に示す。そして、当該12μm電解銅箔の常態の引張り強さは35.5kgf/mm、伸び率が11.5%、180℃×60min.加熱後の引張り強さは33.2kgf/mm、伸び率が11.2%という良好な機械的特性は、フレキシブルプリント配線板の折り曲げ使用にも十分に耐えうるレベルである。 And the normal state of 12 μm and 70 μm electrolytic copper foil obtained in Example 10 and 180 ° C. × 60 min. Table 5 shows the tensile strength and elongation after heating. The normal tensile strength of the 12 μm electrolytic copper foil was 35.5 kgf / mm 2 , the elongation was 11.5%, and 180 ° C. × 60 min. Good mechanical properties such as a tensile strength after heating of 33.2 kgf / mm 2 and an elongation of 11.2% are at a level that can sufficiently withstand bending use of a flexible printed wiring board.

上記12μm電解銅箔単体でのMIT法による耐折性の評価をしてみると常態で1200回〜1350回、加熱後でも800回〜900回の折り曲げ試験に耐えることができている。上記MIT法による耐折試験は、MIT耐折装置として東洋精機製作所製の槽付フィルム耐折疲労試験機(品番:549)を用い、屈曲半径0.8mm、荷重0.5kgfとし、サンプルサイズ15mm×150mmで実施している。この数値は従来フレキシブルプリント配線板用途に使用されてきた汎用電解銅箔を同一条件で評価した場合には常態で600回程度、加熱後では500回程度であることから、従来の汎用品に対して約2倍の耐折性を示すものとなるのである。この違いは、表面が平滑であることによって破断に至るきっかけとなるクラックが生じにくいという効果によっていると推測できる。   When the folding resistance of the 12 μm electrolytic copper foil alone is evaluated by the MIT method, it can withstand a bending test of 1200 to 1350 times in a normal state and 800 to 900 times even after heating. The folding resistance test by the MIT method uses a film folding fatigue tester with tank (product number: 549) manufactured by Toyo Seiki Seisakusho as an MIT folding apparatus, with a bending radius of 0.8 mm, a load of 0.5 kgf, and a sample size of 15 mm. * Implemented at 150 mm. This value is about 600 times in a normal state when a general-purpose electrolytic copper foil that has been used for flexible printed wiring boards is evaluated under the same conditions, and about 500 times after heating. Thus, the folding endurance is approximately doubled. It can be inferred that this difference is due to the fact that the surface is smooth, so that cracks that trigger breakage are less likely to occur.

そして、上記で得られた電解銅箔を濃度150g/l、液温30℃の希硫酸溶液に30秒間浸漬して、付着物や表面酸化被膜の除去を行い、水洗した。実施例10で得られた12μm電解銅箔及び70μm電解銅箔では、それぞれ粗化処理を施した表面処理電解銅箔と粗化処理を施していない2種の表面処理電解銅箔合計4種を作成した。   Then, the electrolytic copper foil obtained above was immersed in a dilute sulfuric acid solution having a concentration of 150 g / l and a liquid temperature of 30 ° C. for 30 seconds to remove deposits and surface oxide film, and washed with water. In the 12 μm electrolytic copper foil and the 70 μm electrolytic copper foil obtained in Example 10, a total of four types of surface-treated electrolytic copper foil subjected to roughening treatment and two types of surface-treated electrolytic copper foil not subjected to roughening treatment were used. Created.

上記のうち粗化処理を施す対象となる12μm電解銅箔及び70μm電解銅箔は酸洗処理が終了すると、電解銅箔の析出面に微細銅粒を形成する工程として、析出面上に微細銅粒を析出付着させる工程と、この微細銅粒の脱落を防止するための被せめっき工程とを施した。前者の微細銅粒を析出付着させる工程では、硫酸銅系溶液であって、銅濃度15g/l、フリー硫酸濃度100g/l、液温25℃、電流密度30A/dmの条件で、5秒間電解した。 Among the above, the 12 μm electrolytic copper foil and the 70 μm electrolytic copper foil to be subjected to the roughening treatment are subjected to a fine copper particle on the deposition surface as a step of forming fine copper grains on the deposition surface of the electrolytic copper foil when the pickling treatment is completed. A step of depositing and adhering the grains and a covering plating step for preventing the fine copper grains from falling off were performed. In the former process of depositing fine copper particles, a copper sulfate-based solution, which has a copper concentration of 15 g / l, a free sulfuric acid concentration of 100 g / l, a liquid temperature of 25 ° C., and a current density of 30 A / dm 2 for 5 seconds. Electrolyzed.

析出面に微細銅粒を付着形成すると、微細銅粒の脱落を防止するための被せめっき工程として平滑めっき条件で微細銅粒を被覆するように銅を均一析出させた。ここでは平滑めっき条件として、硫酸銅溶液であって、銅濃度60g/l、フリー硫酸濃度100g/l、液温45℃、電流密度45A/dmの条件とし、5秒間電解した。 When fine copper grains were adhered and formed on the deposition surface, copper was uniformly deposited so as to cover the fine copper grains under smooth plating conditions as a covering plating process for preventing the fine copper grains from falling off. Here, the smooth plating conditions were a copper sulfate solution, a copper concentration of 60 g / l, a free sulfuric acid concentration of 100 g / l, a liquid temperature of 45 ° C., and a current density of 45 A / dm 2 , and electrolysis was performed for 5 seconds.

そして本実施例では得られた全ての電解銅箔の両面に防錆処理を施した、ここでは以下に述べる条件の無機防錆を採用した。硫酸亜鉛浴を用い、フリー硫酸濃度70g/l、亜鉛濃度20g/lとし、液温40℃、電流密度15A/dmとし、亜鉛防錆処理を施した。 In this example, both surfaces of all the obtained electrolytic copper foils were subjected to rust prevention treatment. Here, inorganic rust prevention under the conditions described below was adopted. Using a zinc sulfate bath, a free sulfuric acid concentration of 70 g / l, a zinc concentration of 20 g / l, a liquid temperature of 40 ° C., a current density of 15 A / dm 2 were applied, and a zinc rust prevention treatment was performed.

そして前記亜鉛防錆層の上に更に電解でクロメート層を形成した。このときの電解条件は、クロム酸濃度5.0g/l、pH 11.5、液温35℃、電流密度8A/dm、電解時間5秒とした。 A chromate layer was further formed on the zinc rust preventive layer by electrolysis. The electrolysis conditions at this time were chromic acid concentration 5.0 g / l, pH 11.5, liquid temperature 35 ° C., current density 8 A / dm 2 , and electrolysis time 5 seconds.

以上のように防錆処理が完了すると水洗後、直ちにシランカップリング剤処理槽で、析出面側の防錆処理層の上にシランカップリング剤の吸着を行った。このときの溶液組成は、純水を溶媒として、γ−グリシドキシプロピルトリメトキシシラン濃度を5g/lとした。そして、この溶液をシャワーリングにて吹き付けることにより吸着処理した。シランカップリング剤処理が終了すると、最終的に電熱器により水分を気散させ、粗化処理箔1種類を含む6種類の表面処理電解銅箔を得た。   When the rust prevention treatment was completed as described above, the silane coupling agent was adsorbed on the rust prevention treatment layer on the deposition surface side immediately in the silane coupling agent treatment tank after washing with water. The solution composition at this time was such that the concentration of γ-glycidoxypropyltrimethoxysilane was 5 g / l using pure water as a solvent. The solution was adsorbed by spraying with a shower ring. When the silane coupling agent treatment was completed, water was finally diffused by an electric heater to obtain six types of surface-treated electrolytic copper foil including one type of roughened foil.

上記実施例10〜実施例14から得られた電解銅箔の光沢面側の表面粗さ(Rzjis)と光沢度[Gs(60°)]、析出面側の表面粗さ(Rzjis)と光沢度[Gs(20°)]、[Gs(60°)]及び[Gs(85°)]、そして実施例10から得られた表面処理箔の析出面の表面粗さ(Rzjis)と光沢度[Gs(60°)]、粗化処理箔の粗化処理面の表面粗さ(Rzjis)を表6に示す。   Surface roughness (Rzjis) and glossiness [Gs (60 °)] on the glossy surface side of the electrolytic copper foils obtained from Examples 10 to 14 above, surface roughness (Rzjis) and glossiness on the deposition surface side [Gs (20 °)], [Gs (60 °)] and [Gs (85 °)], and surface roughness (Rzjis) and glossiness [Gs of the precipitation surface of the surface-treated foil obtained in Example 10 (60 °)], the surface roughness (Rzjis) of the roughened surface of the roughened foil is shown in Table 6.

比較例Comparative example

[比較例1]
この比較例は、特許文献2に記載された実施例1のトレース実験である。硫酸系銅電解液として、基本溶液は硫酸銅(試薬)と硫酸(試薬)とを純水に溶解し、硫酸銅(5水和物換算)濃度280g/l、フリー硫酸濃度90g/lとした。そして、ジアリルジアルキルアンモニウム塩と二酸化硫黄との共重合体(日東紡績株式会社製、商品名PAS−A−5、重量平均分子量4000)濃度4ppm、ポリエチレングリコール(平均分子量1000)濃度10ppm、MPS−Na濃度1ppmに調整し、更に塩化ナトリウムを用いて塩素濃度を20ppmに調製した硫酸酸性銅めっき液とした。
[Comparative Example 1]
This comparative example is a trace experiment of Example 1 described in Patent Document 2. As a sulfuric acid-based copper electrolyte, a basic solution was prepared by dissolving copper sulfate (reagent) and sulfuric acid (reagent) in pure water to obtain a copper sulfate (pentahydrate equivalent) concentration of 280 g / l and a free sulfuric acid concentration of 90 g / l. . A copolymer of diallyldialkylammonium salt and sulfur dioxide (manufactured by Nitto Boseki Co., Ltd., trade name PAS-A-5, weight average molecular weight 4000) concentration 4 ppm, polyethylene glycol (average molecular weight 1000) concentration 10 ppm, MPS-Na The sulfuric acid acidic copper plating solution was adjusted to a concentration of 1 ppm and further adjusted to a chlorine concentration of 20 ppm using sodium chloride.

そして、陽極には鉛板を用いて上記の電解液を液温40℃、電流密度50A/dmで電解を行い、12μm及び210μm厚さの電解銅箔を得た。この電解銅箔の機械的特性を表2に、析出面の表面粗さ(Rzjis)及び光沢度[Gs(60°)]を表3に実施例と共に示す。 Then, a lead plate was used for the anode, and the above electrolytic solution was electrolyzed at a liquid temperature of 40 ° C. and a current density of 50 A / dm 2 to obtain electrolytic copper foils having thicknesses of 12 μm and 210 μm. The mechanical properties of this electrolytic copper foil are shown in Table 2, and the surface roughness (Rzjis) and glossiness [Gs (60 °)] of the deposition surface are shown in Table 3 together with examples.

[比較例2]
この比較例では、硫酸系銅電解液として、銅濃度90g/l、フリー硫酸濃度110g/lの溶液を活性炭フィルターに通して清浄処理した。ついで、この溶液にMPS−Na濃度1ppmと、高分子多糖類としてヒドロキシエチルセルロース濃度5ppm及び低分子量膠(数平均分子量1560)濃度4ppmと、塩素濃度30ppmとなるように、それぞれ添加して銅電解液を調製した。このようにして調製した銅電解液を用い、陽極にはDSA電極を用いて、液温58℃、電流密度50A/dmで電解を行い、12μm及び210μm厚さの電解銅箔を得た。この電解銅箔の機械的特性を表2に、析出面の表面粗さ(Rzjis)及び光沢度等を表3に実施例と共に示す。
[Comparative Example 2]
In this comparative example, as a sulfuric acid-based copper electrolyte, a solution having a copper concentration of 90 g / l and a free sulfuric acid concentration of 110 g / l was passed through an activated carbon filter for cleaning treatment. Subsequently, an MPS-Na concentration of 1 ppm, a hydroxypolysaccharide concentration of 5 ppm as a high molecular polysaccharide, a low molecular weight glue (number average molecular weight 1560) concentration of 4 ppm, and a chlorine concentration of 30 ppm were added to this solution. Was prepared. The copper electrolyte thus prepared was used, and a DSA electrode was used as the anode, and electrolysis was performed at a liquid temperature of 58 ° C. and a current density of 50 A / dm 2 to obtain electrolytic copper foils having thicknesses of 12 μm and 210 μm. Table 2 shows the mechanical properties of this electrolytic copper foil, and Table 3 shows the surface roughness (Rzjis), glossiness, etc. of the deposited surface together with examples.

[比較例3]
この比較例では、硫酸系銅電解液として、銅濃度80g/l、フリー硫酸濃度140g/l、DDAC重合体(センカ(株)製ユニセンスFPA100L)濃度4ppm、塩素濃度15ppmの溶液を用いた。陽極にはDSA電極を用いて液温50℃、電流密度60A/dmで電解し、12μm厚さの電解銅箔を得た。この電解銅箔の機械的特性を表2に、析出面の表面粗さ(Rzjis)及び光沢度等を表3に実施例と共に示す。
[Comparative Example 3]
In this comparative example, as the sulfuric acid-based copper electrolyte, a solution having a copper concentration of 80 g / l, a free sulfuric acid concentration of 140 g / l, a DDAC polymer (Unica FPA100L manufactured by Senca Co., Ltd.) and a chlorine concentration of 15 ppm was used. The anode was electrolyzed using a DSA electrode at a liquid temperature of 50 ° C. and a current density of 60 A / dm 2 to obtain an electrolytic copper foil having a thickness of 12 μm. Table 2 shows the mechanical properties of this electrolytic copper foil, and Table 3 shows the surface roughness (Rzjis), glossiness, etc. of the deposited surface together with examples.

[比較例4]
この比較例では、硫酸系銅電解液として、銅濃度80g/l、フリー硫酸濃度140g/l、DDAC重合体(センカ(株)製ユニセンスFPA100L)濃度4ppm、低分子量膠(数平均分子量1560)濃度6ppm、塩素濃度15ppmの溶液を用いた。陽極にはDSA電極を用いて液温50℃、電流密度60A/dmで電解し、12μm厚さの電解銅箔を得た。この電解銅箔の機械的特性を表2に、析出面の表面粗さ(Rzjis)及び光沢度[Gs(60°)]を表3に実施例と共に示す。
[Comparative Example 4]
In this comparative example, as the sulfuric acid-based copper electrolyte, the copper concentration was 80 g / l, the free sulfuric acid concentration was 140 g / l, the DDAC polymer (Unisense FPA100L manufactured by Senca Co., Ltd.) concentration, the low molecular weight glue (number average molecular weight 1560) concentration A solution with 6 ppm and a chlorine concentration of 15 ppm was used. The anode was electrolyzed using a DSA electrode at a liquid temperature of 50 ° C. and a current density of 60 A / dm 2 to obtain an electrolytic copper foil having a thickness of 12 μm. The mechanical properties of this electrolytic copper foil are shown in Table 2, and the surface roughness (Rzjis) and glossiness [Gs (60 °)] of the deposition surface are shown in Table 3 together with examples.

[比較例5]
この比較例は、特許文献2に記載された実施例4のトレース実験である。硫酸系銅電解液の基本溶液は硫酸銅(試薬)と硫酸(試薬)とを純水に溶解し、硫酸銅(5水和物換算)濃度280g/l、フリー硫酸濃度90g/lとした。これをジアリルジアルキルアンモニウム塩と二酸化硫黄との共重合体(日東紡績株式会社製、商品名PAS−A−5、重量平均分子量4000)濃度4ppm、ポリエチレングリコール(平均分子量1000)濃度10ppm、MPS−Na濃度1ppmに調整し、更に塩化ナトリウムを用いて塩素濃度を20ppmに調整した。
[Comparative Example 5]
This comparative example is a trace experiment of Example 4 described in Patent Document 2. The basic solution of the sulfuric acid-based copper electrolyte solution was obtained by dissolving copper sulfate (reagent) and sulfuric acid (reagent) in pure water to have a copper sulfate (pentahydrate equivalent) concentration of 280 g / l and a free sulfuric acid concentration of 90 g / l. This is a copolymer of diallyldialkylammonium salt and sulfur dioxide (manufactured by Nitto Boseki Co., Ltd., trade name PAS-A-5, weight average molecular weight 4000) concentration 4 ppm, polyethylene glycol (average molecular weight 1000) concentration 10 ppm, MPS-Na. The concentration was adjusted to 1 ppm, and the chlorine concentration was further adjusted to 20 ppm using sodium chloride.

そして、陽極には鉛板を用いて上記の電解液を液温40℃、電流密度50A/dmで電解を行い、12μm及び70μm厚さの電解銅箔を得、その後実施例10と同様にして表面処理電解銅箔2種を得た。この電解銅箔の常態及び180℃×60min.加熱後の機械的特性を表5に、そして、電解銅箔析出面の表面粗さ(Rzjis)、光沢度[Gs(20°)]、[Gs(60°)]及び[Gs(85°)]と表面処理後析出面の表面粗さ(Rzjis)と光沢度〔Gs(60°)〕、粗化処理箔の粗化面の表面粗さ(Rzjis)を表6に示す。 Then, a lead plate is used for the anode, and the above electrolytic solution is electrolyzed at a liquid temperature of 40 ° C. and a current density of 50 A / dm 2 to obtain electrolytic copper foils having thicknesses of 12 μm and 70 μm, and then the same as in Example 10. Thus, two types of surface-treated electrolytic copper foil were obtained. The normal state of this electrolytic copper foil and 180 ° C. × 60 min. Table 5 shows the mechanical properties after heating, and the surface roughness (Rzjis), gloss [Gs (20 °)], [Gs (60 °)] and [Gs (85 °) of the electrolytic copper foil deposition surface. ], Surface roughness (Rzjis) and glossiness [Gs (60 °)] of the precipitation surface after surface treatment, and surface roughness (Rzjis) of the roughened surface of the roughened foil are shown in Table 6.

[実施例と比較例との対比]
以降各比較例と実施例とを対比し、その結果を説明する。なお、実施例で得られた電解銅箔の析出面側は表面粗さ(Rzjis)<1.0μm、光沢度[Gs(60°)]≧400とそのTD/MD比は0.9〜1.1、そして[Gs(20°)]>[Gs(60°)]>[Gs(85°)]という本件発明の各条件を満足しているものである。そして機械的特性も常態の機械的特性は引張り強さが33kgf/mm以上で伸び率が5%以上、加熱後の機械的特性は引張り強さが30kgf/mm以上で伸び率が8%以上という本件発明の条件を満足している。
[Contrast between Example and Comparative Example]
Hereinafter, each comparative example and the example will be compared and the results will be described. In addition, as for the precipitation side of the electrolytic copper foil obtained in the Example, the surface roughness (Rzjis) <1.0 μm, the gloss [Gs (60 °)] ≧ 400, and the TD / MD ratio thereof is 0.9 to 1. .1 and [Gs (20 °)]> [Gs (60 °)]> [Gs (85 °)] The conditions of the present invention are satisfied. As for the mechanical properties, the normal mechanical properties are tensile strength of 33 kgf / mm 2 or more and elongation of 5% or more, and the mechanical properties after heating are tensile strength of 30 kgf / mm 2 or more and elongation of 8%. The above conditions of the present invention are satisfied.

実施例と比較例1との対比: 電解銅箔の析出面側の表面粗さ(Rzjis)を対比すると、比較例1の電解銅箔も良好な低プロファイル化が出来ている。しかし、本件発明に係る12μm電解銅箔の析出面の表面粗さ(Rzjis)は0.30μm〜0.41μmに対し比較例1の12μm電解銅箔の析出面の表面粗さ(Rzjis)は0.85μm、本件発明に係る210μm電解銅箔の析出面の表面粗さ(Rzjis)は0.27μm〜0.34μmに対し比較例1の210μm電解銅箔の析出面の表面粗さ(Rzjis)は0.70μmである。よって、銅箔厚みが増すに従ってより平滑な析出面が得られる傾向は共通しているが、平滑性の絶対値では本件発明に係る電解銅箔が優れている。また、光沢度[Gs(60°)]を比較すると、比較例1の光沢度[Gs(60°)]が221〜283の範囲にあるのに対し、各実施例の光沢度[Gs(60°)]は、603〜759という全く異なる範囲を示している。このことから、比較例1の電解銅箔と比べ、実施例の各電解銅箔はより平坦で鏡面に近い析出面を備えているといえる。そして、機械的特性については、比較例1の12μm電解銅箔は常態で引張り強さ36.2kgf/mm、伸び率4.0%、加熱後は引張り強さ32.4kgf/mm、伸び率5.6%であり、実施例の電解銅箔と同等と言えるのは常態における引張り強さだけである。 Comparison between Examples and Comparative Example 1: When the surface roughness (Rzjis) on the deposition surface side of the electrolytic copper foil is compared, the electrolytic copper foil of Comparative Example 1 has a good low profile. However, the surface roughness (Rzjis) of the deposited surface of the 12 μm electrolytic copper foil according to the present invention is 0.30 μm to 0.41 μm, whereas the surface roughness (Rzjis) of the deposited surface of the 12 μm electrolytic copper foil of Comparative Example 1 is 0. The surface roughness (Rzjis) of the deposition surface of the 210 μm electrolytic copper foil according to the present invention is .85 μm, while the surface roughness (Rzjis) of the deposition surface of the 210 μm electrolytic copper foil of Comparative Example 1 is 0.27 μm to 0.34 μm. 0.70 μm. Therefore, although the tendency that a smoother precipitation surface is obtained as the copper foil thickness increases is common, the electrolytic copper foil according to the present invention is superior in the absolute value of smoothness. Further, when the glossiness [Gs (60 °)] is compared, the glossiness [Gs (60 °)] of Comparative Example 1 is in the range of 221 to 283, whereas the glossiness [Gs (60 °)] indicates a completely different range of 603 to 759. From this, it can be said that each of the electrolytic copper foils of the examples has a more flat and nearly precipitated surface compared to the electrolytic copper foil of Comparative Example 1. And as for mechanical properties, the 12 μm electrolytic copper foil of Comparative Example 1 is in a normal state with a tensile strength of 36.2 kgf / mm 2 and an elongation of 4.0%, and after heating, a tensile strength of 32.4 kgf / mm 2 and an elongation. The rate is 5.6%, and only the tensile strength in the normal state can be said to be equivalent to the electrolytic copper foil of the example.

実施例と比較例2との対比: 電解銅箔の析出面側の表面粗さ(Rzjis)を対比すると、比較例2の電解銅箔も良好な低プロファイル化は出来ている。しかし、本件発明に係る12μm電解銅箔の析出面の表面粗さ(Rzjis)は0.30μm〜0.41μmに対し比較例2の12μm電解銅箔の析出面の表面粗さ(Rzjis)は0.83μm、本件発明に係る210μm電解銅箔の析出面の表面粗さ(Rzjis)は0.27μm〜0.34μmに対し比較例2の210μm電解銅箔の析出面の表面粗さ(Rzjis)は1.22μmである。よって、比較例2では銅箔厚みが増すことにより析出面の平滑性が損なわれていることから安定して平滑な電解銅箔を得ることは困難であると考えられる。そして、機械的特性については、比較例2の12μm電解銅箔は常態で引張り強さ31.4kgf/mm、伸び率3.5%、加熱後は引張り強さ26.8kgf/mm、伸び率5.8%であり、実施例の各電解銅箔の方が優れている。 Comparison between Example and Comparative Example 2: When the surface roughness (Rzjis) on the deposition surface side of the electrolytic copper foil is compared, the electrolytic copper foil of Comparative Example 2 has a good low profile. However, the surface roughness (Rzjis) of the deposition surface of the 12 μm electrolytic copper foil according to the present invention is 0.30 μm to 0.41 μm, whereas the surface roughness (Rzjis) of the deposition surface of the 12 μm electrolytic copper foil of Comparative Example 2 is 0. The surface roughness (Rzjis) of the deposited surface of the 210 μm electrolytic copper foil according to the present invention is 0.27 μm to 0.34 μm, whereas the surface roughness (Rzjis) of the deposited surface of the 210 μm electrolytic copper foil of Comparative Example 2 is 0.83 μm. 1.22 μm. Therefore, in Comparative Example 2, it is considered that it is difficult to obtain a stable and smooth electrolytic copper foil because the smoothness of the deposited surface is impaired by increasing the copper foil thickness. As for mechanical properties, the 12 μm electrolytic copper foil of Comparative Example 2 is in a normal state with a tensile strength of 31.4 kgf / mm 2 and an elongation of 3.5%, and after heating, a tensile strength of 26.8 kgf / mm 2 and elongation. The rate is 5.8%, and the electrolytic copper foils of the examples are superior.

実施例と比較例3との対比: 比較例3は、銅電解液にMPSやSPSが無い場合の効果を見るためのものである。表3から明らかなように、銅電解液中にMPS等を含ませない比較例3で得られた電解銅箔の析出面の表面粗さ(Rzjis)は3.60μmを示しており、低プロファイル化が達成出来ていない。そして、光沢度[Gs(60°)]に到ってはほぼ艶消し状態となるため0.7と極めて低い値を示している。そして、12μm電解銅箔の機械的特性では引張り強さが40.5kgf/mmと大きな値を示すものの伸び率が3.6%と低く、加熱による変化が小さいものである。よって、表面粗さ及び伸び率において本件発明に係る電解銅箔の方が優れていると言える。 Comparison between Example and Comparative Example 3 Comparative Example 3 is for observing the effect when MPS or SPS is not present in the copper electrolyte. As is apparent from Table 3, the surface roughness (Rzjis) of the deposited surface of the electrolytic copper foil obtained in Comparative Example 3 in which MPS or the like is not included in the copper electrolyte solution is 3.60 μm, which is a low profile. Has not been achieved. Further, the glossiness [Gs (60 °)] is almost matte and thus shows a very low value of 0.7. The mechanical properties of the 12 μm electrolytic copper foil have a large tensile strength of 40.5 kgf / mm 2 , but the elongation is low at 3.6%, and the change due to heating is small. Therefore, it can be said that the electrolytic copper foil according to the present invention is superior in surface roughness and elongation.

実施例と比較例4との対比: 比較例4は、銅電解液にMPSの代わりに低分子膠を添加した場合の効果を見ている。この結果、表3から明らかに分かるように、銅電解液中にMPSの代わりに低分子膠を含ませても、電解銅箔の析出面の表面粗さ(Rzjis)は3.59μmを示しており、低プロファイル化が達成出来ていない。そして、光沢度[Gs(60°)]に到ってはほぼ艶消し状態となるため1.0と極めて低い値を示している。そして、機械的特性においては、常態の引張り強さが38.6kgf/mmと実施例と同等の値を示すものの伸び率が4.0%と低く、比較例3同様加熱による変化が小さいものである。よって、表面粗さ及び伸び率において本件発明に係る電解銅箔の方が優れていると言える。 Comparison between Example and Comparative Example 4 Comparative Example 4 shows the effect when low molecular weight glue is added to the copper electrolyte instead of MPS. As a result, as clearly shown in Table 3, even when low molecular weight glue is included in the copper electrolyte instead of MPS, the surface roughness (Rzjis) of the deposited surface of the electrolytic copper foil is 3.59 μm. And low profile is not achieved. Further, since the glossiness [Gs (60 °)] is almost matte, it shows a very low value of 1.0. In the mechanical properties, the normal tensile strength is 38.6 kgf / mm 2, which is the same value as that of the example, but the elongation is as low as 4.0%. It is. Therefore, it can be said that the electrolytic copper foil according to the present invention is superior in surface roughness and elongation.

実施例と比較例5との対比:以降表5及び表6に記載のデータを参照しつつ実施例と比較例5とを12μm電解銅箔同士で対比する。 Comparison between Example and Comparative Example 5: The Example and Comparative Example 5 are compared between 12 μm electrolytic copper foils with reference to the data shown in Table 5 and Table 6 below.

析出面側の表面粗さ(Rzjis)を対比すると、実施例で得られた電解銅箔では0.30μm〜0.41μmであり、比較例5で得られた電解銅箔では析出面の表面粗さ(Rzjis)が1.00μmとその差は明らかである。そして、析出面側の光沢度は[Gs(60°)]だけでみても、比較例5で得られた電解銅箔では324〜383の範囲にあるのに対し、実施例で得られた電解銅箔では、603〜759という全く異なる範囲にある。即ち、比較例5の電解銅箔と比べ、実施例の電解銅箔は、より平坦で鏡面に近い析出面を備えている。そして常態の機械的特性は、比較例5の電解銅箔の引張り強さ37.9kgf/mm、伸び率8.0%と比べ、実施例10の電解銅箔は引張り強さ35.5kgf/mm、そして伸び率は11.5%を示しておりやや柔軟性に富むものである。そして180℃×60min.加熱後の機械的特性は、比較例5の電解銅箔の引張り強さ31.6kgf/mm、伸び率7.5%と比べ、実施例10の電解銅箔は引張り強さ33.2kgf/mm、そして伸び率は11.2%を示しており本件発明に係る電解銅箔の方が優れている。この結果から、銅張積層板に加工される際の熱履歴を考えると、例えば本件発明に係る電解銅箔を用いたフレキシブルプリント配線板とした場合には優れた耐屈曲性などが期待できる。 When the surface roughness (Rzjis) on the precipitation surface side is compared, it is 0.30 μm to 0.41 μm in the electrolytic copper foil obtained in the example, and the surface roughness of the precipitation surface in the electrolytic copper foil obtained in Comparative Example 5 The difference (Rzjis) is 1.00 μm, which is obvious. And even if only the glossiness of the precipitation surface side is [Gs (60 °)], the electrolytic copper foil obtained in Comparative Example 5 is in the range of 324 to 383, whereas the electrolysis obtained in Examples is used. In copper foil, it exists in the completely different range of 603-759. That is, compared with the electrolytic copper foil of the comparative example 5, the electrolytic copper foil of an Example is provided with the precipitation surface which is flatter and close | similar to a mirror surface. The normal mechanical properties were as follows: the tensile strength of the electrolytic copper foil of Comparative Example 5 was 37.9 kgf / mm 2 , and the elongation was 8.0%. The electrolytic copper foil of Example 10 had a tensile strength of 35.5 kgf / mm 2 . mm 2 , and the elongation is 11.5%, which is somewhat flexible. And 180 ° C. × 60 min. The mechanical properties after heating were as follows: the tensile strength of the electrolytic copper foil of Comparative Example 5 was 31.6 kgf / mm 2 and the elongation was 7.5%. The electrolytic copper foil of Example 10 had a tensile strength of 33.2 kgf / mm 2 . mm 2 and the elongation percentage are 11.2%, and the electrolytic copper foil according to the present invention is superior. From this result, considering the thermal history when processed into a copper-clad laminate, for example, a flexible printed wiring board using the electrolytic copper foil according to the present invention can be expected to have excellent bending resistance.

次に、表面の均一性を測る指標として3種類の光沢度を用いることの優位性を確認した。実施例で得られた12μm電解箔の析出面でMDを共通方向として光沢度の違いを見ると、[Gs(20°)]では824〜1206、[Gs(60°)]では649〜759そして[Gs(85°)]では112〜142であり、測定光の入射角度が垂直に近づくほど大きな数値となっている。これに対し、比較例5で得られた12μm電解銅箔の析出面側のMD方向で測定したときの評価結果を見てみると、[Gs(20°)]では126、[Gs(60°)]では383そして[Gs(85°)]では117となっており、[Gs(20°)]と[Gs(85°)]でほぼ同等の値を示している。従って、比較例5で得られた12μm電解銅箔の析出面には何らかの特徴的な形状が備わっているのである。   Next, the superiority of using three kinds of glossiness as an index for measuring the surface uniformity was confirmed. When the difference in glossiness is seen with MD as a common direction on the deposition surface of the 12 μm electrolytic foil obtained in the example, it is 824 to 1206 in [Gs (20 °)], 649 to 759 in [Gs (60 °)], and [Gs (85 °)] is 112 to 142, and becomes larger as the incident angle of the measurement light approaches perpendicularly. On the other hand, when the evaluation result when measured in the MD direction on the deposition surface side of the 12 μm electrolytic copper foil obtained in Comparative Example 5 is 126 in [Gs (20 °)], [Gs (60 °). )] Is 383 and [Gs (85 °)] is 117, and [Gs (20 °)] and [Gs (85 °)] are almost equal. Therefore, the deposition surface of the 12 μm electrolytic copper foil obtained in Comparative Example 5 has some characteristic shape.

そこで、実施例11で得られた12μm電解銅箔析出面のSEM写真を図1に、比較例5で得られた12μm電解銅箔析出面のSEM写真を図2に示す。図2から明らかなように比較例5で得られた電解銅箔表面には小さいながら凹凸が観察されているほかに高倍率で観察しなければ発見できない異常析出部も散見される。すなわち、この凹凸部分での光の乱反射が光沢度[Gs(20°)]の値を小さくし、表面粗さ(Rzjis)を大きくしているのである。そして、本件発明に係る電解銅箔のSEM写真である図1には明らかな凹凸は観察されておらずまた異常析出部も観察されていない。よって本件発明に係る電解銅箔は表面粗さ、光沢度が均一で優れているのである。   Therefore, FIG. 1 shows an SEM photograph of the 12 μm electrolytic copper foil deposited surface obtained in Example 11, and FIG. 2 shows an SEM photograph of the 12 μm electrolytic copper foil deposited surface obtained in Comparative Example 5. As can be seen from FIG. 2, irregularities are observed on the surface of the electrolytic copper foil obtained in Comparative Example 5 although they are small, and there are some abnormal precipitates that cannot be found unless observed at a high magnification. That is, the irregular reflection of light at the uneven portion decreases the glossiness [Gs (20 °)] value and increases the surface roughness (Rzjis). And in FIG. 1 which is the SEM photograph of the electrolytic copper foil which concerns on this invention, clear unevenness | corrugation is not observed and the abnormal precipitation part is not observed. Therefore, the electrolytic copper foil according to the present invention has excellent surface roughness and glossiness.

そして、粗化処理を施した表面処理電解銅箔を比較してみると、実施例10と比較例5との対比において、同一条件で実施した粗化処理による表面粗さ(Rzjis)の値の増加幅は約0.7μmと、ほぼ同程度となっている。これは図2から判るように比較例5で得られた電解銅箔の析出面形状に見られる凹凸は3μm前後のピッチをもっているが扁平であるため、粗化処理で得られた微細粒子がそれぞれの凹凸の形状に沿って付着しているためであると推測できる。しかし、比較例5の電解銅箔ではベースとなる析出面の表面粗さ(Rzjis)が大きいために本件発明の要件としている絶縁層構成材料との接着面の表面粗さ(Rzjis)を1.5μm以下とすることができず、本件発明に係る電解銅箔の優位性は明確である。   Then, comparing the surface-treated electrolytic copper foil subjected to the roughening treatment, in comparison between Example 10 and Comparative Example 5, the value of the surface roughness (Rzjis) by the roughening treatment carried out under the same conditions The increase width is about 0.7 μm, which is almost the same. As can be seen from FIG. 2, the irregularities seen in the shape of the deposited surface of the electrolytic copper foil obtained in Comparative Example 5 have a pitch of about 3 μm but are flat, so that the fine particles obtained by the roughening treatment are respectively It can be assumed that this is because it adheres along the uneven shape. However, since the electrolytic copper foil of Comparative Example 5 has a large surface roughness (Rzjis) of the precipitation surface serving as a base, the surface roughness (Rzjis) of the adhesion surface with the insulating layer constituting material, which is a requirement of the present invention, is 1. It cannot be made 5 μm or less, and the superiority of the electrolytic copper foil according to the present invention is clear.

MPSとSPSとの対比: 実施例9〜実施例14ではMPSの代替としてSPSを用いているが、得られた12μm電解銅箔は析出面の表面粗さ(Rzjis)は0.30μm〜0.41μm、光沢度[Gs(60°)]は603〜759であり、SPSを用いてもMPSと同じ効果が得られることが確認できている。 Comparison of MPS and SPS: In Examples 9 to 14, SPS was used as an alternative to MPS, but the obtained 12 μm electrolytic copper foil had a surface roughness (Rzjis) of the deposited surface of 0.30 μm to 0. 0. 41 [mu] m and glossiness [Gs (60 [deg.])] Are 603 to 759, and it has been confirmed that the same effect as MPS can be obtained even when SPS is used.

なお、上記実施例では本件発明に係る電解銅箔の製造に際しては硫酸系銅電解液の銅濃度を40g/l〜120g/l、フリー硫酸濃度を60g/l〜220g/l程度とした溶液構成にて良好な結果を得ているが、目的とする用途に応じて濃度範囲を変更しても構わないのである。そして、上記実施例に記載の添加剤以外の添加剤類の存在を否定しているものでもなく、上記添加剤類の効果を更に際だたせたり、連続生産時の品質安定化に寄与できること等が確認されているものであれば任意に添加して構わないのである。   In addition, in the said Example, in the manufacture of the electrolytic copper foil which concerns on this invention, the copper structure of sulfuric acid type copper electrolyte solution made 40 g / l-120 g / l, and the free sulfuric acid density | concentration made about 60 g / l-220 g / l. Although good results have been obtained, the concentration range may be changed according to the intended application. And it does not deny the presence of additives other than the additives described in the above examples, it can further emphasize the effects of the additives, can contribute to quality stabilization during continuous production, etc. If it is confirmed, it may be added arbitrarily.

本件発明に係る電解銅箔の製造方法を用いて得られる電解銅箔の析出面は、従来市場に供給されてきた低プロファイル電解銅箔に比べ更に低プロファイルであり、その析出面の粗さが光沢面の粗さ以下となり、両面共に光沢のある平滑面となる。そして電解箔の製造に供される銅電解液は製造条件の変動及び厚みのバリエーションに対する適応力が大きく、生産性に優れたものなのである。よって、テープ オートメーティド ボンディング(TAB)基板やチップ オン フィルム(COF)基板のファインピッチ回路、さらにはプラズマディスプレイパネルの電磁波遮蔽用回路の形成に好適である。そして、この電解銅箔は優れた機械的特性を有することからリチウムイオン二次電池等の負極を構成する集電材としての使用にも適している。 Deposition surface of the electrolytic copper foil obtained by a manufacturing method as engagement Ru electrolytic copper foil to the present invention is a further low profile compared with low-profile electrodeposited copper foil which has been supplied to the conventional market, roughness of the deposition surface Becomes less than the roughness of the glossy surface, and both surfaces are glossy and smooth. And the copper electrolyte solution used for manufacture of electrolytic foil has a large adaptability with respect to variations in manufacturing conditions and variations in thickness, and is excellent in productivity. Therefore, it is suitable for forming a fine pitch circuit of a tape automated bonding (TAB) substrate and a chip on film (COF) substrate, and further, an electromagnetic wave shielding circuit of a plasma display panel. And since this electrolytic copper foil has the outstanding mechanical characteristic, it is suitable also for the use as a current collection material which comprises negative electrodes, such as a lithium ion secondary battery.

実施例11で得られた12μm電解銅箔析出面のSEM写真である。2 is a SEM photograph of a 12 μm electrolytic copper foil deposition surface obtained in Example 11. FIG. 比較例5で得られた12μm電解銅箔析出面のSEM写真である。6 is a SEM photograph of a 12 μm electrolytic copper foil deposition surface obtained in Comparative Example 5.

Claims (15)

硫酸系銅電解液を用いた電解法により陰極表面に析出させた銅を剥取って電解銅箔を製造する方法であって、
当該硫酸系銅電解液は、3−メルカプト−1−プロパンスルホン酸又はビス(3−スルホプロピル)ジスルフィドから選択された少なくとも一種と環状構造を持つ4級アンモニウム塩重合体であるジアリルジメチルアンモニウムクロライド重合体と塩素とを含むものであることを特徴とする電解銅箔の製造方法。
A method for producing an electrolytic copper foil by peeling off copper deposited on the cathode surface by an electrolytic method using a sulfuric acid-based copper electrolyte,
The sulfuric acid-based copper electrolytic solution is diallyldimethylammonium chloride heavy, which is a quaternary ammonium salt polymer having a cyclic structure and at least one selected from 3-mercapto-1-propanesulfonic acid or bis (3-sulfopropyl) disulfide. A method for producing an electrolytic copper foil, comprising coalescence and chlorine.
前記硫酸系銅電解液中の3−メルカプト−1−プロパンスルホン酸及び/又はビス(3−スルホプロピル)ジスルフィドの合算濃度が0.5ppm〜100ppmであることを特徴とする請求項1に記載の電解銅箔の製造方法。 According to claim 1, wherein the combined concentration of the 3-mercapto-1-propanesulfonic acid and / or bis (3-sulfopropyl) disulfide of the sulfuric acid base copper electrolytic solution is 0.5ppm~100ppm Manufacturing method of electrolytic copper foil. 前記硫酸系銅電解液中の環状構造を持つ4級アンモニウム塩重合体濃度が1ppm〜150ppmであることを特徴とする請求項1又は請求項2に記載の電解銅箔の製造方法。 The method for producing an electrolytic copper foil according to claim 1 or 2 , wherein a concentration of the quaternary ammonium salt polymer having a cyclic structure in the sulfuric acid-based copper electrolyte is 1 ppm to 150 ppm. 前記硫酸系銅電解液中の塩素濃度が5ppm〜120ppmであることを特徴とする請求項1〜請求項3のいずれかに記載の電解銅箔の製造方法。 The method for producing an electrolytic copper foil according to any one of claims 1 to 3 , wherein a chlorine concentration in the sulfuric acid-based copper electrolytic solution is 5 ppm to 120 ppm. 請求項1〜請求項4のいずれかに記載の製造方法により製造されたことを特徴とする電解銅箔。 An electrolytic copper foil manufactured by the manufacturing method according to claim 1 . 請求項5に記載の電解銅箔の表面に防錆処理、シランカップリング剤処理のいずれか一種以上を行った表面処理電解銅箔。 A surface-treated electrolytic copper foil obtained by performing at least one of rust prevention treatment and silane coupling agent treatment on the surface of the electrolytic copper foil according to claim 5 . 前記表面処理電解銅箔の絶縁層構成材料との接着面の表面粗さ(Rzjis)が1.5μm以下であることを特徴とする請求項6に記載の表面処理電解銅箔。 The surface-treated electrolytic copper foil according to claim 6 , wherein the surface-treated electrolytic copper foil has a surface roughness (Rzjis) of an adhesion surface with an insulating layer constituting material of 1.5 µm or less. 前記表面処理電解銅箔の絶縁層構成材料との接着面の光沢度[Gs(60°)]が250以上であることを特徴とする請求項6又は請求項7に記載の表面処理電解銅箔。 8. The surface-treated electrolytic copper foil according to claim 6, wherein a glossiness [Gs (60 °)] of an adhesion surface between the surface-treated electrolytic copper foil and the insulating layer constituting material is 250 or more. . 前記表面処理電解銅箔の絶縁層構成材料との接着面側に粗化処理を施したことを特徴とする請求項6に記載の表面処理電解銅箔。 The surface-treated electrolytic copper foil according to claim 6 , wherein the surface-treated electrolytic copper foil is subjected to a roughening treatment on an adhesive surface side with the insulating layer constituting material. 前記表面処理電解銅箔の絶縁層構成材料との接着面は、電解銅箔の析出面側であることを特徴とする請求項6〜請求項9のいずれかに記載の表面処理電解銅箔。 The surface-treated electrolytic copper foil according to any one of claims 6 to 9 , wherein an adhesive surface of the surface-treated electrolytic copper foil with the insulating layer constituting material is a deposited surface side of the electrolytic copper foil. 請求項6〜請求項9のいずれかに記載の表面処理電解銅箔を絶縁層構成材料と張合わせてなる銅張積層板。 A copper-clad laminate obtained by bonding the surface-treated electrolytic copper foil according to any one of claims 6 to 9 to an insulating layer constituting material. 前記絶縁層構成材料は骨格材を含有するものである請求項11に記載のリジッド銅張積層板。 The rigid copper clad laminate according to claim 11 , wherein the insulating layer constituent material contains a skeleton material. 請求項12に記載のリジッド銅張積層板を用いて得られたことを特徴とするリジッドプリント配線板。 A rigid printed wiring board obtained by using the rigid copper-clad laminate according to claim 12 . 前記絶縁層構成材料は可撓性を有するフレキシブル素材で構成したものである請求項11に記載のフレキシブル銅張積層板。 The flexible copper clad laminate according to claim 11 , wherein the insulating layer constituting material is made of a flexible material having flexibility. 請求項14に記載のフレキシブル銅張積層板を用いて得られたことを特徴とするフレキシブルプリント配線板。 A flexible printed wiring board obtained by using the flexible copper-clad laminate according to claim 14 .
JP2006100228A 2005-03-31 2006-03-31 Manufacturing method of electrolytic copper foil, electrolytic copper foil obtained by the manufacturing method, surface-treated electrolytic copper foil obtained using the electrolytic copper foil, copper-clad laminate and printed wiring using the surface-treated electrolytic copper foil Board Expired - Fee Related JP3910623B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006100228A JP3910623B1 (en) 2005-03-31 2006-03-31 Manufacturing method of electrolytic copper foil, electrolytic copper foil obtained by the manufacturing method, surface-treated electrolytic copper foil obtained using the electrolytic copper foil, copper-clad laminate and printed wiring using the surface-treated electrolytic copper foil Board

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005104540 2005-03-31
JP2006009321 2006-01-17
JP2006100228A JP3910623B1 (en) 2005-03-31 2006-03-31 Manufacturing method of electrolytic copper foil, electrolytic copper foil obtained by the manufacturing method, surface-treated electrolytic copper foil obtained using the electrolytic copper foil, copper-clad laminate and printed wiring using the surface-treated electrolytic copper foil Board

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006338083A Division JP4065004B2 (en) 2005-03-31 2006-12-15 Electrolytic copper foil, surface-treated electrolytic copper foil obtained using the electrolytic copper foil, copper-clad laminate and printed wiring board using the surface-treated electrolytic copper foil

Publications (2)

Publication Number Publication Date
JP3910623B1 true JP3910623B1 (en) 2007-04-25
JP2007217787A JP2007217787A (en) 2007-08-30

Family

ID=38036346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006100228A Expired - Fee Related JP3910623B1 (en) 2005-03-31 2006-03-31 Manufacturing method of electrolytic copper foil, electrolytic copper foil obtained by the manufacturing method, surface-treated electrolytic copper foil obtained using the electrolytic copper foil, copper-clad laminate and printed wiring using the surface-treated electrolytic copper foil Board

Country Status (1)

Country Link
JP (1) JP3910623B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007105635A1 (en) * 2006-03-10 2007-09-20 Mitsui Mining & Smelting Co., Ltd. Surface treated elctrolytic copper foil and process for producing the same

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100983682B1 (en) * 2008-03-31 2010-09-24 엘에스엠트론 주식회사 Surface treatment method of copper foil for printed circuit, copper foil and electroplater thereof
JP5379528B2 (en) * 2009-03-24 2013-12-25 三井金属鉱業株式会社 Electrolytic copper foil with carrier foil, method for producing electrolytic copper foil with carrier foil, and copper-clad laminate obtained using the electrolytic copper foil with carrier foil
EP2251920A1 (en) * 2009-05-12 2010-11-17 Università Degli Studi Di Milano - Bicocca Method of manufacturing electrical contacts on organic semiconductors
JP5282675B2 (en) * 2009-06-23 2013-09-04 日立電線株式会社 Copper foil for printed wiring board and method for producing the same
EP2579687A4 (en) 2010-06-04 2014-06-11 Mitsui Mining & Smelting Co Electrode foil and organic device
US8803135B2 (en) 2010-06-04 2014-08-12 Mitsui Mining & Smelting Co., Ltd. Electrode foil and organic device
JP5016712B2 (en) 2010-09-21 2012-09-05 三井金属鉱業株式会社 Electrode foil and organic device
JP2012184498A (en) * 2011-02-18 2012-09-27 Jx Nippon Mining & Metals Corp Electrolytic copper foil for electromagnetic-wave shielding, and manufacturing method therefor
KR102101046B1 (en) 2012-05-22 2020-04-14 미쓰이금속광업주식회사 Copper foil, negative electrode current collector, and negative electrode material for non-aqueous secondary battery
JP5503789B2 (en) * 2013-08-30 2014-05-28 三井金属鉱業株式会社 Electrolytic copper foil with carrier foil and copper-clad laminate obtained using the electrolytic copper foil with carrier foil
US10900138B2 (en) 2017-01-25 2021-01-26 Hitachi Metals, Ltd. Metallic foil manufacturing method and cathode for manufacturing metallic foil
JP7410633B2 (en) * 2017-10-16 2024-01-10 株式会社レゾナック Wiring board, stretchable device, laminate for forming wiring board, and method for manufacturing wiring board
JP7343280B2 (en) * 2019-02-15 2023-09-12 住友金属鉱山株式会社 Manufacturing method for copper clad laminates

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007105635A1 (en) * 2006-03-10 2007-09-20 Mitsui Mining & Smelting Co., Ltd. Surface treated elctrolytic copper foil and process for producing the same
US8715836B2 (en) 2006-03-10 2014-05-06 Mitsui Mining & Smelting Co., Ltd Surface-treated electro-deposited copper foil and method for manufacturing the same

Also Published As

Publication number Publication date
JP2007217787A (en) 2007-08-30

Similar Documents

Publication Publication Date Title
JP3910623B1 (en) Manufacturing method of electrolytic copper foil, electrolytic copper foil obtained by the manufacturing method, surface-treated electrolytic copper foil obtained using the electrolytic copper foil, copper-clad laminate and printed wiring using the surface-treated electrolytic copper foil Board
JP4065004B2 (en) Electrolytic copper foil, surface-treated electrolytic copper foil obtained using the electrolytic copper foil, copper-clad laminate and printed wiring board using the surface-treated electrolytic copper foil
KR100975491B1 (en) Electrolytic copper foil and process for producing electrolytic copper foil
JP5180815B2 (en) Surface-treated electrolytic copper foil and method for producing the same
KR101050016B1 (en) Copper foil laminated board obtained using the manufacturing method of an electrolytic copper foil, the electrolytic copper foil obtained by this manufacturing method, the surface-treated copper foil obtained using this electrolytic copper foil, and an electrolytic copper foil or a surface-treated copper foil.
JP3313277B2 (en) Electrodeposited copper foil for fine pattern and its manufacturing method
JP2013019056A5 (en)
US20090095515A1 (en) Electro-deposited copper foil, surface-treated copper foil using the electro-deposited copper foil and copper clad laminate using the surface-treated copper foil, and a method for manufacturing the electro-deposited copper foil
JP2005076091A (en) Method of producing ultrathin copper foil with carrier, and ultrathin copper foil with carrier produced by the production method
JP2007186797A (en) Method for producing ultrathin copper foil with carrier, ultrathin copper foil produced by the production method, and printed circuit board, multilayer printed circuit board and wiring board for chip on film using the ultrathin copper foil
KR100450510B1 (en) Surface- Treated Copper Foil, Method of Producing the Surface- treated Copper foil, and Copper- Clad Laminate Employing the Surface- Treated Copper Foil
TW201710079A (en) Roughened copper foil, copper-clad laminate, and printed wiring board
JP2008101267A (en) Electrolytic copper foil, surface treated copper foil using the electrolytic copper foil, copper-clad laminated plate using the surface treated copper foil, and method for manufacturing the electrolytic copper foil
JP3660628B2 (en) Electrolytic copper foil for fine pattern and manufacturing method thereof
JP4756637B2 (en) Sulfuric acid copper electrolyte and electrolytic copper foil obtained using the sulfuric acid copper electrolyte
JP4017628B2 (en) Electrolytic copper foil
WO2020246467A1 (en) Surface-treated copper foil, copper-clad laminate plate, and printed wiring board
JP6606317B1 (en) Surface-treated copper foil, copper-clad laminate, and printed wiring board

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070124

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100202

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140202

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees