JP4017628B2 - Electrolytic copper foil - Google Patents

Electrolytic copper foil Download PDF

Info

Publication number
JP4017628B2
JP4017628B2 JP2004311533A JP2004311533A JP4017628B2 JP 4017628 B2 JP4017628 B2 JP 4017628B2 JP 2004311533 A JP2004311533 A JP 2004311533A JP 2004311533 A JP2004311533 A JP 2004311533A JP 4017628 B2 JP4017628 B2 JP 4017628B2
Authority
JP
Japan
Prior art keywords
copper foil
roughness
electrolytic
copper
foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004311533A
Other languages
Japanese (ja)
Other versions
JP2005175443A (en
Inventor
アダム・エム・ウォルスキー
ミッシェル・ストレール
昭利 鈴木
英雄 大塚
Original Assignee
古河サーキットフォイル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河サーキットフォイル株式会社 filed Critical 古河サーキットフォイル株式会社
Priority to JP2004311533A priority Critical patent/JP4017628B2/en
Publication of JP2005175443A publication Critical patent/JP2005175443A/en
Application granted granted Critical
Publication of JP4017628B2 publication Critical patent/JP4017628B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

本発明は、ファインパターン化が可能な電解銅箔、すなわち高いエッチングファクターが得られる電解銅箔に関するものである。  The present invention relates to an electrolytic copper foil that can be finely patterned, that is, an electrolytic copper foil that provides a high etching factor.

プリント回路用電解銅箔は、工業的には硫酸銅水溶液の電解液を、鉛や白金族を被覆したチタン電極などの不溶性電極と、これに対向して設けられたステンレスやチタン製の陰極回転ドラムの隙間に満たしてこれら電極に通電し、陰極回転ドラムの上に銅を析出させ、これを連続的に巻取る電解製箔装置により製造されている。  Electrolytic copper foil for printed circuits is industrially made of an aqueous solution of copper sulfate, an insoluble electrode such as a titanium electrode coated with lead or a platinum group, and a stainless steel or titanium cathode rotation provided opposite to it. It is manufactured by an electrolytic foil making apparatus that fills the gaps of the drum and energizes these electrodes, deposits copper on the cathode rotating drum, and continuously winds the copper.

一般に銅イオンと硫酸イオンだけを含む水溶液を電解液として用いると、設備上混入が避けられないゴミや油類によって銅箔にピンホールやマイクロポロシティーが発生して実用上重大な欠陥となったり、該銅箔の電解液と接する側の面(粗面)が持つ山谷の形状が崩れてしまい、後にこの銅箔を絶縁基板材料と接合する際に十分な強度が得られなかったり、該粗面の粗さが大きい場合には多層プリント配線板の層間絶縁抵抗や回路導電率が低下したり、基板材料に接合後のパターンエッチング時に基板への残銅現象あるいは回路部のアンダーカット現象を引き起し、回路基板として種々の性能を劣化させてしまうという問題を生じる。  In general, if an aqueous solution containing only copper ions and sulfate ions is used as the electrolyte, pinholes and microporosity will occur in the copper foil due to dust and oils that cannot be avoided in the equipment, which may cause serious practical defects. The shape of the peaks and valleys of the surface (rough surface) on the side of the copper foil in contact with the electrolyte solution collapses, so that sufficient strength cannot be obtained when the copper foil is joined to the insulating substrate material later. If the surface roughness is large, the interlayer insulation resistance and circuit conductivity of the multilayer printed wiring board will decrease, and the residual copper phenomenon on the substrate or the undercut phenomenon of the circuit part will occur during pattern etching after bonding to the substrate material. This causes a problem that various performances of the circuit board are deteriorated.

このピンホール等の防止のため電解液に塩化物イオンを添加したり、電解液を活性炭等を含むフィルターに通してゴミや油類を除去している。またマイクロポロシティー防止及び粗面の山谷形状を整えるために、古くから膠を電解液に添加する事が行われており、膠以外にも種々の有機物や無機物を添加剤として用いることが提案されてきた。プリント配線板用電解銅箔の製造技術は銅塩を含む溶液に電極を設け、これに通電して、カソードに銅を析出させるという点から分かるように、めっき技術を基礎としており、プリント配線板用電解銅箔製造用の添加剤としては銅めっき用添加剤を転用できる場合が多い。  In order to prevent such pinholes, chloride ions are added to the electrolytic solution, or dust and oils are removed by passing the electrolytic solution through a filter containing activated carbon or the like. In addition, in order to prevent microporosity and to improve the rough valley shape, glue has been added to the electrolyte for a long time, and it has been proposed to use various organic and inorganic substances as additives in addition to glue. I came. The production technology of electrolytic copper foil for printed wiring boards is based on plating technology, as seen from the point that an electrode is provided in a solution containing a copper salt, and this is energized to deposit copper on the cathode. As an additive for producing an electrolytic copper foil for copper, an additive for copper plating can often be diverted.

膠、チオ尿素、糖蜜などは古くから銅めっき用の光沢剤として知られており、このことから電解液にこれら添加剤を添加した場合にはいわゆる光沢作用、プリント配線板用電解銅箔に関しては粗面の粗さを小さくする効果の発現が期待でき、特許文献1(米国特許5,171,417号明細書)には、チオ尿素などの活性イオウを添加剤として用いた電解銅箔の製造方法が開示されている。しかしながら、プリント配線板用電解銅箔は、生産性の向上などを目的として、通常のめっきより高い電流密度で生産されている点や、近年プリント配線板用電解銅箔に要求される性能が著しく高度になったこと、特に伸びなどの機械的性能を損なうことなく、粗面の粗さを低く抑えた銅箔に対する要求が強くなったことなどから、これらめっき用の添加剤をそのままプリント配線板用電解銅箔の添加剤として使用しても満足できる特性が得られないのが現状である。  Glue, thiourea, molasses, etc. have long been known as brighteners for copper plating. From this, when these additives are added to the electrolyte, so-called glossy action, regarding electrolytic copper foil for printed wiring boards The expression of the effect of reducing the roughness of the rough surface can be expected, and Patent Document 1 (US Pat. No. 5,171,417) discloses the production of an electrolytic copper foil using active sulfur such as thiourea as an additive. A method is disclosed. However, electrolytic copper foil for printed wiring boards is produced at a higher current density than ordinary plating for the purpose of improving productivity and the performance required for electrolytic copper foil for printed wiring boards in recent years is remarkable. As the demand for copper foil with a low roughness of the rough surface is increased without sacrificing mechanical performance such as elongation, especially in the case of advanced technology, these plating additives are used as they are. Even if it is used as an additive for an electrolytic copper foil for use, satisfactory characteristics cannot be obtained.

一方、近年、半導体、集積回路をはじめとした電子回路技術の発達はめざましく、当然のことながら、その部品の形成部あるいは搭載部であるプリント配線板においてもなお一層の技術革新が求められている。プリント配線板の高多層化、ファインパターン化の要求等がそれである。  On the other hand, in recent years, the development of electronic circuit technology including semiconductors and integrated circuits has been remarkable, and it is a matter of course that further technological innovation is required in the printed wiring board which is the component forming part or mounting part. . These are the demands for higher multilayer printed circuit boards and fine patterns.

これらの要求を満足させるためにプリント配線板用電解銅箔に求められる性能は、層間及びパターン間の絶縁性、エッチング時のアンダーカット防止のための粗面(析出面。以下、同様)のロープロファイル化(粗さの低下)及び熱応力によるクラック防止のための高温伸び特性の向上、さらにはプリント配線板の寸法安定性のための高い引張り強さが求められている。特にファインパターン化のための更なるロープロファイル化の要求が強い。  In order to satisfy these requirements, the performance required of the electrolytic copper foil for printed wiring boards is as follows: the insulating properties between layers and patterns, and the rough surface (precipitated surface; the same shall apply hereinafter) to prevent undercut during etching. There is a need for high tensile strength for profiling (reducing roughness) and improving high-temperature elongation properties for preventing cracks due to thermal stress, and for dimensional stability of printed wiring boards. In particular, there is a strong demand for further low profile for fine patterning.

粗面のロープロファイル化は、例えば前述の様に膠やチオ尿素を多量に電解液に添加すれば達成されるが、反面、その添加量の増加に伴って常温伸び率、高温伸び率とも急激に低下してしまう。一方、添加剤を添加しない電解液から得られる銅箔は、常温伸び率、高温伸び率ともに非常に高いものになるが、粗面の形状が乱れ、粗さが大きくなったり、高い引張り強さを維持出来なくなり、さらにはこれら性能が安定したものを製造すると言った点では無理がある。電解電流密度を低く抑えた場合、高電流密度での電解箔に比べ、粗面の粗さは低くなり、伸び率や引張り強さも向上するが、生産性の低下は経済上好ましくない。  For example, as described above, a low profile of the rough surface can be achieved by adding a large amount of glue or thiourea to the electrolyte solution. However, as the amount of addition increases, both the room temperature elongation rate and the high temperature elongation rate increase rapidly. It will drop to. On the other hand, the copper foil obtained from the electrolyte without additives is very high in both normal temperature elongation and high temperature elongation, but the shape of the rough surface is disturbed, the roughness increases, and the high tensile strength. Can not be maintained, and it is impossible to manufacture products with stable performance. When the electrolytic current density is kept low, the roughness of the rough surface becomes lower and the elongation rate and the tensile strength are improved as compared with the electrolytic foil at a high current density, but a decrease in productivity is not economically preferable.

このように、近年のプリント配線板用電解銅箔に要求される、更なるロープロファイル化、良好な常温伸び率、高温伸び率及び高い引張り強さを実現することは容易ではない。
電解銅箔は、通常、前述した電解製箔装置により製箔された未処理銅箔に、表面処理装置により密着性向上のための粗化処理、防錆処理を施して製造される。
このようにして製造される電解銅箔の機械的性能は未処理銅箔4の性能によって決定され、銅箔のエッチング特性、すなわちエッチング速度と均一溶解性も、この未処理銅箔の性能によって多くが決定される。
As described above, it is not easy to realize further low profile, good room temperature elongation, high temperature elongation and high tensile strength required for the electrolytic copper foil for printed wiring boards in recent years.
The electrolytic copper foil is usually produced by subjecting an untreated copper foil produced by the above-described electrolytic foil making apparatus to a roughening treatment and an antirust treatment for improving adhesion by a surface treatment device.
The mechanical performance of the electrolytic copper foil produced in this way is determined by the performance of the untreated copper foil 4, and the etching characteristics of the copper foil, that is, the etching rate and the uniform solubility are also greatly affected by the performance of the untreated copper foil. Is determined.

銅箔の性能でエッチング性に大きな影響のある要因は表面の粗さである。粗化処理を施して絶縁樹脂基板と接着する面の粗さの影響が大きい。銅箔の粗さに影響する要因には大きく分けて2つある。ひとつは未処理銅箔の表面粗さであり、もうひとつは粗化処理の粒状の銅の付き方である。元箔である未処理銅箔の表面粗さが粗いと粗化処理後の銅箔の粗さも粗くなる。また、一般的に粒状の銅の付着量が多いと粗化処理後の銅箔の粗さは粗くなる。粗化処理時の粒状の銅の付着量は処理時に流す電流により調節が可能であるが、未処理銅箔の表面粗さは、前述のドラム状のカソードに銅を析出させる時の電解条件、特に電解液に加える添加剤によって決まるところが大きい。  The factor that has a great influence on the etching property in the performance of the copper foil is the roughness of the surface. The influence of the roughness of the surface that is roughened and bonded to the insulating resin substrate is large. There are two main factors that affect the roughness of copper foil. One is the surface roughness of the untreated copper foil, and the other is how to attach the roughened grainy copper. If the surface roughness of the untreated copper foil that is the original foil is rough, the roughness of the copper foil after the roughening treatment also becomes rough. Moreover, generally, when the adhesion amount of granular copper is large, the roughness of the copper foil after the roughening treatment becomes coarse. The amount of granular copper adhering during the roughening treatment can be adjusted by the current flowing during the treatment, but the surface roughness of the untreated copper foil is the electrolysis conditions when copper is deposited on the drum-shaped cathode, In particular, it depends largely on the additive added to the electrolyte.

一般的には、未処理箔は光沢面と呼ぶドラムに接触していた側の面は比較的平滑であるが、逆の面である析出面は粗面となる。析出面を平滑化するために、過去幾つかの試みがなされている。例えば前述の特許文献1に開示された、チオ尿素などの活性イオウを添加剤として用いた電解銅箔の製造方法がそれである。しかし、この場合は従来の膠等の添加剤を用いた場合に比較して析出面は平滑化されるが、光沢面に比較すると未だ粗く、効果は完全ではない。  In general, the untreated foil has a relatively smooth surface on the side called the glossy surface, which is in contact with the drum, but the opposite surface is a rough surface. Several attempts have been made in the past to smooth the deposition surface. For example, this is a method for producing an electrolytic copper foil disclosed in the above-mentioned Patent Document 1 using active sulfur such as thiourea as an additive. However, in this case, the precipitation surface is smoothed as compared with the case where conventional additives such as glue are used, but compared with the glossy surface, it is still rough and the effect is not perfect.

また、光沢面は比較的平滑であることから、特許文献2(特開平6−270331号公報)に開示されているように、光沢面側に粒状の銅を付着させ樹脂基板と接着させる試みもなされている。しかしこの場合は、回路のエッチング時に、通常の粗面側にドライフィルムやレジストを貼るが、表面の凹凸のためにこれらドライフィルムやレジストと銅箔との接着力が低くなり、剥離しやすくなるという欠点がある。  In addition, since the glossy surface is relatively smooth, as disclosed in Patent Document 2 (Japanese Patent Application Laid-Open No. Hei 6-270331), an attempt to adhere granular copper to the glossy surface side and adhere to the resin substrate is also attempted. Has been made. However, in this case, when etching a circuit, a dry film or resist is pasted on the normal rough surface side, but due to the unevenness of the surface, the adhesive force between these dry film or resist and copper foil becomes low and it becomes easy to peel off. There is a drawback.

米国特許5,171,417号公報  US Pat. No. 5,171,417 特開平6−270331号公報  JP-A-6-270331

本発明はこのような従来技術の問題点を解消すべくなされたものであり、引き剥し強さを低下させることなく、高いエッチングファクターを持ち、配線パターンの根元に銅粒子が残ることなく、ファインパターンを達成できる銅箔であると共に大きな高温伸び率及び高い引張り強さを有する銅箔を提供するものである。
ここで、ファインパターン化の尺度は、エッチングしたときの形状から、一般的にエッチングファクターFとして
F=2T/(Wb−Wt)
Tは銅箔の厚さ、Wbは基板との接着面の幅、Wtは銅箔表面の幅
によって表すことができ、この値が大きいほど回路断面はシャープな形状となる。
The present invention has been made to solve such problems of the prior art, has a high etching factor without reducing the peel strength, and does not leave copper particles at the base of the wiring pattern. The present invention provides a copper foil that can achieve a pattern and has a high high-temperature elongation and a high tensile strength.
Here, the scale of fine patterning is generally determined by the etching factor F from the shape when etched F = 2T / (Wb−Wt)
T can be represented by the thickness of the copper foil, Wb can be represented by the width of the adhesive surface with the substrate, and Wt can be represented by the width of the copper foil surface. The larger this value, the sharper the circuit cross section.

本発明は、電解銅箔であって、未処理銅箔の析出面の表面粗度Rzが2.1μm以下であり、かつ、光沢面の表面粗度Rzと同じか、それより小さいことを特徴とする。
ここで、表面粗度Rzとは、JIS B0601−1994「表面粗さの定義と表示」の5.1十点平均粗さ(Rz)の定義に規定されたRzをいう。
前記の未処理銅箔は、メルカプト基を持つ化合物並びにそれ以外の少なくとも1種以上の有機化合物及び塩化物イオンを添加した電解液を用いた電解製箔装置にて製造することができる。
The present invention is an electrolytic copper foil, wherein the surface roughness Rz of the deposition surface of the untreated copper foil is 2.1 μm or less, and is equal to or smaller than the surface roughness Rz of the glossy surface. Features.
Here, the surface roughness Rz means Rz defined in the definition of 5.1 ten-point average roughness (Rz) in JIS B0601-1994 “Definition and display of surface roughness”.
The untreated copper foil can be produced by an electrolytic foil making apparatus using an electrolytic solution to which a compound having a mercapto group and at least one other organic compound and chloride ions are added.

本発明によれば、電解銅箔のロープロファイル化を容易に実現でき、しかも常温及び高温における伸び率が優れ、かつ高い引張り強さを有する電解銅箔を得ることができる。  ADVANTAGE OF THE INVENTION According to this invention, the electrolytic copper foil can be easily implement | achieved low profile formation, and also the elongation rate in normal temperature and high temperature is excellent, and the electrolytic copper foil which has high tensile strength can be obtained.

本発明は、未処理銅箔の析出面の表面粗度Rzが2.1μm以下であり、かつ、光沢面の表面粗度Rzと同じか、それより小さいことを特徴とする電解銅箔である。このような電解銅箔の製造につき、先ず説明する。
本発明電解銅箔を製造する電解浴に添加する添加剤のベースとなるのは、3−メルカプト1−プロパンスルホン酸塩である。3−メルカプト1−プロパンスルホン酸塩は、HS(CHSONa等で代表して示される化合物である。この化合物は、単独では銅の結晶を微細化する効果はそれほどないが、他の有機化合物と組み合わせて用いることにより、銅の結晶を微細化し、凹凸の少ないめっき表面を得ることができる。その詳しい作用機構は不明であるが、当該分子が硫酸銅電解液中の銅イオンと反応し、錯体となる事により、あるいはめっき界面に作用して過電圧を上昇させる事によって、銅の結晶を微細化し、凸凹の少ないめっき面の形成を可能ならしめるのではないかと推定される。
The present invention is an electrolytic copper foil characterized in that the surface roughness Rz of the deposition surface of the untreated copper foil is 2.1 μm or less and is equal to or smaller than the surface roughness Rz of the glossy surface. is there. The production of such an electrolytic copper foil will be first described.
The base of the additive added to the electrolytic bath for producing the electrolytic copper foil of the present invention is 3-mercapto 1-propanesulfonate. 3-mercapto 1-propanesulfonate is a compound represented by HS (CH 2 ) 3 SO 3 Na or the like. This compound alone is not very effective in refining copper crystals, but by using it in combination with other organic compounds, it is possible to refine copper crystals and obtain a plated surface with less unevenness. Although its detailed mechanism of action is unknown, the molecule reacts with the copper ions in the copper sulfate electrolyte to form a complex, or acts on the plating interface to increase the overvoltage, thereby finening the copper crystals. It is estimated that it is possible to form a plated surface with less unevenness.

上記3−メルカプト1−プロパンスルホン酸塩と組み合わせる有機化合物の一つ目は、高分子多糖類である。高分子多糖類とは、デンプン、セルロース、植物ゴムなどの炭水化物であり、一般に水中でコロイドとなる。工業的に安価に製造されているものとして、デンプンでは食用デンプン、工業用デンプン、デキストリン、セルロースとしては特開平2−182890号公報に開示されているような水溶性セルロースエーテル、すなわち、カルボキシメチルセルロースナトリウム、カルボキシメチルヒドロキシエチルセルロースエーテルなどがある。植物ゴムとしてはアラビアゴムやトラカンドゴムがある。
これらの有機化合物は、3−メルカプト1−プロパンスルホン酸塩と組み合わせることにより、銅の結晶を微細化し、凹凸のないめっき面を得ることができるが、結晶の微細化に加えて、これらの有機化合物には、製造された銅箔の脆化を防止する働きがある。これらの有機化合物は銅箔に蓄積される内部応力を緩和するため、陰極ドラムから巻き取られる際の破れや銅箔が丸まってしまう現象を防止するばかりでなく、常温及び高温の伸び率も改善する。
The first organic compound to be combined with the 3-mercapto 1-propanesulfonate is a polymeric polysaccharide. High-molecular polysaccharides are carbohydrates such as starch, cellulose, and vegetable gum, and are generally colloidal in water. Industrially inexpensively produced as starch, edible starch, industrial starch, dextrin, and cellulose as water-soluble cellulose ether as disclosed in JP-A-2-182890, that is, sodium carboxymethylcellulose And carboxymethyl hydroxyethyl cellulose ether. Examples of plant rubber include gum arabic and trakand gum.
By combining these organic compounds with 3-mercapto 1-propanesulfonate, it is possible to refine copper crystals and obtain a plated surface without unevenness. In addition to the refinement of crystals, these organic compounds The compound has a function of preventing embrittlement of the produced copper foil. These organic compounds relieve internal stress accumulated in the copper foil, thus preventing not only the phenomenon of tearing and curling of the copper foil when it is wound from the cathode drum, but also improving the room temperature and high temperature elongation. To do.

本発明未処理銅箔を製造する電解液の組み合わせにかかるもう一つの有機化合物は、分子量10000以下の低分子量膠である。低分子量膠とは一般に製造されている膠、ゼラチンを酵素や酸若しくはアルカリで分解し、その分子量を小さくしたものである。例えばニッピゼラチン社製の“PBF”や米国Peter−Cooper社製の“PCRA”として市販されている。これらの分子量は1万以下で、低分子量のためゼリー強度が著しく低いのが特徴である。  Another organic compound according to the combination of electrolytic solutions for producing the untreated copper foil of the present invention is a low molecular weight glue having a molecular weight of 10,000 or less. The low molecular weight glue is obtained by decomposing glue or gelatin that is generally produced by enzyme, acid or alkali to reduce its molecular weight. For example, “PBF” manufactured by Nippi Gelatin Co., Ltd. and “PCRA” manufactured by Peter-Cooper US are commercially available. Their molecular weight is 10,000 or less, and the jelly strength is extremely low due to the low molecular weight.

通常の膠やゼラチンは、マイクロポロシティーの防止や粗面の粗さを抑え、形状を整える効果があるが、伸び特性を低下させるという弊害がある。しかしながら通常の膠やゼラチンとして市販されているものよりも分子量の小さい膠を使用すれば、伸び特性などを大きく犠牲にせず、マイクロポロシティーの防止や粗面の粗さを抑え形状を整える効果がある。なお、3−メルカプト1−プロパンスルホン酸塩に高分子多糖類と低分子量膠を同時に加えると、それぞれを単独で加えるよりも、高温の伸び率が改善されるとともに、マイクロポロシティーの防止や細かで均一な凸凹面を得ることが可能である。  Ordinary glue or gelatin has the effect of preventing microporosity, suppressing the roughness of the rough surface, and adjusting the shape, but has the detrimental effect of reducing elongation characteristics. However, using glue that has a lower molecular weight than those marketed as ordinary glue or gelatin has the effect of preventing microporosity and reducing the roughness of the rough surface without sacrificing elongation properties. is there. In addition, when a high molecular weight polysaccharide and a low molecular weight glue are added to 3-mercapto 1-propanesulfonate at the same time, the elongation rate at high temperature is improved and the prevention of microporosity is finer than when each is added alone. It is possible to obtain a uniform uneven surface.

更に、上記の有機添加剤に加え塩化物イオンを電解液に添加する。電解液中に塩化物イオンがまったく存在しないと、所望される粗面がロープロファイル化された銅箔を得ることができないからである。その添加量としては、数ppmで効果が出てくるが、広い電流密度範囲で安定してロープロファイル銅箔を製造するためには、10〜60ppmの範囲に保つことが好ましい。60ppmを越える添加量でもロープロファイル化されるが、添加量を増加したほどにはその効果に著しい増進が認められず、逆に添加量が過剰になると、樹枝状の電析が起こったり限界電流密度が低下するので好ましくない。  In addition to the above organic additives, chloride ions are added to the electrolyte. This is because if no chloride ion is present in the electrolytic solution, a copper foil in which the desired rough surface is low profiled cannot be obtained. The effect is obtained at several ppm as the addition amount, but in order to stably produce a low profile copper foil in a wide current density range, it is preferable to keep it in a range of 10 to 60 ppm. Even if the addition amount exceeds 60 ppm, the profile is lowered, but as the addition amount is increased, the effect is not significantly increased. Conversely, if the addition amount is excessive, dendritic electrodeposition occurs or the limit current is increased. This is not preferable because the density decreases.

以上述べた通り、電解液に3−メルカプト1−プロパンスルホン酸塩と高分子多糖類及び/又は低分子量膠と微量の塩化物イオンを併用添加することにより、ファインパターン化のためのロープロファイル銅箔に求められる種々の特性を高いレベルで実現させることが可能となった。さらには、本発明による未処理銅箔の析出面の表面粗度Rzは該未処理銅箔の光沢面の表面粗度Rzと同程度か、それより小さい箔となるため、析出面上に粗化処理を施した後の表面処理銅箔は従来のものに比較して更にロープロファイルとなり、大きなエッチングファクターを持った銅箔となる。  As described above, 3-mercapto 1-propanesulfonate and high molecular weight polysaccharides and / or low molecular weight glue and a small amount of chloride ions are added to the electrolytic solution to form low profile copper for fine patterning. It has become possible to realize various characteristics required for foil at a high level. Furthermore, the surface roughness Rz of the deposition surface of the untreated copper foil according to the present invention is the same as or smaller than the surface roughness Rz of the glossy surface of the untreated copper foil. The surface-treated copper foil after the crystallization treatment has a lower profile as compared with the conventional one, and becomes a copper foil having a large etching factor.

以下に本発明を実施例に基づいて更に詳しく説明するが、本発明はこれらに限定されるものではない。  Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited thereto.

〔実施例1〜4〕
(1)製箔
添加剤を添加する前の下記配合の硫酸銅−硫酸溶液
Cu 90g/l
SO 110g/l
を、活性炭フィルターに通して清浄処理した。次いで、この電解液に表1に示す配合割合で3−メルカプト1−プロパンスルホン酸ナトリウムと、高分子多糖類としてヒドロキシエチルセルロース及び低分子量膠(分子量3,000)と、塩化物イオンをそれぞれ添加して製箔用電解液を調製した。このようにして調製した電解液を用い、アノードには貴金属酸化物被覆チタン電極、陰極にはチタン製回転ドラムを用いて表1に示す電解条件の下に、18μm厚みの未処理銅箔を電解製箔によって製造した。
[Examples 1 to 4]
(1) Foil making Copper sulfate-sulfuric acid solution Cu 90g / l of the following composition before adding an additive
H 2 SO 4 110 g / l
Was cleaned through an activated carbon filter. Next, sodium 3-mercapto-1-propanesulfonate, hydroxyethyl cellulose and low molecular weight glue (molecular weight 3,000), and chloride ions were added to the electrolytic solution in the blending ratios shown in Table 1, respectively. A foil-forming electrolyte was prepared. Using the electrolytic solution thus prepared, an untreated copper foil having a thickness of 18 μm was electrolyzed under the electrolysis conditions shown in Table 1 using a noble metal oxide-coated titanium electrode for the anode and a titanium rotating drum for the cathode. Manufactured by foil making.

(2)粗面粗さ及び機械的特性の評価
上記(1)で得られた実施例1〜4の未処理銅箔の表面粗さRz、Raを表面粗さ計(小坂研究所製SE−3C型)で測定した(ここで、表面粗さRz、Raとは、JIS B 0601−1994「表面粗さの定義と表示」に規定されたRz、Raである。なお、基準長さ:lは、粗面測定時2.5mm、光沢面測定時0.8mである)。そして幅方向の常温で、及び180℃の温度における5分間保持後での伸び率、並びに各々の温度での引張り強さを引張り試験機(インストロン社製1122型)を用いて、それぞれ測定した。結果を表2に示す。
(2) Evaluation of Roughness and Mechanical Properties Surface roughness Rz and Ra of the untreated copper foils of Examples 1 to 4 obtained in (1) above were measured with a surface roughness meter (SE- manufactured by Kosaka Laboratory). (The surface roughness Rz, Ra is Rz, Ra defined in JIS B 0601-1994 “Definition and display of surface roughness”.) Reference length: 1 Is 2.5 mm when measuring the rough surface and 0.8 m when measuring the glossy surface). Then, the elongation after holding for 5 minutes at a normal temperature in the width direction and at a temperature of 180 ° C., and the tensile strength at each temperature were measured using a tensile tester (Instron type 1122). . The results are shown in Table 2.

〔比較例1〜2〕
表1に示す比較例1,2の組成の電解液及び電解条件の下に電解した以外、実施例と同様に製箔して得られた未処理銅箔の表面粗さ及び機械的特性を評価した。結果を表2に併記して示す。
[Comparative Examples 1-2]
The surface roughness and mechanical properties of the untreated copper foil obtained by making the foil in the same manner as in the example were evaluated except that the electrolysis was performed under the conditions of the electrolytic solutions and electrolysis conditions of Comparative Examples 1 and 2 shown in Table 1. did. The results are shown together in Table 2.

Figure 0004017628
Figure 0004017628

Figure 0004017628
Figure 0004017628

3−メルカプト1−プロパンスルホン酸ナトリウム及びヒドロキシエチルセルロースを添加した実施例1、3−メルカプト1−プロパンスルホン酸ナトリウム及び低分子量膠を添加した実施例2では、析出面の粗面粗さは充分に小さく、高温伸び特性が優れている。3−メルカプト1−プロパンスルホン酸ナトリウムにヒドロキシエチルセルロースと低分子量膠を添加した実施例3及び実施例4では、実施例2及び3に比較して更に析出面の粗さが小さくなっている。  In Example 1 to which sodium 3-mercapto-1-propanesulfonate and hydroxyethyl cellulose were added, and Example 2 to which sodium 3-mercapto1-propanesulfonate and low molecular weight glue were added, the roughness of the precipitation surface was sufficiently high. Small and excellent in high temperature elongation characteristics. In Example 3 and Example 4 in which hydroxyethyl cellulose and low molecular weight glue were added to sodium 3-mercapto-1-propanesulfonate, the roughness of the precipitation surface was further reduced as compared with Examples 2 and 3.

これに対して、チオ尿素と通常膠を加えた比較例1では、従来の未処理銅箔に比較すると析出面の粗さは小さくなっているが本発明の未処理銅箔に比較すると粗く、光沢面に比較して大きな粗度の粗面を持つ未処理銅箔しか得ることができない。しかも、この未処理銅箔の場合、高温伸びが小さい。なお、比較例2には、従来の銅箔の例として通常膠を用いて製箔した未処理銅の性能を参考までに示した。  On the other hand, in Comparative Example 1 in which thiourea and normal glue were added, the roughness of the precipitation surface was small compared to the conventional untreated copper foil, but compared to the untreated copper foil of the present invention, Only an untreated copper foil having a rough surface with a larger roughness than a glossy surface can be obtained. Moreover, in the case of this untreated copper foil, the high temperature elongation is small. In Comparative Example 2, as an example of a conventional copper foil, the performance of untreated copper made using normal glue was shown for reference.

次いで、実施例1〜4及び比較例1〜2に示した未処理銅箔の析出面に粗化処理を行った。また比較例2に示した未処理箔には更に光沢面に同様な粗化処理を行った。粗化のための浴組成と条件は下記の通りである。粗化処理後、更に防錆処理を施して表面処理銅箔を製造した。この銅箔の表面粗さを表面粗さ計(小坂研究所製SE−3C型)で測定した。結果を表3に示した。なお、表3において、実施例1〜4及び比較例1〜2は、それぞれ表2の実施例1〜4及び比較例1〜2の未処理銅箔の粗面に粗化処理を行ったものであり、比較例3は表2の比較例2の未処理銅箔の光沢面に粗化処理を行ったものである。  Subsequently, the roughening process was performed to the precipitation surface of the untreated copper foil shown in Examples 1-4 and Comparative Examples 1-2. Further, the untreated foil shown in Comparative Example 2 was further subjected to the same roughening treatment on the glossy surface. The bath composition and conditions for roughening are as follows. After the roughening treatment, a rust-proofing treatment was further performed to produce a surface-treated copper foil. The surface roughness of this copper foil was measured with a surface roughness meter (SE-3C type manufactured by Kosaka Laboratory). The results are shown in Table 3. In Table 3, Examples 1 to 4 and Comparative Examples 1 to 2 were obtained by subjecting the rough surfaces of the untreated copper foils of Examples 1 to 4 and Comparative Examples 1 to 2 in Table 2 to a roughening treatment, respectively. In Comparative Example 3, the glossy surface of the untreated copper foil of Comparative Example 2 in Table 2 was subjected to a roughening treatment.

1.第1層目の銅めっき条件
浴組成 金属銅 20g/l
硫酸 100g/l
浴温度 25℃
電流密度 30A/dm
処理時間 10秒
1. Copper plating conditions for the first layer Bath composition Metallic copper 20 g / l
Sulfuric acid 100g / l
Bath temperature 25 ° C
Current density 30A / dm 2
Processing time 10 seconds

2.第2層目の銅めっき条件
浴組成 金属銅 60g/l
硫酸 100g/l
浴温度 60℃
電流密度 15A/dm
処理時間 10秒
2. Copper plating conditions for the second layer Bath composition Metallic copper 60g / l
Sulfuric acid 100g / l
Bath temperature 60 ° C
Current density 15A / dm 2
Processing time 10 seconds

得られた銅箔をガラスエポキシ樹脂FR−4基板の片面に熱融着して銅張積層板を作成した。更に、下記の「評価法」によりエッチング性の評価を行った。  The obtained copper foil was heat-sealed to one side of a glass epoxy resin FR-4 substrate to prepare a copper-clad laminate. Furthermore, the etching property was evaluated by the following “evaluation method”.

評価法
エッチング特性の評価は次に示す方法で行った。
各銅張積層板表面を洗浄後、該表面に液レジストを5μmの厚みで均一に塗布して乾燥した。次にレジストに試験用回路パターンを重ね、露光機を用いて200mJ/cmで紫外線照射した。テストパターンは線幅100μm、線間100μm、長さ5cmの平行直線を10本並べたものである。照射後直ちに現像し、水洗、乾燥した。
Evaluation Method The etching characteristics were evaluated by the following method.
After cleaning the surface of each copper clad laminate, a liquid resist was uniformly applied to the surface with a thickness of 5 μm and dried. Next, the test circuit pattern was overlaid on the resist and irradiated with ultraviolet rays at 200 mJ / cm 2 using an exposure machine. The test pattern is composed of 10 parallel straight lines with a line width of 100 μm, a line spacing of 100 μm, and a length of 5 cm. Developed immediately after irradiation, washed with water and dried.

このように、レジストによる回路が形成された各銅張積層板のそれぞれに対し、エッチング評価装置によりエッチング性を評価した。エッチング評価装置は単ノズルで、垂直に立てた試料の銅張積層板に対して直角方向からエッチング液を噴射するものである。エッチング液には塩化第二鉄と塩酸を混合した液(FeCl:2mol/l、HCl:0.5mol/l)を使用し、液温50℃、噴射圧0.16Mpa、液流量1l/min、試料とノズルの距離15cmにて行った。噴射時間は55秒とした。噴射後直ちに水洗し、アセトンにてレジストを剥離してプリント回路パターンを得た。Thus, etching property was evaluated with the etching evaluation apparatus with respect to each of the copper clad laminates on which the circuit by the resist was formed. The etching evaluation apparatus is a single nozzle that injects an etching solution from a direction perpendicular to a copper-clad laminate of a sample standing vertically. The etching solution is a mixture of ferric chloride and hydrochloric acid (FeCl 3 : 2 mol / l, HCl: 0.5 mol / l), liquid temperature 50 ° C., injection pressure 0.16 Mpa, liquid flow rate 1 l / min. The distance between the sample and the nozzle was 15 cm. The injection time was 55 seconds. Immediately after spraying, the substrate was washed with water, and the resist was peeled off with acetone to obtain a printed circuit pattern.

得られた各々のプリント回路パターンに対し、ボトム幅70μmの時のエッチングファクターFを測定した。また同時に引き剥し強さも測定した。その結果を表3に示す。エッチングファクターF値が大きいほどエッチング特性が良好と判断できる。実施例1〜4は比較例1〜3よりもエッチングファクターが格段に大きい。  For each of the obtained printed circuit patterns, the etching factor F when the bottom width was 70 μm was measured. At the same time, the peel strength was also measured. The results are shown in Table 3. It can be judged that the larger the etching factor F value, the better the etching characteristics. Examples 1 to 4 have a much larger etching factor than Comparative Examples 1 to 3.

比較例1〜2は、実施例1〜4に比し未処理銅箔の粗面の粗度が大きいため、粗化処理後の粗度も大きくエッチングファクターFは良くない。これに対し実施例2の未処理銅箔の粗面と、比較例3の未処理銅箔の光沢面の粗度はほぼ等しい。しかし、同条件で処理したにもかかわらず粗化処理後の表面粗度は実施例2の方が小さく、従来例2の方が大きい。これは、光沢面の場合は、チタンドラムに接していた面であるため、ドラムの傷がそのまま転写されており、そのうえに粗化処理がなされると粗化の銅粒が粗大化しやすく最終的に粗化処理後の表面粗度は大きくなってしまう。一方、本発明による銅箔の粗面は鏡面状態の電析で非常に緻密であるため、その上に粗化処理がなされると粗化の銅粒が微細化し、最終的に粗化処理後の表面粗度は小さくなるものと思われる。これは未処理銅箔の粗面の表面粗度が更に小さい実施例1、実施例3及び実施例4の場合更に顕著になり、粗化処理面の粗さは非常に小さくなり、エッチングファクターFも大きくなっている。粗化処理面の粗さが非常に小さいにもかかわらず比較例3と同程度の引き剥し強さとなるのは、粗化処理において粗化の銅粒が微細化する結果、表面積が大きくなり、粗さが小さいにもかかわらず引き剥し強さが大きくなると考えられる。なお、比較例3は、粗化処理面の粗さが実施例1〜4のそれに比較して大きくなるため、エッチングファクターFの値では比較例1〜2のそれより実施例1〜4のそれに近い値を示すが、エッチング時の足残りの点で実施例1〜4に比べて劣る。  In Comparative Examples 1 and 2, since the roughness of the rough surface of the untreated copper foil is larger than that in Examples 1 to 4, the roughness after the roughening treatment is large and the etching factor F is not good. On the other hand, the roughness of the rough surface of the untreated copper foil of Example 2 and the glossy surface of the untreated copper foil of Comparative Example 3 are substantially equal. However, despite the treatment under the same conditions, the surface roughness after the roughening treatment is smaller in Example 2 and larger in Conventional Example 2. In the case of a glossy surface, this is the surface that was in contact with the titanium drum, so the scratches on the drum were transferred as it was, and if roughening treatment was performed on it, the roughened copper particles were likely to become coarser and finally The surface roughness after the roughening treatment is increased. On the other hand, the rough surface of the copper foil according to the present invention is very dense by mirror electrodeposition, so that when roughening treatment is performed on it, the roughened copper grains become finer and finally after roughening treatment It is considered that the surface roughness of the sheet becomes small. This becomes more remarkable in the case of Example 1, Example 3 and Example 4 where the surface roughness of the rough surface of the untreated copper foil is still smaller, the roughness of the roughened surface becomes very small, and the etching factor F Is also getting bigger. Although the roughness of the roughened surface is very small, the peel strength is comparable to that of Comparative Example 3, as a result of the roughening of the roughened copper grains in the roughening treatment, the surface area is increased, Although the roughness is small, it is considered that the peel strength increases. In Comparative Example 3, the roughness of the roughened surface is larger than that of Examples 1 to 4, and therefore, the etching factor F is higher than that of Comparative Examples 1 and 2 to that of Examples 1 to 4. Although it shows a close value, it is inferior to Examples 1 to 4 in terms of the remaining foot during etching.

Figure 0004017628
Figure 0004017628

上述の通り、本発明によれば、電解銅箔のロープロファイル化を容易に実現でき、しかも常温及び高温における伸び率が優れ、かつ高い引張り強さを有する電解銅箔を得ることができる。このようにして得られる電解銅箔は、高密度プリント配線板用の内外層銅箔に、更には耐折性の向上からフレキシブル基板用電解銅箔にも適用することができる。
また、従来の未処理銅箔に比し両面がフラットなため、本発明により得られる未処理銅箔は、二次電池用電極やフラットケーブル、電線被覆シールド材等にも使用することが可能である。
As described above, according to the present invention, it is possible to easily achieve low profile of the electrolytic copper foil, and it is possible to obtain an electrolytic copper foil having excellent elongation at normal temperature and high temperature and high tensile strength. The electrolytic copper foil thus obtained can be applied to inner and outer layer copper foils for high-density printed wiring boards, and further to electrolytic copper foils for flexible substrates because of improved folding resistance.
In addition, since both sides are flat compared to conventional untreated copper foil, the untreated copper foil obtained by the present invention can be used for secondary battery electrodes, flat cables, electric wire covering shield materials, etc. is there.

本発明は、電解銅箔を使用した銅張積層板並びにプリント配線板に適用可能である。
また、本発明の未処理銅箔は、従来に比べ両面がフラットなため、二次電池用電極やフラットケーブル、電線被覆シールド材等に適用可能である。
しかし、本発明による電解銅箔はこれらの用途に限られるものではない。
The present invention is applicable to a copper-clad laminate using an electrolytic copper foil and a printed wiring board.
In addition, since the untreated copper foil of the present invention is flat on both sides as compared with the prior art, it can be applied to secondary battery electrodes, flat cables, electric wire covering shield materials, and the like.
However, the electrolytic copper foil according to the present invention is not limited to these applications.

Claims (1)

メルカプト基を持つ化合物、塩化物イオン、並びに分子量10000以下の低分子量膠及び高分子多糖類を添加した電解液を用いて電解製箔された電解銅箔であって、該電解銅箔は、析出面の表面粗度Rzが2.1μm以下であり、かつ、光沢面の表面粗度Rzと同じかそれより小さいことを特徴とする電解銅箔。 Compounds having a mercapto group, an electrodeposited copper foil electrolytically manufactured foil by the chloride ion, and molecular weight of 10,000 or lower molecular weight glue and electrolytic liquid containing polymeric polysaccharide, the electrolytic copper foil, analysis An electrolytic copper foil, wherein the surface roughness Rz of the exit surface is 2.1 μm or less and is equal to or smaller than the surface roughness Rz of the glossy surface.
JP2004311533A 1995-09-22 2004-09-29 Electrolytic copper foil Expired - Lifetime JP4017628B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004311533A JP4017628B2 (en) 1995-09-22 2004-09-29 Electrolytic copper foil

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP24426295 1995-09-22
JP2004311533A JP4017628B2 (en) 1995-09-22 2004-09-29 Electrolytic copper foil

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002018412A Division JP3660628B2 (en) 1995-09-22 2002-01-28 Electrolytic copper foil for fine pattern and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005175443A JP2005175443A (en) 2005-06-30
JP4017628B2 true JP4017628B2 (en) 2007-12-05

Family

ID=34740839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004311533A Expired - Lifetime JP4017628B2 (en) 1995-09-22 2004-09-29 Electrolytic copper foil

Country Status (1)

Country Link
JP (1) JP4017628B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9457541B2 (en) 2010-07-15 2016-10-04 Ls Mtron Ltd. Copper foil for current collector of lithium secondary battery with improved wrinkle characteristics

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3742144B2 (en) * 1996-05-08 2006-02-01 ソニー株式会社 Nonaqueous electrolyte secondary battery and planar current collector for nonaqueous electrolyte secondary battery
JP2007131946A (en) * 2005-10-14 2007-05-31 Mitsui Mining & Smelting Co Ltd Flexible copper clad laminate, flexible printed wiring board obtained by using flexible copper clad laminate thereof, film carrier tape obtained by using flexible copper clad laminate thereof, semiconductor device obtained by using flexible copper clad laminate thereof, method of manufacturing flexible copper clad laminate and method of manufacturing film carrier tape
JP4712759B2 (en) * 2006-06-07 2011-06-29 古河電気工業株式会社 Surface-treated electrolytic copper foil, method for producing the same, and circuit board
KR20150048905A (en) 2011-06-28 2015-05-07 후루카와 덴키 고교 가부시키가이샤 Electrolytic copper foil, circuit board using said, and flexible circuit board
CN115074787B (en) * 2022-07-13 2023-11-10 佛冈建滔实业有限公司 Additive for copper foil production and application thereof
CN116083972B (en) * 2022-12-09 2023-08-18 浙江花园新能源股份有限公司 Production process of reverse copper foil with low roughness and high peel strength, product and application thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9457541B2 (en) 2010-07-15 2016-10-04 Ls Mtron Ltd. Copper foil for current collector of lithium secondary battery with improved wrinkle characteristics
US10283778B2 (en) 2010-07-15 2019-05-07 Kcf Technologies Co., Ltd. Copper foil for current collector of lithium secondary battery with improved wrinkle characteristics

Also Published As

Publication number Publication date
JP2005175443A (en) 2005-06-30

Similar Documents

Publication Publication Date Title
JP3313277B2 (en) Electrodeposited copper foil for fine pattern and its manufacturing method
JP3660628B2 (en) Electrolytic copper foil for fine pattern and manufacturing method thereof
KR101090199B1 (en) Copper foil for fine printed circuit and method for manufacturing the same
JP3910623B1 (en) Manufacturing method of electrolytic copper foil, electrolytic copper foil obtained by the manufacturing method, surface-treated electrolytic copper foil obtained using the electrolytic copper foil, copper-clad laminate and printed wiring using the surface-treated electrolytic copper foil Board
JP4065004B2 (en) Electrolytic copper foil, surface-treated electrolytic copper foil obtained using the electrolytic copper foil, copper-clad laminate and printed wiring board using the surface-treated electrolytic copper foil
KR100975491B1 (en) Electrolytic copper foil and process for producing electrolytic copper foil
JP3670186B2 (en) Method for producing surface-treated copper foil for printed wiring board
JP2004263300A (en) Copper foil for fine pattern printed circuit and manufacturing method therefor
WO2001048272A1 (en) Electrolytic copper foil
JP4017628B2 (en) Electrolytic copper foil
JP3670185B2 (en) Method for producing surface-treated copper foil for printed wiring board
JP3661763B2 (en) Method for producing surface-treated copper foil for printed wiring board
JP4458521B2 (en) Surface-treated copper foil having a grayed surface, a method for producing the surface-treated copper foil, and an electromagnetic shielding conductive mesh for a front panel of a plasma display using the surface-treated copper foil
JP2004263296A (en) Copper foil for fine pattern printed circuit and manufacturing method therefor
JP4429539B2 (en) Electrolytic copper foil for fine pattern
JPH08222857A (en) Copper foil and high-density multilayered printed circuit board using the foil for its internal-layer circuit
JPH0853789A (en) Production of elelctrolytic copper foil
JPH09272994A (en) Electrolytic copper foil for fine pattern
WO2005064044A1 (en) Bronzing-surface-treated copper foil, process for producing the same, and electromagnetic wave shielding conductive mesh for front panel of plasma display utilizing the bronzing-surface-treated copper foil
WO2005010241A1 (en) Surface-treated copper foil having blackening-treated surface, process for producing the surface-treated copper foil and, using the surface-treated copper foil, electromagnetic wave shielding conductive mesh for front panel of plasma display
RU2166567C2 (en) Process of manufacture of electrically precipitated copper foil and copper foil produced by this process
JP4083927B2 (en) Copper foil surface treatment method
JPH1036991A (en) Production of electrolytic copper foil
JP4575719B2 (en) Surface-treated copper foil having a browned surface, a method for producing the surface-treated copper foil, and an electromagnetic shielding conductive mesh for a front panel of a plasma display using the surface-treated copper foil
JP2005150265A (en) Surface treatment electrolytic copper foil

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070814

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070918

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130928

Year of fee payment: 6

EXPY Cancellation because of completion of term