JP4458521B2 - Surface-treated copper foil having a grayed surface, a method for producing the surface-treated copper foil, and an electromagnetic shielding conductive mesh for a front panel of a plasma display using the surface-treated copper foil - Google Patents

Surface-treated copper foil having a grayed surface, a method for producing the surface-treated copper foil, and an electromagnetic shielding conductive mesh for a front panel of a plasma display using the surface-treated copper foil Download PDF

Info

Publication number
JP4458521B2
JP4458521B2 JP2004057179A JP2004057179A JP4458521B2 JP 4458521 B2 JP4458521 B2 JP 4458521B2 JP 2004057179 A JP2004057179 A JP 2004057179A JP 2004057179 A JP2004057179 A JP 2004057179A JP 4458521 B2 JP4458521 B2 JP 4458521B2
Authority
JP
Japan
Prior art keywords
copper foil
treated copper
layer
treated
graying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004057179A
Other languages
Japanese (ja)
Other versions
JP2005248221A (en
Inventor
勉 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2004057179A priority Critical patent/JP4458521B2/en
Priority to PCT/JP2005/003386 priority patent/WO2005083157A1/en
Priority to CN2005800064619A priority patent/CN1934293B/en
Priority to KR1020067017514A priority patent/KR100869196B1/en
Priority to TW094106234A priority patent/TWI280079B/en
Publication of JP2005248221A publication Critical patent/JP2005248221A/en
Application granted granted Critical
Publication of JP4458521B2 publication Critical patent/JP4458521B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0094Shielding materials being light-transmitting, e.g. transparent, translucent
    • H05K9/0096Shielding materials being light-transmitting, e.g. transparent, translucent for television displays, e.g. plasma display panel
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/34Vessels, containers or parts thereof, e.g. substrates
    • H01J11/44Optical arrangements or shielding arrangements, e.g. filters, black matrices, light reflecting means or electromagnetic shielding means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/382Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal
    • H05K3/384Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal by plating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0355Metal foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/03Metal processing
    • H05K2203/0307Providing micro- or nanometer scale roughness on a metal surface, e.g. by plating of nodules or dendrites
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/07Treatments involving liquids, e.g. plating, rinsing
    • H05K2203/0703Plating
    • H05K2203/0723Electroplating, e.g. finish plating

Description

灰色化処理面を備える表面処理銅箔及びその表面処理銅箔を用いたプラズマディスプレイの前面パネル用の電磁波遮蔽金属メッシュに関する。特に、プラズマディスプレイの前面パネル用の電磁波遮蔽導電性メッシュの製造に好適な表面処理銅箔を提供する。   The present invention relates to a surface-treated copper foil having a grayed surface and an electromagnetic wave shielding metal mesh for a front panel of a plasma display using the surface-treated copper foil. In particular, a surface-treated copper foil suitable for the production of an electromagnetic wave shielding conductive mesh for a front panel of a plasma display is provided.

プラズマディスプレイパネルのシールド用導電性メッシュは、金属化繊維織物から導電性メッシュへと変遷してきた。この導電性メッシュの製造には、いくつかの方法が確立されている。その一つは、表面処理銅箔をPETフィルムにラミネートして張り合わせ、フォトリソグラフエッチング法を用いて製造するものである。そして、もう一つは、表面処理銅箔を支持基材と共にフォトリソグラフエッチング法でエッチングして、その後、支持基材を剥がした表面処理銅箔単体の導電性メッシュである。   The conductive mesh for shielding the plasma display panel has been changed from a metalized fiber fabric to a conductive mesh. Several methods have been established for producing this conductive mesh. One of them is to manufacture by using a photolithographic etching method by laminating and bonding a surface-treated copper foil to a PET film. The other is a conductive mesh of a single surface-treated copper foil obtained by etching a surface-treated copper foil together with a supporting base material by a photolithographic etching method, and then peeling the supporting base material.

更に、近年の省電力化の要求から、プラズマ発生信号電圧を200Vから50Vレベルを目標として開発が行われており、当該電圧の低下に伴う輝度の減少を、導電性メッシュの回路幅を細線化し、導電性メッシュによる前面ガラスパネルの被覆率を減少させる試みがなされてきた。そのため、導電性メッシュの厚さを薄くして、エッチング加工を容易にすることが行われてきた。その一つが、PETフィルム上にスパッタリング蒸着法により、電気メッキの種となるシード層を形成し、その後電解銅メッキ等で薄い銅層を形成し、フォトリソグラフエッチング法で、メッシュ線幅を微細化した導電性メッシュの製造が行われてきた。   Furthermore, due to the recent demand for power saving, development has been carried out with the target plasma generation signal voltage set to 200V to 50V level, and the circuit width of the conductive mesh has been made thinner to reduce the brightness associated with the voltage drop. Attempts have been made to reduce the coverage of the front glass panel with conductive mesh. Therefore, the thickness of the conductive mesh has been reduced to facilitate the etching process. One of them is to form a seed layer, which is the seed of electroplating, on the PET film by sputtering vapor deposition, and then to form a thin copper layer by electrolytic copper plating, etc., and to refine the mesh line width by photolithographic etching Conductive meshes have been manufactured.

これらのいずれの方法で導電性メッシュが製造されるにせよ、導電性メッシュ自体は前面パネルの中に組み込まれ、前面ガラスを通して表面から視認できるものであり、当業者間では黒色化処理表面若しくは茶褐色化処理表面を備える表面処理銅箔が用いられてきた。   Regardless of which method is used to produce the conductive mesh, the conductive mesh itself is incorporated into the front panel and is visible from the surface through the front glass, and is known to those skilled in the art to have a blackened surface or brownish color. Surface-treated copper foils having a modified surface have been used.

(現行の黒色化処理表面を備える表面処理銅箔)
この導電性メッシュに加工される表面処理銅箔の片面は、黒色に処理され透過光の輝度を引き立たせるようにされている。従来から、この処理には多層プリント配線板の、内層回路の樹脂層との接着性向上のために行う酸化銅層を形成する黒化処理等が転用されてきた。
(Surface-treated copper foil with the current blackened surface)
One surface of the surface-treated copper foil processed into the conductive mesh is treated in black so as to enhance the brightness of transmitted light. Conventionally, a blackening treatment or the like for forming a copper oxide layer for improving the adhesion of the multilayer printed wiring board to the resin layer of the inner layer circuit has been diverted to this treatment.

ところが、上述の黒化処理には、重大な問題があった。即ち、銅箔表面に銅の黒色酸化物を多く付けると、確かに良好な黒色化面が得られる。ところが、銅箔の表面に形成した銅の黒色酸化物は、付着量が多くなるほど、黒色化面から脱落しやすくなり、いわゆる粉落ち現象が起き、黒化処理面が損傷を受けやすく、ハンドリングが困難となるのである。また、黒色の色調の安定性にも欠けるものであった。   However, the blackening process described above has a serious problem. That is, when a large amount of black oxide of copper is applied to the surface of the copper foil, a good blackened surface can be obtained. However, the copper black oxide formed on the surface of the copper foil is more likely to fall off the blackened surface as the amount of adhesion increases, so-called powdering phenomenon occurs, the blackened surface is more likely to be damaged, and handling is easier. It becomes difficult. Also, the black color tone lacks stability.

粉落ち現象が発生すると、脱落した黒色酸化物が無用な箇所に混入したり、前面パネルのガラスと一体化させるための透明化処理の時に、透明接着剤層に分散して透明度を劣化させる要因ともなり得るのである。   Factors that cause the falling black oxide to mix into the useless parts or to disperse in the transparent adhesive layer during the clearing process to integrate with the front panel glass. It can be a friend.

一方で、良好な黒色化面を形成することの出来る黒色化処理として、一般的な黒色ニッケルメッキ、硫化ニッケルメッキ、コバルトメッキ等が検討されてきたが、通常の銅のエッチングプロセスで黒色化処理面側からのエッチング加工ができないという問題が生じていた。特に、コバルトやニッケルをリッチに析出させた黒色化処理面を持つ表面処理銅箔は、粉落ちの問題も解決できず、高価なニッケル等を多量に使用するため高価な製品となっていた。   On the other hand, general black nickel plating, nickel sulfide plating, cobalt plating, etc. have been studied as blackening treatments that can form a good blackened surface. There has been a problem that etching cannot be performed from the surface side. In particular, the surface-treated copper foil having a blackened surface on which cobalt or nickel is deposited in a rich manner cannot solve the problem of powder falling, and has been an expensive product because it uses a large amount of expensive nickel or the like.

(現行の茶褐色化処理表面を備える表面処理銅箔)
一方で、プラズマディスプレイパネルの製造技術が成熟し、従来は単に良好な黒色化面を持つ表面処理銅箔が要求されてきたが、製造技術及び管理の高度化に伴い、電磁波遮蔽メッシュの黒濃度に高いレベルは必要ではなく、むしろ低価格で、しかもエッチング加工が容易で光の透過度の安定した開口率の高いメッシュパターンを持つ電磁波遮蔽メッシュが望まれるようになってきた。
(Surface-treated copper foil with the current browning surface)
On the other hand, the manufacturing technology of plasma display panels has matured, and conventionally, a surface-treated copper foil with a simply blackened surface has been required, but with the advancement of manufacturing technology and management, the black density of the electromagnetic shielding mesh is increased. However, an electromagnetic wave shielding mesh having a mesh pattern with a high aperture ratio, which is inexpensive, easy to etch, stable in light transmittance, and so on has been desired.

従って、現在市場に流通しているコバルトの黒色系メッキ被膜を備えた銅箔には、銅のエッチャントを用いてのコバルト層のエッチング加工が困難であるという問題が生じ、異種金属を減量して茶褐色の色調のものとすることを試みてきた。   Therefore, the copper foil provided with a black plating film of cobalt currently on the market has a problem that it is difficult to etch the cobalt layer using a copper etchant, reducing the amount of dissimilar metals. I have tried to make it brownish brown.

確かに、低価格という条件を満たし、且つ、エッチングが容易と言うことを考えれば、表面処理銅箔の表面を黒色化に到る前の、茶褐色の状態としコバルト等の付着量を減らして市場供給する事が検討されてきた。   Certainly, considering that it meets the conditions of low price and is easy to etch, the surface of the surface-treated copper foil is in a brownish state before reaching blackening, reducing the amount of deposits of cobalt, etc. Supply has been considered.

しかし、従来の茶褐色の表面を持つ表面処理銅箔の欠点は、その茶褐色面の色が均一ではなく、全面にムラが生じたものであった。即ち、同一面内における茶褐色処理の均一化が出来ておらず、エッチングして得られるメッシュの断面形状のバラツキを生じる原因となっていたのである。しかも、その茶褐色面は、その表面を軽く摩擦するだけで、損傷を受けやすいものであった。   However, the disadvantage of the conventional surface-treated copper foil having a brownish brown surface is that the brownish brown surface is not uniform in color and uneven. That is, the brown color treatment in the same plane cannot be made uniform, which causes variations in the cross-sectional shape of the mesh obtained by etching. Moreover, the brown surface was easily damaged by merely rubbing the surface.

そのため、市場では、均一な茶褐色を持つ茶褐色化処理層を備え、且つ、エッチング加工可能が更に容易な表面処理銅箔が望まれてきた。   Therefore, a surface-treated copper foil that has a browning treatment layer having a uniform brown color and that can be etched more easily has been desired in the market.

そして、上述の黒色化処理面及び茶褐色化処理面を備える銅箔は、いずれも色調の安定性に問題があり、ロット間バラツキを小さくするためには、製造条件管理を厳密に行う必要があり、多大な工程管理労力と費用とを要し、製品価格を下げて市場に供給するには一定の限界が生じていた。   And copper foil provided with the above-mentioned blackening processing surface and browning processing surface has a problem in stability of a color tone, and in order to make variation between lots small, it is necessary to perform manufacturing condition management strictly. Therefore, a large amount of process management labor and cost are required, and there is a certain limit in reducing the product price and supplying it to the market.

PDP材料の技術動向 日立化成テクニカルレポート 第33号(1999−7)Technical Trends of PDP Materials Hitachi Chemical Technical Report No. 33 (1999-7) 特開平11−186785号公報Japanese Patent Laid-Open No. 11-186785 特開2000−31588公報JP 2000-31588 A

しかしながら、上述の黒色化処理面及び茶褐色化処理面を備える銅箔とは、銅箔の状態で確認できる色調を問題にしているのであり、電磁波遮蔽導電性メッシュに加工され、プラズマディスプレイの前面パネルに組み込まれたときの色調を考慮したものではなかった。   However, the copper foil provided with the blackened surface and the browned surface described above is concerned with the color tone that can be confirmed in the state of the copper foil, and is processed into an electromagnetic wave shielding conductive mesh, and the front panel of the plasma display The color tone was not taken into account when it was incorporated into the.

ここで最も一般的な前面フィルタの製造方法を、ここで概説しておくこととする。200μmピッチ、線幅20μm以下の導電性メッシュ15を製造する場合には、図14(a)に示したようにPETフィルムFを用意し、その表面に接着剤層20を設けることで図14(b)に示す状態とする。そして、図14(c)に示すように接着剤層20の上に、スパッタリング法、無電解メッキ法等を用いて1μm以下の金属シード層Sを形成し、その後、図14(d)に示すように電解銅メッキにより3μm以下レベルの銅層Cとする。   The most common front filter manufacturing method here will be outlined here. When manufacturing the conductive mesh 15 having a pitch of 200 μm and a line width of 20 μm or less, a PET film F is prepared as shown in FIG. The state shown in b) is assumed. Then, as shown in FIG. 14C, a metal seed layer S of 1 μm or less is formed on the adhesive layer 20 by using a sputtering method, an electroless plating method or the like, and thereafter, shown in FIG. 14D. Thus, a copper layer C having a level of 3 μm or less is formed by electrolytic copper plating.

そして、その銅層Cの上に、図14(e)に示すようにエッチングレジスト層Rを形成し、当該エッチングレジスト層Rに、図15(f)に示すように導電性メッシュパターンPを露光し、図15(g)に示すように現像し、エッチングすることで図15(h)に示す状態になり、エッチングレジスト層Rを剥離することで図15(i)に示す状態となる。   Then, an etching resist layer R is formed on the copper layer C as shown in FIG. 14 (e), and the conductive mesh pattern P is exposed on the etching resist layer R as shown in FIG. 15 (f). Then, development and etching are performed as shown in FIG. 15 (g), and the state shown in FIG. 15 (h) is obtained. When the etching resist layer R is peeled off, the state shown in FIG. 15 (i) is obtained.

続いて、導電性メッシュ15の表面を黒色化処理することで、図15(j)に示すように導電性メッシュの表面に黒色化処理層17を形成した状態とするのである。そして、この黒色化処理が終了すると、前面フィルタを構成する第1透明基板19aを、図16(k)に示すように、黒色化処理済み導電性メッシュ5’に当接させプレスすることで、図16(l)に示すように黒色化処理済み導電性メッシュ15’を、接着剤層20内に押し込み透明化処理を行う。そして、図16(m)に示すようにPETフィルムを引き剥がすのである。最後に図16(n)に示すように、接着剤層20と第2透明基板19bとを張り合わせて、前面フィルタ11が完成する事になるのである。   Subsequently, the surface of the conductive mesh 15 is blackened so that the blackened layer 17 is formed on the surface of the conductive mesh as shown in FIG. And when this blackening process is completed, as shown in FIG.16 (k), the first transparent substrate 19a constituting the front filter is brought into contact with the blackened conductive mesh 5 'and pressed, As shown in FIG. 16 (l), the blackened conductive mesh 15 ′ is pushed into the adhesive layer 20 to perform a transparent treatment. Then, as shown in FIG. 16 (m), the PET film is peeled off. Finally, as shown in FIG. 16 (n), the adhesive layer 20 and the second transparent substrate 19b are bonded together to complete the front filter 11.

以上の工程から分かるように、透明化処理前に黒色化若しくは茶褐色化して見えないものであっても、透明化処理後に透明樹脂若しくは透明基板と接着した状態で導電性メッシュ表面が黒色化して視認できるものであれば良いと考えられるのである。   As can be seen from the above process, even if it is not visible due to blackening or browning before the clearing treatment, the conductive mesh surface becomes blackened and visible in the state of being adhered to the transparent resin or transparent substrate after the clearing treatment. Anything that can be done is considered good.

将来的に見て、地上波のデジタル化が予定されており、画像信号の伝達速度も高速化していくことが避けられず、人体に与える影響、他の電子機器に与える影響等を考慮して、電磁気シールドに対する法規制も強化されていくことが予想され、導電性メッシュを用い電磁気シールド性優れた前面フィルタに対する要求は、更に高まるものと考えられ、安価で高品質の導電性メッシュが望まれるのである。   In the future, digitalization of terrestrial waves is planned, and it is inevitable that the transmission speed of image signals will increase. Considering the effects on the human body and other electronic devices, etc. It is expected that laws and regulations on electromagnetic shields will be strengthened, and the demand for front filters that use conductive meshes and have excellent electromagnetic shielding properties is expected to increase further, and cheap and high-quality conductive meshes are desired. It is.

そこで、本件発明者等は、鋭意研究の結果、以下に述べる灰色化処理面を備える表面処理銅箔を用いて、電磁波遮蔽用導電性メッシュを製造することに想到したのである。この灰色化処理面を備える表面処理銅箔を用いることで、プラズマディスプレイパネルの前面フィルタの製造プロセスにおける透明化処理前には、電磁波遮蔽用導電性メッシュ表面の色調が灰色であり、透明化処理後に電磁波遮蔽用導電性メッシュ表面が黒色化して視認できるものとなるのである。   Therefore, as a result of earnest research, the inventors of the present invention have come up with the idea of manufacturing a conductive mesh for shielding electromagnetic waves using a surface-treated copper foil having a grayed surface described below. By using the surface-treated copper foil having the graying surface, the color tone of the conductive mesh surface for shielding electromagnetic waves is gray before the transparentizing treatment in the manufacturing process of the front filter of the plasma display panel. Later, the surface of the conductive mesh for shielding electromagnetic waves becomes black and becomes visible.

<灰色化処理面を備える表面処理銅箔>
本件発明に係る灰色化処理面を備える表面処理銅箔は、防錆処理層を備えない場合と、防錆処理層を備える場合とを含むものである。従って、防錆処理層は必須のものではないが、表面処理銅箔として長期保存性を確保するためには必要となるものである。以下、本件発明に係る表面処理銅箔に関して説明する。
<Surface treated copper foil with a grayed surface>
The surface-treated copper foil provided with the graying-treated surface according to the present invention includes a case where a rust prevention treatment layer is not provided and a case where a rust prevention treatment layer is provided. Therefore, the antirust treatment layer is not essential, but is necessary for ensuring long-term storage as a surface-treated copper foil. Hereinafter, the surface-treated copper foil according to the present invention will be described.

第1表面処理銅箔: 本件発明に係る表面処理銅箔は、「電解銅箔の粗面上に灰色化処理面を備える表面処理銅箔であって、当該灰色化処理面は、銅箔層の片面に設けた重量厚さ200mg/m〜350mg/mの硫酸コバルトメッキ層であり、且つ、その灰色化処理面の断面高さが200nm以下であることを特徴とする表面処理銅箔(以下、「第1表面処理銅箔」と称する。)。」である。この表面処理銅箔1aの断面層構成を模式的に示したのが図1である。 First surface-treated copper foil: The surface-treated copper foil according to the present invention is “a surface-treated copper foil having a grayed surface on a rough surface of an electrolytic copper foil, and the grayed surface is a copper foil layer. a cobalt sulfate plating layer weight thickness 200mg / m 2 ~350mg / m 2 provided on one side of, and a surface-treated copper foil cross-section height of the graying treated surface and wherein the at 200nm or less (Hereinafter referred to as “first surface-treated copper foil”). Is. FIG. 1 schematically shows the cross-sectional layer structure of the surface-treated copper foil 1a.

この図1には、電解銅箔7の粗面に硫酸コバルトメッキ層4を形成し、反対面(電解銅箔の場合には光沢面に該当)には微細銅粒3で粗化処理を施した状態の表面処理銅箔1aを一例として模式的に記載している。しかしながら、このときに用いる銅箔の反対面は、粗化処理を行っても、粗化処理を行っていないものでも構わない。そこで図2には、反対面の粗化処理を省略した場合の表面処理銅箔1bを模式的に示している。微細銅粒3で構成する粗化処理層2は、基材等との接着性改善等を目的として形成されるものであり、必要に応じて設ければよいのである。この粗化処理層2を形成する場合の方法は、上述のように微細銅粒を付着形成する方法、微細な酸化銅を付着させる等の方法を採用することが可能であり、特に粗化処理方法に限定はない。   In FIG. 1, a cobalt sulfate plating layer 4 is formed on the rough surface of the electrolytic copper foil 7, and the opposite surface (corresponding to a glossy surface in the case of the electrolytic copper foil) is roughened with fine copper particles 3. The surface-treated copper foil 1a in the finished state is schematically described as an example. However, the opposite surface of the copper foil used at this time may be roughened or not roughened. FIG. 2 schematically shows the surface-treated copper foil 1b when the roughening treatment on the opposite surface is omitted. The roughening treatment layer 2 composed of the fine copper particles 3 is formed for the purpose of improving adhesiveness with a base material or the like, and may be provided as necessary. As the method for forming the roughened layer 2, it is possible to employ a method of adhering and forming fine copper grains as described above, a method of adhering fine copper oxide, and the like. There is no limitation on the method.

そして、この銅箔層7の一定の凹凸のある粗化面に硫酸コバルトメッキ層4を設けるのである。ここで粗面の持つ粗さとしては、公称厚さ35μm以下の厚さの電解銅箔の粗面に該当する粗さが最も適当であり、触針先端部の曲率半径2μmの触針式粗度計で測定したときのJIS B 0601に定める平均粗さ(Ra)が1.0μm以下、10点平均粗さ(Rz)が4.0μm以下の範囲にあることが好ましい。この粗さより粗い場合には、灰色化した表面処理銅箔の色調の安定性が欠如し、エッチングしてメッシュ形状に加工する際のエッチング精度が劣化し、高品質の電磁波遮蔽用導電性メッシュの製造歩留まりが悪くなる傾向がある。そして、より好ましくは平均粗さ(Ra)が0.5μm以下、10点平均粗さ(Rz)が2.8μm以下である。表面処理銅箔の灰色の色調の安定性が飛躍的に向上し、プラズマディスプレイパネルの前面パネル製造工程で透明化処理した後の黒色の色調もバラツキの少ないものとなるのである。   Then, the cobalt sulfate plating layer 4 is provided on the roughened surface having certain irregularities of the copper foil layer 7. Here, the roughness corresponding to the rough surface of the electrolytic copper foil having a nominal thickness of 35 μm or less is most suitable as the roughness of the rough surface, and a stylus type roughness with a radius of curvature of 2 μm at the tip of the stylus. It is preferable that the average roughness (Ra) defined in JIS B 0601 when measured with a dynamometer is 1.0 μm or less and the 10-point average roughness (Rz) is in the range of 4.0 μm or less. If it is rougher than this roughness, the gray-colored surface-treated copper foil lacks color tone stability, the etching accuracy when etching into a mesh shape is deteriorated, and a high-quality conductive mesh for shielding electromagnetic waves is deteriorated. Manufacturing yield tends to be poor. More preferably, the average roughness (Ra) is 0.5 μm or less, and the 10-point average roughness (Rz) is 2.8 μm or less. The stability of the gray color tone of the surface-treated copper foil is remarkably improved, and the black color tone after the transparent treatment in the front panel manufacturing process of the plasma display panel is also less varied.

ここで言う硫酸コバルトメッキ層4とは、硫酸コバルト溶液を用いてメッキ法で形成した層を意味するものとして用いているのである。そして、この硫酸コバルトメッキ層4は、表面処理銅箔の状態では灰色として視認できるのである。ところが、上述したプラズマディスプレイパネルの前面パネル製造工程で透明化処理し、灰色化処理表面の上を樹脂フィルム若しくは接着剤樹脂等で被覆された状態となった後には、黒色として視認できるものとなるのである。このように色調が変化するのは、濃い色調の洋服が水に濡れると、本来ざらざらした状態であるはずの服地表面に水幕が形成され、滑らかな表面を形成することにより、受けた光の乱反射が抑制され、より濃い色調として視認できるのと同様の効果が得られるのである。   The cobalt sulfate plating layer 4 here is used to mean a layer formed by a plating method using a cobalt sulfate solution. And this cobalt sulfate plating layer 4 can be visually recognized as gray in the state of surface-treated copper foil. However, after the transparent treatment is performed in the above-described front panel manufacturing process of the plasma display panel and the grayed surface is covered with a resin film or an adhesive resin, it can be visually recognized as black. It is. The color tone changes in this way because when dark clothes get wet with water, a water curtain is formed on the surface of the clothing that should have been rough, and a smooth surface is formed. The diffuse reflection is suppressed, and the same effect as that which can be visually recognized as a darker color tone can be obtained.

この硫酸コバルトメッキ層4は、後述する製造方法を採用し重量厚さ200mg/m〜350mg/mのものとすることで、銅エッチング液に対する溶解性に優れ、且つ、灰色化した表面の形成が可能となるのである。従来のコバルト層を用いた黒色系メッキ被膜を備えた銅箔のコバルト層は、その重量厚さが1000mg/m前後であり、非常に厚く、メッキ層の溶解性という品質において異なるものであった。その結果、厚さがあるが故に銅エッチング液による溶解速度が遅くなると共に、コバルトという元素自体が銅エッチング液に高濃度に蓄積してエッチング液の力価を低下させる要因となっていたのである。なお、本件発明における換算重量は、コバルト重量に換算しての値である。換算重量は、表面処理銅箔を酸溶液に溶解させ、プラズマ発光分光分析法等により単位面積あたりのコバルト量を求め、表面処理銅箔1mあたりの重量に換算したものである。 The cobalt sulfate plating layer 4 is, by those of adopting a manufacturing method to be described later weight thickness 200mg / m 2 ~350mg / m 2 , excellent in solubility in copper etching solution, and, graying surface It can be formed. A cobalt layer of a copper foil provided with a black plating film using a conventional cobalt layer has a weight thickness of about 1000 mg / m 2 and is very thick, and the quality of the solubility of the plating layer is different. It was. As a result, because of the thickness, the dissolution rate by the copper etching solution slows down, and the element itself called cobalt accumulates in the copper etching solution at a high concentration, which causes the titer of the etching solution to decrease. . In addition, the conversion weight in this invention is a value converted into cobalt weight. The converted weight is obtained by dissolving the surface-treated copper foil in an acid solution, obtaining the amount of cobalt per unit area by plasma emission spectroscopy or the like, and converting it to the weight per 1 m 2 of the surface-treated copper foil.

また、コバルトメッキ層が銅エッチング液に溶解しやすいものとなるか否かは、コバルトメッキを行う際のメッキ条件によっても大きく影響を受けることも分かってきた。即ち、後述する本件発明に係る表面処理銅箔の製造方法を採用したときに得られるコバルトメッキ被膜が最もエッチング特性に優れるものとなるのである。   It has also been found that whether or not the cobalt plating layer is easily dissolved in the copper etching solution is greatly influenced by the plating conditions when performing cobalt plating. That is, the cobalt plating film obtained when the method for producing a surface-treated copper foil according to the present invention described later is employed has the best etching characteristics.

本件発明に係る表面処理銅箔の持つ第2の特色は、その灰色化処理面の表面形状が極めて粗いものではなく、当該灰色化処理面の持つ断面高さが200nm以下であることが大きな特徴である。即ち、極めて滑らかな灰色化処理面ということができる。但し、誤解を招かないために明記しておくが、通常の製造工程の範囲内におけるバラツキが存在するのは当然であり、必ずしも全ての位置での断面高さが200nm以下である必要はなく、製造工程のバラツキを反映した程度で200nmを超える断面高さが存在する場合があるのは当然である。本件発明に係る表面処理銅箔1の硫酸コバルトメッキ層4の断面高さを測定するために、FIB分析装置を用いて断面観察したFIB観察像を図3に示す。この図3には、電解銅箔の光沢面に灰色化処理面を形成したものを示している。なお、このFIB観察像は、被観察面に対して60°の角度を持った方向から観察したものである。   The second feature of the surface-treated copper foil according to the present invention is that the surface shape of the grayed surface is not very rough, and the sectional height of the grayed surface is 200 nm or less. It is. That is, it can be said that it is an extremely smooth graying surface. However, in order to avoid misunderstanding, it is natural that there is variation within the range of the normal manufacturing process, and the cross-sectional height at all positions is not necessarily 200 nm or less, Of course, there may be a cross-sectional height of more than 200 nm to reflect the variation in the manufacturing process. In order to measure the cross-sectional height of the cobalt sulfate plating layer 4 of the surface-treated copper foil 1 according to the present invention, a FIB observation image obtained by cross-sectional observation using a FIB analyzer is shown in FIG. FIG. 3 shows the electrolytic copper foil having a gray surface on the glossy surface. The FIB observation image is observed from a direction having an angle of 60 ° with respect to the surface to be observed.

この図3から分かるように、灰色化処理面の断面は一定の凹凸が存在することが明らかであり、このような凹凸をモニターする場合、触針式の表面粗さ計を用いるのが一般的である。ところが、図3のスケールから分かるように、表面粗さ計では正確な粗さ測定が不可能なレベルの凹凸であると考えられる。そこで、本件発明では、表面粗さ計で測ったときのRmaxに対応する値として、FIB観察像の視野の中の山部と谷部との最大差を「断面高さ」としているのである。この図3の中に「d」で示す箇所が、図3の断面高さとなり、約80nmと判断できるのである。しかも、図3において、硫酸コバルトメッキ層4は、極めて均一な厚さで銅箔表面の形状に沿って形成されており、下地の銅箔表面と完全に密着した状態を維持しており、硫酸コバルトメッキ層4が浮き上がる等の不具合箇所は見あたらず、粉落ちを予感させる箇所は見られないのである。   As can be seen from FIG. 3, it is clear that the cross section of the graying surface has certain irregularities, and in order to monitor such irregularities, a stylus type surface roughness meter is generally used. It is. However, as can be seen from the scale of FIG. 3, it is considered that the surface roughness meter has irregularities at a level where accurate roughness measurement is impossible. Therefore, in the present invention, as a value corresponding to Rmax when measured with a surface roughness meter, the maximum difference between the peak portion and the valley portion in the field of view of the FIB observation image is set as the “section height”. The portion indicated by “d” in FIG. 3 is the cross-sectional height of FIG. 3 and can be determined to be about 80 nm. Moreover, in FIG. 3, the cobalt sulfate plating layer 4 is formed along the shape of the copper foil surface with a very uniform thickness, and maintains a state of being completely in close contact with the underlying copper foil surface. There are no defects such as the cobalt plating layer 4 being lifted, and there are no spots that make powder fall off.

これに対し、従来の銅箔表面に形成した黒色化処理面を、上述したと同様に断面からFIB観察すると、図4及び図5に示すような結果となる。即ち、黒色化処理面を構成する形状が樹枝状に成長し、下地の銅箔からかなり突出した状態となっていることが分かるのである。従って、このときの断面高さ(d)を測定すると図4の場合が約480nm、図5の場合が約270nmとなり、かなり荒れた表面になっていることが理解できるのである。しかも、このような、樹枝形状を持つ黒色化処理面は、その樹枝状部が折れ易く損傷を受けやすい表面であると言え、しかも、折れた断片が脱落すれば粉落ちが発生するのも当然であり、黒色化処理表面から目視で見たとき色ムラを引き起こす原因となっていると考えられるのである。   On the other hand, when the blackened surface formed on the surface of the conventional copper foil is observed from the cross section in the same manner as described above, the results shown in FIGS. 4 and 5 are obtained. That is, it can be seen that the shape constituting the blackening treatment surface grows in a dendritic shape and is considerably protruded from the underlying copper foil. Accordingly, when the cross-sectional height (d) at this time is measured, it can be understood that the surface in FIG. 4 is about 480 nm and the case in FIG. 5 is about 270 nm, which is a considerably rough surface. In addition, such a blackened surface having a dendritic shape can be said to be a surface where the dendritic part is easily broken and easily damaged, and it is natural that powder breakage occurs if the broken piece falls off. This is considered to be a cause of color unevenness when visually observed from the blackened surface.

以上に述べてきた本件発明に係る表面処理銅箔は、図3のFIB断面観察像から極めて滑らかな表面を持っていることが理解できる。そして、この灰色化処理面の、Lab表色系におけるL値が43以下となるのである。ここで、43以下と記載しているように、上限は特に限定していないが、経験的に38程度が下限となるようである。   It can be understood that the surface-treated copper foil according to the present invention described above has a very smooth surface from the FIB cross-sectional observation image of FIG. The L value in the Lab color system of this graying surface is 43 or less. Here, as described as 43 or less, the upper limit is not particularly limited, but empirically, about 38 seems to be the lower limit.

また、本件発明に係る表面処理銅箔の灰色化処理面は、一定の光沢も持ち、その光沢の度合いを表すには、光沢度を用いて表すことの方が好ましい。本件発明に係る灰色化処理面の光沢度は、電解銅箔の粗面に当該灰色化処理面を形成した結果、光沢度[Gs(60°)]が10以下であることが好ましいのである。光沢度が10以上となると、所謂金属光沢が目立つようになるのである。なお、ここでも、光沢度の下限値を定めていないが、経験的に0.5程度が下限となるようである。より好ましくは、光沢度が0.5〜3.0の範囲である。この範囲の光沢度を有する場合の灰色の色調の安定性が最も良好となるのである。   In addition, the grayed surface of the surface-treated copper foil according to the present invention also has a certain gloss, and it is preferable to use the glossiness to express the degree of gloss. As for the glossiness of the graying surface according to the present invention, it is preferable that the glossiness [Gs (60 °)] is 10 or less as a result of forming the graying surface on the rough surface of the electrolytic copper foil. When the glossiness is 10 or more, so-called metallic luster becomes conspicuous. In this case as well, the lower limit of glossiness is not defined, but empirically about 0.5 seems to be the lower limit. More preferably, the glossiness is in the range of 0.5 to 3.0. When the glossiness is in this range, the gray color tone is most stable.

以上に述べてきた表面処理銅箔の灰色化処理面は、その表面に透明樹脂被膜を密着配置したときに、黒色として視認できるものとなる。このときの灰色化処理面を直接観察したときの黒濃度は0.7〜1.2(測定条件:StatusT、Sampling aparture1.5×2mm、偏光フィルター無し)であり、この灰色化処理面の表面に透明樹脂被膜を密着配置すると、黒濃度は1.4以上(経験的に上限は1.8程度である)となるのである。従来から、プラズマディスプレイパネルの電磁波遮蔽メッシュに用いられてきた表面処理銅箔の黒色化処理面の黒濃度は、黒色化処理面を直接観察したときの黒濃度は約1.0以上(本件発明者等の市場で入手可能な製品で測定すると1.30〜1.67)であり、この黒色化処理面の表面に透明樹脂被膜を密着配置すると、黒濃度は1.5以上(本件発明者等の市場で入手可能な製品で測定すると1.40〜1.87)である。このことから、本件発明に係る灰色化処理面を備える表面処理銅箔を用いて、この表面に透明樹脂被膜を密着配置すると黒濃度が約1.4以上であることを考えれば、十分な黒濃度となると言えるのである。なお、本件発明における黒濃度は、JIS B 9620、JIS B 9622に基づいて測定したものであり、上述の測定条件を採用している。   The grayed surface of the surface-treated copper foil described above can be visually recognized as black when a transparent resin film is placed in close contact with the surface. The black density when directly observing the grayed surface at this time is 0.7 to 1.2 (measurement conditions: Status T, Sampling aperture 1.5 × 2 mm, no polarizing filter). When the transparent resin film is closely disposed, the black density is 1.4 or more (empirically, the upper limit is about 1.8). Conventionally, the black density of the blackened surface of the surface-treated copper foil used for the electromagnetic wave shielding mesh of the plasma display panel is about 1.0 or more when the blackened surface is directly observed (this invention) Measured by a product available on the market of the consumer, etc., 1.30 to 1.67), and when the transparent resin film is closely disposed on the surface of the blackened surface, the black density is 1.5 or more (this inventor) It is 1.40 to 1.87) when measured with a product available on the market. From this, considering that the black density is about 1.4 or more when the transparent resin film is closely disposed on the surface using the surface-treated copper foil having the grayed surface according to the present invention, sufficient blackness is obtained. It can be said that it becomes concentration. The black density in the present invention is measured based on JIS B 9620 and JIS B 9622, and the above-described measurement conditions are adopted.

第2表面処理銅箔: この表面処理銅箔は、上述の第1表面処理銅箔の表面に長期保存性を確保するための防錆処理層を形成したものである。図6の両面に防錆処理層5を備えた表面処理銅箔1cの断面層構成を模式的に例示した。そして、図7には、片面に粗化処理を省略した場合の表面処理銅箔1dを示している。銅箔としての防錆のみを目的とする限りにおいては、イミダゾール、ベンゾトリアゾール等の有機防錆、一般的に用いられている亜鉛又は真鍮等の亜鉛合金による無機防錆等を広く用いることが可能である。また、硫酸コバルトメッキ層を片面に形成した場合の防錆処理層は、少なくとも本件発明に係る表面処理銅箔の硫酸コバルトメッキ層を設けた反対面に設けるべきものであるが、両面に設けても差し支えないものである。 Second surface-treated copper foil: This surface-treated copper foil is obtained by forming a rust-proofing layer for ensuring long-term storage on the surface of the first surface-treated copper foil. The cross-sectional layer structure of the surface-treated copper foil 1c provided with the antirust treatment layer 5 on both surfaces of FIG. 6 is schematically illustrated. FIG. 7 shows the surface-treated copper foil 1d when the roughening treatment is omitted on one side. As long as the purpose is to prevent rust as copper foil only, organic rust prevention such as imidazole and benzotriazole, inorganic rust prevention using zinc alloy such as zinc or brass, etc. that are generally used can be widely used. It is. In addition, when the cobalt sulfate plating layer is formed on one side, the rust prevention treatment layer should be provided on at least the opposite surface of the surface-treated copper foil according to the present invention provided with the cobalt sulfate plating layer. There is no problem.

しかしながら、その両面に防錆処理層5を設けると、これらの防錆処理層は、粗化処理層2の微細銅粒3の脱落防止及び硫酸コバルト層4の保護層としての役割を果たすと同時に、表面処理銅箔としての外観を長期間に渡って維持する役割を果たすのである。この防錆処理層5には、亜鉛−ニッケル合金層若しくは亜鉛−コバルト層を設けることが特に好ましい。これらの防錆処理層5は、硫酸コバルトメッキ層4と組みあわせて用いることで、硫酸コバルトメッキ層4をエッチング溶解させる際の溶解プロモータとして機能しているように考えられる。即ち、硫酸コバルトメッキ層4が単独で存在する場合よりも、亜鉛−ニッケル合金層若しくは亜鉛−コバルト層を備える方が、硫酸コバルトメッキ層4の溶解が迅速に起こるのである。   However, when the antirust treatment layers 5 are provided on both sides, these antirust treatment layers serve as a protective layer for the cobalt sulfate layer 4 and for preventing the fine copper grains 3 from falling off the roughening treatment layer 2. It plays the role of maintaining the appearance of the surface-treated copper foil over a long period of time. It is particularly preferable to provide the rust prevention treatment layer 5 with a zinc-nickel alloy layer or a zinc-cobalt layer. These antirust treatment layers 5 are considered to function as a dissolution promoter when the cobalt sulfate plating layer 4 is dissolved by etching by using it in combination with the cobalt sulfate plating layer 4. That is, the dissolution of the cobalt sulfate plating layer 4 occurs more quickly when the zinc sulfate plating layer 4 is provided alone than when the zinc sulfate alloy layer or the zinc-cobalt layer is provided.

更に、図8及び図9に防錆処理層5とクロメート処理層6とを両面に備えた表面処理銅箔1cの断面層構成を模式的に示した。図6と図8、図7と図9のそれぞれを対比することから分かるように、防錆処理層5を備える表面処理銅箔との違いは、クロメート処理層6を備える点のみであり、その他の構成は同様である。   Further, FIG. 8 and FIG. 9 schematically show the cross-sectional layer structure of the surface-treated copper foil 1c provided with the antirust treatment layer 5 and the chromate treatment layer 6 on both sides. As can be seen from the comparison between FIG. 6 and FIG. 8, and FIG. 7 and FIG. 9, the difference from the surface-treated copper foil provided with the antirust treatment layer 5 is only the provision of the chromate treatment layer 6. The configuration of is the same.

このクロメート処理層6は、亜鉛−ニッケル合金又は亜鉛−コバルト合金等で構成した防錆処理層5を形成した後に、片面若しくは両面に形成するものである。そして、このクロメート処理層6が存在することで、表面処理銅箔の耐酸化性能を著しく向上させ、酸化変色などのコスメティックコロージョンを効果的に防止するのである。   The chromate treatment layer 6 is formed on one side or both sides after the rust prevention treatment layer 5 made of zinc-nickel alloy or zinc-cobalt alloy is formed. The presence of the chromate treatment layer 6 significantly improves the oxidation resistance of the surface-treated copper foil, and effectively prevents cosmetic corrosion such as oxidative discoloration.

<灰色化処理面を備える表面処理銅箔の製造方法>
(第1表面処理銅箔の製造方法) 上述した第1表面処理銅箔の製造方法は、以下のような工程を含む製造方法を採用することが望ましい。この製造方法は、攪拌浴を採用することを前提としている。
<Manufacturing method of surface-treated copper foil provided with a grayed surface>
(Manufacturing method of a 1st surface treatment copper foil) As for the manufacturing method of the 1st surface treatment copper foil mentioned above, it is desirable to employ | adopt the manufacturing method including the following processes. This manufacturing method is premised on employing a stirring bath.

本件発明に係る表面処理銅箔の製造方法で用いる銅箔は、上述したように硫酸コバルトメッキ層を形成する反対面に粗化処理を行っているか否かは問われないものである。ここで念のために記載しておくが、粗化処理を施す場合の条件に特段の限定はなく、例えば、この極微細銅粒を形成する場合には、一般に砒素を含んだ銅電解液が用いることが可能である。例えば、硫酸銅系溶液であって、銅濃度5〜10g/l、硫酸濃度100〜120g/l、塩素濃度20〜30ppm、9−フェニルアクリジン50〜300mg/l、液温30〜40℃、電流密度5〜20A/dmの条件とする等である。 It does not matter whether the copper foil used in the method for producing a surface-treated copper foil according to the present invention is subjected to a roughening treatment on the opposite surface on which the cobalt sulfate plating layer is formed as described above. Here, as a precaution, there is no particular limitation on the conditions when the roughening treatment is performed. For example, in the case of forming the ultrafine copper grains, a copper electrolyte containing arsenic is generally used. It is possible to use. For example, a copper sulfate-based solution, copper concentration 5 to 10 g / l, sulfuric acid concentration 100 to 120 g / l, chlorine concentration 20 to 30 ppm, 9-phenylacridine 50 to 300 mg / l, liquid temperature 30 to 40 ° C., current For example, the density is 5 to 20 A / dm 2 .

a)の工程では、上述した銅箔の粗面に、硫酸コバルト(7水和物)を10g/l〜40g/l含み、pHを4.0以上、液温30℃以下とした硫酸コバルトメッキ液を攪拌浴として用い、4A/dm以下の電流密度で電解して、灰色の硫酸コバルトメッキ層を形成するのである。即ち、ここで第1表面処理銅箔の製造方法Aと根本的に異なるのは、硫酸コバルトメッキを行う際の前記硫酸コバルトメッキ液を攪拌しつつ電解する点である。この硫酸コバルト濃度は、硫酸コバルト濃度が低いほど、良好な灰色化状態を作り出すことが可能という傾向にある。しかしながら、硫酸コバルトメッキ液中の硫酸コバルト(7水和物)が10g/l未満となると、攪拌浴を採用して形成する硫酸コバルトメッキ層の電着速度が遅くなり、しかも、硫酸ニッケル層の厚さが不均一となる傾向が強くなり工業的生産性に欠ける結果となるのである。これに対し、硫酸コバルト(7水和物)が40g/lを超えると、形成される硫酸コバルトメッキ層が緻密な凹凸を形成しにくくなり、結果として良好な灰色状態では無くなるのである。 In the step a), cobalt sulfate plating including 10 g / l to 40 g / l of cobalt sulfate (7 hydrate) on the rough surface of the copper foil described above, having a pH of 4.0 or more and a liquid temperature of 30 ° C. or less. The solution is used as a stirring bath and electrolyzed at a current density of 4 A / dm 2 or less to form a gray cobalt sulfate plating layer. That is, the fundamental difference from the manufacturing method A of the first surface-treated copper foil is that the cobalt sulfate plating solution used for cobalt sulfate plating is electrolyzed while stirring. The cobalt sulfate concentration tends to create a better grayed state as the cobalt sulfate concentration is lower. However, when the cobalt sulfate (7 hydrate) in the cobalt sulfate plating solution is less than 10 g / l, the electrodeposition rate of the cobalt sulfate plating layer formed by using the stirring bath becomes slow, and the nickel sulfate layer This tends to make the thickness non-uniform, resulting in a lack of industrial productivity. On the other hand, when cobalt sulfate (7 hydrate) exceeds 40 g / l, the formed cobalt sulfate plating layer is difficult to form dense irregularities, and as a result, it is not in a good gray state.

また、このときの硫酸コバルトメッキ液の溶液pHは4.0以上の範囲を目標に調整するのが好ましいのである。そして、より好ましくは4.5〜5.5の範囲である。この範囲において、歩留まり良く、良好な灰色のコバルトメッキ層を得ることが出来るのである。このpH調整を行おうとして、水酸化ナトリウム又は水酸化カリウム等の他の電解質を添加することは好ましくない。コバルトメッキ層の灰色に金属色が加わりやすくなるのである。   At this time, the solution pH of the cobalt sulfate plating solution is preferably adjusted to a range of 4.0 or more. And more preferably, it is the range of 4.5-5.5. Within this range, a good gray cobalt plating layer can be obtained with good yield. It is not preferable to add another electrolyte such as sodium hydroxide or potassium hydroxide in order to adjust the pH. It is easy to add a metallic color to the gray of the cobalt plating layer.

従って、溶液pHは、溶液中の金属イオン濃度を一定に維持することによって、結果として4.0以上の範囲で安定化させるのである。このように溶液中のコバルトイオン濃度を安定化させるためには、溶解性のコバルト電極を用い電着したコバルトイオン分を溶解供給させるか、金属イオン濃度を連続的にモニターして水酸化コバルトを用いて適宜添加することで、コバルトイオン濃度を安定化する手法等を採用することが望ましい。   Therefore, the solution pH is stabilized in the range of 4.0 or more as a result by keeping the metal ion concentration in the solution constant. In order to stabilize the cobalt ion concentration in the solution in this way, the cobalt ion content electrodeposited by using a soluble cobalt electrode is dissolved or supplied, or the metal ion concentration is continuously monitored for cobalt hydroxide. It is desirable to adopt a technique for stabilizing the cobalt ion concentration by appropriately using and adding.

そして、このときの硫酸コバルトメッキ液は、その液温を30℃以下として用いることが好ましいのである。このときの液温は、低いほど良好な灰色化処理面を得ることが出来る傾向にある。液温を30℃以下に設定すれば、上記第1表面処理銅箔の製造方法Aで、粗化処理のない銅箔表面に黒色化処理を施した以上に良好な灰色化処理面を得ることが可能となるのである。   The cobalt sulfate plating solution at this time is preferably used at a liquid temperature of 30 ° C. or lower. At this time, the lower the liquid temperature, the better the grayed surface. If the liquid temperature is set to 30 ° C. or lower, in the first surface-treated copper foil production method A, a better grayed surface can be obtained than when the surface of the copper foil without the roughening treatment is blackened. Is possible.

このときの攪拌は、攪拌した結果の溶液の流速が、20cm/s〜40cm/sの範囲とすることが好ましい。溶液の流速が20cm/s未満の場合には、上記溶液組成に於いて、電着させるコバルトの被着面へのイオン供給が遅くなり、電着に要する時間が長くなり、しかも得られる灰色化処理表面の色調にバラツキが生じやすいのである。一方、溶液の流速が40cm/sを超える場合には、攪拌によるイオン供給速度が大きくなりすぎて、灰色化処理表面が黒色化に近くなり、しかも、金属光沢が強くなり、本件発明の目的とするところである灰色化処理表面ではなくなるのである。   The stirring at this time is preferably such that the flow rate of the solution resulting from the stirring is in the range of 20 cm / s to 40 cm / s. When the flow rate of the solution is less than 20 cm / s, in the above solution composition, the ion supply to the deposition surface of cobalt to be electrodeposited becomes slow, the time required for electrodeposition becomes long, and the obtained graying Variations in the color of the treated surface are likely to occur. On the other hand, when the flow rate of the solution exceeds 40 cm / s, the ion supply rate by stirring becomes too high, the graying treatment surface becomes close to blackening, and the metallic luster becomes strong. It is no longer the graying surface where it is.

電解を行うときの電流密度には、4A/dm以下の電流を用いるのである。この範囲において、銅箔表面を粗化処理しなくても、有機材等との密着性に優れた良好な微細凹凸をもつ硫酸コバルトメッキ層が形成できるのである。通常、凹凸のある黒色系のメッキ表面を得ようとすると、過剰なヤケメッキ領域に入る電解電流を流す方法が採用される。しかしながら、ここでは電解に用いる電流密度が小さなものである程、安定的に良好な灰色化処理が可能となる傾向がある。従って、可能な限り小さな電流密度を採用すればよいのであるが、工業的な生産性を考慮すれば電流密度0.5A/dmを下限値と判断できるのである。一方、電流密度が4A/dmを超えると、黒色化処理に近い色調が得られる傾向にあり、この製造方法を採用する意味が没却することとなるのである。しかも、上述した電流密度の範囲で形成した灰色化処理表面は、そこから粉落ち現象が起こることもないのである。 A current of 4 A / dm 2 or less is used as the current density when electrolysis is performed. Within this range, it is possible to form a cobalt sulfate plating layer having good fine irregularities with excellent adhesion to an organic material or the like without roughening the copper foil surface. Usually, in order to obtain an uneven black plating surface, a method of flowing an electrolytic current that enters an excessive burn plating region is employed. However, here, the smaller the current density used for electrolysis, the more stable graying tends to be possible. Therefore, a current density as small as possible should be adopted, but a current density of 0.5 A / dm 2 can be determined as the lower limit value in consideration of industrial productivity. On the other hand, if the current density exceeds 4 A / dm 2 , a color tone close to blackening tends to be obtained, and the meaning of adopting this manufacturing method will be lost. Moreover, the graying-treated surface formed in the above-described current density range does not cause a powder falling phenomenon.

b)の工程では、以上の工程を経た銅箔を、水洗し、乾燥することで硫酸コバルトメッキ層を灰色化処理面とする表面処理銅箔を得るのである。ここでの水洗方法、乾燥方法に特段の限定はなく、通常考えられる方式を採用することが可能である。   In the step b), the copper foil subjected to the above steps is washed with water and dried to obtain a surface-treated copper foil having a cobalt sulfate plating layer as a grayed surface. There is no particular limitation on the washing method and the drying method here, and it is possible to adopt a generally considered method.

(第2表面処理銅箔の製造方法)
第2表面処理銅箔の場合には、上述の第1表面処理銅箔の製造方法と同様に、硫酸コバルトメッキ層を灰色化処理面とする表面処理銅箔を製造し、その後、防錆処理層の形成を行うのである。従って、製造フローは「a)銅箔の光沢面に灰色の硫酸コバルトメッキ層を形成する。 b)灰色の硫酸コバルトメッキ層を形成した銅箔の両面若しくは片面に防錆処理層を形成する。 c)その後、水洗し、乾燥する。」となる。即ち、第1表面処理銅箔の製造方法に防錆処理層の形成工程が増えたに過ぎないものである。
(Method for producing second surface-treated copper foil)
In the case of the second surface-treated copper foil, a surface-treated copper foil having a cobalt sulfate plating layer as a grayed surface is produced in the same manner as the above-described method for producing the first surface-treated copper foil. Layer formation is performed. Therefore, the manufacturing flow is “a) forming a gray cobalt sulfate plating layer on the glossy surface of the copper foil. B) forming a rust prevention treatment layer on both sides or one side of the copper foil on which the gray cobalt sulfate plating layer is formed. c) Then, it is washed with water and dried. " That is, only the formation process of the antirust process layer increased in the manufacturing method of the 1st surface treatment copper foil.

よって、ここでは防錆処理層の形成工程に関してのみ説明する。灰色の硫酸コバルトメッキ層の形成が終了した銅箔の両面若しくは片面に、防錆処理層を形成するのである。従来知られたイミダゾール、ベンゾトリアゾール等の有機防錆、一般的に用いられている亜鉛又は真鍮等の亜鉛合金による無機防錆等を用いる場合に関しては、特に説明を要するものでは無く常法に従えばよいと考え、ここでの詳細な説明は省略する。   Therefore, only the formation process of the antirust treatment layer will be described here. The antirust treatment layer is formed on both sides or one side of the copper foil after the formation of the gray cobalt sulfate plating layer. In the case of using conventionally known organic rust preventives such as imidazole and benzotriazole, and inorganic rust preventives such as commonly used zinc alloys such as zinc or brass, no special explanation is required and conventional methods are followed. Detailed explanation here is omitted.

以下、防錆処理層を亜鉛−ニッケル合金メッキ液又は亜鉛−コバルト合金メッキ液を用いてメッキ処理して形成する場合に関して述べることとする。最初に、亜鉛−ニッケル合金メッキに関して説明する。ここで用いる亜鉛−ニッケル合金メッキ液に特に限定はないが、一例を挙げれば、硫酸ニッケルを用いニッケル濃度が1〜2.5g/l、ピロリン酸亜鉛を用いて亜鉛濃度が0.1〜1g/l、ピロリン酸カリウム50〜500g/l、液温20〜50℃、pH8〜11、電流密度0.3〜10A/dmの条件等を採用するのである。 Hereinafter, the case where the antirust treatment layer is formed by plating using a zinc-nickel alloy plating solution or a zinc-cobalt alloy plating solution will be described. First, the zinc-nickel alloy plating will be described. The zinc-nickel alloy plating solution used here is not particularly limited. For example, nickel sulfate is used to have a nickel concentration of 1 to 2.5 g / l, and zinc pyrophosphate is used to have a zinc concentration of 0.1 to 1 g. / L, potassium pyrophosphate 50-500 g / l, liquid temperature 20-50 ° C., pH 8-11, current density 0.3-10 A / dm 2 , etc. are adopted.

次に、亜鉛−コバルト合金メッキに関して説明する。ここで用いる亜鉛−コバルト合金メッキ液に特に限定はないが、一例を挙げれば、硫酸コバルトを用いコバルト濃度が1〜2.5g/l、ピロリン酸亜鉛を用いて亜鉛濃度が0.1〜1g/l、ピロリン酸カリウム50〜500g/l、液温20〜50℃、pH8〜11、電流密度0.3〜10A/dmの条件等を採用するのである。この亜鉛−コバルト合金メッキと後述するクロメ−ト処理とを組み合わせた防錆処理層は、特に優れた耐蝕性能を示すのである。 Next, zinc-cobalt alloy plating will be described. The zinc-cobalt alloy plating solution used here is not particularly limited. For example, cobalt sulfate is used to have a cobalt concentration of 1 to 2.5 g / l, and zinc pyrophosphate is used to have a zinc concentration of 0.1 to 1 g. / L, potassium pyrophosphate 50-500 g / l, liquid temperature 20-50 ° C., pH 8-11, current density 0.3-10 A / dm 2 , etc. are adopted. The anticorrosion treatment layer combining this zinc-cobalt alloy plating and the chromate treatment described later exhibits particularly excellent corrosion resistance.

第2表面処理銅箔の場合には、銅箔の表面に亜鉛−ニッケル合金層又は亜鉛−コバルト合金層等を形成した後に、クロメート層を形成すれば、より優れた耐蝕性を得ることが可能となるのである。即ち、上述の防錆処理層の形成後に、クロメート処理工程を設ければよいのである。このクロメート処理工程では、クロメート溶液と当該銅箔表面とを接触させての置換処理でも、クロメート溶液中で電解してクロメート被膜を形成する電解クロメート処理のいずれの方法を採用しても構わないのである。また、ここで用いるクロメート溶液に関しても、常法で用いられる範囲のものを使用することが可能である。そして、その後、水洗し、乾燥することで灰色化処理面を備える表面処理銅箔を得るのである。   In the case of the second surface-treated copper foil, if a chromate layer is formed after forming a zinc-nickel alloy layer or a zinc-cobalt alloy layer on the surface of the copper foil, it is possible to obtain better corrosion resistance. It becomes. That is, a chromate treatment process may be provided after the formation of the above-mentioned rust prevention treatment layer. In this chromate treatment step, either a substitution treatment in which the chromate solution is brought into contact with the copper foil surface or an electrolytic chromate treatment in which a chromate film is formed by electrolysis in the chromate solution may be employed. is there. Also, the chromate solution used here can be in the range used in the usual method. And after that, a surface-treated copper foil provided with a graying surface is obtained by washing with water and drying.

<電磁波遮蔽導電性メッシュ> 以上に述べてきた本件発明に係る灰色化処理面を備えた表面処理銅箔は、灰色化処理面からの粉落ちがなく、しかも、良好な灰色を持ちつつも、その灰色化処理層は通常の銅エッチングプロセスでエッチング除去が可能である。よって、プリント配線板を製造するプロセスを使用して、容易に任意の形状に加工することが可能である。これらのことを考えると、プラズマディスプレイパネルの前面パネルに組み込まれる電磁波遮蔽導電性メッシュの用途に最適なものと言えるのである。 <Electromagnetic wave shielding conductive mesh> The surface-treated copper foil provided with the graying surface according to the present invention described above has no powder fall off from the graying surface, and has a good gray, The grayed layer can be etched away by a normal copper etching process. Therefore, it can be easily processed into an arbitrary shape by using a process for manufacturing a printed wiring board. Considering these things, it can be said that the electromagnetic wave shielding conductive mesh incorporated in the front panel of the plasma display panel is most suitable for use.

本件発明に係る灰色化処理面を備えた表面処理銅箔は、硫酸コバルトメッキ層が非常に薄いものであるにも拘わらず、プラズマディスプレイパネルの前面パネルの電磁波遮蔽導電性メッシュ用途に耐えるだけの良好な灰色を呈している。そして、コバルト含有量が少ないため、エッチング特性が良好であり、しかも、通常の塩化鉄、硫酸−過酸化水素系の銅エッチング液の力価を下げることなく、溶液寿命を長期化させることが可能となるのである。   The surface-treated copper foil having a grayed surface according to the present invention can only withstand electromagnetic wave shielding conductive mesh applications for the front panel of a plasma display panel, despite the fact that the cobalt sulfate plating layer is very thin. It has a good gray color. And since the cobalt content is low, the etching characteristics are good, and the life of the solution can be extended without lowering the titer of ordinary iron chloride and sulfuric acid-hydrogen peroxide copper etchants. It becomes.

また、本件発明に係る表面処理銅箔の製造方法は、上記表面処理銅箔を歩留まり良く製造することが可能であり、上述した製造条件を採用して形成した硫酸コバルトメッキ層が最も効率よく、銅のエッチング液に溶解するのである。   Moreover, the method for producing a surface-treated copper foil according to the present invention is capable of producing the surface-treated copper foil with a high yield, and the cobalt sulfate plating layer formed by adopting the production conditions described above is most efficient, It dissolves in copper etchant.

以下に、上述してきた灰色化処理面を備えた表面処理銅箔を製造し、銅エッチング液を用いて電磁波遮蔽導電性メッシュを製造した結果を示すこととする。   Below, the surface-treated copper foil provided with the graying process surface mentioned above is manufactured, and suppose that the result of having manufactured the electromagnetic wave shielding electroconductive mesh using copper etching liquid is shown.

本実施形態では、図1に示した第1表面処理銅箔1aを製造し、電磁波遮蔽導電性メッシュ形状をエッチング法で試験的に製造しエッチング性能を確認した。   In this embodiment, the 1st surface treatment copper foil 1a shown in FIG. 1 was manufactured, the electromagnetic wave shielding electroconductive mesh shape was manufactured experimentally by the etching method, and the etching performance was confirmed.

本実施形態では、硫酸銅溶液を電解することにより得られた公称厚さ15μmの銅箔を用いた。そして、銅箔を、硫酸濃度150g/l、液温30℃の希硫酸溶液を用いて、この溶液に30秒浸漬して、表面の清浄化を行った。   In this embodiment, a copper foil having a nominal thickness of 15 μm obtained by electrolyzing a copper sulfate solution was used. The copper foil was immersed in this solution for 30 seconds using a dilute sulfuric acid solution having a sulfuric acid concentration of 150 g / l and a liquid temperature of 30 ° C. to clean the surface.

そして、公称厚さ15μm電解銅箔の光沢面に粗化処理を施した。このときの粗化処理は、この微細銅粒3を銅箔7の片面に付着形成するものであり、硫酸銅系溶液であって、濃度が銅10g/l、硫酸100g/l、塩素25ppm、9−フェニルアクリジン140mg/lの溶液、液温38℃、電流密度15A/dm、電解時間2秒の電解条件を採用した。その粗化処理した銅箔表面を表したのが図10である。 And the roughening process was performed to the glossy surface of the nominal thickness 15 micrometer electrolytic copper foil. The roughening treatment at this time is to form the fine copper particles 3 on one side of the copper foil 7, and is a copper sulfate-based solution having a concentration of 10 g / l copper, 100 g / l sulfuric acid, 25 ppm chlorine, An electrolysis condition of 9-phenylacridine 140 mg / l, a liquid temperature of 38 ° C., a current density of 15 A / dm 2 , and an electrolysis time of 2 seconds was employed. FIG. 10 shows the surface of the roughened copper foil.

a)工程として、当該電解銅箔の粗面上に、a)工程として、硫酸コバルトメッキ層を形成した。硫酸コバルトメッキ層の形成は、硫酸コバルト(7水和物)を20g/l、pHを5.5に調整し、液温27℃とした硫酸コバルトメッキ液を攪拌浴として用い、1A/dmの電流密度で12秒間電解することにより、灰色の硫酸コバルトメッキ層(換算厚さが270mg/m)として形成したのである。このとき溶液中のコバルトイオン濃度の調整は特に行っていない。短時間電解であるため金属イオン濃度の調整は不要と考えたためである。図11及び図12に形成した硫酸コバルトメッキ層を示している。図11は低倍率観察した走査型電子顕微鏡像であり、図12は高倍率観察した走査型電子顕微鏡像である。この図12から明瞭に分かるように、下地の電解銅箔の粗面形状が明確に把握でき、灰色化処理層自体は極めて薄いものであることが理解できるのである。 In step a), a cobalt sulfate plating layer was formed on the rough surface of the electrolytic copper foil as step a). The cobalt sulfate plating layer is formed by using a cobalt sulfate plating solution adjusted to 20 g / l of cobalt sulfate (7 hydrate), pH of 5.5, and a liquid temperature of 27 ° C. as a stirring bath, 1 A / dm 2 Thus, a gray cobalt sulfate plating layer (converted thickness: 270 mg / m 2 ) was formed by electrolysis at a current density of 12 seconds. At this time, the adjustment of the cobalt ion concentration in the solution is not particularly performed. This is because it was considered that it was unnecessary to adjust the metal ion concentration because of the short-time electrolysis. 11 and 12 show the cobalt sulfate plating layer formed. FIG. 11 is a scanning electron microscope image observed at a low magnification, and FIG. 12 is a scanning electron microscope image observed at a high magnification. As can be clearly seen from FIG. 12, the rough surface shape of the underlying electrolytic copper foil can be clearly understood, and it can be understood that the graying treatment layer itself is extremely thin.

b)の工程として、十分に純水をシャワーリングして洗浄し、電熱器より雰囲気温度を150℃とした乾燥炉内に4秒間滞留させ、水分をとばし、非常に良好な色調の灰色化処理面を備えた表面処理銅箔1aを得た。なお、上述した各工程間には、原則、15秒間の純水による水洗工程を設け、前処理工程の溶液の持ち込みを防止している。   As the process of b), the pure water is sufficiently washed by showering, and is kept in a drying furnace with an atmospheric temperature of 150 ° C. for 4 seconds from an electric heater to remove moisture, and a graying treatment with a very good color tone. A surface-treated copper foil 1a having a surface was obtained. In addition, in principle, a water washing step with pure water for 15 seconds is provided between the steps described above to prevent the solution from being brought into the pretreatment step.

<表面処理銅箔の物性>
以上の工程を経て得られた灰色化処理面を備える表面処理銅箔の断面をFIB装置で観察した結果、図3に示す断面が得られており、当該灰色化処理面の断面高さ(d)が80nmであり、当該灰色化処理面のLab表色系におけるL値が41、光沢度[Gs(60°)]が2.5であった。また、灰色化処理面に色ムラは見られず、当該表面に粘着性テープを貼り、引き剥がすことによるテープテストでの粉落ちも確認できなかった。
<Physical properties of surface-treated copper foil>
As a result of observing the cross-section of the surface-treated copper foil provided with the grayed surface obtained through the above steps with a FIB apparatus, the cross-section shown in FIG. 3 was obtained, and the cross-sectional height (d ) Was 80 nm, the L value in the Lab color system of the grayed surface was 41, and the glossiness [Gs (60 °)] was 2.5. Further, no color unevenness was observed on the grayed surface, and no powder fall off was confirmed in the tape test by sticking and peeling the adhesive tape on the surface.

更に、得られた表面処理銅箔の灰色化処理面が、プラズマディスプレイ用の電磁波遮蔽メッシュに加工され、透明化処理を施されたときに黒色化して見えるか否かの判断をおこなった。透明樹脂被膜を形成する前の灰色化処理面の黒濃度は0.9であり、この灰色化処理面に透明樹脂被膜としてエポキシ系樹脂を塗布し、乾燥し硬化させ、硬化したエポキシ樹脂層を透して灰色化処理面の変化した色調を観察するという代替法を採用した。その結果、灰色化処理面は黒濃度が1.5の黒色として観察できた。   Furthermore, it was judged whether the grayed surface of the obtained surface-treated copper foil was processed into an electromagnetic wave shielding mesh for plasma display and turned black when subjected to a transparent treatment. The black density of the grayed surface before forming the transparent resin film is 0.9, and an epoxy resin is applied to the grayed surface as a transparent resin film, dried and cured, and the cured epoxy resin layer is formed. An alternative method of observing the changed color tone of the grayed surface through was adopted. As a result, the grayed surface was observed as black with a black density of 1.5.

<プラズマディスプレイ用の電磁波遮蔽メッシュの製造>
以上のようにして得られた表面処理銅箔の両面にエッチングレジストとなるドライフィルムを張り合わせた。そして、灰色化処理面側のドライフィルムにのみ、電磁波遮蔽導電性メッシュを試作するための試験用のマスクフィルムを重ねて、メッシュピッチ200μm、メッシュ線幅10μm、メッシュバイアス角度45°であり、周囲にメッシュ電極部を備える導電性メッシュパターンを紫外線露光した。このとき、同時に反対面のエッチングレジスト層の全面にも、紫外線露光することにより、後の現像により除去できないものとした。その後、アルカリ溶液を用いて現像し、エッチングパターンを形成した。
<Manufacture of electromagnetic shielding mesh for plasma display>
A dry film serving as an etching resist was bonded to both surfaces of the surface-treated copper foil obtained as described above. Then, only a dry film on the grayed surface side is overlaid with a test mask film for producing an electromagnetic wave shielding conductive mesh, and has a mesh pitch of 200 μm, a mesh line width of 10 μm, and a mesh bias angle of 45 °. A conductive mesh pattern having a mesh electrode portion was exposed to ultraviolet rays. At this time, the entire surface of the etching resist layer on the opposite side was also exposed to ultraviolet rays so that it could not be removed by subsequent development. Then, it developed using the alkaline solution and formed the etching pattern.

そして、銅エッチング液である塩化鉄エッチング液を用いて、灰色化処理面側から銅エッチングして、その後、エッチングレジスト層を剥離することにより、電磁波遮蔽導電性メッシュを製造した。その結果、エッチング残りもなく、非常に良好なエッチングが行われた。図13には、エッチング性を評価するためのテストパターン(13μm幅回路)のエッチング状態を示している。この図13から分かるように、エッチング残りもなく、極めてエッチングファクターに優れた美麗な回路が得られている。   Then, using an iron chloride etchant that is a copper etchant, copper etching was performed from the grayed surface side, and then the etching resist layer was peeled off to produce an electromagnetic wave shielding conductive mesh. As a result, there was no etching residue and very good etching was performed. FIG. 13 shows an etching state of a test pattern (13 μm width circuit) for evaluating the etching property. As can be seen from FIG. 13, there is no etching residue and a beautiful circuit having an extremely excellent etching factor is obtained.

本実施例は、図6に示すように、防錆処理層として亜鉛−ニッケル合金層を備えた第2表面処理銅箔1cを製造し、電磁波遮蔽導電性メッシュ形状をエッチング法で試験的に製造しエッチング性能を確認した。従って、硫酸コバルトメッキ層による灰色化処理層を形成するまでは、実施例1と共通するため、防錆処理条件に関してのみ説明する。なお、灰色の硫酸コバルトメッキ層の換算厚さは実施例1と同じく270mg/mである。 In this example, as shown in FIG. 6, a second surface-treated copper foil 1c having a zinc-nickel alloy layer as a rust-proofing layer is produced, and an electromagnetic shielding conductive mesh shape is produced on an experimental basis by an etching method. The etching performance was confirmed. Therefore, since it is common with Example 1 until the graying process layer by a cobalt sulfate plating layer is formed, only rust prevention process conditions are demonstrated. The equivalent thickness of the gray cobalt sulfate plating layer is 270 mg / m 2 as in Example 1.

ここでは実施例1の片面に灰色の硫酸コバルトメッキ層の形成が終了した銅箔の両面に、亜鉛−ニッケル合金メッキ液を用いてメッキ処理して、両面に亜鉛−ニッケル合金層を形成したのである。亜鉛−ニッケル合金層は、硫酸ニッケルを用いニッケル濃度が2.0g/l、ピロリン酸亜鉛を用いて亜鉛濃度が0.5g/l、ピロリン酸カリウム250g/l、液温35℃、pH10、電流密度5A/dmの条件で5秒間電解して、両面に均一且つ平滑に電析させた。 Here, since the plating treatment using the zinc-nickel alloy plating solution was performed on both sides of the copper foil on which the formation of the gray cobalt sulfate plating layer was finished on one side of Example 1, the zinc-nickel alloy layer was formed on both sides. is there. The zinc-nickel alloy layer uses nickel sulfate, nickel concentration is 2.0 g / l, zinc pyrophosphate is used, zinc concentration is 0.5 g / l, potassium pyrophosphate 250 g / l, liquid temperature 35 ° C., pH 10, current Electrolysis was performed for 5 seconds under conditions of a density of 5 A / dm 2 , and electrodeposited uniformly and smoothly on both surfaces.

そして、実施例1と同様に十分に純水をシャワーリングして洗浄し、電熱器より雰囲気温度を150℃とした乾燥炉内に4秒間滞留させ、水分をとばし、非常に良好な色調の灰色化処理面を備えた表面処理銅箔1cを得た。なお、上述した各工程間には、原則、15秒間の純水による水洗工程を設け、前処理工程の溶液の持ち込みを防止している。   Then, the pure water is sufficiently showered and washed in the same manner as in Example 1, and is kept in a drying furnace with an atmospheric temperature of 150 ° C. for 4 seconds from an electric heater to remove moisture, and a gray having a very good color tone. The surface-treated copper foil 1c provided with the chemical treatment surface was obtained. In addition, in principle, a water washing step with pure water for 15 seconds is provided between the steps described above to prevent the solution from being brought into the pretreatment step.

<表面処理銅箔の物性>
以上の工程を経て得られた灰色化処理面を備える表面処理銅箔の断面をFIB装置で観察した結果、図3に示したと同様の断面が得られ、当該灰色化処理面の断面高さが75nmであり、当該灰色化処理面のLab表色系におけるL値が39、光沢度[Gs(60°)]が2.5であった。また、灰色化処理面に色ムラは見られず、当該表面に粘着性テープを貼り、引き剥がすことによるテープテストでの粉落ちも確認できなかった。
<Physical properties of surface-treated copper foil>
As a result of observing the cross-section of the surface-treated copper foil provided with the graying surface obtained through the above steps with a FIB apparatus, the same cross-section as shown in FIG. 3 was obtained, and the cross-sectional height of the graying surface was The L value in the Lab color system of the grayed surface was 39, and the glossiness [Gs (60 °)] was 2.5. Further, no color unevenness was observed on the grayed surface, and no powder fall off was confirmed in the tape test by sticking and peeling the adhesive tape on the surface.

更に、得られた表面処理銅箔の灰色化処理面が、プラズマディスプレイ用の電磁波遮蔽メッシュに加工され、透明化処理を施されたときに黒色化して見えるか否かの判断をおこなった。透明樹脂被膜を形成する前の灰色化処理面の黒濃度は0.9であり、実施例1と同様の代替法で評価した結果、灰色化処理面は黒濃度が1.6の黒色として観察できた。   Furthermore, it was judged whether the grayed surface of the obtained surface-treated copper foil was processed into an electromagnetic wave shielding mesh for plasma display and turned black when subjected to a transparent treatment. The black density of the grayed surface before forming the transparent resin film was 0.9, and as a result of evaluation by the same alternative method as in Example 1, the grayed surface was observed as black with a black density of 1.6. did it.

<プラズマディスプレイ用の電磁波遮蔽メッシュの製造>
実施例1と同様に、得られた表面処理銅箔を用いて電磁波遮蔽導電性メッシュを試作した。その結果、防錆処理層が存在していてもエッチング操作に支障なく、エッチング残りもなく、非常に良好なエッチングが行われた。
<Manufacture of electromagnetic shielding mesh for plasma display>
In the same manner as in Example 1, an electromagnetic wave shielding conductive mesh was prototyped using the obtained surface-treated copper foil. As a result, even if a rust preventive layer was present, the etching operation was not hindered and there was no etching residue, and very good etching was performed.

本実施例は、図8に示すように、防錆処理層として亜鉛−ニッケル合金層及びクロメート処理層を備えた第2表面処理銅箔1eを製造し、電磁波遮蔽導電性メッシュ形状をエッチング法で試験的に製造しエッチング性能を確認した。従って、硫酸コバルトメッキ層による灰色化処理層を形成するまでは、実施例1と共通するため、防錆処理条件に関してのみ説明する。なお、灰色の硫酸コバルトメッキ層の換算厚さは実施例1と同じく270mg/mである。 In this embodiment, as shown in FIG. 8, a second surface-treated copper foil 1e having a zinc-nickel alloy layer and a chromate treatment layer as a rust prevention treatment layer is produced, and an electromagnetic wave shielding conductive mesh shape is formed by an etching method. Manufactured experimentally to confirm the etching performance. Therefore, since it is common with Example 1 until the graying process layer by a cobalt sulfate plating layer is formed, only rust prevention process conditions are demonstrated. The equivalent thickness of the gray cobalt sulfate plating layer is 270 mg / m 2 as in Example 1.

防錆処理層の形成は、実施例2と同様にして、亜鉛−ニッケル合金メッキ液を用いて、両面に亜鉛−ニッケル合金層を形成した後に、両面にクロメート処理を行ったのである。ここでは、電解クロメート処理を採用し、電解条件は、クロム酸5.0g/l、pH 11.5、液温35℃、電流密度8A/dm、電解時間5秒とした。 In the same manner as in Example 2, the rust-proofing layer was formed by forming a zinc-nickel alloy layer on both surfaces using a zinc-nickel alloy plating solution and then performing chromate treatment on both surfaces. Here, electrolytic chromate treatment was adopted, and electrolysis conditions were chromic acid 5.0 g / l, pH 11.5, liquid temperature 35 ° C., current density 8 A / dm 2 , and electrolysis time 5 seconds.

そして、クロメート層の形成が終了すると、十分に純水をシャワーリングして洗浄し、電熱器より雰囲気温度を150℃とした乾燥炉内に4秒間滞留させ、水分をとばし、非常に良好な色調の灰色化処理面を備えた表面処理銅箔1eを得た。なお、上述した各工程間には、原則、15秒間の純水による水洗工程を設け、前処理工程の溶液の持ち込みを防止している。   Then, after the formation of the chromate layer is completed, the pure water is sufficiently showered and washed, and is kept in a drying furnace with an atmospheric temperature of 150 ° C. for 4 seconds from an electric heater, and moisture is removed. A surface-treated copper foil 1e having a graying surface was obtained. In addition, in principle, a water washing step with pure water for 15 seconds is provided between the steps described above to prevent the solution from being brought into the pretreatment step.

<表面処理銅箔の物性>
以上の工程を経て得られた灰色化処理面を備える表面処理銅箔の断面をFIB装置で観察した結果、図3に示したと同様の断面が得られ、当該灰色化処理面の断面高さが75nmであり、当該灰色化処理面のLab表色系におけるL値が40、光沢度[Gs(60°)]が2.3であった。また、灰色化処理面に色ムラは見られず、当該表面に粘着性テープを貼り、引き剥がすことによるテープテストでの粉落ちも確認できなかった。
<Physical properties of surface-treated copper foil>
As a result of observing the cross-section of the surface-treated copper foil provided with the graying surface obtained through the above steps with a FIB apparatus, the same cross-section as shown in FIG. 3 was obtained, and the cross-sectional height of the graying surface was The L value in the Lab color system of the grayed surface was 40, and the glossiness [Gs (60 °)] was 2.3. Further, no color unevenness was observed on the grayed surface, and no powder fall off was confirmed in the tape test by sticking and peeling the adhesive tape on the surface.

更に、得られた表面処理銅箔の灰色化処理面が、プラズマディスプレイ用の電磁波遮蔽メッシュに加工され、透明化処理を施されたときに黒色化して見えるか否かの判断をおこなった。透明樹脂被膜を形成する前の灰色化処理面の黒濃度は0.9であり、実施例1と同様の代替法で評価した結果、灰色化処理面は黒濃度が1.5の黒色として観察できた。   Furthermore, it was judged whether the grayed surface of the obtained surface-treated copper foil was processed into an electromagnetic wave shielding mesh for plasma display and turned black when subjected to a transparent treatment. The black density of the grayed surface before forming the transparent resin film was 0.9, and as a result of evaluation by the same alternative method as in Example 1, the grayed surface was observed as black with a black density of 1.5. did it.

<プラズマディスプレイ用の電磁波遮蔽メッシュの製造>
実施例1と同様に、得られた表面処理銅箔を用いて電磁波遮蔽導電性メッシュを試作した。その結果、防錆処理層が存在していてもエッチング操作に支障なく、エッチング残りもなく、非常に良好なエッチングが行われた。
<Manufacture of electromagnetic shielding mesh for plasma display>
In the same manner as in Example 1, an electromagnetic wave shielding conductive mesh was prototyped using the obtained surface-treated copper foil. As a result, even if a rust preventive layer was present, the etching operation was not hindered and there was no etching residue, and very good etching was performed.

本実施例は、図6に示すように、防錆処理層として亜鉛−コバルト合金層を備えた第2表面処理銅箔1cを製造し、電磁波遮蔽導電性メッシュ形状をエッチング法で試験的に製造しエッチング性能を確認した。従って、硫酸コバルトメッキ層による灰色化処理層を形成するまでは、実施例1と共通するため、防錆処理条件に関してのみ説明する。なお、灰色の硫酸コバルトメッキ層の換算厚さは実施例1と同じく270mg/mである。 In this embodiment, as shown in FIG. 6, a second surface-treated copper foil 1c having a zinc-cobalt alloy layer as a rust-proofing layer is produced, and an electromagnetic shielding conductive mesh shape is produced on an experimental basis by an etching method. The etching performance was confirmed. Therefore, since it is common with Example 1 until the graying process layer by a cobalt sulfate plating layer is formed, only rust prevention process conditions are demonstrated. The equivalent thickness of the gray cobalt sulfate plating layer is 270 mg / m 2 as in Example 1.

ここでは実施例1の光沢面に灰色の硫酸コバルトメッキ層の形成が終了した銅箔の両面に、亜鉛−コバルト合金メッキ液を用いてメッキ処理して、両面に亜鉛−コバルト合金層を形成したのである。亜鉛−コバルト合金層は、硫酸コバルトを用いコバルト濃度が2.0g/l、ピロリン酸亜鉛を用いて亜鉛濃度が0.5g/l、ピロリン酸カリウム250g/l、液温35℃、pH10、電流密度5A/dmの条件で5秒間電解して、両面に均一且つ平滑に電析させた。 Here, plating was performed using a zinc-cobalt alloy plating solution on both sides of the copper foil on which the formation of the gray cobalt sulfate plating layer was completed on the glossy surface of Example 1, and a zinc-cobalt alloy layer was formed on both sides. It is. The zinc-cobalt alloy layer uses cobalt sulfate, the cobalt concentration is 2.0 g / l, zinc pyrophosphate is used, the zinc concentration is 0.5 g / l, potassium pyrophosphate 250 g / l, liquid temperature 35 ° C., pH 10, current Electrolysis was performed for 5 seconds under conditions of a density of 5 A / dm 2 , and electrodeposited uniformly and smoothly on both surfaces.

そして、実施例1と同様に十分に純水をシャワーリングして洗浄し、電熱器より雰囲気温度を150℃とした乾燥炉内に4秒間滞留させ、水分をとばし、非常に良好な色調の灰色化処理面を備えた表面処理銅箔1cを得た。なお、上述した各工程間には、原則、15秒間の純水による水洗工程を設け、前処理工程の溶液の持ち込みを防止している。   Then, the pure water is sufficiently showered and washed in the same manner as in Example 1, and is kept in a drying furnace with an atmospheric temperature of 150 ° C. for 4 seconds from an electric heater to remove moisture, and a gray having a very good color tone. The surface-treated copper foil 1c provided with the chemical treatment surface was obtained. In addition, in principle, a water washing step with pure water for 15 seconds is provided between the steps described above to prevent the solution from being brought into the pretreatment step.

<表面処理銅箔の物性>
以上の工程を経て得られた灰色化処理面を備える表面処理銅箔の断面をFIB装置で観察した結果、図3に示したと同様の断面が得られ、当該灰色化処理面の断面高さが80nmであり、当該灰色化処理面のLab表色系におけるL値が40、光沢度[Gs(60°)]が2.5であった。また、灰色化処理面に色ムラは見られず、当該表面に粘着性テープを貼り、引き剥がすことによるテープテストでの粉落ちも確認できなかった。
<Physical properties of surface-treated copper foil>
As a result of observing the cross-section of the surface-treated copper foil provided with the graying surface obtained through the above steps with a FIB apparatus, the same cross-section as shown in FIG. 3 was obtained, and the cross-sectional height of the graying surface was The L value in the Lab color system of the grayed surface was 40, and the glossiness [Gs (60 °)] was 2.5. Further, no color unevenness was observed on the grayed surface, and no powder fall off was confirmed in the tape test by sticking and peeling the adhesive tape on the surface.

更に、得られた表面処理銅箔の灰色化処理面が、プラズマディスプレイ用の電磁波遮蔽メッシュに加工され、透明化処理を施されたときに黒色化して見えるか否かの判断をおこなった。透明樹脂被膜を形成する前の灰色化処理面の黒濃度は0.93であり、実施例1と同様の代替法で評価した結果、灰色化処理面は黒濃度が1.6の黒色として観察できた。   Furthermore, it was judged whether the grayed surface of the obtained surface-treated copper foil was processed into an electromagnetic wave shielding mesh for plasma display and turned black when subjected to a transparent treatment. The black density of the grayed surface before forming the transparent resin coating was 0.93, and as a result of evaluation by the same alternative method as in Example 1, the grayed surface was observed as black with a black density of 1.6. did it.

<プラズマディスプレイ用の電磁波遮蔽メッシュの製造>
実施例1と同様に、得られた表面処理銅箔を用いて電磁波遮蔽導電性メッシュを試作した。その結果、防錆処理層が存在していてもエッチング操作に支障なく、エッチング残りもなく、非常に良好なエッチングが行われた。
<Manufacture of electromagnetic shielding mesh for plasma display>
In the same manner as in Example 1, an electromagnetic wave shielding conductive mesh was prototyped using the obtained surface-treated copper foil. As a result, even if a rust preventive layer was present, the etching operation was not hindered and there was no etching residue, and very good etching was performed.

本実施例は、図8に示すように、防錆処理層として亜鉛−コバルト合金層及びクロメート処理層を備えた第2表面処理銅箔1eを製造し、電磁波遮蔽導電性メッシュ形状をエッチング法で試験的に製造しエッチング性能を確認した。従って、硫酸コバルトメッキ層による灰色化処理層を形成するまでは、実施例1と共通するため、防錆処理条件に関してのみ説明する。なお、灰色の硫酸コバルトメッキ層の換算厚さは実施例1と同じく270mg/mである。 In this example, as shown in FIG. 8, a second surface-treated copper foil 1e having a zinc-cobalt alloy layer and a chromate-treated layer as a rust-proof treated layer is produced, and an electromagnetic shielding conductive mesh shape is formed by an etching method. Manufactured experimentally to confirm the etching performance. Therefore, since it is common with Example 1 until the graying process layer by a cobalt sulfate plating layer is formed, only rust prevention process conditions are demonstrated. The equivalent thickness of the gray cobalt sulfate plating layer is 270 mg / m 2 as in Example 1.

防錆処理層の形成は、実施例4と同様にして、亜鉛−コバルト合金メッキ液を用いて、両面に亜鉛−コバルト合金層を形成した後に、両面にクロメート処理を行ったのである。ここでは、電解クロメート処理を採用し、電解条件は、クロム酸5.0g/l、pH 11.5、液温35℃、電流密度8A/dm、電解時間5秒とした。 In the same manner as in Example 4, the antirust treatment layer was formed by forming a zinc-cobalt alloy layer on both sides using a zinc-cobalt alloy plating solution, and then performing chromate treatment on both sides. Here, electrolytic chromate treatment was adopted, and electrolysis conditions were chromic acid 5.0 g / l, pH 11.5, liquid temperature 35 ° C., current density 8 A / dm 2 , and electrolysis time 5 seconds.

そして、クロメート層の形成が終了すると、十分に純水をシャワーリングして洗浄し、電熱器より雰囲気温度を150℃とした乾燥炉内に4秒間滞留させ、水分をとばし、非常に良好な色調の灰色化処理面を備えた表面処理銅箔1eを得た。なお、上述した各工程間には、原則、15秒間の純水による水洗工程を設け、前処理工程の溶液の持ち込みを防止している。   Then, after the formation of the chromate layer is completed, the pure water is sufficiently showered and washed, and is kept in a drying furnace with an atmospheric temperature of 150 ° C. for 4 seconds from an electric heater, and moisture is removed. A surface-treated copper foil 1e having a graying surface was obtained. In addition, in principle, a water washing step with pure water for 15 seconds is provided between the steps described above to prevent the solution from being brought into the pretreatment step.

<表面処理銅箔の物性>
以上の工程を経て得られた灰色化処理面を備える表面処理銅箔の断面をFIB装置で観察した結果、図3に示したと同様の断面が得られ、当該灰色化処理面の断面高さが82nmであり、当該灰色化処理面のLab表色系におけるL値が41、光沢度[Gs(60°)]が2.4であった。また、灰色化処理面に色ムラは見られず、当該表面に粘着性テープを貼り、引き剥がすことによるテープテストでの粉落ちも確認できなかった。
<Physical properties of surface-treated copper foil>
As a result of observing the cross-section of the surface-treated copper foil provided with the graying surface obtained through the above steps with a FIB apparatus, the same cross-section as shown in FIG. 3 was obtained, and the cross-sectional height of the graying surface was The L value in the Lab color system of the grayed surface was 41, and the glossiness [Gs (60 °)] was 2.4. Further, no color unevenness was observed on the grayed surface, and no powder fall off was confirmed in the tape test by sticking and peeling the adhesive tape on the surface.

更に、得られた表面処理銅箔の灰色化処理面が、プラズマディスプレイ用の電磁波遮蔽メッシュに加工され、透明化処理を施されたときに黒色化して見えるか否かの判断をおこなった。透明樹脂被膜を形成する前の灰色化処理面の黒濃度は0.9であり、実施例1と同様の代替法で評価した結果、灰色化処理面は黒濃度が1.6の黒色として観察できた。   Furthermore, it was judged whether the grayed surface of the obtained surface-treated copper foil was processed into an electromagnetic wave shielding mesh for plasma display and turned black when subjected to a transparent treatment. The black density of the grayed surface before forming the transparent resin film was 0.9, and as a result of evaluation by the same alternative method as in Example 1, the grayed surface was observed as black with a black density of 1.6. did it.

<プラズマディスプレイ用の電磁波遮蔽メッシュの製造>
実施例1と同様に、得られた表面処理銅箔を用いて電磁波遮蔽導電性メッシュを試作した。その結果、防錆処理層が存在していてもエッチング操作に支障なく、エッチング残りもなく、非常に良好なエッチングが行われた。
<Manufacture of electromagnetic shielding mesh for plasma display>
In the same manner as in Example 1, an electromagnetic wave shielding conductive mesh was prototyped using the obtained surface-treated copper foil. As a result, even if a rust preventive layer was present, the etching operation was not hindered and there was no etching residue, and very good etching was performed.

本実施例は、実施例1と異なり電解銅箔の粗面に粗化処理を施さずに、以下実施例1と同様にして、電解銅箔の粗面側に硫酸コバルトメッキ層による灰色化処理層を形成し、図2に示す第2表面処理銅箔1bを製造し、実施例1と同様の評価を行った。従って、工程の説明は実施例1と重複するものとなるため、ここでの記載は省略する。なお、灰色の硫酸コバルトメッキ層は、換算厚さが268mg/mであった。形成した硫酸コバルトメッキ層の形態は図11及び図12に示すと同様に観察される。 Unlike Example 1, this example does not subject the rough surface of the electrolytic copper foil to a roughening treatment, and in the same manner as in Example 1 below, the gray surface treatment by the cobalt sulfate plating layer on the rough surface side of the electrolytic copper foil. The layer was formed, the 2nd surface treatment copper foil 1b shown in FIG. 2 was manufactured, and the same evaluation as Example 1 was performed. Therefore, the description of the process is the same as that of the first embodiment, and a description thereof is omitted here. The gray cobalt sulfate plating layer had a converted thickness of 268 mg / m 2 . The form of the formed cobalt sulfate plating layer is observed as shown in FIGS.

<表面処理銅箔の物性>
以上の工程を経て得られた灰色化処理面を備える表面処理銅箔の断面をFIB装置で観察した結果、図3に示したと同様の断面が得られ、当該灰色化処理面の断面高さが78nmであり、当該灰色化処理面のLab表色系におけるL値が42、光沢度[Gs(60°)]が2.5であった。また、灰色化処理面に色ムラは見られず、当該表面に粘着性テープを貼り、引き剥がすことによるテープテストでの粉落ちも確認できなかった。
<Physical properties of surface-treated copper foil>
As a result of observing the cross-section of the surface-treated copper foil provided with the graying surface obtained through the above steps with a FIB apparatus, the same cross-section as shown in FIG. 3 was obtained, and the cross-sectional height of the graying surface was The L value in the Lab color system of the grayed surface was 42, and the glossiness [Gs (60 °)] was 2.5. Further, no color unevenness was observed on the grayed surface, and no powder fall off was confirmed in the tape test by sticking and peeling the adhesive tape on the surface.

更に、得られた表面処理銅箔の灰色化処理面が、プラズマディスプレイ用の電磁波遮蔽メッシュに加工され、透明化処理を施されたときに黒色化して見えるか否かの判断をおこなった。透明樹脂被膜を形成する前の灰色化処理面の黒濃度は0.9であり、実施例1と同様の代替法で評価した結果、灰色化処理面は黒濃度が1.6の黒色として観察できた。   Furthermore, it was judged whether the grayed surface of the obtained surface-treated copper foil was processed into an electromagnetic wave shielding mesh for plasma display and turned black when subjected to a transparent treatment. The black density of the grayed surface before forming the transparent resin film was 0.9, and as a result of evaluation by the same alternative method as in Example 1, the grayed surface was observed as black with a black density of 1.6. did it.

<プラズマディスプレイ用の電磁波遮蔽メッシュの製造>
実施例1と同様に、得られた表面処理銅箔を用いて電磁波遮蔽導電性メッシュを試作した。その結果、エッチング操作に支障なく、エッチング残りもなく、非常に良好なエッチングが行われた。
<Manufacture of electromagnetic shielding mesh for plasma display>
In the same manner as in Example 1, an electromagnetic wave shielding conductive mesh was prototyped using the obtained surface-treated copper foil. As a result, the etching operation was not hindered and there was no etching residue, and very good etching was performed.

本実施形態では、実施例6と同様に電解銅箔の光沢面に粗化処理を施さずに、粗面に灰色化処理を行い、図2に示した第1表面処理銅箔1bを製造し、電磁波遮蔽導電性メッシュ形状をエッチング法で試験的に製造しエッチング性能を確認した。   In this embodiment, as in Example 6, the first surface-treated copper foil 1b shown in FIG. 2 is manufactured by subjecting the roughened surface to a graying treatment without applying a roughening treatment to the shiny surface of the electrolytic copper foil. Then, an electromagnetic shielding conductive mesh shape was experimentally manufactured by an etching method, and etching performance was confirmed.

本実施形態では、硫酸銅溶液を電解することにより得られた公称厚さ15μmの銅箔を用いた。そして、銅箔を、硫酸濃度150g/l、液温30℃の希硫酸溶液を用いて、この溶液に30秒浸漬して、表面の清浄化を行った。   In this embodiment, a copper foil having a nominal thickness of 15 μm obtained by electrolyzing a copper sulfate solution was used. The copper foil was immersed in this solution for 30 seconds using a dilute sulfuric acid solution having a sulfuric acid concentration of 150 g / l and a liquid temperature of 30 ° C. to clean the surface.

そして、当該銅箔の粗面に、a)工程として、硫酸コバルトメッキ層を形成した。硫酸コバルトメッキ層の形成は、硫酸コバルト(7水和物)を20g/l、pHを5.5に調整し、液温27℃とした硫酸コバルトメッキ液を攪拌浴として用い、2A/dmの電流密度で6秒間電解することにより、灰色の硫酸コバルトメッキ層(換算厚さが275mg/m)として形成したのである。このとき溶液中のコバルトイオン濃度の調整は特に行っていない。短時間電解であるため金属イオン濃度の調整は不要と考えたためである。形成した硫酸コバルトメッキ層の形態は図11及び図12に示すと同様に観察される。 And the cobalt sulfate plating layer was formed in the rough surface of the said copper foil as a process. The cobalt sulfate plating layer was formed by using a cobalt sulfate plating solution adjusted to 20 g / l of cobalt sulfate (7 hydrate), pH of 5.5, and a liquid temperature of 27 ° C. as a stirring bath, 2 A / dm 2. Was formed as a gray cobalt sulfate plating layer (converted thickness: 275 mg / m 2 ) by electrolysis at a current density of 6 seconds. At this time, the adjustment of the cobalt ion concentration in the solution is not particularly performed. This is because it was considered that it was unnecessary to adjust the metal ion concentration because of the short-time electrolysis. The form of the formed cobalt sulfate plating layer is observed as shown in FIGS.

b)の工程として、十分に純水をシャワーリングして洗浄し、電熱器より雰囲気温度を150℃とした乾燥炉内に4秒間滞留させ、水分をとばし、非常に良好な色調の灰色化処理面を備えた表面処理銅箔1bを得た。なお、上述した各工程間には、原則、15秒間の純水による水洗工程を設け、前処理工程の溶液の持ち込みを防止している。   As the process of b), the pure water is sufficiently washed by showering, and is kept in a drying furnace with an atmospheric temperature of 150 ° C. for 4 seconds from an electric heater to remove moisture, and a graying treatment with a very good color tone. A surface-treated copper foil 1b having a surface was obtained. In addition, in principle, a water washing step with pure water for 15 seconds is provided between the steps described above to prevent the solution from being brought into the pretreatment step.

<表面処理銅箔の物性>
以上の工程を経て得られた灰色化処理面を備える表面処理銅箔の断面をFIB装置で観察した結果、図3に示したと同様の断面が得られ、当該灰色化処理面の断面高さが80nmであり、当該灰色化処理面のLab表色系におけるL値が39、光沢度[Gs(60°)]が2.2であった。また、灰色化処理面に色ムラは見られず、当該表面に粘着性テープを貼り、引き剥がすことによるテープテストでの粉落ちも確認できなかった。
<Physical properties of surface-treated copper foil>
As a result of observing the cross-section of the surface-treated copper foil provided with the graying surface obtained through the above steps with a FIB apparatus, the same cross-section as shown in FIG. 3 was obtained, and the cross-sectional height of the graying surface was The L value in the Lab color system of the grayed surface was 39, and the glossiness [Gs (60 °)] was 2.2. Further, no color unevenness was observed on the grayed surface, and no powder fall off was confirmed in the tape test by sticking and peeling the adhesive tape on the surface.

更に、得られた表面処理銅箔の灰色化処理面が、プラズマディスプレイ用の電磁波遮蔽メッシュに加工され、透明化処理を施されたときに黒色化して見えるか否かの判断をおこなった。透明樹脂被膜を形成する前の灰色化処理面の黒濃度は0.9であり、実施例1と同様の代替法で評価した結果、灰色化処理面は黒濃度が1.6の黒色として観察できた。   Furthermore, it was judged whether the grayed surface of the obtained surface-treated copper foil was processed into an electromagnetic wave shielding mesh for plasma display and turned black when subjected to a transparent treatment. The black density of the grayed surface before forming the transparent resin film was 0.9, and as a result of evaluation by the same alternative method as in Example 1, the grayed surface was observed as black with a black density of 1.6. did it.

<プラズマディスプレイ用の電磁波遮蔽メッシュの製造>
実施例1と同様に、得られた表面処理銅箔を用いて電磁波遮蔽導電性メッシュを試作した。その結果、エッチング操作に支障なく、エッチング残りもなく、非常に良好なエッチングが行われた。
<Manufacture of electromagnetic shielding mesh for plasma display>
In the same manner as in Example 1, an electromagnetic wave shielding conductive mesh was prototyped using the obtained surface-treated copper foil. As a result, the etching operation was not hindered and there was no etching residue, and very good etching was performed.

本実施形態では、実施例6と同様に電解銅箔の光沢面に粗化処理を施さずに、粗面に灰色化処理を行い、図2に示した第1表面処理銅箔1bを製造し、電磁波遮蔽導電性メッシュ形状をエッチング法で試験的に製造しエッチング性能を確認した。   In this embodiment, as in Example 6, the first surface-treated copper foil 1b shown in FIG. 2 is manufactured by subjecting the roughened surface to a graying treatment without applying a roughening treatment to the shiny surface of the electrolytic copper foil. Then, an electromagnetic shielding conductive mesh shape was experimentally manufactured by an etching method, and etching performance was confirmed.

本実施形態では、硫酸銅溶液を電解することにより得られた公称厚さ15μmの銅箔を用いた。そして、銅箔を、硫酸濃度150g/l、液温30℃の希硫酸溶液を用いて、この溶液に30秒浸漬して、表面の清浄化を行った。   In this embodiment, a copper foil having a nominal thickness of 15 μm obtained by electrolyzing a copper sulfate solution was used. The copper foil was immersed in this solution for 30 seconds using a dilute sulfuric acid solution having a sulfuric acid concentration of 150 g / l and a liquid temperature of 30 ° C. to clean the surface.

そして、当該銅箔の粗面に、a)工程として、硫酸コバルトメッキ層を形成した。硫酸コバルトメッキ層の形成は、硫酸コバルト(7水和物)を40g/l、pHを5.5に調整し、液温27℃とした硫酸コバルトメッキ液を攪拌浴として用い、1A/dmの電流密度で12秒間電解することにより、灰色の硫酸コバルトメッキ層(換算厚さが268mg/m)として形成したのである。このとき溶液中のコバルトイオン濃度の調整は特に行っていない。短時間電解であるため金属イオン濃度の調整は不要と考えたためである。形成した硫酸コバルトメッキ層の形態は図11及び図12に示すと同様に観察される。 And the cobalt sulfate plating layer was formed in the rough surface of the said copper foil as a process. The cobalt sulfate plating layer was formed by using a cobalt sulfate plating solution adjusted to 40 g / l cobalt sulfate (7 hydrate), pH 5.5, and a liquid temperature of 27 ° C. as a stirring bath, 1 A / dm 2 Thus, a gray cobalt sulfate plating layer (converted thickness: 268 mg / m 2 ) was formed by electrolysis at a current density of 12 seconds. At this time, the adjustment of the cobalt ion concentration in the solution is not particularly performed. This is because it was considered that it was unnecessary to adjust the metal ion concentration because of the short-time electrolysis. The form of the formed cobalt sulfate plating layer is observed as shown in FIGS.

b)の工程として、十分に純水をシャワーリングして洗浄し、電熱器より雰囲気温度を150℃とした乾燥炉内に4秒間滞留させ、水分をとばし、非常に良好な色調の灰色化処理面を備えた表面処理銅箔1bを得た。なお、上述した各工程間には、原則、15秒間の純水による水洗工程を設け、前処理工程の溶液の持ち込みを防止している。   As the process of b), the pure water is sufficiently washed by showering, and is kept in a drying furnace with an atmospheric temperature of 150 ° C. for 4 seconds from an electric heater to remove moisture, and a graying treatment with a very good color tone. A surface-treated copper foil 1b having a surface was obtained. In addition, in principle, a water washing step with pure water for 15 seconds is provided between the steps described above to prevent the solution from being brought into the pretreatment step.

<表面処理銅箔の物性>
以上の工程を経て得られた灰色化処理面を備える表面処理銅箔の断面をFIB装置で観察した結果、図3に示したと同様の断面が得られ、当該灰色化処理面の断面高さが78nmであり、当該灰色化処理面のLab表色系におけるL値が40、光沢度[Gs(60°)]が2.6であった。また、灰色化処理面に色ムラは見られず、当該表面に粘着性テープを貼り、引き剥がすことによるテープテストでの粉落ちも確認できなかった。
<Physical properties of surface-treated copper foil>
As a result of observing the cross-section of the surface-treated copper foil provided with the graying surface obtained through the above steps with a FIB apparatus, the same cross-section as shown in FIG. 3 was obtained, and the cross-sectional height of the graying surface was The L value in the Lab color system of the grayed surface was 40, and the glossiness [Gs (60 °)] was 2.6. Further, no color unevenness was observed on the grayed surface, and no powder fall off was confirmed in the tape test by sticking and peeling the adhesive tape on the surface.

更に、得られた表面処理銅箔の灰色化処理面が、プラズマディスプレイ用の電磁波遮蔽メッシュに加工され、透明化処理を施されたときに黒色化して見えるか否かの判断をおこなった。透明樹脂被膜を形成する前の灰色化処理面の黒濃度は0.9であり、実施例1と同様の代替法で評価した結果、灰色化処理面は黒濃度が1.5の黒色として観察できた。   Furthermore, it was judged whether the grayed surface of the obtained surface-treated copper foil was processed into an electromagnetic wave shielding mesh for plasma display and turned black when subjected to a transparent treatment. The black density of the grayed surface before forming the transparent resin film was 0.9, and as a result of evaluation by the same alternative method as in Example 1, the grayed surface was observed as black with a black density of 1.5. did it.

<プラズマディスプレイ用の電磁波遮蔽メッシュの製造>
実施例1と同様に、得られた表面処理銅箔を用いて電磁波遮蔽導電性メッシュを試作した。その結果、エッチング操作に支障なく、エッチング残りもなく、非常に良好なエッチングが行われた。
<Manufacture of electromagnetic shielding mesh for plasma display>
In the same manner as in Example 1, an electromagnetic wave shielding conductive mesh was prototyped using the obtained surface-treated copper foil. As a result, the etching operation was not hindered and there was no etching residue, and very good etching was performed.

本実施例は、図7に示したような、防錆処理層として亜鉛−コバルト合金層を備えた第2表面処理銅箔1dを製造し、電磁波遮蔽導電性メッシュ形状をエッチング法で試験的に製造しエッチング性能を確認した。従って、硫酸コバルトメッキ層による灰色化処理層を形成するまでは、実施例7と共通するため、防錆処理条件に関してのみ説明する。なお、灰色の硫酸コバルトメッキ層の換算厚さは実施例7と同じく268mg/mである。 In this example, a second surface-treated copper foil 1d having a zinc-cobalt alloy layer as a rust-proofing layer as shown in FIG. 7 was manufactured, and the electromagnetic shielding conductive mesh shape was experimentally tested by an etching method. Manufactured and checked for etching performance. Therefore, until the graying treatment layer by the cobalt sulfate plating layer is formed, since it is common with Example 7, only the rust prevention treatment conditions will be described. The equivalent thickness of the gray cobalt sulfate plating layer is 268 mg / m 2 as in Example 7.

ここでは実施例7の片面に灰色の硫酸コバルトメッキ層の形成が終了した銅箔の両面に、実施例4と同様の条件で、両面に亜鉛−コバルト合金層を形成したのである。そして、実施例1と同様に十分に純水をシャワーリングして洗浄し、電熱器より雰囲気温度を150℃とした乾燥炉内に4秒間滞留させ、水分をとばし、非常に良好な色調の灰色化処理面を備えた表面処理銅箔1dを得た。なお、上述した各工程間には、原則、15秒間の純水による水洗工程を設け、前処理工程の溶液の持ち込みを防止している。   Here, a zinc-cobalt alloy layer was formed on both surfaces of the copper foil on which the formation of the gray cobalt sulfate plating layer was completed on one surface under the same conditions as in Example 4. Then, the pure water is sufficiently showered and washed in the same manner as in Example 1, and is kept in a drying furnace with an atmospheric temperature of 150 ° C. for 4 seconds from an electric heater to remove moisture, and a gray having a very good color tone. The surface-treated copper foil 1d provided with the chemical treatment surface was obtained. In addition, in principle, a water washing step with pure water for 15 seconds is provided between the steps described above to prevent the solution from being brought into the pretreatment step.

<表面処理銅箔の物性>
以上の工程を経て得られた灰色化処理面を備える表面処理銅箔の断面をFIB装置で観察した結果、図3に示したと同様の断面が得られ、当該灰色化処理面の断面高さが80nmであり、当該灰色化処理面のLab表色系におけるL値が41、光沢度[Gs(60°)]が2.4であった。また、灰色化処理面に色ムラは見られず、当該表面に粘着性テープを貼り、引き剥がすことによるテープテストでの粉落ちも確認できなかった。
<Physical properties of surface-treated copper foil>
As a result of observing the cross-section of the surface-treated copper foil provided with the graying surface obtained through the above steps with a FIB apparatus, the same cross-section as shown in FIG. 3 was obtained, and the cross-sectional height of the graying surface was The L value in the Lab color system of the grayed surface was 41, and the glossiness [Gs (60 °)] was 2.4. Further, no color unevenness was observed on the grayed surface, and no powder fall off was confirmed in the tape test by sticking and peeling the adhesive tape on the surface.

更に、得られた表面処理銅箔の灰色化処理面が、プラズマディスプレイ用の電磁波遮蔽メッシュに加工され、透明化処理を施されたときに黒色化して見えるか否かの判断をおこなった。透明樹脂被膜を形成する前の灰色化処理面の黒濃度は0.9であり、実施例1と同様の代替法で評価した結果、灰色化処理面は黒濃度が1.5の黒色として観察できた。   Furthermore, it was judged whether the grayed surface of the obtained surface-treated copper foil was processed into an electromagnetic wave shielding mesh for plasma display and turned black when subjected to a transparent treatment. The black density of the grayed surface before forming the transparent resin film was 0.9, and as a result of evaluation by the same alternative method as in Example 1, the grayed surface was observed as black with a black density of 1.5. did it.

<プラズマディスプレイ用の電磁波遮蔽メッシュの製造>
実施例1と同様に、得られた表面処理銅箔を用いて電磁波遮蔽導電性メッシュを試作した。その結果、エッチング操作に支障なく、エッチング残りもなく、非常に良好なエッチングが行われた。
<Manufacture of electromagnetic shielding mesh for plasma display>
In the same manner as in Example 1, an electromagnetic wave shielding conductive mesh was prototyped using the obtained surface-treated copper foil. As a result, the etching operation was not hindered and there was no etching residue, and very good etching was performed.

本実施例は、図9に示すような、防錆処理層として亜鉛−コバルト合金層及びクロメート処理層を備えた第2表面処理銅箔1fを製造し、電磁波遮蔽導電性メッシュ形状をエッチング法で試験的に製造しエッチング性能を確認した。従って、硫酸コバルトメッキ層による灰色化処理層を形成するまでは、実施例7と共通するため、防錆処理条件に関してのみ説明する。なお、灰色の硫酸コバルトメッキ層の換算厚さは実施例7と同じく270mg/mである。 In this example, as shown in FIG. 9, a second surface-treated copper foil 1f having a zinc-cobalt alloy layer and a chromate-treated layer as a rust-proof treated layer is produced, and an electromagnetic shielding conductive mesh shape is formed by an etching method. Manufactured experimentally to confirm the etching performance. Therefore, until the graying treatment layer by the cobalt sulfate plating layer is formed, since it is common with Example 7, only the rust prevention treatment conditions will be described. The equivalent thickness of the gray cobalt sulfate plating layer is 270 mg / m 2 as in Example 7.

防錆処理層の形成は、実施例4と同様にして、亜鉛−コバルト合金メッキ液を用いて、両面に亜鉛−コバルト合金層を形成した後に、両面に実施例5と同様のクロメート処理を行ったのである。   In the same manner as in Example 4, the rust-proofing layer was formed by forming a zinc-cobalt alloy layer on both sides using a zinc-cobalt alloy plating solution and then performing the same chromate treatment on both sides as in Example 5. It was.

そして、クロメート層の形成が終了すると、十分に純水をシャワーリングして洗浄し、電熱器より雰囲気温度を150℃とした乾燥炉内に4秒間滞留させ、水分をとばし、非常に良好な色調の灰色化処理面を備えた表面処理銅箔1fを得た。なお、上述した各工程間には、原則、15秒間の純水による水洗工程を設け、前処理工程の溶液の持ち込みを防止している。   Then, after the formation of the chromate layer is completed, the pure water is sufficiently showered and washed, and is kept in a drying furnace with an atmospheric temperature of 150 ° C. for 4 seconds from an electric heater, and moisture is removed. The surface-treated copper foil 1f provided with the graying surface of this was obtained. In addition, in principle, a water washing step with pure water for 15 seconds is provided between the steps described above to prevent the solution from being brought into the pretreatment step.

<表面処理銅箔の物性>
以上の工程を経て得られた灰色化処理面を備える表面処理銅箔の断面をFIB装置で観察した結果、図3に示したと同様の断面が得られ、当該灰色化処理面の断面高さが78nmであり、当該灰色化処理面のLab表色系におけるL値が40、光沢度[Gs(60°)]が2.4であった。また、灰色化処理面に色ムラは見られず、当該表面に粘着性テープを貼り、引き剥がすことによるテープテストでの粉落ちも確認できなかった。
<Physical properties of surface-treated copper foil>
As a result of observing the cross-section of the surface-treated copper foil provided with the graying surface obtained through the above steps with a FIB apparatus, the same cross-section as shown in FIG. 3 was obtained, and the cross-sectional height of the graying surface was The L value in the Lab color system of the grayed surface was 40, and the glossiness [Gs (60 °)] was 2.4. Further, no color unevenness was observed on the grayed surface, and no powder fall off was confirmed in the tape test by sticking and peeling the adhesive tape on the surface.

更に、得られた表面処理銅箔の灰色化処理面が、プラズマディスプレイ用の電磁波遮蔽メッシュに加工され、透明化処理を施されたときに黒色化して見えるか否かの判断をおこなった。透明樹脂被膜を形成する前の灰色化処理面の黒濃度は0.9であり、実施例1と同様の代替法で評価した結果、灰色化処理面は黒濃度が1.6の黒色として観察できた。   Furthermore, it was judged whether the grayed surface of the obtained surface-treated copper foil was processed into an electromagnetic wave shielding mesh for plasma display and turned black when subjected to a transparent treatment. The black density of the grayed surface before forming the transparent resin film was 0.9, and as a result of evaluation by the same alternative method as in Example 1, the grayed surface was observed as black with a black density of 1.6. did it.

<プラズマディスプレイ用の電磁波遮蔽メッシュの製造>
実施例1と同様に、得られた表面処理銅箔を用いて電磁波遮蔽導電性メッシュを試作した。その結果、防錆処理層が存在していてもエッチング操作に支障なく、エッチング残りもなく、非常に良好なエッチングが行われた。
<Manufacture of electromagnetic shielding mesh for plasma display>
In the same manner as in Example 1, an electromagnetic wave shielding conductive mesh was prototyped using the obtained surface-treated copper foil. As a result, even if a rust preventive layer was present, the etching operation was not hindered and there was no etching residue, and very good etching was performed.

本件発明に係る灰色化処理面を備えた表面処理銅箔は、灰色化処理面の色ムラが無く、しかも当該表面からの粉落ちも無く、しかも、通常の銅エッチング液を用いてのエッチング加工が可能であり、プラズマディスプレイパネルの前面パネルの電磁波遮蔽導電性メッシュに用いることで、色ムラのない高品質のブラックマスクの形成が可能となる。また、灰色化処理面を備えた表面処理銅箔としての供給が出来れば、前面パネルの製造プロセスでの黒色化処理工程の省略が可能となる。更に、この灰色化処理面を備えた表面処理銅箔は、上述した製造方法を採用することで、従来の銅箔の表面処理プロセスを応用することが可能であり新たな製造設備を必要としない。従って、高品質の色ムラのない製品を歩留まり良く製造できるため、生産コストの低減が可能となる。   The surface-treated copper foil provided with the graying surface according to the present invention has no color unevenness on the graying surface, no powder fall off from the surface, and etching using a normal copper etching solution It is possible to form a high-quality black mask without color unevenness by using it for the electromagnetic wave shielding conductive mesh of the front panel of the plasma display panel. Moreover, if supply as a surface-treated copper foil provided with the graying process surface can be performed, the blackening process process in the front panel manufacturing process can be omitted. Furthermore, the surface-treated copper foil provided with the grayed surface can be applied to the surface treatment process of the conventional copper foil by adopting the above-described production method and does not require new production equipment. . Accordingly, a high-quality product with no color unevenness can be manufactured with a high yield, and the production cost can be reduced.

灰色化処理面を備える表面処理銅箔の断面層構成を模式的に示した図。The figure which showed typically the cross-sectional layer structure of the surface treatment copper foil provided with a graying process surface. 灰色化処理面を備える表面処理銅箔の断面層構成を模式的に示した図。The figure which showed typically the cross-sectional layer structure of the surface treatment copper foil provided with a graying process surface. 灰色化処理面を備える表面処理銅箔の断面層構成のFIB観察像。The FIB observation image of the cross-sectional layer structure of the surface treatment copper foil provided with a graying process surface. 灰色化処理面を備える表面処理銅箔の断面層構成のFIB観察像。The FIB observation image of the cross-sectional layer structure of the surface treatment copper foil provided with a graying process surface. 灰色化処理面を備える表面処理銅箔の断面層構成のFIB観察像。The FIB observation image of the cross-sectional layer structure of the surface treatment copper foil provided with a graying process surface. 灰色化処理面を備える表面処理銅箔の断面層構成を模式的に示した図。The figure which showed typically the cross-sectional layer structure of the surface treatment copper foil provided with a graying process surface. 灰色化処理面を備える表面処理銅箔の断面層構成を模式的に示した図。The figure which showed typically the cross-sectional layer structure of the surface treatment copper foil provided with a graying process surface. 灰色化処理面を備える表面処理銅箔の断面層構成を模式的に示した図。The figure which showed typically the cross-sectional layer structure of the surface treatment copper foil provided with a graying process surface. 灰色化処理面を備える表面処理銅箔の断面層構成を模式的に示した図。The figure which showed typically the cross-sectional layer structure of the surface treatment copper foil provided with a graying process surface. 粗化処理した銅箔表面の走査型電子顕微鏡像。Scanning electron microscope image of the roughened copper foil surface. 灰色の硫酸コバルトメッキ層を低倍率観察した走査型電子顕微鏡像。Scanning electron microscope image of a gray cobalt sulfate plating layer observed at a low magnification. 灰色の硫酸コバルトメッキ層を高倍率観察した走査型電子顕微鏡像。Scanning electron microscope image of a gray cobalt sulfate plating layer observed at high magnification. エッチングテストパターンの走査型電子顕微鏡像。Scanning electron microscope image of the etching test pattern. 従来のプラズマディスプレイパネルの前面パネルの製造フローを表す模式図。The schematic diagram showing the manufacture flow of the front panel of the conventional plasma display panel. 従来のプラズマディスプレイパネルの前面パネルの製造フローを表す模式図。The schematic diagram showing the manufacture flow of the front panel of the conventional plasma display panel. 従来のプラズマディスプレイパネルの前面パネルの製造フローを表す模式図。The schematic diagram showing the manufacture flow of the front panel of the conventional plasma display panel.

符号の説明Explanation of symbols

1a,1b,1c 表面処理銅箔
1d,1e,1f
2 粗化処理層
3 微細銅粒
4 硫酸コバルトメッキ層
5 防錆処理層(亜鉛−ニッケル合金層又は亜鉛−コバルト合金層)
6 クロメート処理層
7 銅箔層
1a, 1b, 1c Surface-treated copper foil 1d, 1e, 1f
2 Roughening treatment layer 3 Fine copper particles 4 Cobalt sulfate plating layer 5 Rust prevention treatment layer (zinc-nickel alloy layer or zinc-cobalt alloy layer)
6 Chromate treatment layer 7 Copper foil layer

Claims (12)

電解銅箔の粗面上に灰色化処理面を備える表面処理銅箔であって、
当該灰色化処理面は、銅箔層の片面に設けた重量厚さ200mg/m〜350mg/mの硫酸コバルトメッキ層であり、且つ、その灰色化処理面の断面高さが200nm以下であることを特徴とする表面処理銅箔。
A surface-treated copper foil having a grayed surface on the rough surface of the electrolytic copper foil,
The graying process surface is cobalt sulfate plating layer weight thickness 200mg / m 2 ~350mg / m 2 provided on one surface of a copper foil layer, and a cross-sectional height of the graying treated surface 200nm or less A surface-treated copper foil characterized by being.
前記灰色化処理面に防錆処理層を備えるものである請求項1に記載の表面処理銅箔。 The surface-treated copper foil according to claim 1, wherein a rust-proofing layer is provided on the graying-treated surface. 防錆処理層は、亜鉛若しくは亜鉛合金を用いたものである請求項1又は請求項2に記載の表面処理銅箔。 The surface-treated copper foil according to claim 1 or 2, wherein the antirust treatment layer is made of zinc or a zinc alloy. 防錆処理層は、亜鉛若しくは亜鉛合金を用いて形成した層と、クロメート処理層とからなる請求項2又は請求項3に記載の灰色化処理面を備える表面処理銅箔。 The surface-treated copper foil provided with the graying-treated surface according to claim 2 or 3, wherein the rust-proofing layer comprises a layer formed using zinc or a zinc alloy and a chromate-treated layer. 前記灰色化処理面は、Lab表色系におけるL値が43以下である請求項1〜請求項4のいずれかに記載の表面処理銅箔。 The surface-treated copper foil according to any one of claims 1 to 4, wherein the graying surface has an L value in a Lab color system of 43 or less. 前記灰色化処理面は、電解銅箔の粗面に当該灰色化処理面を形成したものであり、且つ、光沢度[Gs(60°)]が10以下である請求項1〜請求項5のいずれかに記載の表面処理銅箔。 The said graying process surface forms the said graying process surface in the rough surface of an electrolytic copper foil, and glossiness [Gs (60 degrees)] is 10 or less. The surface-treated copper foil in any one. 前記灰色化処理面は、黒濃度が0.7〜1.2である請求項1〜請求項6のいずれかに記載の表面処理銅箔。 The surface-treated copper foil according to any one of claims 1 to 6, wherein the graying surface has a black density of 0.7 to 1.2. 前記灰色化処理面は、その表面に透明樹脂被膜を密着配置したときに、黒色として視認できるものである請求項1〜請求項7のいずれかに記載の表面処理銅箔。 The surface-treated copper foil according to any one of claims 1 to 7, wherein the graying-treated surface is visible as black when a transparent resin film is closely disposed on the surface. 灰色化処理面に透明樹脂被膜を設けたときの黒濃度が1.2以上である請求項1〜請求項8のいずれかに記載の表面処理銅箔。 The surface-treated copper foil according to any one of claims 1 to 8, wherein a black density when a transparent resin coating is provided on the graying-treated surface is 1.2 or more. 灰色化処理面を備える表面処理銅箔の製造方法であって、以下のa)及びb)の工程を備えることを特徴とした表面処理銅箔の製造方法。
a) 銅箔の粗面に、硫酸コバルト(7水和物)を10g/l〜40g/l含み、pHを4.0以上、液温30℃以下とした硫酸コバルトメッキ液の攪拌浴を用い、4A/dm以下の電流密度で電解して、灰色の硫酸コバルトメッキ層を形成する。
b) その後、水洗し、乾燥する。
A method for producing a surface-treated copper foil comprising a grayed surface, the method comprising the following steps a) and b).
a) On the rough surface of the copper foil, a cobalt sulfate plating bath containing 10 g / l to 40 g / l of cobalt sulfate (7 hydrate), having a pH of 4.0 or higher and a liquid temperature of 30 ° C. or lower was used. Electrolysis is performed at a current density of 4 A / dm 2 or less to form a gray cobalt sulfate plating layer.
b) Thereafter, it is washed with water and dried.
防錆処理層を備えた灰色化処理面を備える表面処理銅箔の製造方法であって、以下のa)〜c)の工程を備えることを特徴とした表面処理銅箔の製造方法。
a) 銅箔の粗面に、硫酸コバルト(7水和物)を10g/l〜40g/l含み、pHを4.0以上、液温30℃以下とした硫酸コバルトメッキ液を攪拌浴として用い、4A/dm以下の電流密度で電解して、灰色の硫酸コバルトメッキ層を形成する。
b) 灰色の硫酸コバルトメッキ層を形成した銅箔の両面若しくは片面に、防錆処理層を形成する。
c) その後、水洗し、乾燥する。
A method for producing a surface-treated copper foil comprising a graying-treated surface provided with a rust-proofing layer, comprising the following steps a) to c).
a) A cobalt sulfate plating solution containing 10 g / l to 40 g / l of cobalt sulfate (7 hydrate) on the rough surface of the copper foil, having a pH of 4.0 or more and a solution temperature of 30 ° C. or less is used as a stirring bath. Electrolysis is performed at a current density of 4 A / dm 2 or less to form a gray cobalt sulfate plating layer.
b) A rust preventive layer is formed on both sides or one side of the copper foil on which the gray cobalt sulfate plating layer is formed.
c) Thereafter, it is washed with water and dried.
請求項1〜請求項9のいずれかに記載の灰色化処理面を備える表面処理銅箔を用いて形成したプラズマディスプレイの前面パネル用の電磁波遮蔽導電性メッシュ。 The electromagnetic wave shielding electroconductive mesh for the front panel of the plasma display formed using the surface treatment copper foil provided with the graying process surface in any one of Claims 1-9.
JP2004057179A 2004-03-02 2004-03-02 Surface-treated copper foil having a grayed surface, a method for producing the surface-treated copper foil, and an electromagnetic shielding conductive mesh for a front panel of a plasma display using the surface-treated copper foil Expired - Fee Related JP4458521B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2004057179A JP4458521B2 (en) 2004-03-02 2004-03-02 Surface-treated copper foil having a grayed surface, a method for producing the surface-treated copper foil, and an electromagnetic shielding conductive mesh for a front panel of a plasma display using the surface-treated copper foil
PCT/JP2005/003386 WO2005083157A1 (en) 2004-03-02 2005-03-01 Surface-treated copper foil having grayed surface, process for producing the same and electromagnetic wave shielding conductive mesh for front panel of plasma display wherein use is made of the surface-treated copper foil
CN2005800064619A CN1934293B (en) 2004-03-02 2005-03-01 Surface-treated copper foil having grayed surface, process for producing the same and electromagnetic wave shielding conductive mesh for front panel of plasma display using the surface-treated copper
KR1020067017514A KR100869196B1 (en) 2004-03-02 2005-03-01 Surface-treated copper foil having grayed surface, process for producing the same and electromagnetic wave shielding conductive mesh for front panel of plasma display wherein use is made of the surface-treated copper foil
TW094106234A TWI280079B (en) 2004-03-02 2005-03-02 Surface-treated copper foil having grayed surface, process for producing the same and electromagnetic wave shielding conductive mesh for front panel of plasma display wherein use is made of the surface-treated copper foil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004057179A JP4458521B2 (en) 2004-03-02 2004-03-02 Surface-treated copper foil having a grayed surface, a method for producing the surface-treated copper foil, and an electromagnetic shielding conductive mesh for a front panel of a plasma display using the surface-treated copper foil

Publications (2)

Publication Number Publication Date
JP2005248221A JP2005248221A (en) 2005-09-15
JP4458521B2 true JP4458521B2 (en) 2010-04-28

Family

ID=34909012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004057179A Expired - Fee Related JP4458521B2 (en) 2004-03-02 2004-03-02 Surface-treated copper foil having a grayed surface, a method for producing the surface-treated copper foil, and an electromagnetic shielding conductive mesh for a front panel of a plasma display using the surface-treated copper foil

Country Status (5)

Country Link
JP (1) JP4458521B2 (en)
KR (1) KR100869196B1 (en)
CN (1) CN1934293B (en)
TW (1) TWI280079B (en)
WO (1) WO2005083157A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5124154B2 (en) * 2006-03-28 2013-01-23 富士フイルム株式会社 Manufacturing method of conductive film
JP2007311701A (en) * 2006-05-22 2007-11-29 Hitachi Chem Co Ltd Electromagnetic wave shield film
JP5034538B2 (en) * 2007-02-14 2012-09-26 凸版印刷株式会社 Method for manufacturing electromagnetic shielding film
WO2008100104A1 (en) * 2007-02-16 2008-08-21 Dongjin Semichem Co., Ltd Filter for shielding electromagnetic interference and display device provided with the same
CN101606447B (en) * 2007-02-16 2012-07-04 株式会社东进世美肯 Filter for shielding electromagnetic interference and display provided with same
TWI459040B (en) * 2008-09-29 2014-11-01 Sumitomo Chemical Co Method for making a mold and method for making an anti-glare film
BR112012025011A2 (en) * 2010-03-30 2019-09-24 Jx Nippon Mining & Metals Corp electromagnetic shielding composite
JP5325175B2 (en) 2010-07-15 2013-10-23 Jx日鉱日石金属株式会社 Copper foil composite and method for producing molded body
WO2012157469A1 (en) 2011-05-13 2012-11-22 Jx日鉱日石金属株式会社 Copper foil complex, copper foil used in copper foil complex, molded body, and method for producing molded body
RU2570030C1 (en) 2012-01-13 2015-12-10 ДжейЭкс НИППОН МАЙНИНГ ЭНД МЕТАЛЗ КОРПОРЕЙШН Composite with copper foil, moulded product and method for production thereof
KR101635692B1 (en) 2012-01-13 2016-07-01 제이엑스금속주식회사 Copper foil composite, molded body, and method for producing same
CN104202957B (en) * 2014-09-01 2018-09-18 江苏斯迪克新材料科技股份有限公司 The wave absorbing patch of use for electronic products
CN105109260B (en) * 2015-07-31 2018-01-19 广东欧珀移动通信有限公司 Pack alloy appearance surfaces processing method and phone housing

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5585689A (en) * 1978-12-25 1980-06-27 Seiko Instr & Electronics Ltd Black color plating bath
JPS6191385A (en) * 1984-10-12 1986-05-09 Nippon Kagaku Sangyo Kk Black electroplating bath
JPH0654831B2 (en) * 1990-08-14 1994-07-20 株式会社ジャパンエナジー Method of treating copper foil for printed circuits
JPH0654829B2 (en) * 1990-08-14 1994-07-20 株式会社ジャパンエナジー Method of treating copper foil for printed circuits
JP2717910B2 (en) * 1992-11-19 1998-02-25 日鉱グールド・フォイル株式会社 Copper foil for printed circuit and manufacturing method thereof
US6224991B1 (en) * 1999-09-13 2001-05-01 Yates Foil Usa, Inc. Process for electrodeposition of barrier layer over copper foil bonding treatment, products thereof and electrolyte useful in such process
JP3330925B2 (en) * 2000-04-05 2002-10-07 株式会社日鉱マテリアルズ Copper foil for laser drilling
JP3998975B2 (en) * 2001-12-28 2007-10-31 大日本印刷株式会社 Electromagnetic wave shielding sheet
JP2003201597A (en) * 2002-01-09 2003-07-18 Nippon Denkai Kk Copper foil, production method therefor and electromagnetic wave shield body obtained by using the copper foil
JP2004119961A (en) * 2002-09-02 2004-04-15 Furukawa Techno Research Kk Copper foil for chip-on film, plasma display panel, and high-frequency printed wiring board
JP4573254B2 (en) * 2002-10-25 2010-11-04 Jx日鉱日石金属株式会社 Copper foil for plasma display panel and method for producing the same
JP2004162143A (en) * 2002-11-15 2004-06-10 Nippon Denkai Kk Method for manufacturing copper foil for printed circuit board
JP2004172343A (en) * 2002-11-20 2004-06-17 Nikko Materials Co Ltd Copper foil for laser drilling and manufacturing method thereof
KR101065758B1 (en) * 2003-02-27 2011-09-19 후루카와 덴키 고교 가부시키가이샤 Copper foil for shielding electromagnetic wave, manufacturing method thereof and electromagnetic wave shield structure

Also Published As

Publication number Publication date
CN1934293B (en) 2010-04-21
CN1934293A (en) 2007-03-21
WO2005083157A1 (en) 2005-09-09
TW200533251A (en) 2005-10-01
TWI280079B (en) 2007-04-21
KR100869196B1 (en) 2008-11-18
KR20070004658A (en) 2007-01-09
JP2005248221A (en) 2005-09-15

Similar Documents

Publication Publication Date Title
KR100869196B1 (en) Surface-treated copper foil having grayed surface, process for producing the same and electromagnetic wave shielding conductive mesh for front panel of plasma display wherein use is made of the surface-treated copper foil
JP3977790B2 (en) Manufacturing method of ultra-thin copper foil with carrier, ultra-thin copper foil manufactured by the manufacturing method, printed wiring board using the ultra-thin copper foil, multilayer printed wiring board, chip-on-film wiring board
JP3910623B1 (en) Manufacturing method of electrolytic copper foil, electrolytic copper foil obtained by the manufacturing method, surface-treated electrolytic copper foil obtained using the electrolytic copper foil, copper-clad laminate and printed wiring using the surface-treated electrolytic copper foil Board
JPWO2007007870A1 (en) Blackened surface treated copper foil and electromagnetic shielding conductive mesh for front panel of plasma display using the blackened surface treated copper foil
JPH09143785A (en) Electrolytic copper foil for fine pattern and its production
JP2007186797A (en) Method for producing ultrathin copper foil with carrier, ultrathin copper foil produced by the production method, and printed circuit board, multilayer printed circuit board and wiring board for chip on film using the ultrathin copper foil
JP2007217791A (en) Electrolytic copper foil, surface-treated electrolytic copper foil obtained by using the electrolytic copper foil, copper-clad laminate using the surface-treated electrolytic copper foil, and printed circuit board
JP3250994B2 (en) Electrolytic copper foil
JP5256880B2 (en) Blackened shield mesh for plasma display front plate and manufacturing method thereof
JP4458519B2 (en) Surface-treated copper foil having a blackened surface, a method for producing the surface-treated copper foil, and an electromagnetic shielding conductive mesh for a front panel of a plasma display using the surface-treated copper foil
JP4354271B2 (en) Browned surface-treated copper foil, method for producing the same, and electromagnetic shielding conductive mesh for front panel of plasma display using the browned surface-treated copper foil
JP2008166655A (en) Copper foil for electromagnetic shielding material
JP4326019B2 (en) Method for producing blackened surface-treated copper foil for electromagnetic wave shielding
JP2004256832A (en) Surface treated copper foil provided with blackening treated face, and magnetic shielding conductive mesh for front panel of plasma display obtained by using the surface treated copper foil
JP4017628B2 (en) Electrolytic copper foil
JP2005139546A (en) Blacking surface-treated copper foil, process for producing the blackening surface-treated copper foil and, using the blacking surface-treated copper foil, electromagnetic wave shielding conductive mesh
JP4575719B2 (en) Surface-treated copper foil having a browned surface, a method for producing the surface-treated copper foil, and an electromagnetic shielding conductive mesh for a front panel of a plasma display using the surface-treated copper foil
JP3869433B2 (en) Method for producing blackened surface-treated copper foil for electromagnetic wave shielding
JP2927968B2 (en) Copper foil for high-density multilayer printed circuit inner layer and high-density multilayer printed circuit board using said copper foil for inner layer circuit
KR101315364B1 (en) Surface treated copper foil and fabrication method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100208

R150 Certificate of patent or registration of utility model

Ref document number: 4458521

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140219

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees