JP6606317B1 - Surface-treated copper foil, copper-clad laminate, and printed wiring board - Google Patents

Surface-treated copper foil, copper-clad laminate, and printed wiring board Download PDF

Info

Publication number
JP6606317B1
JP6606317B1 JP2019540673A JP2019540673A JP6606317B1 JP 6606317 B1 JP6606317 B1 JP 6606317B1 JP 2019540673 A JP2019540673 A JP 2019540673A JP 2019540673 A JP2019540673 A JP 2019540673A JP 6606317 B1 JP6606317 B1 JP 6606317B1
Authority
JP
Japan
Prior art keywords
copper foil
less
treated copper
crystal grains
grain size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019540673A
Other languages
Japanese (ja)
Other versions
JPWO2019208368A1 (en
Inventor
佐藤 章
章 佐藤
竜介 中崎
竜介 中崎
篠崎 淳
淳 篠崎
佐々木貴大
貴大 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Application granted granted Critical
Publication of JP6606317B1 publication Critical patent/JP6606317B1/en
Publication of JPWO2019208368A1 publication Critical patent/JPWO2019208368A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/615Microstructure of the layers, e.g. mixed structure
    • C25D5/617Crystalline layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/18Electroplating using modulated, pulsed or reversing current
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

プロセスコストに優れるサブトラクティブ工法でL&Sが例えば30/30μm以下の微細配線を形成することが可能な微細配線加工性を有し、且つ、樹脂製基板との密着性に優れる表面処理銅箔を提供する。粗化処理による粗化面を表面に有する表面処理銅箔であって、箔厚が10μm以下であり、粗化面の頂点曲率算術平均Sscが0.7μm-1以上3.8μm-1以下である。そして、200℃で2時間加熱後に電子線後方散乱回折法により断面を解析した場合に、結晶粒径が0.5μm以上の結晶粒のうち、結晶粒径が0.5μm以上1.0μm未満の結晶粒の個数の割合R1が0.51以上0.97以下であり、結晶粒径が1.0μm以上3.0μm未満の結晶粒の個数の割合R2が0.03以上0.42以下であり、結晶粒径が3.0μm以上の結晶粒の個数の割合R3が0.07以下である。Providing a surface-treated copper foil that has fine wiring processability that allows formation of fine wiring with an L & S of, for example, 30/30 μm or less, and excellent adhesion to a resin substrate by a subtractive construction method that excels in process costs. To do. A surface-treated copper foil having a roughened surface by a roughening treatment, the foil thickness is 10 μm or less, and the vertex curvature arithmetic average Ssc of the roughened surface is 0.7 μm−1 or more and 3.8 μm−1 or less. is there. When the cross section is analyzed by electron beam backscatter diffraction after heating at 200 ° C. for 2 hours, the crystal grain size is 0.5 μm or more and less than 1.0 μm among the crystal grains having a crystal grain size of 0.5 μm or more. The ratio R1 of the number of crystal grains is 0.51 or more and 0.97 or less, and the ratio R2 of the number of crystal grains whose crystal grain size is 1.0 μm or more and less than 3.0 μm is 0.03 or more and 0.42 or less. The ratio R3 of the number of crystal grains having a crystal grain size of 3.0 μm or more is 0.07 or less.

Description

本発明は、高密度配線回路(ファインパターン)を有するプリント配線板等に好適な微細配線加工性、樹脂製基板との密着性に優れる表面処理銅箔、並びに、該表面処理銅箔を用いた銅張積層板及びプリント配線板に関する。   The present invention uses a surface-treated copper foil excellent in fine wiring workability suitable for a printed wiring board or the like having a high-density wiring circuit (fine pattern), and adhesion to a resin substrate, and the surface-treated copper foil. The present invention relates to a copper-clad laminate and a printed wiring board.

銅張積層板やプリント配線板に用いられる銅箔としては、電解析出装置のドラムに析出した銅箔をドラムから剥離することにより得られる電解銅箔が使用される。ドラムから剥離された電解銅箔の電界析出開始面(シャイニー面。以下、「S面」と記す。)は比較的平滑であり、反対側の面である電解析出終了面(マット面。以下、「M面」と記す。)は一般的には凹凸を有している。電解銅箔のM面上に樹脂製基板を配して熱圧着し銅張積層板を製造するが、M面に粗化処理を施して粗化することにより、樹脂製基板との接着性を向上させている。   As a copper foil used for a copper clad laminate or a printed wiring board, an electrolytic copper foil obtained by peeling a copper foil deposited on a drum of an electrolytic deposition apparatus from the drum is used. The electrolytic deposition starting surface (shiny surface; hereinafter referred to as “S surface”) of the electrolytic copper foil peeled from the drum is relatively smooth and the electrolytic deposition finish surface (matt surface; hereinafter referred to as the opposite surface). , "M-plane") generally has irregularities. A copper-clad laminate is manufactured by placing a resin substrate on the M surface of the electrolytic copper foil and thermocompression bonding. By roughening the M surface by roughening, adhesion to the resin substrate is achieved. It is improving.

最近では、銅箔の粗化面に予めエポキシ樹脂等の接着用樹脂を貼着し、該接着用樹脂を半硬化状態(Bステージ)の絶縁樹脂層とした樹脂付き銅箔を表面回路形成用の銅箔として用い、その絶縁樹脂層の側を絶縁基板に熱圧着してプリント配線板(とりわけビルドアップ配線板)を製造することが行われている。ビルドアップ配線板では、各種電子部品を高度に集積化することが要望され、これに対応して、配線パターンも高密度化が要求され、微細な線幅、線間ピッチの配線パターン、いわゆるファインパターンのプリント配線板が求められるようになってきている。例えば、サーバー、ルーター、通信基地局、車載基板等に使用される多層基板やスマートフォン用多層基板では、高密度極微細配線を有するプリント配線板(以下、「高密度配線板」と記す)が要求されている。   Recently, an adhesive resin such as an epoxy resin is pasted on the roughened surface of the copper foil in advance, and the resin-coated copper foil is used for forming a surface circuit by using the adhesive resin as an insulating resin layer in a semi-cured state (B stage). A printed wiring board (particularly a build-up wiring board) is manufactured by thermocompression bonding the insulating resin layer side to an insulating substrate. In the build-up wiring board, it is required to highly integrate various electronic components. Correspondingly, the wiring pattern is also required to have a high density, and a wiring pattern having a fine line width and a pitch between lines, so-called fine wiring. There is a growing demand for printed wiring boards with patterns. For example, multilayer boards used for servers, routers, communication base stations, in-vehicle boards, etc. and multilayer boards for smartphones require printed wiring boards with high density and extremely fine wiring (hereinafter referred to as “high density wiring boards”). Has been.

AnyLayer(配置の自由度が高いレーザービアで層間を接続)の高密度配線板は、主にスマートフォンのメインボードに使用されているが、近年微細配線化が進んでおり、線幅及び線間のピッチ(以下、「L&S」と記す)がそれぞれ30μm以下という配線が要求されている。高密度配線板は、従来、プリント配線板メーカーにおいてフォトレジストを用いたサブトラクティブ工法で製造されるが、L&Sが狭くなると配線の断面形状が崩れてしまうため、500mm角を超えるような大面積で高密度配線板を一括成型する場合は、L&Sが30/30μm(線幅(L)が30μm、線間のピッチ(S)が30μm)以下の配線の形成は困難であった。   High-layer wiring boards of AnyLayer (interlayer connection using laser vias with a high degree of freedom in arrangement) are mainly used for the main board of smartphones. Wiring with a pitch (hereinafter referred to as “L & S”) of 30 μm or less is required. A high-density wiring board is conventionally manufactured by a subtractive method using a photoresist in a printed wiring board manufacturer. However, since the cross-sectional shape of the wiring collapses when the L & S becomes narrow, it has a large area exceeding 500 mm square. When a high-density wiring board is formed at once, it has been difficult to form a wiring having an L & S of 30/30 μm (the line width (L) is 30 μm and the pitch between lines (S) is 30 μm) or less.

そこで、最近では、高密度配線板においてL&Sが30/30μm以下の配線を形成するために、MSAP工法(Modified Semi Additive Process)の導入が進んでいる。しかしながら、MSAP工法は、サブトラクティブ工法と比べてプロセスコストが高いため、回路基板メーカーの負担が大きいという問題があった。また、微細配線を形成する場合、銅箔の表面粗度を小さくすることが有効であるが、一方で銅箔の表面粗度を小さくすると、樹脂製基板と銅箔の密着性が低下してしまうおそれがある。   Therefore, recently, in order to form a wiring with an L & S of 30/30 μm or less on a high-density wiring board, the introduction of the MSAP method (Modified Semi Additive Process) is in progress. However, since the MSAP method has a higher process cost than the subtractive method, there is a problem that the burden on the circuit board manufacturer is large. In addition, when forming fine wiring, it is effective to reduce the surface roughness of the copper foil. On the other hand, reducing the surface roughness of the copper foil reduces the adhesion between the resin substrate and the copper foil. There is a risk that.

特許文献1には、極薄銅層のバルクの平均結晶粒径を微細化することで微細配線を形成する技術が開示されているが、結晶粒径が小さすぎるとサイドエッチ(配線断面の横方向エッチング)の影響で高いエッチングファクターが得られないおそれがあった。
また、特許文献2には、高耐熱性樹脂との密着性に優れる銅箔が開示されているが、尖った形状の粗化粒子がエッチングの際に溶け残りやすく(根残り)、微細配線加工性が不十分となるおそれがあった。
Patent Document 1 discloses a technique for forming a fine wiring by refining the average crystal grain size of the bulk of an ultrathin copper layer. However, if the crystal grain size is too small, side etching (the side of the wiring cross section) is disclosed. There was a possibility that a high etching factor could not be obtained due to the influence of (directional etching).
Further, Patent Document 2 discloses a copper foil that is excellent in adhesion to a high heat-resistant resin. However, sharpened rough particles are likely to remain undissolved during etching (root residue), and fine wiring processing. There was a risk that the property would be insufficient.

日本国特許公報 第6158573号Japanese Patent Gazette No. 6158573 日本国特許公開公報 2010年第236058号Japanese Patent Publication No. 2010 No. 236058

本発明は、プロセスコストに優れるサブトラクティブ工法でL&Sが例えば30/30μm以下といった微細配線を形成することが可能な微細配線加工性を有し、且つ、樹脂製基板との密着性に優れる表面処理銅箔を提供することを課題とする。また、本発明は、上記のような微細配線加工性を有する銅張積層板、及び、高密度極微細配線を有するプリント配線板を提供することを併せて課題とする。   The present invention is a subtractive method with excellent process cost, and has a fine wiring workability capable of forming fine wiring with an L & S of, for example, 30/30 μm or less, and a surface treatment excellent in adhesion to a resin substrate. It is an object to provide a copper foil. Another object of the present invention is to provide a copper-clad laminate having fine wiring processability as described above and a printed wiring board having high-density ultrafine wiring.

本発明の一態様に係る表面処理銅箔は、粗化処理による粗化面を表面に有する表面処理銅箔であって、箔厚が10μm以下であり、粗化面の頂点曲率算術平均Sscが0.7μm-1以上3.8μm-1以下であり、200℃で2時間加熱後に電子線後方散乱回折法により断面を解析した場合に、結晶粒径が0.5μm以上の結晶粒のうち、結晶粒径が0.5μm以上1.0μm未満の結晶粒の個数の割合R1が0.51以上0.97以下であり、結晶粒径が1.0μm以上3.0μm未満の結晶粒の個数の割合R2が0.03以上0.42以下であり、結晶粒径が3.0μm以上の結晶粒の個数の割合R3が0.07以下であることを要旨とする。The surface-treated copper foil according to one embodiment of the present invention is a surface-treated copper foil having a roughened surface by a roughening treatment on the surface, the foil thickness is 10 μm or less, and the vertex curvature arithmetic average Ssc of the roughened surface is 0.7 [mu] m -1 or 3.8 .mu.m -1 or less, when analyzing the cross-section by electron backscatter diffraction after heating 2 hours at 200 ° C., of grain size of more crystal grains 0.5 [mu] m, The ratio R1 of the number of crystal grains having a crystal grain size of 0.5 μm or more and less than 1.0 μm is 0.51 or more and 0.97 or less, and the number of crystal grains having a crystal grain size of 1.0 μm or more and less than 3.0 μm The gist is that the ratio R3 is 0.03 or more and 0.42 or less, and the ratio R3 of the number of crystal grains having a crystal grain size of 3.0 μm or more is 0.07 or less.

また、本発明の他の態様に係る銅張積層板は、上記一態様に係る表面処理銅箔と、該表面処理銅箔の粗化面に積層された樹脂製基板と、を備えることを要旨とする。
さらに、本発明の他の態様に係るプリント配線板は、上記他の態様に係る銅張積層板を備えることを要旨とする。
Moreover, the copper clad laminated board which concerns on the other aspect of this invention is provided with the surface-treated copper foil which concerns on the said one aspect, and the resin-made board | substrate laminated | stacked on the roughening surface of this surface-treated copper foil. And
Furthermore, the gist of the printed wiring board according to another aspect of the present invention is that it includes the copper-clad laminate according to the other aspect.

本発明の表面処理銅箔は、プロセスコストに優れるサブトラクティブ工法でL&Sが例えば30/30μm以下の微細配線を形成することが可能な微細配線加工性を有し、且つ、樹脂製基板との密着性に優れる。また、本発明の銅張積層板は、上記のような微細配線加工性を有する。さらに、本発明のプリント配線板は、高密度極微細配線を有する。   The surface-treated copper foil of the present invention has a fine wiring processability capable of forming a fine wiring having an L & S of, for example, 30/30 μm or less by a subtractive method with excellent process cost, and is in close contact with a resin substrate. Excellent in properties. Moreover, the copper clad laminated board of this invention has the above fine wiring processability. Furthermore, the printed wiring board of the present invention has high density and extremely fine wiring.

電解析出装置を用いて電解銅箔を製造する方法を説明する図である。It is a figure explaining the method of manufacturing an electrolytic copper foil using an electrolytic deposition apparatus. 結晶粒の分布の測定方法を説明する図である。It is a figure explaining the measuring method of distribution of a crystal grain.

本発明の一実施形態について説明する。なお、以下に説明する実施形態は本発明の一例を示したものであって、本発明は本実施形態に限定されるものではない。また、本実施形態には種々の変更又は改良を加えることが可能であり、その様な変更又は改良を加えた形態も本発明に含まれ得る。   An embodiment of the present invention will be described. The embodiment described below shows an example of the present invention, and the present invention is not limited to this embodiment. In addition, various changes or improvements can be added to the present embodiment, and forms to which such changes or improvements are added can also be included in the present invention.

本発明者らは、鋭意検討の結果、銅箔の微細配線加工性に対して、銅箔中の結晶粒径が0.5μm以上の結晶粒の分布状態の影響が高いことを見出した。一般に、微細配線のエッチング加工においては、結晶粒内よりも結晶粒の粒界で優先的に溶解が進行することが知られている。結晶粒界は面方位の異なる結晶粒の境界にあたり、原子配列の不整合や欠陥が多く存在するためにエネルギー的に活性な状態にあることから、エッチングで溶解し易い。したがって、銅箔中の結晶粒が微細になるほど結晶粒界が増えて、溶解速度が速くなると考えられる。   As a result of intensive studies, the present inventors have found that the distribution of crystal grains having a crystal grain size of 0.5 μm or more in the copper foil is highly influenced by the fine wiring processability of the copper foil. In general, it is known that in the fine wiring etching process, the dissolution proceeds preferentially at the grain boundaries of the crystal grains rather than within the crystal grains. A crystal grain boundary is a boundary between crystal grains having different plane orientations, and is in an energetically active state because there are many atomic arrangement mismatches and defects, so that it is easily dissolved by etching. Therefore, it is considered that the crystal grain boundaries increase and the dissolution rate increases as the crystal grains in the copper foil become finer.

銅箔の微細配線加工性の向上に影響する因子を調査した結果、200℃で2時間加熱された後において0.5μm以上1.0μm未満の結晶粒径の結晶粒が一定の割合にある場合には、エッチング時の縦方向の溶解速度が速まりエッチングファクターが上昇することが分かった。しかし、一方で、このサイズの結晶粒の割合が多すぎると、逆に配線パターン断面のトップ側(以下、パターン上部をトップ、パターン下部をボトムとする。)での横方向の溶解が優先して進行して、エッチングファクターが減少することを見出した。   As a result of investigating factors affecting the improvement of the fine wiring workability of the copper foil, when the crystal grains having a crystal grain size of 0.5 μm or more and less than 1.0 μm are in a certain ratio after being heated at 200 ° C. for 2 hours It was found that the vertical dissolution rate during etching increased and the etching factor increased. However, on the other hand, if the proportion of crystal grains of this size is too large, the horizontal melting on the top side of the wiring pattern cross section (hereinafter, the upper part of the pattern is the top and the lower part of the pattern is the bottom) is given priority. As a result, it was found that the etching factor decreased.

具体的には、200℃で2時間加熱後に電子線後方散乱回折法により断面を解析した場合に、結晶粒径が0.5μm以上の結晶粒のうち、結晶粒径が0.5μm以上1.0μm未満の結晶粒の個数の割合R1が0.51以上0.97以下であるとエッチングファクターが増加する。しかし、割合R1が0.97より大きいと、トップ側のエッチングが優先して進行して微細配線加工性が低下し、割合R1が0.51より小さいと、銅箔の厚さ方向のエッチング速度が遅くなり微細配線加工が低下する。   Specifically, when the cross section is analyzed by electron beam backscatter diffraction after heating at 200 ° C. for 2 hours, the crystal grain size is 0.5 μm or more and 1. When the ratio R1 of the number of crystal grains less than 0 μm is 0.51 or more and 0.97 or less, the etching factor increases. However, if the ratio R1 is larger than 0.97, the etching on the top side preferentially proceeds and the fine wiring workability deteriorates. If the ratio R1 is smaller than 0.51, the etching rate in the thickness direction of the copper foil is reduced. Slows down and fine wiring processing decreases.

また、結晶粒径が3.0μm以上のサイズとなると、結晶粒の体積に対して粒界の面積が少なく溶け残りし易いために、エッチング速度の低下により配線パターンが裾引きしやすくなる。具体的には、200℃で2時間加熱後に電子線後方散乱回折法により断面を解析した場合に、結晶粒径が0.5μm以上の結晶粒のうち、結晶粒径が3.0μm以上の結晶粒の個数の割合R3が0であるか、又は、0超過0.07以下の範囲においては微細配線加工性が向上するが、割合R3が0.07より大きいと、サイズの大きな結晶粒の溶け残りの影響が増加し微細配線加工性が低下する。   Further, when the crystal grain size is 3.0 μm or more, the area of the grain boundary is small with respect to the volume of the crystal grains and it is easy to remain undissolved. Specifically, a crystal having a crystal grain size of 3.0 μm or more among crystal grains having a crystal grain size of 0.5 μm or more when the cross section is analyzed by electron beam backscatter diffraction after heating at 200 ° C. for 2 hours. Fine wiring workability is improved when the ratio R3 of the number of grains is 0 or in the range of more than 0 and less than or equal to 0.07. However, if the ratio R3 is greater than 0.07, melting of large crystal grains is improved. The remaining effect increases and the fine wiring processability decreases.

詳細は後述するが、上記のような結晶粒の分布は、電解銅箔を製造する際に電解液に付与する電流密度を均一化することにより制御することができる。
さらに、微細配線加工性に寄与する因子を調査する中で、銅箔の粗化粒子の頂上近傍部分における曲率の算術平均(粗化面の頂点曲率算術平均)Sscの影響が強いことを見出した。具体的には、頂点曲率算術平均Sscが0.7μm-1以上3.8μm-1以下であるときにエッチングファクターが増加する。頂点曲率算術平均Sscは、様々な山構造の平均サミット曲率であり、下記式で表される。下記式において、z(x,y)はx,y座標における高さ方向の座標であり、Nは粗化粒子の頂点個数である。
Although details will be described later, the distribution of crystal grains as described above can be controlled by making the current density applied to the electrolytic solution uniform when manufacturing the electrolytic copper foil.
Furthermore, in investigating factors contributing to fine wiring workability, it was found that the influence of the arithmetic mean of the curvature (the average curvature of the top surface of the roughened surface) Ssc in the vicinity of the top of the roughened particles of the copper foil is strong. . Specifically, the etching factor increases when the vertex curvature arithmetic average Ssc is 0.7 μm −1 or more and 3.8 μm −1 or less. The vertex curvature arithmetic average Ssc is an average summit curvature of various mountain structures, and is expressed by the following equation. In the following formula, z (x, y) is a coordinate in the height direction in the x, y coordinate, and N is the number of vertices of the roughened particles.

Figure 0006606317
Figure 0006606317

この範囲に頂点曲率算術平均Sscがある場合には、銅箔の粗化面の粗化粒子の頂点の曲がり具合が適度な状態にあるため、エッチング時に根残り(粗化粒子の先端が溶け残る状態)せずに容易に溶け、銅箔の裾引きが抑制されてエッチングファクターが上昇すると考えられる。   When there is a vertex curvature arithmetic average Ssc in this range, since the degree of bending of the vertices of the roughened particles on the roughened surface of the copper foil is in an appropriate state, the root residue (the tip of the roughened particles remains undissolved) during etching. It is considered that the film is easily melted without being in a state), and the skirting of the copper foil is suppressed to increase the etching factor.

頂点曲率算術平均Sscが3.8μm-1よりも大きい場合は、粗化粒子の頂点の曲がり具合が強いために、樹脂製基板に粗化粒子が深く刺さる状態となってエッチング時に根残りが生じ、銅箔の裾引きが長くなってエッチングファクターが低下する。頂点曲率算術平均Sscが0.7μm-1よりも小さい場合は、粗化粒子の頂点の曲がり具合が緩いために、樹脂製基板に対する粗化粒子の食い込み具合が悪く(アンカー効果が弱く)、樹脂製基板と銅箔の密着性が低下する。When the vertex curvature arithmetic average Ssc is larger than 3.8 μm −1 , the degree of bending of the roughened particles is strong, so that the roughened particles are deeply stuck in the resin substrate, resulting in a root residue during etching. The skirting of the copper foil becomes longer and the etching factor decreases. When the vertex curvature arithmetic average Ssc is smaller than 0.7 μm −1 , the degree of bending of the roughened particles on the resin substrate is poor (because the anchor effect is weak) because the degree of bending of the vertex of the roughened particles is loose. Adhesion between the substrate and copper foil is reduced.

詳細は後述するが、粗化粒子の頂点を溶解させることにより頂点曲率算術平均Sscを低下させることができるので、パルスメッキや、粗化処理の後に銅箔を硫酸銅水溶液に浸漬する方法によって粗化粒子の頂点を溶解させれば、頂点曲率算術平均Sscを制御することができる。   Although details will be described later, since the vertex curvature arithmetic average Ssc can be lowered by dissolving the vertices of the roughened particles, roughening is performed by pulse plating or a method of immersing the copper foil in an aqueous copper sulfate solution after the roughening treatment. If the vertices of the chemical particles are dissolved, the vertex curvature arithmetic average Ssc can be controlled.

すなわち、本発明の一実施形態に係る表面処理銅箔は、粗化処理による粗化面を表面に有する表面処理銅箔であって、箔厚が10μm以下であり、粗化面の頂点曲率算術平均Sscが0.7μm-1以上3.8μm-1以下である。そして、200℃で2時間加熱後に電子線後方散乱回折法により断面を解析した場合に、結晶粒径が0.5μm以上の結晶粒のうち、結晶粒径が0.5μm以上1.0μm未満の結晶粒の個数の割合R1が0.51以上0.97以下であり、結晶粒径が1.0μm以上3.0μm未満の結晶粒の個数の割合R2が0.03以上0.42以下であり、結晶粒径が3.0μm以上の結晶粒の個数の割合R3が0.07以下である。すなわち、結晶粒径が3.0μm以上の結晶粒は任意成分であり、割合R3は0であるか、又は、0超過0.07以下である。That is, the surface-treated copper foil according to one embodiment of the present invention is a surface-treated copper foil having a roughened surface by a roughening treatment on the surface, the foil thickness is 10 μm or less, and the vertex curvature arithmetic of the roughened surface. The average Ssc is 0.7 μm −1 or more and 3.8 μm −1 or less. And, when the cross section is analyzed by electron beam backscatter diffraction after heating at 200 ° C. for 2 hours, among the crystal grains having a crystal grain size of 0.5 μm or more, the crystal grain size is 0.5 μm or more and less than 1.0 μm The ratio R1 of the number of crystal grains is 0.51 or more and 0.97 or less, and the ratio R2 of the number of crystal grains whose crystal grain size is 1.0 μm or more and less than 3.0 μm is 0.03 or more and 0.42 or less. The ratio R3 of the number of crystal grains having a crystal grain size of 3.0 μm or more is 0.07 or less. That is, a crystal grain having a crystal grain size of 3.0 μm or more is an optional component, and the ratio R3 is 0 or is greater than 0 and not greater than 0.07.

本発明の一実施形態に係る表面処理銅箔においては、さらに、粗化面の頂点曲率算術平均Sscは1.0μm-1以上2.5μm-1以下であることが好ましい。また、200℃で2時間加熱後に電子線後方散乱回折法により断面を解析した場合に、結晶粒径が0.5μm以上の結晶粒のうち、結晶粒径が0.5μm以上1.0μm未満の結晶粒の個数の割合R1は0.59以上0.96以下、結晶粒径が1.0μm以上3.0μm未満の結晶粒の個数の割合R2は0.04以上0.41以下、結晶粒径が3.0μm以上の結晶粒の個数の割合R3は0であることが好ましい。In the surface-treated copper foil according to an embodiment of the present invention, further, the vertex curvature arithmetic mean Ssc of the roughened surface is preferably 1.0 .mu.m -1 or 2.5 [mu] m -1 or less. In addition, when the cross section is analyzed by electron beam backscatter diffraction after heating at 200 ° C. for 2 hours, the crystal grain size is 0.5 μm or more and less than 1.0 μm among the crystal grains having a crystal grain size of 0.5 μm or more. The ratio R1 of the number of crystal grains is 0.59 or more and 0.96 or less, and the ratio R2 of the number of crystal grains whose crystal grain diameter is 1.0 to 3.0 μm is 0.04 or more and 0.41 or less. The ratio R3 of the number of crystal grains having a diameter of 3.0 μm or more is preferably 0.

上記の本実施形態に係る表面処理銅箔は、プロセスコストに優れるサブトラクティブ工法でL&Sが例えば30/30μm以下の微細配線を形成することが可能な微細配線加工性を有し、且つ、樹脂製基板との密着性に優れる。よって、本実施形態に係る表面処理銅箔は、銅張積層板やプリント配線板の製造に対して好適に使用することができ、高密度極微細配線を有するプリント配線板を製造することができる。   The surface-treated copper foil according to the present embodiment has a fine wiring processability capable of forming a fine wiring having an L & S of, for example, 30/30 μm or less by a subtractive method with excellent process cost, and is made of resin. Excellent adhesion to the substrate. Therefore, the surface-treated copper foil according to the present embodiment can be suitably used for the production of copper-clad laminates and printed wiring boards, and can produce printed wiring boards having high-density ultrafine wiring. .

本実施形態に係る表面処理銅箔においては、箔厚は10μm以下である。表面処理銅箔の箔厚が10μmを超えると、銅箔の溶解時間が長くなりエッチングファクターが低下するという不都合が生じるおそれがある。
また、本実施形態に係る表面処理銅箔においては、粗化面のRpm(粗さ曲線の最大山高さの10点平均)は0.5μm以上3.5μm以下としてもよい。粗化面のRpmが0.5μm未満であると、樹脂製基板との密着性が低下するという不都合が生じるおそれがある。一方、粗化面のRpmが3.5μmを超えると、エッチングファクターが低下するという不都合が生じるおそれがある。
In the surface-treated copper foil according to this embodiment, the foil thickness is 10 μm or less. If the foil thickness of the surface-treated copper foil exceeds 10 μm, there is a possibility that inconvenience that the melting time of the copper foil becomes long and the etching factor decreases.
Moreover, in the surface-treated copper foil which concerns on this embodiment, Rpm (10-point average of the maximum peak height of a roughness curve) of a roughening surface is good also as 0.5 to 3.5 micrometer. When the Rpm of the roughened surface is less than 0.5 μm, there is a possibility that inconvenience that the adhesion to the resin substrate is lowered. On the other hand, if the Rpm of the roughened surface exceeds 3.5 μm, there is a possibility that an inconvenience that the etching factor is lowered.

さらに、本実施形態に係る表面処理銅箔においては、常態における引張強度は400MPa以上780MPa以下、220℃で2時間加熱後に常温で測定した引張強度は300MPa以上としてもよい。
常態における引張強度が400MPa以上780MPa以下であると、表面処理銅箔のハンドリング性とエッチング性が良好である。220℃で2時間加熱後に常温で測定した引張強度が300MPa以上である場合は、エッチング性が良好である。
Furthermore, in the surface-treated copper foil according to this embodiment, the tensile strength in a normal state may be 400 MPa or more and 780 MPa or less, and the tensile strength measured at room temperature after heating at 220 ° C. for 2 hours may be 300 MPa or more.
When the tensile strength in the normal state is 400 MPa or more and 780 MPa or less, the handling property and etching property of the surface-treated copper foil are good. When the tensile strength measured at room temperature after heating at 220 ° C. for 2 hours is 300 MPa or more, the etching property is good.

なお、本発明において「結晶粒径」とは、円相当直径を意味する。また、本発明において「常態」とは、表面処理銅箔が熱処理等の熱履歴を受けずに常温(すなわち、およそ25℃)におかれた状態のことを意味する。常態における引張強度は、IPC−TM−650に準拠する方法により常温において測定することができる。また、加熱後の引張強度は、表面処理銅箔を220℃に加熱して2時間保持した後に常温まで自然冷却し、常態における引張強度と同様の方法により常温において測定することができる。   In the present invention, “crystal grain size” means an equivalent circle diameter. In the present invention, the “normal state” means that the surface-treated copper foil is kept at a normal temperature (ie, about 25 ° C.) without receiving a thermal history such as heat treatment. The tensile strength in the normal state can be measured at room temperature by a method based on IPC-TM-650. The tensile strength after heating can be measured at room temperature by the same method as the tensile strength in a normal state after heating the surface-treated copper foil to 220 ° C. and holding it for 2 hours, and then naturally cooling it to room temperature.

以下に、本実施形態に係る表面処理銅箔について、さらに詳細に説明する。まず、表面処理銅箔の製造方法について説明する。
(1)電解銅箔の製造方法について
電解銅箔は、例えば図1に示すような電解析出装置を用いて製造することができる。図1の電解析出装置は、白金族元素又はその酸化物を被覆したチタンからなる不溶性アノード104と、不溶性アノード104に対向して設けられたチタン製のカソードドラム102と、カソードドラム102を研磨してカソードドラム102の表面に生じる酸化膜を除去するバフ103と、を備えている。
Below, the surface-treated copper foil which concerns on this embodiment is demonstrated in detail. First, the manufacturing method of surface-treated copper foil is demonstrated.
(1) About the manufacturing method of electrolytic copper foil Electrolytic copper foil can be manufactured, for example using an electrolytic deposition apparatus as shown in FIG. The electrolytic deposition apparatus of FIG. 1 polishes an insoluble anode 104 made of titanium coated with a platinum group element or its oxide, a titanium cathode drum 102 provided opposite to the insoluble anode 104, and the cathode drum 102. And a buff 103 for removing an oxide film generated on the surface of the cathode drum 102.

カソードドラム102と不溶性アノード104との間に電解液105(硫酸−硫酸銅水溶液)を供給し、カソードドラム102を一定速度で回転させながら、カソードドラム102と不溶性アノード104との間に直流電流を通電する。これにより、カソードドラム102の表面上に銅が析出する。析出した銅をカソードドラム102の表面から引き剥がし、連続的に巻き取ることにより、電解銅箔101が得られる。   An electrolytic solution 105 (sulfuric acid-copper sulfate aqueous solution) is supplied between the cathode drum 102 and the insoluble anode 104, and a direct current is applied between the cathode drum 102 and the insoluble anode 104 while rotating the cathode drum 102 at a constant speed. Energize. As a result, copper is deposited on the surface of the cathode drum 102. The deposited copper is peeled off from the surface of the cathode drum 102 and continuously wound up, whereby the electrolytic copper foil 101 is obtained.

本発明者らが鋭意検討した結果、ポンプにより電解液を撹拌する従来の方法に対して、電解液105に強い乱流を生じさせる方法により、カソードドラム102と不溶性アノード104との間の電流密度が一般的な電解製箔よりも均一化され、銅箔の結晶粒の分布を制御できることを見出した。電解液105に強い乱流を生じさせる方法の一例としては、空気等の気体のバブリングが挙げられる。電解析出装置に気体のバブリング装置を設け、流量を調整しつつ電解液105に気体を供給してバブリングさせると、電解液105中で気泡がランダムに動き強い乱流が生じる。   As a result of intensive studies by the present inventors, the current density between the cathode drum 102 and the insoluble anode 104 is increased by a method of generating a strong turbulent flow in the electrolytic solution 105 compared to the conventional method of stirring the electrolytic solution by a pump. Has been found to be more uniform than general electrolytic foils and to control the distribution of crystal grains of the copper foil. As an example of a method for generating a strong turbulent flow in the electrolytic solution 105, bubbling of a gas such as air can be given. When a gas bubbling device is provided in the electrolytic deposition apparatus and gas is supplied to the electrolytic solution 105 while bubbling while adjusting the flow rate, bubbles move randomly in the electrolytic solution 105 and a strong turbulent flow is generated.

具体的には、気体の流量を2L/min以上8L/min以下とすれば、電流密度が均一化され、200℃で2時間加熱後に電子線後方散乱回折法により断面を解析した場合の結晶粒の分布が、前述した本実施形態に係る表面処理銅箔と同様な電解銅箔が得られやすい。気体の流量が2L/min未満であると、局所的に電流密度が低い領域が生じ、粗大な結晶粒が形成されやすいため、エッチングファクターが低下するおそれがある。一方、気体の流量が8L/min超過であると、割合R1が大きくなりサイドエッチが優勢となるために、エッチングファクターが低下するおそれがある。   Specifically, when the gas flow rate is 2 L / min or more and 8 L / min or less, the current density becomes uniform, and the crystal grains when the cross section is analyzed by electron beam backscatter diffraction after heating at 200 ° C. for 2 hours It is easy to obtain an electrolytic copper foil having the same distribution as the surface-treated copper foil according to this embodiment described above. When the gas flow rate is less than 2 L / min, a region where the current density is locally generated is generated, and coarse crystal grains are likely to be formed, so that the etching factor may be reduced. On the other hand, if the gas flow rate is more than 8 L / min, the ratio R1 increases and side etching becomes dominant, which may reduce the etching factor.

また、別の実施形態として、不溶性アノードの表面に連続する凹凸を形成してもよい。凹凸の近傍においては電解液の流速が遅く、一方で不溶性アノードとカソードの中間では電解液の流速が速くなり、速度差が生じる。この速度差によって強い乱流が発生し、従来の電解製箔よりも電流密度分布が均一化され、銅箔の結晶粒の分布を制御できることを見出した。   As another embodiment, continuous irregularities may be formed on the surface of the insoluble anode. In the vicinity of the unevenness, the flow rate of the electrolytic solution is low, while the flow rate of the electrolytic solution is high between the insoluble anode and the cathode, resulting in a speed difference. It has been found that a strong turbulent flow is generated by this speed difference, the current density distribution is made more uniform than that of the conventional electrolytic foil, and the crystal grain distribution of the copper foil can be controlled.

具体的には、高さが0.5〜1.5mm、幅が10〜70mmの凸部を、アノードの円周方向に沿って60mmの間隔を置いて連続して形成することによって、乱流が発生し、200℃で2時間加熱後に電子線後方散乱回折法によって断面を解析した場合の結晶粒の分布が、前述した本実施形態に係る表面処理銅箔と同様の電解銅箔が得られやすい。   Specifically, the turbulent flow is formed by continuously forming convex portions having a height of 0.5 to 1.5 mm and a width of 10 to 70 mm at intervals of 60 mm along the circumferential direction of the anode. When the cross section is analyzed by electron beam backscatter diffraction after heating at 200 ° C. for 2 hours, an electrolytic copper foil similar to the surface-treated copper foil according to this embodiment described above is obtained. Cheap.

電解銅箔の製造においては、電解液105に添加剤を添加してもよい。添加剤の種類は特に限定されるものではないが、エチレンチオ尿素、ポリエチレングリコール、テトラメチルチオ尿素、ポリアクリルアミド等があげられる。ここで、エチレンチオ尿素、テトラメチルチオ尿素の添加量を増加することにより、常態における引張強度、及び、220℃で2時間加熱後に常温で測定した引張強度を向上させることができる。   In the production of the electrolytic copper foil, an additive may be added to the electrolytic solution 105. The type of additive is not particularly limited, and examples thereof include ethylene thiourea, polyethylene glycol, tetramethyl thiourea, polyacrylamide and the like. Here, by increasing the addition amount of ethylenethiourea and tetramethylthiourea, the tensile strength in a normal state and the tensile strength measured at room temperature after heating at 220 ° C. for 2 hours can be improved.

常態における引張強度が400MPa以上780MPa以下であると、表面処理銅箔のハンドリング性とエッチング性が良好である。常態における引張強度が400MPa未満であると、表面処理銅箔が薄箔シート品であるため、搬送時にシワが発生することでハンドリング性が悪くなるおそれがある。一方、常態における引張強度が780MPaよりも大きいと、電解析出装置を用いて銅箔を製造する際に、ドラムに析出した銅箔が箔切れを起こし易く製造に不適となるおそれがある。   When the tensile strength in the normal state is 400 MPa or more and 780 MPa or less, the handling property and etching property of the surface-treated copper foil are good. When the tensile strength in a normal state is less than 400 MPa, the surface-treated copper foil is a thin foil sheet product, and thus wrinkles are generated during transportation, which may deteriorate handling properties. On the other hand, if the tensile strength in the normal state is larger than 780 MPa, the copper foil deposited on the drum is likely to break the foil when producing the copper foil using the electrolytic deposition apparatus, which may be unsuitable for production.

また、220℃で2時間加熱後に常温で測定した引張強度が300MPa以上である場合は、表面処理銅箔と樹脂製基板を積層して銅張積層板を製造する工程において加熱された後も結晶粒が細かく、エッチング性が良好である。220℃で2時間加熱後に常温で測定した引張強度が300MPa未満であると、表面処理銅箔と樹脂製基板を積層して銅張積層板を製造する工程における加熱によって結晶粒が大きくなりエッチングで溶け難くなるため、エッチング性が低下するおそれがある。   In addition, when the tensile strength measured at room temperature after heating at 220 ° C. for 2 hours is 300 MPa or more, the crystal after being heated in the process of manufacturing the copper-clad laminate by laminating the surface-treated copper foil and the resin substrate The grains are fine and the etching property is good. When the tensile strength measured at room temperature after heating at 220 ° C. for 2 hours is less than 300 MPa, the crystal grains become larger by etching in the process of producing a copper-clad laminate by laminating a surface-treated copper foil and a resin substrate. Since it becomes difficult to melt | dissolve, there exists a possibility that etching property may fall.

なお、電解液105には、モリブデンを添加してもよい。モリブデンを添加することにより、銅箔のエッチング性を高めることができる。通常、電解析出において、電解液105の銅濃度(硫酸銅のうち硫酸分は考慮しない銅のみの濃度)は13〜72g/L、電解液105の硫酸濃度は26〜133g/L、電解液105の液温は18〜67℃、電流密度は3〜67A/dm2、処理時間は1秒以上1分55秒以下である。Note that molybdenum may be added to the electrolytic solution 105. By adding molybdenum, the etching property of the copper foil can be enhanced. Usually, in electrolytic deposition, the electrolytic solution 105 has a copper concentration (concentration of only copper sulfate that does not consider the sulfuric acid content) of 13 to 72 g / L, the electrolytic solution 105 has a sulfuric acid concentration of 26 to 133 g / L, and the electrolytic solution. The liquid temperature of 105 is 18 to 67 ° C., the current density is 3 to 67 A / dm 2 , and the treatment time is 1 second to 1 minute 55 seconds.

(2)電解銅箔の表面処理について
<粗化処理>
樹脂製基板との密着性を向上させる目的で、電解銅箔の表面に粗化処理を施して粗化面とするが、一般的に、密着性の高い粗化処理だとエッチング時に根残りが生じやすく、エッチングファクターが低下しやすいことが知られている。本発明者らが鋭意検討した結果、粗化粒子の頂点をわずかに溶解させることで頂点の曲がり具合の強さが低減し(粗化面の頂点曲率算術平均Sscが低下し)、エッチング時に根残りしにくくなりエッチングファクターが向上することを見出した。
粗化粒子の頂点を溶解させる方法は特に限定されるものではないが、適度な逆電流を用いたパルスメッキにより溶解させる方法や、粗化処理の後に銅箔を硫酸銅水溶液に浸漬し優先的に先端を溶解させる方法があげられる。
(2) Surface treatment of electrolytic copper foil <roughening treatment>
For the purpose of improving the adhesion to the resin substrate, the surface of the electrolytic copper foil is roughened to form a roughened surface. It is known that it tends to occur and the etching factor tends to decrease. As a result of intensive studies by the present inventors, the strength of the bending of the vertexes is reduced by slightly dissolving the vertices of the roughened particles (the vertex curvature arithmetic mean Ssc of the roughened surface is lowered), and the roots during etching are reduced. It has been found that the etching factor is improved because it is difficult to remain.
The method of dissolving the top of the roughened particles is not particularly limited, but the method of dissolving by pulse plating using an appropriate reverse current, or the copper foil is immersed in an aqueous copper sulfate solution after the roughening treatment is preferential. And a method for dissolving the tip.

また、粗化面の頂点曲率算術平均Sscが0.7μm-1以上3.8μm-1以下であり、且つ、200℃で2時間加熱後に電子線後方散乱回折法により断面を解析した場合の結晶粒の分布が上記の通り(すなわち、200℃で2時間加熱後に電子線後方散乱回折法により断面を解析した場合に、結晶粒径が0.5μm以上の結晶粒のうち、結晶粒径が0.5μm以上1.0μm未満の結晶粒の個数の割合R1が0.51以上0.97以下であり、結晶粒径が1.0μm以上3.0μm未満の結晶粒の個数の割合R2が0.03以上0.42以下であり、結晶粒径が3.0μm以上の結晶粒の個数の割合R3が0であるか、又は、200℃で2時間加熱後に電子線後方散乱回折法により断面を解析した場合に、結晶粒径が0.5μm以上の結晶粒のうち、結晶粒径が0.5μm以上1.0μm未満の結晶粒の個数の割合R1が0.51以上0.97以下であり、結晶粒径が1.0μm以上3.0μm未満の結晶粒の個数の割合R2が0.03以上0.42以下であり、結晶粒径が3.0μm以上の結晶粒の個数の割合R3が0超過0.07以下である)であると、銅箔のエッチングファクターが特異的に上昇することを見出した。The crystal in the case where the vertex curvature arithmetic mean Ssc of the roughened surface is 0.7 μm −1 or more and 3.8 μm −1 or less and the cross section is analyzed by electron beam backscatter diffraction after heating at 200 ° C. for 2 hours. The distribution of grains is as described above (that is, when the cross section is analyzed by electron beam backscatter diffraction after heating at 200 ° C. for 2 hours, among the grains having a grain size of 0.5 μm or more, the grain size is 0 The ratio R1 of the number of crystal grains having a size of 0.5 μm or more and less than 1.0 μm is 0.51 or more and 0.97 or less, and the ratio R2 of the number of crystal grains having a grain size of 1.0 μm or more and less than 3.0 μm is 0.8. The ratio R3 of the number of crystal grains of 03 to 0.42 and the crystal grain size of 3.0 μm or more is 0, or the cross section is analyzed by electron beam backscatter diffraction after heating at 200 ° C. for 2 hours When the crystal grain size is 0.5 μm or more, The ratio R1 of the number of crystal grains having a crystal grain size of 0.5 μm or more and less than 1.0 μm is 0.51 or more and 0.97 or less, and the number of crystal grains having a crystal grain size of 1.0 μm or more and less than 3.0 μm When the ratio R2 is 0.03 or more and 0.42 or less, and the ratio R3 of the number of crystal grains having a crystal grain size of 3.0 μm or more is more than 0 and 0.07 or less, the etching factor of the copper foil is It was found to rise specifically.

これは、銅箔における縦方向(配線のトップ側からボトム側に向かう方向)の溶解速度と粗化面における溶解速度(横方向、すなわち配線の幅方向)のバランスが良いためにもたらされた効果だと考えられる。例えば、銅箔の溶解速度(縦方向の溶解)よりも粗化面の溶解速度(横方向の溶解)の方が速すぎる場合は、アンダーカット(横方向で粗化面の溶解が銅箔よりも進んだ状態)の問題が生じる。   This is due to the good balance between the dissolution rate in the vertical direction (direction from the top side of the wiring toward the bottom side) of the copper foil and the dissolution rate on the roughened surface (lateral direction, that is, the width direction of the wiring). It is considered to be an effect. For example, when the dissolution rate of the roughened surface (dissolution in the horizontal direction) is too fast than the dissolution rate of the copper foil (dissolution in the vertical direction), the undercut (dissolution of the roughened surface in the horizontal direction than the copper foil) Problem).

<ニッケル層、亜鉛層、クロメート処理層の形成>
本実施形態に係る表面処理銅箔においては、粗化処理により形成した粗化面の上に、さらにニッケル層、亜鉛層をこの順で形成してもよい。
亜鉛層は、表面処理銅箔と樹脂製基板を熱圧着したときに、表面処理銅箔と樹脂製基板との反応による樹脂製基板の劣化や表面処理銅箔の表面酸化が生じることを防止して、表面処理銅箔と樹脂製基板との密着性を高める働きをする。また、ニッケル層は、表面処理銅箔と樹脂製基板を熱圧着したときに、亜鉛層の亜鉛が表面処理銅箔中へ熱拡散することを防止する。すなわち、ニッケル層は、亜鉛層の上記機能を有効に発揮させるための亜鉛層の下地層としての働きをする。
<Formation of nickel layer, zinc layer, chromate treatment layer>
In the surface-treated copper foil according to the present embodiment, a nickel layer and a zinc layer may be further formed in this order on the roughened surface formed by the roughening treatment.
The zinc layer prevents deterioration of the resin substrate and surface oxidation of the surface-treated copper foil due to the reaction between the surface-treated copper foil and the resin substrate when the surface-treated copper foil and the resin substrate are thermocompression bonded. Thus, it functions to improve the adhesion between the surface-treated copper foil and the resin substrate. The nickel layer prevents the zinc in the zinc layer from being thermally diffused into the surface-treated copper foil when the surface-treated copper foil and the resin substrate are thermocompression bonded. That is, the nickel layer functions as a base layer for the zinc layer for effectively exhibiting the functions of the zinc layer.

なお、これらのニッケル層や亜鉛層は、公知の電解メッキ法や無電解メッキ法を適用して形成することができる。また、ニッケル層は純ニッケルで形成してもよいし、含リンニッケル合金で形成してもよい。
また、亜鉛層の上にさらにクロメート処理を行うと、表面処理銅箔の表面に酸化防止層が形成されることとなるので好ましい。適用するクロメート処理としては、公知の方法を用いることができ、例えば、特開昭60−86894号公報に開示されている方法をあげることができる。クロム量に換算して0.01〜0.3mg/dm2程度のクロム酸化物とその水和物などを付着させることにより、表面処理銅箔に優れた酸化防止機能を付与することができる。
These nickel layers and zinc layers can be formed by applying a known electrolytic plating method or electroless plating method. The nickel layer may be formed of pure nickel or a phosphorus-containing nickel alloy.
Further, it is preferable to further perform chromate treatment on the zinc layer because an antioxidant layer is formed on the surface of the surface-treated copper foil. As the chromate treatment to be applied, a known method can be used. For example, the method disclosed in JP-A-60-86894 can be exemplified. An excellent antioxidant function can be imparted to the surface-treated copper foil by attaching about 0.01 to 0.3 mg / dm 2 of chromium oxide and its hydrate in terms of the amount of chromium.

<シラン処理>
クロメート処理した表面に対し、さらにシランカップリング剤を用いた表面処理(シラン処理)を行ってもよい。シランカップリング剤を用いた表面処理により、表面処理銅箔の表面(樹脂製基板との接合側の表面)に接着剤との親和力の強い官能基が付与されるので、表面処理銅箔と樹脂製基板との密着性は一層向上し、表面処理銅箔の防錆性や吸湿耐熱性もさらに向上する。
<Silane treatment>
A surface treatment (silane treatment) using a silane coupling agent may be further performed on the chromated surface. The surface treatment using a silane coupling agent gives a functional group having a strong affinity for the adhesive to the surface of the surface-treated copper foil (the surface on the side bonded to the resin substrate). Adhesion with the substrate is further improved, and the rust prevention and moisture absorption heat resistance of the surface-treated copper foil are further improved.

シランカップリング剤の種類は特に限定されるものではないが、ビニル系シラン、エポキシ系シラン、スチリル系シラン、メタクリロキシ系シラン、アクリロキシ系シラン、アミノ系シラン、ウレイド系シラン、クロロプロピル系シラン、メルカプト系シラン、スルフィド系シラン、イソシアネート系シラン等のシランカップリング剤をあげることができる。これらのシランカップリング剤は、通常は0.001質量%以上5質量%以下の濃度の水溶液にして使用される。この水溶液を表面処理銅箔の表面に塗布した後に加熱乾燥することにより、シラン処理を行うことができる。なお、シランカップリング剤に代えて、チタネート系、ジルコネート系等のカップリング剤を用いても、同様の効果を得ることができる。   The type of silane coupling agent is not particularly limited, but vinyl silane, epoxy silane, styryl silane, methacryloxy silane, acryloxy silane, amino silane, ureido silane, chloropropyl silane, mercapto Examples thereof include silane coupling agents such as silane, sulfide silane and isocyanate silane. These silane coupling agents are usually used in the form of an aqueous solution having a concentration of 0.001% by mass or more and 5% by mass or less. Silane treatment can be performed by applying this aqueous solution to the surface of the surface-treated copper foil and then drying by heating. In addition, it can replace with a silane coupling agent, and even if it uses coupling agents, such as a titanate type | system | group and a zirconate type | system | group, the same effect can be acquired.

(3)銅張積層板、プリント配線板の製造方法について
まず、ガラスエポキシ樹脂、ポリイミド樹脂等からなる電気絶縁性の樹脂製基板の一方又は両方の表面に、表面処理銅箔を重ねて置く。その際には、表面処理銅箔の粗化面を樹脂製基板に対向させる。そして、重ねられた樹脂製基板及び表面処理銅箔を加熱しながら、積層方向の圧力を加えて、樹脂製基板及び表面処理銅箔を接合すると、キャリア付き又はキャリア無しの銅張積層板が得られる。本実施形態に係る表面処理銅箔は、常態及び加熱後の引張強度が高いため、キャリア無しでも十分対応することができる。
(3) About the manufacturing method of a copper clad laminated board and a printed wiring board First, surface-treated copper foil is piled up on one or both surfaces of the electrically insulating resin-made board | substrates which consist of glass epoxy resin, a polyimide resin, etc. At that time, the roughened surface of the surface-treated copper foil is opposed to the resin substrate. And while heating the laminated resin substrate and the surface-treated copper foil, applying pressure in the laminating direction to join the resin substrate and the surface-treated copper foil, a copper-clad laminate with or without a carrier is obtained. It is done. Since the surface-treated copper foil according to the present embodiment has a high tensile strength after normal and heating, it can sufficiently cope even without a carrier.

次に、銅張積層板の銅箔表面に例えばCO2ガスレーザーを照射して、孔あけを行う。すなわち、銅箔のレーザー吸収層が形成されている面にCO2ガスレーザーを照射して、表面処理銅箔及び樹脂製基板を貫通する貫通孔を形成する孔あけ加工を行う。そして、常法により表面処理銅箔に高密度配線回路等の回路を形成すれば、プリント配線板を得ることができる。Next, the copper foil surface of the copper clad laminate is irradiated with, for example, a CO 2 gas laser to make a hole. That is, the surface of the copper foil on which the laser absorption layer is formed is irradiated with a CO 2 gas laser to perform a drilling process for forming a through hole penetrating the surface-treated copper foil and the resin substrate. If a circuit such as a high-density wiring circuit is formed on the surface-treated copper foil by a conventional method, a printed wiring board can be obtained.

〔実施例〕
以下に実施例及び比較例を示して、本発明をさらに具体的に説明する。
(A)電解銅箔の製造
図1に示す電解析出装置を用い、硫酸−硫酸銅水溶液を電解液として、以下のような操作により電解銅箔を製造した。すなわち、アノードと、アノードに対向して設けられたカソードドラムとの間に電解液を供給し、電解液に空気をバブリングしつつ、カソードドラムを一定速度で回転させながらアノードとカソードドラムとの間に直流電流を通電することにより、カソードドラムの表面上に銅を析出させた。そして、析出した銅をカソードドラムの表面から引き剥がし、連続的に巻き取ることにより、電解銅箔を製造した。
〔Example〕
The present invention will be described more specifically with reference to the following examples and comparative examples.
(A) Production of electrolytic copper foil Using the electrolytic deposition apparatus shown in FIG. 1, an electrolytic copper foil was produced by the following operation using a sulfuric acid-copper sulfate aqueous solution as an electrolytic solution. That is, an electrolytic solution is supplied between the anode and a cathode drum provided opposite to the anode, air is bubbled through the electrolytic solution, and the cathode drum is rotated at a constant speed, while the anode and the cathode drum are rotated. By applying a direct current to the copper, copper was deposited on the surface of the cathode drum. And the copper which precipitated was peeled off from the surface of the cathode drum, and the electrolytic copper foil was manufactured by winding up continuously.

電解液中の銅濃度、硫酸濃度、塩素濃度は、表1に示す通りである。実施例1〜14及び比較例1〜5のうちの一部においては、表1に示す通り、電解液に添加剤としてエチレンチオ尿素、ポリエチレングリコール、テトラメチルチオ尿素、及び膠(分子量20000)のうちの2種が添加されており、これらの添加剤の濃度は、表1に示す通りである。また、電解銅箔の製造時の電解液の温度、電流密度、空気のバブリング流量は、表1に示す通りである。さらに、実施例13、14では、高さが1.0mm、幅が60mmの凸部を、アノードの円周方向に沿って60mmの間隔を置いて連続して形成させた。   The copper concentration, sulfuric acid concentration, and chlorine concentration in the electrolytic solution are as shown in Table 1. In some of Examples 1 to 14 and Comparative Examples 1 to 5, as shown in Table 1, as an additive to the electrolyte, ethylenethiourea, polyethylene glycol, tetramethylthiourea, and glue (molecular weight 20000) Two types were added, and the concentrations of these additives are as shown in Table 1. Further, the temperature of the electrolytic solution, the current density, and the bubbling flow rate of air during the production of the electrolytic copper foil are as shown in Table 1. Further, in Examples 13 and 14, convex portions having a height of 1.0 mm and a width of 60 mm were continuously formed at intervals of 60 mm along the circumferential direction of the anode.

Figure 0006606317
Figure 0006606317

(B)粗化処理
次に、表面を粗化面とする粗化処理を電解銅箔のS面又はM面(表2を参照)に施して、表面処理銅箔を製造した。具体的には、電解銅箔の表面に微細な銅粒子を電析する電気メッキ(パルスメッキ)を粗化処理として施すことにより、銅粒子によって微細な凹凸が形成された粗化面とした。電気メッキに用いるメッキ液は、銅、硫酸、モリブデン、ニッケルを含有しており、銅濃度、硫酸濃度、モリブデン濃度、ニッケル濃度は、表2に示す通りである。
(B) Roughening process Next, the roughening process which makes a surface a roughening surface was given to the S surface or M surface (refer Table 2) of electrolytic copper foil, and the surface-treated copper foil was manufactured. Specifically, electroplating (pulse plating) for electrodepositing fine copper particles on the surface of the electrolytic copper foil was performed as a roughening treatment to obtain a roughened surface on which fine irregularities were formed by the copper particles. The plating solution used for electroplating contains copper, sulfuric acid, molybdenum, and nickel. The copper concentration, sulfuric acid concentration, molybdenum concentration, and nickel concentration are as shown in Table 2.

また、粗化処理、すなわちパルスメッキの条件(粗化処理を施した面(処理面)、電解条件、メッキ処理時間、メッキ液の温度)を、表2に示す。表2中の電解条件において、Ion1は1段階目のパルス電流密度を表し、Ion2は2段階目のパルス電流密度を表し、ton1は1段階目のパルス電流印加時間を表し、ton2は2段階目のパルス電流印加時間を表し、toffは2段階のパルス電流と1段階目のパルス電流の間の電流を0とする時間を表している。   Table 2 shows the conditions of the roughening treatment, that is, the pulse plating (the surface subjected to the roughening treatment (treated surface), the electrolysis conditions, the plating time, and the temperature of the plating solution). In the electrolysis conditions in Table 2, Ion1 represents the first-stage pulse current density, Ion2 represents the second-stage pulse current density, ton1 represents the first-stage pulse current application time, and ton2 represents the second-stage pulse current density. Pulse current application time, and toff represents the time when the current between the two-stage pulse current and the first-stage pulse current is zero.

なお、実施例11、12及び比較例1については、パルスメッキではなく、通常の電気メッキを施した。表2中の電解条件においてIは、実施例11、12及び比較例1で施した電気メッキの電流密度である。
さらに、実施例11、12については、得られた表面処理銅箔をさらに硫酸銅浴(硫酸銅水溶液)に浸漬することにより、電解銅箔の表面に形成された微細な凸部の頂点を溶解し丸くして、粗化面の頂点曲率算術平均Sscを調整した。硫酸銅浴の銅濃度、硫酸濃度、浸漬時間は、表2に示す通りである。
In Examples 11 and 12 and Comparative Example 1, normal electroplating was performed instead of pulse plating. In the electrolysis conditions in Table 2, I is the current density of electroplating performed in Examples 11 and 12 and Comparative Example 1.
Furthermore, about Example 11 and 12, the surface treatment copper foil obtained was further immersed in a copper sulfate bath (copper sulfate aqueous solution), thereby dissolving the apex of fine convex portions formed on the surface of the electrolytic copper foil. Then, the vertex curvature arithmetic average Ssc of the roughened surface was adjusted. The copper concentration, sulfuric acid concentration, and immersion time of the copper sulfate bath are as shown in Table 2.

Figure 0006606317
Figure 0006606317

(C)ニッケル層(下地層)の形成
次に、表面処理銅箔の粗化面に対して下記に示すNiメッキ条件で電解メッキすることにより、ニッケル層(Niの付着量0.06mg/dm2)を形成した。ニッケルメッキに用いるメッキ液は、硫酸ニッケル、過硫酸アンモニウム((NH4228)、ホウ酸(H3BO3)を含有しており、ニッケル濃度は5.0g/L、過硫酸アンモニウム濃度は40.0g/L、ホウ酸濃度は28.5g/Lである。また、メッキ液の温度は28.5℃、pHは3.8であり、電流密度は1.5A/dm2、メッキ処理時間は1秒間〜2分間である。
(C) Formation of Nickel Layer (Underlayer) Next, a nickel layer (amount of Ni deposited: 0.06 mg / dm) is obtained by electrolytic plating on the roughened surface of the surface-treated copper foil under the Ni plating conditions shown below. 2 ) formed. The plating solution used for nickel plating contains nickel sulfate, ammonium persulfate ((NH 4 ) 2 S 2 O 8 ), boric acid (H 3 BO 3 ), nickel concentration is 5.0 g / L, ammonium persulfate The concentration is 40.0 g / L and the boric acid concentration is 28.5 g / L. The temperature of the plating solution is 28.5 ° C., the pH is 3.8, the current density is 1.5 A / dm 2 , and the plating time is 1 second to 2 minutes.

(D)亜鉛層(耐熱処理層)の形成
さらに、ニッケル層の上に下記に示すZnメッキ条件で電解メッキすることにより、亜鉛層(Znの付着量0.05mg/dm2)を形成した。亜鉛メッキに用いるメッキ液は、硫酸亜鉛七水和物、水酸化ナトリウムを含有しており、亜鉛濃度は1〜30g/L、水酸化ナトリウム濃度は10〜300g/Lである。また、メッキ液の温度は5〜60℃であり、電流密度は0.1〜10A/dm2、メッキ処理時間は1秒間〜2分間である。
(D) Formation of zinc layer (heat-resistant treatment layer) Further, a zinc layer (Zn adhesion amount 0.05 mg / dm 2 ) was formed on the nickel layer by electrolytic plating under the following Zn plating conditions. The plating solution used for zinc plating contains zinc sulfate heptahydrate and sodium hydroxide, and the zinc concentration is 1 to 30 g / L and the sodium hydroxide concentration is 10 to 300 g / L. The temperature of the plating solution is 5 to 60 ° C., the current density is 0.1 to 10 A / dm 2 , and the plating treatment time is 1 second to 2 minutes.

(E)クロメート処理層(防錆処理層)の形成
さらに、亜鉛層の上に下記に示すCrメッキ条件で電解メッキすることにより、クロメート処理層(Crの付着量0.02mg/dm2)を形成した。クロムメッキに用いるメッキ液は、無水クロム酸(CrO3)を含有しており、クロム濃度は2.5g/Lである。また、メッキ液の温度は15〜45℃、pHは2.5であり、電流密度は0.5A/dm2、メッキ処理時間は1秒間〜2分間である。
(E) Formation of chromate treatment layer (rust prevention treatment layer) Further, the chromate treatment layer (Cr adhesion amount 0.02 mg / dm 2 ) is formed on the zinc layer by electrolytic plating under the following Cr plating conditions. Formed. The plating solution used for chromium plating contains chromic anhydride (CrO 3 ), and the chromium concentration is 2.5 g / L. The temperature of the plating solution is 15 to 45 ° C., the pH is 2.5, the current density is 0.5 A / dm 2 , and the plating treatment time is 1 second to 2 minutes.

(F)シランカップリング剤層の形成
さらに、下記に示す処理を行い、クロメート処理層の上にシランカップリング剤層を形成した。すなわち、シランカップリング剤水溶液にメタノール又はエタノールを添加し、所定のpHに調整して、処理液を得た。この処理液を表面処理銅箔のクロメート処理層に塗布し、所定の時間保持してから温風で乾燥させることにより、シランカップリング剤層を形成した。
(F) Formation of silane coupling agent layer Further, the following treatment was performed to form a silane coupling agent layer on the chromate treatment layer. That is, methanol or ethanol was added to the aqueous silane coupling agent solution to adjust the pH to a predetermined value to obtain a treatment liquid. This treatment liquid was applied to the chromate treatment layer of the surface-treated copper foil, held for a predetermined time, and then dried with warm air to form a silane coupling agent layer.

(G)評価
上記のようにして、実施例1〜14及び比較例1〜5の表面処理銅箔をそれぞれ製造した。これらの表面処理銅箔の箔厚は、表3に記載の通りである。得られた各表面処理銅箔について、各種評価を行った。
(G) Evaluation The surface-treated copper foils of Examples 1 to 14 and Comparative Examples 1 to 5 were produced as described above. The foil thicknesses of these surface-treated copper foils are as shown in Table 3. Various evaluation was performed about each obtained surface-treated copper foil.

〔引張強度〕
上記のようにして得られた実施例1〜14及び比較例1〜5の表面処理銅箔を、幅12.7mm、長さ130mmの短冊状に切り出し、引張試験片とした。IPC−TM−650に準拠する方法により、常態における引張試験片の引張強度を測定した。測定装置としてはインストロン社の1122型引張試験機を用い、測定温度は常温とした。
また、引張試験片を220℃で2時間加熱した後に、常温まで自然冷却した。このような熱履歴を付与した引張試験片について、常態における引張強度と同様にして引張強度を測定した。結果を表3に示す。
[Tensile strength]
The surface-treated copper foils of Examples 1 to 14 and Comparative Examples 1 to 5 obtained as described above were cut into strips having a width of 12.7 mm and a length of 130 mm to obtain tensile test pieces. The tensile strength of the tensile test piece in a normal state was measured by a method based on IPC-TM-650. An Instron 1122 type tensile tester was used as the measuring device, and the measurement temperature was room temperature.
The tensile test piece was heated at 220 ° C. for 2 hours and then naturally cooled to room temperature. About the tensile test piece which provided such a heat history, the tensile strength was measured like the tensile strength in a normal state. The results are shown in Table 3.

〔エッチングファクター〕
サブトラクティブ工法により、実施例1〜14及び比較例1〜5の表面処理銅箔上に、L&Sが30/30μmのレジストパターンを形成した。そして、エッチングを行って配線パターンを形成した。レジストとしてはドライレジストフィルムを使用し、エッチング液としては塩化銅と塩酸を含有する混合液を使用した。そして、得られた配線パターンのエッチングファクター(Ef)を測定した。エッチングファクターとは、銅箔の箔厚をH、形成された配線パターンのボトム幅をB、形成された配線パターンのトップ幅をTとするときに、次式で示される値である。
Ef=2H/(B−T)
本実施例及び比較例では、エッチングファクターが2.5以上であるものは良品とし、2.5未満であるものは不良品とした。
[Etching factor]
A resist pattern having an L & S of 30/30 μm was formed on the surface-treated copper foils of Examples 1 to 14 and Comparative Examples 1 to 5 by the subtractive construction method. Etching was then performed to form a wiring pattern. A dry resist film was used as the resist, and a mixed solution containing copper chloride and hydrochloric acid was used as the etching solution. Then, the etching factor (Ef) of the obtained wiring pattern was measured. The etching factor is a value represented by the following equation, where H is the thickness of the copper foil, B is the bottom width of the formed wiring pattern, and T is the top width of the formed wiring pattern.
Ef = 2H / (BT)
In this example and the comparative example, those having an etching factor of 2.5 or more were regarded as non-defective products, and those having an etching factor of less than 2.5 were regarded as defective products.

エッチングファクターが小さいと、配線パターンにおける側壁の垂直性が崩れ、線幅が狭い微細な配線パターンの場合には、隣接する配線パターンの間で銅箔の溶け残りが生じ短絡する危険性や断線に結び付く危険性がある。本試験においては、ジャストエッチ位置(レジストの端部の位置と配線パターンのボトムの位置が揃う)となったときの配線パターンについて、マイクロスコープでボトム幅Bとトップ幅Tを測定し、エッチングファクターを算出した。結果を表3に示す。   If the etching factor is small, the verticality of the sidewalls in the wiring pattern is lost, and in the case of a fine wiring pattern with a narrow line width, there is a risk of short-circuiting or disconnection due to unmelted copper foil between adjacent wiring patterns. There is a risk of binding. In this test, the bottom width B and the top width T of the wiring pattern when the just etch position (the position of the resist end and the position of the bottom of the wiring pattern are aligned) are measured with a microscope, and the etching factor is measured. Was calculated. The results are shown in Table 3.

〔密着性〕
銅箔の粗化面に樹脂製基板を接合し、測定用サンプルを作製した。樹脂製基板としては、市販のポリフェニレンエーテル系樹脂(パナソニック株式会社製の超低伝送損失多層基板材料 MEGTRON6)を用い、接合時の硬化温度は210℃とし、硬化時間は2時間とした。
[Adhesion]
A resin substrate was bonded to the roughened surface of the copper foil to prepare a measurement sample. As the resin substrate, a commercially available polyphenylene ether-based resin (Ultra Low Transmission Loss Multilayer Substrate Material MEGRON6 manufactured by Panasonic Corporation) was used, the curing temperature at the time of bonding was 210 ° C., and the curing time was 2 hours.

作製した測定用サンプルの銅箔をエッチング加工して幅10mmの回路配線を形成した後に、樹脂製基板側を両面テープによりステンレス板に固定し、回路配線を90度方向に50mm/分の速度で引っ張って剥離し、密着性(kN/m)を測定した。密着性の測定は、万能材料試験機(株式会社エー・アンド・デイ製のテンシロン)を用いて行った。
本実施例及び比較例では、密着性が0.4kN/m以上である場合を良品とし、0.4kN/m未満である場合を不良品とした。
After etching the copper foil of the prepared measurement sample to form a circuit wiring having a width of 10 mm, the resin substrate side is fixed to the stainless steel plate with a double-sided tape, and the circuit wiring is rotated at a speed of 50 mm / min in the 90-degree direction. It pulled and peeled and the adhesiveness (kN / m) was measured. The adhesion was measured using a universal material testing machine (Tensilon manufactured by A & D Co., Ltd.).
In this example and comparative example, a case where the adhesion was 0.4 kN / m or more was regarded as a non-defective product, and a case where the adhesion was less than 0.4 kN / m was regarded as a defective product.

〔ハンドリング性:シワ不良数〕
実施例1〜14及び比較例1〜5の表面処理銅箔を、一辺200mmの正方形状に切り出し、基板FR4に加圧接合して、銅張積層板を作製した。接合の条件は、温度170℃、圧力1.5MPa、加圧時間1時間である。各表面処理銅箔についてそれぞれ30枚の銅張積層板を作製して、銅箔のシワを目視で確認し、銅箔にシワが生じていた銅張積層板の数(シワ不良数)をカウントした。このシワ不良数により、表面処理銅箔のハンドリング性を評価した。シワ不良数が3枚以下であった場合は合格、4枚以上であった場合は不合格とした。結果を表3に示す。
[Handling: Wrinkle defect count]
The surface-treated copper foils of Examples 1 to 14 and Comparative Examples 1 to 5 were cut into a square shape with a side of 200 mm, and pressure bonded to the substrate FR4 to produce a copper-clad laminate. The bonding conditions are a temperature of 170 ° C., a pressure of 1.5 MPa, and a pressing time of 1 hour. 30 copper-clad laminates were prepared for each surface-treated copper foil, the copper foils were visually checked for wrinkles, and the number of copper-clad laminates with wrinkles in the copper foils (number of wrinkle defects) was counted. did. The handling property of the surface-treated copper foil was evaluated based on the number of defective wrinkles. When the number of wrinkle defects was 3 or less, it was accepted, and when it was 4 or more, it was rejected. The results are shown in Table 3.

〔頂点曲率算術平均Ssc、Rpm〕
BRUKER社の3次元白色光干渉型顕微鏡Wyko ContourGT−Kを用いて、実施例1〜14及び比較例1〜5の表面処理銅箔の粗化面の表面形状を測定し、形状解析を行って、頂点曲率算術平均Ssc及びRpmを求めた。形状解析は、ハイレゾCCDカメラを使用してVSI測定方式で行った。条件は、光源が白色光、測定倍率が10倍、測定範囲が477μm×357.8μm、Lateral Samplingが0.38μm、speedが1、Backscanが10μm、Lengthが10μm、Thresholdが3%とし、Terms Removal(Cylinder and Tilt)、Data Restore(Method:legacy、iterations 5)、Statistic Filter(Filter Size:3、Filter Type:Median)のフィルタ処理をした後にデータ処理を行なった。結果を表3に示す。
[Vertical curvature arithmetic average Ssc, Rpm]
Using the BRUKER 3D white light interference microscope Wyko ContourGT-K, the surface shape of the roughened surface of the surface-treated copper foils of Examples 1 to 14 and Comparative Examples 1 to 5 was measured and subjected to shape analysis. The vertex curvature arithmetic averages Ssc and Rpm were obtained. The shape analysis was performed by the VSI measurement method using a high resolution CCD camera. The conditions are as follows: the light source is white light, the measurement magnification is 10 times, the measurement range is 477 μm × 357.8 μm, Lateral Sampling is 0.38 μm, speed is 1, Backscan is 10 μm, Length is 10 μm, Threshold is 3%, Terms Removal Data processing was performed after filtering (Cylinder and Tilt), Data Restore (Method: legacy, iterations 5), and Static Filter (Filter Size: 3, Filter Type: Median). The results are shown in Table 3.

〔結晶粒の分布〕
株式会社TSLソリューションズのEBSD(Electron Back Scatter Diffraction)カメラHikari/DC5.2/A5.2及び日本電子株式会社(JEOL)の走査電子顕微鏡JSM−7001FAを用い、倍率5000倍、ビームステップ0.05の条件で、表面処理銅箔の粗化面の結晶粒を測定した。EBSDによる結晶粒の測定では、方位差15°以上の結晶粒界とし、結晶粒界で囲まれた領域を結晶粒とした。
[Grain distribution]
Using an EBSD (Electron Back Scatter Diffraction) camera Hikari / DC5.2 / A5.2 from TSL Solutions Inc. and a scanning electron microscope JSM-7001FA from JEOL Ltd. (JSM-7001FA) at a magnification of 5000 times and a beam step of 0.05 Under the conditions, the crystal grains of the roughened surface of the surface-treated copper foil were measured. In the measurement of crystal grains by EBSD, crystal grain boundaries having an orientation difference of 15 ° or more were used, and regions surrounded by the crystal grain boundaries were used as crystal grains.

その際には、表面処理銅箔の切断面をCP(クロスセクションポリッシャー)研磨し、その研磨面のうち、図2に示す範囲の部分についてEBSDの測定を行った。すなわち、表面処理銅箔の箔厚をtとした場合、図2のように、粗化面の反対側の面に接する縦(厚さ方向の長さ)0.8t、横(厚さ方向に直交する方向の長さ)1.6tの矩形の範囲についてEBSDの測定を行った。例えば、箔厚tが10μmである場合は、縦8.0μm、横16.0μmの矩形の範囲、箔厚tが6μmである場合は、縦4.8μm、横9.6μmの矩形の範囲、箔厚tが4μmである場合は、縦3.2μm、横6.4μmの矩形の範囲となる。
EBSD(電子線後方散乱回折法)のGRAIN SIZEのデータを基に、前述した結晶粒の割合R1、R2、R3を算出した。結果を表3に示す。
At that time, the cut surface of the surface-treated copper foil was subjected to CP (cross section polisher) polishing, and the EBSD measurement was performed on the portion of the polished surface in the range shown in FIG. That is, when the foil thickness of the surface-treated copper foil is t, as shown in FIG. 2, the vertical (length in the thickness direction) 0.8 t and the horizontal (thickness direction) in contact with the surface opposite to the roughened surface. EBSD measurement was performed on a rectangular range of 1.6 t (length in the orthogonal direction). For example, when the foil thickness t is 10 μm, the rectangular range is 8.0 μm long and 16.0 μm wide, and when the foil thickness t is 6 μm, the rectangular range is 4.8 μm long and 9.6 μm wide, When the foil thickness t is 4 μm, the rectangular range is 3.2 μm long and 6.4 μm wide.
Based on the data of GRAIN SIZE of EBSD (electron beam backscatter diffraction method), the above-described crystal grain ratios R1, R2, and R3 were calculated. The results are shown in Table 3.

Figure 0006606317
Figure 0006606317

比較例1は、既知の製箔条件(特許第4583149号公報の実施例2)で製造した銅箔であるが、結晶粒の個数の割合R3が大きいため、エッチングファクター(Ef)が小さく、L&Sを細くすることができなかった。
比較例2は、実施例3と比較してバブリング流量が小さいため、結晶粒の個数の割合R2、R3が大きくなり、L&Sを細くすることができなかった。
Comparative Example 1 is a copper foil manufactured under known foil-making conditions (Example 2 of Japanese Patent No. 4583149), but since the ratio R3 of the number of crystal grains is large, the etching factor (Ef) is small, and the L & S Could not be made thin.
Since the bubbling flow rate of Comparative Example 2 was smaller than that of Example 3, the ratios R2 and R3 of the number of crystal grains were large, and the L & S could not be reduced.

比較例3は、バブリング流量が大きすぎるため、結晶粒の個数の割合R1が大きくなり、L&Sを細くすることができなかった。
比較例4は、実施例1と比較して、粗化処理のパルス電流で逆電流をかけておらず粗化粒子の溶解がないため、エッチングファクターが低下した。
比較例5は、粗化処理の電流が大きいため、粗化粒子が粗大になることでエッチング時に根残りし易くなり、エッチングファクターが低下した。
In Comparative Example 3, since the bubbling flow rate was too large, the ratio R1 of the number of crystal grains was large, and the L & S could not be thinned.
In Comparative Example 4, compared with Example 1, since the reverse current was not applied with the pulse current of the roughening treatment and the roughened particles were not dissolved, the etching factor was lowered.
In Comparative Example 5, since the current for the roughening treatment was large, the coarsened particles became coarse, so that they remained easily during etching, and the etching factor was reduced.

101 電解銅箔
102 カソードドラム
104 不溶性アノード
105 電解液
101 Electrolytic copper foil 102 Cathode drum 104 Insoluble anode 105 Electrolyte

Claims (6)

粗化処理による粗化面を表面に有する表面処理銅箔であって、
箔厚が10μm以下であり、
前記粗化面の頂点曲率算術平均Sscが0.7μm-1以上3.8μm-1以下であり、
200℃で2時間加熱後に電子線後方散乱回折法により断面を解析した場合に、結晶粒径が0.5μm以上の結晶粒のうち、結晶粒径が0.5μm以上1.0μm未満の結晶粒の個数の割合R1が0.51以上0.97以下であり、結晶粒径が1.0μm以上3.0μm未満の結晶粒の個数の割合R2が0.03以上0.42以下であり、結晶粒径が3.0μm以上の結晶粒の個数の割合R3が0.07以下である表面処理銅箔。
A surface-treated copper foil having a roughened surface by a roughening treatment on the surface,
The foil thickness is 10 μm or less,
The vertex curvature arithmetic average Ssc of the roughened surface is 0.7 μm −1 or more and 3.8 μm −1 or less,
When the cross section is analyzed by electron beam backscatter diffraction after heating at 200 ° C. for 2 hours, among the crystal grains having a crystal grain size of 0.5 μm or more, the crystal grains having a crystal grain size of 0.5 μm or more and less than 1.0 μm The ratio R1 of the number of crystal grains is 0.51 or more and 0.97 or less, and the ratio R2 of the number of crystal grains having a crystal grain size of 1.0 to 3.0 μm is 0.03 or more and 0.42 or less. A surface-treated copper foil having a ratio R3 of the number of crystal grains having a grain size of 3.0 μm or more of 0.07 or less.
前記粗化面の頂点曲率算術平均Sscが1.0μm-1以上2.5μm-1以下であり、
前記割合R1が0.59以上0.96以下であり、前記割合R2が0.04以上0.41以下であり、前記割合R3が0である請求項1に記載の表面処理銅箔。
Vertex curvature arithmetic average Ssc of the roughened surface is at 1.0 .mu.m -1 or 2.5 [mu] m -1 or less,
The surface-treated copper foil according to claim 1, wherein the ratio R1 is 0.59 or more and 0.96 or less, the ratio R2 is 0.04 or more and 0.41 or less, and the ratio R3 is 0.
前記粗化面のRpmが0.5μm以上3.5μm以下である請求項1又は請求項2に記載の表面処理銅箔。   The surface-treated copper foil according to claim 1 or 2, wherein Rpm of the roughened surface is 0.5 µm or more and 3.5 µm or less. 常態における引張強度が400MPa以上780MPa以下であり、220℃で2時間加熱後に常温で測定した引張強度が300MPa以上である請求項1〜3のいずれか一項に記載の表面処理銅箔。   The surface-treated copper foil according to any one of claims 1 to 3, wherein a tensile strength in a normal state is 400 MPa or more and 780 MPa or less, and a tensile strength measured at room temperature after heating at 220 ° C for 2 hours is 300 MPa or more. 請求項1〜4のいずれか一項に記載の表面処理銅箔と、該表面処理銅箔の粗化面に積層された樹脂製基板と、を備える銅張積層板。   A copper clad laminated board provided with the surface-treated copper foil as described in any one of Claims 1-4, and the resin-made board | substrate laminated | stacked on the roughening surface of this surface-treated copper foil. 請求項5に記載の銅張積層板を備えるプリント配線板。   A printed wiring board provided with the copper clad laminate according to claim 5.
JP2019540673A 2018-04-25 2019-04-17 Surface-treated copper foil, copper-clad laminate, and printed wiring board Active JP6606317B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018084504 2018-04-25
JP2018084504 2018-04-25
PCT/JP2019/016547 WO2019208368A1 (en) 2018-04-25 2019-04-17 Surface-treated copper foil, copper-cladded laminate plate, and printed wiring board

Publications (2)

Publication Number Publication Date
JP6606317B1 true JP6606317B1 (en) 2019-11-13
JPWO2019208368A1 JPWO2019208368A1 (en) 2020-05-07

Family

ID=68293905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019540673A Active JP6606317B1 (en) 2018-04-25 2019-04-17 Surface-treated copper foil, copper-clad laminate, and printed wiring board

Country Status (5)

Country Link
JP (1) JP6606317B1 (en)
KR (1) KR102479331B1 (en)
CN (1) CN112004964B (en)
TW (1) TWI734976B (en)
WO (1) WO2019208368A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112805414A (en) * 2018-09-28 2021-05-14 古河电气工业株式会社 Surface-treated copper foil, and copper-clad plate and circuit substrate using same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003324258A (en) * 2002-05-01 2003-11-14 Nippon Mektron Ltd Copper-clad board for printed wiring board
WO2014081041A1 (en) * 2012-11-26 2014-05-30 Jx日鉱日石金属株式会社 Surface-treated electrolytic copper foil, laminate, and printed circuit board
WO2016152808A1 (en) * 2015-03-24 2016-09-29 株式会社カネカ Transparent electrode-equipped substrate and method for producing transparent electrode-equipped substrate
WO2017018232A1 (en) * 2015-07-29 2017-02-02 三井金属鉱業株式会社 Roughened copper foil, copper-clad laminate, and printed wiring board
WO2017179416A1 (en) * 2016-04-14 2017-10-19 三井金属鉱業株式会社 Treated surface copper foil, copper foil with carrier as well as methods for manufacturing copper-clad laminate and printed circuit board using same

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6039439A (en) 1983-08-10 1985-03-01 東レ株式会社 Nonwoven fabric-like ultra-fine fiber knitted fabric and itsproduction
KR100236058B1 (en) 1997-04-24 1999-12-15 김영환 Schmidt trigger circuit able to trigger voltage regulation
JPH11268181A (en) * 1998-03-23 1999-10-05 Hitachi Chem Co Ltd Copper-clad laminate
JP2002347173A (en) * 2001-05-25 2002-12-04 Hitachi Chem Co Ltd Manufacturing method for copper-clad laminated sheet of paper-based phenolic resin
TW200500199A (en) * 2003-02-12 2005-01-01 Furukawa Circuit Foil Copper foil for fine patterned printed circuits and method of production of same
EP1730756A4 (en) * 2004-03-24 2010-03-24 Showa Denko Kk Electrode sheet for capacitors, method for manufacturing the same, and electrolytic capacitor
ATE394240T1 (en) * 2005-07-14 2008-05-15 Fujifilm Corp SUPPORT FOR A LITHOGRAPHIC PRINTING PLATE AND METHOD FOR THE PRODUCTION THEREOF AND A PRE-SENSITIZED PRINTING PLATE
TWI434965B (en) * 2008-05-28 2014-04-21 Mitsui Mining & Smelting Co A roughening method for copper foil, and a copper foil for a printed wiring board which is obtained by the roughening method
JP5242710B2 (en) * 2010-01-22 2013-07-24 古河電気工業株式会社 Roughening copper foil, copper clad laminate and printed wiring board
CN103125149B (en) * 2010-09-27 2016-09-14 吉坤日矿日石金属株式会社 Copper foil for printed circuit board, its manufacture method, resin substrate for printed circuit board and printed circuit board (PCB)
JP2012172198A (en) * 2011-02-22 2012-09-10 Jx Nippon Mining & Metals Corp Electrolytic copper foil and method for manufacturing the same
JP5204908B1 (en) * 2012-03-26 2013-06-05 Jx日鉱日石金属株式会社 Copper foil with carrier, method for producing copper foil with carrier, copper foil with carrier for printed wiring board and printed wiring board
JP5358740B1 (en) * 2012-10-26 2013-12-04 Jx日鉱日石金属株式会社 Copper foil with carrier, copper-clad laminate using the same, printed wiring board, printed circuit board, and printed wiring board manufacturing method
JP6147077B2 (en) * 2013-05-10 2017-06-14 古河電気工業株式会社 Rolled copper foil and method for producing rolled copper foil
JP6089160B1 (en) * 2015-08-12 2017-03-01 古河電気工業株式会社 Copper foil for high frequency circuits, copper clad laminates, printed wiring boards
PH12017000015A1 (en) * 2016-01-15 2018-08-06 Jx Nippon Mining & Metals Corp Copper foil, copper-clad laminate board, method for producing printed wiring board, method for poducing electronic apparatus, method for producing transmission channel, and method for producing antenna

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003324258A (en) * 2002-05-01 2003-11-14 Nippon Mektron Ltd Copper-clad board for printed wiring board
WO2014081041A1 (en) * 2012-11-26 2014-05-30 Jx日鉱日石金属株式会社 Surface-treated electrolytic copper foil, laminate, and printed circuit board
WO2016152808A1 (en) * 2015-03-24 2016-09-29 株式会社カネカ Transparent electrode-equipped substrate and method for producing transparent electrode-equipped substrate
WO2017018232A1 (en) * 2015-07-29 2017-02-02 三井金属鉱業株式会社 Roughened copper foil, copper-clad laminate, and printed wiring board
WO2017179416A1 (en) * 2016-04-14 2017-10-19 三井金属鉱業株式会社 Treated surface copper foil, copper foil with carrier as well as methods for manufacturing copper-clad laminate and printed circuit board using same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112805414A (en) * 2018-09-28 2021-05-14 古河电气工业株式会社 Surface-treated copper foil, and copper-clad plate and circuit substrate using same
CN112805414B (en) * 2018-09-28 2022-06-24 古河电气工业株式会社 Surface-treated copper foil, and copper-clad plate and circuit substrate using same

Also Published As

Publication number Publication date
WO2019208368A1 (en) 2019-10-31
TW202001000A (en) 2020-01-01
KR102479331B1 (en) 2022-12-19
CN112004964A (en) 2020-11-27
KR20210002455A (en) 2021-01-08
TWI734976B (en) 2021-08-01
CN112004964B (en) 2022-03-18
JPWO2019208368A1 (en) 2020-05-07

Similar Documents

Publication Publication Date Title
US6984456B2 (en) Flexible printed wiring board for chip-on flexibles
US8722199B2 (en) Electrodeposited copper foil, its manufacturing method, surface-treated electrodeposited copper foil using the electrodeposited copper foil, and copper-clad laminate and printed wiring board using the surface-treated electrodeposited copper foil
KR101887791B1 (en) Treated surface copper foil, copper-clad laminate, printed wiring board, electronic device, and printed wiring board manufacturing method
JP3910623B1 (en) Manufacturing method of electrolytic copper foil, electrolytic copper foil obtained by the manufacturing method, surface-treated electrolytic copper foil obtained using the electrolytic copper foil, copper-clad laminate and printed wiring using the surface-treated electrolytic copper foil Board
TWI452177B (en) An electrolytic copper foil having a carrier foil, a method for producing an electrolytic copper foil having a carrier foil, and a copper clad laminate obtained by using the electrolytic copper foil having a carrier foil
JP5362921B1 (en) Surface-treated copper foil and laminate using the same
KR100461660B1 (en) Electrolytic copper foil with carrier foil and copper-clad laminate using the electrolytic copper foil with carrier foil
JP6529684B2 (en) Surface-treated copper foil and copper-clad laminate using the same
JP5362899B1 (en) Surface-treated copper foil and laminate using the same
JP2014065965A (en) Surface-treated copper foil, and laminate, copper-clad laminate, printed-wiring board, and electronic apparatus using the same
JP6606317B1 (en) Surface-treated copper foil, copper-clad laminate, and printed wiring board
JP7247015B2 (en) Electrolytic copper foil, surface-treated copper foil using the electrolytic copper foil, and copper-clad laminate and printed wiring board using the surface-treated copper foil
JP2014065974A (en) Surface-treated copper foil, and laminate, copper-clad laminate, printed-wiring board, and electronic apparatus using the same
JP2016065267A (en) Surface-treated copper foil, method for producing the same, and copper-clad laminate using the same
CN111655908B (en) Surface-treated copper foil, and copper-clad laminate and printed wiring board using same
JP6845382B1 (en) Surface-treated copper foil, copper-clad laminate, and printed wiring board
TW201638346A (en) Electrolytic copper foil for printed wiring board and copper-clad laminate using the electrolytic copper foil
CN113795615B (en) Surface-treated copper foil, copper-clad laminate, and printed circuit board
JP6882570B2 (en) Electrolytic copper foil for printed wiring boards and copper-clad laminates using the electrolytic copper foil
JP6748169B2 (en) Electrolytic copper foil for printed wiring board and copper clad laminate using the electrolytic copper foil
JP2017013473A (en) Copper foil with carrier, copper clad laminate, laminate, printed wiring board, coreless substrate, electronic device, and manufacturing method of coreless substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190821

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190821

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191017

R151 Written notification of patent or utility model registration

Ref document number: 6606317

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350