JP2006274361A - Electrolytic copper foil and production method of the electrolytic copper foil - Google Patents

Electrolytic copper foil and production method of the electrolytic copper foil Download PDF

Info

Publication number
JP2006274361A
JP2006274361A JP2005096041A JP2005096041A JP2006274361A JP 2006274361 A JP2006274361 A JP 2006274361A JP 2005096041 A JP2005096041 A JP 2005096041A JP 2005096041 A JP2005096041 A JP 2005096041A JP 2006274361 A JP2006274361 A JP 2006274361A
Authority
JP
Japan
Prior art keywords
copper foil
electrolytic copper
roughness
electrolytic
sulfuric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005096041A
Other languages
Japanese (ja)
Inventor
Mitsuyoshi Matsuda
光由 松田
Hisao Sakai
久雄 酒井
Sakiko Tomonaga
咲子 朝長
Makoto Dobashi
誠 土橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2005096041A priority Critical patent/JP2006274361A/en
Publication of JP2006274361A publication Critical patent/JP2006274361A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

<P>PROBLEM TO BE SOLVED: To provide electrolytic copper foil which has an about middle roughness in spite of thick copper foil, assures adhesion of a specified level or above of an insulation resin base material and permits the use of the thinner insulation resin base material. <P>SOLUTION: The electrolytic copper foil obtained by electrolyzing a sulfuric acid-base copper electrolyte has a thickness of 90 to 450 μm and the rough surface side of the electrolytic copper foil is the middle roughness surface of the surface roughness (Rzjis)=8 to 15 μm. The sulfuric acid-base copper electrolyte obtained by adding 3-mercapto-1-propane sulfonic acid, polymeric glue and chlorine is used in production of the electrolytic copper foil. The polymeric glue in the production method is preferably ≥10,000 in initial number average molecular weight. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本件発明は、電解銅箔及びその電解銅箔の製造方法に関する。特に、90μm〜450μmの厚さを持つ厚物電解銅箔であり、その粗面側が中粗度表面であることを特徴とする電解銅箔及びその製造方法に関する。   The present invention relates to an electrolytic copper foil and a method for producing the electrolytic copper foil. In particular, the present invention relates to an electrolytic copper foil characterized in that it is a thick electrolytic copper foil having a thickness of 90 μm to 450 μm, and its rough surface side is a medium roughness surface.

従来から、電解銅箔はプリント配線板の基礎材料として広く使用されてきた。そして、プリント配線板が多用される電子及び電気機器には、小型化、軽量化等の所謂軽薄短小化が求められている。従来、このような電子及び電気機器の軽薄短小化を実現するためには、信号回路を可能な限りファインピッチ化するため、より薄い銅箔を採用し、エッチングによって回路を形成する際のオーバーエッチングタイムの不要なロープロファイル銅箔が強く求められてきた。   Conventionally, electrolytic copper foil has been widely used as a basic material for printed wiring boards. In addition, electronic and electrical devices in which printed wiring boards are frequently used are required to be so-called light and thin, such as miniaturization and weight reduction. Conventionally, in order to realize such a light, thin and small electronic and electrical equipment, in order to make the signal circuit as fine pitch as possible, a thinner copper foil is used and overetching when forming a circuit by etching. There has been a strong demand for low-profile copper foil that does not require time.

そして、一方で、OA機器の代表であるパーソナルコンピュータのクロック周波数も急激に上昇し、演算速度が飛躍的に速くなっている。これらのパーソナルコンピュータを複数台使用する場合等には、予期せぬデータの消失を防止するため、データのバックアップを目的としてサーバを使用するケースが多く見られる。従って、サーバの演算速度もより高速化することが求められ、小型且つ高性能であることが要求される。従って、これらのコンピュータ及びサーバに用いるプリント配線板にも、小型且つ高機能化した性能が求められ、限られた領域のプリント配線板の中に信号回路と電源回路とが内包されている。   On the other hand, the clock frequency of a personal computer, which is a representative of OA equipment, has also increased rapidly, and the calculation speed has been dramatically increased. When using a plurality of these personal computers, a server is often used to back up data in order to prevent unexpected data loss. Accordingly, it is required to increase the calculation speed of the server, and it is required to be small and have high performance. Accordingly, the printed wiring boards used in these computers and servers are also required to have a small and highly functional performance, and a signal circuit and a power supply circuit are included in the printed wiring board in a limited area.

限られたプリント配線板面積の中で、より信頼性の高い電源回路を得ようとすると、厚銅の回路を使用することが、発熱を押さえ、大電流を流すという観点からは好ましいため、近年厚い銅箔に対する需要が高まってきている。ところが、厚い銅箔の欠点は、絶縁基材との張り合わせ面の粗度が大きく、絶縁層を薄くすると絶縁層内にある骨格材との接触を起こし、大電流の流れる電源回路間では特にマイグレーション現象が起きやすく、回路同士の短絡を起こしやすいという欠点があるため、絶縁層を薄くすることが出来ず、最終製品であるプリント配線板の軽量化が出来ないということにもなる。   In order to obtain a more reliable power supply circuit in a limited printed wiring board area, it is preferable to use a thick copper circuit from the viewpoint of suppressing heat generation and flowing a large current. The demand for thick copper foil is increasing. However, the disadvantage of thick copper foil is that the roughness of the bonding surface with the insulating substrate is large, and if the insulating layer is thinned, it will cause contact with the skeleton material in the insulating layer. Since the phenomenon tends to occur and the circuit is easily short-circuited, the insulating layer cannot be made thin, and the printed circuit board as the final product cannot be reduced in weight.

このような問題を解決すべく、特許文献1に開示されているように、硫酸酸性銅めっき液の電気分解による電解銅箔の製造方法において、ジアリルジアルキルアンモニウム塩と二酸化硫黄との共重合体を含有する硫酸酸性銅めっき液を用いることを特徴とする電解銅箔の製造方法が提唱され、当該硫酸酸性銅めっき液には、ポリエチレングリコールと塩素と3−メルカプト−1−スルホン酸とを含有することが好ましいとされている。そして、絶縁基材との張り合わせ面の粗度(析出面粗さ)が小さく、厚さ10μmの電解銅箔の場合、Rz=1.0±0.5μm程度の低粗度が得られている。   In order to solve such problems, as disclosed in Patent Document 1, in a method for producing an electrolytic copper foil by electrolysis of a sulfuric acid copper plating solution, a copolymer of diallyldialkylammonium salt and sulfur dioxide is used. The manufacturing method of the electrolytic copper foil characterized by using the sulfuric acid copper plating solution to contain is proposed, The said sulfuric acid copper plating solution contains polyethyleneglycol, chlorine, and 3-mercapto-1-sulfonic acid. It is considered preferable. And the roughness (deposition surface roughness) of the bonding surface with the insulating substrate is small, and in the case of an electrolytic copper foil having a thickness of 10 μm, a low roughness of about Rz = 1.0 ± 0.5 μm is obtained. .

また、特許文献2には、ゼラチンや膠などを用いなくても、析出面の表面粗さが小さく、伸び率に優れた電解銅箔を製造する方法として、硫酸酸性銅めっき液の電気分解による電解銅箔の製造方法において、ポリエチレングリコールと塩素と3−メルカプト−1−スルホン酸とを含有することを特徴とする硫酸酸性銅めっき液を用いることが提唱されている。そして、絶縁基材との張り合わせ面の粗度(析出面粗さ)が小さく、厚さ10μmの電解銅箔の場合、Rz=1.5±0.5μm程度の低粗度が得られている。   Further, Patent Document 2 discloses a method for producing an electrolytic copper foil having a small surface roughness and excellent elongation without using gelatin or glue, by electrolysis of a sulfuric acid copper plating solution. In the method for producing an electrolytic copper foil, it is proposed to use a sulfuric acid copper plating solution characterized by containing polyethylene glycol, chlorine and 3-mercapto-1-sulfonic acid. And the roughness (deposition surface roughness) of the bonding surface with the insulating substrate is small, and in the case of an electrolytic copper foil having a thickness of 10 μm, a low roughness of about Rz = 1.5 ± 0.5 μm is obtained. .

更に、特許文献3には、未処理銅箔の析出面の表面粗度Rzが該未処理銅箔の光沢面の表面粗度Rzと同じか、それより小さい箔の析出面上に粗化処理を施したことを特徴とする電解銅箔を開示している。そして、その電解銅箔の製造方法であって、未処理銅箔の製造を、メルカプト基を持つ化合物並びにそれ以外の少なくとも1種以上の有機化合物及び塩化物イオンを添加した電解液を用いた電解にて行うことを特徴とする製造方法を採用し、前記のメルカプト基を持つ化合物として3−メルカプト1−プロパンスルホン酸塩を用いている。その結果、得られている電解銅箔の析出面の表面粗度は、厚さ18μmの電解銅箔の場合、Rz=1.1μm〜2.2μm程度の低粗度が得られている。   Further, in Patent Document 3, the surface roughness Rz of the untreated copper foil deposition surface is equal to or less than the glossy surface roughness Rz of the untreated copper foil. The electrolytic copper foil characterized by having given is disclosed. And it is the manufacturing method of the electrolytic copper foil, Comprising: The electrolysis using the electrolyte solution which added the compound which has a mercapto group and at least 1 sort (s) or more other organic compound, and chloride ion of manufacture of untreated copper foil And a 3-mercapto 1-propanesulfonate is used as the compound having a mercapto group. As a result, the surface roughness of the deposited surface of the obtained electrolytic copper foil is as low as about Rz = 1.1 μm to 2.2 μm in the case of an electrolytic copper foil having a thickness of 18 μm.

そして、これらの製造方法を用いて、90μm以上の厚い電解銅箔を製造しても、極めて低い粗度の析出面が形成され、ロープロファイル銅箔としては、極めて優れた性質を示す。   Even if a thick electrolytic copper foil having a thickness of 90 μm or more is produced by using these production methods, a precipitation surface with extremely low roughness is formed, and the low profile copper foil exhibits extremely excellent properties.

特開2004−35918号公報JP 2004-35918 A 特開2004−162144号公報JP 2004-162144 A 特開平9−143785号公報JP 9-143785 A

しかしながら、銅箔の場合には厚くなるほど、絶縁樹脂基材に対する密着性を向上させ、耐熱特性(特に、100℃を超える温度で長時間加熱した後の引き剥がし強さ)を向上させるためには、物理的なアンカー効果が必要となる。そのためには、絶縁樹脂基材に張り合わせるための粗化処理、防錆処理等を施す前の未処理銅箔(本件明細書では、「電解銅箔」と称している。)の段階で、その析出面に一定の凹凸が存在する必要がある。特許文献1〜特許文献3のいずれに開示の電解銅箔も、その析出面の粗度が低すぎて、上記要件を充足しない。   However, in the case of copper foil, in order to improve the adhesion to the insulating resin base material and increase the heat resistance (particularly, the peel strength after heating for a long time at a temperature exceeding 100 ° C.) A physical anchor effect is required. For this purpose, at the stage of untreated copper foil (referred to as “electrolytic copper foil” in the present specification) before being subjected to roughening treatment, rust prevention treatment or the like for bonding to an insulating resin substrate. There must be certain irregularities on the precipitation surface. The electrolytic copper foil disclosed in any of Patent Documents 1 to 3 does not satisfy the above requirements because the roughness of the deposited surface is too low.

即ち、従来の製造方法をもって厚い銅箔を製造しようとすると、粗度の極めて粗い電解銅箔(90μm厚さの電解銅箔の場合、Rzjisが20μm以上)か、粗度の極めて低い電解銅箔(90μm厚さの電解銅箔の場合、Rzjisが8μm未満)のいずれかしか作り得ず、中程度の粗度を持つ電解銅箔を安定的且つ工業的量産ベースで製造する技術が存在しなかったのである。   That is, when trying to manufacture a thick copper foil by a conventional manufacturing method, an electrolytic copper foil having a very rough roughness (Rzjis is 20 μm or more in the case of an electrolytic copper foil having a thickness of 90 μm) or an electrolytic copper foil having a very low roughness. (In the case of a 90 μm thick electrolytic copper foil, Rzjis is less than 8 μm), and there is no technology for manufacturing an electrolytic copper foil having a medium roughness on a stable and industrial mass production basis. It was.

以上のことから、厚い銅箔であっても、中程度の粗度を有し、絶縁樹脂基材との一定レベル以上の密着性を確保し、且つ、より薄い絶縁樹脂基材の使用が可能な電解銅箔が望まれてきたのである。   From the above, even a thick copper foil has a medium roughness, ensures a certain level of adhesion to the insulating resin base material, and allows the use of a thinner insulating resin base material. Therefore, an electrolytic copper foil has been desired.

本件発明に係る電解銅箔は、硫酸系銅電解液を電解して得られる電解銅箔において、当該電解銅箔は90μm〜450μmの厚さを持ち、当該電解銅箔の粗面側が、表面粗さ(Rzjis)=8μm〜15μmの中粗度表面であることを特徴とするものである。   The electrolytic copper foil according to the present invention is an electrolytic copper foil obtained by electrolyzing a sulfuric acid-based copper electrolytic solution. The electrolytic copper foil has a thickness of 90 μm to 450 μm, and the rough surface side of the electrolytic copper foil has a rough surface. (Rzjis) = 8 μm to 15 μm medium roughness surface.

そして、本件発明に係る電解銅箔の製造は、粗面側が中粗度表面である電解銅箔の製造方法であって、3−メルカプト−1−プロパンスルホン酸と高分子膠と塩素とを添加して得られた硫酸系銅電解液を用いることを特徴とする電解銅箔の製造方法を採用することが好ましい。   And manufacture of the electrolytic copper foil which concerns on this invention is a manufacturing method of the electrolytic copper foil whose rough surface side is a medium-roughness surface, Comprising: 3-mercapto-1-propanesulfonic acid, polymer glue, and chlorine are added. It is preferable to employ a method for producing an electrolytic copper foil characterized by using a sulfuric acid-based copper electrolytic solution obtained in this way.

本件発明に係る電解銅箔の製造に用いる上記高分子膠は、初期数平均分子量10000以上である事が好ましい。   The polymer glue used for producing the electrolytic copper foil according to the present invention preferably has an initial number average molecular weight of 10,000 or more.

本件発明に係る電解銅箔の製造に用いる前記硫酸系銅電解液に添加する高分子膠濃度は、0.5ppm〜3ppmである事が好ましい。   It is preferable that the polymer glue concentration added to the said sulfuric acid type copper electrolyte solution used for manufacture of the electrolytic copper foil which concerns on this invention is 0.5 ppm-3 ppm.

本件発明に係る電解銅箔の製造に用いる前記硫酸系銅電解液中の3−メルカプト−1−プロパンスルホン酸濃度は、1ppm〜2ppmである事が好ましい。   The 3-mercapto-1-propanesulfonic acid concentration in the sulfuric acid-based copper electrolyte used for the production of the electrolytic copper foil according to the present invention is preferably 1 ppm to 2 ppm.

本件発明に係る電解銅箔の製造に用いる前記硫酸系銅電解液中の塩素濃度は、5ppm〜30ppmであることが好ましい。   It is preferable that the chlorine concentration in the said sulfuric-type copper electrolyte solution used for manufacture of the electrolytic copper foil which concerns on this invention is 5-30 ppm.

そして、本件発明に係る電解銅箔の製造に用いる前記硫酸系銅電解液は、液温20℃〜52℃とし、電流密度30A/dm〜90A/dmで電解することが好ましい。 Then, the sulfuric acid base copper electrolytic solution used in the production of electrolytic copper foil according to the present invention, a liquid temperature 20 ° C. to 52 ° C., it is preferred to electrolysis at a current density of 30A / dm 2 ~90A / dm 2 .

本件発明に係る電解銅箔は、その粗面に粗化処理、防錆処理、シランカップリング剤処理のいずれか一種又は二種以上を行った表面処理銅箔として用いることが好ましい。   The electrolytic copper foil according to the present invention is preferably used as a surface-treated copper foil obtained by performing one or more of roughening treatment, rust prevention treatment, and silane coupling agent treatment on the rough surface.

更に、本件発明に係る表面処理銅箔は、その絶縁樹脂基材との張り合わせ面が、表面粗さ(Rzjis)=10μm〜20μmの中粗度表面である。   Furthermore, as for the surface-treated copper foil which concerns on this invention, the bonding surface with the insulating resin base material is a medium-roughness surface of surface roughness (Rzjis) = 10 micrometers-20 micrometers.

本件発明に係る電解銅箔は、その粗面が中程度の粗度を備える。従来の電解銅箔は、高プロファイルか、低プロファイルのいずれかに分類されるものであり、この中間の粗度のプロファイルを持つ電解銅箔は存在しなかった。このような高プロファイルと低プロファイルの中間の粗度を備える電解銅箔は、その表面に各種表面処理を行い表面処理銅箔として、プリント配線板製造に用いる。すると、基板として実用上支障のない耐熱特性、耐薬品性、引き剥がし強さを得ることが可能で、これらの特性のトータルバランスに優れたものとなる。   The electrolytic copper foil according to the present invention has a medium roughness on the rough surface. Conventional electrolytic copper foil is classified into either a high profile or a low profile, and no electrolytic copper foil having an intermediate roughness profile exists. Such an electrolytic copper foil having an intermediate roughness between a high profile and a low profile is subjected to various surface treatments on the surface thereof and used as a surface-treated copper foil for the production of a printed wiring board. Then, it is possible to obtain heat resistance characteristics, chemical resistance, and peel strength that do not impede practical use as a substrate, and the total balance of these characteristics is excellent.

また、本件発明に係る電解銅箔の製造方法を用いることで、本件発明に係る中程度の粗度の粗面を備える電解銅箔を容易に製造出来る。この製造方法によって、従来当業者間で製造困難といわれてきた、中間プロファイルの電解銅箔の工業ベースでの製造が可能となる。   Moreover, the electrolytic copper foil provided with the rough surface of the medium roughness which concerns on this invention can be easily manufactured by using the manufacturing method of the electrolytic copper foil which concerns on this invention. With this manufacturing method, it is possible to manufacture an electrolytic copper foil having an intermediate profile on an industrial basis, which has been conventionally considered difficult to manufacture by those skilled in the art.

そこで、本件発明者等は、鋭意研究の結果、中程度の粗度を有し、絶縁樹脂基材との一定レベル以上の密着性を確保し、且つ、より薄い絶縁樹脂基材の使用が可能な電解銅箔を得ることに成功し、本件発明に想到したのである。   Therefore, as a result of earnest research, the present inventors have a medium roughness, ensure a certain level of adhesion to the insulating resin base material, and can use a thinner insulating resin base material. The present inventors succeeded in obtaining an electrolytic copper foil and arrived at the present invention.

<本件発明に係る電解銅箔>
本件発明に係る電解銅箔は、硫酸系銅電解液を電解して得られる電解銅箔において、当該電解銅箔は90μm〜450μmの厚さを持ち、当該電解銅箔の粗面側が、表面粗さ(Rzjis)=8μm〜15μmの中粗度表面であることを特徴とするものである。
<Electrolytic copper foil according to the present invention>
The electrolytic copper foil according to the present invention is an electrolytic copper foil obtained by electrolyzing a sulfuric acid-based copper electrolytic solution. The electrolytic copper foil has a thickness of 90 μm to 450 μm, and the rough surface side of the electrolytic copper foil has a rough surface. (Rzjis) = 8 μm to 15 μm medium roughness surface.

本件発明に言う「電解銅箔」とは、何ら表面処理を行っていない状態のものであり「未処理銅箔」、「析離箔」等と称されることがある。この電解銅箔は、一般的に連続生産法が採用され、ドラム形状をした回転陰極と、その回転陰極の形状に沿って対向配置する鉛系陽極又は不溶性陽極(DSA)との間に、硫酸銅系溶液を流し、電解反応を利用して銅を回転陰極のドラム表面に析出させ、この析出した銅が箔状態となり、回転陰極から連続して引き剥がして巻き取ることにより生産される。この段階では、防錆処理等の表面処理は何ら行われていない状況であり、電析直後の銅は活性化した状態にあり空気中の酸素により、非常に酸化しやすい状態にある。   The “electrolytic copper foil” referred to in the present invention is a state in which no surface treatment is performed, and is sometimes referred to as “untreated copper foil”, “deposited foil” or the like. This electrolytic copper foil generally employs a continuous production method, in which sulfuric acid is placed between a drum-shaped rotating cathode and a lead-based anode or an insoluble anode (DSA) arranged opposite to each other along the shape of the rotating cathode. It is produced by flowing a copper-based solution, depositing copper on the drum surface of the rotating cathode using an electrolytic reaction, and depositing the copper into a foil state, which is continuously peeled off from the rotating cathode and wound up. At this stage, no surface treatment such as rust prevention treatment has been performed, and copper immediately after electrodeposition is in an activated state and is very easily oxidized by oxygen in the air.

この電解銅箔の回転陰極と接触した状態から引き剥がされた面は、鏡面仕上げされた回転陰極表面の形状が転写したものとなり、光沢を持ち滑らかな面であるため光沢面と称する。これに対し、析出サイドであった方の表面形状は、析出する銅の結晶成長速度が結晶面ごとに異なるため、山形の凹凸形状を示すものとなり、これを粗面又は析出面(本件明細書では以下「粗面」を用いる。)と称する。この粗面が銅張積層板を製造する際の絶縁層との張り合わせ面となるのである。   The surface of the electrolytic copper foil that has been peeled off from the state in contact with the rotating cathode is a transfer of the mirror-finished surface shape of the rotating cathode, and is called a glossy surface because it is glossy and smooth. On the other hand, the surface shape of the one that was the precipitation side shows a mountain-shaped uneven shape because the crystal growth rate of the deposited copper differs from crystal plane to crystal plane. Hereinafter, “rough surface” is used.) This rough surface serves as a bonding surface with the insulating layer when the copper clad laminate is manufactured.

そして、この電解銅箔は、表面処理工程により、粗面への粗面化処理と防錆処理とが施されるのが通常である。粗面への粗面化処理とは、硫酸銅溶液中で、いわゆるヤケメッキ条件の電流を流し、粗面の山形の凹凸形状に微細銅粒を析出付着させ、直ちに平滑メッキ条件の電流範囲で被せメッキする事で、微細銅粒の脱落を防止するものである。従って、微細銅粒を析出付着させた粗面のことを「粗化処理面」と称する。続いて、表面処理工程では、電解銅箔の表裏に、亜鉛、亜鉛合金、クロム系のメッキ等により防錆処理が行われ、乾燥して、巻き取ることで製品としての電解銅箔が完成するのである。これを一般に「表面処理箔」と称する。   The electrolytic copper foil is usually subjected to a roughening treatment and a rust prevention treatment on a rough surface by a surface treatment process. The roughening treatment on the rough surface means that a current of so-called burnt plating conditions is passed in a copper sulfate solution to deposit fine copper particles on the rough surface of the rough surface and immediately cover the current range of smooth plating conditions. By plating, fine copper particles are prevented from falling off. Therefore, a rough surface on which fine copper particles are deposited is referred to as a “roughened surface”. Subsequently, in the surface treatment process, rust prevention treatment is performed on the front and back of the electrolytic copper foil by zinc, zinc alloy, chromium plating, etc., and the electrolytic copper foil as a product is completed by drying and winding. It is. This is generally referred to as “surface treated foil”.

本件発明では、主に厚い電解銅箔を対象としている。一般的に、上記特許文献1〜特許文献3に開示の製造方法のように特殊な製造方法を採用しない限り、従来の電解銅箔の粗面は非常に粗い粗度を持っていた。例えば、70μm厚さの電解銅箔を表面処理するとRzの値が20μmを超え、210μm厚さの電解銅箔を表面処理するとRzの値が40μmを超える等のレベルである。従って、厚い電解銅箔に、上記表面処理を施して絶縁樹脂基材に張り合わせようとすると、自ずと厚い絶縁樹脂基材を使用しなければならないことが理解出来る。しかも、厚い電解銅箔を絶縁樹脂基材に張り合わたときには、物理的なアンカー効果を得ることが容易で耐熱特性には優れるものの、界面の凹凸が激しいため、当該界面でのエッチング液等のしみ込みが大きく、耐薬品性劣化が大きいと言われてきた。   In the present invention, a thick electrolytic copper foil is mainly targeted. In general, the rough surface of the conventional electrolytic copper foil had a very rough roughness unless a special manufacturing method such as the manufacturing methods disclosed in Patent Documents 1 to 3 was adopted. For example, when the electrolytic copper foil having a thickness of 70 μm is surface-treated, the value of Rz exceeds 20 μm, and when the electrolytic copper foil having a thickness of 210 μm is surface-treated, the value of Rz exceeds 40 μm. Therefore, it can be understood that if a thick electrolytic copper foil is subjected to the above-described surface treatment to be bonded to an insulating resin base material, the thick insulating resin base material must be used. Moreover, when a thick electrolytic copper foil is laminated to an insulating resin base material, it is easy to obtain a physical anchor effect and has excellent heat resistance, but the unevenness of the interface is severe, so that an etching solution or the like at the interface is stained. It has been said that the chemical resistance is greatly deteriorated.

これに対して、本件発明に係る電解銅箔は、90μm〜450μmの厚さを持っていても、当該電解銅箔の粗面側の表面粗さ(Rzjis)=8μm〜15μmの中粗度表面であるため、上記表面処理を施して粗化処理を行い、防錆処理等を行っても従来の厚い電解銅箔ほどに粗度の高い表面とはならないのである。   On the other hand, even if the electrolytic copper foil according to the present invention has a thickness of 90 μm to 450 μm, the surface roughness (Rzjis) on the rough surface side of the electrolytic copper foil is 8 μm to 15 μm. Therefore, even if the surface treatment is performed, the roughening treatment is performed, and the rust prevention treatment or the like is performed, the surface is not as high as the conventional thick electrolytic copper foil.

このように粗面側の表面が中粗度レベルである電解銅箔を用いて得られる表面処理銅箔は、その粗化処理面の粗度も中程度になる。そして、絶縁樹脂基材に張り合わると、物理的なアンカー効果を適度に得ることが可能で、界面の凹凸も軽減されるため、当該界面でのエッチング液等の薬液のしみ込みが小さく、耐薬品性劣化が小さくなる。   Thus, the roughness of the roughened surface of the surface-treated copper foil obtained using the electrolytic copper foil whose surface on the rough surface side is at a medium roughness level is also moderate. When bonded to an insulating resin base material, it is possible to appropriately obtain a physical anchor effect and also reduce unevenness at the interface, so that the penetration of a chemical solution such as an etchant at the interface is small, and resistance Chemical degradation is reduced.

<本件発明に係る電解銅箔の製造方法>
本件発明に係る電解銅箔の製造方法は、粗面側が中粗度表面である電解銅箔の製造方法であって、3−メルカプト−1−プロパンスルホン酸と高分子膠と塩素とを添加して得られた硫酸系銅電解液を用いることを特徴とするものである。
<The manufacturing method of the electrolytic copper foil which concerns on this invention>
The method for producing an electrolytic copper foil according to the present invention is a method for producing an electrolytic copper foil having a medium-roughness surface on the rough surface side, wherein 3-mercapto-1-propanesulfonic acid, polymer glue and chlorine are added. The sulfuric acid-based copper electrolyte obtained in this way is used.

ここで言う「高分子膠」とは、初期数平均分子量10000以上である膠、ゼラチン、コラーゲン(以下、単に「膠」と総称する。)を含む意で用いている。膠の初期数平均分子量が10000未満の場合には、電解銅箔の粗面が滑らかな平滑面となり、中程度の粗度以下の表面しか得られないのである。ここで、初期数平均分子量とは、硫酸系銅電解液に添加する前の数平均分子量のことである。   As used herein, “polymer glue” includes glue, gelatin, and collagen (hereinafter simply referred to as “glue”) having an initial number average molecular weight of 10,000 or more. When the initial number average molecular weight of the glue is less than 10,000, the rough surface of the electrolytic copper foil becomes a smooth smooth surface, and only a surface having a medium roughness or less can be obtained. Here, the initial number average molecular weight is the number average molecular weight before being added to the sulfuric acid-based copper electrolyte.

ここで、上記膠の数平均分子量の測定方法について説明する。本件発明に言う数平均分子量は、上記膠を水に溶解させた濃度3ppm〜5ppmの試料溶液をゲルパーミエーションクロマトグラフィ(GPC)法を用いて測定したものである。本件発明では、移動相としてアセトニトリル20容量%、濃度5mMの希硫酸80容量%の混合溶液を用い、この移動相を送液ポンプで送り出し、これに200μlの試料溶液を注入し、その後直列配置した3本のカラムを通過させた。第1カラムはアムシャムファルマシアバイオテク株式会社製のSephadex G−15(排除限界分子量1500)の粒径66μm以下の充填剤を収容した内径7.5mm、長さ250mmのPEEK製カラムである。第2及び第3カラムは、昭和電工株式会社製のAsahipak GS−320HQ(排除限界分子量40000)、内径7.6mm、長さ300mmのカラムである。第1カラム〜第3カラムを通過して吸光度検出器(UV210nm)を用いて膠の分子量分布を測定し、数平均分子量を算出した。   Here, a method for measuring the number average molecular weight of the glue will be described. The number average molecular weight referred to in the present invention is measured using a gel permeation chromatography (GPC) method of a sample solution having a concentration of 3 ppm to 5 ppm in which the above glue is dissolved in water. In the present invention, a mixed solution of 20% by volume of acetonitrile and 80% by volume of dilute sulfuric acid having a concentration of 5 mM is used as the mobile phase, this mobile phase is sent out by a liquid feed pump, 200 μl of the sample solution is injected into this, and then arranged in series. Three columns were passed. The first column is a PEEK column having an inner diameter of 7.5 mm and a length of 250 mm, containing a Sephadex G-15 (exclusion limit molecular weight 1500) particle size 66 μm or less filler made by Amsham Pharmacia Biotech. The second and third columns are Asahipak GS-320HQ (exclusion limit molecular weight 40000) manufactured by Showa Denko KK, an inner diameter of 7.6 mm, and a length of 300 mm. The molecular weight distribution of glue was measured using an absorbance detector (UV210 nm) after passing through the first column to the third column, and the number average molecular weight was calculated.

なお、膠の数平均分子量の測定において、検量線の作成に用いた試薬は以下のとおりである。
(試薬)
・ALBUMIN,BOVINE SERUM(シグマアルドリッチジャパン株式会社製、分子量66000)
・CYTOCHROME C(シグマアルドリッチジャパン株式会社製、分子量12400)
・APROTININ(シグマアルドリッチジャパン株式会社製、分子量6500)
・INSULIN(シグマアルドリッチジャパン株式会社製、分子量5734)
・INSULIN CHAIN B,OXIDIZED(シグマアルドリッチジャパン株式会社製、分子量3496)
・NEUROTENSIN(シグマアルドリッチジャパン株式会社製、分子量1673)
・ANGIOTENSIN II(シグマアルドリッチジャパン株式会社製、分子量1046)
・VAL−GLU−GLU−ALA−GLU(シグマアルドリッチジャパン株式会社製、分子量576)
In the measurement of the number average molecular weight of the glue, the reagents used for preparing the calibration curve are as follows.
(reagent)
・ ALBUMIN, BOVINE SERUM (Sigma Aldrich Japan Co., Ltd., molecular weight 66000)
CYTOCHROME C (Sigma Aldrich Japan Co., Ltd., molecular weight 12400)
・ APROTININ (Sigma Aldrich Japan Co., Ltd., molecular weight 6500)
INSULIN (Sigma Aldrich Japan Co., Ltd., molecular weight 5734)
INSULIN CHAIN B, OXIDIZED (Sigma Aldrich Japan Co., Ltd., molecular weight 3496)
・ NEUROTENSIN (manufactured by Sigma Aldrich Japan Co., Ltd., molecular weight 1673)
・ ANGIOTENSIN II (Sigma Aldrich Japan Co., Ltd., molecular weight 1046)
VAL-GLU-GLU-ALA-GLU (Sigma Aldrich Japan, molecular weight 576)

そして、前記硫酸系銅電解液に添加する高分子膠濃度は、0.5ppm〜3ppmである事が好ましい。膠濃度が0.5ppm未満の場合には、電解銅箔の粗面が粗くなり、中程度の粗度の維持が困難となる。一方、膠濃度が3ppmを超えると電解銅箔の粗面が中程度の粗度を維持出来ず、平滑化する傾向が強くなる。   The polymer glue concentration added to the sulfuric acid-based copper electrolyte is preferably 0.5 ppm to 3 ppm. When the glue concentration is less than 0.5 ppm, the rough surface of the electrolytic copper foil becomes rough, and it becomes difficult to maintain a medium roughness. On the other hand, if the glue concentration exceeds 3 ppm, the rough surface of the electrolytic copper foil cannot maintain a moderate roughness, and the tendency to smoothen becomes strong.

次に、前記硫酸系銅電解液中の3−メルカプト−1−プロパンスルホン酸濃度は、1ppm〜2ppmである事が好ましい。この3−メルカプト−1−プロパンスルホン酸濃度が1ppm未満の場合には、電解銅箔の粗面が粗くなり、中程度の粗度の維持が困難となる。一方、3−メルカプト−1−プロパンスルホン酸濃度が2ppmを超えると、電解銅箔の粗面が平滑化し中程度の粗度を維持出きなくなる。なお、本件発明における3−メルカプト−1−プロパンスルホン酸は、3−メルカプト−1−プロパンスルホン酸塩をも含む意味で使用しており、濃度の記載値は、ナトリウム塩である3−メルカプト−1−プロパンスルホン酸ナトリウムとしての換算値である。更に、3−メルカプト−1−プロパンスルホン酸の濃度には、3−メルカプト−1−プロパンスルホン酸の単量体の他、3−メルカプト−1−プロパンスルホン酸の二量体等の電解液中での変性物も含んでいる。   Next, the 3-mercapto-1-propanesulfonic acid concentration in the sulfuric acid-based copper electrolyte is preferably 1 ppm to 2 ppm. When the 3-mercapto-1-propanesulfonic acid concentration is less than 1 ppm, the rough surface of the electrolytic copper foil becomes rough, and it becomes difficult to maintain a medium degree of roughness. On the other hand, when the concentration of 3-mercapto-1-propanesulfonic acid exceeds 2 ppm, the rough surface of the electrolytic copper foil is smoothed and a moderate roughness cannot be maintained. In addition, 3-mercapto-1-propanesulfonic acid in the present invention is used in the meaning including 3-mercapto-1-propanesulfonic acid salt, and the stated value of concentration is 3-mercapto-, which is a sodium salt. It is the conversion value as 1-propanesulfonic acid sodium. Furthermore, in the concentration of 3-mercapto-1-propanesulfonic acid, in addition to a monomer of 3-mercapto-1-propanesulfonic acid, an electrolyte such as a dimer of 3-mercapto-1-propanesulfonic acid The modified product is also included.

更に、前記硫酸系銅電解液の塩素濃度は、5ppm〜30ppmである事が好ましく、より好ましくは10ppm〜30ppmである。この塩素濃度が5ppm未満の場合には、電解銅箔の粗面が平滑化し中程度の粗度を維持出きなくなる。一方、塩素濃度が30ppmを越えると、電解銅箔の粗面が粗くなり、電析状態が安定せず、中程度の粗度の維持が困難となる。   Furthermore, the chlorine concentration of the sulfuric acid-based copper electrolyte is preferably 5 ppm to 30 ppm, more preferably 10 ppm to 30 ppm. When the chlorine concentration is less than 5 ppm, the rough surface of the electrolytic copper foil is smoothed and the medium roughness cannot be maintained. On the other hand, if the chlorine concentration exceeds 30 ppm, the rough surface of the electrolytic copper foil becomes rough, the electrodeposition state is not stable, and it becomes difficult to maintain a moderate roughness.

しかしながら、前記硫酸系銅電解液中の3−メルカプト−1−プロパンスルホン酸と高分子膠と塩素との成分バランスが重要であり、これらの量的バランスが上記範囲を逸脱すると、電解銅箔の粗面が平滑化し中程度の粗度を維持出きなくなるか、電解銅箔の粗面が粗くなり中程度の粗度の維持が困難となる。   However, the component balance of 3-mercapto-1-propanesulfonic acid, polymer glue and chlorine in the sulfuric acid-based copper electrolyte is important, and if these quantitative balances deviate from the above range, the electrolytic copper foil The rough surface is smoothed so that the medium roughness cannot be maintained or the rough surface of the electrolytic copper foil becomes rough and it becomes difficult to maintain the medium roughness.

なお、本件発明に言う硫酸系銅電解液の銅濃度は、50g/l〜120g/l、フリー硫酸濃度が60g/l〜250g/l程度の溶液を想定している。   In addition, the copper concentration of the sulfuric acid-type copper electrolyte solution referred to in the present invention is assumed to be a solution having a free sulfuric acid concentration of about 60 g / l to 250 g / l.

そして、上記硫酸系銅電解液を用いて電解銅箔を製造する場合には、液温20℃〜52℃とし、電流密度30A/dm〜90A/dmで電解することが好ましい。液温が20℃〜52℃、より好ましくは40℃〜50℃である。液温が20℃未満の場合には析出速度が低下し伸び及び引張り強さ等の機械的物性のバラツキが大きくなる。一方、液温が52℃を超えると蒸発水分量が増加し液濃度の変動が速く、得られる電解銅箔の粗面の形状にバラツキが大きくなる。また、電流密度は30A/dm〜90A/dmで、より好ましくは50A/dm〜86A/dmである。電流密度が30A/dm未満の場合には銅の析出速度が小さく工業的生産性が劣る。一方、電流密度が90A/dmを超える場合には、得られる電解銅箔の粗面粗さが大きくなり、中程度の粗度を維持出来ない。 Then, in the production of electrolytic copper foil using the sulfuric acid base copper electrolytic solution, the liquid temperature 20 ° C. to 52 ° C., it is preferred to electrolysis at a current density of 30A / dm 2 ~90A / dm 2 . The liquid temperature is 20 ° C to 52 ° C, more preferably 40 ° C to 50 ° C. When the liquid temperature is less than 20 ° C., the deposition rate decreases, and the variation in mechanical properties such as elongation and tensile strength increases. On the other hand, when the liquid temperature exceeds 52 ° C., the amount of evaporated water increases and the liquid concentration fluctuates quickly, resulting in large variations in the shape of the rough surface of the obtained electrolytic copper foil. The current density is 30 A / dm 2 to 90 A / dm 2 , more preferably 50 A / dm 2 to 86 A / dm 2 . When the current density is less than 30 A / dm 2 , the copper deposition rate is small and the industrial productivity is poor. On the other hand, when the current density exceeds 90 A / dm 2 , the rough surface of the obtained electrolytic copper foil becomes large, and a moderate roughness cannot be maintained.

<本件発明に係る表面処理銅箔>
本件発明に係る電解銅箔は、その粗面に粗化処理、防錆処理、シランカップリング剤処理のいずれか一種又は二種以上を行い表面処理銅箔として、プリント配線板の絶縁層構成材と張り合わせることが一般的である。
<Surface-treated copper foil according to the present invention>
The electrolytic copper foil according to the present invention is a surface-treated copper foil that is subjected to any one or more of roughening treatment, rust prevention treatment, and silane coupling agent treatment on the rough surface, and is an insulating layer constituent material for printed wiring boards. Is generally pasted together.

ここで、粗化処理とは、電解銅箔の粗面に微細金属粒を付着形成させるか、エッチング法で粗化表面を形成するか、いずれかの方法が採用される。ここで、前者の微細金属粒を付着形成する方法として、銅微細粒を粗面に付着形成する方法に関して例示しておく。この粗化処理工程は、電解銅箔の粗面上に微細銅粒を析出付着させる工程と、この微細銅粒の脱落を防止するための被せメッキ工程とで構成される。   Here, as the roughening treatment, either a method in which fine metal particles are deposited on the rough surface of the electrolytic copper foil or a roughened surface is formed by an etching method is employed. Here, as the former method for depositing and forming fine metal particles, a method for depositing and forming copper fine particles on a rough surface will be exemplified. This roughening treatment step includes a step of depositing and adhering fine copper particles on the rough surface of the electrolytic copper foil, and a covering plating step for preventing the fine copper particles from falling off.

電解銅箔の粗面上に微細銅粒を析出付着させる工程では、電解条件としてヤケメッキの条件が採用される。従って、一般的に微細銅粒を析出付着させる工程で用いる溶液濃度は、ヤケメッキ条件を作り出しやすいよう、低い濃度となっている。このヤケメッキ条件は、特に限定されるものではなく、生産ラインの特質を考慮して定められるものである。例えば、硫酸銅系溶液を用いるのであれば、濃度が銅5〜20g/l、硫酸50〜200g/l、その他必要に応じた添加剤(α−ナフトキノリン、デキストリン、膠、チオ尿素等)、液温15〜40℃、電流密度10〜50A/dmの条件とする等である。 In the step of depositing and adhering fine copper particles on the rough surface of the electrolytic copper foil, burnt plating conditions are employed as electrolysis conditions. Therefore, the concentration of the solution used in the process of depositing and attaching fine copper particles is generally low so that the burn plating conditions can be easily created. This burn plating condition is not particularly limited, and is determined in consideration of the characteristics of the production line. For example, if a copper sulfate-based solution is used, the concentration is 5 to 20 g / l copper, 50 to 200 g / l sulfuric acid, and other additives (α-naphthoquinoline, dextrin, glue, thiourea, etc.), liquid For example, the temperature is 15 to 40 ° C. and the current density is 10 to 50 A / dm 2 .

そして、微細銅粒の脱落を防止するための被せメッキ工程では、析出付着させた微細銅粒の脱落を防止するために、平滑メッキ条件で微細銅粒を被覆するように銅を均一析出させるための工程である。従って、ここでは前述のバルク銅の形成槽で用いたものと同様の溶液を銅イオンの供給源として用いることができる。この平滑メッキ条件は、特に限定されるものではなく、生産ラインの特質を考慮して定められるものである。例えば、硫酸銅系溶液を用いるのであれば、濃度が銅50〜80g/l、硫酸50〜150g/l、液温40〜50℃、電流密度10〜50A/dmの条件とする等である。 In the covering plating process for preventing the fine copper particles from dropping off, in order to prevent the fine copper particles deposited and deposited from falling off, the copper is uniformly deposited so as to cover the fine copper particles under smooth plating conditions. It is this process. Therefore, here, the same solution as that used in the above-described bulk copper forming tank can be used as a source of copper ions. The smooth plating conditions are not particularly limited and are determined in consideration of the characteristics of the production line. For example, if a copper sulfate-based solution is used, the conditions are copper 50 to 80 g / l, sulfuric acid 50 to 150 g / l, liquid temperature 40 to 50 ° C., and current density 10 to 50 A / dm 2. .

次に、防錆処理層を形成する方法に関して説明する。この防錆処理層は、銅張積層板及びプリント配線板の製造過程で支障をきたすことの無いよう、電解銅箔層の表面が酸化腐食することを防止するためのものである。防錆処理に用いられる方法は、ベンゾトリアゾール、イミダゾール等を用いる有機防錆、若しくは亜鉛、クロメート、亜鉛合金等を用いる無機防錆のいずれを採用しても問題はない。電解銅箔の使用目的に合わせた防錆を選択すればよい。有機防錆の場合は、有機防錆剤を浸漬塗布、シャワーリング塗布、電着法等の手法を採用することが可能となる。無機防錆の場合は、電解で防錆元素を電解銅箔層の表面上に析出させる方法、その他いわゆる置換析出法等を用いることが可能である。例えば、亜鉛防錆処理を行うとして、ピロ燐酸亜鉛メッキ浴、シアン化亜鉛メッキ浴、硫酸亜鉛メッキ浴等を用いることが可能である。例えば、ピロ燐酸亜鉛メッキ浴であれば、濃度が亜鉛5〜30g/l、ピロ燐酸カリウム50〜500g/l、液温20〜50℃、pH9〜12、電流密度0.3〜10A/dmの条件とする等である。 Next, a method for forming a rust prevention treatment layer will be described. This antirust treatment layer is for preventing the surface of the electrolytic copper foil layer from being oxidatively corroded so as not to hinder the manufacturing process of the copper clad laminate and the printed wiring board. The method used for the rust prevention treatment may be any of organic rust prevention using benzotriazole, imidazole or the like, or inorganic rust prevention using zinc, chromate, zinc alloy or the like. What is necessary is just to select the rust prevention according to the use purpose of electrolytic copper foil. In the case of organic rust prevention, it is possible to employ techniques such as dip coating, shower ring coating, and electrodeposition method with an organic rust preventive. In the case of inorganic rust prevention, it is possible to use a method of depositing a rust-preventive element on the surface of the electrolytic copper foil layer by electrolysis or other so-called substitution deposition method. For example, a zinc pyrophosphate plating bath, a zinc cyanide plating bath, a zinc sulfate plating bath, or the like can be used for the zinc rust prevention treatment. For example, in the case of a zinc pyrophosphate plating bath, the concentration is 5 to 30 g / l of zinc, 50 to 500 g / l of potassium pyrophosphate, the liquid temperature is 20 to 50 ° C., the pH is 9 to 12, and the current density is 0.3 to 10 A / dm 2. And so on.

そして、シランカップリング剤処理とは、粗化処理、防錆処理等が終了した後に、絶縁層構成材との密着性を化学的に向上させるための処理である。ここで言う、シランカップリング剤処理に用いるシランカップリング剤は、特に限定を要するものではなく、使用する絶縁層構成材、プリント配線板製造工程で使用するメッキ液等の性状を考慮して、エポキシ系シランカップリング剤、アミノ系シランカップリング剤、メルカプト系シランカップリング剤等から任意に選択使用することが可能となる。   And a silane coupling agent process is a process for improving the adhesiveness with an insulating-layer constituent material chemically after a roughening process, a rust prevention process, etc. are complete | finished. Here, the silane coupling agent used in the silane coupling agent treatment is not particularly limited, considering the properties of the insulating layer constituent material used, the plating solution used in the printed wiring board manufacturing process, An epoxy silane coupling agent, an amino silane coupling agent, a mercapto silane coupling agent and the like can be arbitrarily selected and used.

より具体的には、プリント配線板用にプリプレグのガラスクロスに用いられると同様のカップリング剤を中心にビニルトリメトキシシラン、ビニルフェニルトリメトキシラン、γ−メタクリロキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、4−グリシジルブチルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、N−β(アミノエチル)γ−アミノプロピルトリメトキシシラン、N−3−(4−(3−アミノプロポキシ)プトキシ)プロピル−3−アミノプロピルトリメトキシシラン、イミダゾールシラン、トリアジンシラン、γ−メルカプトプロピルトリメトキシシラン等を用いることが可能である。   More specifically, vinyl trimethoxy silane, vinyl phenyl trimethoxy lane, γ-methacryloxypropyl trimethoxy silane, γ-glycol are mainly used for the same coupling agent as used for prepreg glass cloth for printed wiring boards. Sidoxypropyltrimethoxysilane, 4-glycidylbutyltrimethoxysilane, γ-aminopropyltriethoxysilane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane, N-3- (4- (3-aminopropoxy) ) Putoxy) propyl-3-aminopropyltrimethoxysilane, imidazole silane, triazine silane, γ-mercaptopropyltrimethoxysilane and the like can be used.

そして、本件発明に係る電解銅箔を用いて、その表面に上記所望の表面処理を施した表面処理銅箔は、その絶縁樹脂基材との張り合わせ面が、表面粗さ(Rzjis)=10μm〜20μmの中粗度表面であることを特徴とする。このような中粗度の粗化面を備えることで、絶縁層構成材に張り合わせたときの電解銅箔の良好な密着性を確保することが可能で、基板として実用上支障のない耐熱特性、耐薬品性、引き剥がし強さを得ることが可能で、これらの特性のトータルバランスに優れたものとなる。   And the surface treatment copper foil which performed the said desired surface treatment on the surface using the electrolytic copper foil which concerns on this invention is the surface roughness (Rzjis) = 10 micrometers-the bonding surface with the insulating resin base material. It is characterized by a medium roughness surface of 20 μm. By providing such a rough surface with a medium roughness, it is possible to ensure good adhesion of the electrolytic copper foil when laminated to the insulating layer constituent material, heat resistance characteristics that do not impede practical use as a substrate, Chemical resistance and peel strength can be obtained, and the total balance of these properties is excellent.

(電解銅箔の製造)
この実施例では、硫酸系銅電解液として、硫酸銅溶液であって、銅濃度80g/l、フリー硫酸140g/l、表1に記載の塩素濃度、3−メルカプト−1−プロパンスルホン酸濃度、膠濃度(初期数平均分子量20000)、液温50℃の溶液を用いて、電流密度60A/dmで電解し、210μm厚さの電解銅箔を得た。この電解銅箔の片面は、チタン製電極の表面形状の転写した光沢面であり、他面は一定の凹凸を持つ粗面となった。この粗面の粗度に関しては、表1に示す。
(Manufacture of electrolytic copper foil)
In this example, as the sulfuric acid-based copper electrolyte, a copper sulfate solution having a copper concentration of 80 g / l, free sulfuric acid 140 g / l, a chlorine concentration described in Table 1, a 3-mercapto-1-propanesulfonic acid concentration, Using a solution having a glue concentration (initial number average molecular weight 20000) and a liquid temperature of 50 ° C., electrolysis was performed at a current density of 60 A / dm 2 to obtain an electrolytic copper foil having a thickness of 210 μm. One surface of the electrolytic copper foil was a glossy surface to which the surface shape of the titanium electrode was transferred, and the other surface was a rough surface having certain irregularities. The roughness of this rough surface is shown in Table 1.

Figure 2006274361
Figure 2006274361

この表1から分かるように、210μm厚さの電解銅箔であっても、その粗面の表面粗さは、8.0μm〜13.7μmであり、本件発明に於いて定義した中粗度の領域に収まっている。   As can be seen from Table 1, even when the electrolytic copper foil has a thickness of 210 μm, the surface roughness of the rough surface is 8.0 μm to 13.7 μm, and has a medium roughness defined in the present invention. Are in the area.

そして、上記試料1〜試料5の電解銅箔の表面処理として、当該粗面に、微細銅粒を析出付着させて、粗化処理面を形成した。この粗化処理面の形成の前に、当該電解銅箔の表面を酸洗処理して、清浄化を行った。この酸洗処理条件は、濃度100g/l、液温30℃の希硫酸溶液を用い、浸漬時間30秒とした。   And as a surface treatment of the electrolytic copper foils of Samples 1 to 5, fine copper particles were deposited on the rough surface to form a roughened surface. Prior to the formation of the roughened surface, the surface of the electrolytic copper foil was pickled and cleaned. The pickling treatment conditions were a dilute sulfuric acid solution having a concentration of 100 g / l and a liquid temperature of 30 ° C., and an immersion time of 30 seconds.

そして、酸洗処理が終了すると、次には電解銅箔の粗面に微細銅粒を形成する工程として、粗面上に微細銅粒を析出付着させる工程と、この微細銅粒の脱落を防止するための被せメッキ工程とを施した。前者の微細銅粒を析出付着させる工程では、硫酸銅系溶液であって、濃度が銅7g/l、硫酸100g/l、液温25℃、電流密度10A/dmの条件で、10秒間電解した。 When the pickling treatment is completed, the next step is to form fine copper particles on the rough surface of the electrolytic copper foil, and the step of depositing fine copper particles on the rough surface and preventing the fine copper particles from falling off. The covering plating process for performing was performed. In the former step of depositing fine copper particles, the solution is a copper sulfate-based solution, and the electrolysis is performed for 10 seconds under the conditions of a concentration of copper 7 g / l, sulfuric acid 100 g / l, liquid temperature 25 ° C., and current density 10 A / dm 2. did.

そして、粗面に微細銅粒を付着形成すると、微細銅粒の脱落を防止するための被せメッキ工程として平滑メッキ条件で微細銅粒を被覆するように銅を均一析出させた。ここでは平滑メッキ条件として、硫酸銅溶液であって、濃度が銅60g/l、硫酸150g/l、液温45℃、電流密度15A/dmの条件とし、20秒間電解した。 Then, when fine copper grains were adhered and formed on the rough surface, copper was uniformly deposited so as to cover the fine copper grains under smooth plating conditions as a covering plating process for preventing the fine copper grains from falling off. Here, as the smooth plating conditions, a copper sulfate solution having a concentration of 60 g / l copper, 150 g / l sulfuric acid, a liquid temperature of 45 ° C., and a current density of 15 A / dm 2 was electrolyzed for 20 seconds.

上述した粗化処理が終了すると、次には当該銅箔の両面に防錆処理を施した、ここでは以下に述べる条件の無機防錆を採用した。硫酸亜鉛浴を用い、硫酸濃度70g/l、亜鉛濃度20g/lとし、液温40℃、電流密度15A/dmとし、亜鉛防錆処理を施した。 When the above-described roughening treatment was completed, next, the rust prevention treatment was performed on both surfaces of the copper foil. Here, the inorganic rust prevention under the conditions described below was employed. Using a zinc sulfate bath, the sulfuric acid concentration was 70 g / l, the zinc concentration was 20 g / l, the liquid temperature was 40 ° C., and the current density was 15 A / dm 2 .

更に、本実施例の場合、前記亜鉛防錆層の上に、電解でクロメート層を形成した。このときの電解条件は、クロム酸5.0g/l、pH 11.5、液温35℃、電流密度8A/dm、電解時間5秒とした。 Further, in the case of this example, a chromate layer was formed by electrolysis on the zinc rust preventive layer. The electrolysis conditions at this time were chromic acid 5.0 g / l, pH 11.5, liquid temperature 35 ° C., current density 8 A / dm 2 , and electrolysis time 5 seconds.

以上のように防錆処理が完了すると水洗後、直ちにシランカップリング剤処理槽で、粗化した面の防錆処理層の上にシランカップリング剤の吸着を行った。このときの溶液組成は、イオン交換水を溶媒として、γ−グリシドキシプロピルトリメトキシシランを5g/lの濃度となるよう加えたものとした。そして、この溶液をシャワーリングにて吹き付けることにより吸着処理した。   When the rust prevention treatment was completed as described above, the silane coupling agent was adsorbed on the roughened rust prevention treatment layer immediately after washing with water in the silane coupling agent treatment tank. The solution composition at this time was such that ion-exchanged water was used as a solvent and γ-glycidoxypropyltrimethoxysilane was added to a concentration of 5 g / l. The solution was adsorbed by spraying with a shower ring.

シランカップリング剤処理が終了すると、最終的に、電熱器により箔温度が140℃となるよう、雰囲気温度を調整加熱した炉内を4秒かけて通過し、水分をとばし、シランカップリング剤の縮合反応を促進し、完成した表面処理銅箔とした。この結果、いずれも本件発明に言う表面処理銅箔の表面粗さ(Rzjis)=10μm〜20μmの中粗度表面が得られた。   When the treatment with the silane coupling agent is completed, it is finally passed through a furnace in which the atmospheric temperature is adjusted and heated so that the foil temperature becomes 140 ° C. with an electric heater over 4 seconds, moisture is removed, and the silane coupling agent The condensation reaction was promoted to obtain a finished surface-treated copper foil. As a result, the surface roughness (Rzjis) of the surface-treated copper foil according to the present invention was obtained as a medium roughness surface of 10 μm to 20 μm.

比較例Comparative example

(比較例1)
この比較例では、一般的に市販されている表面処理銅箔の製造に用いる210μm厚さの電解銅箔を用いた。この電解銅箔の粗面の粗度は、Rzjis=32.4μmであった。
(Comparative Example 1)
In this comparative example, an electrolytic copper foil having a thickness of 210 μm used for manufacturing a surface-treated copper foil that is generally commercially available was used. The roughness of the rough surface of this electrolytic copper foil was Rzjis = 32.4 μm.

(比較例2)
特許文献1に開示の実施例1のトレース実験として、硫酸銅(試薬)と硫酸(試薬)とを純水に溶解し、銅濃度280g/l、フリー硫酸濃度90g/lとし、ジアリルジアルキルアンモニウム塩と二酸化硫黄との共重合体(日東紡績株式会社製、商品名PAS−A−5、重量平均分子量4000:4ppm)とポリエチレングリコール(平均分子量1000:10ppm)と3−メルカプト−1−プロパンスルホン酸(5ppm)とを添加し、更に塩化ナトリウムを用いて塩素濃度を20ppmに調製して、硫酸酸性銅めっき液を調製した。
(Comparative Example 2)
As a trace experiment of Example 1 disclosed in Patent Document 1, copper sulfate (reagent) and sulfuric acid (reagent) are dissolved in pure water to have a copper concentration of 280 g / l and a free sulfuric acid concentration of 90 g / l, and diallyldialkylammonium salt And sulfur dioxide copolymer (manufactured by Nitto Boseki Co., Ltd., trade name PAS-A-5, weight average molecular weight 4000: 4 ppm), polyethylene glycol (average molecular weight 1000: 10 ppm) and 3-mercapto-1-propanesulfonic acid (5 ppm) was added, and the chlorine concentration was further adjusted to 20 ppm using sodium chloride to prepare a sulfuric acid copper plating solution.

そして、陰極としてチタン板電極を用い、表面を2000番の研磨紙を用いて研磨を行った。表面粗さをRaで0.20μmに調整した。そして、陽極には鉛板を用い、上記の電解液を液温40℃、電流密度50A/dmで電解を行い、210μm厚さの電解銅箔を得た。この電解銅箔の粗度は、Rzjisが8μm未満であった。 Then, a titanium plate electrode was used as the cathode, and the surface was polished using No. 2000 polishing paper. The surface roughness was adjusted to 0.20 μm with Ra. A lead plate was used as the anode, and the above electrolytic solution was electrolyzed at a liquid temperature of 40 ° C. and a current density of 50 A / dm 2 to obtain an electrolytic copper foil having a thickness of 210 μm. As for the roughness of this electrolytic copper foil, Rzjis was less than 8 μm.

(比較例3)
特許文献2に開示の実施例1のトレース実験として、硫酸銅(試薬)と硫酸(試薬)とを純水に溶解し、ポリエチレングリコール(平均分子量1000)と3−メルカプト−1−プロパンスルホン酸とを添加し、ついで塩化ナトリウムを用いて塩素濃度を20ppmに調製して、硫酸酸性銅めっき液を調製した。以下、比較例2と同様にして、電解銅箔を製造した。
この電解銅箔の粗度は、Rzjisが8μm未満であった。
(Comparative Example 3)
As a trace experiment of Example 1 disclosed in Patent Document 2, copper sulfate (reagent) and sulfuric acid (reagent) are dissolved in pure water, and polyethylene glycol (average molecular weight 1000), 3-mercapto-1-propanesulfonic acid, Then, the concentration of chlorine was adjusted to 20 ppm using sodium chloride to prepare an acidic copper plating solution. Thereafter, an electrolytic copper foil was produced in the same manner as in Comparative Example 2.
As for the roughness of this electrolytic copper foil, Rzjis was less than 8 μm.

(比較例4)
特許文献3に開示の実施例1のトレース実験として、銅濃度90g/l、フリー硫酸濃度110g/lの硫酸系銅電解液を、活性炭フィルターに通して清浄処理した。ついで、この電解液に3−メルカプト1−プロパンスルホン酸ナトリウム(0.8ppm)と、高分子多糖類としてヒドロキシエチルセルロース(5ppm)及び低分子量膠(初期数平均分子量1560:5ppm)と、塩素濃度30ppmとなるように、それぞれ添加して電解液を調製した。このようにして調製した電解液を用い、アノードにはDSA電極、陰極にはチタン板を用いて、液温58℃、電流密度50A/dmで電解を行い、210μm厚さの電解銅箔を得た。この電解銅箔の粗度は、Rzjisが8μm未満であった。
(Comparative Example 4)
As a trace experiment of Example 1 disclosed in Patent Document 3, a sulfuric acid-based copper electrolytic solution having a copper concentration of 90 g / l and a free sulfuric acid concentration of 110 g / l was passed through an activated carbon filter and cleaned. Subsequently, sodium 3-mercapto-1-propanesulfonate (0.8 ppm), hydroxyethyl cellulose (5 ppm) and low molecular weight glue (initial number average molecular weight 1560: 5 ppm) as a polymer polysaccharide, and a chlorine concentration of 30 ppm Thus, an electrolyte solution was prepared by adding each. The electrolytic solution thus prepared was used for electrolysis at a liquid temperature of 58 ° C. and a current density of 50 A / dm 2 using a DSA electrode as the anode and a titanium plate as the cathode, and an electrolytic copper foil having a thickness of 210 μm was formed. Obtained. As for the roughness of this electrolytic copper foil, Rzjis was less than 8 μm.

従来の電解銅箔は、高プロファイルか、低プロファイルのいずれかに分類されるものであるのに対し、本件発明に係る電解銅箔は、その粗面が中程度の粗度を備える。このような中間の粗度のプロファイルを持つ電解銅箔は存在しなかった。このような高プロファイルと低プロファイルの中間の粗度を備える電解銅箔は、その表面に各種表面処理を行い表面処理銅箔として、プリント配線板製造に用いる。その結果、基板として実用上支障のない耐熱特性、耐薬品性、引き剥がし強さを得ることが可能で、これらの特性のトータルバランスに優れ、大電流を流し、且つ、ある程度のファイン化の必要な電源回路への応用が広がる。   The conventional electrolytic copper foil is classified into either a high profile or a low profile, whereas the electrolytic copper foil according to the present invention has an intermediate roughness. There was no electrolytic copper foil having such an intermediate roughness profile. Such an electrolytic copper foil having an intermediate roughness between a high profile and a low profile is subjected to various surface treatments on the surface thereof and used as a surface-treated copper foil for the production of a printed wiring board. As a result, it is possible to obtain heat resistance, chemical resistance, and peel strength that do not impede practical use as a substrate, have an excellent total balance of these characteristics, pass a large current, and need to be refined to some extent. Application to various power supply circuits.

また、本件発明に係る電解銅箔の製造方法を用いることで、本件発明に係る中程度の粗度の粗面を備える電解銅箔を容易に製造出来る。この製造方法は、特殊な製造装置を用いることなく、従来の製造装置を活用することが可能であるため、低価格で中間プロファイルの厚い電解銅箔の量産を可能とする。   Moreover, the electrolytic copper foil provided with the rough surface of the medium roughness which concerns on this invention can be easily manufactured by using the manufacturing method of the electrolytic copper foil which concerns on this invention. Since this manufacturing method can utilize a conventional manufacturing apparatus without using a special manufacturing apparatus, it enables mass production of an electrolytic copper foil having a thick intermediate profile at a low price.

Claims (9)

硫酸系銅電解液を電解して得られる電解銅箔において、
当該電解銅箔は90μm〜450μmの厚さを持ち、当該電解銅箔の粗面側が、表面粗さ(Rzjis)=8μm〜15μmの中粗度表面であることを特徴とする電解銅箔。
In an electrolytic copper foil obtained by electrolyzing a sulfuric acid-based copper electrolyte,
The electrolytic copper foil has a thickness of 90 μm to 450 μm, and the rough surface side of the electrolytic copper foil is a medium roughness surface having a surface roughness (Rzjis) = 8 μm to 15 μm.
粗面側が中粗度表面である電解銅箔の製造方法であって、
3−メルカプト−1−プロパンスルホン酸と高分子膠と塩素とを添加して得られた硫酸系銅電解液を用いることを特徴とする電解銅箔の製造方法。
A method for producing an electrolytic copper foil in which the rough surface side is a medium roughness surface,
A method for producing an electrolytic copper foil, characterized by using a sulfuric acid-based copper electrolytic solution obtained by adding 3-mercapto-1-propanesulfonic acid, polymer glue and chlorine.
前記高分子膠が初期数平均分子量10000以上である請求項2に記載の電解銅箔の製造方法 The method for producing an electrolytic copper foil according to claim 2, wherein the polymer glue has an initial number average molecular weight of 10,000 or more. 前記硫酸系銅電解液に添加した高分子膠濃度が0.5ppm〜3ppmである請求項2又は請求項3に記載の電解銅箔の製造方法。 The method for producing an electrolytic copper foil according to claim 2 or 3, wherein the concentration of the polymer glue added to the sulfuric acid-based copper electrolyte is 0.5 ppm to 3 ppm. 前記硫酸系銅電解液中の3−メルカプト−1−プロパンスルホン酸濃度が1ppm〜2ppmである請求項2〜請求項4のいずれかに記載の電解銅箔の製造方法。 The method for producing an electrolytic copper foil according to any one of claims 2 to 4, wherein a concentration of 3-mercapto-1-propanesulfonic acid in the sulfuric acid-based copper electrolyte is 1 ppm to 2 ppm. 前記硫酸系銅電解液中の塩素濃度が5ppm〜30ppmである請求項2に記載の電解銅箔の製造方法。 The method for producing an electrolytic copper foil according to claim 2, wherein a chlorine concentration in the sulfuric acid-based copper electrolyte is 5 ppm to 30 ppm. 前記硫酸系銅電解液は、液温20℃〜52℃とし、電流密度30A/dm〜90A/dmで電解することを特徴とする電解銅箔の製造方法。 The method for producing an electrolytic copper foil, wherein the sulfuric acid-based copper electrolytic solution is electrolyzed at a current density of 30 A / dm 2 to 90 A / dm 2 at a liquid temperature of 20 ° C. to 52 ° C. 請求項1に記載の電解銅箔の粗面に粗化処理、防錆処理、シランカップリング剤処理のいずれか一種又は二種以上を行った表面処理銅箔。 The surface-treated copper foil which performed any 1 type, or 2 or more types of the roughening process, the antirust process, and the silane coupling agent process to the rough surface of the electrolytic copper foil of Claim 1. 前記表面処理銅箔の絶縁樹脂基材との張り合わせ面が、表面粗さ(Rzjis)=10μm〜20μmの中粗度表面であることを特徴とする請求項8に記載の表面処理銅箔。 9. The surface-treated copper foil according to claim 8, wherein the surface of the surface-treated copper foil bonded to the insulating resin base material is a medium roughness surface having a surface roughness (Rzjis) = 10 μm to 20 μm.
JP2005096041A 2005-03-29 2005-03-29 Electrolytic copper foil and production method of the electrolytic copper foil Pending JP2006274361A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005096041A JP2006274361A (en) 2005-03-29 2005-03-29 Electrolytic copper foil and production method of the electrolytic copper foil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005096041A JP2006274361A (en) 2005-03-29 2005-03-29 Electrolytic copper foil and production method of the electrolytic copper foil

Publications (1)

Publication Number Publication Date
JP2006274361A true JP2006274361A (en) 2006-10-12

Family

ID=37209394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005096041A Pending JP2006274361A (en) 2005-03-29 2005-03-29 Electrolytic copper foil and production method of the electrolytic copper foil

Country Status (1)

Country Link
JP (1) JP2006274361A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103726070A (en) * 2013-12-13 2014-04-16 金川集团股份有限公司 Copper electrolyte additive and application method thereof
US11617261B2 (en) * 2018-04-27 2023-03-28 Panasonic Intellectual Property Management Co., Ltd. Resin composition, resin film, metal foil with resin, prepreg, metal-clad laminate, and printed wiring board

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103726070A (en) * 2013-12-13 2014-04-16 金川集团股份有限公司 Copper electrolyte additive and application method thereof
US11617261B2 (en) * 2018-04-27 2023-03-28 Panasonic Intellectual Property Management Co., Ltd. Resin composition, resin film, metal foil with resin, prepreg, metal-clad laminate, and printed wiring board

Similar Documents

Publication Publication Date Title
KR101050016B1 (en) Copper foil laminated board obtained using the manufacturing method of an electrolytic copper foil, the electrolytic copper foil obtained by this manufacturing method, the surface-treated copper foil obtained using this electrolytic copper foil, and an electrolytic copper foil or a surface-treated copper foil.
EP1876266B1 (en) Electrodeposited copper foil and process for producing electrodeposited copper foil
JP4626390B2 (en) Copper foil for printed wiring boards in consideration of environmental protection
JP5255229B2 (en) Electrolytic copper foil, surface-treated copper foil using the electrolytic copper foil, copper-clad laminate using the surface-treated copper foil, and method for producing the electrolytic copper foil
KR100437569B1 (en) Surface treated copper foil and Method for preparing the same and Copper-clad laminate using the same
JP3910623B1 (en) Manufacturing method of electrolytic copper foil, electrolytic copper foil obtained by the manufacturing method, surface-treated electrolytic copper foil obtained using the electrolytic copper foil, copper-clad laminate and printed wiring using the surface-treated electrolytic copper foil Board
JP4583149B2 (en) Electrolytic copper foil and method for producing the same
WO2007125994A1 (en) Electrolytic copper foil, surface treated copper foil using the electrolytic copper foil, copper-clad laminated plate using the surface treated copper foil, and method for manufacturing the electrolytic copper foil
TW201009130A (en) Copper-foil roughening treatment and copper foil for printed circuit boards obtained using said treatment
JP2011174146A (en) Electrolytic copper foil and method for producing the same
JP5281732B2 (en) Surface processing method of aluminum material or aluminum alloy material, and aluminum material or aluminum alloy material having a surface processed by the method
JPS6113688A (en) Copper foil for printed circuit and method of producing same
JP2001177204A (en) Surface-treated copper foil and method of manufacturing the same
JP4756637B2 (en) Sulfuric acid copper electrolyte and electrolytic copper foil obtained using the sulfuric acid copper electrolyte
JP2008127618A (en) Method for treating surface of copper foil through feeding alternating current
JP3661763B2 (en) Method for producing surface-treated copper foil for printed wiring board
JP2014224321A (en) Electrolytic copper foil and method for producing the electrolytic copper foil
KR20070044774A (en) Two-layer flexible printed wiring board and method for manufacturing the same
JP3670185B2 (en) Method for producing surface-treated copper foil for printed wiring board
CN101297067A (en) Method for manufacture of electrolytic copper foil, electrolytic copper foil manufactured by the method, surface-treated copper foil manufactured using the electrolytic copper foil, and copper-clad la
JP2006224571A (en) Copper-metallized film and its production method
JP2006274361A (en) Electrolytic copper foil and production method of the electrolytic copper foil
JP2005307270A (en) Carrier foil-fitted electrolytic copper foil and method for producing the carrier foil-fitted electrolytic copper foil
JP4976725B2 (en) Copper electrolyte and method for forming electrodeposited copper film using the copper electrolyte
JP4136496B2 (en) Method for producing electrolytic copper foil