JP2011174146A - Electrolytic copper foil and method for producing the same - Google Patents

Electrolytic copper foil and method for producing the same Download PDF

Info

Publication number
JP2011174146A
JP2011174146A JP2010040030A JP2010040030A JP2011174146A JP 2011174146 A JP2011174146 A JP 2011174146A JP 2010040030 A JP2010040030 A JP 2010040030A JP 2010040030 A JP2010040030 A JP 2010040030A JP 2011174146 A JP2011174146 A JP 2011174146A
Authority
JP
Japan
Prior art keywords
copper foil
electrolytic copper
rough surface
electrolytic
tensile strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010040030A
Other languages
Japanese (ja)
Other versions
JP5598700B2 (en
Inventor
Kyoji Sano
恭司 佐野
Hisatoku Manabe
久徳 真鍋
Hisashi Akamine
尚志 赤嶺
Takeshi Okamoto
健 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Metal Foil and Powder Co Ltd
Original Assignee
Fukuda Metal Foil and Powder Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Metal Foil and Powder Co Ltd filed Critical Fukuda Metal Foil and Powder Co Ltd
Priority to JP2010040030A priority Critical patent/JP5598700B2/en
Priority to CN201110044081.1A priority patent/CN102168289B/en
Publication of JP2011174146A publication Critical patent/JP2011174146A/en
Application granted granted Critical
Publication of JP5598700B2 publication Critical patent/JP5598700B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrolytic copper foil having a low roughness surface which is suitable for an electrolytic copper foil material used for a Tape Automated Bonding method and does not substantially have an uneven shape formed in a rough surface side, has high tensile strength, and does not cause the peeling of a tin plating film. <P>SOLUTION: This method for producing the electrolytic copper foil includes: using an aqueous solution of sulfuric acid and copper sulfate as an electrolytic solution; using an insoluble anode made from a platinum group element or titanium covered with an oxide of the platinum group element, and a cathode drum made from titanium opposing to the anode; and passing a direct current between both of the electrodes, wherein the electrolytic solution contains a non-ionic water-soluble polymer, a sulfonate of an active organosulfur compound, a thiourea-based compound and a chlorine ion existing therein. Thereby obtained electrolytic copper foil has: a rough surface of which the roughness is 2.0 μm or less; a crystal structure on the rough surface side, in which the orientation index determined from a relative intensity in a 220 copper diffraction line measured with an X-ray diffraction technique is 5.0 or more; and tensile strength of 500 MPa or more after having been heated at 180°C for 1 hour. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、電解銅箔、特に電子回路基板用材料に適した電解銅箔及びその製造方法に関するものである。   The present invention relates to an electrolytic copper foil, in particular, an electrolytic copper foil suitable for an electronic circuit board material and a method for producing the same.

周知のとおり、電解銅箔はめっき技術を応用した次のような方法で製造されている。   As is well known, the electrolytic copper foil is manufactured by the following method using a plating technique.

すなわち、硫酸と硫酸銅からなる水溶液を電解液とし、この電解液を陰極である円筒形チタン製ドラムと陽極である不溶性陽極との間に満たし、両極間に直流電流を通ずることによって、陰極表面に銅が析出する。このとき陰極ドラムは一定速度で回転しており、析出した電解銅はドラム表面から引き剥がされて連続的に巻き取られる。なお、当業者間においては、剥がし取った銅箔のドラムに接していた面を「光沢面」と称し、また、これとは反対の面を「粗面」と称し、当該電解銅箔を「未処理電解銅箔」と称している。   That is, an aqueous solution composed of sulfuric acid and copper sulfate is used as an electrolytic solution, and the electrolytic solution is filled between a cylindrical titanium drum as a cathode and an insoluble anode as an anode, and a direct current is passed between both electrodes, whereby the cathode surface Copper precipitates on the surface. At this time, the cathode drum is rotating at a constant speed, and the deposited electrolytic copper is peeled off from the drum surface and continuously taken up. In addition, among those skilled in the art, the surface that was in contact with the drum of the peeled copper foil is referred to as the “glossy surface”, and the opposite surface is referred to as the “rough surface”, and the electrolytic copper foil is referred to as “ It is called “untreated electrolytic copper foil”.

また、通常、未処理電解銅箔が電子回路基板用途に用いられる場合には樹脂との接着性の向上や耐薬品性及び防錆性の付与などを目的とする各種表面処理が施されており、当業者間においては当該各種表面処理工程を経たものを「処理電解銅箔」と称している。   Usually, when untreated electrolytic copper foil is used for electronic circuit board applications, various surface treatments are applied to improve adhesion to the resin and to provide chemical resistance and rust prevention. Those skilled in the art have referred to the “treated electrolytic copper foil” after the various surface treatment steps.

近年、電解銅箔の主な用途である電子回路基板には、移動体通信機器に代表される電子機器の小型・高集積化さらには高周波化に伴うさまざまな問題が生じてきている。   In recent years, electronic circuit boards, which are the main applications of electrolytic copper foil, have caused various problems associated with downsizing, high integration, and higher frequency of electronic devices typified by mobile communication devices.

電子回路基板は、絶縁材料である基材の柔軟性の観点から、柔軟性のないリジッド配線基板と柔軟性のあるフレキシブル配線板に大別され、さらに、これら二つを複合させたリジッドフレキシブル配線基板を含めれば、大きく三つに分類されている。   Electronic circuit boards are broadly divided into inflexible rigid wiring boards and flexible flexible wiring boards from the viewpoint of flexibility of the base material that is an insulating material, and rigid flexible wiring that combines these two. If the substrate is included, it is roughly classified into three.

前記フレキシブル配線基板の工法に属するTAB(Tape Automated Bonding)工法は、銅配線されたテープ状のフィルムにICチップを連続して自動接続する電子回路基板の製造方法であり、ICチップを直接テープ状のポリイミドから成る写真フィルムのような「TABテープ」に実装するので高速で大量に電子回路基板を生産することが出来る。   The TAB (Tape Automated Bonding) method, which belongs to the flexible wiring board construction method, is a method for manufacturing an electronic circuit board in which IC chips are continuously automatically connected to a tape-like film wired with copper, and the IC chips are directly taped. Because it is mounted on "TAB tape" like a photographic film made of polyimide, high-speed electronic circuit boards can be produced at high speed.

TAB工法の特徴は、「デバイスホール」と呼ばれるフィルムが打ち抜かれた部分にICチップを搭載することであり、このデバイスホールの周囲にはエッチングにより形成された微細な「フライングリード」と呼ばれる銅配線が露出しており、ICチップはこのフライングリードと接続される。   The feature of the TAB method is that an IC chip is mounted on the part where the film called “device hole” is punched, and the copper wiring called fine “flying lead” formed by etching around this device hole. Is exposed and the IC chip is connected to this flying lead.

近時、このフライングリード部分の回路幅が20μmと微細化されてきているため、ICチップ搭載時におけるボンディング工程や回路形成時のエッチングスプレー圧によってフライングリード部に変形が生じ、これが不良率を上昇させているという問題が生じている。   Recently, since the circuit width of this flying lead part has been miniaturized to 20μm, the flying lead part is deformed by the bonding process when mounting the IC chip and the etching spray pressure when forming the circuit, which increases the defect rate. The problem of letting go.

前記問題を解決する手段として、後出特許文献1には、銅箔の粗面粗さがRzが2.5μm以下で、180℃で1時間のオーブン加熱後の抗張力が40kgf/mm2(392MPa)以上であることを特徴とし、且つ、このX線回折により測定した電解銅箔粗面の銅結晶の(111)面、(200)面、(220)面及び(311)面のピークのX線強度に対して無秩序に配向している高抗張力銅箔が有効であることが開示されている(結晶面の表記方法は該当特許公報の表記に従った。)。 As means for solving the above-mentioned problem, Patent Document 1 described below discloses that the rough surface roughness of copper foil is Rz of 2.5 μm or less, and the tensile strength after oven heating at 180 ° C. for 1 hour is 40 kgf / mm 2 (392 MPa). X-rays of the peaks of the (111), (200), (220), and (311) planes of the copper crystal on the rough surface of the electrolytic copper foil measured by X-ray diffraction. It is disclosed that a high tensile strength copper foil oriented in a disorderly manner with respect to strength is effective (the crystal surface notation method follows the notation of the corresponding patent publication).

また、後出特許文献2には、銅の析出粒子が微細でその粒子径のバラツキを従来にないほどに小さくした電解銅箔であって、電解銅箔が低プロファイルで光沢を有する粗面を備え、且つ、常態引っ張り強さの値が70〜100kgf/mm2(686〜980MPa)と極めて大きな機械的強度を有し、加熱(180℃×60分間)後でも、常態引っ張りの強さの値の85%以上の引っ張りの強さの値を保持するので、TAB用電解銅箔として有効であることが開示されている。 Further, in Patent Document 2 described later, an electrolytic copper foil in which copper precipitation particles are fine and variation in the particle diameter is made smaller than before, and the electrolytic copper foil has a low profile and a glossy surface. It has a normal tensile strength value of 70-100 kgf / mm 2 (686-980 MPa) and a normal tensile strength value even after heating (180 ° C. × 60 minutes). Therefore, it is disclosed that it is effective as an electrolytic copper foil for TAB.

また、後出特許文献3には、電解銅箔の粗面粗さRzが2.5μm以下であって、電着完了時点から20分以内に測定した抗張力が820MPa以上であって、さらに当該銅箔を電着完了時点から100℃で10分間加熱処理後に測定した抗張力が未熱処理当該銅箔に対して、25℃で測定した抗張力の低下率が10%以下である低粗面電解銅箔が、TAB用電解銅箔として有効であることが開示されている。   Further, in Patent Document 3 mentioned later, the rough surface roughness Rz of the electrolytic copper foil is 2.5 μm or less, the tensile strength measured within 20 minutes from the completion of electrodeposition is 820 MPa or more, and the copper foil The low-roughened surface electrolytic copper foil whose tensile strength measured at 25 ° C is 10% or less with respect to the copper foil whose tensile strength measured after heat treatment at 100 ° C for 10 minutes from the completion of electrodeposition is 25% It is disclosed that it is effective as an electrolytic copper foil for TAB.

このように、当業者間においては、低粗面で、且つ、ポリイミドフィルムとのラミネート時の熱履歴を想定して加熱後にも高い抗張力を維持できる熱安定性に優れた電解銅箔がTAB用電解銅箔として有効であることが知られている。   Thus, among those skilled in the art, electrolytic copper foil with excellent thermal stability that can maintain high tensile strength even after heating, assuming a heat history when laminating with a polyimide film, is used for TAB. It is known to be effective as an electrolytic copper foil.

従って、TAB工法において微細配線化されつつあるフライングリード部に対しては電解銅箔の抗張力を向上させることが有効な方策であると言える。   Therefore, it can be said that it is an effective measure to improve the tensile strength of the electrolytic copper foil for the flying lead portion which is being made fine wiring in the TAB method.

なお、後出特許文献4には、電解液にチオ尿素をポリエチレングリコールなどの有機物質を添加すると共に該電解液中の塩素イオン濃度を1ppm未満に保つことにより、抗張力が高く、その熱安定性に優れている電解銅箔を得る製造方法が開示されている。   In Patent Document 4 mentioned later, thiourea is added to an electrolytic solution, and an organic substance such as polyethylene glycol is added, and the chlorine ion concentration in the electrolytic solution is kept below 1 ppm, so that the tensile strength is high and its thermal stability. The manufacturing method which obtains the electrolytic copper foil which is excellent in is disclosed.

さらに、TAB用電解銅箔としては高抗張力に加え、スズめっき性の良否が問われている。   Furthermore, as an electrolytic copper foil for TAB, in addition to high tensile strength, the quality of tin plating is questioned.

すなわち、通常、TAB用電解銅箔にはスズめっきが半田付け性保護用表面処理として行われているが、銅へのスズめっきには、「ノジュール」又は「ウィスカー」と呼ばれているめっき面異常や銅−スズ界面での急激な銅原子のスズ層への拡散によって生じるカーケンダルボイドなどの特有の異常問題が存在する。このようなスズめっき面異常は微細配線回路間での短絡やめっき面剥離などの不具合を引き起こす事故原因となっている。   In other words, tin plating is usually applied to the electrolytic copper foil for TAB as a surface treatment for solderability protection, but the plating surface called “nodule” or “whisker” is used for tin plating on copper. There are peculiar anomaly problems such as anomalies and Kirkendall voids caused by the rapid diffusion of copper atoms into the tin layer at the copper-tin interface. Such an abnormality of the tin plating surface is a cause of an accident that causes problems such as a short circuit between the fine wiring circuits and peeling of the plating surface.

もっとも、当業者間においては、すずめっき面異常問題の対策として、スズ単独のめっきに代えてSn-Pbの合金めっきとすることによって当該問題を克服してきた。   However, those skilled in the art have overcome this problem by using Sn—Pb alloy plating instead of tin alone as a countermeasure against the problem of tin plating surface abnormality.

しかし近年、環境への鉛放出防止の観点から、鉛を含むSn-Pb合金めっきの使用は敬遠されており、専ら、スズ単独の無電解メッキが施されており、Sn-Pb合金めっきとすることで沈静化していたウィスカーやカーケンダルボイドなどの異常問題が再び注目されるようになっているのが現状である。   However, in recent years, the use of Sn-Pb alloy plating containing lead has been refrained from the viewpoint of prevention of lead release to the environment, and tin-only electroless plating has been applied, resulting in Sn-Pb alloy plating. At present, abnormal problems such as whiskers and Kirkendall voids that have calmed down have come to be noticed again.

従って、TAB用電解銅箔には、(1)高抗張力であること、また、昨今の電子回路用基板に共通して求められる、ファインライン、ファインパターン化に対応するために、(2)薄箔であって、且つ、粗面が低粗面であること、さらに、信頼性確保の観点から、(3)スズめっき面異常が生じにくいことが求められる。   Therefore, the electrolytic copper foil for TAB has the following advantages: (1) High tensile strength, and (2) Thin line in order to meet the fine line and fine patterning required in common with recent electronic circuit boards. From the viewpoint of ensuring the reliability of the foil and the rough surface is a low rough surface, (3) it is required that the tin plating surface abnormality is not likely to occur.

ところが、本発明者らの知見によれば、微細結晶組織であってその結晶組織がランダムな方位配向性である電解銅箔は高抗張力で、且つ、低粗面のものが得られるので、前記(1)、(2)の要求を満たすが、スズめっき剥がれが生じやすいことが明らかとなった。このスズめっき剥がれ現象はランダムな方位配向性であっても抗張力が低い場合には起こらない。この現象の詳細は明らかではないが、本発明者らは銅結晶粒の大きさが関与しているものと推測している。   However, according to the knowledge of the present inventors, an electrolytic copper foil having a fine crystal structure and a random orientation orientation of the crystal structure has a high tensile strength and a low rough surface. Although the requirements of (1) and (2) are satisfied, it has been clarified that tin plating is easily peeled off. This tin plating peeling phenomenon does not occur when the tensile strength is low even with random orientation. Although the details of this phenomenon are not clear, the present inventors presume that the size of the copper crystal grains is involved.

本発明者らが後出先行文献1〜4に記載の各電解銅箔を検討したところ、全て結晶組織がランダムな方位配向性を示すと共に抗張力が高く、これらの電解銅箔に直接スズめっきを施した場合にはスズめっき層の剥がれが生じやすかった。   When the present inventors examined each of the electrolytic copper foils described in the preceding references 1-4, the crystal structure showed random orientation and high tensile strength, and tin plating was directly applied to these electrolytic copper foils. When applied, the tin plating layer was easily peeled off.

なお、当業者間においては、対策として内部拡散バリアのニッケルめっきを施すことでスズめっき剥離を回避しているものと考えられる。   In addition, it is considered that those skilled in the art avoid the tin plating peeling by applying nickel plating of the internal diffusion barrier as a countermeasure.

しかしながら、内部拡散バリアのニッケルめっきを施す対策は、電解銅箔製造の観点からは工程の増加を招くので好ましくなく、しかも、前記フライングリード部形成時には表面処理電解銅箔の両面にスズめっき前処理としてソフトエッチングが施され、また、エッチングによって形成された回路サイド部分にはニッケルバリア層の無い銅箔断面が露出するから、ニッケル層を設けても、スズめっき層に対する内部拡散バリアとして有効に機能しないと言える。   However, it is not preferable to apply nickel plating to the internal diffusion barrier because it increases the number of processes from the viewpoint of electrolytic copper foil production, and at the time of forming the flying lead portion, both surfaces of the surface-treated electrolytic copper foil are pretreated with tin plating. Since the copper foil cross section without the nickel barrier layer is exposed on the circuit side part formed by etching, even if a nickel layer is provided, it effectively functions as an internal diffusion barrier for the tin plating layer I can say no.

本発明者らは、ランダムな方位配向性である微細結晶粒子を持つ電解銅箔ではなく、周知のごく一般的な電解銅箔である粗面が{110}面配向している結晶組織を持つ電解銅箔の場合には40kgf/mm2(392MPa)以上の高抗張力を示すものであってもスズめっき剥がれが発生しない事実に注目し、より強く{110}配向した結晶組織であって、しかも高い抗張力と低粗面を実現することが、TAB用電解銅箔として最適であると考えた。 The present inventors have a crystal structure in which a rough surface, which is a well-known general electrolytic copper foil, is {110} plane-oriented, not an electrolytic copper foil having fine crystal particles having random orientation orientation. In the case of electrolytic copper foil, paying attention to the fact that tin plating peeling does not occur even if it exhibits a high tensile strength of 40 kgf / mm 2 (392 MPa) or more, it has a stronger {110} oriented crystal structure, Realizing high tensile strength and low rough surface is considered to be optimal for electrolytic copper foil for TAB.

なお、当業者間では、{110}面配向性を示す結晶組織の電解銅箔は、ごく一般的な電解銅箔として知られており、その粗面側表面には山谷形状が形成されており粗面側の粗さが粗いというのが一般的な認識であり、例えば、後出非特許文献1には、硫酸−硫酸銅水溶液に塩素イオンとゼラチンをともに添加した場合,塩化物イオンが選択的に(220)面に吸着しその面の成長を促進し,一方,ゼラチンは選択的に(111)面に吸着し,析出物の沿面成長を抑制することにより,鋭角的なピラミッド状の形態が得られるとされ、後出非特許文献2には、硫酸−硫酸銅水溶液にゼラチンとCl-を加えた電解銅箔は{110}配向であり,Rz値は大きく表面粗さは大きいとされている。 In addition, among those skilled in the art, an electrolytic copper foil having a crystal structure exhibiting {110} plane orientation is known as a very general electrolytic copper foil, and a mountain-valley shape is formed on the rough surface side thereof. It is a general recognition that the roughness of the rough surface side is rough. For example, in Non-Patent Document 1 described later, when both chlorine ions and gelatin are added to a sulfuric acid-copper sulfate aqueous solution, chloride ions are selected. Adsorbs to the (220) plane and promotes the growth of the surface, while gelatin selectively adsorbs to the (111) plane and suppresses the creeping growth of precipitates, thereby forming an acute pyramid-like form. is a is obtained, the rear left non-patent document 2, sulfate - gelatin and Cl in aqueous solution of copper sulfate - an electrolyte copper foil plus is {110} orientation, Rz values are largely surface roughness greater ing.

特許3346774号Japanese Patent No. 3346774 特開2008−101267号JP 2008-101267 A 特許4273309号Japanese Patent No. 4273309 特開平7−188969号JP-A-7-188969

小浦延幸 他 表面技術 51,938(2000)Nobuyuki Koura et al. Surface Technology 51,938 (2000) 近藤和夫 他 エレクトロニクス実装学会誌 6,64(2003)Kazuo Kondo et al. Journal of Japan Institute of Electronics Packaging 6,64 (2003)

本発明は、前記諸事情に鑑み、スズめっき剥がれが発生しない{110}面結晶配向性を示す結晶組織の電解銅箔であって、粗面側に山谷形状が実質的に形成されていない低粗面(光沢を有する平滑な粗面)を持ち、且つ、高抗張力の電解銅箔を提供することを技術的課題とするものである。   In view of the above circumstances, the present invention is an electrolytic copper foil having a crystal structure exhibiting {110} plane crystal orientation in which tin plating peeling does not occur, and is low in which a valley shape is not substantially formed on the rough surface side. An object of the present invention is to provide an electrolytic copper foil having a rough surface (a smooth rough surface having gloss) and a high tensile strength.

本発明者は、前記課題を解決するために数多くの試作・実験を重ねた結果、硫酸−硫酸銅水溶液からなる電解液に非イオン性水溶性高分子、活性有機イオウ化合物のスルホン酸塩、チオ尿素系化合物及び塩素イオンを共存させる場合には、粗面粗さが2.0μm以下の低粗面であって、粗面側のX線回折により観測された回折線図相対強度から求められる{110}面のオリエンテーションインデックスが5.0以上の結晶組織であって、180℃・1時間、加熱後の抗張力が500MPa以上の高抗張力である電解銅箔が得られるという刮目すべき知見を得、当該課題を達成したものである。   As a result of many trial manufactures and experiments in order to solve the above problems, the present inventor has found that a nonionic water-soluble polymer, a sulfonate of an active organic sulfur compound, When urea-based compounds and chlorine ions coexist, the surface roughness is a low-roughness surface with a roughness of 2.0 μm or less, and is determined from the relative intensity of the diffraction diagram observed by X-ray diffraction on the rough surface side {110 } We have obtained a remarkable finding that an electrolytic copper foil having a crystal structure with a surface orientation index of 5.0 or higher and a high tensile strength of 500 MPa or higher at 180 ° C. for 1 hour can be obtained. Achieved.

前記技術的課題は、次のとおりの本発明によって解決できる。   The technical problem can be solved by the present invention as follows.

すなわち、本発明に係る電解銅箔は、粗面粗さRzが2.0μm以下であって、粗面側のX線回折により測定した220銅回折線相対強度から求められるオリエンテーションインデックスが5.0以上の結晶組織であることを特徴とするものである。   That is, the electrolytic copper foil according to the present invention is a crystal having a rough surface roughness Rz of 2.0 μm or less and an orientation index of 5.0 or more determined from the relative intensity of 220 copper diffraction lines measured by X-ray diffraction on the rough surface side. It is characterized by being an organization.

また、本発明に係る電解銅箔は、180℃・1時間加熱後の抗張力が500MPa以上であることを特徴とするものである。   The electrolytic copper foil according to the present invention is characterized in that the tensile strength after heating at 180 ° C. for 1 hour is 500 MPa or more.

さらに、本発明に係る電解銅箔の製造方法は、硫酸−硫酸銅水溶液を電解液とし、白金族元素又はその酸化物で被覆したチタンからなる不溶性陽極と該陽極に対向するチタン製陰極ドラムとを用い、当該両極間に直流電流を通じる電解銅箔の製造方法において、前記電解液に非イオン性水溶性高分子、活性有機イオウ化合物のスルホン酸塩、チオ尿素系化合物及び塩素イオンを存在させることによって、粗面粗さが2.0μm以下であって、粗面側のX線回折により測定した220銅回折線相対強度から求められるオリエンテーションインデックスが5.0以上の結晶組織であって、180℃・1時間加熱後の抗張力が500MPa以上である電解銅箔を得ることを特徴とするものである。   Furthermore, the method for producing an electrolytic copper foil according to the present invention comprises an insoluble anode made of titanium coated with a platinum group element or an oxide thereof using a sulfuric acid-copper sulfate aqueous solution as an electrolytic solution, and a titanium cathode drum facing the anode. In the method for producing an electrolytic copper foil in which a direct current is passed between the electrodes, a nonionic water-soluble polymer, a sulfonate of an active organic sulfur compound, a thiourea compound, and a chloride ion are present in the electrolyte. Thus, a crystal structure having a rough surface roughness of 2.0 μm or less and an orientation index of 5.0 or more determined from the relative intensity of 220 copper diffraction lines measured by X-ray diffraction on the rough surface side, which is 180 ° C. · 1 It is characterized in that an electrolytic copper foil having a tensile strength after heating for 500 hours or more is obtained.

本発明によれば、硫酸−硫酸銅水溶液からなる電解液に非イオン性水溶性高分子、活性有機イオウ化合物のスルホン酸塩、チオ尿素系化合物及び塩素イオンを共存させることで、粗面粗さが2.0μm以下であって、粗面側のX線回折により測定した銅220回折線相対強度のオリエンテーションインデックスが5.0以上の結晶組織であって、180℃・1時間、加熱後の抗張力が500MPa以上を示すスズめっき剥がれが発生しない電解銅箔(未処理銅箔)が製造でき、当該電解銅箔はTAB用表面処理銅箔材料として好適なものである。   According to the present invention, a rough surface roughness is obtained by allowing a nonionic water-soluble polymer, a sulfonate of an active organic sulfur compound, a thiourea compound, and a chloride ion to coexist in an electrolytic solution composed of a sulfuric acid-copper sulfate aqueous solution. Is a crystal structure whose orientation index of copper 220 diffraction line relative intensity measured by X-ray diffraction on the rough surface side is 5.0 or more, and the tensile strength after heating at 180 ° C for 1 hour is 500 MPa or more It is possible to produce an electrolytic copper foil (untreated copper foil) that does not cause peeling of tin plating, and the electrolytic copper foil is suitable as a surface-treated copper foil material for TAB.

従って、本発明の産業上利用性は非常に高いといえる。   Therefore, it can be said that the industrial applicability of the present invention is very high.

実施例1で得られた電解銅箔をマット面から走査角度:2θ=40〜100°で走査したときのX線回折図である。It is an X-ray diffraction pattern when the electrolytic copper foil obtained in Example 1 is scanned from the mat surface at a scanning angle of 2θ = 40 to 100 °. 比較例1で得られた電解銅箔をマット面から走査角度:2θ=40〜100°で走査したときのX線回折図である。It is an X-ray diffraction pattern when the electrolytic copper foil obtained in Comparative Example 1 is scanned from the mat surface at a scanning angle: 2θ = 40 to 100 °.

以下、本発明の実施の形態を説明する。   Embodiments of the present invention will be described below.

先ず、本発明において、硫酸−硫酸銅水溶液からなる電解液に添加する添加剤は、非イオン性水溶性高分子、活性有機イオウ化合物のスルホン酸塩、チオ尿素系化合物及び塩素イオンである。この中で、非イオン性有機化合物とチオ尿素系化合物との組み合わせが重要な役割を果たし、とりわけ、チオ尿素系化合物の電解液中の存在が重要であり、目的物の粗面粗さや抗張力はもとより、本発明者が最も重視している結晶配向性にも大きな影響を及ぼす。   First, in this invention, the additive added to the electrolyte solution which consists of sulfuric acid-copper sulfate aqueous solution is a nonionic water-soluble polymer, the sulfonate of an active organic sulfur compound, a thiourea type compound, and a chloride ion. Among these, the combination of the nonionic organic compound and the thiourea compound plays an important role, and in particular, the presence of the thiourea compound in the electrolyte is important. Needless to say, it also has a great influence on the crystal orientation that is most important to the inventors.

本発明における非イオン性水溶性高分子化合物は、ポリグリセリン、アセチレングリコール、ヒドロキシエチルセルロースなどが選択できる。これら非イオン性水溶性高分子は電解液に5〜40mg/Lの範囲で添加されることが好ましく、より好ましくは10〜20mg/Lの範囲である。濃度が5mg/L未満では活性有機イオウ化合物のスルホン酸塩を加えても粗面側が低粗度化(光沢化)しない。40mg/Lを超える量を添加しても、物性や粗面側の外観の変化が現れず、このような高濃度に保持することは不経済である。なお、これら非イオン性水溶性高分子化合物は単独もしくは2種類以上を組み合わせて用いることも、前記濃度範囲内であれば可能である。   As the nonionic water-soluble polymer compound in the present invention, polyglycerin, acetylene glycol, hydroxyethyl cellulose and the like can be selected. These nonionic water-soluble polymers are preferably added to the electrolytic solution in the range of 5 to 40 mg / L, more preferably in the range of 10 to 20 mg / L. If the concentration is less than 5 mg / L, the rough surface side does not become low-roughness (glossy) even if the sulfonate of the active organic sulfur compound is added. Even if an amount exceeding 40 mg / L is added, the physical properties and the appearance on the rough surface side do not change, and it is uneconomical to maintain such a high concentration. These nonionic water-soluble polymer compounds can be used alone or in combination of two or more, as long as they are within the above-mentioned concentration range.

本発明における活性有機イオウ化合物は、3-メルカプト-1-プロパンスルホン酸ナトリウムやビス(3-スルホプロピル)ジスルフィドナトリウムなどが挙げられ、電解液に2.0〜40mg/Lの範囲で添加されることが好ましく、より好ましくは5〜10mg/Lの範囲である。この濃度が2.0mg/L未満では十分な低粗度化(光沢化)が起こらず、120mg/Lを超えると最適濃度範囲で低粗度化(光沢化)していた粗面側が光沢を失って粗度が上昇する。   Examples of the active organic sulfur compound in the present invention include sodium 3-mercapto-1-propanesulfonate and sodium bis (3-sulfopropyl) disulfide, and the active organic sulfur compound may be added to the electrolytic solution in the range of 2.0 to 40 mg / L. Preferably, it is in the range of 5 to 10 mg / L. If this concentration is less than 2.0 mg / L, sufficient low roughness (glossing) will not occur, and if it exceeds 120 mg / L, the rough surface side that has been reduced (glossed) in the optimum concentration range will lose gloss. The roughness increases.

本発明におけるチオ尿素系化合物は、チオ尿素をはじめ、エチレンチオ尿素、N,N'-ジエチルチオ尿素、N,N'-ジブチルチオ尿素、トリメチルチオ尿素などが挙げられ、これらを単独または二つ以上組み合わせて電解液に添加する。これら化合物は電解液に0.5〜7.0mg/Lの範囲で添加することが好ましく、より好ましくは1.0〜3.0mg/Lの範囲である。添加量が0.5mg/L未満では低粗度化(光沢化)の向上が認められるが、180℃・1時間後に測定した抗張力は450MPaに満たず、しかも粗面側から観測した銅110回折線強度から算出されるオリエンテーションインデックスは5.0未満で、且つ、ランダムな配向性を示す。7.0mg/Lを超える添加量では再びオリエンテーションインデックスが5.0未満で、且つ、ランダム配向性を示し、マット面の粗度の上昇と光沢の減少が起こる。さらにチオ尿素系化合物の添加量を増すと銅箔粗面に粉状の析出が起こり、めっきにおける所謂「コゲ」の状態となる。   Examples of the thiourea compound in the present invention include thiourea, ethylene thiourea, N, N′-diethylthiourea, N, N′-dibutylthiourea, trimethylthiourea and the like, and these may be used alone or in combination of two or more. Add to electrolyte. These compounds are preferably added to the electrolytic solution in the range of 0.5 to 7.0 mg / L, more preferably in the range of 1.0 to 3.0 mg / L. When the amount added is less than 0.5 mg / L, an improvement in low roughness (gloss) is observed, but the tensile strength measured after 1 hour at 180 ° C is less than 450 MPa and the copper 110 diffraction line observed from the rough surface side. The orientation index calculated from the strength is less than 5.0 and exhibits random orientation. When the added amount exceeds 7.0 mg / L, the orientation index is again less than 5.0, and random orientation is exhibited, resulting in an increase in mat surface roughness and a decrease in gloss. When the addition amount of the thiourea compound is further increased, powdery precipitation occurs on the rough surface of the copper foil, resulting in a so-called “burnt” state in plating.

本発明における塩素イオンの存在は重要であり、前記各添加剤の全てが前記各好適濃度範囲で有効に機能するためには塩素イオンの存在が必須となる。電解液中の塩素イオン濃度は20mg/L〜70mg/Lの範囲で制御されることが好ましく、より好ましくは40〜60mg/Lである。20mg/L未満では結晶配向はランダムとなり、180℃・1時間加熱後の抗張力も450MPa以上を維持することが出来ずに軟化する。70mg/Lを超える塩素イオン濃度では粗面の粗さが粗くなる傾向を示し、これを制御するためには活性有機イオウ化合物のスルホン酸塩やチオ尿素系化合物の濃度を高くする必要が生じるので、不経済である。   The presence of chloride ions in the present invention is important, and the presence of chloride ions is essential for all of the additives to function effectively in the preferred concentration ranges. The chloride ion concentration in the electrolytic solution is preferably controlled in the range of 20 mg / L to 70 mg / L, more preferably 40 to 60 mg / L. If it is less than 20 mg / L, the crystal orientation becomes random, and the tensile strength after heating at 180 ° C. for 1 hour cannot be maintained at 450 MPa or more and softens. When the chlorine ion concentration exceeds 70 mg / L, the roughness of the rough surface tends to be rough, and in order to control this, it is necessary to increase the concentration of the sulfonate or thiourea compound of the active organic sulfur compound. It is uneconomical.

なお、塩素イオン源には塩酸を用いればよい。   Note that hydrochloric acid may be used as the chlorine ion source.

次に、本発明においては、硫酸−硫酸銅水溶液からなる電解液に前記非イオン性水溶性高分子、活性有機イオウ化合物のスルホン酸塩、チオ尿素系化合物及び塩素イオンをそれぞれ前記各好適範囲に調整して添加し、この電解液を白金族酸化物にて被覆した不溶性陽極と陰極であるチタン製陰極ドラムとの間に供給し、電解液温35〜60℃、電解電流密度20〜80A/dm2の電解条件で直流電解することによって目的とする電解銅箔を得ることが出来る。 Next, in the present invention, the nonionic water-soluble polymer, the sulfonate of the active organic sulfur compound, the thiourea compound, and the chloride ion are added to the respective preferable ranges in the electrolytic solution composed of sulfuric acid-copper sulfate aqueous solution. Adjusted and added, this electrolyte solution is supplied between an insoluble anode coated with a platinum group oxide and a cathode cathode made of titanium as a cathode, an electrolyte temperature of 35 to 60 ° C., an electrolytic current density of 20 to 80 A / The target electrolytic copper foil can be obtained by direct current electrolysis under the dm 2 electrolysis conditions.

なお、本発明に係る電解銅箔はTAB用途だけでなく、周知の粗化処理などの表面処理を施して処理電解銅箔とすれば高抗張力をもつプリント配線板用材料として広範囲に用いることができる。   In addition, the electrolytic copper foil according to the present invention is not only used for TAB, but also can be used widely as a material for printed wiring boards having high tensile strength if a treated electrolytic copper foil is subjected to a surface treatment such as a known roughening treatment. it can.

実施例1   Example 1

硫酸(H2SO4):100g/Lと硫酸銅五水和物(CuSO4・5H2O):280g/Lからなる硫酸−硫酸銅水溶液を調製した(以下、この電解液を「基本電解液」という。)。 A sulfuric acid-copper sulfate aqueous solution consisting of sulfuric acid (H 2 SO 4 ): 100 g / L and copper sulfate pentahydrate (CuSO 4 · 5H 2 O): 280 g / L was prepared (hereinafter, this electrolyte was referred to as “basic electrolysis”). "Liquid").

添加剤として、ポリグリセリン(商品名:ポリグリセリン、品番:PGL-X、ダイセル化学工業株式会社製)、3-メルカプト-1-プロパンスルホン酸ナトリウム、N,N-ジエチルチオ尿素(商品名:サンセラーEUR、三新化学工業製)及び塩酸を基本電解液に添加し、基本電解液に対する濃度をポリグリセリン:30mg/L、3-メルカプト-1-プロパンスルホン酸ナトリウム:5mg/L、N,N-ジエチルチオ尿素:1.5mg/L、塩素イオン:35mg/Lに調整した(後出表1参照)。   As additives, polyglycerin (trade name: polyglycerin, product number: PGL-X, manufactured by Daicel Chemical Industries, Ltd.), sodium 3-mercapto-1-propanesulfonate, N, N-diethylthiourea (trade name: Sunseller EUR) Sanshin Chemical Co., Ltd.) and hydrochloric acid are added to the basic electrolyte, and the concentration relative to the basic electrolyte is polyglycerol: 30 mg / L, sodium 3-mercapto-1-propanesulfonate: 5 mg / L, N, N-diethylthio Urea: 1.5 mg / L, chloride ion: 35 mg / L (see Table 1 below).

前記各添加剤を含む電解液を白金族酸化物にて被覆したチタンから成る不溶性陽極と陰極であるチタン製陰極ドラムとの間に供給し、電解電流密度:40A/dm2、電解液温:40℃の電解条件で電解し、厚さ18μmの未処理電解銅箔を得た。 An electrolytic solution containing each of the above additives is supplied between an insoluble anode made of titanium coated with a platinum group oxide and a titanium cathode drum as a cathode. Electrolytic current density: 40 A / dm 2 , electrolyte temperature: Electrolysis was performed at 40 ° C. to obtain an untreated electrolytic copper foil having a thickness of 18 μm.

得られた電解銅箔(未処理銅箔)について次の各評価試験を行った。   The following evaluation tests were performed on the obtained electrolytic copper foil (untreated copper foil).

(1)機械的特性評価   (1) Mechanical property evaluation

抗張力(MPa)及び伸び(%)の評価をIPC-TM-650に基づき、インテスコ社製IM20型引張試験機を用いて行う。また、抗張力の熱安定性を評価するために180℃・1時間、エアーオーブンで加熱熱処理した評価銅箔の引張試験測定を行う。   Tensile strength (MPa) and elongation (%) are evaluated based on IPC-TM-650 using an IM20 type tensile tester manufactured by Intesco. In addition, in order to evaluate the thermal stability of the tensile strength, a tensile test measurement of an evaluation copper foil heat-heated in an air oven at 180 ° C. for 1 hour is performed.

(2)表面の粗さ評価試験   (2) Surface roughness evaluation test

粗面の表面粗さを小坂研究所製のサーフコーダーSE-1700αを用いてJIS B0601-1994に規定されている十点平均粗さ、Rzを測定する。   The surface roughness of the rough surface is measured using a surf coder SE-1700α manufactured by Kosaka Laboratory, and the ten-point average roughness, Rz, defined in JIS B0601-1994.

(3)スズめっき性評価試験
得られた未処理電解銅箔に対して、常法に従って無電解スズめっきを行い、めっき層の剥がれを次の試験方法により評価する。
(3) Tin plating property evaluation test The obtained untreated electrolytic copper foil is subjected to electroless tin plating according to a conventional method, and peeling of the plating layer is evaluated by the following test method.

先ず、20mm×50mmに評価銅箔を切り出して試験片とし、これを180℃・1時間、加熱熱処理する。次いで、硫酸、100mL/L、過酸化水素水、25mL/Lに調整したソフトエッチング水溶液を作成し、25℃に保持したこの水溶液に、試験片を1分間浸漬する。1分間の浸漬後、直ちに、水溶液から引き上げ、イオン交換水で水洗する。次いで、硫酸55mL/L、25℃の水溶液に1分間浸漬し、当該水溶液から引き上げて再びイオン交換水で水洗する。次いで、この試験片を液温65℃に保ったロームアンドハース製 TINPOSIT LT-34(商品名)無電解スズめっき液に3分間浸漬し、所定のめっき時間が経過した後、試験片を無電解スズめっき液より引き上げ、イオン交換水で水洗してから風乾する。このようにして作成したスズめっき試験片を150℃に設定したエアーオーブン中で240分間熱処理してから室温に取り出す。   First, an evaluation copper foil is cut out to 20 mm × 50 mm to obtain a test piece, which is subjected to heat treatment at 180 ° C. for 1 hour. Next, a soft etching aqueous solution adjusted to sulfuric acid, 100 mL / L, hydrogen peroxide solution and 25 mL / L is prepared, and the test piece is immersed in this aqueous solution kept at 25 ° C. for 1 minute. Immediately after the immersion for 1 minute, it is pulled up from the aqueous solution and washed with ion-exchanged water. Next, it is immersed in an aqueous solution of 55 mL / L sulfuric acid at 25 ° C. for 1 minute, pulled up from the aqueous solution and washed again with ion-exchanged water. Next, the test piece was immersed in TINPOSIT LT-34 (trade name) electroless tin plating solution made by Rohm and Haas for 3 minutes after maintaining the liquid temperature at 65 ° C. After a predetermined plating time had elapsed, the test piece was electroless Pull up from the tin plating solution, rinse with ion-exchanged water, and air dry. The tin-plated test piece thus prepared is heat-treated in an air oven set at 150 ° C. for 240 minutes and then taken out to room temperature.

次いで、スズめっき層の密着性の評価をセロハン粘着テープテストによって行う。   Next, the adhesion of the tin plating layer is evaluated by a cellophane adhesive tape test.

セロハン粘着テープテストは、JIS Z 1522に規定する幅12mmのセロハン粘着テープ(セキスイ製、No.252)を用い、このセロハン粘着テープをスズめっき試験片のスズめっき面に長さ20mmに渡って空気が入らないように貼り付け、一端は貼り付けずにめっき面より浮かせておく。セロハン粘着テープは貼り付け後1〜2分間放置する。   The cellophane adhesive tape test uses a 12 mm wide cellophane adhesive tape (Sekisui, No. 252) specified in JIS Z 1522. This cellophane adhesive tape is air over the tin plating surface of the tin plating test piece over a length of 20 mm. Paste it so that it does not enter, and leave one end floating above the plating surface without sticking. The cellophane adhesive tape is left for 1-2 minutes after being applied.

なお、スズめっき試験片の反対の面(セロハン粘着テープを貼り付けていない面)は両面接着テープを使って厚さ3mmのアルミ板に固定して置く。次いで、めっき面より浮かせておいたセロハン粘着テープの一端をめっき面に対して90°の角度に保持して1秒以内に引き剥がす。このとき、セロハン粘着テープ側への剥離スズめっき層の有無でスズめっき性を評価する。   The opposite surface of the tin-plated test piece (the surface on which the cellophane adhesive tape is not affixed) is fixed to a 3 mm thick aluminum plate using a double-sided adhesive tape. Next, one end of the cellophane adhesive tape floating above the plated surface is held at an angle of 90 ° with respect to the plated surface and peeled off within 1 second. At this time, tin plating property is evaluated by the presence or absence of the peeling tin plating layer to the cellophane adhesive tape side.

(4)結晶面配向性評価試験
結晶配向性はWillsonの方法に基づいて算出する。Willsonの方法は特異配向を持たない銅粉末の回折線相対強度を基準とし、これに対して評価対象である電解銅箔の各結晶面からの回折線相対強度から特異配向面を指数で示す方法である。
(4) Crystal plane orientation evaluation test Crystal orientation is calculated based on the method of Willson. Willson's method is based on the relative intensity of diffraction lines of copper powder that does not have a specific orientation. On the other hand, the specific orientation plane is expressed as an index from the relative intensity of diffraction lines from each crystal plane of the electrolytic copper foil that is the object of evaluation It is.

ここでは、基準となる無配向銅のX線回折線相対強度としてASTMカード4-0836に記載の数値を採用する。   Here, the numerical value described in ASTM card 4-0836 is adopted as the relative intensity of the X-ray diffraction line of the non-oriented copper serving as a reference.

一方、電解銅箔の評価は粗面側からX線回折線強度を測定する。回折線測定はリガク製RINT2000を用いて行う。測定条件は銅ターゲットのX線管球を用い、管電圧40kV、管電流30mA、走査角度2θ、40°〜100°、走査速度4°/minである。   On the other hand, the evaluation of the electrolytic copper foil measures the X-ray diffraction line intensity from the rough surface side. Diffraction line measurement is performed using RINT2000 RINT2000. The measurement conditions are a copper target X-ray tube, tube voltage 40 kV, tube current 30 mA, scanning angle 2θ, 40 ° to 100 °, and scanning speed 4 ° / min.

走査角度2θの走査範囲で観測される5つの銅回折線、すなわち、111、200、220、311及び222の各回折線の相対強度と、前記ASTMカード4-0836に記載の無配向銅の相対強度とを用いてWillsonの方法によりオリエンテーションインデックスを算出する。   The relative intensity of the five copper diffraction lines observed in the scanning range of the scanning angle 2θ, that is, the diffraction lines 111, 200, 220, 311 and 222, and the relative strength of the non-oriented copper described in the ASTM card 4-0836. The orientation index is calculated by the method of Willson using the intensity.

具体的な算出方法は銅111回折線を例にとると次のとおりである。   A specific calculation method is as follows, taking the copper 111 diffraction line as an example.

電解銅箔の粗面側の111回折線の相対強度I111を111、200、220、311及び222回折線の相対強度の合計で除した値をIF111とする。すなわち、
IF111=I111/(I111+I200+I220+I311+I222)
となる。
IF 111 is a value obtained by dividing the relative intensity I 111 of the 111 diffraction line on the rough surface side of the electrolytic copper foil by the total relative intensity of the 111 , 200, 220, 311 and 222 diffraction lines. That is,
IF 111 = I 111 / (I 111 + I 200 + I 220 + I 311 + I 222 )
It becomes.

次に、同様にして無配向銅であるASTMカード4-0836の相対強度からIFR111を求める。すなわち、
IFR111=IR111/(IR111+IR200+IR220+IR311+IR222)
となり、111回折線のオリエンテーションインデックスは、
オリエンテーションインデックス111=IF111/IFR111
となる。
Next, similarly, IFR 111 is obtained from the relative strength of ASTM card 4-0836 which is non-oriented copper. That is,
IFR 111 = IR 111 / (IR 111 + IR 200 + IR 220 + IR 311 + IR 222 )
The orientation index of 111 diffraction lines is
Orientation index 111 = IF 111 / IFR 111
It becomes.

他の回折線についても、同様の操作を行うことにより、2θ=40°〜100°の走査角度でX線回折現象を引き起こす5つの結晶面の中で、基板面である電着ドラム面に対して最も強く配向している結晶面をオリエンテーションインデックス指標で表記することが出来る。   For the other diffraction lines, the same operation is performed to the electrodeposition drum surface, which is the substrate surface, among the five crystal planes that cause the X-ray diffraction phenomenon at a scanning angle of 2θ = 40 ° to 100 °. The crystal plane that is most strongly oriented can be expressed by an orientation index index.

なお、前記算出方法からも明らかなように、全ての結晶面について無配向であるならば各回折線から算出されるオリエンテーションインデックスは1となり、特定の結晶面が強く配向すれば、その結晶面により回折されることによって生じる回折線から求められるオリエンテーションインデックスは1よりも大きな値を示すことになる。   As is clear from the calculation method, the orientation index calculated from each diffraction line is 1 if all crystal planes are non-oriented, and if a specific crystal plane is strongly oriented, The orientation index obtained from the diffraction line generated by the diffraction is a value larger than 1.

前記(1)〜(4)の各評価試験を行った結果を後出表2及び後出表3に示す。   The results of the evaluation tests (1) to (4) are shown in Table 2 and Table 3 below.

実施例2〜5、比較例1〜4   Examples 2-5, Comparative Examples 1-4

添加剤の種類と基本電解液に対する濃度及び電解電流密度並びに電解液温を、それぞれ後出表1に示すとおりに変更した以外は、実施例1と同じ条件で厚さ18μmの電解銅箔を得た。そして、得られた未処理電解銅箔について、実施例1と同じ各評価試験を行った。結果を後出表2及び後出表3に示す。   An electrolytic copper foil having a thickness of 18 μm was obtained under the same conditions as in Example 1 except that the type of additive, the concentration relative to the basic electrolyte, the electrolytic current density, and the electrolyte temperature were changed as shown in Table 1 below. It was. And each evaluation test same as Example 1 was done about the obtained untreated electrolytic copper foil. The results are shown in Table 2 and Table 3 below.

図1に実施例1で得られた未処理電解銅箔の粗面側のX線回折図を示し、図2に比較例1で得られた未処理電解銅箔の粗面側のX線回折図を示す。   FIG. 1 shows an X-ray diffraction pattern on the rough surface side of the untreated electrolytic copper foil obtained in Example 1, and FIG. 2 shows an X-ray diffraction pattern on the rough surface side of the untreated electrolytic copper foil obtained in Comparative Example 1. The figure is shown.

図1では220回折線強度が強く観測されていることから、強く{110}面配向した結晶組織の銅箔であることが分かる。これに対して、図2では111、200回折線が220回折線よりも強く観測されており、強く配向した結晶面が存在しないことが分かる。   In FIG. 1, the intensity of 220 diffraction lines is strongly observed, which indicates that the copper foil has a crystal structure with a strong {110} plane orientation. On the other hand, in FIG. 2, 111 and 200 diffraction lines are observed stronger than 220 diffraction lines, and it can be seen that there is no strongly oriented crystal plane.

Figure 2011174146
Figure 2011174146

Figure 2011174146
Figure 2011174146

Figure 2011174146
Figure 2011174146

Claims (3)

粗面粗さRzが2.0μm以下であって、粗面側のX線回折により測定した220銅回折線相対強度から求められるオリエンテーションインデックスが5.0以上の結晶組織であることを特徴とする電解銅箔。 An electrolytic copper foil characterized by having a rough surface roughness Rz of 2.0 μm or less and a crystal structure having an orientation index of 5.0 or more determined from a relative intensity of 220 copper diffraction lines measured by X-ray diffraction on the rough surface side . 180℃・1時間、加熱後の抗張力が500MPa以上であることを特徴とする請求項1記載の電解銅箔。 The electrolytic copper foil according to claim 1, wherein the tensile strength after heating at 180 ° C for 1 hour is 500 MPa or more. 硫酸−硫酸銅水溶液を電解液とし、白金族元素又はその酸化物で被覆したチタンからなる不溶性陽極と該陽極に対向するチタン製陰極ドラムとを用い、当該両極間に直流電流を通じる電解銅箔の製造方法において、前記電解液に非イオン性水溶性高分子、活性有機イオウ化合物のスルホン酸塩、チオ尿素系化合物及び塩素イオンを存在させることによって、粗面粗さが2.0μm以下であって、粗面側のX線回折により測定した220銅回折線相対強度から求められるオリエンテーションインデックスが5.0以上の結晶組織であって、180℃・1時間加熱後の抗張力が500MPaである電解銅箔を得ることを特徴とする電解銅箔の製造方法。
An electrolytic copper foil in which a sulfuric acid-copper sulfate aqueous solution is used as an electrolytic solution, and an insoluble anode made of titanium coated with a platinum group element or an oxide thereof and a titanium cathode drum facing the anode are used to pass a direct current between the two electrodes In the production method of the present invention, a non-ionic water-soluble polymer, a sulfonate salt of an active organic sulfur compound, a thiourea compound, and a chlorine ion are present in the electrolytic solution, so that a rough surface roughness is 2.0 μm or less. An electrolytic copper foil having a crystal structure with an orientation index of 5.0 or more determined from the relative intensity of 220 copper diffraction lines measured by X-ray diffraction on the rough surface side and having a tensile strength of 500 MPa after heating at 180 ° C. for 1 hour is obtained. The manufacturing method of the electrolytic copper foil characterized by the above-mentioned.
JP2010040030A 2010-02-25 2010-02-25 Electrolytic copper foil and method for producing the same Active JP5598700B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010040030A JP5598700B2 (en) 2010-02-25 2010-02-25 Electrolytic copper foil and method for producing the same
CN201110044081.1A CN102168289B (en) 2010-02-25 2011-02-21 Electrolytic foil and producing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010040030A JP5598700B2 (en) 2010-02-25 2010-02-25 Electrolytic copper foil and method for producing the same

Publications (2)

Publication Number Publication Date
JP2011174146A true JP2011174146A (en) 2011-09-08
JP5598700B2 JP5598700B2 (en) 2014-10-01

Family

ID=44489597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010040030A Active JP5598700B2 (en) 2010-02-25 2010-02-25 Electrolytic copper foil and method for producing the same

Country Status (2)

Country Link
JP (1) JP5598700B2 (en)
CN (1) CN102168289B (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013002279A1 (en) * 2011-06-30 2013-01-03 古河電気工業株式会社 Electrolytic copper foil, method for producing electrolytic copper foil, and lithium ion secondary cell using electrolytic copper foil as collector
WO2014002996A1 (en) * 2012-06-27 2014-01-03 古河電気工業株式会社 Electrolytic copper foil, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2014141969A1 (en) * 2013-03-12 2014-09-18 日産化学工業株式会社 Resin composition for plating resist and method for producing substrate using same
KR20150011751A (en) * 2013-07-23 2015-02-02 창춘 페트로케미칼 컴퍼니 리미티드 Electrolytic copper foil
KR20150114484A (en) 2013-01-31 2015-10-12 미쓰이금속광업주식회사 Electrolytic copper foil, processes for producing said electrolytic copper foil, and surface-treated copper foil obtained using said electrolytic copper foil
JP2015183294A (en) * 2014-03-21 2015-10-22 長春石油化學股▲分▼有限公司 electrolytic copper foil
CN110042438A (en) * 2019-04-24 2019-07-23 福建清景铜箔有限公司 The preparation method of electrolytic copper foil
JP2020057767A (en) * 2018-09-26 2020-04-09 京セラ株式会社 Printed wiring board
WO2021014778A1 (en) 2019-07-22 2021-01-28 テックス・テクノロジー株式会社 Method for producing electrolytic copper foil
JP2022056374A (en) * 2020-09-29 2022-04-08 エスケー ネクシリス カンパニー リミテッド High-strength electrolytic copper foil, electrode including the same, secondary battery including the same, and production method thereof

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102995086A (en) * 2012-12-11 2013-03-27 联合铜箔(惠州)有限公司 Additive for producing low-profile electrolytic copper foil and production process
TWI539033B (en) * 2013-01-07 2016-06-21 Chang Chun Petrochemical Co Electrolytic copper foil and its preparation method
CN104903495B (en) * 2013-01-24 2016-12-07 古河电气工业株式会社 Electrolytic copper foil and its manufacture method
CN103866366B (en) * 2014-03-13 2017-02-15 江苏铭丰电子材料科技有限公司 Composite plating treatment process of electrolytic copper foil copper-based high polymer material
CN108026653A (en) 2016-06-14 2018-05-11 古河电气工业株式会社 Electrolytic copper foil, lithium ion secondary battery cathode electrode, lithium rechargeable battery and printed circuit board (PCB)
CN110093635B (en) * 2019-04-24 2021-07-02 福建清景铜箔有限公司 High-strength electrolytic copper foil and various products using the same
CN110029373A (en) * 2019-05-24 2019-07-19 山东金宝电子股份有限公司 A kind of compound additive for eliminating the unusual coarsening crystallization of electrolytic copper foil

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07268678A (en) * 1994-03-31 1995-10-17 Mitsui Mining & Smelting Co Ltd Electrolytic copper foil for printed circuit board and its production
JP2009221592A (en) * 2007-10-31 2009-10-01 Mitsui Mining & Smelting Co Ltd Electrolytic copper foil and process for producing the electrolytic copper foil

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4273309B2 (en) * 2003-05-14 2009-06-03 福田金属箔粉工業株式会社 Low rough surface electrolytic copper foil and method for producing the same
CN1854347A (en) * 2005-04-20 2006-11-01 Lg电线有限公司 Low roughness copper foil with high strength and manufacture thereof
CN1958863A (en) * 2005-11-04 2007-05-09 苏西(中国)铜箔有限公司 Ultrathin two-faced bright electrolytic copper foil in high performance, and preparation method
CN101426959B (en) * 2006-04-28 2010-11-17 三井金属矿业株式会社 Electrolytic copper foil, surface treated copper foil using the electrolytic copper foil, copper-clad laminated plate using the surface treated copper foil, and method for manufacturing the electrolyt
CN101122035B (en) * 2006-08-11 2012-06-20 财团法人工业技术研究院 Method for manufacturing copper foil

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07268678A (en) * 1994-03-31 1995-10-17 Mitsui Mining & Smelting Co Ltd Electrolytic copper foil for printed circuit board and its production
JP2009221592A (en) * 2007-10-31 2009-10-01 Mitsui Mining & Smelting Co Ltd Electrolytic copper foil and process for producing the electrolytic copper foil

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9966608B2 (en) 2011-06-30 2018-05-08 Furukawa Electric Co., Ltd. Electrolytic copper foil, method of producing electrolytic copper foil, lithium ion secondary cell using electrolytic copper foil as collector
WO2013002279A1 (en) * 2011-06-30 2013-01-03 古河電気工業株式会社 Electrolytic copper foil, method for producing electrolytic copper foil, and lithium ion secondary cell using electrolytic copper foil as collector
JPWO2014002996A1 (en) * 2012-06-27 2016-06-02 古河電気工業株式会社 Electrolytic copper foil for lithium ion secondary battery, negative electrode of lithium ion secondary battery, and lithium ion secondary battery
WO2014002996A1 (en) * 2012-06-27 2014-01-03 古河電気工業株式会社 Electrolytic copper foil, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
US10050277B2 (en) 2012-06-27 2018-08-14 Furukawa Electric Co., Ltd. Electrolytic copper foil, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
KR20150034743A (en) * 2012-06-27 2015-04-03 후루카와 덴키 고교 가부시키가이샤 Electrolytic copper foil, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5718476B2 (en) * 2012-06-27 2015-05-13 古河電気工業株式会社 Electrolytic copper foil for lithium ion secondary battery, negative electrode of lithium ion secondary battery, and lithium ion secondary battery
KR101632852B1 (en) 2012-06-27 2016-06-22 후루카와 덴키 고교 가부시키가이샤 Electrolytic copper foil for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
US20160013493A1 (en) * 2012-06-27 2016-01-14 Furukawa Electric Co., Ltd. Electrolytic copper foil, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
KR20190006075A (en) 2013-01-31 2019-01-16 미쓰이금속광업주식회사 Electrolytic copper foil, processes for producing said electrolytic copper foil, and surface-treated copper foil obtained using said electrolytic copper foil
KR20150114484A (en) 2013-01-31 2015-10-12 미쓰이금속광업주식회사 Electrolytic copper foil, processes for producing said electrolytic copper foil, and surface-treated copper foil obtained using said electrolytic copper foil
JPWO2014141969A1 (en) * 2013-03-12 2017-02-16 日産化学工業株式会社 RESIN COMPOSITION FOR PLATING RESIST AND METHOD FOR PRODUCING SUBSTRATE USING THE SAME
WO2014141969A1 (en) * 2013-03-12 2014-09-18 日産化学工業株式会社 Resin composition for plating resist and method for producing substrate using same
KR101660335B1 (en) 2013-07-23 2016-09-29 창춘 페트로케미칼 컴퍼니 리미티드 Electrolytic copper foil
JP2015021186A (en) * 2013-07-23 2015-02-02 長春石油化學股▲分▼有限公司 Electrolytic copper foil
KR20150011751A (en) * 2013-07-23 2015-02-02 창춘 페트로케미칼 컴퍼니 리미티드 Electrolytic copper foil
US9209485B2 (en) 2013-07-23 2015-12-08 Chang Chun Petrochemical Co. Ltd. Electrolytic copper foil
JP2015183294A (en) * 2014-03-21 2015-10-22 長春石油化學股▲分▼有限公司 electrolytic copper foil
JP2020057767A (en) * 2018-09-26 2020-04-09 京セラ株式会社 Printed wiring board
JP7234049B2 (en) 2018-09-26 2023-03-07 京セラ株式会社 printed wiring board
CN110042438B (en) * 2019-04-24 2021-02-05 福建清景铜箔有限公司 Method for preparing electrolytic copper foil
CN110042438A (en) * 2019-04-24 2019-07-23 福建清景铜箔有限公司 The preparation method of electrolytic copper foil
WO2021014778A1 (en) 2019-07-22 2021-01-28 テックス・テクノロジー株式会社 Method for producing electrolytic copper foil
JP2021017630A (en) * 2019-07-22 2021-02-15 テックス・テクノロジー株式会社 Method for manufacturing electrolytic copper foil
RU2762281C1 (en) * 2019-07-22 2021-12-17 Текс Текнолоджи Инк. Method for obtaining electrolytic copper foil
KR20210013059A (en) 2019-07-22 2021-02-03 텍크스 테크놀로지 가부시키가이샤 Manufacturing method of electrolytic copper foil
US11773501B2 (en) 2019-07-22 2023-10-03 Tex Technology Inc. Method for producing electrolytic copper foil
JP2022056374A (en) * 2020-09-29 2022-04-08 エスケー ネクシリス カンパニー リミテッド High-strength electrolytic copper foil, electrode including the same, secondary battery including the same, and production method thereof
JP7287423B2 (en) 2020-09-29 2023-06-06 エスケー ネクシリス カンパニー リミテッド High-strength electrolytic copper foil, electrode containing the same, secondary battery containing the same, and manufacturing method thereof

Also Published As

Publication number Publication date
JP5598700B2 (en) 2014-10-01
CN102168289A (en) 2011-08-31
CN102168289B (en) 2015-07-01

Similar Documents

Publication Publication Date Title
JP5598700B2 (en) Electrolytic copper foil and method for producing the same
KR101339598B1 (en) Two-layered flexible substrate, and copper electrolyte for producing same
JP6029590B2 (en) Copper foil excellent in adhesiveness with resin, method for producing the same, and printed wiring board or battery negative electrode material using the electrolytic copper foil
CN107923047B (en) Roughened copper foil, copper-clad laminate, and printed wiring board
TWI626150B (en) Composite copper foil and composite copper foil manufacturing method
WO2007125994A1 (en) Electrolytic copper foil, surface treated copper foil using the electrolytic copper foil, copper-clad laminated plate using the surface treated copper foil, and method for manufacturing the electrolytic copper foil
KR100437569B1 (en) Surface treated copper foil and Method for preparing the same and Copper-clad laminate using the same
KR102274906B1 (en) Copper foil and copper clad laminate having the same
WO2006106956A1 (en) Electrolytic copper foil and process for producing electrolytic copper foil, surface treated elctrolytic copper foil using said electrolytic copper foil, and copper-clad laminate plate and printed wiring board using said surface treated electrolytic copper foil
JP2007217787A (en) Method for producing electrolytic copper foil, electrolytic copper foil produced by the method, surface-treated electrolytic copper foil obtained by using the electrolytic copper foil, copper-clad laminate using the surface-treated electrolytic copper foil, and printed circuit board
JP5248684B2 (en) Electronic circuit, method for forming the same, and copper-clad laminate for forming electronic circuit
JP3661763B2 (en) Method for producing surface-treated copper foil for printed wiring board
WO2012039285A1 (en) Method for manufacturing copper foil for printed circuit board and copper foil for printed circuit board
JP3670185B2 (en) Method for producing surface-treated copper foil for printed wiring board
JP2008109111A (en) To-resin adhesive layer and manufacturing method of laminate using it
JP2009149977A (en) Surface-treated copper foil, surface treatment method for the same, and laminated circuit board
US10602620B2 (en) Laminate for printed wiring board, method of manufacturing printed wiring board, and method of manufacturing electronic device
JP7247015B2 (en) Electrolytic copper foil, surface-treated copper foil using the electrolytic copper foil, and copper-clad laminate and printed wiring board using the surface-treated copper foil
JP2017122274A (en) Surface-treated copper foil
JPWO2019188837A1 (en) Manufacturing method of surface-treated copper foil, copper-clad laminate, and printed wiring board
TW201137183A (en) Copper foil for printed circuit board and copper-clad laminate for printed circuit board
JP2006052441A (en) Copper foil, manufacturing method therefor, and tab tape
CN111757607B (en) Surface-treated copper foil, copper-clad laminate, and printed wiring board
KR20060046123A (en) Copper foil coated with pure copper and production process thereof, and tab tape and production process thereof
JP2007150273A (en) Two-layered flexible printed circuit board and method for manufacturing two-layered flexible printed circuit board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140722

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140730

R150 Certificate of patent or registration of utility model

Ref document number: 5598700

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250