JP5588607B2 - Electrolytic copper foil and method for producing the electrolytic copper foil - Google Patents

Electrolytic copper foil and method for producing the electrolytic copper foil Download PDF

Info

Publication number
JP5588607B2
JP5588607B2 JP2008235875A JP2008235875A JP5588607B2 JP 5588607 B2 JP5588607 B2 JP 5588607B2 JP 2008235875 A JP2008235875 A JP 2008235875A JP 2008235875 A JP2008235875 A JP 2008235875A JP 5588607 B2 JP5588607 B2 JP 5588607B2
Authority
JP
Japan
Prior art keywords
copper foil
electrolytic copper
ppm
additive
electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008235875A
Other languages
Japanese (ja)
Other versions
JP2009221592A (en
Inventor
久雄 酒井
勝 高橋
光由 松田
誠 土橋
慎太郎 稲場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2008235875A priority Critical patent/JP5588607B2/en
Priority to PCT/JP2008/069744 priority patent/WO2009057688A1/en
Priority to TW097141749A priority patent/TWI530590B/en
Publication of JP2009221592A publication Critical patent/JP2009221592A/en
Application granted granted Critical
Publication of JP5588607B2 publication Critical patent/JP5588607B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本件発明は、電解銅箔、その電解銅箔を用いた表面処理銅箔、その電解銅箔の製造方法及びその表面処理銅箔を用いた銅張積層板に関する。特に、析出面が低プロファイルであり、且つ、大きな機械的強度を備える電解銅箔及びその製造方法等に関する。   The present invention relates to an electrolytic copper foil, a surface-treated copper foil using the electrolytic copper foil, a method for producing the electrolytic copper foil, and a copper-clad laminate using the surface-treated copper foil. Particularly, the present invention relates to an electrolytic copper foil having a low profile and a high mechanical strength, a method for producing the same, and the like.

電解銅箔は、テープオートメーティド ボンディング(以下、「TAB」と称する。)製品、リチウム二次電池用負極集電体等を初めとする種々の分野で、その強度の向上が要求されてきた。例えば、TAB製品においては、製品の略中央部に位置するデバイスホールに配されるインナーリード(フライングリード)に対し、ICチップの複数の端子を直接ボンディングする。このときのボンディングは、ボンディング装置(ボンダー)を用いて、瞬間的に通電加熱して、且つ、一定のボンディング圧を付加して行う。このとき、電解銅箔をエッチング形成して得られたインナーリードが、ボンディング圧で引張られて延びるという問題がある。従って、インナーリードの線幅を細線化するにも、強度的側面からの問題が存在することになる。   Electrolytic copper foil has been required to improve its strength in various fields including tape automated bonding (hereinafter referred to as “TAB”) products, negative electrode current collectors for lithium secondary batteries, and the like. . For example, in a TAB product, a plurality of terminals of an IC chip are directly bonded to inner leads (flying leads) arranged in a device hole located in a substantially central part of the product. Bonding at this time is performed by applying current and heating instantaneously and applying a certain bonding pressure using a bonding apparatus (bonder). At this time, there is a problem that the inner lead obtained by etching the electrolytic copper foil is stretched by being stretched by the bonding pressure. Therefore, there is a problem in terms of strength even when the line width of the inner lead is reduced.

また、リチウム二次電池用負極集電体の構成材料として、銅箔を用いる場合には、機械的強度に起因する2つの問題があった。まず、リチウム二次電池用負極集電体の製造プロセスにおける問題である。例えば、賦活剤の坦持プロセスにおいて、かなりの高温での熱履歴を受ける。その結果、用いた電解銅箔の強度の軟化が顕著で、耐久性に劣ることになるため、高寿命のリチウム二次電池の供給が不可能になる。また、機械的強度の低い電解銅箔をリチウム二次電池用負極集電体の構成材料として用いると、充放電を行う際のリチウム二次電池用負極集電体の変形が大きくなるため、高寿命化が達成できないことは当然であり、電池としての安全性にも懸念を生じることになる。このことは充電時の膨張が著しいケイ素や錫を含む負極活物質を使用した場合に、特に顕著となる。   Moreover, when using copper foil as a constituent material of the negative electrode current collector for a lithium secondary battery, there were two problems due to mechanical strength. First, it is a problem in the manufacturing process of the negative electrode current collector for a lithium secondary battery. For example, a thermal history at a fairly high temperature is received in the activator loading process. As a result, the softening of the strength of the electrolytic copper foil used is remarkable and the durability is inferior, so that it is impossible to supply a long-life lithium secondary battery. In addition, when an electrolytic copper foil with low mechanical strength is used as a constituent material of a negative electrode current collector for a lithium secondary battery, deformation of the negative electrode current collector for a lithium secondary battery during charge / discharge increases, Naturally, it is impossible to achieve a long life, and there is a concern about the safety of the battery. This is particularly noticeable when a negative electrode active material containing silicon or tin that is significantly expanded during charging is used.

そして一方では、近年の電子及び電気機器の小型化、軽量化等の所謂軽薄短小化に対する要求に併せて、限られた搭載スペースの中で小型化と高機能化に対応した回路形成がプリント配線板に要求される。このようなプリント配線板には、回路のファインピッチ化を行い、高密度化した回路を形成することが必要になる。従って、このようなファインピッチ回路を得るためには、当該電解銅箔の基材との張り合わせ面の粗度を下げて、オーバーエッチング時間の短縮化が必要になる。その結果、近年では、低プロファイル電解銅箔の使用が一般化されている。また、通常の配線板の分野でも、薄膜化する電解銅箔や銅張積層板のハンドリング性を良好にするため、電解銅箔の機械強度を大きくすることが求められてきた。具体的には、引張り強さが70kgf/mmを超え、リン青銅のハード材と同等の機械的強度が電解銅箔に対して望まれてきた。 On the other hand, in response to the recent demands for miniaturization and weight reduction of electronic and electrical equipment, circuit formation corresponding to miniaturization and high functionality in a limited mounting space is required for printed wiring. Required for board. In such a printed wiring board, it is necessary to form a circuit with a finer circuit and a higher density. Therefore, in order to obtain such a fine pitch circuit, it is necessary to reduce the roughness of the bonding surface of the electrolytic copper foil with the base material and to shorten the overetching time. As a result, in recent years, the use of low profile electrolytic copper foil has become common. Also in the field of ordinary wiring boards, it has been required to increase the mechanical strength of the electrolytic copper foil in order to improve the handleability of the thinned electrolytic copper foil and copper clad laminate. Specifically, a tensile strength exceeding 70 kgf / mm 2 and a mechanical strength equivalent to that of a phosphor bronze hard material have been desired for the electrolytic copper foil.

以上のような要求に応えるべく、基材との張り合わせ面が低プロファイルで、且つ、機械的強度にも優れた電解銅箔として、種々の研究が行われてきた。例えば、特許文献1に開示の発明は、プリント配線板用途やリチウム二次電池用負極集電体用途に実用できる低粗面を持つと共に、疲労屈曲性にも優れた低粗面電解銅箔、具体的には、粗面粗さRzが2.0μm以下で該粗面に凹凸のうねりがなく均一に低粗度化された粗面を持ち、且つ、180℃における伸び率が10.0%以上である低粗面電解銅箔の提供を目的としている。そして、硫酸−硫酸銅水溶液を電解液とし、白金属元素又はその酸化物元素で被覆したチタン板からなる不溶性陽極と該陽極に対向する陰極にチタン製ドラムを用い、当該両極間に直流電流を通じる電解銅箔の製造方法が開示されている。この製造方法において、前記電解液にオキシエチレン系界面活性剤、ポリエチレンイミン又はその誘導体、活性有機イオウ化合物のスルホン酸塩及び塩素イオンを存在させることによって、粗面粗さRzが2.0μm以下で該粗面に凹凸のうねりがなく均一に低粗度化された粗面を持ち、且つ、180℃における伸び率が10.0%以上である低粗面電解銅箔を得られると記載している。   In order to meet the above demands, various studies have been conducted as electrolytic copper foils having a low profile bonded surface with a base material and excellent mechanical strength. For example, the invention disclosed in Patent Document 1 has a low rough surface electrolytic copper foil that has a low rough surface that can be practically used for printed wiring board applications and negative electrode current collector applications for lithium secondary batteries, and has excellent fatigue flexibility, Specifically, the rough surface roughness Rz is 2.0 μm or less, the rough surface has a rough surface with no unevenness and is uniformly reduced in roughness, and the elongation at 180 ° C. is 10.0%. The object is to provide a low-roughened surface electrolytic copper foil as described above. Then, using a sulfuric acid-copper sulfate aqueous solution as an electrolytic solution, a titanium drum is used as an insoluble anode made of a titanium plate coated with a white metal element or its oxide element, and a cathode facing the anode, and a direct current is applied between the two electrodes. A method for producing electrolytic copper foil is disclosed. In this manufacturing method, the rough surface roughness Rz is 2.0 μm or less by allowing the electrolyte solution to contain an oxyethylene surfactant, polyethyleneimine or a derivative thereof, a sulfonate salt of an active organic sulfur compound, and a chloride ion. It is described that the rough surface has a rough surface with no unevenness and has a uniformly roughened surface, and an elongation at 180 ° C. of 10.0% or more can be obtained. Yes.

更に、この特許文献1の実施例を見ると、得られた電解銅箔の析出面の表面粗さ(Rz)が0.9μm〜2.0μm、常態伸び率の値が10%〜18%、180℃における伸び率の値が10%〜20%、常態引張り強さの値が340MPa〜500MPa(34.66kgf/mm〜50.99kgf/mm)、180℃における引張り強さの値が180MPa〜280MPa(18.35kgf/mm〜28.55kgf/mm)であることが開示されている。更に、この電解銅箔の析出面の、幅方向に対する光沢度[Gs(85°)]は120〜132であることが開示されている。 Furthermore, when the Example of this patent document 1 is seen, the surface roughness (Rz) of the precipitation surface of the obtained electrolytic copper foil is 0.9 micrometer-2.0 micrometers, and the value of a normal state elongation rate is 10%-18%, The elongation value at 180 ° C. is 10% to 20%, the normal tensile strength value is 340 MPa to 500 MPa (34.66 kgf / mm 2 to 50.99 kgf / mm 2 ), and the tensile strength value at 180 ° C. is 180 MPa. It is disclosed to be ˜280 MPa (18.35 kgf / mm 2 to 28.55 kgf / mm 2 ). Furthermore, it is disclosed that the glossiness [Gs (85 °)] of the deposited surface of the electrolytic copper foil in the width direction is 120 to 132.

また、特許文献2に開示の発明は、粗面が低粗度化され、時間経過又は加熱処理に伴う抗張力の低下率が低く、しかも高温における伸び率に優れた低粗面電解銅箔及びその製造方法を提供することを目的としている。そして、硫酸−硫酸銅水溶液からなる電解液にヒドロキシエチルセルロース、ポリエチレンイミン、アセチレングリコール、活性有機イオウ化合物のスルホン酸塩及び塩素イオンの五つの添加剤を存在させ、これを用いて電解銅箔を製造している。ここで得られる電解銅箔の粗面粗さRzは2.5μm以下であり、電着完了時点から20分以内に測定した25℃における抗張力が500MPa以上である。更に、電着完了時点から300分経過時に測定した25℃における抗張力の低下率が10%以下であり、電着完了時点から100℃にて10分間加熱処理を施した後に測定した25℃における抗張力の低下率が10%以下であり、且つ、180℃における伸び率が6%以上である低粗面電解銅箔を開示している。   In addition, the invention disclosed in Patent Document 2 is a low-roughened electrolytic copper foil having a roughened surface with a low roughness, a low decrease in tensile strength with time or heat treatment, and an excellent elongation at high temperatures, and its The object is to provide a manufacturing method. Then, five additives of hydroxyethyl cellulose, polyethyleneimine, acetylene glycol, sulfonate of active organic sulfur compound and chloride ion are present in the electrolytic solution composed of sulfuric acid-copper sulfate aqueous solution, and an electrolytic copper foil is manufactured using this. doing. The rough surface roughness Rz of the electrolytic copper foil obtained here is 2.5 μm or less, and the tensile strength at 25 ° C. measured within 20 minutes from the completion of electrodeposition is 500 MPa or more. Furthermore, the rate of decrease in tensile strength at 25 ° C. measured after 300 minutes from the completion of electrodeposition is 10% or less, and the tensile strength at 25 ° C. measured after heat treatment at 100 ° C. for 10 minutes from the completion of electrodeposition. Discloses a low rough surface electrolytic copper foil having a decrease rate of 10% or less and an elongation at 180 ° C. of 6% or more.

そして、この特許文献2の実施例を見ると、更に具体的内容を把握できる。即ち、硫酸(HSO):100g/L、硫酸銅五水和物(CuSO・5HO):280g/Lの硫酸−硫酸銅水溶液からなる電解液を基本溶液とし、添加剤としてヒドロキシエチルセルロース、ポリエチレンイミン、3−メルカプト−1−プロパンスルホン酸ナトリウム、アセチレングリコール及び塩酸を添加し、この電解液を白金属酸化物にて被覆したチタンからなる不溶性陽極と陰極であるチタン製陰極ドラムとの間に充填し、電解電流密度:40A/dm、電解液温:40℃にて電析して得られた電解銅箔が開示されている。この電解銅箔は、厚さ18μm、析出面の表面粗さ(Rz)が1.5μm〜2.3μmであり、常態の抗張力が650MPa〜900MPa(66.28kgf/mm〜91.77kgf/mm)、100℃で10分間加熱後の抗張力の低下率が0%〜7.7%であったと記載されている。 And if the Example of this patent document 2 is seen, more specific content can be grasped | ascertained. That is, an electrolyte composed of a sulfuric acid-copper sulfate aqueous solution of sulfuric acid (H 2 SO 4 ): 100 g / L, copper sulfate pentahydrate (CuSO 4 .5H 2 O): 280 g / L is used as a basic solution, and as an additive. Titanium cathode drum which is an insoluble anode and cathode made of titanium, to which hydroxyethyl cellulose, polyethyleneimine, sodium 3-mercapto-1-propanesulfonate, acetylene glycol and hydrochloric acid are added and this electrolyte is coated with a white metal oxide And an electrolytic copper foil obtained by electrodeposition at an electrolytic current density of 40 A / dm 2 and an electrolyte temperature of 40 ° C. is disclosed. This electrolytic copper foil has a thickness of 18 μm, a surface roughness (Rz) of the deposited surface of 1.5 μm to 2.3 μm, and a normal tensile strength of 650 MPa to 900 MPa (66.28 kgf / mm 2 to 91.77 kgf / mm). 2 ), it is described that the rate of decrease in tensile strength after heating at 100 ° C. for 10 minutes was 0% to 7.7%.

上記の実施例によれば、これらの製造方法を用いて製造された電解銅箔の析出面は低プロファイルである。その低プロファイルレベルは、従来の低プロファイル電解銅箔から見れば優れており、ファインピッチ回路の形成には効果を発揮しうる。また、従来の電解銅箔よりも優れた機械的強度を得ることが可能なことも開示されている。なお、念のために記載するが、プリント配線板用銅箔における低プロファイルとは、銅箔の絶縁層構成材料との接合界面における凹凸が低いという意味で用いている。   According to said Example, the precipitation surface of the electrolytic copper foil manufactured using these manufacturing methods is a low profile. The low profile level is excellent from the viewpoint of a conventional low profile electrolytic copper foil, and can be effective in forming a fine pitch circuit. It is also disclosed that mechanical strength superior to that of conventional electrolytic copper foil can be obtained. In addition, although it describes for convenience, the low profile in the copper foil for printed wiring boards is used in the meaning that the unevenness | corrugation in the joining interface with the insulating layer constituent material of copper foil is low.

更に、特許文献3には、制御された低プロフィルの電着銅箔が開示されている。具体的には、本質的に円柱状粒子および双晶境界がなくそして10ミクロンまでの平均粒子サイズを有する粒子構造を持つ電着銅箔であって、該粒子構造が実質的に一様でランダムに配向する粒子構造である、制御された低プロフィルの電着銅箔を開示している。そして、この電着銅箔は、23℃における最大抗張力が87,000〜120,000psi(61.18kgf/mm〜84.38kgf/mm)の範囲にあり、180℃における最大抗張力が25,000〜35,000psi(17.58kgf/mm〜24.61kgf/mm)の範囲にある等の物理的特性を備えていること等が開示されている。 Further, Patent Document 3 discloses a controlled low profile electrodeposited copper foil. Specifically, an electrodeposited copper foil having a particle structure with essentially no cylindrical particles and twin boundaries and an average particle size of up to 10 microns, the particle structure being substantially uniform and random Discloses a controlled low profile electrodeposited copper foil having a grain structure oriented in This electrodeposited copper foil has a maximum tensile strength at 23 ° C. in the range of 87,000 to 120,000 psi (61.18 kgf / mm 2 to 84.38 kgf / mm 2 ), and a maximum tensile strength at 180 ° C. of 25, It is disclosed that it has physical characteristics such as being in the range of 000 to 35,000 psi (17.58 kgf / mm 2 to 24.61 kgf / mm 2 ).

この特許文献3の中の記述を見ると、図4には発明に係る銅箔の、倍率1600倍の断面の顕微鏡写真が掲載されている。この図4から理解できるように、特許文献3に開示の電着銅箔は、本質的に円柱状粒子および双晶境界がなくそして10ミクロンまでの平均粒子サイズを有する粒子構造を持つと記載されているように、確かに10ミクロン以下の粒径を備えるが、倍率1600倍で観察可能な結晶粒子を備えることが分かる。そして、厳密に言えば、この特許文献3の明細書中で、23℃における最大抗張力が100,000psi(70.32kgf/mm)を超える電解銅箔は、具体的に開示されていない。 Looking at the description in Patent Document 3, FIG. 4 shows a micrograph of a cross section of the copper foil according to the invention at a magnification of 1600 times. As can be understood from FIG. 4, the electrodeposited copper foil disclosed in Patent Document 3 is described as having a particle structure having essentially no cylindrical particles and twin boundaries and an average particle size of up to 10 microns. As can be seen, it has a particle size of 10 microns or less, but has crystal particles that can be observed at a magnification of 1600 times. Strictly speaking, in the specification of Patent Document 3, an electrolytic copper foil whose maximum tensile strength at 23 ° C. exceeds 100,000 psi (70.32 kgf / mm 2 ) is not specifically disclosed.

以上の述べてきた従来技術の中でも、特にTAB用途、リチウム二次電池用負極集電体用途においては、多少のコストアップに繋がるとしても、コルソン合金箔を使用する動きがある。   Among the conventional techniques described above, particularly in TAB applications and negative electrode current collector applications for lithium secondary batteries, there is a movement to use a Corson alloy foil even though this may lead to a slight increase in cost.

特開2004−263289号公報JP 2004-263289 A 特開2004−339558号公報JP 2004-339558 A 特開平7−188969号公報JP-A-7-188969

しかしながら、コルソン合金箔は、製造コストが高く、プリント回路の形成材料としては高い電気抵抗を備えることもあり、プリント配線板分野では広く普及し得ないと考えられる。そのため近年は、生産コストの低い電解銅箔にコルソン合金箔並みの機械的強度を備え、且つ、低電気抵抗と言う特性が求められ、代替え品としての高強度電解銅箔の提供が求められるようになっている。即ち、要求されているのは、コルソン合金箔並み又はこれを超える引張り強さ、伸び率、電気抵抗、破断強度等を備える電解銅箔である。なお、コルソン合金箔の場合、引張り強さは、常態で90.00kgf/mm〜99.00kgf/mm程度、180℃×60分の熱処理後でも殆ど変化せず、むしろ析出硬化が起こり値が上昇する場合もある。そして、伸び率は、常態で5.0%〜6.0%、180℃×60分の熱処理後では3.5%〜7.0%である。ここで、伸び率が低下したものは、加熱による析出硬化により引張り強さが上昇し、硬度が上昇したためである。 However, Corson alloy foil is expensive to manufacture and may have a high electrical resistance as a material for forming a printed circuit, so it is considered that it cannot be widely used in the printed wiring board field. For this reason, in recent years, it has been demanded that an electrolytic copper foil with a low production cost has mechanical strength equivalent to that of a Corson alloy foil and has a characteristic of low electrical resistance, and it is required to provide a high strength electrolytic copper foil as an alternative. It has become. That is, what is required is an electrolytic copper foil that has tensile strength, elongation, electrical resistance, breaking strength, and the like that of Corson alloy foil or higher. In the case of Corson alloy foil, the tensile strength is normally about 90.00 kgf / mm 2 to 99.00 kgf / mm 2 and hardly changes even after heat treatment at 180 ° C. for 60 minutes, rather precipitation hardening occurs. May rise. The elongation is 5.0% to 6.0% in a normal state and 3.5% to 7.0% after heat treatment at 180 ° C. for 60 minutes. Here, the reason why the elongation rate decreased is that the tensile strength increased due to precipitation hardening by heating, and the hardness increased.

上記特許文献1に開示の電解銅箔の場合、その電解銅箔の析出面の表面粗さ(Rz)は、0.9μm〜2.0μmの範囲と良好な低プロファイル表面を形成できているが、常態引張り強さの値が340MPa〜500MPa(34.66kgf/mm〜50.99kgf/mm)の範囲にある。従って、コルソン合金箔並みの高い機械的強度を備えるとは言い難い。 In the case of the electrolytic copper foil disclosed in Patent Document 1, the surface roughness (Rz) of the deposited surface of the electrolytic copper foil is in the range of 0.9 μm to 2.0 μm and a good low profile surface can be formed. The value of the normal tensile strength is in the range of 340 MPa to 500 MPa (34.66 kgf / mm 2 to 50.99 kgf / mm 2 ). Therefore, it is difficult to say that it has the same mechanical strength as Corson alloy foil.

また、上記特許文献2に開示の電解銅箔の場合、析出面の表面粗さ(Rz)が1.5μm〜2.3μmの範囲にあり、ある程度良好な低プロファイル表面を備えている。しかし、常態の引張り強さが650MPa〜900MPa(66.28kgf/mm〜91.77kgf/mm)という範囲にあり、70kgf/mm未満の値が得られることを示している。しかも、本件発明者等が、特許文献2の実施例に基づいてトレース実験(以下の「比較例」に使用)を実施した結果、そこで得られた電解銅箔の引張り強さは、58kgf/mm程度であり、特許請求の範囲に記載された下限値である66.28kgf/mmを超える値が得られなかった。即ち、この特許文献2に開示の電解銅箔の製造方法は、製造安定性に欠けるものであり、得られる製品の品質バラツキも大きいと考えられる。コルソン合金箔並みの高い機械的強度と言えるためには、引張り強さの値が70kgf/mmを超える電解銅箔を安定生産できることが必須であり、特許文献2に開示の電解銅箔の製造方法では困難と考えられる。 In the case of the electrolytic copper foil disclosed in Patent Document 2, the surface roughness (Rz) of the deposition surface is in the range of 1.5 μm to 2.3 μm, and has a low profile surface that is good to some extent. However, the normal tensile strength is in the range of 650 MPa to 900 MPa (66.28 kgf / mm 2 to 91.77 kgf / mm 2 ), indicating that a value of less than 70 kgf / mm 2 is obtained. Moreover, as a result of the inventors conducting a trace experiment (used in the following “Comparative Example”) based on the example of Patent Document 2, the tensile strength of the obtained electrolytic copper foil is 58 kgf / mm. It was about 2, and a value exceeding the lower limit value 66.28 kgf / mm 2 described in the claims was not obtained. That is, the method for producing an electrolytic copper foil disclosed in Patent Document 2 lacks production stability, and it is considered that the quality of the product obtained is large. In order to say that the mechanical strength is as high as that of Corson alloy foil, it is essential to be able to stably produce an electrolytic copper foil having a tensile strength value exceeding 70 kgf / mm 2. The method seems to be difficult.

更に、特許文献3に開示の電解銅箔の場合、円柱状粒子および双晶境界が無く、平均結晶粒子径が10μm以下の結晶組織(特許文献3の図4によれば、結晶粒径は2μm〜5μm程度と推測できる。)を備えることにより、23℃における最大抗張力が87,000〜120,000psi(61.18kgf/mm〜84.38kgf/mm)の範囲に出来たと解釈できる。しかし、ここでは最大抗張力が90.00kgf/mmを超えるコルソン合金箔並の抗張力は得られていない。また、この特許文献3に開示の電解銅箔の低プロファイルと称する表面粗さに関しては、特許文献3の段落0027〜段落0029に記載されている。この特許文献3では、表面粗さを表示するのに、「Rtm」を使用している。この値は、特許文献3の明細書の段落0029にあるように、「薄い箔のRtmは、厚い箔より小さい傾向がある。」と記載されており、従来の電解銅箔と同様の傾向を備えることが明らかにされている。そして、この特許文献3に開示の箔の場合、180℃における最大抗張力が25、000〜35、000psi(17.58kgf/mm〜24.6kgf/mm)の範囲にあると記載されている。特許文献3に開示の電解銅箔の場合、180℃×60分の加熱後の引張り強さが開示されていないが、当該加熱後の引張り強さが、常態の引張り強さの80%以下に低下する。この点を考慮すると、コルソン合金箔の代替えとはなり得ない。 Furthermore, in the case of the electrolytic copper foil disclosed in Patent Document 3, there is no columnar particle and twin boundary, and the crystal structure having an average crystal particle diameter of 10 μm or less (according to FIG. 4 of Patent Document 3, the crystal grain size is 2 μm). It can be interpreted that the maximum tensile strength at 23 ° C. was within the range of 87,000 to 120,000 psi (61.18 kgf / mm 2 to 84.38 kgf / mm 2 ). However, here, a tensile strength comparable to that of a Corson alloy foil having a maximum tensile strength exceeding 90.00 kgf / mm 2 is not obtained. Further, the surface roughness referred to as a low profile of the electrolytic copper foil disclosed in Patent Document 3 is described in Paragraphs 0027 to 0029 of Patent Document 3. In Patent Document 3, “R tm ” is used to display the surface roughness. As described in paragraph 0029 of the specification of Patent Document 3, this value is described as “the R tm of a thin foil tends to be smaller than that of a thick foil”, and the same tendency as that of a conventional electrolytic copper foil. It has been revealed that In the case of the foil disclosed in Patent Document 3, it is described that the maximum tensile strength at 180 ° C. is in the range of 25,000 to 35,000 psi (17.58 kgf / mm 2 to 24.6 kgf / mm 2 ). . In the case of the electrolytic copper foil disclosed in Patent Document 3, the tensile strength after heating at 180 ° C. × 60 minutes is not disclosed, but the tensile strength after heating is 80% or less of the normal tensile strength. descend. Considering this point, it cannot be a substitute for Corson alloy foil.

以上のことから理解できるように、本件発明は、ファインピッチ回路を備えるプリント配線板材料としての電解銅箔であり、且つ、コルソン合金箔の使用が検討されているリチウム二次電池用負極集電体の構成材料等としても使用可能な高強度且つ低電気抵抗の電解銅箔の提供を目的とする。   As can be understood from the above, the present invention is an electrolytic copper foil as a printed wiring board material provided with a fine pitch circuit, and the use of a Corson alloy foil is being investigated. An object of the present invention is to provide an electrolytic copper foil having high strength and low electrical resistance that can be used as a body constituent material.

そこで、本件発明者らは、鋭意研究の結果、以下に述べる電解銅箔を採用することで、コルソン合金箔と同等の高強度化を行うことができた。また、以下に述べる製造方法を採用することにより、コルソン合金箔と同等の高強度な電解銅箔の生産を可能にした。   Therefore, as a result of intensive studies, the inventors of the present invention have been able to increase the strength equivalent to that of the Corson alloy foil by adopting the electrolytic copper foil described below. In addition, by adopting the manufacturing method described below, it was possible to produce an electrolytic copper foil having high strength equivalent to that of Corson alloy foil.

本件発明に係る電解銅箔: 本件発明に係る電解銅箔は、銅電解液を電解することにより得られる電解銅箔において、当該電解銅箔は、硫黄を110ppm〜400ppm、塩素を280ppm〜650ppm含有し、導電率が49.3%IACS以上であり、且つ、常態における引張り強さの値が70kgf/mm以上であることを特徴とするものである。 Electrolytic copper foil according to the present invention: The electrolytic copper foil according to the present invention is an electrolytic copper foil obtained by electrolyzing a copper electrolyte, wherein the electrolytic copper foil contains 110 ppm to 400 ppm of sulfur and 280 ppm to 650 ppm of chlorine. In addition, the electrical conductivity is 49.3% IACS or more , and the tensile strength value in a normal state is 70 kgf / mm 2 or more.

本件発明に係る表面処理銅箔: 本件発明に係る表面処理銅箔は、上述の電解銅箔の表面に粗化処理、防錆処理、シランカップリング剤処理のいずれか1種又は2種以上を施したことを特徴とするものである。 Surface-treated copper foil according to the present invention: The surface-treated copper foil according to the present invention comprises one or more of roughening treatment, rust prevention treatment, and silane coupling agent treatment on the surface of the above-described electrolytic copper foil. It is characterized by having given.

本件発明に係る電解銅箔の製造方法: 本件発明に係る電解銅箔の製造方法は、硫酸系銅電解液を用いた電解法により、上述の電解銅箔を製造する方法であって、当該硫酸系銅電解液は、下記添加剤A〜添加剤Cを含み、塩素濃度が40ppm〜80ppmであるものを用いることを特徴とする。 Manufacturing method of electrolytic copper foil according to the present invention: The manufacturing method of the electrolytic copper foil according to the present invention is a method of manufacturing the above-described electrolytic copper foil by an electrolytic method using a sulfuric acid-based copper electrolytic solution, and the sulfuric acid The system copper electrolyte contains the following additive A to additive C and has a chlorine concentration of 40 ppm to 80 ppm.

添加剤A:複素環にベンゼン環とNとを含み同時にメルカプト基が結合している構造を有する化合物、複素環に1以上のNを含み同時にSH基が結合した5員環構造を有する化合物、チオ尿素系化合物から選ばれる1以上の化合物。
添加剤B:活性硫黄化合物のスルホン酸塩。
添加剤C:環状構造を持つアンモニウム塩重合体。
Additive A: Compound having a structure in which a heterocyclic ring contains a benzene ring and N and simultaneously having a mercapto group bonded thereto, Compound having a 5-membered ring structure in which one or more N atoms are bonded to a heterocyclic ring and SH group is simultaneously bonded, One or more compounds selected from thiourea compounds.
Additive B: sulfonate salt of active sulfur compound.
Additive C: ammonium salt polymer having a cyclic structure.

本件発明に係る銅張積層板: 本件発明に係る銅張積層板は、上述の表面処理電解銅箔を絶縁層構成材料と張合わせて得られることを特徴とするものである。なお、ここで言う銅張積層板の概念には、リジッド銅張積層板及びフレキシブル銅張積層板の双方が含まれる旨を、念のために明記しておく。 Copper-clad laminate according to the present invention: A copper-clad laminate according to the present invention is obtained by bonding the above-mentioned surface-treated electrolytic copper foil with an insulating layer constituting material. It should be noted that the concept of the copper-clad laminate referred to here includes both rigid copper-clad laminate and flexible copper-clad laminate.

本件発明に係る電解銅箔は、上述のようなnmオーダーの析出結晶粒子で構成されているため、結晶粒の微細化効果により、極めて大きな機械的強度を備えるようになる。しかも、この本件発明に係る電解銅箔の機械的強度は、180℃×60分の加熱後においても、常態の機械的強度とほぼ変わらない。そして、その結晶の粒子径が微細であるが故に、従来の低プロファイル電解銅箔を超えるレベルの低プロファイルの析出面を備える。   Since the electrolytic copper foil which concerns on this invention is comprised by the above-mentioned precipitation order crystal particle of nm order, it comes to have very big mechanical strength by the refinement | miniaturization effect of a crystal grain. Moreover, the mechanical strength of the electrolytic copper foil according to the present invention is almost the same as the normal mechanical strength even after heating at 180 ° C. for 60 minutes. And since the particle diameter of the crystal | crystallization is fine, it has the low profile precipitation surface of the level exceeding the conventional low profile electrolytic copper foil.

そして、この本件発明に係る電解銅箔を用いて、その表面に防錆処理を目的とした表面処理、基材樹脂との密着性を向上させるための粗化処理、シランカップリング剤処理等を施して、表面処理銅箔が得られる。従って、この表面処理銅箔も、良好な機械的強度と滑らかな表面を備えるようになる。   And, using the electrolytic copper foil according to the present invention, surface treatment for the purpose of rust prevention treatment, roughening treatment for improving adhesion with the base resin, silane coupling agent treatment, etc. To give a surface-treated copper foil. Therefore, this surface-treated copper foil also has good mechanical strength and a smooth surface.

また、当該表面処理電解銅箔を用いて得られる銅張積層板は、板厚が薄くても、電解銅箔の極めて大きな機械的強度により、ハンドリング時のたわみ及び変形が少なく、取扱いやすくなる。   Moreover, even if the copper clad laminated board obtained using the said surface-treated electrolytic copper foil is thin, the bending and deformation | transformation at the time of handling are few, and it becomes easy to handle with the extremely big mechanical strength of electrolytic copper foil.

更に、本件発明に係る電解銅箔の製造方法は、使用する銅電解液の組成に特徴を備えている。この銅電解液は、溶液安定性に優れ、長期間の連続使用に耐えるため、経済的にも優れている。   Furthermore, the method for producing an electrolytic copper foil according to the present invention is characterized by the composition of the copper electrolyte used. This copper electrolyte is excellent in solution stability and withstands long-term continuous use, so that it is economically superior.

以下、本件発明に係る電解銅箔、表面処理銅箔、電解銅箔の製造方法、銅張積層板のそれぞれの好ましい形態に関して、順を追って説明する。   Hereinafter, the preferred embodiments of the electrolytic copper foil, the surface-treated copper foil, the electrolytic copper foil manufacturing method, and the copper-clad laminate according to the present invention will be described in order.

本件発明に係る電解銅箔の形態: 本件発明に係る電解銅箔は、銅電解液を電解することにより得られる電解銅箔である。最初に、本件発明に係る電解銅箔が含有する成分であって、一般的な電解銅箔には含まれない成分に関して述べる。 Form of electrolytic copper foil according to the present invention: The electrolytic copper foil according to the present invention is an electrolytic copper foil obtained by electrolyzing a copper electrolyte. First, components that are included in the electrolytic copper foil according to the present invention and that are not included in a general electrolytic copper foil will be described.

本件発明に係る電解銅箔は、硫黄を110ppm〜400ppm、塩素を280ppm〜650ppm含有し、導電率が49.3%IACS以上であり、且つ、常態における引張り強さの値が70kgf/mm以上であることを特徴とすることが、第1の特徴である。純銅に近い銅成分で、コルソン合金箔に近い機械的特性を得ようとすることは、金属学的常識からしても不可能である。従って、電解銅箔の結晶組織中に硫黄を含有させ、その成分量を適正なレベルとすることで、機械的強度を向上させたのである。なお、念のために記載しておくが、成分の含有量表示に使用した単位「ppm」は、「mg/l」と同義である。 The electrolytic copper foil according to the present invention contains 110 ppm to 400 ppm of sulfur, 280 ppm to 650 ppm of chlorine, has an electric conductivity of 49.3% IACS or more , and has a tensile strength value of 70 kgf / mm 2 or more in a normal state. It is the first feature to be characterized by being. It is impossible to obtain mechanical properties close to Corson alloy foil with a copper component close to pure copper, even from metallurgical common sense. Therefore, the mechanical strength was improved by including sulfur in the crystal structure of the electrolytic copper foil and setting the amount of the component to an appropriate level. It should be noted that the unit “ppm” used to display the content of the component is synonymous with “mg / l”, just in case.

この電解銅箔に含まれる硫黄は、後述する製造方法で用いる電解液の含有成分に起因するものである。この硫黄の含有量が110ppm未満の場合には、電解析出により形成される結晶粒の粒径がnmレベルにならず、高い機械的強度を備える電解銅箔とはならない。一方、この硫黄の含有量が400ppmを超える場合には、電解銅箔の析出組織が脆化を引き起こしやすく、伸び率が減少するため、耐折り曲げ特性の要求されるフレキシブル銅張積層板の製造原料として不適になる。   Sulfur contained in the electrolytic copper foil is caused by components contained in the electrolytic solution used in the production method described later. When the sulfur content is less than 110 ppm, the grain size of the crystal grains formed by electrolytic deposition does not reach the nm level, and the electrolytic copper foil having high mechanical strength is not obtained. On the other hand, when the sulfur content exceeds 400 ppm, the deposited structure of the electrolytic copper foil is likely to cause embrittlement, and the elongation rate is reduced. Therefore, a raw material for producing a flexible copper-clad laminate that requires bending resistance characteristics As inappropriate.

また、当該電解銅箔は、その構成成分として塩素を280ppm〜650ppmの範囲で含有することが好ましい。この塩素は、後述する製造方法で用いる電解液の含有成分に起因するものである。ここで、電解銅箔の構成成分としての塩素が150ppm未満となると、電解析出により形成される結晶粒の粒径がnmレベルになりにくく、安定した高い機械的強度を備える電解銅箔とはならない。しかも、電解銅箔中の塩素濃度が低くなると、電解銅箔を長期間保存したときの機械的強度の変動が大きくなる傾向がある。一方、電解銅箔の構成成分としての塩素が650ppmを超えると、得られる電解銅箔の析出面の粗さが大きくなり、低プロファイル電解銅箔の製造が困難となる。当該塩素濃度範囲(280ppm〜650ppm)では、電解析出により形成される析出結晶粒の粒径がnmレベルで安定化しているため、高い機械的強度を備える低プロファイル電解銅箔で、且つ、長期間保存したときの機械的強度の変動が顕著に小さくなる。 Moreover, it is preferable that the said electrolytic copper foil contains chlorine in the range of 280 ppm-650 ppm as the structural component . This chlorine is caused by the components contained in the electrolytic solution used in the production method described later. Here, when chlorine as a constituent component of the electrolytic copper foil is less than 150 ppm, the grain size of the crystal grains formed by electrolytic deposition is unlikely to be in the nm level, and the electrolytic copper foil having stable high mechanical strength is Don't be. Moreover, when the chlorine concentration in the electrolytic copper foil becomes low, the mechanical strength variation tends to increase when the electrolytic copper foil is stored for a long period of time. On the other hand, when chlorine as a constituent component of the electrolytic copper foil exceeds 650 ppm, the roughness of the deposited surface of the obtained electrolytic copper foil becomes large, and it becomes difficult to produce a low profile electrolytic copper foil. In the chlorine concentration range (280 ppm to 650 ppm), since the grain size of the precipitated crystal grains formed by electrolytic deposition is stabilized at the nm level, the low profile electrolytic copper foil having high mechanical strength and long The fluctuation in mechanical strength when stored for a period is significantly reduced.

そして、本件発明に係る電解銅箔は、その構成成分として、炭素を含有することも好ましい。炭素を含有することで、電解銅箔としての高強度化が図れ、同時にレーザー加工による孔明け性能が向上するからである。この炭素も、後述する製造方法で用いる電解液の含有成分に起因するものである。電解銅箔に含まれる炭素は、250ppm〜470ppm、より好ましくは250ppm〜450ppmの範囲であることが好ましい。炭素含有量が250ppm未満の場合には、電解銅箔としての高強度化が図れず、レーザー加工による孔明け性能も向上させ難い。一方、470ppmを超える炭素濃度になると、電解銅箔が脆化しやすく、伸び率が急激に低下して、同時に電気抵抗の著しい上昇が起こるため、コルソン合金箔の代替えとなりにくい。より好ましい炭素濃度範囲(250ppm〜450ppm)では、電解銅箔としての高強度化と伸び率とのバランスに優れ、且つ、安定して電気抵抗の顕著な上昇を招かないからである。 And it is also preferable that the electrolytic copper foil which concerns on this invention contains carbon as the structural component. By containing carbon, the strength of the electrolytic copper foil can be increased, and at the same time, the drilling performance by laser processing is improved. This carbon is also attributed to the components contained in the electrolytic solution used in the production method described later. The carbon contained in the electrolytic copper foil is preferably in the range of 250 ppm to 470 ppm, more preferably 250 ppm to 450 ppm. When the carbon content is less than 250 ppm, the strength of the electrolytic copper foil cannot be increased and it is difficult to improve the drilling performance by laser processing. On the other hand, when the carbon concentration exceeds 470 ppm, the electrolytic copper foil is easily embrittled, the elongation rate is rapidly reduced, and at the same time, the electric resistance is remarkably increased, so that it is difficult to substitute for the Corson alloy foil. This is because a more preferable carbon concentration range (250 ppm to 450 ppm) is excellent in the balance between high strength and elongation as an electrolytic copper foil and does not cause a significant increase in electrical resistance stably.

更に、当該電解銅箔は、その構成成分として窒素を40ppm〜180ppm、より好ましくは40ppm〜120ppmの範囲であることが好ましいこの窒素は、後述する製造方法で用いる電解液の含有成分に起因するもので、電解銅箔への硫黄成分の取り込みを促進する作用があると思われる。ここで、電解銅箔の構成成分としての窒素が40ppm未満となる電解液を用いると、製造する電解銅箔に対し、硫黄成分の適正量の取り込みが困難であり、電解銅箔の構成成分としての窒素が180ppmを超えると、硫黄の含有量も400ppmを超えるようになり、電解銅箔の析出組織が脆化を引き起こしやすく、伸び率が減少するため、耐折り曲げ特性の要求されるフレキシブル銅張積層板の製造原料として不適になる。より好ましい窒素濃度範囲(40ppm〜120ppm)であれば、電解銅箔の製造条件に多少の変動があったとしても、電解銅箔中の硫黄の含有量が400ppmを超えることはなく、脆化しやすい電解銅箔の析出組織が得られることが無くなる。 Further, the electrolytic copper foil preferably has nitrogen as a constituent component in a range of 40 ppm to 180 ppm, more preferably 40 ppm to 120 ppm . This nitrogen is attributed to the components contained in the electrolytic solution used in the production method described later, and seems to have an effect of promoting the incorporation of sulfur components into the electrolytic copper foil. Here, when an electrolytic solution in which nitrogen as a constituent component of the electrolytic copper foil is less than 40 ppm is used, it is difficult to incorporate an appropriate amount of the sulfur component with respect to the electrolytic copper foil to be manufactured. When the nitrogen content of the steel exceeds 180 ppm, the sulfur content also exceeds 400 ppm, and the deposited structure of the electrolytic copper foil tends to cause embrittlement and the elongation rate decreases. It becomes unsuitable as a manufacturing raw material for laminates. If it is a more preferable nitrogen concentration range (40 ppm to 120 ppm), the content of sulfur in the electrolytic copper foil does not exceed 400 ppm and easily embrittles even if there are some fluctuations in the production conditions of the electrolytic copper foil. A deposited structure of the electrolytic copper foil is not obtained.

そして、この電解銅箔は、導電率が49.3%IACS以上という導電性能を備える。なお、製造条件を最も適正に管理することで、当該電解銅箔の導電率を55%IACS以上とする事も可能である。ここで、市販されているコルソン合金箔の場合の導電率は、35%IACS〜60%IACSの範囲である。従って、本件発明に係る電解銅箔の場合には、コルソン合金箔と同等以上の電気的導電性能を備えることになる。ここで、本件発明に係る電解銅箔の導電率の上限値を明記していない。その理由は、導電率の値は、銅以外の成分の含有量、析出形成した銅結晶粒の粒径の相違等によって、変動するからである。経験的に言えば、上限値は78%IACS程度である。なお、ここで言う導電率(%IACS)は、標準軟銅(比抵抗1.7241μΩ・cm・20℃)の導電率を100%としたとき、同温同体積の他の物質の導電率との比で示したもので、数値が大きいほど電気的導電率が良い。 And this electrolytic copper foil is equipped with the electroconductivity that electrical conductivity is 49.3% IACS or more . In addition, it is also possible to make the electroconductivity of the said electrolytic copper foil 55% IACS or more by managing manufacturing conditions most appropriately. Here, the electrical conductivity in the case of a commercially available Corson alloy foil is in the range of 35% IACS to 60% IACS. Therefore, in the case of the electrolytic copper foil according to the present invention, the electric conductive performance equal to or higher than that of the Corson alloy foil is provided. Here, the upper limit of the electrical conductivity of the electrolytic copper foil according to the present invention is not specified. The reason is that the value of electrical conductivity varies depending on the content of components other than copper, the difference in the grain size of the deposited copper crystal grains, and the like. Empirically speaking, the upper limit is about 78% IACS. The conductivity (% IACS) mentioned here is the same as the conductivity of other substances at the same temperature and volume when the conductivity of standard annealed copper (specific resistance 1.7241 μΩ · cm · 20 ° C.) is 100%. This is expressed as a ratio. The larger the value, the better the electrical conductivity.

また、電解銅箔の析出結晶組織の中に、上述のような範囲で硫黄、炭素等を含有させることで、70kgf/mm以上と言う高い常態における引張り強さを備える電解銅箔になる。この高い機械的強度は、主に結晶粒微細化の効果が大きく寄与している。例えば、引張り試験における破断は、試験中の試料片の縁端部にマイクロクラックが発生し、そのマイクロクラックに引張り応力が集中し、クラックの伝播が起こって、破断に至ると考えられる。このときのクラック伝播は、結晶粒界に沿った伝播が主となる。従って、微細な結晶粒を備えていると、クラックの伝播経路が長くなり、破断応力が大きくなる。 Moreover, it becomes an electrolytic copper foil provided with the tensile strength in the high normal state of 70 kgf / mm < 2 > or more by containing sulfur, carbon, etc. in the precipitation crystal structure of an electrolytic copper foil in the above ranges. This high mechanical strength mainly contributes to the effect of crystal grain refinement. For example, the fracture in the tensile test is considered to be that microcracks occur at the edge of the sample piece under test, and the tensile stress concentrates on the microcracks, causing crack propagation and leading to fracture. The crack propagation at this time is mainly propagation along the crystal grain boundary. Therefore, if fine crystal grains are provided, the propagation path of cracks becomes long and the breaking stress increases.

そして、本件発明に係る電解銅箔の機械的特性として、常態における伸び率は、3%〜15%の範囲になる。この常態における伸び率の値が3%以上あれば、スルーホール基板を作成する際に、メカニカルドリルで銅張積層板に穴明け加工を行っても、フォイルクラックの発生が防止できる。一方、この常態伸び率の上限値は、本件発明に係る電解銅箔の実績を考慮した実測値の平均であり、経験的に15%程度である。   And as a mechanical characteristic of the electrolytic copper foil which concerns on this invention, the elongation rate in a normal state becomes the range of 3%-15%. If the value of the elongation rate in this normal state is 3% or more, the occurrence of foil cracks can be prevented even when a through-hole substrate is formed by drilling a copper-clad laminate with a mechanical drill. On the other hand, the upper limit of the normal elongation is an average of actually measured values in consideration of the performance of the electrolytic copper foil according to the present invention, and is about 15% empirically.

本件発明に係る電解銅箔の常態における機械的特性を左右する結晶組織は、析出開始面から析出終了面に向けて成長した結晶粒を備え、当該結晶粒の平均短径の長さが30nm〜110nm、平均長径の長さが80nm〜400nmであることが好ましい。ここで「析出開始面から析出終了面に向けて成長した結晶粒」と称しているのは、析出開始面から成長を始めた縦長の結晶粒を意味する。しかし、ここで言う結晶粒は、平均短径の長さが30nm〜110nm、平均長径の長さが80nm〜400nmであるために、10000倍を超える倍率でなければ結晶粒としての確認はできない。好ましくは、30000倍以上の観察倍率の使用が好ましい。従って、ガリウム(Ga)イオンを電界で加速したビームを細く絞った集束イオンビームを用いたFIB法で、電解銅箔の断面をスパッタリングエッチング加工して、そのエッチング表面に出現した結晶粒を走査型電子顕微鏡を使用して観察することが好ましい。   The crystal structure that affects the mechanical properties of the electrolytic copper foil according to the present invention in the normal state includes crystal grains grown from the precipitation start surface toward the precipitation end surface, and the average minor axis length of the crystal grains is 30 nm to The length of 110 nm and the average major axis is preferably 80 nm to 400 nm. Here, “crystal grains grown from the precipitation start surface toward the precipitation end surface” means vertically long crystal grains that have started growing from the precipitation start surface. However, the crystal grains mentioned here have an average minor axis length of 30 nm to 110 nm and an average major axis length of 80 nm to 400 nm, and therefore cannot be confirmed as crystal grains unless the magnification exceeds 10,000 times. Preferably, an observation magnification of 30000 times or more is used. Therefore, the FIB method using a focused ion beam obtained by squeezing a beam obtained by accelerating gallium (Ga) ions by an electric field is sputter-etched on the cross section of the electrolytic copper foil, and the crystal grains appearing on the etched surface are scanned. It is preferable to observe using an electron microscope.

以上に述べたような微細な結晶粒径を電解銅箔が備えることにより、70kgf/mm以上と言う高い常態における引張り強さ及び上述の伸び率が得られる。そして、電解銅箔中の硫黄、炭素、塩素等の含有成分量、電解電流、液温等の電解条件等に影響を受ける要素もあるが、常態で88kgf/mm以上の引張り強さを得る場合には、平均短径の長さが30nm〜60nm、平均長径の長さが80nm〜150nmの範囲とすることが好ましい。 When the electrolytic copper foil has such a fine crystal grain size as described above, a high tensile strength of 70 kgf / mm 2 or more and the above-described elongation can be obtained. And there are elements that are affected by the content of components such as sulfur, carbon, chlorine, etc. in the electrolytic copper foil, electrolysis conditions such as electrolysis current, liquid temperature, etc., but a tensile strength of 88 kgf / mm 2 or more is obtained under normal conditions. In this case, it is preferable to set the average minor axis length to 30 nm to 60 nm and the average major axis length to 80 nm to 150 nm.

また、本件発明に係る電解銅箔の特徴として、180℃×60分の加熱後であっても、結晶粒のサイズが1μm以下の範囲にある。一般に、圧延銅箔の場合には、その加工度を上げることで常態の引張り強さの値を大きくすることができる。しかし、このような塑性加工的に高強度化した圧延銅箔は、加熱すると、低温でも内蔵転移の再編成による回復現象を起こし再結晶化しやすく、焼鈍効果として容易に軟化する傾向がある。これに対し、電解銅箔の場合には、本来の性質として、低温焼鈍での軟化は起こりにくい。中でも、上述のような硫黄、炭素、塩素を所定量含有した電解銅箔の場合には、180℃×60分の加熱後においても、析出開始面から析出終了面に向けて成長した結晶粒を備え、当該結晶粒の平均短径の長さが25nm〜120nm、平均長径の長さが100nm〜500nmの結晶粒で構成された析出組織を備える。このことから、本件発明に係る電解銅箔は、180℃×60分の加熱を受けても、引張り強さの値が大きく低下しないことが理解できる。 In addition, as a feature of the electrolytic copper foil according to the present invention, the size of crystal grains is in the range of 1 μm or less even after heating at 180 ° C. for 60 minutes. Generally, in the case of a rolled copper foil, the value of the normal tensile strength can be increased by increasing the degree of processing. However, when such a rolled copper foil that has been strengthened plastically is heated, it tends to recrystallize due to the reorganization of the internal transition even at low temperatures, and tends to soften easily as an annealing effect. On the other hand, in the case of an electrolytic copper foil, as an original property, softening due to low-temperature annealing hardly occurs. In particular, in the case of an electrolytic copper foil containing a predetermined amount of sulfur, carbon, and chlorine as described above, even after heating at 180 ° C. for 60 minutes, the crystal grains grown from the precipitation start surface to the precipitation end surface And a precipitation structure composed of crystal grains having an average minor axis length of 25 nm to 120 nm and an average major axis length of 100 nm to 500 nm. From this, it can be understood that the electrolytic copper foil according to the present invention does not greatly decrease the tensile strength value even when heated at 180 ° C. for 60 minutes.

即ち、本件発明に係る電解銅箔は、180℃×60分の加熱を行った後においても、加熱後の引張り強さの値を常態引張り強さの値の85%以上に維持できるとも言える。このように、加熱後の引張り強さの値の低下が小さいのは、本件発明に係る電解銅箔の結晶粒がnmオーダーと微細で、且つ、結晶粒径のバラツキが小さく、電解時に内包される電解液の添加剤成分の結晶粒界への分布が均一なためと考えられる。この添加剤成分が、加熱時には金属銅の拡散バリアとして機能し、結晶粒の肥大化を抑制するため、結晶粒微細化の効果を加熱後も維持できると考えられる。そして、加熱後の引張り強さの値が常態引張る強さの値に対して、90%以上以上であれば、コルソン合金箔の代替品として、より好ましい。これに対し、従来の電解銅箔の場合、180℃×60分の加熱後の引張り強さの値は、常態引張り強さの値の60%以下となる。なお、ここで180℃×60分の加熱条件を選択したのは、一般的な銅張積層板の製造に採用されている加熱プレスの温度条件に近いからである。 That is, the electrolytic copper foil according to the present invention, 180 in after the heat of ° C. × 60 minutes, it can be said that the strength values of the tensile after heating can be maintained more than 85% of the normal tensile strength values. As described above, the decrease in the tensile strength after heating is small because the crystal grains of the electrolytic copper foil according to the present invention are fine on the order of nm, and the variation in the crystal grain size is small, which is included during electrolysis. This is because the distribution of the additive component of the electrolyte solution to the grain boundaries is uniform. Since this additive component functions as a diffusion barrier for metallic copper during heating and suppresses the enlargement of crystal grains, it is considered that the effect of crystal grain refinement can be maintained even after heating. Then, the intensity values normal pull strength values tensile after heating, if at least 90% or more, as a replacement for Corson alloy foil, more preferably. On the other hand, in the case of the conventional electrolytic copper foil, the value of the tensile strength after heating at 180 ° C. for 60 minutes is 60% or less of the value of the normal tensile strength. The reason why the heating condition of 180 ° C. × 60 minutes is selected here is that it is close to the temperature condition of the heating press employed in the production of a general copper-clad laminate.

また、本件発明に係る電解銅箔は、製造後30日経過後の常態引張り強さの値が70kgf/mm以上を維持できる。電解銅箔の機械的特性は、室温で保管しても、製造直後から経時的に変化して行き、製造後30日経過すると安定化し、その後室温で保管する限り顕著な機械的特性の変化が無くなる傾向がある。そこで、製造後30日経過した常態引張り強さを測定すれば、本件発明に係る電解銅箔の長期品質保証が事実上可能となる。 Moreover, the electrolytic copper foil which concerns on this invention can maintain the value of the normal state tensile strength after progress for 30 days after manufacture at 70 kgf / mm < 2 > or more. The mechanical properties of the electrolytic copper foil change over time even after storage at room temperature, stabilize after 30 days after manufacture, and stabilize significantly after storage at room temperature. There is a tendency to disappear. Therefore, if the normal tensile strength after 30 days from the production is measured, long-term quality assurance of the electrolytic copper foil according to the present invention becomes practically possible.

そして、本件発明に係る電解銅箔の180℃×60分の加熱後の伸び率の値は、3.0%以上、より好ましい実施態様では4.0%以上である。従来の低温アニール性に優れる電解銅箔では、180℃×60分の加熱後には、伸び率の値が常態伸び率の値に比べて大きくなる。これに対し、本件発明に係る電解銅箔は、180℃×60分の加熱後伸び率の値が、常態伸び率の値を基準として比較すると、ほぼ同等の値を示す。   And the value of the elongation rate after the heating for 180 degreeC x 60 minutes of the electrolytic copper foil which concerns on this invention is 3.0% or more, and is 4.0% or more in a more preferable embodiment. In the conventional electrolytic copper foil excellent in low temperature annealing property, the value of elongation becomes larger than the value of normal elongation after heating at 180 ° C. for 60 minutes. On the other hand, the electrolytic copper foil according to the present invention shows a substantially equivalent value when the value of the elongation after heating at 180 ° C. for 60 minutes is compared on the basis of the value of the normal elongation.

以上に述べた本件発明に係る電解銅箔の備える高い引張り強さ及び伸び率は、その結晶粒の微細さ故に発揮できる機械的特性である。そして更に、この結晶組織は、析出面付近の断面における常態の結晶粒子の「平均長径の長さ」と「平均短径の長さ」とが、[平均短径の長さ]/[平均長径の長さ]=0.1〜0.5の関係を備えることが好ましい。ここで、結晶粒子の平均長径の長さと平均短径の長さとのバランスは、その結晶粒子で構成された電解銅箔の高強度特性及び析出面の低プロファイル性能を同時に安定して得るという観点からは重要なものである。ここで、[平均短径の長さ]/[平均長径の長さ]が0.1未満の場合には、得られる電解銅箔の析出面の低プロファイル化が出来ず、析出面の表面粗さ(Rzjis)が2.0μmを超えるようになるため、ファインピッチ回路の形成が困難な電解銅箔となる。一方、[平均短径の長さ]/[平均長径の長さ]が0.5を超える場合には、結晶粒子の形状が角形状に近づいて行き、高強度化が出来にくい。 The above-described high tensile strength and elongation of the electrolytic copper foil according to the present invention are mechanical characteristics that can be exhibited because of the fineness of the crystal grains. Further, this crystal structure is such that the “average major axis length” and “average minor axis length” of the normal crystal particles in the cross section near the precipitation surface are [average minor axis length] / [average major axis]. It is preferable to have a relationship of [length] = 0.1 to 0.5. Here, the balance between the average major axis length and the average minor axis length of the crystal particles is the viewpoint that the high strength characteristics of the electrolytic copper foil composed of the crystal particles and the low profile performance of the precipitation surface can be obtained stably at the same time. From is important. Here, when [average minor axis length] / [average major axis length] is less than 0.1, the precipitation surface of the obtained electrolytic copper foil cannot be lowered in profile, and the surface roughness of the precipitation surface can be reduced. Since the thickness (Rzjis) exceeds 2.0 μm, the electrolytic copper foil is difficult to form a fine pitch circuit. On the other hand, when [average minor axis length] / [average major axis length] exceeds 0.5, the shape of the crystal particles approaches a square shape, making it difficult to increase the strength.

そして、本件発明に係る電解銅箔の結晶組織を構成する結晶粒は、微細且つ均一であるため、その析出面の凹凸形状が滑らかになる。この本件発明に係る電解銅箔の析出面の滑らかさを示す指標として、光沢度を採用した。当該析出面の光沢度[Gs(60°)]は、100以上である事が好ましい。後述する実施例では、当該光沢度[Gs(60°)]は、全て100以上である。   And since the crystal grain which comprises the crystal structure of the electrolytic copper foil which concerns on this invention is fine and uniform, the uneven | corrugated shape of the precipitation surface becomes smooth. Glossiness was adopted as an index indicating the smoothness of the deposited surface of the electrolytic copper foil according to the present invention. The glossiness [Gs (60 °)] of the precipitation surface is preferably 100 or more. In the examples described later, the glossiness [Gs (60 °)] is 100 or more.

なお、以上に述べてきた結晶粒の微細さを備えるが故に、本件発明に係る電解銅箔の析出表面の表面粗さは極めて低く、低プロファイル表面となる。以上に述べてきたような微細な結晶粒を備えることで、Rzjis=0.40μm〜1.80μmの範囲の表面粗さを備える析出表面の形成が可能になる。   In addition, since the fineness of the crystal grains described above is provided, the surface roughness of the deposited surface of the electrolytic copper foil according to the present invention is extremely low, and the surface becomes a low profile surface. By providing the fine crystal grains as described above, it is possible to form a precipitation surface having a surface roughness in the range of Rzjis = 0.40 μm to 1.80 μm.

以上に述べてきた電解銅箔に関しては、その厚さについての特段の限定はない。電解銅箔として一般的に製造される製品を考えると、7μm〜400μm、特に10μm〜40μmの範囲の厚さの電解銅箔として考えれば足りる。   There is no particular limitation on the thickness of the electrolytic copper foil described above. Considering a product generally produced as an electrolytic copper foil, it is sufficient to consider it as an electrolytic copper foil having a thickness in the range of 7 μm to 400 μm, particularly 10 μm to 40 μm.

本件発明に係る表面処理銅箔の形態: 本件発明に係る表面処理銅箔は、上述の電解銅箔の表面に粗化処理、防錆処理、シランカップリング剤処理のいずれか1種又は2種以上の表面処理を施したことを特徴とする。ここで言う表面処理は、用途別の要求特性を考慮し、接着強度、耐薬品性、耐熱性等を付与する目的で、電解銅箔の表面へ施される粗化処理、防錆処理、シランカップリング剤処理等である。 Form of surface-treated copper foil according to the present invention: The surface-treated copper foil according to the present invention is one or two of roughening treatment, rust-proofing treatment, and silane coupling agent treatment on the surface of the above-described electrolytic copper foil. The above surface treatment is performed. The surface treatment referred to here is roughening treatment, antirust treatment, silane applied to the surface of the electrolytic copper foil for the purpose of imparting adhesive strength, chemical resistance, heat resistance, etc. in consideration of the required properties for each application. Coupling agent treatment and the like.

ここで言う粗化処理とは、表面処理銅箔と絶縁層構成材料との密着性を物理的に向上させるための処理であり、一般的に電解銅箔の析出面上に施される。より具体的に例示すると、電解銅箔の表面(主に析出面側)に微細金属粒を付着形成させるか、エッチング法で粗化表面を形成する等の方法が採用される。そして、電解銅箔の表面に、微細金属粒を付着形成する場合には、微細金属粒を析出付着させるヤケめっき工程と、この微細銅粒の脱落を防止するための被せめっき工程とを組み合わせて施すのが一般的である。   The roughening treatment referred to here is a treatment for physically improving the adhesion between the surface-treated copper foil and the insulating layer constituting material, and is generally performed on the deposition surface of the electrolytic copper foil. More specifically, a method of adhering and forming fine metal particles on the surface (mainly the deposition surface side) of the electrolytic copper foil or forming a roughened surface by an etching method is employed. When fine metal particles are deposited on the surface of the electrolytic copper foil, the burn plating process for depositing and attaching the fine metal grains and the covering plating process for preventing the fine copper grains from falling off are combined. It is common to apply.

次に、防錆処理に関して説明する。この防錆処理では、銅張積層板及びプリント配線板等の製造過程で、表面処理銅箔の表面が酸化腐食することを防止するための被覆層として設ける。防錆処理の手法は、ベンゾトリアゾール、イミダゾール等を用いる有機防錆、もしくは亜鉛、クロメート、亜鉛合金等の無機防錆のいずれを採用しても問題は無く、使用目的に最適と考えられる防錆手法を選択すればよい。そして、有機防錆の場合は、有機防錆剤の浸漬塗布法、シャワーリング塗布法、電着法等の形成手法を採用することが可能である。無機防錆の場合は、電解法、無電解めっき法、スパッタリング法や置換析出法等を用い、防錆元素を電解銅箔層の表面上に析出させることが可能である。   Next, the rust prevention treatment will be described. In this rust prevention treatment, it is provided as a coating layer for preventing the surface of the surface-treated copper foil from being oxidized and corroded during the production process of the copper clad laminate, the printed wiring board and the like. There are no problems with the rust-proofing treatment, either organic rust-proofing using benzotriazole or imidazole, or inorganic rust-proofing such as zinc, chromate or zinc alloy. A method may be selected. And in the case of organic rust prevention, it is possible to employ | adopt formation methods, such as the immersion coating method of the organic rust preventive agent, the shower ring coating method, and the electrodeposition method. In the case of inorganic rust prevention, it is possible to deposit an antirust element on the surface of the electrolytic copper foil layer using an electrolysis method, an electroless plating method, a sputtering method, a displacement precipitation method, or the like.

そして、シランカップリング剤処理とは、粗化処理、防錆処理等が終了した後に、表面処理銅箔と絶縁層構成材料との密着性を、化学的に向上させるための処理である。ここで言う、シランカップリング剤処理に用いるシランカップリング剤としては、特に限定を要するものではない。使用する絶縁層構成材料、プリント配線板製造工程で使用するめっき液等の性状を考慮して、エポキシ系シランカップリング剤、アミノ系シランカップリング剤、メルカプト系シランカップリング剤等から任意に選択使用することができる。そして、シランカップリング剤層を形成するには、シランカップリング剤を含有する溶液を用いて、浸漬塗布、シャワーリング塗布、電着等の手法を採用することができる。   And a silane coupling agent process is a process for improving the adhesiveness of surface-treated copper foil and an insulating-layer constituent material chemically after a roughening process, a rust prevention process, etc. are complete | finished. The silane coupling agent used for the silane coupling agent treatment here is not particularly limited. Arbitrarily selected from epoxy-based silane coupling agents, amino-based silane coupling agents, mercapto-based silane coupling agents, etc. in consideration of the properties of the insulating layer constituent material to be used and the plating solution used in the printed wiring board manufacturing process Can be used. And in order to form a silane coupling agent layer, methods, such as dip coating, showering coating, and electrodeposition, can be employ | adopted using the solution containing a silane coupling agent.

本件発明に係る電解銅箔の製造形態: 本件発明に係る電解銅箔の製造方法は、硫酸系銅電解液を用いた電解法を用いて、上述の電解銅箔を製造する方法である。そして、ここで用いる硫酸系銅電解液の組成に特徴がある。この硫酸系銅電解液は、以下に述べる添加剤A〜添加剤Cを含み、塩素濃度が40ppm〜80ppmであるものを用いることが好ましい。添加剤A〜添加剤C及び塩素の順で説明する。なお、ここで言う硫酸系銅電解液中の銅濃度は50g/L〜120g/L、より好ましくは50g/L〜80g/Lの範囲を用いる。また、フリー硫酸濃度は60g/L〜250g/L、より好ましくは80g/L〜150g/Lの範囲のものを前提として考える。 Manufacturing method of electrolytic copper foil according to the present invention: The manufacturing method of the electrolytic copper foil according to the present invention is a method of manufacturing the above-described electrolytic copper foil using an electrolytic method using a sulfuric acid-based copper electrolytic solution. The composition of the sulfuric acid-based copper electrolyte used here is characteristic. This sulfuric acid-based copper electrolyte preferably contains an additive A to an additive C described below and has a chlorine concentration of 40 ppm to 80 ppm. The additives A to C and chlorine will be described in this order. In addition, the copper concentration in the sulfuric acid-type copper electrolyte said here uses 50 g / L-120 g / L, More preferably, the range of 50 g / L-80 g / L is used. The free sulfuric acid concentration is assumed to be in the range of 60 g / L to 250 g / L, more preferably 80 g / L to 150 g / L.

添加剤Aに関して説明する。この添加剤Aは、「複素環にベンゼン環とNとを含み同時にメルカプト基が結合している構造を有する化合物」、「複素環に1以上のNを含み同時にSH基が結合した5員環構造を有する化合物」、「チオ尿素系化合物」から選ばれる1以上の化合物である。この添加剤Aは、電解銅箔の電析時に結晶粒界に均一に分布し、析出銅の結晶粒の微細化を促進する効果に優れ、電解銅箔の製造の安定化に寄与する。この結果、高い引張り強さを備える電解銅箔が得られる。これらの添加剤Aと同様の効果を示す添加剤として、従来からチオ尿素が知られている。添加剤B、添加剤Cとの組み合わせること無く、このチオ尿素を単独で用いると、銅電解液中で低分子量の分解物が生成するため、その除去が困難で、電析した電解銅箔へ包含されたり、銅の析出状態が不安定化するため好ましくない。 The additive A will be described. This additive A includes “a compound having a structure in which a heterocyclic ring contains a benzene ring and N at the same time and a mercapto group is bonded”, and “a five-membered ring in which at least one N is included in the heterocyclic ring and an SH group is simultaneously bonded. One or more compounds selected from “compound having a structure” and “thiourea compound”. This additive A is uniformly distributed at the grain boundaries during electrodeposition of the electrolytic copper foil, is excellent in the effect of promoting the refinement of the crystal grains of the deposited copper, and contributes to the stabilization of the production of the electrolytic copper foil. As a result, an electrolytic copper foil having a high tensile strength is obtained. Conventionally, thiourea is known as an additive exhibiting the same effects as these additives A. When this thiourea is used alone without being combined with additive B and additive C, a decomposition product with a low molecular weight is generated in the copper electrolyte, so that it is difficult to remove it. It is not preferable because it is included or the precipitation state of copper becomes unstable.

これに対し、添加剤Aとしての「複素環にベンゼン環とNとを含み同時にメルカプト基が結合している構造を有する化合物」は、ベンゼン環という安定した化学構造を備え、更に、Nを含む複素環構造をとっているため、硫酸銅溶液中で安定構造をとり、分解が困難で低分子量の分解物が生成しにくく好ましい。そして、メルカプト基が複素環に結合し、スルホン基がベンゼン環に結合した構造をとれば、分子内電子の極性が大きくなり、水溶液に対する溶解が容易で、硫酸系銅電解液に用いる添加剤として好ましいものとなる。   On the other hand, “a compound having a structure in which a heterocyclic ring contains a benzene ring and N and simultaneously a mercapto group is bonded” as additive A has a stable chemical structure called a benzene ring, and further contains N. Since it has a heterocyclic structure, it is preferable that it has a stable structure in a copper sulfate solution, is difficult to decompose, and does not easily generate a low molecular weight decomposition product. If the mercapto group is bonded to the heterocyclic ring and the sulfone group is bonded to the benzene ring, the polarity of the intramolecular electrons is increased and the solution is easily dissolved in an aqueous solution. This is preferable.

この「添加剤Aである複素環にベンゼン環とNとを含み同時にメルカプト基が結合している構造を有する化合物」を具体的に言えば、イミダゾール系化合物、チアゾール系化合物及びテトラゾール系化合物である。そして、トリアゾール系化合物及びオキサゾール系化合物等も、ここに含まれる。   Specifically, the “compound having a structure in which the heterocyclic ring as additive A includes a benzene ring and N and simultaneously has a mercapto group bonded” is an imidazole compound, a thiazole compound, or a tetrazole compound. . Further, triazole compounds and oxazole compounds are also included here.

また、上記添加剤Aのベンゼン環には、スルホン基が結合している化学構造のものを用いることがより好ましい。ベンゼン環にスルホン基が結合した化学構造の化合物は、硫酸系銅電解液中で、極めて良好な安定性を示す。その結果、溶液の性状変化が小さく、電解状態が安定化し、溶液寿命も長くなる。   It is more preferable to use a chemical structure having a sulfone group bonded to the benzene ring of the additive A. A compound having a chemical structure in which a sulfone group is bonded to a benzene ring exhibits extremely good stability in a sulfuric acid-based copper electrolyte. As a result, the property change of the solution is small, the electrolytic state is stabilized, and the solution life is also prolonged.

以下、上述した構造を有する添加剤Aを、より具体的に言えば、2−メルカプト−5−ベンズイミダゾールスルホン酸(以下、「2M−5S」と称する。)、3(5−メルカプト−1H−テトラゾールイル)ベンゼンスルホナート(以下、「MSPMT−C」と称する。)又は2−メルカプトベンゾチアゾール(以下、「WM」と称する。)を用いることが好ましい。以下、2M−5Sの構造式を化1に、MSPMT−Cの構造式を化2に、そして、WMの構造式を化3に示す。そして、これらの化合物を実際に使用するにあたっては、入手が容易である易水溶性の塩類、例えば後述する実施例で使用したようなNa塩等の状態で用いることが出来る。   Hereinafter, more specifically speaking, the additive A having the above-described structure is 2-mercapto-5-benzimidazolesulfonic acid (hereinafter referred to as “2M-5S”), 3 (5-mercapto-1H— It is preferable to use tetrazolyl) benzenesulfonate (hereinafter referred to as “MSPMT-C”) or 2-mercaptobenzothiazole (hereinafter referred to as “WM”). Hereinafter, the structural formula of 2M-5S is shown in Chemical Formula 1, the structural formula of MSPMT-C is shown in Chemical Formula 2, and the structural formula of WM is shown in Chemical Formula 3. And when actually using these compounds, they can be used in the state of readily water-soluble salts that are easily available, such as Na salts as used in the examples described later.

Figure 0005588607
Figure 0005588607

Figure 0005588607
Figure 0005588607

Figure 0005588607
Figure 0005588607

次に、添加剤Aとしての「複素環に1以上のNを含み同時にSH基が結合した5員環構造を有する化合物」とは、イミダゾール系化合物、チオール系化合物である。これらの化合物を、より具体的に言えば、以下の化4として示す2−メルカプト−イミダゾール(以下、「2MI」と称する。)、化5として示す2−チアゾリン−2−チオール(以下、「2TT」と称する。)である。   Next, the “compound having a 5-membered ring structure in which one or more N is included in the heterocyclic ring and SH group is simultaneously bonded” as the additive A is an imidazole compound or a thiol compound. More specifically, these compounds are represented by 2-mercapto-imidazole (hereinafter referred to as “2MI”) shown as the following chemical formula 4, 2-thiazoline-2-thiol (hereinafter referred to as “2TT” shown as the chemical formula 5). ").

Figure 0005588607
Figure 0005588607

Figure 0005588607
Figure 0005588607

また、添加剤Aとしてのチオ尿素又はその誘導体は、添加剤B及び添加剤Cと組み合わせることで使用が可能になる。中でも、「炭素数が2以上の官能基を有するチオ尿素系化合物」を用いることが好ましい。例えば、炭素数が2以上のアルカン基を両端に有するチオ尿素系化合物は、チオ尿素の極性がアルカン基により弱められる。従って、銅イオンとの反応性を向上させる[=S]の構造を有しつつ、電解反応時においてもチオ尿素のような分解挙動を示しにくい。従って、これらの電解反応時に分解しにくいチオ尿素系化合物を用いれば、チオ尿素を用いた場合に生じる不具合が発生し難くなる。   Further, thiourea or its derivative as additive A can be used in combination with additive B and additive C. Among these, “a thiourea compound having a functional group having 2 or more carbon atoms” is preferably used. For example, in a thiourea compound having an alkane group having 2 or more carbon atoms at both ends, the polarity of thiourea is weakened by the alkane group. Therefore, it has a [= S] structure that improves the reactivity with copper ions, and hardly exhibits a decomposition behavior like thiourea even during an electrolytic reaction. Therefore, if a thiourea compound that does not easily decompose during these electrolytic reactions is used, problems that occur when thiourea is used are less likely to occur.

「炭素数が2以上のアルカン基を両端に有するチオ尿素系化合物」を具体的に例示すると、その化学構造的に安定性に優れたN,N’−ジエチルチオ尿素(以下、「EUR」と称する。)を用いることが好ましい。以下の化6にEURの構造式を示す。このEURは、その化学構造式から理解できるように、N及びSの化学構造配置が、チオ尿素と同様である。また、エチル基を両端に有することで、末端基の活性が弱く、電解液中での安定性が向上すると考えられる。   Specifically, “a thiourea compound having an alkane group having 2 or more carbon atoms at both ends” is specifically exemplified. N, N′-diethylthiourea (hereinafter referred to as “EUR”) having excellent chemical structure stability. .) Is preferably used. The structural formula of EUR is shown in Chemical Formula 6 below. As can be understood from the chemical structural formula of this EUR, the chemical structure arrangement of N and S is the same as that of thiourea. Moreover, it is thought that by having an ethyl group at both ends, the activity of the terminal group is weak and the stability in the electrolytic solution is improved.

Figure 0005588607
Figure 0005588607

以上に述べてきた添加剤Aの中から、2種以上を選択的に用いて、これらを併用することも可能である。添加剤Aの異なる成分を併用しても、添加剤Aとしての効果に変化はなく、むしろ混合使用することによって、硫酸系銅電解液中の銅濃度、液温等に応じた、電解液としての溶液性状の調整が容易になる場合がある。   Two or more of the additives A described above can be selectively used, and these can be used in combination. Even if different components of additive A are used in combination, there is no change in the effect as additive A. Rather, by using it as a mixture, as an electrolytic solution according to the copper concentration, liquid temperature, etc. in the sulfuric acid-based copper electrolytic solution It may be easy to adjust the solution properties.

従って、硫酸系銅電解液中の当該添加剤Aの濃度(2種以上を用いる場合は合算濃度)は、1ppm〜50ppmであることが好ましい。より好ましくは3ppm〜40ppmである。硫酸系銅電解液中の添加剤Aの濃度が1ppm未満の場合には、電解により析出する電解銅箔に取り込まれる添加剤Aの量が不足し、得られる電解銅箔が大きな機械的強度を得られなくなり、当該機械的強さの経時変化も大きくなる。一方、当該添加剤Aの濃度が50ppmを越えると、電解銅箔の析出面の滑らかさが損なわれ、光沢度が低下し、大きな機械的強度を得ることも困難になる。また、当該添加剤Aの群には、種々の分子量を持つ添加剤が含まれていることを考慮すると、モル濃度換算で管理することも好ましい。この場合、添加剤Aをモル濃度換算で10μmol/l〜110μmol/lの範囲で管理する事が好ましい。当該添加剤Aの濃度がモル濃度換算10μmol/l未満となると、電解により析出する電解銅箔に取り込まれる添加剤Aの量が不足し、得られる電解銅箔が大きな機械的強度を得られなくなり、当該機械的強度の経時変化も大きくなる。一方、当該添加剤Aの濃度がモル濃度換算110μmol/lを越えると、電解銅箔の析出面の滑らかさが損なわれ、光沢度が低下し、大きな機械的強度を得ることも困難になる。この銅電解液中の添加剤Aの含有量は、HPLC(High Performance Liquid Chromatography)を用いて確認することが可能である。   Therefore, it is preferable that the concentration of the additive A in the sulfuric acid-based copper electrolyte (total concentration when two or more types are used) is 1 ppm to 50 ppm. More preferably, it is 3 ppm to 40 ppm. When the concentration of additive A in the sulfuric acid-based copper electrolyte is less than 1 ppm, the amount of additive A taken into the electrolytic copper foil deposited by electrolysis is insufficient, and the resulting electrolytic copper foil has a large mechanical strength. It cannot be obtained, and the change with time of the mechanical strength increases. On the other hand, if the concentration of the additive A exceeds 50 ppm, the smoothness of the deposited surface of the electrolytic copper foil is impaired, the glossiness is lowered, and it is difficult to obtain a large mechanical strength. In consideration of the fact that the additive A group includes additives having various molecular weights, it is also preferable to manage them in terms of molar concentration. In this case, it is preferable to manage the additive A in the range of 10 μmol / l to 110 μmol / l in terms of molar concentration. When the concentration of the additive A is less than 10 μmol / l in terms of molar concentration, the amount of the additive A taken into the electrolytic copper foil deposited by electrolysis is insufficient, and the obtained electrolytic copper foil cannot obtain a large mechanical strength. The change in mechanical strength with time is also increased. On the other hand, when the concentration of the additive A exceeds 110 μmol / l in terms of molar concentration, the smoothness of the deposited surface of the electrolytic copper foil is impaired, the glossiness is lowered, and it is difficult to obtain a large mechanical strength. The content of the additive A in the copper electrolyte can be confirmed using HPLC (High Performance Liquid Chromatography).

なお、以上に具体的化合物名を特定して述べてきた添加剤Aは、実施例で使用したものを例示しているに過ぎない。従って、以上に述べてきた特徴的化学構造を備え、同様の効果を発揮する化合物であれば、いずれの化合物の使用も可能であることを、念のために明記しておく。   In addition, the additive A which specified and described the specific compound name above has only illustrated what was used in the Example. Therefore, it should be clearly noted that any compound can be used as long as it has the characteristic chemical structure described above and exhibits the same effect.

添加剤Bに関して説明する。この添加剤Bは、活性硫黄化合物のスルホン酸塩である。この添加剤Bは、得られる電解銅箔の表面の光沢化を促進するように作用する。添加剤Bを具体的に言えば、3−メルカプト−1−プロパンスルホン酸(以下、「MPS」と称する。)又はビス(3−スルホプロピル)ジスルフィド(以下、「SPS」と称する。)のいずれか又は混合物を用いることが好ましい。中でも、SPSが、当該電解液中で光沢剤としての効果を発揮すると考えられる。しかし、このSPSは、硫酸系銅電解液中にMPSを添加すると、当該溶液中で重合して2量体化する場合もある。従って、SPSの直接添加を行うこと無く、硫酸系銅電解液中にMPSを添加して、これをSPSに転化して用いても構わない。ここで、化7にMPSの構造式を、化8にSPSの構造式を示す。これら構造式の比較から、SPSがMPSの2量体であることが理解できる。   The additive B will be described. This additive B is a sulfonate salt of an active sulfur compound. This additive B acts to promote glossing of the surface of the obtained electrolytic copper foil. Specifically speaking, additive B is either 3-mercapto-1-propanesulfonic acid (hereinafter referred to as “MPS”) or bis (3-sulfopropyl) disulfide (hereinafter referred to as “SPS”). It is preferable to use a mixture. Among them, it is considered that SPS exhibits the effect as a brightener in the electrolytic solution. However, when MPS is added to the sulfuric acid copper electrolyte, this SPS may be polymerized in the solution to dimerize. Therefore, without adding SPS directly, MPS may be added to the sulfuric acid-based copper electrolyte and converted to SPS for use. Here, the structural formula of MPS is shown in Chemical formula 7, and the structural formula of SPS is shown in Chemical formula 8. From the comparison of these structural formulas, it can be understood that SPS is a dimer of MPS.

Figure 0005588607
Figure 0005588607

Figure 0005588607
Figure 0005588607

そして、当該添加剤Bの硫酸系銅電解液中の濃度は、1ppm〜80ppmの範囲であることが好ましく、より好ましい範囲は10ppm〜70ppm、更に好ましい範囲は10ppm〜60ppmである。当該濃度が1ppm未満の場合には、電解銅箔の析出面の光沢が失われると同時に、高い機械的強度の電解銅箔を安定して得ることが困難になる。一方、当該濃度が80ppmを超えると、銅の析出状態が不安定になる傾向にあり、高い機械的強度の電解銅箔を安定して得ることが困難になる。なお、添加剤Bの濃度は、濃度計算を容易にするために、ナトリウム塩に換算した値を示した。   The concentration of the additive B in the sulfuric acid copper electrolyte is preferably in the range of 1 ppm to 80 ppm, more preferably in the range of 10 ppm to 70 ppm, and still more preferably in the range of 10 ppm to 60 ppm. If the concentration is less than 1 ppm, the gloss of the deposited surface of the electrolytic copper foil is lost, and at the same time, it is difficult to stably obtain the electrolytic copper foil with high mechanical strength. On the other hand, if the concentration exceeds 80 ppm, the copper deposition state tends to be unstable, and it becomes difficult to stably obtain an electrolytic copper foil having high mechanical strength. The concentration of the additive B is a value converted to a sodium salt in order to facilitate concentration calculation.

添加剤Cについて説明する。この添加剤Cは、環状構造を持つ4級アンモニウム塩重合体である。この添加剤Cは、電解法で製造される電解銅箔の表面の平滑化を促進するように作用する。そして、具体的には、添加剤Cとして、ジアリルジメチルアンモニウムクロライド(以下、「DDAC」と称する。)重合体を用いることが好ましい。DDACは、4級アンモニウム塩が重合体構造をとる際に環状構造を成すものであり、環状構造の一部は4級アンモニウムの窒素原子で構成されることになる。そして、DDAC重合体には、5員環や6員環の環状構造等の複数の形態が存在する。しかし、実際の重合体の化学構造は、合成条件により決定づけられ、1種又は2種以上の化学構造を持つものが混在していると考えられる。従って、これら重合体の内、ここでは5員環構造をとっている化合物を代表とし、塩素イオンを対イオンとしたものを化9として以下に示している。このDDAC重合体とは、以下に示す化9のように、DDACが2量体以上の重合体構造をとっているものである。   The additive C will be described. This additive C is a quaternary ammonium salt polymer having a cyclic structure. This additive C acts to promote the smoothing of the surface of the electrolytic copper foil produced by the electrolytic method. Specifically, it is preferable to use a diallyldimethylammonium chloride (hereinafter referred to as “DDAC”) polymer as the additive C. DDAC forms a cyclic structure when the quaternary ammonium salt takes a polymer structure, and a part of the cyclic structure is composed of a quaternary ammonium nitrogen atom. The DDAC polymer has a plurality of forms such as a 5-membered ring and a 6-membered ring structure. However, the chemical structure of the actual polymer is determined by the synthesis conditions, and it is considered that those having one or more chemical structures are mixed. Accordingly, among these polymers, compounds having a five-membered ring structure are represented here, and those having chlorine ions as counter ions are shown as chemical formula 9 below. This DDAC polymer has a polymer structure in which DDAC is a dimer or more, as shown in Chemical Formula 9 below.

Figure 0005588607
Figure 0005588607

そして、当該添加剤Cの、硫酸系銅電解液中の濃度は0.5ppm〜100ppmの範囲であることが好ましく、より好ましい範囲は10ppm〜80ppm、更に好ましくは20ppm〜70ppmである。硫酸系銅電解液中の添加剤Cの濃度が0.5ppm未満の場合には、電解銅箔の析出面の平滑化効果が不十分となり、SPSの濃度をいかに高めても、高い機械的強度を得るために必要な微細な結晶粒が得られず、当該析出面が粗くなり低プロファイル表面を得ることが困難になる。一方、当該添加剤Cの濃度が100ppmを超えても、銅の析出面を平滑にする効果は向上せず、むしろ析出状態が不安定になって、高い機械的強度を安定して得ることが困難になる。   And it is preferable that the density | concentration in the sulfuric acid type copper electrolyte solution of the said additive C is the range of 0.5 ppm-100 ppm, The more preferable range is 10 ppm-80 ppm, More preferably, it is 20 ppm-70 ppm. When the concentration of additive C in the sulfuric acid-based copper electrolyte is less than 0.5 ppm, the smoothing effect of the deposited surface of the electrolytic copper foil is insufficient, and no matter how high the SPS concentration is, high mechanical strength can be obtained. As a result, the fine crystal grains necessary to obtain the low-profile surface cannot be obtained. On the other hand, even if the concentration of the additive C exceeds 100 ppm, the effect of smoothing the copper precipitation surface is not improved, but rather the precipitation state becomes unstable, and high mechanical strength can be stably obtained. It becomes difficult.

更に、前記硫酸系銅電解液中における、前記添加剤Bの濃度と前記添加剤Cの濃度との重量濃度比[B濃度]/[C濃度]の値が0.07〜1.4であることが好ましい。前述のように、添加剤Bと添加剤Cとは、共に高濃度になると析出状態が不安定になる傾向がある。ところが、この銅の析出状態が不安定になる傾向は、一方の成分のみが高濃度となったときに特に顕著になる。従って、前記添加剤Bの濃度と前記添加剤Cの濃度との重量濃度比[B濃度]/[C濃度]の値を0.07〜1.4とすることによって、両添加剤が安定した効果を発揮し、電解操業の安定性も向上する。そして、重量濃度比[B濃度]/[C濃度]の値が0.07〜1.4であれば、後述する塩素添加の効果を発揮させやすくなり、より好ましい。   Further, the weight concentration ratio [B concentration] / [C concentration] between the concentration of the additive B and the concentration of the additive C in the sulfuric acid-based copper electrolyte is 0.07 to 1.4. It is preferable. As described above, both additive B and additive C tend to be unstable when the concentration is high. However, the tendency of the copper deposition state to become unstable is particularly noticeable when only one component has a high concentration. Therefore, by setting the value of the weight concentration ratio [B concentration] / [C concentration] between the concentration of the additive B and the concentration of the additive C to 0.07 to 1.4, both additives are stabilized. It is effective and improves the stability of electrolytic operation. And if the value of weight concentration ratio [B density | concentration] / [C density | concentration] is 0.07-1.4, it will become easy to exhibit the effect of the chlorine addition mentioned later, and is more preferable.

このような、前記硫酸系銅電解液中の、添加剤A〜添加剤Cの成分バランスが最も重要である。これらの添加剤成分の量的バランスが、上記範囲を逸脱した銅電解液を用いて電解銅箔を製造しても、その電解銅箔は、高い機械的強度を得ることの可能な微細な析出結晶粒を備えず、同時に、平滑で光沢のある析出面が得られず低プロファイル表面が得られなくなる。従って、これらのバランスを良好に維持することで、安定して本件発明に係る極めて大きな機械的強度を有する電解銅箔の製造が可能になる。   The component balance of additive A to additive C in the sulfuric acid copper electrolyte is most important. Even when an electrolytic copper foil is produced using a copper electrolyte whose quantitative balance of these additive components deviates from the above range, the electrolytic copper foil is a fine precipitate capable of obtaining high mechanical strength. No crystal grains are provided, and at the same time, a smooth and glossy precipitation surface cannot be obtained and a low profile surface cannot be obtained. Therefore, by maintaining these balances well, it is possible to stably produce an electrolytic copper foil having extremely large mechanical strength according to the present invention.

そして、前記硫酸系銅電解液中の塩素濃度に関して述べる。この塩素濃度は、40ppm〜80ppmの範囲にあることが重要である。この範囲の塩素濃度を採用することで、上記硫黄、炭素、塩素の各成分をバランス良く含有し、且つ、微細な結晶粒を含んだ高強度の電解銅箔の安定製造が可能になる。このときの塩素濃度は、添加剤A〜添加剤Cを添加した後の状態で、40pm〜80ppm、より好ましくは60ppm〜80ppmである。この、塩素濃度が40ppm未満の場合には、得られた電解銅箔に必要量の硫黄、炭素、塩素の各成分を含有させることができず、電解銅箔の機械的強度が低下する傾向が大きくなる。一方、塩素濃度が80ppmを超えると、コルソン合金並みの高い機械的強度の電解銅箔を得るために必要な電析状態が得られ難くなる。また、この硫酸系銅電解液中の塩素濃度の調整を必要とする場合には、塩酸又は塩化銅を用いて調整することが好ましい。硫酸系銅電解液の溶液性状を変化させないからである。   The chlorine concentration in the sulfuric acid copper electrolyte will be described. It is important that this chlorine concentration is in the range of 40 ppm to 80 ppm. By adopting a chlorine concentration in this range, it is possible to stably produce a high-strength electrolytic copper foil containing the above-mentioned components of sulfur, carbon, and chlorine in a well-balanced manner and containing fine crystal grains. The chlorine concentration at this time is 40 pm to 80 ppm, more preferably 60 ppm to 80 ppm in a state after the additives A to C are added. When the chlorine concentration is less than 40 ppm, the obtained electrolytic copper foil cannot contain the required amounts of sulfur, carbon, and chlorine components, and the mechanical strength of the electrolytic copper foil tends to decrease. growing. On the other hand, when the chlorine concentration exceeds 80 ppm, it is difficult to obtain an electrodeposition state necessary for obtaining an electrolytic copper foil having a mechanical strength as high as that of the Corson alloy. Moreover, when it is necessary to adjust the chlorine concentration in the sulfuric acid-based copper electrolyte, it is preferable to adjust using hydrochloric acid or copper chloride. This is because the solution properties of the sulfuric acid-based copper electrolyte are not changed.

本件発明に係る銅張積層板の形態: 本件発明に係る銅張積層板は、上述の表面処理電解銅箔を絶縁層構成材料と張合わせて得られることを特徴とするものである。ここで言う銅張積層板の製造方法に関しては、特段の限定はない。但し、ここで言う銅張積層板の概念には、リジッド銅張積層板及びフレキシブル銅張積層板の双方が含まれる。リジッド銅張積層板であれば、ホットプレス方式や連続ラミネート方式を用いて製造することが可能である。そして、フレキシブル銅張積層板であれば、従来技術であるロールラミネート方式やキャスティング方式を用いることが可能である。 Form of the copper clad laminate according to the present invention: The copper clad laminate according to the present invention is obtained by bonding the above-mentioned surface-treated electrolytic copper foil with an insulating layer constituting material. There is no special limitation regarding the manufacturing method of the copper clad laminated board said here. However, the concept of the copper clad laminate mentioned here includes both a rigid copper clad laminate and a flexible copper clad laminate. If it is a rigid copper clad laminated board, it can be manufactured using a hot press system or a continuous laminating system. And if it is a flexible copper clad laminated board, it is possible to use the roll lamination system and the casting system which are the prior art.

そして、本件発明に係る前記リジッド銅張積層板を用いてリジッドプリント配線板が得られ、電解銅箔層の機械的強度が極めて大きいため、物理的外力によるスクラッチ、断線不良等の少ない高品質なファインピッチ回路を備えることになる。また、フレキシブル銅張積層板は、その屈曲性と軽量性とが要求されるフレキシブルプリント配線板の製造に用いられる。本件発明に係る電解銅箔を用いたフレキシブル銅張積層板は、形成した導体の機械的強度が極めて大きいため、高屈曲性及び高いプリント配線板強度を示す。しかも、本件発明に係る電解銅箔は、低プロファイルであるため、フレキシブルプリント配線板に求められるレベルのファインパターン回路の形成に好適である。特に、TABテープのデバイスホールのフライングリードにICチップをボンディングする際のフライングリードの曲がり、ボンディング圧による伸びが解消できる。   And since a rigid printed wiring board is obtained using the rigid copper clad laminate according to the present invention, and the mechanical strength of the electrolytic copper foil layer is extremely high, there are few scratches due to physical external forces, poor disconnection, etc. A fine pitch circuit will be provided. In addition, the flexible copper clad laminate is used for manufacturing a flexible printed wiring board that is required to be flexible and lightweight. The flexible copper-clad laminate using the electrolytic copper foil according to the present invention exhibits high flexibility and high printed wiring board strength because the formed conductor has extremely high mechanical strength. And since the electrolytic copper foil which concerns on this invention is a low profile, it is suitable for formation of the fine pattern circuit of the level calculated | required by a flexible printed wiring board. In particular, the bending of the flying lead when the IC chip is bonded to the flying lead in the device hole of the TAB tape, and elongation due to the bonding pressure can be eliminated.

以下、本件発明に係る電解銅箔及びその製造方法等の理解を容易にするため実施例を示す。   Hereinafter, examples are shown to facilitate understanding of the electrolytic copper foil and the manufacturing method thereof according to the present invention.

この実施例では、硫酸系銅電解液として、硫酸銅溶液であって銅濃度80g/L、フリー硫酸濃度140g/Lに調整した基本溶液を用い、表1に示す各添加剤濃度になるように調整した。添加剤BとしてMPS−Na(MPSのナトリウム塩)、添加剤CとしてDDAC重合体(センカ(株)製ユニセンスFPA100L)、添加剤Aとして、2M−5S、MSPMT−C、2MI、2TT及びEURから選択された1種のいずれかを用い、塩素濃度の調整には塩酸を用いた。そして、表1に示す添加剤の配合が異なる組成の硫酸系銅電解液を用いて、試料1〜試料8の8種類の電解銅箔を製造した。上記実施例に係る試料1〜試料8の液組成及び電解条件は、比較例の液組成及び電解条件と併せて表1に掲載する。   In this example, as a sulfuric acid-based copper electrolyte, a basic solution adjusted to a copper concentration of 80 g / L and a free sulfuric acid concentration of 140 g / L was used, so that each additive concentration shown in Table 1 was obtained. It was adjusted. MPS-Na (MPS sodium salt) as additive B, DDAC polymer (Senka Co., Ltd. Unisense FPA100L) as additive C, and additive A from 2M-5S, MSPMT-C, 2MI, 2TT and EUR One of the selected ones was used, and hydrochloric acid was used to adjust the chlorine concentration. And 8 types of electrolytic copper foils of Sample 1 to Sample 8 were manufactured using sulfuric acid-based copper electrolytes having different compositions of additives shown in Table 1. The liquid compositions and electrolysis conditions of Samples 1 to 8 according to the above examples are listed in Table 1 together with the liquid compositions and electrolysis conditions of Comparative Examples.

電解銅箔の作成は、陰極として表面を#2000の研磨紙を用いて研磨を行ったチタン板電極を、陽極にはDSAを用いて、厚さ12μm〜18μmの電解銅箔を作成した。これらの電解銅箔の光沢面(析出面の反対側の面)の表面粗さ(Rzjis)は、0.84μmであった。各特性の評価結果は、以下の比較例及び参考例と対比可能なように表2に纏めて示す。   The electrolytic copper foil was prepared by using a titanium plate electrode whose surface was polished with # 2000 polishing paper as the cathode and DSA as the anode, and an electrolytic copper foil having a thickness of 12 μm to 18 μm was prepared. The surface roughness (Rzjis) of the glossy surface (surface opposite to the deposition surface) of these electrolytic copper foils was 0.84 μm. The evaluation results of each characteristic are summarized in Table 2 so that they can be compared with the following comparative examples and reference examples.

ここで、各種の測定条件等を述べておく。結晶粒径の測定は、走査型電子顕微鏡を用いて、加速電圧:20kV、観察倍率:×30,000、アパーチャー径:60mm、High Current modeを用いて、観察試料を70°に傾けて、方位差5°以上で粒界とみなし、結晶粒径測定を行った。なお、測定領域、ステップサイズは、結晶の大きさにより、下記の2種類の条件を採用した。実施例に係る試料1〜試料3及び試料5の常態および熱後の結晶粒径の測定は、測定領域:2×2μm、ステップサイズ:10nmとした。そして、以下に述べる比較例の比較試料B及び比較試料Cの常態および熱後結晶粒径の測定は、測定領域:5×5μm、ステップサイズ:30nmとした。そして、引張り強さ及び伸び率の測定に関しては、IPC−TM−650に準拠して行った。また、表面粗さの測定に関しては、JIS B 0601−2001に準拠して行った。さらに、光沢度の測定は、JIS Z 8741−1997に準拠して行った。以下の比較例も同様である。 Here, various measurement conditions and the like will be described. The crystal grain size was measured using a scanning electron microscope, acceleration voltage: 20 kV, observation magnification: x30,000, aperture diameter: 60 mm, high current mode, tilting the observation sample to 70 °, orientation When the difference was 5 ° or more, it was regarded as a grain boundary and the crystal grain size was measured. The measurement area and step size were based on the following two conditions depending on the crystal size. The measurement of the crystal grain size after normal and heating of Sample 1 to Sample 3 and Sample 5 according to the example was set to a measurement region: 2 × 2 μm and a step size: 10 nm. Then, the measurement of the normal and post-heat crystal grain sizes of Comparative Sample B and Comparative Sample C of Comparative Examples described below were set to a measurement region: 5 × 5 μm and a step size: 30 nm. And about the measurement of tensile strength and elongation rate, it carried out based on IPC-TM-650. The surface roughness was measured according to JIS B 0601-2001. Furthermore, the glossiness was measured according to JIS Z 8741-1997. The same applies to the following comparative examples.

比較例Comparative example

[比較例1]
比較例1では、添加剤Aを含んでいないことを除いては、実施例と同様の電解液組成とした。この液組成を、実施例の液組成と併せて、後の表1に示す。
[Comparative Example 1]
In Comparative Example 1, the electrolytic solution composition was the same as that of the example except that additive A was not included. This liquid composition is shown in Table 1 later together with the liquid composition of the examples.

電解銅箔の作成は、陰極として表面を#2000の研磨紙を用いて研磨を行ったチタン板電極を、陽極にはDSAを用いて、液温50℃、電流密度60A/dmで電解し、厚さ15μmの電解銅箔(比較試料A)を作成した。この電解銅箔の光沢面の表面粗さ(Rzjis)は0.88μmであり、析出面の表面粗さ(Rzjis)は0.44μmで、光沢度[Gs(60°)]は600以上であった。そして、常態引張り強さの値が35.4kgf/mm、常態伸び率の値は14.3%であった。更に、この電解銅箔の加熱後引張り強さの値は30.7kgf/mm、加熱後伸び率の値は14.8%であった。実施例、他の比較例及び参考例の結果と併せて、後の表2に纏めて示す。 The electrolytic copper foil was prepared by electrolyzing a titanium plate electrode whose surface was polished with # 2000 polishing paper as the cathode and DSA as the anode at a liquid temperature of 50 ° C. and a current density of 60 A / dm 2. An electrolytic copper foil (Comparative Sample A) having a thickness of 15 μm was prepared. The surface roughness (Rzjis) of the glossy surface of this electrolytic copper foil was 0.88 μm, the surface roughness (Rzjis) of the deposited surface was 0.44 μm, and the glossiness [Gs (60 °)] was 600 or more. It was. And the value of normal state tensile strength was 35.4 kgf / mm < 2 >, and the value of normal state elongation rate was 14.3%. Furthermore, the value of the tensile strength after heating of this electrolytic copper foil was 30.7 kgf / mm 2 , and the value of the elongation after heating was 14.8%. The results are shown in Table 2 below together with the results of Examples , other Comparative Examples, and Reference Examples.

[比較例2]
比較例2では、特許文献2に開示の実施例2をトレースした。具体的には、硫酸濃度を100g/L、硫酸銅五水和物濃度を280g/Lの硫酸系硫酸銅水溶液を調製し、添加剤としてヒドロキシエチルセルロース:80mg/L、ポリエチレンイミン:30mg/L、3−メルカプト−1−プロパンスルホン酸ナトリウム:170μmol/L、アセチレングリコール:0.7mg/L 及び塩素イオン:80mg/Lを含む電解液を調製した。
[Comparative Example 2]
In Comparative Example 2, Example 2 disclosed in Patent Document 2 was traced. Specifically, a sulfuric acid-based copper sulfate aqueous solution having a sulfuric acid concentration of 100 g / L and a copper sulfate pentahydrate concentration of 280 g / L was prepared, and hydroxyethyl cellulose: 80 mg / L, polyethyleneimine: 30 mg / L, as additives. An electrolytic solution containing sodium 3-mercapto-1-propanesulfonate: 170 μmol / L, acetylene glycol: 0.7 mg / L and chloride ion: 80 mg / L was prepared.

この電解液の液温を40℃とし、実施例と同様の装置を用いて、電解電流密度40A/dmで電解し、厚さ18μmの電解銅箔(比較試料B)を作成した。この電解銅箔の光沢面の表面粗さ(Rzjis)は、実施例と同じく、0.84μmであった。そして、析出面の表面粗さ(Rzjis)は1.94μm、常態引張り強さの値が57.7kgf/mm、常態伸び率の値は6.8%であった。また、この電解銅箔の加熱後引張り強さの値は54.7kgf/mm、加熱後伸び率の値は7.3%となった。実施例、他の比較例及び参考例の結果と併せて、後の表2に纏めて示す。 The temperature of this electrolytic solution was set to 40 ° C., and electrolysis was performed at an electrolytic current density of 40 A / dm 2 using an apparatus similar to that of the example to prepare an electrolytic copper foil (Comparative Sample B) having a thickness of 18 μm. The surface roughness (Rzjis) of the glossy surface of this electrolytic copper foil was 0.84 μm, as in the example. And the surface roughness (Rzjis) of the precipitation surface was 1.94 μm, the value of normal tensile strength was 57.7 kgf / mm 2 , and the value of normal elongation was 6.8%. Moreover, the value of the tensile strength after heating of this electrolytic copper foil was 54.7 kgf / mm 2 , and the value of the elongation after heating was 7.3%. The results are shown in Table 2 below together with the results of Examples , other Comparative Examples, and Reference Examples.

[比較例3]
比較例3では、特許文献2に開示の実施例3をトレースした。具体的には、硫酸濃度を100g/L、硫酸銅五水和物濃度を280g/Lの硫酸系硫酸銅水溶液を調製し、添加剤としてヒドロキシエチルセルロース:6mg/L、ポリエチレンイミン:12mg/L、3−メルカプト−1−プロパンスルホン酸ナトリウム:60μmol/L、アセチレングリコール:0.5mg/L 及び塩素イオン:30mg/Lを含む電解液を調製した。
[Comparative Example 3]
In Comparative Example 3, Example 3 disclosed in Patent Document 2 was traced. Specifically, a sulfuric acid-based copper sulfate aqueous solution having a sulfuric acid concentration of 100 g / L and a copper sulfate pentahydrate concentration of 280 g / L was prepared. Hydroxyethyl cellulose: 6 mg / L, polyethyleneimine: 12 mg / L, An electrolytic solution containing sodium 3-mercapto-1-propanesulfonate: 60 μmol / L, acetylene glycol: 0.5 mg / L and chloride ion: 30 mg / L was prepared.

この電解液の液温を40℃とし、実施例と同様の装置を用いて、電解電流密度40A/dmで電解し、厚さ18μmの電解銅箔(比較試料C)を作成した。この電解銅箔の光沢面の表面粗さ(Rzjis)は実施例と同じく、0.84μmであった。そして、析出面の表面粗さ(Rzjis)は1.42μm、常態引張り強さの値が57.8kgf/mm、常態伸び率の値は6.4%であった。また、この電解銅箔の加熱後引張り強さの値は55.0kgf/mm、加熱後伸び率の値は8.4%となった。実施例、他の比較例及び参考例の結果と併せて、以下の表2に纏めて示す。 The temperature of this electrolytic solution was set to 40 ° C., and electrolysis was performed at an electrolytic current density of 40 A / dm 2 using the same apparatus as in the example, to prepare an electrolytic copper foil (Comparative Sample C) having a thickness of 18 μm. The surface roughness (Rzjis) of the glossy surface of this electrolytic copper foil was 0.84 μm, as in the example. And the surface roughness (Rzjis) of the precipitation surface was 1.42 μm, the value of normal tensile strength was 57.8 kgf / mm 2 , and the value of normal elongation was 6.4%. Moreover, the value of the tensile strength after heating of this electrolytic copper foil was 55.0 kgf / mm 2 , and the value of the elongation after heating was 8.4%. The results are shown in Table 2 below together with the results of Examples, other Comparative Examples and Reference Examples.

[比較例4]
比較例4では、本件発明で言う適正な範囲を外れた量の添加剤Aを含有した電解液組成を用いた。この液組成は、実施例の液組成と併せて、後の表1に示す。
[Comparative Example 4]
In Comparative Example 4, an electrolytic solution composition containing additive A in an amount outside the proper range referred to in the present invention was used. This liquid composition is shown in Table 1 later together with the liquid composition of the examples.

そして、表1に示すように、実施例と同様の条件及び装置を用いて、電解電流密度60A/dmで電解し、厚さ12μmの電解銅箔(比較試料D)を作成した。この電解銅箔の光沢面の表面粗さ(Rzjis)は、実施例と同じく、0.84μmであった。そして、析出面の表面粗さ(Rzjis)は26.0μm、常態引張り強さの値が21.1kgf/mm、常態伸び率の値は0.4%であった。また、この電解銅箔の加熱後引張り強さの値は17.7kgf/mm、加熱後伸び率の値は0.2%となった。実施例、他の比較例及び参考例の結果と併せて、後の表2に纏めて示す。 And as shown in Table 1, it electrolyzed by electrolytic current density 60A / dm < 2 > using the conditions and apparatus similar to an Example, and produced 12-micrometer-thick electrolytic copper foil (comparative sample D). The surface roughness (Rzjis) of the glossy surface of this electrolytic copper foil was 0.84 μm, as in the example. The surface roughness (Rzjis) of the precipitation surface was 26.0 μm, the value of the normal tensile strength was 21.1 kgf / mm 2 , and the value of the normal elongation was 0.4%. Moreover, the value of the tensile strength after heating of this electrolytic copper foil was 17.7 kgf / mm 2 , and the value of the elongation percentage after heating was 0.2%. The results are shown in Table 2 below together with the results of Examples, other Comparative Examples, and Reference Examples.

[比較例5]
比較例5では、本件発明で言う適正な範囲未満の塩素量の電解液組成を採用した。この液組成は、実施例の液組成と併せて、後の表1に示す。
[Comparative Example 5]
In Comparative Example 5, an electrolytic solution composition having a chlorine content less than the appropriate range in the present invention was employed. This liquid composition is shown in Table 1 later together with the liquid composition of the examples.

そして、表1に示すように、実施例と同様の条件及び装置を用いて、電解電流密度60A/dmで電解し、厚さ18μmの電解銅箔(比較試料E)を作成した。この電解銅箔の光沢面の表面粗さ(Rzjis)は、実施例と同じく、0.84μmであった。そして、析出面の表面粗さ(Rzjis)は20.9μm、常態引張り強さの値が44.2kgf/mm、常態伸び率の値は1.1%であった。また、この電解銅箔の加熱後引張り強さの値は42.4kgf/mm、加熱後伸び率の値は1.1%となった。実施例、他の比較例及び参考例の結果と併せて、後の表2に纏めて示す。 And as shown in Table 1, it electrolyzed by electrolytic current density 60A / dm < 2 > using the conditions and apparatus similar to an Example, and produced the electrolytic copper foil (comparative sample E) of thickness 18 micrometers. The surface roughness (Rzjis) of the glossy surface of this electrolytic copper foil was 0.84 μm, as in the example. The surface roughness (Rzjis) of the precipitation surface was 20.9 μm, the value of the normal tensile strength was 44.2 kgf / mm 2 , and the value of the normal elongation was 1.1%. Moreover, the value of the tensile strength after heating of this electrolytic copper foil was 42.4 kgf / mm 2 , and the value of the elongation after heating was 1.1%. The results are shown in Table 2 below together with the results of Examples, other Comparative Examples, and Reference Examples.

[参考例]
この参考例では、18μm厚さのコルソン合金箔を参考試料として用いた。このコルソン合金箔の製造に用いたコルソン合金は、Cu−2%Ni−0.5%Si−1%Zn−0.5%Snの組成のものである。このコルソン合金は、基地にNiSi析出物を分散して析出させた析出硬化型合金であり、比較的良好な導電性、強度、応力緩和特性及び曲げ加工性を兼ね備える合金として知られている。
[Reference example]
In this reference example, a Corson alloy foil having a thickness of 18 μm was used as a reference sample. The Corson alloy used for manufacturing this Corson alloy foil has a composition of Cu-2% Ni-0.5% Si-1% Zn-0.5% Sn. This Corson alloy is a precipitation hardening type alloy in which Ni 2 Si precipitates are dispersed and precipitated in a matrix, and is known as an alloy having relatively good conductivity, strength, stress relaxation characteristics and bending workability. .

このコルソン合金箔の常態引張り強さの値が91.5kgf/mm、常態伸び率の値は5.4%であった。また、この電解銅箔の加熱後引張り強さの値は92.7kgf/mm、加熱後伸び率の値は6.2%であった。実施例、比較例及び参考例の結果と併せて、以下の表2に纏めて示す。 This Corson alloy foil had a normal tensile strength value of 91.5 kgf / mm 2 and a normal elongation value of 5.4%. Moreover, the value of the tensile strength after heating of this electrolytic copper foil was 92.7 kgf / mm 2 , and the value of the elongation after heating was 6.2%. The results are shown in Table 2 below together with the results of Examples, Comparative Examples, and Reference Examples .

Figure 0005588607
Figure 0005588607

Figure 0005588607
Figure 0005588607

Figure 0005588607
Figure 0005588607

<実施例と比較例との対比>
最初に、表1を参照して理解できる実施例と比較例との対比を行う。本件発明に係る電解銅箔の製造方法は、硫酸系銅電解液を用いた電解法により電解銅箔を製造するにあたって、当該電解液が、上述の添加剤A(「複素環にベンゼン環とNとを含み同時にメルカプト基が結合している構造を有する化合物」、「複素環に1以上のNを含み同時にSH基が結合した5員環構造を有する化合物」、「チオ尿素系化合物」のいずれかの1種)、添加剤B(活性硫黄化合物のスルホン酸塩)、添加剤C(環状構造を持つアンモニウム塩重合体)を含有し、塩素濃度が40ppm〜80ppmの範囲にあるという条件が必要である。そして、当該硫酸系銅電解液中における、前記添加剤Bの濃度と前記添加剤Cの濃度との重量濃度比である[B濃度]/[C濃度]の値が0.07〜1.4であることが好ましい。
<Contrast between Example and Comparative Example>
First, an example that can be understood with reference to Table 1 is compared with a comparative example. In the method for producing an electrolytic copper foil according to the present invention, when producing an electrolytic copper foil by an electrolytic method using a sulfuric acid-based copper electrolytic solution, the electrolytic solution contains the above-mentioned additive A (“heterocyclic benzene ring and N And a compound having a structure in which a mercapto group is bonded at the same time, a compound having a 5-membered ring structure in which one or more Ns are simultaneously bonded to an SH group, and a thiourea compound. 1 type), additive B (sulfonic acid salt of active sulfur compound), additive C (ammonium salt polymer having a cyclic structure), and chlorine concentration in the range of 40 ppm to 80 ppm is necessary. It is. And the value of [B density | concentration] / [C density | concentration] which is a weight concentration ratio of the density | concentration of the said additive B and the density | concentration of the said additive C in the said sulfuric acid type copper electrolyte solution is 0.07-1.4. It is preferable that

従って、実施例では、添加剤A〜添加剤Cの各添加剤を用いて、49.4ppm〜66.0ppmの範囲の塩素濃度の硫酸系銅電解液を用いている。これに対して、比較例の比較試料A及び比較試料Cの製造では塩素濃度30ppmの銅電解液を用いている。そして、比較例の比較試料Bの製造では、塩素濃度80ppmの銅電解液を用いているが、比較試料B及び比較試料Cの製造に用いた銅電解液は、本件発明に係る電解銅箔の製造に用いる銅電解液に含ませることの無いアセチレングリコールを含んでいるため、本件発明に係る製造方法の概念を適用することが不可能である。   Therefore, in the examples, a sulfuric acid-based copper electrolytic solution having a chlorine concentration in the range of 49.4 ppm to 66.0 ppm is used using the additives A to C. On the other hand, in the manufacture of the comparative sample A and comparative sample C of the comparative example, a copper electrolyte solution having a chlorine concentration of 30 ppm is used. And in manufacture of the comparative sample B of a comparative example, although the copper electrolyte solution of chlorine concentration 80ppm is used, the copper electrolyte solution used for manufacture of the comparative sample B and the comparative sample C is the electrolytic copper foil which concerns on this invention. Since acetylene glycol which is not included in the copper electrolyte used for production is included, it is impossible to apply the concept of the production method according to the present invention.

更に、本件発明において用いる硫酸系銅電解液中における、前記添加剤Bの濃度と前記添加剤Cの濃度との重量濃度比である[B濃度]/[C濃度]の値が0.07〜1.4であることが好ましい。このとき、実施例の試料1の[B濃度]/[C濃度]=0.40、試料2の[B濃度]/[C濃度]=1.14、試料3の[B濃度]/[C濃度]=0.67、試料4の[B濃度]/[C濃度]=0.78、試料5の[B濃度]/[C濃度]=0.21、試料6〜試料8の[B濃度]/[C濃度]=0.86であり、適正な範囲にある。これに対し、比較例の比較試料Aの製造には、[B濃度]/[C濃度]=1.33の硫酸系銅電解液を用いているが、添加剤Aを添加していないため、後述するように良好な引張り強さ、良好な導電性が得られていない。更に、比較例の比較試料D及び比較試料Eの製造には、[B濃度]/[C濃度]=0.85の硫酸系銅電解液を用いているが、比較試料DはEUR含有量が適正な範囲を外れており、比較試料Eは塩素濃度が適正な範囲未満となっている。このため、後述するように、得られる銅箔の引張り強さが低く、析出面の表面粗さが粗いなどの不具合が生じている。 Furthermore, the value of [B concentration] / [C concentration], which is the weight concentration ratio between the concentration of the additive B and the concentration of the additive C, in the sulfuric acid-based copper electrolyte used in the present invention is 0.07 to It is preferable that it is 1.4. At this time, [B concentration] / [C concentration] = 0.40 of sample 1 of the example, [B concentration] / [C concentration] = 1.14 of sample 2, and [B concentration] / [C of sample 3]. [Concentration] = 0.67, [B concentration] / [C concentration] = 0.78 of sample 4, [B concentration] / [C concentration] = 0.21 of sample 5, [B concentration of samples 6 to 8] ] / [C concentration] = 0.86, which is in an appropriate range. On the other hand, in the manufacture of the comparative sample A of the comparative example, [B concentration] / [C concentration] = 1.33 is used, but since the additive A is not added, As will be described later, good tensile strength and good conductivity are not obtained. Further, in the production of the comparative sample D and comparative sample E of the comparative example, [B concentration] / [C concentration] = 0.85 sulfuric acid-based copper electrolyte is used, but the comparative sample D has an EUR content. The sample is out of the proper range, and the comparative sample E has a chlorine concentration less than the proper range. For this reason, as will be described later, the resulting copper foil has a low tensile strength and a rough surface such as a rough surface.

次に、表2を参照して理解できる実施例と比較例との対比を、各特性毎に行う。最初に導電率に関しての対比を述べる。参考例(18μm厚さの、圧延法で得られたコルソン合金箔)の場合は、導電率が48.2%IACSであり、電解法で得られた実施例及び比較例と比べて、低くなっている。これは、基本的なバルク組成が異なり、圧延箔であるコルソン合金箔は、圧延加工による集合組織の形成により、加工歪みの大きな結晶組織を備えることも要因として考えられる。そこで、実施例を見ると、その導電率は、49.3%IACS〜76.0%IACSの範囲となっている。一方、比較例では、63.2%IACS〜87.5%IACSの範囲にある。   Next, a comparison between an example and a comparative example that can be understood with reference to Table 2 is performed for each characteristic. First, a comparison regarding conductivity will be described. In the case of the reference example (Corson alloy foil obtained by the rolling method having a thickness of 18 μm), the conductivity is 48.2% IACS, which is lower than the examples and comparative examples obtained by the electrolytic method. ing. This is considered to be due to the fact that the basic bulk composition is different and the Corson alloy foil, which is a rolled foil, has a crystal structure with a large processing strain due to the formation of a texture by rolling. Therefore, in the embodiment, the conductivity is in the range of 49.3% IACS to 76.0% IACS. On the other hand, in the comparative example, it is in the range of 63.2% IACS to 87.5% IACS.

ところが、ここで常態における引張り強さの値に着目してみると、実施例の試料の引張り強さが76.8kgf/mm〜94.6kgf/mmの範囲にある。そして、これに対して、比較例の比較試料の引張り強さが21.1kgf/mm〜57.8kgf/mmの範囲にある。即ち、実施例に係る試料の方が、比較例として用いた比較試料に比べて、圧倒的に高い引張り強さを備えることが分かる。 However, paying attention to the value of the tensile strength in the normal state, the tensile strength of the sample of the example is in the range of 76.8 kgf / mm 2 to 94.6 kgf / mm 2 . On the other hand, the tensile strength of the comparative sample of the comparative example is in the range of 21.1 kgf / mm 2 to 57.8 kgf / mm 2 . That is, it can be seen that the sample according to the example has an overwhelmingly higher tensile strength than the comparative sample used as the comparative example.

そして、加熱後の引張り強さに着目してみても、実施例の試料の加熱後引張り強さは、73.9kgf/mm〜93.4kgf/mmの範囲にあり、参考例に掲げたコルソン合金箔と同等の引張り強さを示すものもある。そして、実施例の試料1〜試料8毎に、常態と加熱後との値の変化をみても、大きな軟化現象は見られていない。これに対し、比較例の比較試料の加熱後引張り強さは、17.7kgf/mm〜55.0kgf/mmと低い範囲にある。 Even try focusing on the tensile strength after heating, the heating after the tensile strength of the samples of Examples in the range of 73.9kgf / mm 2 ~93.4kgf / mm 2 , listed in Reference Example Some exhibit the same tensile strength as Corson alloy foil. And even if it sees the change of the value with a normal state and after a heating for every sample 1-sample 8 of an Example, the big softening phenomenon is not seen. On the other hand, the tensile strength after heating of the comparative sample of the comparative example is in a low range of 17.7 kgf / mm 2 to 55.0 kgf / mm 2 .

次に、表2に掲載した、実施例及び比較例で製造した電解銅箔の析出面の表面粗さをみると、比較試料D及び比較試料Eの表面粗さが極端に大きくなっている。このことから、銅電解液の組成バランスが崩れると、ロープロファイルの析出面が得られないことが理解できる。   Next, when the surface roughness of the deposit surface of the electrolytic copper foil manufactured by the Example and the comparative example which were published in Table 2 is seen, the surface roughness of the comparative sample D and the comparative sample E is extremely large. From this, it can be understood that when the composition balance of the copper electrolyte is broken, a low profile precipitation surface cannot be obtained.

ここで、平均結晶粒子径に関して、実施例と比較例とを対比してみる。常態における実施例の各試料の平均結晶粒子径は、平均短径が46.9nm〜104.9nm、平均長径が149.8nm〜381.5nmの範囲にある。即ち、本件発明において好適と称している「平均短径の長さが30nm〜110nm、平均長径の長さが140nm〜400nm」の範囲に入っている。これに対し、常態における比較例の各比較試料の平均結晶粒子径は、平均短径が487.7nm〜916.0nm、平均長径が1217.8nm〜2862.5nmの範囲にあり、即ち、本件発明において好適と称する範囲には含まれない。   Here, an example and a comparative example are contrasted regarding an average crystal particle diameter. The average crystal particle size of each sample in the normal example is in the range of 46.9 nm to 104.9 nm for the average minor axis and 149.8 nm to 381.5 nm for the average major axis. That is, it is in the range of “average minor axis length of 30 nm to 110 nm, average major axis length of 140 nm to 400 nm” which is referred to as suitable in the present invention. On the other hand, the average crystal particle size of each comparative sample in the comparative example in the normal state is in the range of 487.7 nm to 916.0 nm in average minor axis and 1217.8 nm to 2862.5 nm in average major axis, that is, the present invention. Is not included in the preferred range.

更に、加熱後における実施例の各試料の平均結晶粒子径は、平均短径が33.0nm〜117.0nm、平均長径が113.7nm〜468.0nmの範囲にある。即ち、本件発明において好適と称している「平均短径の長さが25nm〜120nm、平均長径の長さが100nm〜500nm」の範囲に入っている。これに対し、加熱後における比較例の各比較試料の平均結晶粒子径は、平均短径が432.7nm〜974.0nm、平均長径が2617.5nm〜2872.7nmの範囲にあり、即ち、本件発明において、加熱後の結晶粒子径として好適と称する範囲には含まれない。   Further, the average crystal particle diameter of each sample of the example after heating is in the range of 33.0 nm to 117.0 nm in average minor axis and 113.7 nm to 468.0 nm in average major axis. That is, it is in the range of “average minor axis length of 25 nm to 120 nm, average major axis length of 100 nm to 500 nm” which is referred to as suitable in the present invention. On the other hand, the average crystal particle diameter of each comparative sample of the comparative example after heating is in the range of the average minor axis from 432.7 nm to 974.0 nm and the average major axis from 2617.5 nm to 2872.7 nm. In the invention, the crystal grain size after heating is not included in the preferred range.

しかも、本件発明では、常態の結晶粒子の平均長径の長さと平均短径の長さとが、[平均短径の長さ]/[平均長径の長さ]=0.1〜0.5の関係を備えることを要求している。このとき、実施例の試料においては[平均短径の長さ]/[平均長径の長さ]=0.16〜0.45の範囲にある。   Moreover, in the present invention, the average major axis length and the average minor axis length of the normal crystal particles have a relationship of [average minor axis length] / [average major axis length] = 0.1 to 0.5. Is required to have At this time, in the sample of an Example, it is in the range of [length of average minor axis] / [length of average major axis] = 0.16 to 0.45.

以上に述べてきた平均結晶粒子径に関して言えば、比較例に比べ、実施例の平均結晶粒子径の方が、常態及び加熱後の双方で、極めて小さなものであることが理解できる。この結晶粒子径の細かさ故に、実施例の電解銅箔は、高い引張り強さを示すと言える。一方で、比較例と比べ、実施例の結晶粒子径は微細であり、結晶組織内の結晶粒界の密度が上昇するため、電気抵抗が高くなると考えられる。その結果、比較例の導電率に比べて、実施例の導電率が低くなると考えられる。 Regarding the average crystal particle size described above, it can be understood that the average crystal particle size of the example is much smaller both in the normal state and after heating than in the comparative example. It can be said that the electrolytic copper foil of the example exhibits high tensile strength due to the fineness of the crystal particle diameter. On the other hand, compared with the comparative example, the crystal particle diameter of the example is fine, and the density of the crystal grain boundary in the crystal structure is increased, so that the electrical resistance is considered to be increased. As a result, it is considered that the conductivity of the example is lower than the conductivity of the comparative example.

次に、伸び率に関して述べておく。表2から明らかなように、比較試料Aを除いては、電解銅箔として一般的に見られる伸び率であり、電子材料分野において、その用途が限定されるような値ではないことを明記しておく。   Next, the elongation rate will be described. As is clear from Table 2, it is specified that, except for the comparative sample A, it is an elongation rate generally found as an electrolytic copper foil, and is not a value that limits its use in the field of electronic materials. Keep it.

更に、表面粗さに関して述べておく。本件発明に係る電解銅箔及び比較例として使用した電解銅箔は、全て低プロファイル銅箔として製造したものである。従って、表面粗さ計で測定したRzjisの値に関して、大きな差異があるとは言えない。   Furthermore, the surface roughness will be described. The electrolytic copper foil according to the present invention and the electrolytic copper foil used as a comparative example are all manufactured as a low profile copper foil. Therefore, it cannot be said that there is a large difference with respect to the Rzjis value measured by the surface roughness meter.

また、光沢度に着目してみると、本件発明に係る実施例で得られた電解銅箔の光沢度は、MD(流れ方向)光沢度で118〜636、TD(幅方向)光沢度で102〜586の範囲を示しており、十分に良好な光沢度を備えると言える。   When attention is paid to the glossiness, the glossiness of the electrolytic copper foil obtained in the example according to the present invention is 118 to 636 in MD (flow direction) glossiness and 102 in TD (width direction) glossiness. The range of ˜586 is shown, and it can be said that the glossiness is sufficiently good.

最後に、表3について述べておく。本件発明に係る電解銅箔は、硫黄を110ppm〜400ppm含有し、炭素を250ppm〜470ppm含有し、塩素を280ppm〜650ppm、窒素を40ppm〜180ppm含有することが望ましいのは、上述のとおりである。表3から分かるように、実施例の各試料の硫黄、炭素、塩素、窒素の成分量は、この範囲に入っている。しかし、比較例の各比較試料の硫黄、炭素、塩素、窒素の各成分量は、いずれかの成分量が、上述の適正な範囲から外れていることが明らかである。そして、本件発明に係る電解銅箔の場合、特に硫黄量及び窒素量が高いことが顕著な特徴と言え、このことが上記の各機械的特性を総合的に満足させているものと思われる。 Finally, Table 3 will be described. As described above, the electrolytic copper foil according to the present invention preferably contains 110 ppm to 400 ppm of sulfur, 250 ppm to 470 ppm of carbon, 280 ppm to 650 ppm of chlorine, and 40 ppm to 180 ppm of nitrogen. As can be seen from Table 3, the component amounts of sulfur, carbon, chlorine, and nitrogen of each sample of the examples are within this range. However, it is clear that any component amount of sulfur, carbon, chlorine, and nitrogen in each comparative sample of the comparative example is out of the proper range described above. And in the case of the electrolytic copper foil which concerns on this invention, it can be said that it is a remarkable characteristic that especially the amount of sulfur and nitrogen is high, and this seems to satisfy said each mechanical characteristic comprehensively.

以上のことから、コルソン合金箔と同等の機械的強さを備える電解銅箔を市場に供給するという観点からみれば、本件発明に係る実施例として掲載した電解銅箔は、参考例であるコルソン合金箔と同等の機械的強さを備え、且つ、コルソン合金箔を超える導電性能を同時に備え、その他電子材料用途として電解銅箔に求められる基本的特性の全てを満足したと言えることが明らかである。   In view of the above, from the viewpoint of supplying electrolytic copper foil with mechanical strength equivalent to that of Corson alloy foil to the market, the electrolytic copper foil described as an example according to the present invention is Corson, which is a reference example. It is clear that it has mechanical strength equivalent to that of alloy foil, and also has conductive performance exceeding that of Corson alloy foil, and that it can satisfy all the basic characteristics required for electrolytic copper foil for other electronic materials. is there.

本件発明に係る電解銅箔は、上述のようなnmオーダーの析出結晶粒子で構成されているため、結晶粒の微細化効果により、コルソン合金箔と同等の極めて大きな機械的強度を備えるようにできる。しかも、この本件発明に係る電解銅箔の機械的強度は、180℃×60分の加熱後においても、常態の機械的強度とほぼ変わらない。そして、その結晶の粒子径が微細であるため、従来の低プロファイル電解銅箔と同等レベルの低プロファイルの析出面を備える。そして、この本件発明に係る電解銅箔を用いて、その表面に防錆処理を目的としてた表面処理、基材樹脂との密着性を向上させるための粗化処理、シランカップリング剤処理等を施すことで、良好な機械的強度と低プロファイル表面を備える表面処理銅箔が得られる。このような表面処理銅箔は、ファインピッチ回路を備える高品質のプリント配線板材料、高耐久性能が要求されるリチウム二次電池用負極集電体等の構成材料として好適である。   Since the electrolytic copper foil according to the present invention is composed of the deposited crystal particles of the nm order as described above, it can be provided with extremely large mechanical strength equivalent to that of the Corson alloy foil due to the effect of refining the crystal grains. . Moreover, the mechanical strength of the electrolytic copper foil according to the present invention is almost the same as the normal mechanical strength even after heating at 180 ° C. for 60 minutes. And since the particle diameter of the crystal | crystallization is fine, the low profile precipitation surface of the same level as the conventional low profile electrolytic copper foil is provided. And, using the electrolytic copper foil according to the present invention, surface treatment for the purpose of rust prevention treatment, roughening treatment for improving adhesion with the base resin, silane coupling agent treatment, etc. By applying, a surface-treated copper foil having good mechanical strength and a low profile surface can be obtained. Such a surface-treated copper foil is suitable as a constituent material for a high-quality printed wiring board material having a fine pitch circuit, a negative electrode current collector for a lithium secondary battery that requires high durability performance, and the like.

また、当該表面処理電解銅箔を用いて得られる銅張積層板は、板厚が薄くても、電解銅箔の極めて大きな機械的強度により、ハンドリング時のたわみ、変形が少なく、取扱いやすくなる。特に、当該電解銅箔を絶縁層形成材であるフィルムと張合わせてフレキシブル銅張積層板とし、これをファインピッチが要求されるTAB基板用途に用いれば、従来の技術では実用化出来ないレベルの微細なフライングリードの形成が可能になる。   Moreover, even if the copper clad laminated board obtained using the said surface-treated electrolytic copper foil is thin, due to the extremely large mechanical strength of the electrolytic copper foil, there is little deflection and deformation during handling, and it becomes easy to handle. In particular, if the electrolytic copper foil is laminated with a film that is an insulating layer forming material to form a flexible copper clad laminate, and this is used for a TAB substrate application that requires a fine pitch, it cannot be put into practical use by conventional techniques. Fine flying leads can be formed.

更に、本件発明に係る電解銅箔の製造方法は、使用する銅電解液の組成に特徴を備えている。この銅電解液は、溶液安定性に優れ、長期間の連続使用に耐えるため、経済的にも優れている。更に、使用する製造設備としても、新たな設備投資を必要とせず、従来の電解銅箔製造設備の使用が可能であり、製造コストの上昇を招かない。   Furthermore, the method for producing an electrolytic copper foil according to the present invention is characterized by the composition of the copper electrolyte used. This copper electrolyte is excellent in solution stability and withstands long-term continuous use, so that it is economically superior. Furthermore, the manufacturing equipment to be used does not require a new capital investment, and the conventional electrolytic copper foil manufacturing equipment can be used, which does not increase the manufacturing cost.

Claims (15)

銅電解液を電解することにより得られる電解銅箔において、
当該電解銅箔は、硫黄を110ppm〜400ppm、塩素を280ppm〜650ppm含有し、
導電率が49.3%IACS以上であり、且つ、常態における引張り強さの値が70kgf/mm以上であることを特徴とする電解銅箔。
In the electrolytic copper foil obtained by electrolyzing the copper electrolyte,
The electrolytic copper foil contains 110 ppm to 400 ppm of sulfur, 280 ppm to 650 ppm of chlorine,
An electrolytic copper foil having an electrical conductivity of 49.3% IACS or more and a tensile strength value of 70 kgf / mm 2 or more in a normal state.
当該電解銅箔は、炭素を250ppm〜470ppm含有するものである請求項1に記載の電解銅箔。 The electrolytic copper foil according to claim 1, wherein the electrolytic copper foil contains 250 ppm to 470 ppm of carbon. 当該電解銅箔は、窒素を40ppm〜180ppm含有するものである請求項1又は請求項2に記載の電解銅箔。 The electrolytic copper foil according to claim 1 or 2, wherein the electrolytic copper foil contains 40 ppm to 180 ppm of nitrogen. 常態における当該電解銅箔は、析出開始面から析出終了面に向けて成長した結晶粒を備え、当該結晶粒の平均短径の長さが30nm〜110nm、平均長径の長さが140nm〜400nmの結晶粒で構成された析出組織を備える請求項1〜請求項3のいずれか一項に記載の電解銅箔。 The electrolytic copper foil in a normal state includes crystal grains grown from the precipitation start surface toward the precipitation end surface, and the average minor axis length of the crystal grains is 30 nm to 110 nm, and the average major axis length is 140 nm to 400 nm. The electrolytic copper foil as described in any one of Claims 1-3 provided with the precipitation structure | tissue comprised by the crystal grain. 180℃×60分の加熱後における当該電解銅箔は、析出開始面から析出終了面に向けて成長した結晶粒を備え、当該結晶粒の平均短径の長さが25nm〜120nm、平均長径の長さが100nm〜500nmの結晶粒で構成された析出組織を備える請求項1〜請求項4のいずれか一項に記載の電解銅箔。 The electrolytic copper foil after heating at 180 ° C. for 60 minutes includes crystal grains grown from the precipitation start surface toward the precipitation end surface, and the average minor axis length of the crystal grains is 25 nm to 120 nm. The electrolytic copper foil as described in any one of Claims 1-4 provided with the precipitation structure | tissue comprised by the crystal grain whose length is 100 nm-500 nm. 析出面付近の断面における常態の結晶粒子の平均長径の長さと平均短径の長さとが、[平均短径の長さ]/[平均長径の長さ]=0.1〜0.5の関係を備える請求項1〜請求項5のいずれか一項に記載の電解銅箔。 The relationship between the average major axis length and the average minor axis length of the normal crystal grains in the cross section near the precipitation surface is [average minor axis length] / [average major axis length] = 0.1 to 0.5. The electrolytic copper foil as described in any one of Claims 1-5 provided with these. 180℃×60分の加熱後の引張り強さの値が、常態引張り強さの値の85%以上である請求項1〜請求項6のいずれか一項に記載の電解銅箔。 The electrolytic copper foil according to any one of claims 1 to 6 , wherein a value of tensile strength after heating at 180 ° C for 60 minutes is 85% or more of a value of normal tensile strength. 析出面の幅方向に対して測定した光沢度[Gs(60°)]の値が、100以上である請求項1〜請求項7のいずれか一項に記載の電解銅箔。 The value of the gloss was measured with respect to the width direction of the deposition surface [Gs (60 °)] is, electrolytic copper foil according to any one of claims 1 to 7 100 or more. 請求項1〜請求項8のいずれか一項に記載の電解銅箔の表面に粗化処理、防錆処理、シランカップリング剤処理のいずれか1種又は2種以上を施したことを特徴とする表面処理電解銅箔。 The surface of the electrolytic copper foil according to any one of claims 1 to 8 is subjected to any one or more of roughening treatment, rust prevention treatment, and silane coupling agent treatment. Surface treated electrolytic copper foil. 硫酸系銅電解液を用いた電解法により請求項1〜請求項8のいずれか一項に記載の電解銅箔を製造する方法であって、
当該硫酸系銅電解液は、下記添加剤A〜添加剤Cを含み、塩素濃度が40ppm〜80ppmであるものを用いることを特徴とする電解銅箔の製造方法。
添加剤A:複素環にベンゼン環とNとを含み同時にメルカプト基が結合している構造を有する化合物、複素環に1以上のNを含み同時にSH基が結合した5員環構造を有する化合物、チオ尿素系化合物から選ばれる1以上の化合物。
添加剤B:活性硫黄化合物のスルホン酸塩。
添加剤C:環状構造を持つアンモニウム塩重合体。
It is the method of manufacturing the electrolytic copper foil as described in any one of Claims 1-8 by the electrolytic method using a sulfuric acid system copper electrolyte solution,
The sulfuric acid-based copper electrolytic solution includes the following additive A to additive C and has a chlorine concentration of 40 ppm to 80 ppm.
Additive A: Compound having a structure in which a heterocyclic ring contains a benzene ring and N and simultaneously having a mercapto group bonded thereto, Compound having a 5-membered ring structure in which one or more N atoms are bonded to a heterocyclic ring and SH group is simultaneously bonded One or more compounds selected from thiourea compounds.
Additive B: sulfonate salt of active sulfur compound.
Additive C: ammonium salt polymer having a cyclic structure.
前記添加剤Aである複素環にベンゼン環とNとを含み同時にメルカプト基が結合している構造を有する化合物は、
2−メルカプト−5−ベンズイミダゾールスルホン酸、3(5−メルカプト−1H−テトラゾールイル)ベンゼンスルホナート、2−メルカプトベンゾチアゾールのいずれかを用いるものである請求項10に記載の電解銅箔の製造方法。
The compound having a structure in which the heterocyclic ring as the additive A contains a benzene ring and N and a mercapto group is bonded at the same time,
The production of an electrolytic copper foil according to claim 10 , wherein any one of 2-mercapto-5-benzimidazolesulfonic acid, 3 (5-mercapto-1H-tetrazolyl) benzenesulfonate, and 2-mercaptobenzothiazole is used. Method.
前記添加剤Aである複素環に1以上のNを含み同時にSH基が結合した5員環構造を有する化合物は、
2−メルカプト−イミダゾール、2−チアゾリン−2−チオールのいずれかを用いるものである請求項10又は請求項11に記載の電解銅箔の製造方法。
The compound having a five-membered ring structure containing one or more N in the heterocyclic ring as the additive A and simultaneously having an SH group bonded thereto,
The method for producing an electrolytic copper foil according to claim 10 or 11 , wherein either 2-mercapto-imidazole or 2-thiazoline-2-thiol is used.
前記添加剤Aであるチオ尿素系化合物は、ジエチルチオ尿素である請求項10〜請求項12のいずれか一項に記載の電解銅箔の製造方法。 The method for producing an electrolytic copper foil according to any one of claims 10 to 12 , wherein the thiourea compound as the additive A is diethyl thiourea. 前記硫酸系銅電解液中における、前記添加剤Bの濃度と前記添加剤Cの濃度との重量濃度比である[B濃度]/[C濃度]の値が0.07〜1.4である請求項10〜請求項13のいずれか一項に記載の電解銅箔の製造方法。 The value of [B concentration] / [C concentration], which is a weight concentration ratio between the concentration of the additive B and the concentration of the additive C, in the sulfuric acid-based copper electrolyte is 0.07 to 1.4. The manufacturing method of the electrolytic copper foil as described in any one of Claims 10-13 . 請求項9に記載の表面処理電解銅箔を絶縁層構成材料と張合わせて得られることを特徴とする銅張積層板。 A copper clad laminate obtained by laminating the surface-treated electrolytic copper foil according to claim 9 with an insulating layer constituting material.
JP2008235875A 2007-10-31 2008-09-16 Electrolytic copper foil and method for producing the electrolytic copper foil Active JP5588607B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008235875A JP5588607B2 (en) 2007-10-31 2008-09-16 Electrolytic copper foil and method for producing the electrolytic copper foil
PCT/JP2008/069744 WO2009057688A1 (en) 2007-10-31 2008-10-30 Electrolytic copper foil and process for producing the electrolytic copper foil
TW097141749A TWI530590B (en) 2007-10-31 2008-10-30 Electrolytic copper foil and the method of manufacturing the electrolytic copper foil

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2007284601 2007-10-31
JP2007284601 2007-10-31
JP2008041288 2008-02-22
JP2008041288 2008-02-22
JP2008235875A JP5588607B2 (en) 2007-10-31 2008-09-16 Electrolytic copper foil and method for producing the electrolytic copper foil

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014126946A Division JP5752301B2 (en) 2007-10-31 2014-06-20 Electrolytic copper foil and method for producing the electrolytic copper foil

Publications (2)

Publication Number Publication Date
JP2009221592A JP2009221592A (en) 2009-10-01
JP5588607B2 true JP5588607B2 (en) 2014-09-10

Family

ID=40591072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008235875A Active JP5588607B2 (en) 2007-10-31 2008-09-16 Electrolytic copper foil and method for producing the electrolytic copper foil

Country Status (3)

Country Link
JP (1) JP5588607B2 (en)
TW (1) TWI530590B (en)
WO (1) WO2009057688A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3569741A1 (en) 2018-05-16 2019-11-20 Iljin Materials Co., Ltd. Electrolytic copper foil and secondary battery using the same
KR20200121287A (en) 2018-02-23 2020-10-23 후루카와 덴키 고교 가부시키가이샤 Electrolytic copper foil, and negative electrode for lithium ion secondary battery, lithium ion secondary battery, copper clad laminated board and printed wiring board using the electrolytic copper foil

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5598700B2 (en) * 2010-02-25 2014-10-01 福田金属箔粉工業株式会社 Electrolytic copper foil and method for producing the same
TWI397613B (en) * 2010-04-12 2013-06-01 Chang Chun Petrochemical Co Copper for electrolytic copper foil and electrolytic copper foil method
CN103210124B (en) * 2010-11-15 2016-01-06 吉坤日矿日石金属株式会社 Electrolytic copper foil
JP5850611B2 (en) * 2010-11-17 2016-02-03 三井金属鉱業株式会社 Copper foil for lithium ion secondary battery negative electrode current collector, lithium ion secondary battery negative electrode material, and lithium ion secondary battery negative electrode current collector selection method.
KR101482898B1 (en) * 2010-11-22 2015-01-15 미쓰이금속광업주식회사 Surface treated copper foil
WO2012101984A1 (en) * 2011-01-26 2012-08-02 住友ベークライト株式会社 Printed wiring board and method for producing printed wiring board
KR20140009323A (en) * 2011-01-26 2014-01-22 스미토모 베이클리트 컴퍼니 리미티드 Printed wiring board and method for manufacturing printed wiring board
JP2012172198A (en) * 2011-02-22 2012-09-10 Jx Nippon Mining & Metals Corp Electrolytic copper foil and method for manufacturing the same
JP5411192B2 (en) * 2011-03-25 2014-02-12 Jx日鉱日石金属株式会社 Rolled copper foil and method for producing the same
JP5148726B2 (en) * 2011-03-30 2013-02-20 Jx日鉱日石金属株式会社 Electrolytic copper foil and method for producing electrolytic copper foil
WO2013002279A1 (en) * 2011-06-30 2013-01-03 古河電気工業株式会社 Electrolytic copper foil, method for producing electrolytic copper foil, and lithium ion secondary cell using electrolytic copper foil as collector
EP2660359A4 (en) * 2011-07-29 2015-08-05 Furukawa Electric Co Ltd Electrolytic copper alloy foil, method for producing same, electrolytic solution used for production of same, negative electrode collector for secondary batteries using same, secondary battery, and electrode of secondary battery
KR20170061717A (en) 2011-10-31 2017-06-05 후루카와 덴키 고교 가부시키가이샤 High strength, high heat-resistance electrolytic copper foil, and manufacturing method for same
JP2013133514A (en) * 2011-12-27 2013-07-08 Furukawa Electric Co Ltd:The Copper foil, electrode for secondary battery, secondary battery, and printed circuit board
JP5981165B2 (en) * 2011-12-27 2016-08-31 古河電気工業株式会社 Copper foil, negative electrode of secondary battery, secondary battery, and printed circuit board
JP5722813B2 (en) * 2012-03-02 2015-05-27 Jx日鉱日石金属株式会社 Electrode copper foil and negative electrode current collector for secondary battery
JP5329697B1 (en) * 2012-05-14 2013-10-30 Jx日鉱日石金属株式会社 Electrolytic copper foil for secondary battery current collector
JP5329696B1 (en) * 2012-05-14 2013-10-30 Jx日鉱日石金属株式会社 Electrolytic copper foil for secondary battery current collector
KR102101046B1 (en) * 2012-05-22 2020-04-14 미쓰이금속광업주식회사 Copper foil, negative electrode current collector, and negative electrode material for non-aqueous secondary battery
CN102703938B (en) * 2012-06-07 2015-04-22 上海交通大学 Stress relieving agent for copper sulfate electroplate liquid
JP5417538B1 (en) * 2012-06-11 2014-02-19 Jx日鉱日石金属株式会社 Surface-treated copper foil, laminate using the same, printed wiring board, electronic device, and method for manufacturing printed wiring board
WO2014002996A1 (en) 2012-06-27 2014-01-03 古河電気工業株式会社 Electrolytic copper foil, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6030401B2 (en) * 2012-10-12 2016-11-24 三井金属鉱業株式会社 Method for producing surface-treated copper foil
KR20140050541A (en) * 2012-10-18 2014-04-29 일진머티리얼즈 주식회사 Electrolytic copper foil, electric component and battery comprising the foil and preparation method thereof
KR101660201B1 (en) 2013-01-24 2016-09-26 후루카와 덴키 고교 가부시키가이샤 Electrolytic copper foil and method for producing same
TWI518210B (en) 2013-01-31 2016-01-21 三井金屬鑛業股份有限公司 Electrolytic copper foil and method for manufacturing the same and surface-treated copper foil using the electrolytic copper foil
JP5885790B2 (en) * 2013-08-20 2016-03-15 Jx金属株式会社 Surface treated copper foil and laminated board using the same, copper foil with carrier, printed wiring board, electronic device, method for manufacturing electronic device, and method for manufacturing printed wiring board
CN104419959B (en) * 2013-09-11 2018-08-21 古河电气工业株式会社 Electrolytic copper foil, flex circuit application and battery
JP5810197B2 (en) 2013-09-11 2015-11-11 古河電気工業株式会社 Electrolytic copper foil, flexible wiring board and battery
KR101920976B1 (en) * 2013-09-20 2018-11-21 미쓰이금속광업주식회사 Copper foil, copper foil with carrier foil, and copper-clad laminate
KR101449342B1 (en) * 2013-11-08 2014-10-13 일진머티리얼즈 주식회사 Electrolytic copper foil, electric component and battery comprising the foil
KR102356179B1 (en) * 2013-11-27 2022-02-08 미쓰이금속광업주식회사 Copper foil with attached carrier foil, copper-clad laminate and printed wiring board
JP5810249B1 (en) * 2014-01-07 2015-11-11 古河電気工業株式会社 Electrolytic copper foil, negative electrode for lithium ion secondary battery, lithium ion secondary battery, printed wiring board, and electromagnetic shielding material
JP5916904B1 (en) * 2015-01-07 2016-05-11 古河電気工業株式会社 Electrolytic copper foil, negative electrode for lithium ion secondary battery, lithium ion secondary battery, rigid printed wiring board and flexible printed wiring board
JP2017014608A (en) 2015-07-06 2017-01-19 古河電気工業株式会社 Electrolytic copper foil, lithium ion secondary battery negative electrode and lithium ion secondary battery, printed wiring board, and electromagnetic wave-shielding material
JP6392268B2 (en) * 2016-02-05 2018-09-19 Jx金属株式会社 Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
JP6294376B2 (en) * 2016-02-05 2018-03-14 Jx金属株式会社 Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
KR20180083515A (en) * 2017-01-13 2018-07-23 케이씨에프테크놀로지스 주식회사 Electrolytic Copper Foil Substantially Free Of Wrinkle Problem, Electrode Comprising The Same, Secondary Battery Comprising The Same, and Method for Manufacturing The Same
US10060034B2 (en) * 2017-01-23 2018-08-28 Rohm And Haas Electronic Materials Llc Electroless copper plating compositions
CN107153084B (en) * 2017-05-27 2020-05-22 佛山市承安铜业有限公司 Method for researching influence of Cl < - > concentration of copper anode on copper plating quality
KR101992841B1 (en) 2017-07-13 2019-06-27 케이씨에프테크놀로지스 주식회사 Copper foil with minimized bagginess, wrinkle and tear, electrode comprisng the same, secondary battery comprising the same and method for manufacturing the same
KR102433032B1 (en) * 2017-07-31 2022-08-16 에스케이넥실리스 주식회사 Copper foil free from generation of wrinkle, electrode comprisng the same, secondary battery comprising the same and method for manufacturing the same
JP6489252B1 (en) * 2018-02-15 2019-03-27 Tdk株式会社 Negative electrode current collector, negative electrode and lithium secondary battery
JP6558453B1 (en) * 2018-02-15 2019-08-14 Tdk株式会社 Negative electrode current collector, negative electrode and lithium secondary battery
JP6489251B1 (en) * 2018-02-15 2019-03-27 Tdk株式会社 Negative electrode current collector, negative electrode and lithium secondary battery
JP6767441B2 (en) * 2018-08-16 2020-10-14 ケイシーエフ テクノロジース カンパニー リミテッド Copper foil with minimized sagging, wrinkles and tearing, electrodes containing it, secondary batteries containing it, and methods for manufacturing them.
JP7450932B2 (en) 2018-12-10 2024-03-18 日本電解株式会社 Electrolytic copper foil and its manufacturing method
KR102281132B1 (en) * 2019-10-24 2021-07-26 일진머티리얼즈 주식회사 Electrolytic Nickel Foil for Thin Film-type Capacitor and Production Method of the Same
CN111455414A (en) * 2020-03-09 2020-07-28 深圳市惟华电子科技有限公司 Additive for producing gradual change type electrolytic copper foil
JPWO2022054597A1 (en) * 2020-09-11 2022-03-17
LU501043B1 (en) * 2021-12-20 2023-06-20 Circuit Foil Luxembourg Method for producing an electrodeposited copper foil for lithium secondary battery
LU501353B1 (en) 2022-01-28 2023-07-28 Circuit Foil Luxembourg Electrodeposited copper foil and method for producing same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007294923A (en) * 2006-03-31 2007-11-08 Nikko Kinzoku Kk Manufacturing method of copper strip or copper foil having excellent strength, electric conductivity, and bendability, and electronic component using the same
US9307639B2 (en) * 2006-04-28 2016-04-05 Mitsui Mining & Smelting Co., Ltd. Electro-deposited copper foil, surface-treated copper foil using the electro-deposited copper foil and copper clad laminate using the surface-treated copper foil, and a method for manufacturing the electro-deposited copper foil

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200121287A (en) 2018-02-23 2020-10-23 후루카와 덴키 고교 가부시키가이샤 Electrolytic copper foil, and negative electrode for lithium ion secondary battery, lithium ion secondary battery, copper clad laminated board and printed wiring board using the electrolytic copper foil
EP3569741A1 (en) 2018-05-16 2019-11-20 Iljin Materials Co., Ltd. Electrolytic copper foil and secondary battery using the same

Also Published As

Publication number Publication date
JP2009221592A (en) 2009-10-01
TWI530590B (en) 2016-04-21
TW200936817A (en) 2009-09-01
WO2009057688A1 (en) 2009-05-07

Similar Documents

Publication Publication Date Title
JP5588607B2 (en) Electrolytic copper foil and method for producing the electrolytic copper foil
JP5255229B2 (en) Electrolytic copper foil, surface-treated copper foil using the electrolytic copper foil, copper-clad laminate using the surface-treated copper foil, and method for producing the electrolytic copper foil
KR101154203B1 (en) Electrolytic copper foil, surface treated copper foil using the electrolytic copper foil, copper-clad laminated plate using the surface treated copper foil, and method for manufacturing the electrolytic copper foil
JP5752301B2 (en) Electrolytic copper foil and method for producing the electrolytic copper foil
TWI245082B (en) Electrolyte solution for manufacturing electrolytic copper foil and electrolytic copper foil manufacturing method using the same
JP5301886B2 (en) Electrolytic copper foil and method for producing the electrolytic copper foil
JP4583149B2 (en) Electrolytic copper foil and method for producing the same
TWI518210B (en) Electrolytic copper foil and method for manufacturing the same and surface-treated copper foil using the electrolytic copper foil
WO2013065699A1 (en) High strength, high heat-resistance electrolytic copper foil, and manufacturing method for same
JP2012172198A (en) Electrolytic copper foil and method for manufacturing the same
JP7320586B2 (en) Electrodeposited copper foil for secondary battery with excellent low-temperature properties and method for producing the same
TWI514937B (en) Wiring circuit board
JP5822928B2 (en) Electrolytic copper foil having high strength and low warpage and method for producing the same
JP2008127618A (en) Method for treating surface of copper foil through feeding alternating current
JP5075099B2 (en) Surface-treated copper foil, surface treatment method thereof, and laminated circuit board
JPS63310990A (en) Electrolytic copper foil and production thereof
JP6818141B2 (en) Electrolytic copper foil for secondary batteries and its manufacturing method
JP5941959B2 (en) Electrolytic copper foil and method for producing the same
JPS63310989A (en) Electrolytic copper foil and production thereof
JP2008184633A (en) Method for surface-treating metal foil
JP2006052441A (en) Copper foil, manufacturing method therefor, and tab tape
JP7061120B2 (en) Electrolyzed copper foil for secondary batteries with excellent bending resistance and its manufacturing method
JP2014101581A (en) Electrolytic copper alloy foil, its manufacturing method, electrolyte used for its manufacturing, negative electrode collector for secondary battery, secondary battery and its electrode
JP5697051B2 (en) Electrolytic copper alloy foil, method for producing the same, electrolyte used for the production, negative electrode current collector for secondary battery, secondary battery and electrode thereof
EP4202084A2 (en) Double layered electrolytic copper foil and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130917

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140620

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140715

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140728

R150 Certificate of patent or registration of utility model

Ref document number: 5588607

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250