JP2013133514A - Copper foil, electrode for secondary battery, secondary battery, and printed circuit board - Google Patents

Copper foil, electrode for secondary battery, secondary battery, and printed circuit board Download PDF

Info

Publication number
JP2013133514A
JP2013133514A JP2011285461A JP2011285461A JP2013133514A JP 2013133514 A JP2013133514 A JP 2013133514A JP 2011285461 A JP2011285461 A JP 2011285461A JP 2011285461 A JP2011285461 A JP 2011285461A JP 2013133514 A JP2013133514 A JP 2013133514A
Authority
JP
Japan
Prior art keywords
copper foil
secondary battery
active material
electrode
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011285461A
Other languages
Japanese (ja)
Inventor
Toshio Tani
俊夫 谷
Shinya Otomo
晋哉 大友
Hirokazu Yoshikawa
広和 吉川
Hirokazu Sasaki
宏和 佐々木
Akitoshi Suzuki
昭利 鈴木
Kensaku Shinozaki
健作 篠崎
Koji Hataya
耕二 幡谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2011285461A priority Critical patent/JP2013133514A/en
Publication of JP2013133514A publication Critical patent/JP2013133514A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a copper foil for an negative electrode of a lithium ion secondary battery, which allows the production of a lithium ion secondary battery causing no decrease in capacity even if charge and discharge cycles are repeated, having a long life and prevented from being deformed in a negative electrode collector.SOLUTION: The analysis of the copper foil in the depth direction by SIMS (Secondary Ion Mass Spectroscopy) in the foil thickness direction shows that the copper foil includes each of chlorine and carbon in a concentration of 10to 5×10atoms/cmand sulfur or/and nitrogen in a concentration of 10to 5×10atoms/cm. By using the copper foil in a negative electrode collector of a Li ion battery, a lithium ion secondary battery can be provided in which the generation of deformation such as wrinkle in the collector caused by charge and discharge is suppressed, which causes no decrease in capacity even if charge and discharge cycles are repeated and which has long life and can be made compact.

Description

本発明は、特にプリント回路基板やリチウムイオン二次電池などの非水電解液二次電池等に好ましく使用される銅箔に関するものである。   The present invention relates to a copper foil preferably used for non-aqueous electrolyte secondary batteries such as printed circuit boards and lithium ion secondary batteries.

正極と、両面が平滑な銅箔からなる負極集電体の表面に負極活物質層としてカーボン粒子を塗布、乾燥し、さらにプレスした負極と、非水電解質を備える非水電解液二次電池、特にリチウムイオン二次電池は現在、携帯電話、ノートタイプパソコン等に使用されている。この非水電解液二次電池(リチウムイオン二次電池)の負極集電体には、電解析出法により製造された、いわゆる「未処理電解銅箔」に防錆処理を施したものが使用されている。   A non-aqueous electrolyte secondary battery comprising a positive electrode and a negative electrode current collector made of copper foil having a smooth both surfaces, coated with carbon particles as a negative electrode active material layer, dried and further pressed, and a non-aqueous electrolyte; In particular, lithium ion secondary batteries are currently used in mobile phones, notebook computers and the like. As the negative electrode current collector of this non-aqueous electrolyte secondary battery (lithium ion secondary battery), a so-called “untreated electrolytic copper foil” produced by electrolytic deposition is used for rust prevention treatment. Has been.

前記リチウムイオン二次電池用負極集電体としての銅箔には、特許文献1に示すように、光沢面と粗面と(銅箔の両面)の間における表面粗さの差を小さくした銅箔を用いることにより、電池の充放電効率の低下を抑えている。   As shown in Patent Document 1, the copper foil as the negative electrode current collector for a lithium ion secondary battery has a reduced surface roughness difference between a glossy surface and a rough surface (both surfaces of the copper foil). By using the foil, a decrease in charge / discharge efficiency of the battery is suppressed.

上記のような光沢面と粗面との表面粗さの差を小さくした電解銅箔は、硫酸銅−硫酸電解液に各種水溶性高分子物質、各種界面活性剤、各種有機イオウ系化合物、塩化物イオンなどを適宜選定して添加することによって製造されている。
例えば、特許文献1には、硫酸銅−硫酸電解液にメルカプト基を持つ化合物、塩化物イオン、並びに分子量10000 以下の低分子量膠及び高分子多糖類を添加したものにより製造した電解銅箔を用いた負極集電体が開示されている。
上記製造方法で製造した電解銅箔は、その銅箔の表面にカーボン粒子が塗布され乾燥した後、さらにプレスされて負極となる。
この電解銅箔は引張強さが300〜350N/mmであり、前記カーボン粒子を活物質とした負極用銅箔として使用する場合には適度な伸びと併せて好適な材料である。
The electrolytic copper foil with a small difference in surface roughness between the glossy surface and the rough surface as described above is composed of various water-soluble polymer substances, various surfactants, various organic sulfur compounds, chlorides, and copper sulfate-sulfuric acid electrolytes. It is manufactured by appropriately selecting and adding physical ions.
For example, Patent Document 1 uses an electrolytic copper foil produced by adding a compound having a mercapto group, a chloride ion, and a low molecular weight glue having a molecular weight of 10,000 or less and a high molecular weight polysaccharide to a copper sulfate-sulfuric acid electrolyte. A negative electrode current collector was disclosed.
The electrolytic copper foil produced by the above production method is coated with carbon particles on the surface of the copper foil, dried, and then pressed to form a negative electrode.
This electrolytic copper foil has a tensile strength of 300 to 350 N / mm 2 , and is a suitable material in combination with appropriate elongation when used as a negative electrode copper foil using the carbon particles as an active material.

ところで近年、非水電解液二次電池の代表であるリチウムイオン二次電池の高容量化を目的として、充電の際に電気化学的にリチウムと合金化するスズやシリコンなどの金属系負極を負極活物質として用いるリチウムイオン二次電池が特許文献2に開示されている。   By the way, in recent years, for the purpose of increasing the capacity of lithium ion secondary batteries, which are representative of nonaqueous electrolyte secondary batteries, metal negative electrodes such as tin and silicon that are electrochemically alloyed with lithium during charging are used as negative electrodes. Patent Document 2 discloses a lithium ion secondary battery used as an active material.

高容量化を目的としたリチウムイオン二次電池用負極電極は、蒸着法やスパッタリング法、CVD法等により、銅箔などの集電体の上に、例えばシリコンを非晶質シリコン薄膜や微結晶シリコン薄膜として堆積し形成している。このような方法で作成した活物質の薄膜層は集電体に密着するため、良好な充放電サイクル特性を示すことが見出されている(特許文献3参照)。
また、最近では粉末シリコンあるいはシリコン化合物をイミド系のバインダーと有機溶媒によりスラリー状にして銅箔上に塗布乾燥し、プレスする方法も特許文献4に開発されている。
A negative electrode for a lithium ion secondary battery for the purpose of increasing the capacity is obtained by depositing, for example, silicon on an amorphous silicon thin film or microcrystal on a current collector such as a copper foil by vapor deposition, sputtering, CVD, or the like. It is deposited and formed as a silicon thin film. It has been found that the thin film layer of the active material produced by such a method is in close contact with the current collector, and thus exhibits good charge / discharge cycle characteristics (see Patent Document 3).
In recent years, Patent Document 4 has also developed a method in which powdered silicon or a silicon compound is formed into a slurry using an imide-based binder and an organic solvent, applied onto a copper foil, dried, and pressed.

しかし、このようなリチウムイオン二次電池用電極においては、例えばシリコン活物質は充電時にリチウムイオンを電気化学的に合金化することにより、体積が2〜4倍程度に膨張し、さらにリチウムイオンを放出する放電時には収縮する。
こうした充放電に伴う活物質層体積の膨張及び収縮により、活物質が微粉化して集電体から剥離する現象が見られる。
また該活物質層が集電体と密着しているため、充放電の繰り返しにより活物質層の体積が膨張及び収縮すると、電極の塗膜と集電体の間に大きな応力が働き、塗膜と集電体界面に剥離が生じたり、塗膜の一部が脱離したりする。また、集電体にしわが発生する場合もあり、多数回充放電を繰り返すと、最悪の場合には集電体である箔が破断する問題もある。
However, in such an electrode for a lithium ion secondary battery, for example, the silicon active material expands to a volume of about 2 to 4 times by electrochemically alloying lithium ions during charging, and further the lithium ions are Shrinks during discharge.
Due to the expansion and contraction of the volume of the active material layer accompanying such charge and discharge, there is a phenomenon that the active material is pulverized and peeled off from the current collector.
In addition, since the active material layer is in close contact with the current collector, when the volume of the active material layer expands and contracts due to repeated charging and discharging, a large stress acts between the electrode coating film and the current collector, and the coating film And peeling occurs at the current collector interface, or a part of the coating film is detached. In addition, wrinkles may occur in the current collector, and when charging and discharging are repeated many times, there is a problem that the foil as the current collector is broken in the worst case.

集電体にしわなどの変形が生じると、正極と負極が短絡しやすくなる。また、集電体の破断が起こると長時間安定した電池性能を維持することができなくなる。   When deformation such as wrinkles occurs in the current collector, the positive electrode and the negative electrode are easily short-circuited. Further, when the current collector breaks, it becomes impossible to maintain stable battery performance for a long time.

従来こうした課題に対して、引張強さが高く、破断伸びが大きい銅箔を使うことが提案されている。即ち、引張り強さが400N/mm以上または破断伸びが7%以上ある電解金属箔を集電体として用いたリチウムイオン二次電池が特許文献5に開示されている。 Conventionally, it has been proposed to use a copper foil having a high tensile strength and a large elongation at break in response to such problems. That is, Patent Document 5 discloses a lithium ion secondary battery using an electrolytic metal foil having a tensile strength of 400 N / mm 2 or more or a breaking elongation of 7% or more as a current collector.

前記特許文献5では活物質にカーボンを使用している例が記載されている。カーボン活物質の場合は、充電時に10%程度の体積膨張が生じるが、シリコン活物質等に比較すると小さい。従って特許文献5に記載されている性能の銅箔はシリコン活物質等に使用した場合充分とは言えない。   Patent Document 5 describes an example in which carbon is used as an active material. In the case of a carbon active material, volume expansion of about 10% occurs during charging, but is smaller than that of a silicon active material or the like. Therefore, it cannot be said that the copper foil having the performance described in Patent Document 5 is sufficient when used as a silicon active material.

特許第3742144号公報Japanese Patent No. 3742144 特開平10−255768号公報Japanese Patent Laid-Open No. 10-255768 特開2002−083594号公報Japanese Patent Laid-Open No. 2002-083594 特開2007−227328号公報JP 2007-227328 A 特開2001−189154号公報JP 2001-189154 A

リチウムイオン二次電池用電極として上述したようにグラファイトなどのカーボン、スズやシリコンを主成分とする活物質層を集電体上に形成した負極電極を用いた場合、充放電反応に伴い活物質層の体積が膨張・収縮し、集電体に大きな応力が働き、集電体にしわなどの変形を生じさせる場合がある。さらに多数回充放電を繰り返すと集電体としての箔が破断するという課題があった。
集電体にしわなどの変形が生じると、活物質が脱離し、充放電可能な容量が小さくなって、電池の寿命が低下するという課題が生じる。また、集電体が破断すると導電パスが切れて、充電・放電の基本電池性能や電極特性が急激に低下することになる。
As described above, when the negative electrode having an active material layer mainly composed of carbon such as graphite, tin, or silicon formed on a current collector as an electrode for a lithium ion secondary battery, the active material accompanies the charge / discharge reaction. In some cases, the volume of the layer expands and contracts, and a large stress acts on the current collector to cause deformation such as wrinkles in the current collector. Furthermore, when charging and discharging was repeated many times, there was a problem that the foil as a current collector was broken.
When the current collector is deformed, such as wrinkles, the active material is detached, the chargeable / dischargeable capacity is reduced, and the battery life is reduced. Further, when the current collector is broken, the conductive path is cut, and the basic battery performance and electrode characteristics for charging and discharging are drastically deteriorated.

本発明は、例えばスズやシリコンを主成分とする活物質層を集電体である銅箔上に形成した負極電極を用いたリチウムイオン二次電池(非水電解液二次電池)において、充放電サイクル効率に優れ、さらに集電体にしわが発生せず、また集電体の破断も起こらない長時間安定した性能を維持できるリチウムイオン二次電池を提供することを目的とし、該二次電池用の電極、ならびに該電極の集電体を構成する電解銅箔を提供することを目的とする。また、プリント回路用、特にはフレキシブルプリント回路やファインパターン回路用途に優れる電解銅箔を提供することも目的とする。   The present invention provides a lithium ion secondary battery (non-aqueous electrolyte secondary battery) using a negative electrode in which an active material layer mainly composed of tin or silicon is formed on a copper foil as a current collector. An object of the present invention is to provide a lithium ion secondary battery that is excellent in discharge cycle efficiency, does not cause wrinkles in the current collector, and maintains stable performance for a long time without causing breakage of the current collector. It is an object of the present invention to provide an electrode for use as well as an electrolytic copper foil constituting a current collector of the electrode. Another object of the present invention is to provide an electrolytic copper foil that is excellent for printed circuits, particularly for flexible printed circuits and fine pattern circuits.

本発明は、銅箔に含まれる塩素、カーボン、酸素、硫黄、窒素の量により、銅箔の引張り強度、0.2%耐力、200〜400℃加熱後の引張り強度、0.2%耐力が左右されることを見出し、本発明に至った。   In the present invention, depending on the amount of chlorine, carbon, oxygen, sulfur, and nitrogen contained in the copper foil, the tensile strength of the copper foil, 0.2% yield strength, tensile strength after heating at 200 to 400 ° C., and 0.2% yield strength As a result, the present invention has been found.

本発明の銅箔は、塩素(Cl)、カーボン(C)をそれぞれ1017〜5×1020原子/cm濃度含み、硫黄(S)または/及び窒素(N)を1015〜5×1019原子/cm濃度含み、酸素Oを5×1020原子/cm以下の濃度含有する銅箔である。
なお、銅箔中に含まれるこれら元素は、銅箔の厚み方向の二次イオン質量分析計(Secondary ion Mass Spectroscopy:SIMS)によるデプスプロファイル(深さ方向)分析で測定することができる。
The copper foil of the present invention contains chlorine (Cl) and carbon (C) in a concentration of 10 17 to 5 × 10 20 atoms / cm 3 , and sulfur (S) and / or nitrogen (N) in a range of 10 15 to 5 × 10. A copper foil containing 19 atoms / cm 3 and containing oxygen O at a concentration of 5 × 10 20 atoms / cm 3 or less.
In addition, these elements contained in the copper foil can be measured by a depth profile (depth direction) analysis by a secondary ion mass spectrometer (SIMS) in the thickness direction of the copper foil.

前記銅箔の厚み方向断面の結晶粒径の最小は500nm以下、最大は2500以下にあることが好ましい。
なお、銅箔の結晶粒径は走査型イオン顕微鏡(Scanning ion Microscope:SIM)像から測定することができる。
The minimum crystal grain size of the copper foil in the thickness direction cross section is preferably 500 nm or less, and the maximum is 2500 or less.
In addition, the crystal grain diameter of copper foil can be measured from a scanning ion microscope (Scanning ion microscope: SIM) image.

前記銅箔は200〜400℃で30分〜1.5時間加熱後の0.2%耐力が250N/mm以上であることが望ましい。 The copper foil preferably has a 0.2% proof stress of 250 N / mm 2 or more after heating at 200 to 400 ° C. for 30 minutes to 1.5 hours.

前記銅箔は電解銅箔、または電解銅箔を更に圧延した圧延電解銅箔である。   The copper foil is an electrolytic copper foil or a rolled electrolytic copper foil obtained by further rolling the electrolytic copper foil.

本発明の非水電解液二次電池の負極電極は、前記本発明の銅箔の少なくとも一方の表面を防錆処理し、または少なくとも一方の表面を粗化処理し、該粗化処理表面を防錆処理し、該防錆処理がなされた面に活物質層を堆積した電極である。   The negative electrode of the non-aqueous electrolyte secondary battery of the present invention has a rust preventive treatment on at least one surface of the copper foil of the present invention, or a rough treatment on at least one surface to prevent the roughened surface. It is an electrode in which an active material layer is deposited on a surface that has been rust-treated and subjected to the rust-proofing treatment.

前記負極を構成する活物質層はカーボン、シリコン、スズ、アルミニウム、マグネシウム、またはカルシウムのいずれかを主成分とする活物質で形成されている。   The active material layer constituting the negative electrode is formed of an active material containing carbon, silicon, tin, aluminum, magnesium, or calcium as a main component.

本発明の非水電解液二次電池は、本発明の負極電極を組み込んだ電池である。   The nonaqueous electrolyte secondary battery of the present invention is a battery incorporating the negative electrode of the present invention.

本発明のプリント、またはフレキシブルプリント回路基板は本発明の銅箔を絶縁基板と積層してなる回路基板である。   The printed or flexible printed circuit board of the present invention is a circuit board formed by laminating the copper foil of the present invention with an insulating substrate.

本発明のリチウムイオン二次電池は、該電池の負極集電体に前記銅箔を使用することにより、充放電反応に伴う活物質層の膨張・収縮と集電体への大きな応力に耐えることができ、集電体にしわなどの変形を発生せず、電池性能劣化が少ない、長寿命な非水電解液二次電池(リチウムイオン二次電池)を提供することができる。   The lithium ion secondary battery of the present invention can withstand the large stress on the current collector and the expansion and contraction of the active material layer accompanying the charge / discharge reaction by using the copper foil for the negative electrode current collector of the battery. Thus, it is possible to provide a long-life nonaqueous electrolyte secondary battery (lithium ion secondary battery) that does not cause deformation such as wrinkles in the current collector and has little battery performance deterioration.

本発明は、例えばスズやシリコンを主成分とする活物質層を集電体である銅箔上に形成した負極電極を用いた非水電解液二次電池(リチウムイオン二次電池)において、充放電サイクル効率に優れ、さらに集電体にしわが発生せず、また集電体の破断も起こらない長時間安定した性能を維持できるリチウムイオン二次電池を提供することを目的とし、該二次電池用の電極、ならびに該電極の集電体を構成する銅箔を提供することが可能である。   The present invention relates to a nonaqueous electrolyte secondary battery (lithium ion secondary battery) using a negative electrode in which an active material layer mainly composed of tin or silicon is formed on a copper foil as a current collector. An object of the present invention is to provide a lithium ion secondary battery that is excellent in discharge cycle efficiency, does not cause wrinkles in the current collector, and maintains stable performance for a long time without causing breakage of the current collector. It is possible to provide an electrode for use as well as a copper foil constituting a current collector of the electrode.

また本発明はプリント回路用、特にはフレキシブルプリント回路やファインパターン回路用途に優れる銅箔を提供することも可能である。   The present invention can also provide a copper foil that is excellent for printed circuits, particularly for flexible printed circuits and fine pattern circuits.

銅箔の厚み方向断面を走査型イオン顕微鏡(SIM)で撮影した画像である。It is the image which image | photographed the thickness direction cross section of copper foil with the scanning ion microscope (SIM). 銅箔の結晶と結晶の境界で構成される結晶粒の大きさを、その境界から境界までの距離dを説明した模式図である。It is the schematic diagram explaining the distance d from the boundary to the magnitude | size of the crystal grain comprised by the crystal | crystallization boundary of a copper foil.

本発明の銅箔は、銅箔中に含まれる塩素、カーボン、酸素、硫黄、窒素の含有量と機械的強度との関係を鋭意研究した結果、塩素、カーボンをそれぞれ1017〜5×1020原子/cm濃度含み、硫黄または/及び窒素を1015〜5×1019原子/cm濃度含み、酸素を5×1020原子/cm以下の濃度含有する銅箔が機械的強度に優れ、特に、該銅箔は200℃〜400℃で0.5〜1.5時間加熱の0.2%耐力が250N/mm以上と優れる銅箔である。 The copper foil of the present invention has been intensively studied on the relationship between the contents of chlorine, carbon, oxygen, sulfur, and nitrogen contained in the copper foil and the mechanical strength, and as a result, chlorine and carbon were each 10 17 to 5 × 10 20. A copper foil containing an atom / cm 3 concentration, containing sulfur or / and nitrogen at a concentration of 10 15 to 5 × 10 19 atoms / cm 3 and containing oxygen at a concentration of 5 × 10 20 atoms / cm 3 or less has excellent mechanical strength. In particular, the copper foil is a copper foil having an excellent 0.2% proof stress of 250 N / mm 2 or more when heated at 200 ° C. to 400 ° C. for 0.5 to 1.5 hours.

なお、上記原子の含有量を外れた電解銅箔は上記機械的強度を満足することができなかった。機械的強度の優劣については後述する実施例と比較例で説明するが、その理論、原因については追及できていない。   In addition, the electrolytic copper foil from which the content of the atoms deviated could not satisfy the mechanical strength. The superiority or inferiority of the mechanical strength will be described in Examples and Comparative Examples described later, but the theory and cause have not been pursued.

上記原子の含有量測定は、銅箔厚み方向の二次イオン質量分析計(Secondary ion Mass Spectroscopy:SIMS)でデプスプロファイル(深さ方向)に分析した結果である。
また、本発明の銅箔は、銅箔厚み方向の断面観察結晶粒径が500nm以下、最大が2500以下にある銅箔であることが好ましい。銅箔厚み方向の断面観察結晶粒径は走査型イオン顕微鏡(Scanning ion Microscope:SIM)像により測定した。
The atomic content measurement is a result of analysis in a depth profile (depth direction) with a secondary ion mass spectrometer (SIMS) in the copper foil thickness direction.
The copper foil of the present invention is preferably a copper foil having a cross-sectional observation crystal grain size of 500 nm or less and a maximum of 2500 or less in the thickness direction of the copper foil. Cross-sectional observation in the thickness direction of the copper foil The crystal grain size was measured with a scanning ion microscope (SIM) image.

本発明の銅箔は、特に非水系二次電池の電極に採用する膨張・収縮の大きい活物質を堆積する集電体として優れた効果を発揮する。   The copper foil of the present invention exhibits an excellent effect as a current collector for depositing an active material having a large expansion / contraction, which is particularly employed for an electrode of a non-aqueous secondary battery.

従来のカーボン系の負極構成活物質層を形成する場合は、負極活物質であるカーボン、バインダーであるポリフッ化ビニリデン樹脂、溶媒であるN−メチルピロリドンからなるペーストを作り銅箔の両面に塗布、乾燥を行う。
この場合は、集電体に堆積した活物質を150℃前後の温度で乾燥する。この150℃前後の温度では電解銅箔の引張強さ、0.2%耐力、伸びはほとんど変化しない。例えば前述した特許文献1に記載されている、硫酸銅−硫酸電解液にメルカプト基を持つ化合物、塩化物イオン、並びに分子量10000 以下の低分子量膠及び高分子多糖類を添加した電解液を使って製造した厚さ10μm電解銅箔は、室温での引張強さは300〜350N/mm2であり、150℃前後の温度で乾燥を行ってもその性能はほとんど変化しない。
さらに前記のようにカーボン活物質の場合は充放電時にその体積膨張がせいぜい10%程度であるため、充放電サイクル効率が著しく小さくなったり、充放電による集電体の変形が起こったり破断したりするというようなことはない。
When forming a conventional carbon-based negative electrode constituent active material layer, a paste made of carbon as a negative electrode active material, polyvinylidene fluoride resin as a binder, N-methylpyrrolidone as a solvent is applied to both sides of the copper foil, Dry.
In this case, the active material deposited on the current collector is dried at a temperature of about 150 ° C. At a temperature around 150 ° C., the tensile strength, 0.2% proof stress, and elongation of the electrolytic copper foil hardly change. For example, using the electrolytic solution described in Patent Document 1 described above, in which a compound having a mercapto group, a chloride ion, and a low molecular weight glue having a molecular weight of 10,000 or less and a high molecular weight polysaccharide are added to a copper sulfate-sulfuric acid electrolytic solution. The manufactured 10 μm thick electrolytic copper foil has a tensile strength at room temperature of 300 to 350 N / mm 2 , and its performance hardly changes even when dried at a temperature of around 150 ° C.
Further, as described above, in the case of the carbon active material, the volume expansion at the time of charging / discharging is at most about 10%. There is no such thing as to do.

これに対して活物質としてシリコン(ケイ素系)を使う場合は、充放電時の活物質の膨張、収縮を防ぐためにバインダーにポリイミド系の樹脂を使う場合がある。この場合乾燥、キュア温度はカーボン系の活物質を使う場合より高く、200℃〜400℃程度の温度で乾燥、キュアを行う。
こうした高温で加熱を行うと、前記特許文献1及び特許文献2に開示されている電解銅箔では箔が焼鈍され軟化して、充放電サイクル効率が著しく小さくなり、充放電時の活物質の膨張収縮により箔に変形、破断が発生しやすくなる。
On the other hand, when silicon (silicon-based) is used as the active material, a polyimide-based resin may be used for the binder in order to prevent expansion and contraction of the active material during charge / discharge. In this case, the drying and curing temperature is higher than that when a carbon-based active material is used, and drying and curing are performed at a temperature of about 200 ° C. to 400 ° C.
When heating is performed at such a high temperature, the electrolytic copper foil disclosed in Patent Document 1 and Patent Document 2 is annealed and softened, the charge / discharge cycle efficiency is significantly reduced, and the active material expands during charge / discharge. Shrinkage tends to cause deformation and breakage of the foil.

箔が変形する場合、箔には降伏点以上の応力がかかったと考えることができる。降伏点とは弾性から塑性に変わるところの応力である。箔に弾性領域の応力がかかっても変形が起こることはない。しかし、塑性領域の応力がかかった場合は変形する。
従って、乾燥、キュアにより箔が加熱された後であっても、降伏点が大きい箔の場合は、充放電によりケイ素系活物質が膨張収縮し、集電体である箔に応力がかかった場合、変形が起こる可能性は低い。
When the foil is deformed, it can be considered that the foil is subjected to stress above the yield point. The yield point is the stress at which the elasticity changes to plasticity. Even if the foil is subjected to stress in the elastic region, no deformation occurs. However, it deforms when stress in the plastic region is applied.
Therefore, even after the foil has been heated by drying and curing, if the foil has a large yield point, the silicon active material expands and contracts due to charge and discharge, and stress is applied to the foil that is the current collector. , Deformation is unlikely to occur.

従って、特許文献5に記載されているように、室温において引張り強さが400N/mm以上または破断伸びが7%以上あり、かつ、引張強さと破断伸びとの積が2800N/mm・%以上の電解金属箔を用いてリチウムイオン二次電池を構成することが、充放電による箔変形を起こさないことに効果があるのではなく、乾燥、キュアによる加熱後でも降伏点が大きい箔こそ箔変形を起こさない箔であると言える。 Therefore, as described in Patent Document 5, the tensile strength is 400 N / mm 2 or more at room temperature or the elongation at break is 7% or more at room temperature, and the product of the tensile strength and the elongation at break is 2800 N / mm 2 ·%. Constructing a lithium-ion secondary battery using the above electrolytic metal foil is not effective in preventing foil deformation due to charge / discharge, but it is a foil with a large yield point even after drying and curing. It can be said that the foil does not cause deformation.

ここで、降伏点は引張試験により測定を行うが、電解銅箔の場合はこの点がはっきりしない。こうした場合、通常0.2%ひずみが発生したときの値をとり降伏点に代用する。これを0.2%耐力と定義する。   Here, the yield point is measured by a tensile test, but this point is not clear in the case of an electrolytic copper foil. In such a case, usually the value when 0.2% strain is generated is taken and substituted for the yield point. This is defined as 0.2% yield strength.

電解銅箔の場合、室温において大きな0.2%耐力をもつことが、加熱後でも大きな降伏点をもつことと必ずしも一致するわけではない。例えば後述する表2の比較例4に示した箔は、室温では高い引張強さ(510N/mm)と0.2%耐力(345N/mm)を持つが、加熱後には焼鈍され軟化して引張り強さ(204N/mm)、0.2%耐力(102N/mm)と小さい箔になってしまう。 In the case of an electrolytic copper foil, having a large 0.2% yield strength at room temperature does not necessarily coincide with having a large yield point even after heating. For example foil shown in Comparative Example 4 in Table 2 below, which have high tensile strength at room temperature (510N / mm 2) 0.2% yield strength (345N / mm 2), it is annealed to soften after heating Te tensile strength (204N / mm 2), becomes small foil 0.2% yield strength (102N / mm 2).

特許文献5に記載されているように、室温における引張強さが400N/mm2以上ある材料でも、加熱により焼鈍され0.2%耐力が小さくなる材料では意味がない。
加熱した後の0.2%耐力がある一定の値以上を示すことが重要である。また伸びが小さい場合には充放電サイクルを多数回繰り返すうちに集電体(箔)の破断が発生する。箔の破断を発生させないためには0.2%耐力で250N/mm2以上必要で、伸びが2.5%以上必要である。
As described in Patent Document 5, even a material having a tensile strength at room temperature of 400 N / mm 2 or more is meaningless in a material that is annealed by heating and has a 0.2% yield strength.
It is important that the 0.2% yield strength after heating is above a certain value. When the elongation is small, the current collector (foil) breaks while the charge / discharge cycle is repeated many times. In order not to cause the breakage of the foil, 250 N / mm 2 or more is required at 0.2% proof stress, and the elongation is required to be 2.5% or more.

本発明の銅箔は、0.2%耐力が250N/mm以上の銅箔である。従って係る銅箔を集電体として用いた場合、リチウムの吸蔵・放出に伴う活物質層の膨張・収縮による応力を受けても、集電体としてしわ等の変形、破断等が生じることがない。
本発明の銅箔が示す機械的特性は、塩素、カーボンをそれぞれ1017〜5×1020原子/cm濃度含み、酸素Oを5×1020原子/cm以下の濃度含み、硫黄または/及び窒素を1015〜5×1019原子/cm濃度含むことにより発現される。
これらの元素の定量は、箔厚み方向の二次イオン質量分析計(SIMS)でデプスプロファイル(深さ方向)に分析することによって確定することができる。
The copper foil of the present invention is a copper foil having a 0.2% proof stress of 250 N / mm 2 or more. Therefore, when such a copper foil is used as a current collector, even if it receives stress due to expansion / contraction of the active material layer due to insertion / extraction of lithium, the current collector will not be deformed or broken such as wrinkles. .
The mechanical properties of the copper foil of the present invention include chlorine and carbon in concentrations of 10 17 to 5 × 10 20 atoms / cm 3 , oxygen O in concentrations of 5 × 10 20 atoms / cm 3 or less, sulfur or And nitrogen is contained at a concentration of 10 15 to 5 × 10 19 atoms / cm 3 .
Quantification of these elements can be determined by analyzing the depth profile (depth direction) with a secondary ion mass spectrometer (SIMS) in the foil thickness direction.

SIMSによる分析は、一次イオンを試料表面に照射スパッタし、表面から放出される二次イオンを質量分析することにより、元素を分析することができる。深さ方向のプロファイルを高感度に濃度分析することもできる。一次イオンビームにはセシウムイオンや酸素イオン、アルゴンイオンが用いられる。成分濃度の定量化は、これら分析結果を標準試料と比較することにより把握する。   The analysis by SIMS can analyze elements by irradiating and sputtering primary ions on the sample surface and mass-analyzing secondary ions emitted from the surface. It is also possible to analyze the concentration of the profile in the depth direction with high sensitivity. Cesium ions, oxygen ions, and argon ions are used for the primary ion beam. The quantification of the component concentration is grasped by comparing these analysis results with a standard sample.

さらに、本発明の銅箔はFIB(集束イオンビーム)により断面を出し、走査型イオン顕微鏡(SIM)像による鮮明な画像から、粒径を観察確認した結果、断面観察結晶粒径が4000nm以下、好ましくは20〜3500nmの範囲の銅箔であることが望ましい。
本発明における結晶粒径は、図1に示す結晶と結晶の境界で構成される結晶粒において、その境界から境界までの長さを図2に示す距離dとして定義する。
Furthermore, as for the copper foil of this invention, as a result of taking out a cross section by FIB (focused ion beam) and observing and confirming the particle size from a clear image by a scanning ion microscope (SIM) image, the cross-sectional observation crystal particle size is 4000 nm or less, A copper foil in the range of 20 to 3500 nm is desirable.
The crystal grain size in the present invention is defined as the distance d shown in FIG. 2 in the crystal grain composed of the crystal-crystal boundary shown in FIG.

また、本発明の銅箔は電解析出法により製造した電解銅箔であることが望ましい。電解析出で製造することにより前記の各元素を電析により有効に銅箔中に取り込むことができるからである。また、電解銅箔を圧延した銅箔であることも望ましい。
なお、圧延銅箔でも製造可能であるが、各元素を規定した通りに有効に取り込むことはやや困難である。
Moreover, it is desirable that the copper foil of the present invention is an electrolytic copper foil produced by an electrolytic deposition method. This is because each element described above can be effectively incorporated into the copper foil by electrodeposition by manufacturing by electrolytic deposition. Moreover, it is also desirable that it is the copper foil which rolled the electrolytic copper foil.
In addition, although it can manufacture also with rolled copper foil, it is a little difficult to take in each element effectively as prescribed | regulated.

本発明において、引張強さ、0.2%耐力、伸びは、日本工業規格(JIS K 6251)に定められた方法により、測定した値である。
また、表面粗さRzは、日本工業規格(JIS B 0601−1994)に定められた十点平均粗さであり、例えば触針式表面粗さ計により測定した値である。
In the present invention, the tensile strength, 0.2% proof stress, and elongation are values measured by a method defined in Japanese Industrial Standard (JIS K 6251).
The surface roughness Rz is a ten-point average roughness defined in Japanese Industrial Standards (JIS B 0601-1994), and is a value measured by, for example, a stylus type surface roughness meter.

本発明の電解銅箔は、例えば硫酸−硫酸銅水溶液を電解液とし、白金属元素又はその酸化物元素で被覆したチタンからなる不溶性陽極と該陽極に対向させて設けられたチタン製陰極ドラムとの間に該電解液を供給し、陰極ドラムを一定速度で回転させながら、両極間に直流電流を通電することにより陰極ドラム表面上に銅を析出させ、析出した銅を陰極ドラム表面から引き剥がし、連続的に巻き取る方法により製造される。   The electrolytic copper foil of the present invention comprises, for example, a sulfuric acid-copper sulfate aqueous solution as an electrolytic solution, an insoluble anode made of titanium coated with a white metal element or an oxide element thereof, and a titanium cathode drum provided to face the anode. The electrolytic solution is supplied between the electrodes, and while rotating the cathode drum at a constant speed, a direct current is passed between the two electrodes to deposit copper on the surface of the cathode drum, and the deposited copper is peeled off from the surface of the cathode drum. It is manufactured by a continuous winding method.

本発明の電解銅箔は、硫酸−硫酸銅電解液にチオ尿素類、高分子多糖類、及び塩化物イオンを添加し製造することができる。   The electrolytic copper foil of the present invention can be produced by adding thioureas, polymer polysaccharides, and chloride ions to a sulfuric acid-copper sulfate electrolytic solution.

製造された電解銅箔は、クロメート処理等の無機防錆処理、ベンゾトリアゾール等の有機防錆処理、シランカップリング剤処理等が施されて製品となる。
上記無機防錆処理、有機防錆処理、シランカップリング剤処理は銅箔表面の防錆、絶縁樹脂基板との接着性向上、活物質との密着強度向上、電池の充放電時の容量維持率の低下防止等の役割を果たす。
The manufactured electrolytic copper foil is subjected to inorganic rust prevention treatment such as chromate treatment, organic rust prevention treatment such as benzotriazole, silane coupling agent treatment, and the like to obtain a product.
The above inorganic rust prevention treatment, organic rust prevention treatment, and silane coupling agent treatment are rust prevention on the surface of copper foil, improvement of adhesion to insulating resin substrate, improvement of adhesion strength with active material, capacity maintenance rate during charge / discharge of battery It plays the role of preventing the decrease of

また電解銅箔表面の表面粗さを、例えばシリコン系活物質を積層する場合に適するRz=0.8〜2.8μmとする。表面粗さは、その表面を粗面化処理することで調整する。この粗面化処理としては、めっき法、エッチング法等が好適に採用できる。
めっき法は、電解銅箔の表面に凹凸を有する薄膜層を形成することにより表面を粗面化する方法である。めっき法としては、電解めっき法または無電解めっき法を採用することができる。
Moreover, the surface roughness of the electrolytic copper foil surface is set to Rz = 0.8 to 2.8 μm, which is suitable when, for example, a silicon-based active material is laminated. The surface roughness is adjusted by roughening the surface. As this roughening treatment, a plating method, an etching method, or the like can be suitably employed.
The plating method is a method of roughening the surface by forming a thin film layer having irregularities on the surface of the electrolytic copper foil. As the plating method, an electrolytic plating method or an electroless plating method can be employed.

めっき法による粗面化としては、銅や銅合金などの銅を主成分とするめっき膜を、電解銅箔表面に形成する方法が好ましい。   As the surface roughening by the plating method, a method of forming a plating film mainly composed of copper such as copper or copper alloy on the surface of the electrolytic copper foil is preferable.

電気めっきにより粗面化する方法としては、例えば、特公昭53−39376号公報に開示された、プリント回路用銅箔に対し一般的に用いられているめっきによる粗面化方法が好ましく用いられる。すなわち、いわゆる「やけめっき」により、粒粉状銅めっき層を形成した後、この粒粉状銅めっき層の上に、その凹凸形状を損なわないように「カプセルめっき」を行い、実質的に平滑なめっき層を堆積させて粒粉状銅をいわゆるコブ状銅とする粗面化方法である。   As a roughening method by electroplating, for example, a roughening method by plating generally used for copper foil for printed circuits disclosed in Japanese Patent Publication No. 53-39376 is preferably used. That is, after a granular copper plating layer is formed by so-called “bake plating”, “capsule plating” is performed on the granular copper plating layer so as not to impair the uneven shape, thereby substantially smoothing. This is a roughening method in which a fine plated layer is deposited to make the granular copper into so-called bumpy copper.

エッチング法による粗面化としては、物理的エッチングや化学的エッチングによる方法が適している。物理的エッチングにはサンドブラスト等でエッチングする方法があり、化学エッチングには処理液として、無機または有機酸と酸化剤と添加剤を含有する液が用いられている。例えば特許2740768号公報には、無機酸+過酸化水素+トリアゾールなどの腐食防止剤+界面活性剤が記載されている。また、特開平10−96088号公報には、無機酸+過酸化物+アゾール+ハロゲン化物を含有する液が開示されている。
通常は酸と酸化剤にキレート剤などの添加剤を付与した浴であり、銅の結晶粒界を優先的に溶解するものである。例えば、前記特許文献に開示されている液組成の他に、メック株式会社のCZ−8100、同8101、三菱ガス化学株式会社のCPE−900などの市販品が採用できる。
As the roughening by the etching method, a method by physical etching or chemical etching is suitable. For physical etching, there is a method of etching by sandblasting or the like, and for chemical etching, a liquid containing an inorganic or organic acid, an oxidizing agent and an additive is used as a processing liquid. For example, Japanese Patent No. 2740768 describes a corrosion inhibitor such as an inorganic acid + hydrogen peroxide + triazole + a surfactant. Japanese Patent Application Laid-Open No. 10-96088 discloses a liquid containing inorganic acid + peroxide + azole + halide.
Usually, it is a bath in which an additive such as a chelating agent is added to an acid and an oxidizing agent, and preferentially dissolves the copper grain boundaries. For example, in addition to the liquid composition disclosed in the above-mentioned patent document, commercially available products such as CZ-8100 and 8101 of MEC Co., Ltd. and CPE-900 of Mitsubishi Gas Chemical Co., Ltd. can be adopted.

本発明の銅箔をリチウムイオン二次電池の集電体として使用する場合に付き説明する。
集電体表面に堆積する活物質層は、リチウムを吸蔵・放出する物質であり、リチウムを合金化することにより吸蔵する活物質であることが好ましい。このような活物質材料としては、シリコン、ゲルマニウム、錫、亜鉛、マグネシウム、ナトリウム、アルミニウム、などが挙げられる。これらの中でも、カーボン、シリコン、及びスズがその高い理論容量から好ましく用いられる。従って、本発明において用いる活物質層は、シリコン、カーボン、またはスズを主成分とする層であることが好ましく、特に好ましくはシリコン層である。
The case where the copper foil of the present invention is used as a current collector of a lithium ion secondary battery will be described.
The active material layer deposited on the current collector surface is a material that occludes and releases lithium, and is preferably an active material that occludes lithium by alloying. Examples of such an active material include silicon, germanium, tin, zinc, magnesium, sodium, and aluminum. Among these, carbon, silicon, and tin are preferably used because of their high theoretical capacity. Accordingly, the active material layer used in the present invention is preferably a layer mainly composed of silicon, carbon, or tin, and particularly preferably a silicon layer.

活物質層は、活物質をバインダー、溶剤とともにスラリー状にして、塗布、乾燥、プレスすることにより形成する方法が望ましい。   The active material layer is preferably formed by slurrying the active material together with a binder and a solvent, coating, drying, and pressing.

集電体は厚みの薄いものであることが好ましく、活物質層は、集電体の片面または両面上に堆積することができる。   The current collector is preferably thin, and the active material layer can be deposited on one or both sides of the current collector.

活物質層には、予めリチウムが吸蔵または添加されていてもよい。リチウムは、活物質層を形成する際に添加してもよい。すなわち、リチウムを含有する活物質層を形成することにより、活物質層にリチウムを含有させる。また、活物質層を形成した後に、活物質層にリチウムを吸蔵または添加させてもよい。活物質層にリチウムを吸蔵または添加させる方法としては、電気化学的にリチウムを吸蔵または添加させる方法が挙げられる。   Lithium may be occluded or added in advance to the active material layer. Lithium may be added when forming the active material layer. That is, lithium is contained in the active material layer by forming an active material layer containing lithium. Further, after forming the active material layer, lithium may be occluded or added to the active material layer. Examples of a method for inserting or adding lithium into the active material layer include a method for electrochemically inserting or adding lithium.

リチウムイオン二次電池において用いる非水電解質は、溶媒に溶質を溶解した電解質である。非水電解質の溶媒としては、リチウムイオン二次電池に使用される溶媒であれば特に限定されないが、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネートなどの環状カーボネートや、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネートなどの鎖状カーボネートが挙げられる。好ましくは、環状カーボネートと鎖状カーボネートとの混合溶媒が用いられる。また、上記環状カーボネートと、1,2−ジメトキシエタン、1,2−ジエトキシエタンなどのエーテル系溶媒や、γ−ブチロラクトン、スルホラン、酢酸メチル等の鎖状エステル等との混合溶媒を用いてもよい。   The nonaqueous electrolyte used in the lithium ion secondary battery is an electrolyte in which a solute is dissolved in a solvent. The solvent for the nonaqueous electrolyte is not particularly limited as long as it is a solvent used in a lithium ion secondary battery. For example, cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, and vinylene carbonate, dimethyl carbonate, and diethyl carbonate. And chain carbonates such as methyl ethyl carbonate. Preferably, a mixed solvent of a cyclic carbonate and a chain carbonate is used. Alternatively, a mixed solvent of the above cyclic carbonate and an ether solvent such as 1,2-dimethoxyethane or 1,2-diethoxyethane, or a chain ester such as γ-butyrolactone, sulfolane, or methyl acetate may be used. Good.

非水電解質の溶質としては、リチウムイオン二次電池に用いられる溶質であれば特に限定されるものではなく、例えば、LiPF6、LiBF4、LiCF3SO3、LiN(CF3SO22、LiN(C25SO22、LiN(CF3SO2)(C49SO2)、LiC(CF3SO23、LiC(C25SO23、LiAsF6、LiClO4、Li210Cl10、Li212Cl12などが挙げられる。特に、LiXFy(式中、XはP、As、Sb、B、Bi、Al、Ga、またはInであり、XがP、AsまたはSbのときyは6であり、XがB、Bi、Al、Ga、またはInのときyは4である。)と、リチウムペルフルオロアルキルスルホン酸イミドLiN(Cm2m+1SO2)(Cn2n+1SO2)(式中、m及びnはそれぞれ独立して1〜4の整数である。)またはリチウムペルフルオロアルキルスルホン酸メチドLiC(Cp2p+1SO2)(Cq2q+1SO2)(Cr2r+1SO2)(式中、p、q及びrはそれぞれ独立して1〜4の整数である。)との混合溶質が好ましく用いられる。これらの中でも、LiPF6とLiN(C25SO22との混合溶質が特に好ましく用いられる。 The solute of the nonaqueous electrolyte is not particularly limited as long as it is a solute used for a lithium ion secondary battery. For example, LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 , LiAsF 6 , Examples thereof include LiClO 4 , Li 2 B 10 Cl 10 , and Li 2 B 12 Cl 12 . In particular, LiXFy (wherein X is P, As, Sb, B, Bi, Al, Ga, or In, y is 6 when X is P, As, or Sb, and X is B, Bi, Al) , Ga, or In, y is 4.) and lithium perfluoroalkylsulfonic acid imide LiN (C m F 2m + 1 SO 2 ) (C n F 2n + 1 SO 2 ), where m and n Are each independently an integer of 1 to 4.) or lithium perfluoroalkylsulfonic acid methide LiC (C p F 2p + 1 SO 2 ) (C q F 2q + 1 SO 2 ) (C r F 2r + 1 SO 2 ) (wherein p, q and r are each independently an integer of 1 to 4). Among these, a mixed solute of LiPF 6 and LiN (C 2 F 5 SO 2 ) 2 is particularly preferably used.

また、非水電解質として、ポリエチレンオキシド、ポリアクリロニトリル、ポリフッ化ビニリデンなどのポリマー電解質に電解液を含浸したゲル状ポリマー電解質や、LiI、Li3Nなどの無機固体電解質を用いることができる。 As the non-aqueous electrolyte, a gel polymer electrolyte obtained by impregnating a polymer electrolyte such as polyethylene oxide, polyacrylonitrile, or polyvinylidene fluoride with an electrolytic solution, or an inorganic solid electrolyte such as LiI or Li 3 N can be used.

リチウムイオン二次電池の電解質は、イオン導電性を発現させる溶質としてのLi化合物とこれを溶解・保持する溶媒が電池の充電時や放電時あるいは保存時の電圧で分解しない限り、制約なく用いることができる。   The electrolyte of a lithium ion secondary battery should be used without restriction unless the Li compound as a solute that develops ionic conductivity and the solvent that dissolves and retains it are decomposed by the voltage at the time of battery charging, discharging or storage. Can do.

また、正極に用いる正極活物質としては、LiCoO2、LiNiO2、LiMn24、LiMnO2、LiCo0.5Ni0.52、LiNi0.7Co0.2Mn0.12などのリチウム含有遷移金属酸化物や、MnO2などのリチウムを含有していない金属酸化物が例示される。また、この他にも、リチウムを電気化学的に挿入・脱離する物質であれば、制限なく用いることができる。 Further, as the positive electrode active material used for the positive electrode, lithium-containing transition metal oxides such as LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiMnO 2 , LiCo 0.5 Ni 0.5 O 2 , LiNi 0.7 Co 0.2 Mn 0.1 O 2 , Examples include metal oxides such as MnO 2 that do not contain lithium. In addition, any substance that electrochemically inserts and desorbs lithium can be used without limitation.

本発明の銅箔を集電体とすることで、充放電により集電体にしわ等の変形、あるいは破断が発生するのを抑制することができ、長期間安定した電池性能、電極特性を維持する非水電解液二次電池(リチウムイオン二次電池)を提供することができる。   By using the copper foil of the present invention as a current collector, the current collector can be prevented from being deformed or broken due to charging / discharging, and stable battery performance and electrode characteristics can be maintained for a long period of time. A non-aqueous electrolyte secondary battery (lithium ion secondary battery) can be provided.

以下、本発明を実施例に基づいてさらに具体例を説明する。但し、本発明は以下の実施例に何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することができる。
[実施例1〜10、比較例1〜4]
Hereinafter, specific examples of the present invention will be described based on examples. However, the present invention is not limited to the following examples, and can be appropriately modified and implemented without departing from the scope of the invention.
[Examples 1 to 10, Comparative Examples 1 to 4]

[銅箔の製造]
銅70〜130g/l−硫酸80〜140g/lの酸性銅電解浴に表1に示す組成の添加剤を添加した。表中、添加剤Aの種類は、チオ尿素、N−N'−ジメチルチオ尿素、テトラメチルチオ尿素、エチレンチオ尿素であり、添加剤Bの種類は、ポリアクリルアミド、ポリエチレンイミン、ゼラチン、ポリエチレングリコール、ヒドロキシエチルセルロースであり、比較例の添加剤では、MPS(1−メルカプト3−プロパンスルホン酸ナトリウム)、ゼラチン、HEC(ヒドロキシエチルセルロース)のみ使用して、また塩化物イオンを表1に示す濃度となるように、それぞれ添加し製箔用電解液を調製した。なお、塩化物イオン濃度を30ppmに調整したが、塩化物イオン濃度は電解条件により適宜変更するものであり、この濃度に限定されるものではない。
[Manufacture of copper foil]
Additives having the composition shown in Table 1 were added to an acidic copper electrolytic bath of copper 70 to 130 g / l-sulfuric acid 80 to 140 g / l. In the table, the kind of additive A is thiourea, NN′-dimethylthiourea, tetramethylthiourea, ethylenethiourea, and the kind of additive B is polyacrylamide, polyethyleneimine, gelatin, polyethylene glycol, hydroxyethylcellulose. In the additive of the comparative example, only MPS (sodium 1-mercapto-3-propanesulfonate), gelatin, HEC (hydroxyethylcellulose) is used, and the chloride ion has a concentration shown in Table 1, Each was added to prepare an electrolytic solution for foil production. Although the chloride ion concentration was adjusted to 30 ppm, the chloride ion concentration is appropriately changed depending on the electrolysis conditions, and is not limited to this concentration.

調製した電解液を用い、アノードには貴金属酸化物被覆チタン電極、カソードにはチタン製回転ドラムを用いて表1に示す電解条件(電流密度、液温)の下に、18μm厚みの未処理銅箔を電解製箔法によって実施例1〜4、比較例1の銅箔を製造した。同様にして実施例5〜10については、重量厚さとして20μmの未処理銅箔を製造した。
また比較例2〜3も表1に示す組成の電解液により20μmとなるように未処理銅箔の製造を行った。
Using the prepared electrolyte, a noble metal oxide-coated titanium electrode for the anode, and a titanium rotating drum for the cathode, and 18 μm-thick untreated copper under the electrolysis conditions (current density, liquid temperature) shown in Table 1 Copper foils of Examples 1 to 4 and Comparative Example 1 were produced by electrolytic foil production. Similarly, about Examples 5-10, 20 micrometer untreated copper foil was manufactured as weight thickness.
Moreover, unprocessed copper foil was manufactured so that it might become 20 micrometers with the electrolyte solution of the composition shown in Table 1 also for Comparative Examples 2-3.

[負極集電体の作成]
表1に示す電解銅箔の表面に電気めっきにより銅のやけめっきを施し、粒粉状銅めっき層を形成した。さらに、該粒粉状銅めっき層の上にその凹凸形状を損なわないように、平滑な銅めっき(カプセルめっき)を行い、粒粉状銅と銅箔との密着性を向上させた粗面化銅箔を作成した。
実施例1〜4、比較例1については上記に記述したように、当初18μmの未処理銅箔を作成し、その後20μm厚さになるように電気めっきによる銅のやけめっき、カプセルめっきを施し粗面化電解銅箔を作成し、クロメート処理を施した後、集電体とした。
[Creation of negative electrode current collector]
The surface of the electrolytic copper foil shown in Table 1 was subjected to copper burnt plating by electroplating to form a granular copper plating layer. Furthermore, smooth copper plating (capsule plating) is performed on the granular powder copper plating layer so as not to impair the irregular shape, and the roughened surface improves the adhesion between the granular copper and the copper foil. Copper foil was created.
As described above for Examples 1 to 4 and Comparative Example 1, an untreated copper foil having an initial thickness of 18 μm was prepared, and then copper burnt plating and capsule plating by electroplating were performed so that the thickness became 20 μm. A surfaced electrolytic copper foil was prepared, subjected to chromate treatment, and then used as a current collector.

これに対して実施例5〜10及び比較例2〜4については、20μmの未処理銅箔を作成し、その後銅のやけめっき、カプセルめっきは施さず、クロメート処理のみを施して集電体とした。
すなわち、実施例1〜10、比較例1〜4は集電体になる時には全て20μmになるように厚さを合わせた。
なお銅箔表面粗面化のためのやけめっき(粒粉状めっき)条件、カプセルめっき(平滑な銅めっき)、クロメート処理の条件は以下のようである。
On the other hand, for Examples 5 to 10 and Comparative Examples 2 to 4, a 20 μm untreated copper foil was prepared, and then the copper burnt plating and the capsule plating were not performed, and only the chromate treatment was performed, did.
In other words, the thicknesses of Examples 1 to 10 and Comparative Examples 1 to 4 were adjusted to 20 μm when they were current collectors.
The conditions for burnt plating (granular powder plating), capsule plating (smooth copper plating), and chromate treatment for roughening the copper foil surface are as follows.

[やけめっき(粒粉状めっき)条件]
硫酸銅 80〜140g/L
硫酸 110〜160g/L
添加剤 適量
液温 30〜60℃
電流密度 10〜50A/dm2
処理時間 2〜20秒
[Burn plating (granular powder plating) conditions]
Copper sulfate 80-140g / L
Sulfuric acid 110-160g / L
Additive Appropriate amount Liquid temperature 30-60 ° C
Current density 10-50A / dm 2
Processing time 2 to 20 seconds

[カプセル(平滑な銅めっき)条件]
硫酸銅 200〜300g/L
硫酸 90〜130g/L
液温 30〜60℃
電流密度 10〜30A/dm2
処理時間 2〜20秒
[Capsule (smooth copper plating) conditions]
Copper sulfate 200-300g / L
Sulfuric acid 90 ~ 130g / L
Liquid temperature 30-60 ° C
Current density 10-30A / dm 2
Processing time 2 to 20 seconds

[クロメート処理条件]
重クロム酸カリウム 1〜10g/L
浸漬処理時間 2〜20秒
[Chromate treatment conditions]
Potassium dichromate 1-10g / L
Immersion treatment time 2 to 20 seconds

作成した各実施例、比較例の引張強さ、0.2%耐力、伸び、及び表面粗さRa、Rzを表2に示す。   Table 2 shows the tensile strength, 0.2% proof stress, elongation, and surface roughness Ra and Rz of each of the examples and comparative examples.

なお、引張強さ、0.2%耐力、伸びは、引張試験機(インストロン社製1122型)を用いて測定した値である。また、表面粗さRa、Rzは、触針式表面粗さ計(小坂研究所製SE−3C型)により測定した値である。 The tensile strength, 0.2% proof stress, and elongation are values measured using a tensile tester (Model 1122 manufactured by Instron). The surface roughness Ra and Rz are values measured by a stylus type surface roughness meter (SE-3C type manufactured by Kosaka Laboratory).

また、作成した各実施例、比較例の銅箔につき、SIMSによる深さ方向分析を行った結果を表3に示し、併せてFIB(集束イオンビーム)断面SIM像観察による結晶粒径の値も記した。   Table 3 shows the results of depth direction analysis by SIMS for the copper foils of each of the examples and comparative examples. In addition, the value of the crystal grain size by observation of a FIB (focused ion beam) cross-section SIM image is also shown. I wrote.



[負極の作成]
負極活物質粒子として平均粒径が15μmのシリコン粉末(純度99.9%)を使用し、バインダーにポリイミドを用いて、上記の負極活物質粒子とバインダーとが9:1の重量比になるようにしてN−メチル−2−ピロリドンに加え、これらを混合させて負極合剤スラリーを調製した。


[Create negative electrode]
Using silicon powder (purity 99.9%) having an average particle diameter of 15 μm as the negative electrode active material particles, using polyimide as the binder, the negative electrode active material particles and the binder have a weight ratio of 9: 1. In addition to N-methyl-2-pyrrolidone, these were mixed to prepare a negative electrode mixture slurry.

次に、集電体となる銅箔上に上記負極合剤スラリーを塗布し、これを乾燥させて負極集電体の両面に負極合剤層を形成した。この時点の電極厚みは85μmであった。   Next, the negative electrode mixture slurry was applied onto a copper foil serving as a current collector and dried to form negative electrode mixture layers on both sides of the negative electrode current collector. The electrode thickness at this time was 85 μm.

この後、圧延ローラを用いて電極厚み60μmになるまで圧延した後、これをアルゴン雰囲気下において表1に示す各温度で1時間焼結させて負極を作成した。   Then, after rolling to an electrode thickness of 60 μm using a rolling roller, this was sintered at each temperature shown in Table 1 for 1 hour in an argon atmosphere to prepare a negative electrode.

[正極の作製]
正極活物質を作製するにあたっては、LiCoとCoCoとを用い、Li:Coの原子比が1:1になるように秤量して、これらを乳鉢で混合し、これを直径17mmの金型でプレスして加圧成形した後、これを空気中において、800℃の温度で24時間焼成してLiCoOの焼成体を製造し、このLiCoOの焼成体を乳鉢で粉砕して、平均粒径が20μmになったLiCoO粉末を得た。
[Preparation of positive electrode]
In producing the positive electrode active material, Li 2 Co 3 and CoCo 3 were used and weighed so that the atomic ratio of Li: Co was 1: 1, and these were mixed in a mortar. After pressing with a mold and pressure forming, this is fired in air at a temperature of 800 ° C. for 24 hours to produce a LiCoO 2 fired body, and this LiCoO 2 fired body is pulverized in a mortar, LiCoO 2 powder having an average particle size of 20 μm was obtained.

そして、このLiCoO粉末からなる正極活物質粒子90重量部に対して、導電剤の人工黒鉛粉末5重量部と、結着剤のポリフッ化ビニリデンを3重量部含む5重量%のN−メチル−2−ピロリドン溶液を混合させて、正極合剤スラリーを調製した。 Then, 5 parts by weight of N-methyl-containing 5 parts by weight of an artificial graphite powder as a conductive agent and 3 parts by weight of polyvinylidene fluoride as a binder with respect to 90 parts by weight of the positive electrode active material particles made of this LiCoO 2 powder. A 2-pyrrolidone solution was mixed to prepare a positive electrode mixture slurry.

次いで、この正極合剤スラリーを15μmのアルミニウム箔からなる正極集電体に塗布し、これを乾燥させて圧延し、正極集電体の両面に正極合剤層が形成された正極を作製した。   Next, this positive electrode mixture slurry was applied to a positive electrode current collector made of 15 μm aluminum foil, dried and rolled to produce a positive electrode in which a positive electrode mixture layer was formed on both surfaces of the positive electrode current collector.

[非水電解液の作製]
非水電解液を作製するにあたっては、エチレンカーボネートとジエチレンカーボネートとを3:7の体積比で混合させた混合溶媒に、LiPFを1モル/リットルの濃度になるように溶解させ、さらに25℃において10分間二酸化炭素を吹き込み、二酸化炭素を飽和量となるまで溶解させた。
[Preparation of non-aqueous electrolyte]
In preparing the non-aqueous electrolyte, LiPF 6 was dissolved to a concentration of 1 mol / liter in a mixed solvent in which ethylene carbonate and diethylene carbonate were mixed at a volume ratio of 3: 7, and further 25 ° C. In this case, carbon dioxide was blown for 10 minutes to dissolve the carbon dioxide until the saturation amount was reached.

[電池充放電特性評価]
上記負極、正極、非水電解液を使いリチウムイオン二次電池を作成し、充放電特性評価を行った。
リチウムイオン二次電池を作製するにあたっては、上記の正極にアルミニウムからなる正極集電タブを取り付けると共に、上記の負極にニッケルからなる負極集電タブを取り付け、この正極と負極とがポリエチレン製多孔質体からなるセパレータを介して対向するように捲回して電極体を作製した。
[Evaluation of battery charge / discharge characteristics]
A lithium ion secondary battery was prepared using the negative electrode, the positive electrode, and the non-aqueous electrolyte, and the charge / discharge characteristics were evaluated.
In producing a lithium ion secondary battery, a positive electrode current collector tab made of aluminum is attached to the positive electrode, and a negative electrode current collector tab made of nickel is attached to the negative electrode. The positive electrode and the negative electrode are made of polyethylene porous material. The electrode body was produced by winding so as to face each other through a separator made of a body.

次いで、上記の電極体をアルミニウムラミネートフィルムで構成された外装体内に挿入させると共に、この外装体内に上記の非水電解液を加え、その後、上記の正極集電タブと負極集電タブとを外部に取り出すようにして、上記の外装体の開口部を封口させた。   Next, the electrode body is inserted into an exterior body made of an aluminum laminate film, and the nonaqueous electrolyte is added to the exterior body. Thereafter, the positive electrode current collection tab and the negative electrode current collection tab are externally attached. As described above, the opening of the outer package was sealed.

次に、上記のようにして作製した実施例1〜10、及び比較例1〜4の各リチウムイオン二次電池を、25℃の雰囲気中において、電流値1000mA で4 .2Vまで充電させた後、電流値1000mAで2 .75V まで放電し、これを1サイクルとして充放電を繰り返して行い、放電容量が1サイクル目の放電容量の70%に達するまでのサイクル数を測定し、これをサイクル寿命とした。そして、実施例1 のリチウムイオン二次電池のサイクル寿命を100とした指数で、その結果を表4 に示した。   Next, each of the lithium ion secondary batteries of Examples 1 to 10 and Comparative Examples 1 to 4 manufactured as described above was subjected to a current value of 1000 mA in a 25 ° C. atmosphere at 4 mA. After charging to 2V, at a current value of 1000 mA, 2. The battery was discharged to 75 V, and charging and discharging were repeated as one cycle. The number of cycles until the discharge capacity reached 70% of the discharge capacity at the first cycle was measured, and this was defined as the cycle life. The results are shown in Table 4 using an index with the cycle life of the lithium ion secondary battery of Example 1 as 100.

また、サイクル後における実施例1〜10及び比較例1〜4の各リチウム二次電池を解体して、各負極の負極集電体におけるしわの発生の有無を調べ、その結果を表4に合わせて示した。   In addition, each of the lithium secondary batteries of Examples 1 to 10 and Comparative Examples 1 to 4 after the cycle was disassembled, and the presence or absence of wrinkles in the negative electrode current collector of each negative electrode was examined. Showed.

表4に示したように、本発明の実施例1〜10では、銅箔の厚み方向のSIMS深さ方向分析の結果が、塩素Clを1017〜5×1020原子/cm濃度、カーボンCを1017〜5×1020原子/cm濃度、酸素Oを1017〜5×1020原子/cm濃度、硫黄Sを1015〜5×1019原子/cm濃度、窒素Nを1015〜5×1019原子/cm濃度含む銅箔を用いていることにより、充放電サイクルを繰り返しても容量の低下が起こらないことが確認され、また、充放電により集電体にしわが発生するのを抑制することができた。 As shown in Table 4, in Examples 1 to 10 of the present invention, the result of SIMS depth direction analysis of the copper foil in the thickness direction was 10 17 to 5 × 10 20 atoms / cm 3 concentration of chlorine Cl, carbon C: 10 17 to 5 × 10 20 atoms / cm 3 concentration, oxygen O: 10 17 to 5 × 10 20 atoms / cm 3 concentration, sulfur S: 10 15 to 5 × 10 19 atoms / cm 3 concentration, nitrogen N By using the copper foil containing 10 15 to 5 × 10 19 atoms / cm 3 concentration, it is confirmed that the capacity does not decrease even when the charge / discharge cycle is repeated, and the current collector is wrinkled by charge / discharge. It was possible to suppress the occurrence.

また銅箔が200〜400℃で30分〜1.5時間加熱処理後の0.2%耐力が250N/mm以上を示す銅箔を用いると、充放電サイクルを繰り返しても容量の低下が起こらず、また、充放電により集電体にしわが発生するのを抑制することができた。 Moreover, when the copper foil has a 0.2% proof stress of 250 N / mm 2 or more after heat treatment at 200 to 400 ° C. for 30 minutes to 1.5 hours, the capacity decreases even if the charge / discharge cycle is repeated. It did not occur, and the generation of wrinkles on the current collector due to charge / discharge could be suppressed.

さらには、集電体に、SIM像による銅箔厚み方向の断面観察結晶粒径が20〜2500nmの範囲にある銅箔を用いると、充放電サイクルを繰り返しても容量の低下が起こらず、充放電により集電体にしわが発生するのを抑制することができた。   Further, when a copper foil having a cross-sectional observation crystal grain size in the range of 20 to 2500 nm as measured by the SIM image is used for the current collector, the capacity does not decrease even when the charge / discharge cycle is repeated. It was possible to suppress the generation of wrinkles on the current collector due to the discharge.

比較例1〜4は室温での0.2%耐力が小さい箔であり、加熱により軟化してしまい、0.2%耐力がさらに小さく、充放電を繰り返すと集電体にしわが発生した。   Comparative Examples 1 to 4 were foils having a small 0.2% yield strength at room temperature, and were softened by heating. The 0.2% yield strength was even smaller, and wrinkles were generated in the current collector after repeated charge and discharge.

以上のように、本発明の銅箔を用い、少なくとも一方の面に防錆処理を施した負極集電体を用いると、充放電により集電体にしわ等の変形が発生するのを抑制することができ、リチウムイオン二次電池の正極と負極の短絡を防ぐことができ、充放電サイクルを繰り返しても容量の低下が起こらない高寿命で、小型化可能なリチウムイオン二次電池を提供することができる。   As described above, when a negative electrode current collector using the copper foil of the present invention and having a rust prevention treatment on at least one surface is used, it is possible to suppress the occurrence of deformation such as wrinkles in the current collector due to charge / discharge. Provided is a lithium ion secondary battery that can prevent a short circuit between a positive electrode and a negative electrode of a lithium ion secondary battery, has a long life and does not decrease in capacity even after repeated charge and discharge cycles, and can be miniaturized. be able to.

なお、本実施例は活物質がシリコンの場合について記載したが、シリコンの酸化物、カーボン、スズを主成分とする活物質を使った場合でも、充放電により集電体にしわ等の変形が発生するのを抑制することができ、リチウムイオン二次電池の正極と負極の短絡を防ぐことができ、充放電サイクルを繰り返しても容量の低下が起こらない高寿命で、小型化可能なリチウムイオン二次電池を提供することができる。   Although the present embodiment describes the case where the active material is silicon, even when an active material mainly composed of silicon oxide, carbon, and tin is used, the current collector may be deformed such as wrinkles due to charge and discharge. Lithium ion that can suppress the generation, can prevent the short-circuit between the positive electrode and negative electrode of the lithium ion secondary battery, has a long life and does not decrease in capacity even after repeated charge and discharge cycles A secondary battery can be provided.

本発明の銅箔はリジットまたはフレキシブル絶縁基板と積層し、プリント回路基板として採用することも有効である。   It is also effective to use the copper foil of the present invention as a printed circuit board by laminating it with a rigid or flexible insulating substrate.

Claims (9)

銅箔であって、該銅箔は塩素(Cl)、カーボン(C)をそれぞれ1017〜5×1020原子/cm濃度含み、硫黄(S)又は/及び窒素(N)を1015〜5×1019原子/cm濃度含み、酸素(O)を5×1020原子/cm以下の濃度含有する銅箔。 A copper foil, which contains chlorine (Cl) and carbon (C) in a concentration of 10 17 to 5 × 10 20 atoms / cm 3, and contains sulfur (S) and / or nitrogen (N) from 10 15 to 15 A copper foil containing a concentration of 5 × 10 19 atoms / cm 3 and containing oxygen (O) at a concentration of 5 × 10 20 atoms / cm 3 or less. 前記銅箔は、その厚み方向の断面の結晶粒径の最小が500nm以下、最大が2500以下にある請求項1に記載の銅箔。     The copper foil according to claim 1, wherein the copper foil has a minimum crystal grain size of 500 nm or less and a maximum of 2500 or less in a cross section in the thickness direction. 前記銅箔を200〜400℃で加熱後の0.2%耐力が250N/mm以上である請求項1または2に記載の銅箔。 The copper foil according to claim 1 or 2, wherein a 0.2% yield strength after heating the copper foil at 200 to 400 ° C is 250 N / mm 2 or more. 前記銅箔が電解銅箔、または電解銅箔を更に圧延した圧延電解銅箔である請求項1乃至3のいずれかに記載の銅箔。   The copper foil according to any one of claims 1 to 3, wherein the copper foil is an electrolytic copper foil or a rolled electrolytic copper foil obtained by further rolling the electrolytic copper foil. 請求項1乃至4のいずれかに記載の銅箔を集電体とする二次電池の電極であって、前記銅箔の少なくとも一方の表面を防錆処理し、該防錆処理がなされた面に活物質層が形成されている二次電池の電極。   An electrode of a secondary battery using the copper foil according to any one of claims 1 to 4 as a current collector, wherein at least one surface of the copper foil is subjected to a rust prevention treatment, and the rust prevention treatment is performed on the surface. An electrode of a secondary battery in which an active material layer is formed. 請求項1乃至4のいずれかに記載の銅箔を集電体とする二次電池の電極であって、前記銅箔の少なくとも一方の表面を粗化処理し、該粗化処理表面を防錆処理し、該防錆処理がなされた面に活物質層が形成されている二次電池の電極。   It is an electrode of the secondary battery which uses the copper foil in any one of Claims 1 thru | or 4 as a collector, Comprising: At least one surface of the said copper foil is roughened, The said roughened surface is rust-proofed An electrode of a secondary battery that is processed and has an active material layer formed on the surface that has been subjected to the antirust treatment. 前記電極を構成する活物質層が、カーボン、シリコン、スズ、アルミニウム、マグネシウム、またはカルシウムのいずれかを主成分とする活物質で形成されている請求項5または6に記載の二次電池の電極。   The electrode of the secondary battery according to claim 5 or 6, wherein the active material layer constituting the electrode is formed of an active material containing carbon, silicon, tin, aluminum, magnesium, or calcium as a main component. . 請求項5乃至7のいずれかに記載の電極を組み込んだ二次電池。   A secondary battery incorporating the electrode according to claim 5. 請求項1乃至4に記載の銅箔を絶縁基板と積層してなるプリント、またはフレキシブルプリント回路基板。   A printed or flexible printed circuit board obtained by laminating the copper foil according to claim 1 with an insulating substrate.
JP2011285461A 2011-12-27 2011-12-27 Copper foil, electrode for secondary battery, secondary battery, and printed circuit board Pending JP2013133514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011285461A JP2013133514A (en) 2011-12-27 2011-12-27 Copper foil, electrode for secondary battery, secondary battery, and printed circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011285461A JP2013133514A (en) 2011-12-27 2011-12-27 Copper foil, electrode for secondary battery, secondary battery, and printed circuit board

Publications (1)

Publication Number Publication Date
JP2013133514A true JP2013133514A (en) 2013-07-08

Family

ID=48910416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011285461A Pending JP2013133514A (en) 2011-12-27 2011-12-27 Copper foil, electrode for secondary battery, secondary battery, and printed circuit board

Country Status (1)

Country Link
JP (1) JP2013133514A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100423157B1 (en) * 2001-06-28 2004-03-16 동부전자 주식회사 Apparatus for testing a wafer level chip scale package
WO2014178327A1 (en) * 2013-04-30 2014-11-06 古河電気工業株式会社 Copper foil for lithium-ion secondary battery negative electrode collector
WO2015033917A1 (en) * 2013-09-05 2015-03-12 三井金属鉱業株式会社 Surface-processed copper foil, copper clad laminate obtained using such surface-processed copper foil, and printed wiring board
KR20150030167A (en) * 2013-09-11 2015-03-19 후루카와 덴키 고교 가부시키가이샤 Electrolytic copper foil, flexible circuit board and battery
WO2015104999A1 (en) * 2014-01-07 2015-07-16 古河電気工業株式会社 Electrolytic copper foil, negative electrode for lithium ion secondary battery, lithium ion secondary battery, printed wiring board, and electromagnetic shielding material
WO2016208858A1 (en) 2015-06-26 2016-12-29 엘에스엠트론 주식회사 Electrolytic copper foil for lithium secondary battery and lithium secondary battery including same
JP2020143363A (en) * 2019-02-01 2020-09-10 長春石油化學股▲分▼有限公司 Low profile electrolytic copper foil
KR20200127120A (en) * 2019-04-30 2020-11-10 난야 플라스틱스 코오퍼레이션 Electrolytic copper foil, method for producing the same, and lithium ion secondary battery
US11050050B1 (en) 2020-01-22 2021-06-29 Chang Chun Petrochemical Co., Ltd. Electrolytic copper foil and electrode and lithium-ion cell comprising the same
CN114059105A (en) * 2021-11-08 2022-02-18 灵宝华鑫铜箔有限责任公司 Copper-nickel-cobalt alloy foil process
JP2022529462A (en) * 2019-11-21 2022-06-22 エスケー ネクシリス カンパニー リミテッド Copper foil with wrinkles prevented, electrodes containing it, secondary batteries containing it, and methods for manufacturing them.
CN114830383A (en) * 2020-01-17 2022-07-29 富士胶片株式会社 Nonaqueous electrolyte secondary battery, collector, and method for manufacturing nonaqueous electrolyte secondary battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000182623A (en) * 1998-12-11 2000-06-30 Nippon Denkai Kk Electrolytic copper foil, copper foil for current collector of secondary battery, and secondary battery
JP2009221592A (en) * 2007-10-31 2009-10-01 Mitsui Mining & Smelting Co Ltd Electrolytic copper foil and process for producing the electrolytic copper foil

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000182623A (en) * 1998-12-11 2000-06-30 Nippon Denkai Kk Electrolytic copper foil, copper foil for current collector of secondary battery, and secondary battery
JP2009221592A (en) * 2007-10-31 2009-10-01 Mitsui Mining & Smelting Co Ltd Electrolytic copper foil and process for producing the electrolytic copper foil

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100423157B1 (en) * 2001-06-28 2004-03-16 동부전자 주식회사 Apparatus for testing a wafer level chip scale package
WO2014178327A1 (en) * 2013-04-30 2014-11-06 古河電気工業株式会社 Copper foil for lithium-ion secondary battery negative electrode collector
JP5625141B1 (en) * 2013-04-30 2014-11-12 古河電気工業株式会社 Copper foil for negative electrode current collector of lithium ion secondary battery
JPWO2015033917A1 (en) * 2013-09-05 2017-03-02 三井金属鉱業株式会社 Surface-treated copper foil, copper-clad laminate and printed wiring board obtained using the surface-treated copper foil
WO2015033917A1 (en) * 2013-09-05 2015-03-12 三井金属鉱業株式会社 Surface-processed copper foil, copper clad laminate obtained using such surface-processed copper foil, and printed wiring board
JP2020109216A (en) * 2013-09-05 2020-07-16 三井金属鉱業株式会社 Method of manufacturing surface treated copper foil
KR20150030167A (en) * 2013-09-11 2015-03-19 후루카와 덴키 고교 가부시키가이샤 Electrolytic copper foil, flexible circuit board and battery
JP2015078428A (en) * 2013-09-11 2015-04-23 古河電気工業株式会社 Electrolytic copper foil, flexible wiring board and battery
KR102263024B1 (en) * 2013-09-11 2021-06-10 후루카와 덴키 고교 가부시키가이샤 Electrolytic copper foil, flexible circuit board and battery
JP5810249B1 (en) * 2014-01-07 2015-11-11 古河電気工業株式会社 Electrolytic copper foil, negative electrode for lithium ion secondary battery, lithium ion secondary battery, printed wiring board, and electromagnetic shielding material
WO2015104999A1 (en) * 2014-01-07 2015-07-16 古河電気工業株式会社 Electrolytic copper foil, negative electrode for lithium ion secondary battery, lithium ion secondary battery, printed wiring board, and electromagnetic shielding material
WO2016208858A1 (en) 2015-06-26 2016-12-29 엘에스엠트론 주식회사 Electrolytic copper foil for lithium secondary battery and lithium secondary battery including same
JP2020143363A (en) * 2019-02-01 2020-09-10 長春石油化學股▲分▼有限公司 Low profile electrolytic copper foil
US11145867B2 (en) 2019-02-01 2021-10-12 Chang Chun Petrochemical Co., Ltd. Surface treated copper foil
US11362337B2 (en) 2019-02-01 2022-06-14 Chang Chun Petrochemical Co., Ltd. Electrodeposited copper foil and electrode, and lithium-ion secondary battery comprising the same
US11283080B2 (en) 2019-02-01 2022-03-22 Chang Chun Petrochemical Co., Ltd. Electrodeposited copper foil, current collector, electrode, and lithium ion secondary battery comprising the same
KR20200127120A (en) * 2019-04-30 2020-11-10 난야 플라스틱스 코오퍼레이션 Electrolytic copper foil, method for producing the same, and lithium ion secondary battery
KR102331002B1 (en) * 2019-04-30 2021-11-24 난야 플라스틱스 코오퍼레이션 Electrolytic copper foil, method for producing the same, and lithium ion secondary battery
JP2020183575A (en) * 2019-04-30 2020-11-12 南亞塑膠工業股▲分▼有限公司 Electrolytic copper foil, method of manufacturing the same, and lithium ion secondary battery
JP7165120B2 (en) 2019-04-30 2022-11-02 南亞塑膠工業股▲分▼有限公司 Electrolytic copper foil, manufacturing method thereof, and lithium ion secondary battery
US11588175B2 (en) 2019-04-30 2023-02-21 Nan Ya Plastics Corporation Electrolytic copper foil
JP2022529462A (en) * 2019-11-21 2022-06-22 エスケー ネクシリス カンパニー リミテッド Copper foil with wrinkles prevented, electrodes containing it, secondary batteries containing it, and methods for manufacturing them.
JP7326668B2 (en) 2019-11-21 2023-08-16 エスケー ネクシリス カンパニー リミテッド Wrinkle-preventing copper foil, electrode containing the same, secondary battery containing the same, and method for manufacturing the same
CN114830383A (en) * 2020-01-17 2022-07-29 富士胶片株式会社 Nonaqueous electrolyte secondary battery, collector, and method for manufacturing nonaqueous electrolyte secondary battery
JP2021116472A (en) * 2020-01-22 2021-08-10 長春石油化學股▲分▼有限公司 Electrolytic copper foil, electrode, and lithium ion cell including the same
US11050050B1 (en) 2020-01-22 2021-06-29 Chang Chun Petrochemical Co., Ltd. Electrolytic copper foil and electrode and lithium-ion cell comprising the same
CN114059105A (en) * 2021-11-08 2022-02-18 灵宝华鑫铜箔有限责任公司 Copper-nickel-cobalt alloy foil process

Similar Documents

Publication Publication Date Title
KR101823187B1 (en) Lithium-ion secondary battery, electrode for secondary battery, and electrolytic copper foil for secondary battery electrode
JP5718476B2 (en) Electrolytic copper foil for lithium ion secondary battery, negative electrode of lithium ion secondary battery, and lithium ion secondary battery
JP2013133514A (en) Copper foil, electrode for secondary battery, secondary battery, and printed circuit board
JP5128695B2 (en) Electrolytic copper foil, electrolytic copper foil for lithium ion secondary battery, electrode for lithium ion secondary battery using the electrolytic copper foil, lithium ion secondary battery using the electrode
WO2010110205A1 (en) Lithium ion secondary battery, electrode for the battery, and electrodeposited copper foil for the electrode for the battery
JP2006120612A (en) Lithium secondary battery
JP5437536B2 (en) Current collector for electrode, negative electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery
JP5981165B2 (en) Copper foil, negative electrode of secondary battery, secondary battery, and printed circuit board
JP6067256B2 (en) Electrolytic copper foil, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2015198020A (en) Surface treatment copper foil for negative electrode, negative electrode and lithium ion secondary battery using the same
JP2006260928A (en) Manufacturing method for electrode for lithium secondary battery and lithium secondary battery
JP5873711B2 (en) Copper foil, secondary battery electrode, secondary battery, and printed circuit board
JP2005268120A (en) Lithium secondary battery and its manufacturing method
JP2013012450A (en) Metal foil for collector of lithium ion secondary battery electrode, method of manufacturing the metal foil, and lithium ion secondary battery using the metal foil as collector
JP2014009365A (en) Electrolytic copper foil, lithium ion secondary battery negative pole electrode, and lithium ion secondary battery
CN117712386A (en) Composite copper foil, preparation method thereof and lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150831

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160202