JP5916904B1 - Electrolytic copper foil, negative electrode for lithium ion secondary battery, lithium ion secondary battery, rigid printed wiring board and flexible printed wiring board - Google Patents

Electrolytic copper foil, negative electrode for lithium ion secondary battery, lithium ion secondary battery, rigid printed wiring board and flexible printed wiring board Download PDF

Info

Publication number
JP5916904B1
JP5916904B1 JP2015001859A JP2015001859A JP5916904B1 JP 5916904 B1 JP5916904 B1 JP 5916904B1 JP 2015001859 A JP2015001859 A JP 2015001859A JP 2015001859 A JP2015001859 A JP 2015001859A JP 5916904 B1 JP5916904 B1 JP 5916904B1
Authority
JP
Japan
Prior art keywords
copper foil
ppm
secondary battery
foil
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015001859A
Other languages
Japanese (ja)
Other versions
JP2016125120A (en
Inventor
季実子 藤澤
季実子 藤澤
篠崎 淳
淳 篠崎
政登 胡木
政登 胡木
座間 悟
悟 座間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2015001859A priority Critical patent/JP5916904B1/en
Application granted granted Critical
Publication of JP5916904B1 publication Critical patent/JP5916904B1/en
Publication of JP2016125120A publication Critical patent/JP2016125120A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

【課題】本発明は、リジッドプリント配線板、フレキシブルプリント配線板又はリチウムイオン二次電池の製造工程で加えられる高温の熱処理によっても引張強度がさほど低下せず、優れたハンドリング性を有し、さらに、負極電極の集電体として用いてリチウムイオン二次電池を構成した場合には、良好なサイクル寿命を得ることができる電解銅箔を提供する。【解決手段】本発明の電解銅箔は、箔中に不純物として炭素を150ppm以上、塩素を200ppm以上、硫黄を50ppm以下含有し、常態の引張強度が450MPa以上、450℃で1時間加熱した後に常温で測定された引張強度が350MPa以上であることを特徴とする。【選択図】図1An object of the present invention is to provide an excellent handling property in which the tensile strength is not significantly reduced by a high-temperature heat treatment applied in the manufacturing process of a rigid printed wiring board, a flexible printed wiring board or a lithium ion secondary battery, When a lithium ion secondary battery is configured as a current collector for a negative electrode, an electrolytic copper foil capable of obtaining a good cycle life is provided. The electrolytic copper foil of the present invention contains 150 ppm or more of carbon, 200 ppm or more of chlorine and 50 ppm or less of sulfur as impurities in the foil, and after heating at 450 ° C. for 1 hour at a normal tensile strength of 450 MPa or more. The tensile strength measured at room temperature is 350 MPa or more. [Selection] Figure 1

Description

本発明は、電解銅箔と、それを用いたリチウム(Li)イオン二次電池用負極電極及びリチウムイオン二次電池に関するものである。本発明は更に、前記電解銅箔を導電材としたリジッドプリント配線板及びフレキシブルプリント配線板に関するものである。   The present invention relates to an electrolytic copper foil, a negative electrode for a lithium (Li) ion secondary battery and a lithium ion secondary battery using the same. The present invention further relates to a rigid printed wiring board and a flexible printed wiring board using the electrolytic copper foil as a conductive material.

銅箔は、リチウムイオン二次電池等の電池用集電体として使用されている。リチウムイオン二次電池は基本的に、正極、負極、電解液から構成される。負極は、集電体として用いられる銅箔の表面に負極活物質層をコーティングすることで形成される。負極の形成法としては、負極活物質とバインダー樹脂(活物質と銅箔基板とを結着することを目的に添加される)を溶剤に溶かしたスラリーを銅箔基板上に塗布し、バインダー樹脂の硬化温度以上の温度で乾燥させた後、プレスすることで形成する方法が一般的である。バインダー樹脂としては、ポリフッ化ビニリデン(PVDF)やスチレンブタジエンゴム(SBR)等が広く用いられている。   Copper foil is used as a current collector for a battery such as a lithium ion secondary battery. A lithium ion secondary battery is basically composed of a positive electrode, a negative electrode, and an electrolytic solution. The negative electrode is formed by coating the surface of a copper foil used as a current collector with a negative electrode active material layer. As a method for forming the negative electrode, a slurry obtained by dissolving a negative electrode active material and a binder resin (added for the purpose of binding the active material and the copper foil substrate) in a solvent is applied onto the copper foil substrate, and then the binder resin is formed. A method of forming by pressing after drying at a temperature equal to or higher than the curing temperature is generally used. As the binder resin, polyvinylidene fluoride (PVDF), styrene butadiene rubber (SBR) and the like are widely used.

近年、電池の高容量化に伴い着目されている、理論容量の高いケイ素、スズ、ゲルマニウム合金系材料などからなる活物質は、充放電時のリチウムの挿入脱離に伴う体積膨張率が非常に大きく、上述したバインダー樹脂では強度が足りない。そこで、銅基板との接着強度の高いポリイミド系樹脂が注目されるようになってきた。しかし、ポリイミド系樹脂は、上述したバインダー樹脂と違い、硬化温度が300℃程度と非常に高い。さらに乾燥時間の短縮化のためには、450℃以上の高温での加熱処理が必要となる。そのため、450℃の加熱処理に耐え得る負極集電体(銅箔)が要求されている。   In recent years, active materials made of silicon, tin, germanium alloy materials, etc. with high theoretical capacity, which have been attracting attention as the capacity of batteries increases, have a very large volume expansion coefficient due to lithium insertion / extraction during charging / discharging. The above-mentioned binder resin is large and lacks strength. Therefore, a polyimide resin having a high adhesive strength with a copper substrate has attracted attention. However, unlike the binder resin described above, the polyimide resin has a very high curing temperature of about 300 ° C. Furthermore, in order to shorten the drying time, heat treatment at a high temperature of 450 ° C. or higher is required. Therefore, a negative electrode current collector (copper foil) that can withstand heat treatment at 450 ° C. is required.

また、銅箔は、リジッドプリント配線板、フレキシブルプリント配線板、電磁波シールド材料、電池の集電体等々、種々の分野で使用されている。これらの分野の内、ポリイミドフィルムと張り合わせるプリント配線板(フレキシブル配線板、以下「FPC」と称する。)の分野において、ハードディスク(以下、「HDD」と称する。)サスペンション材料、或いはテープ・オートメーティド・ボンディング(以下、「TAB」と称する。)材料は、銅箔の強度向上を要求してきている。   Copper foil is used in various fields such as rigid printed wiring boards, flexible printed wiring boards, electromagnetic wave shielding materials, battery current collectors, and the like. Among these fields, in the field of printed wiring boards (flexible wiring boards, hereinafter referred to as “FPC”) bonded to polyimide films, hard disk (hereinafter referred to as “HDD”) suspension materials or tape automation. The bonding (hereinafter referred to as “TAB”) material has been required to improve the strength of the copper foil.

HDDに搭載されているサスペンションは、HDDの高容量化が進むに従い、従来使用されてきたワイヤタイプのサスペンションから、記憶媒体であるディスクに対しフライングヘッドの浮力と位置精度が安定した配線一体型のサスペンションへ大半が置き換わってきている。   The suspension mounted on the HDD is a wiring-integrated type that has stable flying head buoyancy and positional accuracy relative to the disk that is the storage medium, compared to the conventionally used wire-type suspension as the HDD capacity increases. Most of the suspension has been replaced.

この配線一体型サスペンションは、次の三種類のタイプがある。
a.FSA(フレックス・サスペンション・アッセンブリ)法と呼ばれるフレキシブルプリント基板を加工し接着剤を用いて張り合わせたタイプ
b.CIS(サーキット・インテグレーティッド・サスペンション)法と呼ばれるポリイミド樹脂の前駆体であるアミック酸を形状加工した後、イミド化し更にポリイミド上にメッキ加工を施すことにより配線を形成するタイプ
c.TSA(トレース・サスペンション・アッセンブリ)法と呼ばれるステンレス箔−ポリイミド樹脂−銅箔からなる積層体をエッチング加工により所定の形状に加工するタイプ
This wiring-integrated suspension has the following three types.
a. A type in which a flexible printed circuit board called FSA (flex suspension assembly) method is processed and bonded using an adhesive b. Type that forms wiring by forming amic acid, which is a precursor of polyimide resin called CIS (Circuit Integrated Suspension), and then imidizing and plating on polyimide. C.TSA (Trace Suspension / Assembly) type that processes a laminated body made of stainless steel foil-polyimide resin-copper foil into a predetermined shape by etching

TSA法サスペンションは、高強度を有する銅箔を積層することによって、容易にフライングリードを形成させることが可能であり、形状加工での自由度が高いことや比較的安価で寸法精度が良いことから幅広く使用されている。
TSA法により形成される積層体は、ステンレス箔厚さは12〜30μm程度、ポリイミド層厚みは5〜20μm程度、銅箔厚さは7〜14μm程度の材料を用いて製造されている。積層体の製造は、まず基体となるステンレス箔上にポリイミド樹脂液を塗布する。塗布後、予備加熱により溶媒を除去した後、さらに加熱処理してイミド化を行う。続いてイミド化したポリイミド樹脂層の上に銅箔を重ね合わせ、加熱圧着してラミネートし、ステンレス層/ポリイミド層/銅層からなる積層体を製造する。
The TSA suspension can easily form flying leads by laminating copper foils with high strength, and has a high degree of freedom in shape processing and is relatively inexpensive and has good dimensional accuracy. Widely used.
The laminate formed by the TSA method is manufactured using a material having a stainless steel foil thickness of about 12 to 30 μm, a polyimide layer thickness of about 5 to 20 μm, and a copper foil thickness of about 7 to 14 μm. In the production of the laminate, first, a polyimide resin solution is applied onto a stainless steel foil as a base. After the application, the solvent is removed by preheating, and then further heat treatment is performed to perform imidization. Subsequently, a copper foil is overlaid on the imidized polyimide resin layer and laminated by thermocompression bonding to produce a laminate composed of stainless steel layer / polyimide layer / copper layer.

上記イミド化の際の加熱温度は一般的に300℃程度であるが、製造時間を短縮化するためには450℃程度の高温での処理が必要となる。この450℃程度の加熱処理において、上記積層体を構成するステンレス層(箔)には寸法変化がほとんど見られないが、従来の電解銅箔を使用して形成した銅層(箔)は、450℃程度の温度で焼鈍され、再結晶が進み、軟化して寸法変化が生じ、これに伴って、ラミネート後に積層体に反りが生じて製品の寸方精度が低下する傾向があった。そのため、加熱時の寸法変化ができるだけ小さい銅箔を開発することが求められている。   The heating temperature during the imidization is generally about 300 ° C., but a treatment at a high temperature of about 450 ° C. is required to shorten the manufacturing time. In this heat treatment at about 450 ° C., the stainless steel layer (foil) constituting the laminate is hardly changed in size, but a copper layer (foil) formed using a conventional electrolytic copper foil is 450 Annealing was performed at a temperature of about 0 ° C., recrystallization proceeded, and softened, resulting in a dimensional change. Along with this, there was a tendency that the laminate was warped after lamination, and the dimensional accuracy of the product was lowered. Therefore, it is required to develop a copper foil with as small a dimensional change during heating as possible.

また、TAB材料においては、HDDサスペンション材料と同様、銅箔の高強度化と共に箔表面の低粗度化が要求されている。TAB製品においては、製品のほぼ中央部に位置するデバイスホールに配されるインナーリード(フライングリード)に対し、ICチップの複数の端子を直接ボンディングする。このボンディングはボンディング装置を用いて、瞬間的に通電加熱し、一定のボンディング圧を付加して行う。このとき、電解銅箔をエッチング形成して得られたインナーリードが、ボンディング圧で引っ張られて伸びるという問題がある。
さらには、電解銅箔の強度が低いと塑性変形してインナーリードにたるみが発生し、著しい場合には破断する可能性がある。従って、インナーリードの線幅を細線化するには、使用する電解銅箔は低粗度化された粗面を持ち、かつ高強度であることが要求される。
In the TAB material, as with the HDD suspension material, it is required to increase the strength of the copper foil and reduce the roughness of the foil surface. In a TAB product, a plurality of terminals of an IC chip are directly bonded to inner leads (flying leads) arranged in a device hole located substantially at the center of the product. This bonding is performed by applying a constant bonding pressure by instantaneously energizing and heating using a bonding apparatus. At this time, there is a problem that the inner lead obtained by etching the electrolytic copper foil is stretched by being pulled by the bonding pressure.
Furthermore, if the strength of the electrolytic copper foil is low, the inner lead may sag due to plastic deformation and may break if it is significant. Therefore, in order to reduce the line width of the inner lead, the electrolytic copper foil to be used is required to have a roughened surface with low roughness and to have high strength.

この場合も、常態(常温・常圧状態)で銅箔が高強度であるとともに、加熱した後でも高強度であることが必要である。TAB用途の場合には、銅箔とポリイミドが張り合わされた2層または3層のFPCが使用される。3層のFPCでは銅箔にポリイミドを張り合わせる場合には、エポキシ系の接着剤を使用し、180℃前後の温度で張り合わせる。またポリイミド系の接着剤を使用した2層FPCでは、450℃前後の温度で張り合わせを行う。   Also in this case, it is necessary that the copper foil has high strength in a normal state (normal temperature / normal pressure state) and has high strength even after being heated. In the case of a TAB application, a two-layer or three-layer FPC in which a copper foil and a polyimide are bonded together is used. In the case of bonding the polyimide to the copper foil in the three-layer FPC, an epoxy adhesive is used and the bonding is performed at a temperature of about 180 ° C. In addition, in a two-layer FPC using a polyimide adhesive, bonding is performed at a temperature of about 450 ° C.

仮に常態で機械的強度が大きい電解銅箔であっても、ポリイミドに接着した時に電解銅箔が軟化しては意味がない。従来の高強度電解銅箔は、常態での機械的強度が大きく、180℃前後で加熱してもほとんど機械的強度は変化しないが、450℃程度で加熱した場合は、焼鈍され再結晶が進むため、急速に軟化して機械的強度が低下する。このような銅箔はTAB用途には不向きである。   Even if the electrolytic copper foil has a high mechanical strength in a normal state, it does not make sense if the electrolytic copper foil softens when bonded to polyimide. Conventional high-strength electrolytic copper foil has high mechanical strength in the normal state, and even if heated at around 180 ° C, the mechanical strength hardly changes, but when heated at about 450 ° C, it is annealed and recrystallization proceeds. Therefore, it softens rapidly and the mechanical strength decreases. Such a copper foil is not suitable for TAB applications.

このように、FPC分野及び二次電池分野では、共に硬化温度が300℃程度と非常に高いポリイミド系樹脂が使用されるようになってきており、さらに処理時間の短縮化のために450℃以上の高温で加熱処理を行う場合も想定されるため、この加熱処理に耐え得る銅箔が要求されている。   As described above, in the FPC field and the secondary battery field, a polyimide resin having a very high curing temperature of about 300 ° C. has been used, and more than 450 ° C. for shortening the processing time. Therefore, a copper foil that can withstand this heat treatment is required.

特許文献1には、常態の引張強度(常態抗張力)が500〜750MPaであり、400℃で1時間加熱後の引張強度(抗張力)が350MPa以上である電解銅箔を開示している。しかしながら、特許文献1に開示された電解銅箔は、箔中の不純物の濃度が定かではなく、また、450℃以上の高温での加熱処理した後(常温で測定したとき)の引張強度についても何ら示されていない。   Patent Document 1 discloses an electrolytic copper foil having a normal tensile strength (normal tensile strength) of 500 to 750 MPa and a tensile strength (tensile strength) after heating at 400 ° C. for 1 hour of 350 MPa or more. However, the electrolytic copper foil disclosed in Patent Document 1 is not clear in terms of the concentration of impurities in the foil, and the tensile strength after heat treatment at 450 ° C. or higher (measured at room temperature) Nothing is shown.

また、特許文献2は、常態における引張り強さ(常態引張り強さ)の値が70kgf/mm(686MPa)〜100kgf/mm(980MPa)であり、180℃で60分間加熱した後の引張り強さの値が、常態引張り強さの値の85%以上である電解銅箔を開示している。しかしながら、特許文献2に開示された電解銅箔は、箔中の不純物の濃度が定かではなく、また、450℃以上の高温での加熱処理した後(常温で測定したとき)の引張強度についても何ら示されていない。 Patent Document 2 discloses that a tensile strength value in a normal state (normal tensile strength) is 70 kgf / mm 2 (686 MPa) to 100 kgf / mm 2 (980 MPa), and a tensile strength after heating at 180 ° C. for 60 minutes. The electrolytic copper foil whose thickness value is 85% or more of the value of the normal tensile strength is disclosed. However, the electrolytic copper foil disclosed in Patent Document 2 is not certain in the concentration of impurities in the foil, and the tensile strength after heat treatment at a high temperature of 450 ° C. or higher (measured at room temperature) Nothing is shown.

特許文献3は、銅箔中の硫黄濃度が10質量ppm以上50質量ppm以下であり、常態の引張強度(常態抗張力)が50kgf/mm(490MPa)以上であり、250℃30分間加熱した後の引張強度(抗張力)が常態抗張力の90%以上である電解銅箔を開示している。しかしながら、特許文献3に開示された電解銅箔は、銅箔中の硫黄以外の不純物の濃度には着目しておらず、また、450℃以上の高温での加熱処理した後(常温で測定したとき)の引張強度についても何ら示されていない。 In Patent Document 3, the sulfur concentration in the copper foil is 10 mass ppm or more and 50 mass ppm or less, the normal tensile strength (normal tensile strength) is 50 kgf / mm 2 (490 MPa) or more, and after heating at 250 ° C. for 30 minutes. Discloses an electrolytic copper foil having a tensile strength (tensile strength) of 90% or more of the normal tensile strength. However, the electrolytic copper foil disclosed in Patent Document 3 does not focus on the concentration of impurities other than sulfur in the copper foil, and after heat treatment at a high temperature of 450 ° C. or higher (measured at room temperature) There is also no indication of the tensile strength.

特開2013−181236号公報JP 2013-181236 A 特開2008−101267号公報JP 2008-101267 A 特許第5148726号公報Japanese Patent No. 5148726

志賀章二,「ポリアクリルアミド添加電析銅の物理的特性 -分子分散強化合金の可能性について-」,金属表面技術, 1980, Vol.31, No10, p.573-574Shoji Shiga, “Physical properties of polyacrylamide-added electrodeposited copper -Possibility of molecular dispersion strengthened alloys-”, Metal surface technology, 1980, Vol.31, No10, p.573-574

本発明の目的は、リジッドプリント配線板、フレキシブルプリント配線板又はリチウムイオン二次電池の製造工程で加えられる高温の熱処理によっても引張強度がさほど低下せず、優れたハンドリング性を有し、さらに、負極電極の集電体として用いてリチウムイオン二次電池を構成した場合には、良好なサイクル寿命を得ることができる電解銅箔を提供することにある。   The purpose of the present invention is that the tensile strength is not significantly reduced by high-temperature heat treatment applied in the production process of a rigid printed wiring board, a flexible printed wiring board or a lithium ion secondary battery, and has excellent handling properties. An object of the present invention is to provide an electrolytic copper foil capable of obtaining a good cycle life when a lithium ion secondary battery is configured as a current collector for a negative electrode.

上記目的を達成するため、本発明の要旨構成は、以下の通りである。
(I)箔中に不純物として炭素を150ppm以上、塩素を200ppm以上、硫黄を50ppm以下含有し、常態の引張強度が450MPa以上、450℃で1時間加熱した後に常温で測定された引張強度が350MPa以上であることを特徴とする電解銅箔。
In order to achieve the above object, the gist of the present invention is as follows.
(I) The foil contains 150 ppm or more of carbon as impurities, 200 ppm or more of chlorine, and 50 ppm or less of sulfur, the normal tensile strength is 450 MPa or more, and the tensile strength measured at room temperature after heating at 450 ° C. for 1 hour is 350 MPa. The electrolytic copper foil characterized by the above.

(II)上記(I)に記載の電解銅箔を集電体として用いたことを特徴とするリチウムイオン二次電池用負極電極。 (II) A negative electrode for a lithium ion secondary battery, wherein the electrolytic copper foil according to (I) is used as a current collector.

(III)上記(II)に記載のリチウムイオン二次電池用負極電極を用いたことを特徴とするリチウムイオン二次電池。 (III) A lithium ion secondary battery using the negative electrode for a lithium ion secondary battery according to (II) above.

(IV)上記(I)に記載の電解銅箔を導電材として用いたことを特徴とするリジッドプリント配線板。 (IV) A rigid printed wiring board using the electrolytic copper foil according to (I) as a conductive material.

(V)上記(I)に記載の電解銅箔を導電材として用いたことを特徴とするフレキシブルプリント配線板。 (V) A flexible printed wiring board using the electrolytic copper foil according to (I) above as a conductive material.

本発明の銅箔は、箔中に不純物として炭素を150ppm以上、塩素を200ppm以上、硫黄を50ppm以下含有し、常態の引張強度が450MPa以上、450℃で1時間加熱した後に常温で測定された引張強度が350MPa以上であることによって、450℃の高温での加熱処理工程後も電池形成後の充放電時の活物質体積膨張収縮による応力に耐えることができ、良好なサイクル寿命を有するリチウムイオン二次電池を提供することができる。また、箔中の不純物成分として、硫黄を50ppm以下とすることで箔が脆くなることがなく、電池製造ラインでの搬送工程における箔の破断が生じにくくなり、ハンドリング性が良好となる。さらに、このような銅箔を使用することで、450℃の高温での加熱処理工程後も十分な引張強度を有し、かつハンドリング性の良好な、リジッドプリント配線板用又はフレキシブルプリント配線板用の電解銅箔を提供することができる。   The copper foil of the present invention contained carbon as an impurity in the foil at 150 ppm or more, chlorine at 200 ppm or more, and sulfur at 50 ppm or less, and the normal tensile strength was 450 MPa or more, measured at room temperature after heating at 450 ° C. for 1 hour. Since the tensile strength is 350 MPa or more, lithium ions having a good cycle life can withstand stress due to volume expansion and contraction of the active material during charge and discharge after battery formation even after a heat treatment step at a high temperature of 450 ° C. A secondary battery can be provided. Further, when the sulfur content is 50 ppm or less as an impurity component in the foil, the foil does not become brittle, and the foil is hardly broken in the transporting process in the battery production line, and the handling property is improved. Furthermore, by using such a copper foil, it has sufficient tensile strength even after a heat treatment process at a high temperature of 450 ° C., and has good handling properties, for a rigid printed wiring board or a flexible printed wiring board. An electrolytic copper foil can be provided.

図1は、本発明(実施例4)及び比較例4にそれぞれ用いた電解銅箔に関し、常態(常温:20℃)の引張強度と、150〜500℃の温度範囲内で加熱した後に常温で測定された引張強度のデータをプロットした図である。FIG. 1 relates to the electrolytic copper foils used in the present invention (Example 4) and Comparative Example 4, respectively, at normal temperature after heating in a normal state (normal temperature: 20 ° C.) and within a temperature range of 150 to 500 ° C. It is the figure which plotted the data of the measured tensile strength.

[電解銅箔の構成]
以下、本実施形態は、リチウムイオン二次電池用集電体を構成する電解銅箔につき説明する。しかし、本発明の電解銅箔は、リチウムイオン二次電池用集電体にのみ使用されるものではなく、その要旨を変更しない範囲において適宜その他の用途に使用可能なものである。
[Configuration of electrolytic copper foil]
Hereinafter, this embodiment demonstrates the electrolytic copper foil which comprises the collector for lithium ion secondary batteries. However, the electrolytic copper foil of the present invention is not used only for a current collector for a lithium ion secondary battery, and can be used for other purposes as appropriate without changing the gist thereof.

本実施形態のリチウムイオン二次電池負極集電体用電解銅箔は、箔中に不純物として炭素を150ppm以上、塩素を200ppm以上、硫黄を50ppm以下含有し、常態の引張強度を450MPa以上、450℃で1時間加熱した後に常温で測定された引張強度を350MPa以上とすることで、電池製造時のハンドリング性が良好で、充放電時の活物質の体積膨張収縮による応力に耐えることができ、良好なサイクル寿命の二次電池を提供することができる。
なお本実施形態において、「常態」とは、銅箔の製造後、熱処理等の熱履歴を受けずに常温に置かれた状態のことを意味する。また、常温とは、20℃を指す。
The electrolytic copper foil for the negative electrode current collector of the lithium ion secondary battery of the present embodiment contains 150 ppm or more of carbon, 200 ppm or more of chlorine and 50 ppm or less of sulfur as impurities in the foil, and a normal tensile strength of 450 MPa or more, 450 By making the tensile strength measured at room temperature after heating at ℃ for 1 hour to be 350 MPa or more, the handling property at the time of battery production is good, and it can withstand the stress due to the volume expansion and contraction of the active material during charge and discharge, A secondary battery having a good cycle life can be provided.
In the present embodiment, the “normal state” means a state where the copper foil is placed at room temperature without receiving a thermal history such as heat treatment after the manufacture of the copper foil. Moreover, normal temperature refers to 20 degreeC.

ところで、電解銅箔の製造のために用いられる電解液には硫酸銅と硫酸を含有する電解液を使用し、銅箔表面の光沢化や平滑化、銅箔の応力減少などを目的として、めっき浴には種々の添加剤が添加されている。添加剤を用いない場合には、銅箔に要求される表面形態や機械的特性などが得られないことから、添加剤の重要性は非常に高い。特に硫酸銅めっき浴は単純酸性浴であるために均一電着性に劣り、添加剤無しでは好ましい電解銅箔の製造は困難である。硫酸銅めっき浴に用いられる添加剤としては、塩素イオン、ポリオキシエチレン系の界面活性剤、平滑剤、有機硫化物などの光沢剤、膠(にかわ)、ゼラチンなどが提案され、使用されている。   By the way, an electrolytic solution containing copper sulfate and sulfuric acid is used as an electrolytic solution used for the production of electrolytic copper foil, and plating is performed for the purpose of making the copper foil surface bright and smooth, reducing the stress of the copper foil, etc. Various additives are added to the bath. When the additive is not used, the surface form and mechanical properties required for the copper foil cannot be obtained, so the additive is very important. In particular, since the copper sulfate plating bath is a simple acidic bath, it is inferior in throwing power and it is difficult to produce a preferable electrolytic copper foil without an additive. As additives used in copper sulfate plating baths, chlorine ions, polyoxyethylene surfactants, smoothing agents, brighteners such as organic sulfides, glue, gelatin, etc. have been proposed and used. .

銅箔製造時に電解液中に添加する有機添加剤は、通常は結晶の成長を抑制する効果のあるものが多く、銅の析出と共に一部結晶粒界に取り込まれると考えられている。この場合、結晶粒界に取り込まれる有機添加剤の量が多いほど、機械的強度が向上する傾向にある(例えば非特許文献1参照)。   Many organic additives that are added to the electrolytic solution at the time of copper foil production usually have an effect of suppressing crystal growth, and it is considered that a part of the organic additive is taken into the crystal grain boundary with the precipitation of copper. In this case, the mechanical strength tends to improve as the amount of the organic additive taken into the crystal grain boundary increases (see, for example, Non-Patent Document 1).

このような電解銅箔は、結晶粒界に取り込まれた、有機添加剤由来の介在物によるピン止め効果によって、加熱処理時の軟化現象が抑制されるが、450℃以上の高温で加熱した場合には、介在物が分解し、ガス化して抜けてしまうため、引張強度が急激に低下し、さらに、不純物成分が抜けた跡がボイドとなり箔が脆くなる傾向にある。   Such electrolytic copper foil suppresses the softening phenomenon during heat treatment due to the pinning effect caused by inclusions derived from organic additives incorporated into the grain boundaries, but when heated at a high temperature of 450 ° C. or higher The inclusions are decomposed and gasified to escape, so that the tensile strength is drastically reduced. Further, the trace of the impurity component being lost tends to be a void and the foil tends to be brittle.

本発明者らは、箔中に不純物として炭素を150ppm以上、塩素を200ppm以上取り込まれた際に形成される炭素(C)と塩素(Cl)のクラスターとして結晶粒界に存在する場合、450℃以上の加熱処理を施しても、不純物成分の分解が生じず、引張強度の急激な低下を起こさないことを見出した。しかしながら、不純物成分として硫黄を箔中に50ppmよりも多く含有していると、結晶の粒界を脆くし破断しやすい箔状態になり好ましくない。   When the present inventors present at the grain boundary as a cluster of carbon (C) and chlorine (Cl) formed when carbon is incorporated as an impurity in the foil at 150 ppm or more and chlorine is incorporated at 200 ppm or more, 450 ° C. It has been found that even when the above heat treatment is performed, the impurity components are not decomposed and the tensile strength is not rapidly reduced. However, if sulfur is contained in the foil in an amount of more than 50 ppm as an impurity component, the crystal grain boundary becomes brittle and the foil is easily broken, which is not preferable.

このため、本発明では、箔中に不純物として炭素を150ppm以上、塩素を200ppm以上、硫黄を50ppm以下含有し、常態の引張強度が450MPa以上、450℃で1時間加熱した後に常温で測定された引張強度が350MPa以上であることを必須の発明特定事項とした。   For this reason, in the present invention, carbon contained 150 ppm or more, chlorine 200 ppm or more, and sulfur 50 ppm or less as impurities in the foil, and the normal tensile strength was 450 MPa or more, measured at room temperature after heating at 450 ° C. for 1 hour. An essential invention specific matter was that the tensile strength was 350 MPa or more.

また、例えば、本実施形態のリチウムイオン二次電池集電体用電解銅箔は、少なくとも電解銅箔に活物質層を設ける側の表面に防錆処理層を設けることが好ましい。防錆処理層は、例えば、クロメート処理層、あるいはNi又はNi合金めっき層、Co又はCo合金めっき層、Zn又はZn合金めっき層、Sn又はSn合金めっき層、上記各種めっき層上にさらにクロメート処理層を設けたもの等の無機防錆処理層、あるいは、ベンゾトリアゾール等の有機防錆処理層である。さらに、シランカップリング剤処理層等が形成されていてもよい。   Moreover, for example, it is preferable that the electrolytic copper foil for a lithium ion secondary battery current collector of the present embodiment is provided with a rust prevention treatment layer on at least the surface on the side where the active material layer is provided on the electrolytic copper foil. The antirust treatment layer is, for example, a chromate treatment layer, or a nickel or Ni alloy plating layer, a Co or Co alloy plating layer, a Zn or Zn alloy plating layer, a Sn or Sn alloy plating layer, or a chromate treatment on the above various plating layers. It is an inorganic rust-proofing layer such as one provided with a layer, or an organic rust-proofing layer such as benzotriazole. Furthermore, a silane coupling agent treatment layer or the like may be formed.

上記無機防錆処理層、有機防錆処理層、シランカップリング剤処理層は、活物質との密着強度を高め、電池の充放電サイクル効率の低下を防ぐ役割を果たす。また、例えば、本実施形態のリチウムイオン二次電池集電体用電解銅箔は、電解銅箔の活物質層を設ける表面に粗化処理が施され、この粗化処理が施された表面に防錆処理層が,更に必要によりシランカップリング剤処理層が設けられる。   The inorganic rust-proofing layer, the organic rust-proofing layer, and the silane coupling agent-treated layer increase the adhesion strength with the active material and prevent the charge / discharge cycle efficiency of the battery from decreasing. In addition, for example, the electrolytic copper foil for a lithium ion secondary battery current collector of the present embodiment is subjected to a roughening treatment on the surface on which the active material layer of the electrolytic copper foil is provided, and the surface subjected to the roughening treatment is applied to the surface. A rust-proofing layer is provided, and a silane coupling agent-treated layer is provided if necessary.

[電解銅箔の製造方法]
本実施形態のリチウムイオン二次電池負極集電体用電解銅箔は、例えば、硫酸−硫酸銅水溶液を電解液とし、白金族元素又はその酸化物元素で被覆したチタンからなる不溶性陽極と、この陽極に対向させて設けられたチタン製陰極ドラムとの間に、上述した電解液を供給し、陰極ドラムを一定速度で回転させながら、両極間に直流電流を通電することにより陰極ドラム表面上に銅を析出させ、析出した銅を陰極ドラム表面から引き剥がし、連続的に巻き取る方法により製造される。
[Method for producing electrolytic copper foil]
The electrolytic copper foil for the negative electrode current collector of the lithium ion secondary battery according to the present embodiment includes, for example, an insoluble anode made of titanium coated with a platinum group element or an oxide element thereof, using a sulfuric acid-copper sulfate aqueous solution as an electrolytic solution, The above-mentioned electrolyte is supplied between a titanium cathode drum provided opposite to the anode, and a DC current is passed between both electrodes while rotating the cathode drum at a constant speed. The copper is deposited, and the deposited copper is peeled off from the surface of the cathode drum and continuously wound.

本実施形態のリチウムイオン二次電池負極集電体用電解銅箔は、例えば、硫酸−硫酸銅電解めっき液を用いた電解処理を行うことによって製造することができる。硫酸−硫酸銅電解めっき液の銅濃度としては、例えば、40〜120g/Lの範囲にするのが好ましく、より好ましくは60〜100g/Lの範囲である。また、硫酸−硫酸銅電解めっき液の硫酸濃度としては、40〜60g/Lの範囲にするのが好ましい。さらに、硫酸−硫酸銅電解めっき液の塩素濃度としては、50〜100ppmの範囲にするのが好ましい。   The electrolytic copper foil for a lithium ion secondary battery negative electrode current collector of the present embodiment can be produced, for example, by performing an electrolytic treatment using a sulfuric acid-copper sulfate electrolytic plating solution. As a copper concentration of a sulfuric acid-copper sulfate electroplating solution, it is preferable to set it as the range of 40-120 g / L, for example, More preferably, it is the range of 60-100 g / L. The sulfuric acid concentration of the sulfuric acid-copper sulfate electroplating solution is preferably in the range of 40 to 60 g / L. Furthermore, the chlorine concentration of the sulfuric acid-copper sulfate electroplating solution is preferably in the range of 50 to 100 ppm.

また、電解(めっき)液中の添加剤としては、以下に示す有機添加剤A、B及びCを用いることが好ましい。   Moreover, it is preferable to use the organic additives A, B, and C shown below as additives in the electrolytic (plating) solution.

有機添加剤Aは、例えば、ポリエチレングリコール、ポリプロピレングリコール、デンプン、セルロース系水溶性高分子(カルボキシルメチルセルロース、ヒドロキシエチルセルロース等)等の高分子多糖類、ポリエチレンイミン、ポリアリル、ポリアクリルアミドなどの分子構造中にS(硫黄)を含まない水溶性高分子化合物から選ばれる添加剤の内、分子量が100000以上のものを使用することができる。   The organic additive A is, for example, in a molecular structure such as polyethylene glycol, polypropylene glycol, starch, polymer polysaccharides such as cellulose water-soluble polymer (carboxyl methyl cellulose, hydroxyethyl cellulose, etc.), polyethylene imine, polyallyl, polyacrylamide and the like. Among additives selected from water-soluble polymer compounds not containing S (sulfur), those having a molecular weight of 100,000 or more can be used.

有機添加剤Bは、例えば、ポリエチレングリコール、ポリプロピレングリコール、デンプン、セルロース系水溶性高分子(カルボキシルメチルセルロース、ヒドロキシエチルセルロース等)等の高分子多糖類、ポリエチレンイミン、ポリアリル、ポリアクリルアミドなどの分子構造中にS(硫黄)を含まない水溶性高分子化合物から選ばれる添加剤の内、分子量が10000以上、50000以下のものを使用することができる。   The organic additive B is, for example, in a molecular structure such as polyethylene glycol, polypropylene glycol, starch, a high molecular polysaccharide such as a cellulose-based water-soluble polymer (carboxyl methyl cellulose, hydroxyethyl cellulose, etc.), polyethylene imine, polyallyl, polyacrylamide, etc. Among additives selected from water-soluble polymer compounds not containing S (sulfur), those having a molecular weight of 10,000 or more and 50,000 or less can be used.

有機添加剤Cは、例えば、ポリエチレングリコール、ポリプロピレングリコール、デンプン、セルロース系水溶性高分子(カルボキシルメチルセルロース、ヒドロキシエチルセルロース等)等の高分子多糖類、ポリエチレンイミン、ポリアリル、ポリアクリルアミドなどの分子構造中にS(硫黄)を含まない水溶性高分子化合物から選ばれる添加剤の内、分子量が1000以上、5000以下のものを使用することができる。   The organic additive C is, for example, in a molecular structure such as polyethylene glycol, polypropylene glycol, starch, high molecular polysaccharides such as cellulose water-soluble polymer (carboxyl methyl cellulose, hydroxyethyl cellulose, etc.), polyethylene imine, polyallyl, polyacrylamide, etc. Among additives selected from water-soluble polymer compounds not containing S (sulfur), those having a molecular weight of 1000 or more and 5000 or less can be used.

分子量の異なる有機添加剤A、B及びCを組み合わせて添加し、特定の電解(めっき)条件で製箔を行うことで、箔中への不純物成分の取り込みが制御され不純物として炭素を150ppm以上、塩素を200ppm以上、硫黄を50ppm以下含有し、常態の引張強度が450MPa以上、450℃で1時間加熱した後に常温で測定された引張強度が350MPa以上の銅箔を製造することができる。   By adding a combination of organic additives A, B and C having different molecular weights and performing foil formation under specific electrolysis (plating) conditions, incorporation of impurity components into the foil is controlled, and carbon as an impurity is 150 ppm or more, A copper foil containing 200 ppm or more of chlorine and 50 ppm or less of sulfur, having a normal tensile strength of 450 MPa or more and heating at 450 ° C. for 1 hour and having a tensile strength measured at room temperature of 350 MPa or more can be produced.

製造された電解銅箔(未処理銅箔)に対して、例えば、クロメート処理、あるいはNi又はNi合金めっき、Co又はCo合金めっき、Zn又はZn合金めっき、Sn又はSn合金めっき、上記各種めっき層上にさらにクロメート処理を施したもの等の無機防錆処理、あるいは、ベンゾトリアゾール等の有機防錆処理を施す。さらに、例えばシランカップリング剤処理等が施されて、リチウムイオン二次電池負極集電体用電解銅箔とする。上記無機防錆処理、有機防錆処理、シランカップリング剤処理は活物質との密着強度を高め、電池の充放電サイクル効率の低下を防ぐ役割を果たす。   For the produced electrolytic copper foil (untreated copper foil), for example, chromate treatment, Ni or Ni alloy plating, Co or Co alloy plating, Zn or Zn alloy plating, Sn or Sn alloy plating, the above various plating layers An inorganic antirust treatment such as a chromate treatment or an organic antirust treatment such as benzotriazole. Furthermore, for example, a silane coupling agent treatment or the like is performed to obtain an electrolytic copper foil for a negative electrode current collector of a lithium ion secondary battery. The inorganic rust prevention treatment, organic rust prevention treatment, and silane coupling agent treatment increase the adhesion strength with the active material and prevent the charge / discharge cycle efficiency of the battery from being lowered.

また、上記の防錆処理を施す前に、例えば、電解銅箔表面に粗化処理を行うことも可能である。粗化処理としては、例えば、めっき法、エッチング法等が好適に採用できる。めっき法は、未処理電解銅箔の表面に凹凸を有する薄膜層を形成することにより表面を粗化する方法である。めっき法としては、電解めっき法及び無電解めっき法を採用することができる。めっき法による粗化としては、銅や銅合金などの銅を主成分とするめっき膜を、未処理電解銅箔表面に形成する方法が好ましい。エッチング法による粗化としては、例えば、物理的エッチングや化学的エッチングによる方法が適している。物理的エッチングにはサンドブラスト等でエッチングする方法があり、化学エッチングには処理液として、無機または有機酸と酸化剤と添加剤を含有する公知の液を用いて行なうことができる。   Moreover, before performing said rust prevention process, it is also possible to perform a roughening process, for example to the electrolytic copper foil surface. As the roughening treatment, for example, a plating method or an etching method can be suitably employed. The plating method is a method of roughening the surface by forming a thin film layer having irregularities on the surface of the untreated electrolytic copper foil. As the plating method, an electrolytic plating method and an electroless plating method can be employed. As the roughening by the plating method, a method of forming a plating film mainly composed of copper such as copper or copper alloy on the surface of the untreated electrolytic copper foil is preferable. As the roughening by the etching method, for example, a method by physical etching or chemical etching is suitable. Physical etching includes a method of etching by sandblasting or the like, and chemical etching can be performed using a known solution containing an inorganic or organic acid, an oxidizing agent, and an additive as a processing solution.

[リチウムイオン二次電池用集電体を用いたリチウムイオン二次電池の構成と製造方法]
本実施形態のリチウムイオン二次電池負極電極は、上記の本実施形態のリチウムイオン二次電池負極集電体用電解銅箔を集電体とし、該集電体の前記防錆処理層が形成される等の表面処理が施された面に活物質層が形成された構成である。例えば、上記の活物質層は、活物質、バインダー、溶媒を混練しスラリー状としたものを負極集電体に塗布、乾燥、プレスしたものである。
[Configuration and production method of lithium ion secondary battery using current collector for lithium ion secondary battery]
The lithium ion secondary battery negative electrode of the present embodiment uses the electrolytic copper foil for the lithium ion secondary battery negative electrode collector of the present embodiment as a current collector, and the rust-proofing layer of the current collector is formed. In other words, the active material layer is formed on the surface that has been subjected to the surface treatment. For example, the active material layer is obtained by applying a slurry obtained by kneading an active material, a binder, and a solvent to a negative electrode current collector, drying, and pressing.

本実施形態における活物質層は、リチウムを吸蔵・放出する物質であり、リチウムを合金化することにより吸蔵する活物質であることが好ましい。このような活物質材料としては、例えば、カーボンや、ケイ素、ゲルマニウム、スズ等の第14族元素等が挙げられる。本実施形態において、活物質層は集電体の片面または両面上に形成することができる。   The active material layer in the present embodiment is a material that occludes / releases lithium, and is preferably an active material that occludes lithium by alloying. Examples of such an active material include group 14 elements such as carbon, silicon, germanium, and tin. In the present embodiment, the active material layer can be formed on one side or both sides of the current collector.

箔中の硫黄成分が50ppm以下である場合、箔の脆さがなく、銅箔製造工程および電池製造工程における搬送時に箔の破断が生じることがない。しかしながら箔中の硫黄成分が50ppmより高い場合、箔に脆さがでてしまい銅箔製造工程および電池製造工程における搬送時に箔の破断が生じるためハンドリング性が好ましくない。従って、箔中に不純物として炭素を150ppm以上、塩素を200ppm以上、硫黄を50ppm以下含有させることで、電池製造工程におけるハンドリング性が良好で、ポリイミドバインダーを用いた高容量電池製造工程での加熱処理工程にも耐え得る有効な集電体(銅箔)となる。   When the sulfur component in the foil is 50 ppm or less, the foil is not brittle, and the foil does not break during transportation in the copper foil manufacturing process and the battery manufacturing process. However, when the sulfur component in the foil is higher than 50 ppm, the foil becomes brittle, and the foil is broken during transportation in the copper foil manufacturing process and the battery manufacturing process. Therefore, by including 150 ppm or more of carbon as impurities, 200 ppm or more of chlorine and 50 ppm or less of sulfur as impurities in the foil, the handling property in the battery manufacturing process is good, and the heat treatment in the high capacity battery manufacturing process using the polyimide binder It becomes an effective current collector (copper foil) that can withstand the process.

以下、本発明を実施例に基づいてさらに詳細に説明するが、本発明は以下の実施例に何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能なものである。   Hereinafter, the present invention will be described in more detail based on examples. However, the present invention is not limited to the following examples, and can be implemented with appropriate modifications within a range not changing the gist thereof. Is.

[未処理銅箔の製造]
<実施例1〜6>
銅濃度を65g/L、硫酸濃度を45g/L、塩化物イオン濃度80ppmに調整し、表1に示す添加剤A、B、Cを添加した電解液を用い、アノードには貴金属酸化物被覆チタン電極、カソードにはチタン製回転ドラムを用いて電流密度30A/dm、浴温50℃の条件下で実施し、厚さが6〜12μmの未処理銅箔を電解製箔法によって製造した。
[Manufacture of untreated copper foil]
<Examples 1-6>
A copper concentration was adjusted to 65 g / L, a sulfuric acid concentration was adjusted to 45 g / L, and a chloride ion concentration was adjusted to 80 ppm, and an electrolyte solution containing the additives A, B, and C shown in Table 1 was used. A titanium rotating drum was used for the electrode and cathode, and the conditions were a current density of 30 A / dm 2 and a bath temperature of 50 ° C., and an untreated copper foil having a thickness of 6 to 12 μm was produced by an electrolytic foil method.

<比較例1〜6>
表1に示す添加剤A、B、Cを添加した電解液を用い、アノードには貴金属酸化物被覆チタン電極、カソードにはチタン製回転ドラムを用いて電流密度30A/dm、浴温50℃の条件下で実施し、厚さが10μmの未処理銅箔を電解製箔法によって製造した。なお、比較例4は特許文献1、比較例5は特許文献2、比較例6は特許文献3に開示された手法に基づき製箔した。
<Comparative Examples 1-6>
Using electrolytes with additives A, B, and C shown in Table 1, a noble metal oxide-coated titanium electrode for the anode and a titanium rotating drum for the cathode, current density 30 A / dm 2 , bath temperature 50 ° C. The untreated copper foil having a thickness of 10 μm was produced by the electrolytic foil method. Comparative Example 4 was made based on the technique disclosed in Patent Document 1, Comparative Example 5 was Patent Document 2, and Comparative Example 6 was made in accordance with the technique disclosed in Patent Document 3.

Figure 0005916904
Figure 0005916904

[電解銅箔の引張強度及び伸び率の測定]
実施例1〜6および比較例1〜6の各電解銅箔について、常態(常温:20℃)での引張強度(MPa)及び伸び率(%)を測定した。それらの結果を表2に示す。また、引張強度(MPa)及び伸び率(%)にいては、450℃で1時間加熱する熱処理を施した後についても測定したので、それらの結果を表2に併記した。なお、引張強度及び伸び率は、引張試験機(インストロン社製1122型)を用い、IPC−TM−650に準拠する手法で実施した。
[Measurement of tensile strength and elongation of electrolytic copper foil]
About each electrolytic copper foil of Examples 1-6 and Comparative Examples 1-6, the tensile strength (MPa) and elongation rate (%) in a normal state (normal temperature: 20 degreeC) were measured. The results are shown in Table 2. Further, the tensile strength (MPa) and the elongation rate (%) were also measured after heat treatment heated at 450 ° C. for 1 hour, and the results are also shown in Table 2. In addition, the tensile strength and elongation rate were implemented by the method based on IPC-TM-650 using the tensile testing machine (Instron company make type 1122).

[表面粗さRzの測定]
実施例1〜6および比較例1〜6の各電解銅箔の表面について、十点平均粗さRz(μm)を測定した。測定は、JIS B 0601:1994に定められた方法により測定し、その結果を表2に示す。
[Measurement of surface roughness Rz]
Ten-point average roughness Rz (μm) was measured for the surfaces of the electrolytic copper foils of Examples 1 to 6 and Comparative Examples 1 to 6. The measurement was performed by the method defined in JIS B 0601: 1994, and the results are shown in Table 2.

[箔中不純物量の測定]
銅箔中の硫黄及び炭素の不純物量(濃度)の測定は、アセトンでの表面洗浄、乾燥後、炭素硫黄分析装置(HORIBA製 EMIA−920)を用いた酸素気流中燃焼−赤外線吸収法によって測定した。また、銅箔中の窒素の不純物量(濃度)の測定は、アセトンでの表面洗浄、乾燥後、酸素窒素分析装置(HORIBA製 EMGA―920)を用いた不活性ガス融解-熱伝導度法によって測定した。箔中の塩素濃度の測定は、アセトンでの表面洗浄、乾燥後に一定重量の電解銅箔を酸で溶解し、自動滴定装置(HIRANUMA製 COM1600)を用いて溶液中の塩素を硝酸銀滴定することによって測定した。
[Measurement of impurities in foil]
The amount of impurities (concentration) of sulfur and carbon in copper foil was measured by surface cleaning with acetone and drying, followed by combustion in an oxygen stream using a carbon sulfur analyzer (EMIA-920 made by HORIBA) by infrared absorption method. did. Moreover, the amount of impurities (concentration) of nitrogen in the copper foil is measured by surface cleaning with acetone and drying, followed by an inert gas melting-thermal conductivity method using an oxygen-nitrogen analyzer (EMGA-920 manufactured by HORIBA). It was measured. The measurement of the chlorine concentration in the foil is carried out by washing the surface with acetone, drying and dissolving a certain weight of electrolytic copper foil with acid, and titrating the chlorine in the solution with silver nitrate using an automatic titrator (COM1600 manufactured by HIRANUMA). It was measured.

[クロメート処理]
実施例1〜6および比較例1〜6の各電解銅箔表面にクロメート処理を施して防錆処理層を形成し、集電体とした。銅箔表面のクロメート処理の条件は以下の通りである。
[Chromate treatment]
The surface of each electrolytic copper foil of Examples 1 to 6 and Comparative Examples 1 to 6 was subjected to chromate treatment to form a rust preventive treatment layer to obtain a current collector. The conditions for the chromate treatment of the copper foil surface are as follows.

<クロメート処理条件>
重クロム酸カリウム 1〜10g/L
浸漬処理時間 2〜20秒
<Chromate treatment conditions>
Potassium dichromate 1-10g / L
Immersion treatment time 2 to 20 seconds

[電池特性の評価]
次に、上記でクロメート処理を施した実施例1〜6および比較例1〜6の電解銅箔を、各集電体として、リチウム二次電池を作製し、サイクル寿命試験を行った。粉末状のSi合金系活物質(平均粒径0.1μm〜10μm)とバインダー(ポリイミド)とを、85:15の比率(重量比)で混合し、N−メチルピロリドン(溶剤)に分散させて活物質スラリーとした。次いで、このスラリーを、作製した電解銅箔の両面に塗布し、乾燥後、ローラープレス機で圧縮形成し、その後、窒素雰囲気下で450℃、1時間の条件で焼結し、負極を作製した。この負極は、成形後の負極合剤の膜厚が両面共に20μmと同一であった。
[Evaluation of battery characteristics]
Next, using the electrolytic copper foils of Examples 1 to 6 and Comparative Examples 1 to 6 subjected to the chromate treatment as described above as current collectors, lithium secondary batteries were produced and subjected to a cycle life test. Powdered Si alloy-based active material (average particle size 0.1 μm to 10 μm) and binder (polyimide) are mixed at a ratio (weight ratio) of 85:15 and dispersed in N-methylpyrrolidone (solvent). An active material slurry was obtained. Next, this slurry was applied to both sides of the produced electrolytic copper foil, dried, and compressed and formed with a roller press, and then sintered under a nitrogen atmosphere at 450 ° C. for 1 hour to produce a negative electrode. . In this negative electrode, the negative electrode mixture after molding had the same film thickness of 20 μm on both sides.

<リチウム二次電池の作製>
アルゴン雰囲気下のグローブボックス内で、以下の構成で評価用三極式セルを構築した。
<Production of lithium secondary battery>
In a glove box under an argon atmosphere, a three-electrode cell for evaluation was constructed with the following configuration.

負極:上記で作製のSi合金系負極
対極および参照極:共にリチウム箔
電解液:1mol/l LiPF6/EC+DEC(3:7vol%)
Negative electrode: Si alloy-based negative electrode produced above Counter electrode and reference electrode: both lithium foil Electrolyte: 1 mol / l LiPF 6 / EC + DEC (3: 7 vol%)

[サイクル寿命の良好性評価]
構築したセルをボックスから大気中に取り出し、25℃の雰囲気下で充放電測定を実施した。充電は、Liの標準単極電位基準に対して0.02Vまで定電流で行い、その後はCV(定電位のまま)電流が0.05C低下した時点で充電終了とした。放電は、定電流にて0.1Cで1.5V(Li基準)まで行った。同じ0.1C相当電流で充放電を繰り返した。なお、サイクル寿命は、電池の放電容量が初期放電容量の80%未満となったときのサイクル数である。サイクル寿命は、前記サイクル数が450サイクル以上の場合を特に良好であるとして「◎」、400サイクル以上450サイクル未満の場合を良好であるとして「○」、そして、400サイクル未満の場合を不良であるとして「×」を付した。その結果を表2に示す。
[Evaluation of good cycle life]
The constructed cell was taken out from the box into the atmosphere, and charge / discharge measurement was performed in an atmosphere at 25 ° C. Charging was performed at a constant current up to 0.02 V with respect to the standard unipolar potential of Li, and thereafter, the charging was terminated when the CV (with constant potential) current decreased by 0.05 C. Discharge was performed at a constant current up to 1.5 V (Li reference) at 0.1 C. Charging / discharging was repeated with the same current equivalent to 0.1 C. The cycle life is the number of cycles when the discharge capacity of the battery is less than 80% of the initial discharge capacity. The cycle life is “Good” when the number of cycles is 450 cycles or more, especially “Good”, “Good” when 400 cycles or more and less than 450 cycles, and Bad when less than 400 cycles. “×” is attached as there is. The results are shown in Table 2.

[ハンドリングの良好性評価]
活物質塗工ラインを用いた2000m長の箔の塗工処理において、搬送ロール上での箔破断を生じなかったものをハンドリング性良好として「○」、破断が生じたものはハンドリング性不良として「×」を付した。その結果を表2に示す。
[Handling evaluation]
In the coating process of a 2000 m long foil using the active material coating line, “○” indicates that the foil breakage on the transport roll did not occur as “good”, and if the fracture occurred, “ “×” was attached. The results are shown in Table 2.

Figure 0005916904
Figure 0005916904

表2の結果から、実施例1〜6の銅箔は、いずれも箔中の硫黄含有量が5〜46ppmと50ppm以下であることから電池製造工程での箔の搬送時に箔の破断が生じずハンドリング性が良好であり、また、箔中の炭素含有量が175〜865ppmと150ppm以上であり、箔中の塩素含有量が260〜684ppmと200ppm以上であることで、常態の引張強度が474〜721MPaと450MPa以上であるとともに、450℃で1時間加熱した後に常温で測定された引張強度が362〜609MPaと、350MPa以上の高い数値を維持しており、サイクル寿命についても400サイクル以上と良好な特性を示した。特に、実施例5、6の銅箔に関しては、サイクル寿命が450サイクル以上とより好ましい結果であった。これらの銅箔に関しては、塩素と炭素の他、窒素も100ppm以上の濃度で含有していることが分かった。検討の結果、炭素を150ppm以上、塩素を200ppm以上含有することで、450℃の加熱処理に耐え得る銅箔が得られ、このような銅箔を集電体として用いることで電池は400サイクル以上の良好なサイクル寿命を示すが、さらに窒素も100ppm以上の濃度で箔中に含有されることで、銅箔表面の平滑性が増して活物質層との密着性が高まり、サイクル特性がさらに向上することを見出した。   From the results in Table 2, the copper foils of Examples 1 to 6 have no sulfur breakage during transport of the foil in the battery manufacturing process because the sulfur content in the foil is 5 to 46 ppm and 50 ppm or less. Handling property is good, and the carbon content in the foil is 175 to 865 ppm and 150 ppm or more, and the chlorine content in the foil is 260 to 684 ppm and 200 ppm or more, so that the normal tensile strength is 474 to In addition to being 721 MPa and 450 MPa or more, the tensile strength measured at room temperature after heating at 450 ° C. for 1 hour is maintained at a high value of 362 to 609 MPa and 350 MPa or more, and the cycle life is also good at 400 cycles or more. The characteristics are shown. In particular, regarding the copper foils of Examples 5 and 6, the cycle life was a more preferable result of 450 cycles or more. Regarding these copper foils, it was found that nitrogen was contained at a concentration of 100 ppm or more in addition to chlorine and carbon. As a result of the study, by containing 150 ppm or more of carbon and 200 ppm or more of carbon, a copper foil that can withstand heat treatment at 450 ° C. is obtained, and by using such a copper foil as a current collector, the battery has 400 cycles or more. Although the cycle life is good, nitrogen is also contained in the foil at a concentration of 100 ppm or more, so that the smoothness of the copper foil surface is increased and the adhesion to the active material layer is increased, and the cycle characteristics are further improved. I found out.

一方、比較例1の銅箔は、箔中の硫黄含有量が59ppmと50ppmを超えていることから、結晶粒界が不健全化し、搬送実験中に箔の破断が生じたためハンドリング性が劣っていた。さらに、比較例2は、箔中の炭素含有量が103ppmと150ppm未満であり、また、比較例3は、箔中の塩素含有量が145ppmと200ppm未満であることから、いずれも結晶粒界に、寄与するC−Clクラスターから成る介在物が形成できず、450℃の加熱処理によって引張強度がそれぞれ336MPa及び324MPaと低下したため、充放電時の活物質膨張収縮に伴う応力に箔が耐え切れず変形等、または破断が生じたことからサイクル寿命も400サイクル未満と劣っていた。さらにまた、比較例4は、特許文献1において開示された手法に基づいて製箔した銅箔であるが、箔中の塩素含有量が5ppmと200ppm未満であることから、450℃で1時間加熱後の引張強度が342MPaと350MPa未満であることから、サイクル寿命も400サイクル未満と劣っていた。また、比較例5は、特許文献2に開示された手法で製造した銅箔であるが、箔中の硫黄含有量が75ppmと50ppmよりも高いことから、箔が脆く搬送実験時に破断が生じ、ハンドリング性が劣っており、加えて、箔中の炭素濃度も121ppmと150ppm未満であることから、450℃で1時間の加熱処理により箔の引張強度が330MPaと350MPa未満となり、サイクル寿命も400サイクル未満と劣っていた。さらに、比較例6は特許文献3に開示された手法で製造した銅箔であるが、箔中の炭素含有量が50ppmと150ppm未満であり、塩素含有量も15ppmと200ppm未満であることから、450℃で1時間の加熱処理に耐えきれず、箔の引張強度が345MPaと350MPa未満であることから、サイクル寿命が400サイクル未満と劣っていた。   On the other hand, since the copper content of Comparative Example 1 has a sulfur content in the foil exceeding 59 ppm and 50 ppm, the grain boundary becomes unhealthy, and the foil breaks during the transport experiment, so the handling property is inferior. It was. Further, Comparative Example 2 has a carbon content in the foil of 103 ppm and less than 150 ppm, and Comparative Example 3 has a chlorine content in the foil of 145 ppm and less than 200 ppm. , Because inclusions composed of contributing C-Cl clusters could not be formed, and the tensile strength decreased to 336 MPa and 324 MPa by heat treatment at 450 ° C., respectively, so that the foil could not withstand the stress accompanying active material expansion and contraction during charging and discharging. The cycle life was inferior to less than 400 cycles due to deformation or breakage. Furthermore, Comparative Example 4 is a copper foil made based on the technique disclosed in Patent Document 1, but the chlorine content in the foil is 5 ppm and less than 200 ppm, so it is heated at 450 ° C. for 1 hour. Since the later tensile strength was less than 342 MPa and 350 MPa, the cycle life was also inferior to less than 400 cycles. Further, Comparative Example 5 is a copper foil manufactured by the method disclosed in Patent Document 2, but since the sulfur content in the foil is higher than 75 ppm and 50 ppm, the foil is brittle and breaks during a transportation experiment. In addition, since the handleability is inferior, and the carbon concentration in the foil is less than 121 ppm and 150 ppm, the heat treatment at 450 ° C. for 1 hour makes the foil tensile strength less than 330 MPa and 350 MPa, and the cycle life is also 400 cycles. It was inferior with less. Furthermore, Comparative Example 6 is a copper foil manufactured by the method disclosed in Patent Document 3, but the carbon content in the foil is less than 50 ppm and 150 ppm, and the chlorine content is also less than 15 ppm and 200 ppm. The cycle life was inferior to less than 400 cycles because the foil could not withstand the heat treatment at 450 ° C. for 1 hour and the tensile strength of the foil was less than 345 MPa and 350 MPa.

また、実施例4及び比較例4のそれぞれに用いた電解銅箔に関し、常態(常温:20℃)の引張強度と、150、200、250、300、350、400、450、500℃の各温度で1時間加熱した後に常温で測定された引張強度のデータをプロットしたものを図1に示す。図1から、実施例4は、常態の引張強度が608MPaであり、加熱温度が高くなるほど引張強度が低くなる傾向は認められるものの、加熱温度が450℃のときの引張強度が504MPa、加熱温度が500℃のときの引張強度が486MPaといずれも350MPaよりもかなり高いため、加熱温度が450℃以上と高温であっても、常態の引張強度に対する引張強度の低下割合は小さい。一方、比較例4は、常態の引張強度が735MPaと実施例4における常態の引張強度よりも高かったものの、加熱温度が450℃のときの引張強度が342MPaと350MPa未満と低いことから、加熱温度が450℃以上と高温になると、引張強度が急激に低下し、常態の引張強度に対する引張強度の低下割合が大きい。   Moreover, regarding the electrolytic copper foil used in each of Example 4 and Comparative Example 4, the tensile strength in the normal state (normal temperature: 20 ° C.) and the temperatures of 150, 200, 250, 300, 350, 400, 450, and 500 ° C. FIG. 1 shows a plot of tensile strength data measured at room temperature after heating for 1 hour. From FIG. 1, Example 4 has a normal tensile strength of 608 MPa and a tendency that the tensile strength decreases as the heating temperature increases, but the tensile strength when the heating temperature is 450 ° C. is 504 MPa, and the heating temperature is Since the tensile strength at 500 ° C. is 486 MPa, both of which are considerably higher than 350 MPa, even if the heating temperature is as high as 450 ° C. or higher, the decrease rate of the tensile strength with respect to the normal tensile strength is small. On the other hand, in Comparative Example 4, although the normal tensile strength was 735 MPa, which was higher than the normal tensile strength in Example 4, the tensile strength when the heating temperature was 450 ° C. was as low as 342 MPa and less than 350 MPa. When the temperature becomes 450 ° C. or higher, the tensile strength decreases rapidly, and the rate of decrease in tensile strength with respect to the normal tensile strength is large.

本発明によれば、450℃の高温での加熱処理工程後も電池形成後の充放電時の活物質体積膨張収縮による応力に耐えることができ、良好なサイクル寿命を有するリチウムイオン二次電池を提供することができる。また、箔中の不純物成分として、硫黄を50ppm以下とすることで箔が脆くなることがなく、電池製造ラインでの搬送工程における箔の破断が生じにくくなり、ハンドリング性が良好となる。さらに、このような銅箔を使用することで、450℃の高温での加熱処理工程後も十分な引張強度を有し、かつハンドリング性の良好な、リジッドプリント配線板用又はフレキシブルプリント配線板用の電解銅箔を提供することができる。   According to the present invention, a lithium ion secondary battery that can withstand stress due to active material volume expansion and contraction during charge and discharge after battery formation even after a heat treatment step at a high temperature of 450 ° C. and has a good cycle life is provided. Can be provided. Further, when the sulfur content is 50 ppm or less as an impurity component in the foil, the foil does not become brittle, and the foil is hardly broken in the transporting process in the battery production line, and the handling property is improved. Furthermore, by using such a copper foil, it has sufficient tensile strength even after a heat treatment process at a high temperature of 450 ° C., and has good handling properties, for a rigid printed wiring board or a flexible printed wiring board. An electrolytic copper foil can be provided.

Claims (5)

箔中に不純物として炭素を150ppm以上、塩素を200ppm以上、硫黄を50ppm以下含有し、常態の引張強度が450MPa以上、450℃で1時間加熱した後に常温で測定された引張強度が350MPa以上であることを特徴とする電解銅箔。   The foil contains 150 ppm or more of carbon as impurities, 200 ppm or more of chlorine, and 50 ppm or less of sulfur, the normal tensile strength is 450 MPa or more, and the tensile strength measured at room temperature after heating at 450 ° C. for 1 hour is 350 MPa or more. An electrolytic copper foil characterized by that. 請求項1に記載の電解銅箔を集電体として用いたことを特徴とするリチウムイオン二次電池用負極電極。   A negative electrode for a lithium ion secondary battery, wherein the electrolytic copper foil according to claim 1 is used as a current collector. 請求項2に記載のリチウムイオン二次電池用負極電極を用いたことを特徴とするリチウムイオン二次電池。   A lithium ion secondary battery using the negative electrode for a lithium ion secondary battery according to claim 2. 請求項1に記載の電解銅箔を導電材として用いたことを特徴とするリジッドプリント配線板。   A rigid printed wiring board comprising the electrolytic copper foil according to claim 1 as a conductive material. 請求項1に記載の電解銅箔を導電材として用いたことを特徴とするフレキシブルプリント配線板。   A flexible printed wiring board using the electrolytic copper foil according to claim 1 as a conductive material.
JP2015001859A 2015-01-07 2015-01-07 Electrolytic copper foil, negative electrode for lithium ion secondary battery, lithium ion secondary battery, rigid printed wiring board and flexible printed wiring board Active JP5916904B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015001859A JP5916904B1 (en) 2015-01-07 2015-01-07 Electrolytic copper foil, negative electrode for lithium ion secondary battery, lithium ion secondary battery, rigid printed wiring board and flexible printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015001859A JP5916904B1 (en) 2015-01-07 2015-01-07 Electrolytic copper foil, negative electrode for lithium ion secondary battery, lithium ion secondary battery, rigid printed wiring board and flexible printed wiring board

Publications (2)

Publication Number Publication Date
JP5916904B1 true JP5916904B1 (en) 2016-05-11
JP2016125120A JP2016125120A (en) 2016-07-11

Family

ID=55952010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015001859A Active JP5916904B1 (en) 2015-01-07 2015-01-07 Electrolytic copper foil, negative electrode for lithium ion secondary battery, lithium ion secondary battery, rigid printed wiring board and flexible printed wiring board

Country Status (1)

Country Link
JP (1) JP5916904B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6248233B1 (en) * 2016-06-14 2017-12-13 古河電気工業株式会社 Electrolytic copper foil, negative electrode for lithium ion secondary battery, lithium ion secondary battery and printed wiring board
WO2017217085A1 (en) * 2016-06-14 2017-12-21 古河電気工業株式会社 Electrolytic copper foil, lithium ion secondary cell negative electrode, lithium ion secondary cell, and printed wiring board
CN111771015A (en) * 2018-02-23 2020-10-13 古河电气工业株式会社 Electrolytic copper foil, negative electrode for lithium ion secondary battery using same, lithium ion secondary battery, copper-clad laminate, and printed wiring board
CN112751035A (en) * 2019-10-30 2021-05-04 长春石油化学股份有限公司 Electrolytic copper foil having heat resistance and lithium ion secondary battery comprising same

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101733410B1 (en) * 2016-11-11 2017-05-10 일진머티리얼즈 주식회사 Electrolytic copper foil of secondary battery enhanced for low temperature property and manufacturing method thereof
KR101733408B1 (en) * 2016-11-11 2017-05-10 일진머티리얼즈 주식회사 Electrolytic Copper Foil for secondary battery and manufacturing method thereof
KR101734840B1 (en) * 2016-11-11 2017-05-15 일진머티리얼즈 주식회사 Electrolytic copper foil of secondary battery enhanced for flexibility resistance and manufacturing method thereof
US10190225B2 (en) * 2017-04-18 2019-01-29 Chang Chun Petrochemical Co., Ltd. Electrodeposited copper foil with low repulsive force
US10403898B2 (en) 2017-07-27 2019-09-03 Kcf Technologies Co., Ltd. Electrolytic copper foil having high tensile strength, electrode including the same, secondary battery including the same, and method of manufacturing the same
JP6721547B2 (en) * 2017-07-27 2020-07-15 ケイシーエフ テクノロジース カンパニー リミテッド Electrolytic copper foil having high tensile strength, electrode including the same, secondary battery including the same, and manufacturing method thereof
JP7087759B2 (en) * 2018-07-18 2022-06-21 住友金属鉱山株式会社 Copper-clad laminate
JP2020045549A (en) * 2018-09-21 2020-03-26 日鉄ケミカル&マテリアル株式会社 Electrolytic copper foil and manufacturing method therefor, copper-clad laminate, circuit board, electronic device and electronic apparatus
JP6667840B1 (en) 2019-07-22 2020-03-18 テックス・テクノロジー株式会社 Manufacturing method of electrolytic copper foil

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009221592A (en) * 2007-10-31 2009-10-01 Mitsui Mining & Smelting Co Ltd Electrolytic copper foil and process for producing the electrolytic copper foil
JP2009299100A (en) * 2008-06-10 2009-12-24 Mitsui Mining & Smelting Co Ltd Electrolytic copper foil and method for manufacturing electrolytic copper foil
JP2013028848A (en) * 2011-07-29 2013-02-07 Furukawa Electric Co Ltd:The Electrolytic copper alloy foil
JP2014070263A (en) * 2012-09-28 2014-04-21 Jx Nippon Mining & Metals Corp Electrolytic copper foil and production method of electrolytic copper foil
JP2014224321A (en) * 2007-10-31 2014-12-04 三井金属鉱業株式会社 Electrolytic copper foil and method for producing the electrolytic copper foil

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009221592A (en) * 2007-10-31 2009-10-01 Mitsui Mining & Smelting Co Ltd Electrolytic copper foil and process for producing the electrolytic copper foil
JP2014224321A (en) * 2007-10-31 2014-12-04 三井金属鉱業株式会社 Electrolytic copper foil and method for producing the electrolytic copper foil
JP2009299100A (en) * 2008-06-10 2009-12-24 Mitsui Mining & Smelting Co Ltd Electrolytic copper foil and method for manufacturing electrolytic copper foil
JP2013028848A (en) * 2011-07-29 2013-02-07 Furukawa Electric Co Ltd:The Electrolytic copper alloy foil
JP2014070263A (en) * 2012-09-28 2014-04-21 Jx Nippon Mining & Metals Corp Electrolytic copper foil and production method of electrolytic copper foil

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6248233B1 (en) * 2016-06-14 2017-12-13 古河電気工業株式会社 Electrolytic copper foil, negative electrode for lithium ion secondary battery, lithium ion secondary battery and printed wiring board
WO2017217085A1 (en) * 2016-06-14 2017-12-21 古河電気工業株式会社 Electrolytic copper foil, lithium ion secondary cell negative electrode, lithium ion secondary cell, and printed wiring board
CN111771015A (en) * 2018-02-23 2020-10-13 古河电气工业株式会社 Electrolytic copper foil, negative electrode for lithium ion secondary battery using same, lithium ion secondary battery, copper-clad laminate, and printed wiring board
CN111771015B (en) * 2018-02-23 2022-03-29 古河电气工业株式会社 Electrolytic copper foil, negative electrode for lithium ion secondary battery using same, lithium ion secondary battery, copper-clad laminate, and printed wiring board
CN112751035A (en) * 2019-10-30 2021-05-04 长春石油化学股份有限公司 Electrolytic copper foil having heat resistance and lithium ion secondary battery comprising same
CN112751035B (en) * 2019-10-30 2024-02-02 长春石油化学股份有限公司 Electrolytic copper foil having heat resistance and lithium ion secondary battery comprising the same

Also Published As

Publication number Publication date
JP2016125120A (en) 2016-07-11

Similar Documents

Publication Publication Date Title
JP5916904B1 (en) Electrolytic copper foil, negative electrode for lithium ion secondary battery, lithium ion secondary battery, rigid printed wiring board and flexible printed wiring board
WO2013018773A1 (en) Electrolytic copper alloy foil, method for producing same, electrolytic solution used for production of same, negative electrode collector for secondary batteries using same, secondary battery, and electrode of secondary battery
KR101782737B1 (en) Electrolytic copper foil, the negative electrode for a lithium ion secondary battery and a lithium ion secondary battery, printed circuit board and an electromagnetic shielding material
JP5810249B1 (en) Electrolytic copper foil, negative electrode for lithium ion secondary battery, lithium ion secondary battery, printed wiring board, and electromagnetic shielding material
JP6582156B1 (en) Electrolytic copper foil, and negative electrode for lithium ion secondary battery, lithium ion secondary battery, copper clad laminate and printed wiring board using the electrolytic copper foil
JP2013091825A (en) Electrolytic copper foil for lithium ion secondary battery and production method thereof
JP5579350B1 (en) Electrolytic copper foil, battery current collector using the electrolytic copper foil, secondary battery electrode using the current collector, and secondary battery using the electrode
JP6440656B2 (en) Electrolytic copper foil
TW201448338A (en) Copper foil, anode for lithium ion battery, and lithium ion secondary battery
TW201524277A (en) Copper foil for a printed wiring board
CN102548202B (en) Roughly-processed copper foil and manufacture method thereof
JP2022050471A (en) Electrolytic copper foil for secondary battery, having excellent flexural resistance, and method for producing the same
JP5503814B1 (en) Electrolytic copper foil and method for producing the same, negative electrode of lithium ion secondary battery, and lithium ion secondary battery
KR20170126775A (en) Electrolytic Copper Foil Having Low Surface Roughness, Method for Manufacturing The Same, Flexible Copper Clad Laminate Comprising The Same, Anode Comprising The Same, and Secondary Battery Comprising The Same
JP5697051B2 (en) Electrolytic copper alloy foil, method for producing the same, electrolyte used for the production, negative electrode current collector for secondary battery, secondary battery and electrode thereof
JP2019014973A (en) Electrolytic copper foil

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20160219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160405

R151 Written notification of patent or utility model registration

Ref document number: 5916904

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350