JP2017014608A - Electrolytic copper foil, lithium ion secondary battery negative electrode and lithium ion secondary battery, printed wiring board, and electromagnetic wave-shielding material - Google Patents

Electrolytic copper foil, lithium ion secondary battery negative electrode and lithium ion secondary battery, printed wiring board, and electromagnetic wave-shielding material Download PDF

Info

Publication number
JP2017014608A
JP2017014608A JP2015135702A JP2015135702A JP2017014608A JP 2017014608 A JP2017014608 A JP 2017014608A JP 2015135702 A JP2015135702 A JP 2015135702A JP 2015135702 A JP2015135702 A JP 2015135702A JP 2017014608 A JP2017014608 A JP 2017014608A
Authority
JP
Japan
Prior art keywords
copper foil
electrolytic copper
secondary battery
lithium ion
ion secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015135702A
Other languages
Japanese (ja)
Inventor
季実子 藤澤
Kimiko Fujisawa
季実子 藤澤
健作 篠崎
Kensaku Shinozaki
健作 篠崎
淳 篠崎
Atsushi Shinozaki
淳 篠崎
政登 胡木
Masato Ebisugi
政登 胡木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2015135702A priority Critical patent/JP2017014608A/en
Priority to CN201610412852.0A priority patent/CN106340668B/en
Priority to TW105120129A priority patent/TWI609995B/en
Priority to KR1020160083586A priority patent/KR101782737B1/en
Publication of JP2017014608A publication Critical patent/JP2017014608A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates
    • H05K3/025Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates by transfer of thin metal foil formed on a temporary carrier, e.g. peel-apart copper
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0084Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising a single continuous metallic layer on an electrically insulating supporting structure, e.g. metal foil, film, plating coating, electro-deposition, vapour-deposition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Laminated Bodies (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrolytic copper foil that is excellent in handling property during manufacturing of secondary battery, and that does not exhibit decrease in tensile strength even when heated at 150°C for one hour; and to provide, by using said electrolytic copper foil as a current collector, a lithium ion secondary battery negative electrode with increased cycle life, and a lithium ion secondary battery incorporating said electrode.SOLUTION: Provided is an electrolytic copper foil having, on a matte surface, a glossiness Gs (60°) of 20 or more and 150 or less and a coefficient of dynamic friction of 0.11 or more and 0.39 or less, and having a tensile strength after heated at 150°C for one hour of 350 MPa or more; and a lithium ion secondary battery using said electrolytic copper foil as a current collector.SELECTED DRAWING: Figure 1

Description

本発明は、電解銅箔と、それを用いたリチウム(Li)イオン二次電池用負極電極及びリチウムイオン二次電池に関するものである。
また本発明は、本発明電解銅箔を用いたプリント配線板並びに電磁波シールド材に関するものである。
The present invention relates to an electrolytic copper foil, a negative electrode for a lithium (Li) ion secondary battery and a lithium ion secondary battery using the same.
Moreover, this invention relates to the printed wiring board and electromagnetic wave shielding material which used this invention electrolytic copper foil.

リチウムイオン二次電池は、例えば、正極と、負極集電体の(以下、集電体と略す)表面に負極活物質層が形成された負極と、非水電解質とで構成されており、主に携帯電話やノートタイプパソコン等に使用されている。
リチウムイオン二次電池の負極は、電解により製造された後、表面処理などの処理がされていない、いわゆる「未処理銅箔」に防錆処理を施したものが使用され、銅箔(負極集電体)の表面に負極活物質層としてカーボン粒子等を塗布、乾燥し、さらにプレスして形成される。
リチウムイオン二次電池が十分な電池特性を得るには、活物質粒子間、及び、活物質と集電体の距離を小さくすると共に集電体の形状が活物質表面の形状に沿って変形することが重要である。活物質表面の形状に沿って集電体が変形した場合には、活物質と集電体との接触性がさらに良くなり、電気伝導度がさらに大きくなり、望ましい電池特性が得られる。活物質表面の形状に沿って集電体が変形しない場合には、活物質と集電体の接触部分が少なくなり、電気伝導度が小さくなり、望ましい電池特性が得られなくなる。
A lithium ion secondary battery includes, for example, a positive electrode, a negative electrode having a negative electrode active material layer formed on the surface of a negative electrode current collector (hereinafter abbreviated as a current collector), and a non-aqueous electrolyte. It is used in mobile phones and notebook computers.
As the negative electrode of the lithium ion secondary battery, a so-called “untreated copper foil” which has been manufactured by electrolysis and not subjected to a surface treatment or the like, is subjected to a rust prevention treatment. It is formed by applying carbon particles or the like as a negative electrode active material layer on the surface of the electric body, drying, and pressing.
In order for the lithium ion secondary battery to obtain sufficient battery characteristics, the distance between the active material particles and the distance between the active material and the current collector are reduced, and the shape of the current collector is deformed along the shape of the active material surface. This is very important. When the current collector is deformed along the shape of the active material surface, the contact between the active material and the current collector is further improved, the electric conductivity is further increased, and desirable battery characteristics can be obtained. When the current collector does not deform along the shape of the active material surface, the contact portion between the active material and the current collector is reduced, the electric conductivity is reduced, and desirable battery characteristics cannot be obtained.

また、集電体表面の凹凸が大きい場合には、活物質と集電体の接触点が少なく接触抵抗が高くなる。このような接触抵抗が大きい電極は、充放電を繰り返すと、活物質の充放電に伴う膨張収縮によるストレスや、接着剤であるバインダーの電解液への溶解などによって、集電体と活物質との距離が段々と大きくなり、一部の活物質の電気伝導度が充放電に利用できない電気伝導度となって電池の容量の低下が起きる。したがって、負極集電体には、引張り強度が所定値以上で、両面がより平滑である銅箔が好ましく使用される(特許文献1、2、3)。   Moreover, when the unevenness | corrugation of the collector surface is large, there are few contact points of an active material and a collector, and contact resistance becomes high. Such an electrode having a large contact resistance, when repeated charging and discharging, due to stress due to expansion and contraction accompanying charging and discharging of the active material, dissolution of the binder as an adhesive in the electrolytic solution, and the like, As the distance increases gradually, the electrical conductivity of some active materials becomes an electrical conductivity that cannot be used for charging and discharging, resulting in a decrease in battery capacity. Therefore, a copper foil having a tensile strength equal to or higher than a predetermined value and smoother on both sides is preferably used for the negative electrode current collector (Patent Documents 1, 2, and 3).

しかし、近年生産性の観点から電池製造工程における搬送速度の高速化が求められており、リチウムイオン二次電池の負極集電体として、両面がより平滑な電解銅箔を使用すると、平滑な銅箔は活物質塗工ラインにおいて、搬送ロール上で銅箔が滑りスリップし易く、スリップにより銅箔(集電体)にシワが生じ、或いは活物質の塗工工程に不具合が発生する等の惧れがある。   However, in recent years, from the viewpoint of productivity, it has been demanded to increase the conveyance speed in the battery manufacturing process. When an electrolytic copper foil having smoother surfaces is used as a negative electrode current collector of a lithium ion secondary battery, smooth copper In the active material coating line, the copper foil easily slips and slips on the transport roll, and the slip may cause wrinkles in the copper foil (current collector) or cause problems in the active material coating process. There is.

また、リチウムイオン二次電池の小型・軽量化のため、集電体としての電解銅箔には薄箔化が求められている。銅箔の薄肉化に際しては、充放電中の活物質の膨張収縮による応力に耐え得るようにする必要があり、集電体が活物質の膨張収縮に耐えることができなければ、電池のサイクル特性が低下するという悪影響を及ぼす。このため、銅箔の高強度化が重要な課題となる。また、従来のカーボン系の負極構成活物質層を集電体上に形成する場合は、負極活物質であるカーボン、バインダーであるポリフッ化ビニリデン樹脂、溶媒であるN−メチルピロリドンからなるペーストを作り銅箔(集電体)の両面に塗布、乾燥を行う。この場合は、150℃前後の温度で乾燥を行うため、充放電時の活物質の膨張収縮に耐えうる箔の強度としては、150℃での加熱処理後の強度で評価することが望ましい。
このような対策として、集電体の引張り強度を所定値以上とする必要がある。
Further, in order to reduce the size and weight of the lithium ion secondary battery, the electrolytic copper foil as a current collector is required to be thin. When thinning the copper foil, it is necessary to be able to withstand the stress caused by the expansion and contraction of the active material during charging and discharging. If the current collector cannot withstand the expansion and contraction of the active material, the cycle characteristics of the battery Has the adverse effect of lowering. For this reason, increasing the strength of the copper foil is an important issue. When a conventional carbon-based negative electrode active material layer is formed on a current collector, a paste made of carbon as a negative electrode active material, polyvinylidene fluoride resin as a binder, and N-methylpyrrolidone as a solvent is prepared. Apply and dry on both sides of copper foil (current collector). In this case, since drying is performed at a temperature of about 150 ° C., it is desirable to evaluate the strength of the foil that can withstand the expansion and contraction of the active material during charging and discharging by the strength after the heat treatment at 150 ° C.
As such a countermeasure, it is necessary to set the tensile strength of the current collector to a predetermined value or more.

また近時、リジッドプリント配線板、フレキシブルプリント配線板等のプリント配線板においては、銅箔とフィルム間のより高い密着強度を有しながら、回路基板に要求される高周波特性に優れるプリント配線板が要求されている。
加えて、薄箔で強度があり、特にフレキシブルプリント配線板の製造工程において、箔切れやシワ等が生じにくい銅箔の要求がなされている。
また、プリント配線板を製造する際にかかる熱履歴を経ても、高い強度を維持する銅箔が要求されている。
Also, recently, in printed wiring boards such as rigid printed wiring boards and flexible printed wiring boards, printed wiring boards that have higher adhesion strength between the copper foil and the film and have excellent high frequency characteristics required for circuit boards have been developed. It is requested.
In addition, there is a demand for copper foil that is thin and strong, and that is less likely to cause foil breakage, wrinkles, etc., particularly in the manufacturing process of flexible printed wiring boards.
In addition, a copper foil that maintains high strength is required even after a thermal history when manufacturing a printed wiring board.

特許第3742144号Japanese Patent No. 3742144 特許第5255229号Japanese Patent No. 5255229 特開2014−224321JP2014-224321A

本発明は、両面が平滑で、引張り強度に優れ、150℃で1時間加熱しても引張り強度が低下しない電解銅箔と、該電解銅箔を集電体として用いたリチウムイオン二次電池用負極電極及びリチウムイオン二次電池を提供することを目的とする。
本発明はまた、リジッドプリント配線板、フレキシブルプリント配線板等のプリント配線板において要求される、銅箔とフィルム間のより高い密着強度、高周波特性、薄箔で強度があることに加えて、特にフレキシブルプリント配線板の製造工程において箔切れやシワ等が生じにくい銅箔を提供することを目的とする。
本発明はまた、プリント配線板を製造する際にかかる熱履歴を経ても、高い強度を維持する銅箔を提供することを目的とする。
The present invention provides an electrolytic copper foil that is smooth on both sides, excellent in tensile strength, and does not decrease in tensile strength even when heated at 150 ° C. for 1 hour, and a lithium ion secondary battery using the electrolytic copper foil as a current collector An object is to provide a negative electrode and a lithium ion secondary battery.
The present invention is also required in printed wiring boards such as rigid printed wiring boards and flexible printed wiring boards, in addition to higher adhesion strength between copper foil and film, high frequency characteristics, strength in thin foil, An object of the present invention is to provide a copper foil that is less prone to foil breakage, wrinkles and the like in the manufacturing process of a flexible printed wiring board.
Another object of the present invention is to provide a copper foil that maintains high strength even after undergoing a thermal history when producing a printed wiring board.

本発明の電解銅箔は、マット面において、光沢度Gs(60°)が20以上150以下、動摩擦係数が0.11以上0.39以下であり、150℃において、1時間加熱後の引張り強度が350MPa以上900MPa以下であることを特徴とする。
光沢度Gs(60°)は投受光角60°で測定した光沢度を示す。
The electrolytic copper foil of the present invention has a glossiness Gs (60 °) of 20 or more and 150 or less, a dynamic friction coefficient of 0.11 or more and 0.39 or less, and a tensile strength after heating for 1 hour at 150 ° C. Is 350 MPa or more and 900 MPa or less.
The glossiness Gs (60 °) indicates the glossiness measured at a light projecting / receiving angle of 60 °.

上記本発明の電解銅箔は、好適には、150℃で1時間の熱処理を施した後の引張り強度が400MPa以上である。   The electrolytic copper foil of the present invention preferably has a tensile strength of 400 MPa or more after heat treatment at 150 ° C. for 1 hour.

本発明のリチウムイオン二次電池用負極電極は上記本発明電解銅箔を負極集電体としている。   The negative electrode for a lithium ion secondary battery of the present invention uses the electrolytic copper foil of the present invention as a negative electrode current collector.

また、本発明のリチウムイオン二次電池は上記本発明電解銅箔を負極集電体とした負極電極を組み込んだ二次電池である。   Moreover, the lithium ion secondary battery of this invention is a secondary battery incorporating the negative electrode which made the said this invention copper foil the negative electrode electrical power collector.

また、本発明のプリント配線板は上記電解銅箔を導電体としている。   Moreover, the printed wiring board of this invention uses the said electrolytic copper foil as a conductor.

更に、本発明の電磁波シールド材は上記電解銅箔をシールド材としている。   Furthermore, the electromagnetic shielding material of the present invention uses the electrolytic copper foil as a shielding material.

本発明によれば、マット面において、光沢度Gs(60°)が20以上150以下、動摩擦係数が0.11以上0.39以下であり、該銅箔の150℃で、1時間加熱後の引張り強度が350MPa以上900MPa以下であることを特徴とする電解銅箔を提供することができる。   According to the present invention, the glossiness Gs (60 °) is 20 or more and 150 or less and the dynamic friction coefficient is 0.11 or more and 0.39 or less on the mat surface, and the copper foil is heated at 150 ° C. for 1 hour. An electrolytic copper foil characterized by a tensile strength of 350 MPa or more and 900 MPa or less can be provided.

また本発明によれば、上記電解銅箔を負極集電体とすることで、活物質と集電体の接触性が良くなり、電気伝導度が高く、良好なサイクル寿命の二次電池を提供することができる。
さらに、集電体を構成する電解銅箔のマット面の光沢度Gs(60°)が150以下であることで、集電体の表面の微細な凹凸が活物質粒子との密着時にアンカー効果として働き、充放電サイクル時の活物質膨張収縮時に活物質が集電体より脱落することを抑制して良好なサイクル寿命の二次電池を提供することができる。
また、集電体を構成する電解銅箔は150℃で、1時間加熱後の引張り強度が350MPa以上であることで、充放電時の活物質の体積膨張収縮による応力に耐えることができ、良好なサイクル寿命の二次電池を提供することができる。
Further, according to the present invention, by using the electrolytic copper foil as a negative electrode current collector, the contact between the active material and the current collector is improved, and the secondary battery having a high electric conductivity and a good cycle life is provided. can do.
Furthermore, the glossiness Gs (60 °) of the matte surface of the electrolytic copper foil constituting the current collector is 150 or less, so that fine irregularities on the surface of the current collector can be used as an anchor effect when closely contacting the active material particles. It is possible to provide a secondary battery having a good cycle life by suppressing the active material from dropping from the current collector during the expansion and contraction of the active material during the charge / discharge cycle.
In addition, the electrolytic copper foil constituting the current collector has a tensile strength of 350 MPa or more after heating at 150 ° C. for 1 hour, so that it can withstand the stress due to the volume expansion and contraction of the active material during charging and discharging, and is good A secondary battery having a sufficient cycle life can be provided.

更に、上記電解銅箔を絶縁フィルムに貼り付けることで、銅箔表面に存在する微細な凹凸により、より高い銅箔と絶縁フィルム間の密着強度を有しながら、例えば、高周波信号の印加時の表皮効果による抵抗値の増大を防止するなど、回路基板に要求される高周波特性に優れるプリント配線板(リジッドプリント配線板、フレキシブルプリント配線板等)を提供することができる。   Furthermore, by attaching the electrolytic copper foil to the insulating film, the fine unevenness present on the surface of the copper foil has a higher adhesion strength between the copper foil and the insulating film, for example, when applying a high frequency signal It is possible to provide a printed wiring board (rigid printed wiring board, flexible printed wiring board, etc.) having excellent high frequency characteristics required for a circuit board, such as preventing an increase in resistance value due to the skin effect.

加えて、本発明電解銅箔は薄箔でも強度があり、特にフレキシブルプリント配線板の製造工程において箔切れや皺等を生じにくく好ましく使用できる。また、銅箔の150℃、1時間加熱後の引張り強度が350MPa以上であることで、プリント配線板を製造する際にかかる熱履歴を経ても、高い強度を維持することができる。   In addition, the electrolytic copper foil of the present invention is strong even when it is a thin foil, and it can be preferably used, particularly in the process of manufacturing a flexible printed wiring board, in which foil breakage, wrinkles and the like are unlikely to occur. Moreover, high intensity | strength can be maintained even if it passes through the thermal history concerning the manufacture of a printed wiring board because the tensile strength after 1 hour heating at 150 degreeC of copper foil is 350 Mpa or more.

本発明の電解銅箔は、接触抵抗が小さく、高周波特性にすぐれており電磁波シールド材としても優れた効果を有するものである。   The electrolytic copper foil of the present invention has low contact resistance and excellent high frequency characteristics, and has an excellent effect as an electromagnetic shielding material.

また、上述したいずれの用途においても、電解銅箔のマット面における光沢度Gs(60°)が150以下で、動摩擦係数が0.11以上0.39以下であることで、表面の微細な凹凸が電解装置における搬送ロール上の滑り止めとなり、箔が搬送ロール上でスリップすることを抑制するため、ハンドリング性が良好となる。   Moreover, in any of the above-mentioned applications, the glossiness Gs (60 °) on the mat surface of the electrolytic copper foil is 150 or less, and the dynamic friction coefficient is 0.11 or more and 0.39 or less. Becomes anti-slip on the transport roll in the electrolysis apparatus, and the foil is prevented from slipping on the transport roll, so that the handling property is good.

光沢度Gs(60°)と動摩擦係数の関係を示す図である。It is a figure which shows the relationship between glossiness Gs (60 degrees) and a dynamic friction coefficient.

[電解銅箔の構成]
本発明の一実施形態をリチウムイオン二次電池用集電体を構成する電解銅箔につき説明する。しかし、本発明の電解銅箔はリチウムイオン二次電池用集電体にのみ使用されるものではなく、プリント配線板、電磁はシールド用の導電体等その要旨を変更しない範囲において適宜その他の用途に使用可能なものである。
[Configuration of electrolytic copper foil]
One embodiment of the present invention will be described with respect to an electrolytic copper foil constituting a current collector for a lithium ion secondary battery. However, the electrolytic copper foil of the present invention is not used only for a current collector for a lithium ion secondary battery, and is appropriately used for other purposes as long as the gist of the printed wiring board, the electromagnetic conductor, etc. does not change its gist. Can be used.

本実施形態のリチウムイオン二次電池負極集電体用電解銅箔は、150℃で1時間の熱処理を施した後の引張り強度が350MPa以上、特に好ましくは400MPa以上であり、充放電時の活物質の体積膨張収縮による応力に耐えることができ、良好なサイクル寿命の二次電池を提供することができる。   The electrolytic copper foil for the negative electrode current collector of the lithium ion secondary battery of this embodiment has a tensile strength of 350 MPa or more, particularly preferably 400 MPa or more after heat treatment at 150 ° C. for 1 hour. A secondary battery having a good cycle life can be provided, which can withstand the stress caused by the volume expansion and contraction of the substance.

また、例えば、本実施形態のリチウムイオン二次電池集電体用電解銅箔は、少なくとも電解銅箔に活物質層を設ける側の表面に防錆処理層が設けられる。
防錆処理層は、例えば、クロメート処理層、あるいはNi又はNi合金めっき層、Co又はCo合金めっき層、Zn又はZn合金めっき層、Sn又はSn合金めっき層、上記各種めっき層上にさらにクロメート処理層を設けたもの等の無機防錆処理、あるいは、ベンゾトリアゾール等の有機防錆処理層である。
さらに、シランカップリング剤処理層等が形成されていてもよい。
上記無機防錆処理、有機防錆処理、シランカップリング剤処理は、負極集電体と活物質との密着強度を高め、電池の充放電サイクル効率の低下を防ぐ役割を果たす。
For example, the electrolytic copper foil for a lithium ion secondary battery current collector of the present embodiment is provided with a rust-proofing layer on at least the surface on the side where the active material layer is provided on the electrolytic copper foil.
The antirust treatment layer is, for example, a chromate treatment layer, or a nickel or Ni alloy plating layer, a Co or Co alloy plating layer, a Zn or Zn alloy plating layer, a Sn or Sn alloy plating layer, or a chromate treatment on the above various plating layers. It is an inorganic rust preventive treatment such as one provided with a layer, or an organic rust preventive treatment layer such as benzotriazole.
Furthermore, a silane coupling agent treatment layer or the like may be formed.
The inorganic rust-proofing treatment, organic rust-proofing treatment, and silane coupling agent treatment serve to increase the adhesion strength between the negative electrode current collector and the active material and prevent the battery charge / discharge cycle efficiency from being lowered.

また、例えば、本実施形態のリチウムイオン二次電池集電体用電解銅箔は、電解銅箔に活物質層を設ける電解銅箔の表面に粗化処理が施され、該粗化処理が施された表面に防錆処理層が設けられ,更に必要によりシランカップリング剤処理層が設けられる。   Further, for example, the electrolytic copper foil for a lithium ion secondary battery current collector of the present embodiment is subjected to a roughening treatment on the surface of the electrolytic copper foil in which an active material layer is provided on the electrolytic copper foil, and the roughening treatment is performed. A rust preventive treatment layer is provided on the surface, and a silane coupling agent treatment layer is provided as necessary.

本実施形態の電解銅箔は、マット面において、光沢度Gs(60°)が20以上150以下、動摩擦係数が0.11以上0.39以下である。
なお、Gs(60°)は、投受光角60°で測定した光沢度を示す。
マット面における表面粗さRzを1.0μm以上2.0μm以下とすると、より好ましい。
The electrolytic copper foil of this embodiment has a glossiness Gs (60 °) of 20 to 150 and a dynamic friction coefficient of 0.11 to 0.39 on the mat surface.
Gs (60 °) indicates the glossiness measured at a light projection / reception angle of 60 °.
The surface roughness Rz on the mat surface is more preferably 1.0 μm or more and 2.0 μm or less.

電解銅箔のマット面における表面粗さRzを2.0μm以下とするのは、2.0μm以上では、電解銅箔(集電体)表面の凹凸が大きく、活物質と集電体の接触点が少なくなり、接触抵抗が大きい電極となる。そのため充放電を繰り返すと、活物質の充放電に伴う膨張収縮によるストレスや、接着剤であるバインダーの電解液への溶解などによって、負極集電体と活物質との距離が段々と大きくなり、一部の活物質の電気伝導度が充放電に利用できない電気伝導度になって二次電池の容量の低下が起きる可能性があり、好ましくないためである。
他方、表面粗さRzを1.0μmとするのは、密着性とアンカー効果を持たせるためである。
The surface roughness Rz on the matte surface of the electrolytic copper foil is set to 2.0 μm or less. If the surface roughness is 2.0 μm or more, the surface of the electrolytic copper foil (current collector) has large irregularities, and the contact point between the active material and the current collector And the electrode has a high contact resistance. Therefore, when charging / discharging is repeated, the distance between the negative electrode current collector and the active material gradually increases due to stress due to expansion / contraction associated with charging / discharging of the active material, dissolution of the binder as an adhesive in the electrolytic solution, This is because the electric conductivity of some active materials becomes an electric conductivity that cannot be used for charging and discharging, and the capacity of the secondary battery may decrease, which is not preferable.
On the other hand, the reason why the surface roughness Rz is 1.0 μm is to provide adhesion and an anchor effect.

また、本実施形態の電解銅箔は、マット面における光沢度Gs(60°)を20以上150以下とし、動摩擦係数を0.11以上0.39以下とする。銅箔の表面粗さRzが2.0μm以下で光沢度Gs(60°)が20以上とすることで、活物質と集電体の接触性が良くなり、電気伝導度が高く、良好なサイクル寿命が得られる。
また、銅箔のマット面における光沢度Gs(60°)が150以下で動摩擦係数が0.11以上0.39以下とすることで、電池製造工程における活物質塗工ラインで銅箔表面の微細な凹凸が搬送ロール上の滑り止めとなり、銅箔が搬送ロール上でスリップすることが抑制され、電池製造ラインで銅箔に皺が発生せず、ハンドリング性が良好となる。また、この微細な凹凸は、活物質と集電体間のアンカー効果としても機能し、活物質の密着性の向上にも有効である。
即ち、ハンドリング性は、マット面における光沢度Gs(60°)が150以下、動摩擦係数0.11以上0.39以下、より好ましくは0.15以上0.35以下のとき良好であり、電池特性は光沢度Gs(60°)が20以上、引張り強度(加熱前後)が350MPa以上のときに良好となる。
なお、シャイニー面については、電解ドラムの表面形状を制御することにより、従来においても比較的容易に光沢度や動摩擦係数を制御することが可能であったが、本発明においては、従来制御することが難しかったマット面における光沢度及び動摩擦係数に着目し、両面とも所定の光沢度及び動摩擦係数を有する電解銅箔を実現したものである。
Moreover, the electrolytic copper foil of this embodiment makes glossiness Gs (60 degrees) in a mat | matte surface 20 or more and 150 or less, and makes a dynamic friction coefficient 0.11 or more and 0.39 or less. When the surface roughness Rz of the copper foil is 2.0 μm or less and the glossiness Gs (60 °) is 20 or more, the contact between the active material and the current collector is improved, the electric conductivity is high, and the cycle is good. Life expectancy is obtained.
Moreover, the glossiness Gs (60 °) on the mat surface of the copper foil is 150 or less and the dynamic friction coefficient is 0.11 or more and 0.39 or less, so that the surface of the copper foil is fine in the active material coating line in the battery manufacturing process. The unevenness becomes slippery on the transport roll, the copper foil is prevented from slipping on the transport roll, wrinkles are not generated on the copper foil in the battery production line, and the handling property is improved. The fine irregularities also function as an anchor effect between the active material and the current collector, and are effective in improving the adhesion of the active material.
That is, the handling property is good when the glossiness Gs (60 °) on the mat surface is 150 or less and the dynamic friction coefficient is 0.11 or more and 0.39 or less, more preferably 0.15 or more and 0.35 or less. Is good when the glossiness Gs (60 °) is 20 or more and the tensile strength (before and after heating) is 350 MPa or more.
As for the shiny surface, it was possible to control the glossiness and the dynamic friction coefficient relatively easily in the past by controlling the surface shape of the electrolysis drum. The electrolytic copper foil having a predetermined glossiness and dynamic friction coefficient on both surfaces is realized by paying attention to the glossiness and dynamic friction coefficient on the mat surface, which is difficult to achieve.

[電解銅箔の製造方法]
本実施形態のリチウムイオン二次電池負極集電体用電解銅箔は、例えば、硫酸−硫酸銅水溶液を電解液とし、白金属元素又はその酸化物元素で被覆したチタンからなる不溶性陽極と該陽極に対向させて設けられたチタン製陰極ドラムとの間に該電解液を供給し、陰極ドラムを一定速度で回転させながら、両極間に直流電流を通電することにより陰極ドラム表面上に銅を析出させ、析出した銅を陰極ドラム表面から引き剥がし、連続的に巻き取る方法により製造される。
引張り強度は、最大900MPaあれば充分である。
[Method for producing electrolytic copper foil]
The electrolytic copper foil for the negative electrode current collector of the lithium ion secondary battery according to the present embodiment includes, for example, an insoluble anode made of titanium coated with a white metal element or an oxide element thereof using a sulfuric acid-copper sulfate aqueous solution as an electrolyte and the anode Copper is deposited on the surface of the cathode drum by supplying a direct current between both electrodes while supplying the electrolyte between the cathode cathode and a titanium cathode drum provided opposite to the cathode drum and rotating the cathode drum at a constant speed. The deposited copper is peeled off from the surface of the cathode drum and is continuously wound up.
A maximum tensile strength of 900 MPa is sufficient.

本実施形態のリチウムイオン二次電池負極集電体用電解銅箔は、例えば、硫酸−硫酸銅の電解めっき液を用いた電解処理を行うことによって製造することができる。
硫酸−硫酸銅電解めっき液の銅濃度としては、例えば、40〜120g/Lの範囲にするのが好ましく、より好ましくは60〜100g/Lの範囲である。
また、硫酸−硫酸銅電解めっき液の硫酸濃度としては、40〜60g/Lの範囲にするのが好ましい。
さらに、硫酸−硫酸銅電解めっき液の塩素濃度としては、50〜100ppmの範囲にするのが好ましい。
The electrolytic copper foil for a lithium ion secondary battery negative electrode current collector of the present embodiment can be produced, for example, by performing an electrolytic treatment using a sulfuric acid-copper sulfate electrolytic plating solution.
As a copper concentration of a sulfuric acid-copper sulfate electroplating solution, it is preferable to set it as the range of 40-120 g / L, for example, More preferably, it is the range of 60-100 g / L.
The sulfuric acid concentration of the sulfuric acid-copper sulfate electroplating solution is preferably in the range of 40 to 60 g / L.
Furthermore, the chlorine concentration of the sulfuric acid-copper sulfate electroplating solution is preferably in the range of 50 to 100 ppm.

また、電解(めっき)液中の添加剤としては、以下に示す有機添加剤A、B及びCを用いることができる。   Moreover, the organic additives A, B, and C shown below can be used as an additive in an electrolytic (plating) solution.

有機添加剤Aは、例えば、ポリエチレングリコール、ポリプロピレングリコール、デンプン、セルロース系水溶性高分子(カルボキシルメチルセルロース、ヒドロキシエチルセルロース等)等の高分子多糖類、ポリエチレンイミン、ポリアリル、ポリアクリルアミドなどの分子構造中にS(硫黄)を含まない水溶性高分子化合物から選ばれる添加剤の内、分子量が100,000以上のものを使用することができる。   The organic additive A is, for example, in a molecular structure such as polyethylene glycol, polypropylene glycol, starch, polymer polysaccharides such as cellulose water-soluble polymer (carboxyl methyl cellulose, hydroxyethyl cellulose, etc.), polyethylene imine, polyallyl, polyacrylamide and the like. Among additives selected from water-soluble polymer compounds containing no S (sulfur), those having a molecular weight of 100,000 or more can be used.

有機添加剤Bは、例えば、ポリエチレングリコール、ポリプロピレングリコール、デンプン、セルロース系水溶性高分子(カルボキシルメチルセルロース、ヒドロキシエチルセルロース等)等の高分子多糖類、ポリエチレンイミン、ポリアリル、ポリアクリルアミドなどの分子構造中にS(硫黄)を含まない水溶性高分子化合物から選ばれる添加剤の内、分子量が10,000以上、50,000以下のものを使用することができる。   The organic additive B is, for example, in a molecular structure such as polyethylene glycol, polypropylene glycol, starch, a high molecular polysaccharide such as a cellulose-based water-soluble polymer (carboxyl methyl cellulose, hydroxyethyl cellulose, etc.), polyethylene imine, polyallyl, polyacrylamide, etc. Among additives selected from water-soluble polymer compounds not containing S (sulfur), those having a molecular weight of 10,000 or more and 50,000 or less can be used.

有機添加剤Cは、例えば、ポリエチレングリコール、ポリプロピレングリコール、デンプン、セルロース系水溶性高分子(カルボキシルメチルセルロース、ヒドロキシエチルセルロース等)等の高分子多糖類、ポリエチレンイミン、ポリアリル、ポリアクリルアミドなどの分子構造中にS(硫黄)を含まない水溶性高分子化合物から選ばれる添加剤の内、分子量が1000以上、5000以下のものを使用することができる。   The organic additive C is, for example, in a molecular structure such as polyethylene glycol, polypropylene glycol, starch, high molecular polysaccharides such as cellulose water-soluble polymer (carboxyl methyl cellulose, hydroxyethyl cellulose, etc.), polyethylene imine, polyallyl, polyacrylamide, etc. Among additives selected from water-soluble polymer compounds not containing S (sulfur), those having a molecular weight of 1000 or more and 5000 or less can be used.

分子量の異なる有機添加剤A(分子量100,000以上)、B(分子量10,000以上、50,000以下)及びC(分子量1000以上、5000以下)を組み合わせて添加し、特定の電解(めっき)条件で製箔を行うことで、150℃で、1時間加熱後の引張り強度が350MPa以上で、表面粗さRzが2.0μm以下、光沢度Gs(60°)が20以上150以下、動摩擦係数が0.11以上0.39以下、より好ましくは0.15以上0.35以下である電解銅箔を製箔することができる。
分子量1000以上分子量5000以下の比較的分子量の小さな高分子化合物(添加剤C)は、製箔時に箔中に取り込まれやすく、取りこまれたこれらの不純物成分は、結晶粒界でのピン止め効果により、箔の強度を増大させ、さらに加熱時に箔が軟化して強度が低下することを抑制する。特許文献2には、常態の引張強度が700MPa以上であり、光沢度Gs(60°)が80以上である電解銅箔が示されている。しかしながら、このような箔は表面が非常に平滑であるため、動摩擦係数が0.11未満となってしまい、活物質塗工工程において、箔のスリップが生じてしまい、ハンドリング性に問題が生じてしまうことがわかった。特許文献3には、常態の引張強度が700MPa以上であり、光沢度Gs(60°)が100以上である電解銅箔が示されている。しかしながら、特許文献2の場合と同様に表面が非常に平滑であるため、動摩擦係数が0.11未満となってしまい、活物質塗工工程において、箔のスリップが生じてしまい、ハンドリング性に問題が生じた。一般的に箔の高強度化を図ると結晶粒が微細化し、表面の平滑度が増すことで動摩擦係数が低くなり、活物質塗工時のハンドリング性に難が生じる傾向ある。
本実施例では、添加剤Cに加えて、より分子量の大きな添加剤AとBを使用する。これらの分子量が大きな添加剤は銅箔製箔時に銅皮膜表面に吸着し、銅の析出を阻害することで表面形状をより粗くする効果がある。分子量100,000以上の添加剤Aのみ添加すると、表面は粗くなりすぎて動摩擦係数は、0.39を超えてしまうため、添加剤Aの効果を抑制する働きのある、分子量が比較的添加剤Aよりも比較的小さな10,000以上、50,000以下である添加剤Bを添加することで、活物質の塗工時のハンドリングが良好となる動摩擦係数0.11以上0.39以下とすることができる。
Organic additives A (molecular weight 100,000 or more), B (molecular weight 10,000 or more, 50,000 or less) and C (molecular weight 1000 or more and 5000 or less) having different molecular weights are added in combination, and specific electrolysis (plating) By performing the foil production under the conditions, the tensile strength after heating at 150 ° C. for 1 hour is 350 MPa or more, the surface roughness Rz is 2.0 μm or less, the glossiness Gs (60 °) is 20 or more and 150 or less, the dynamic friction coefficient An electrolytic copper foil having a thickness of from 0.11 to 0.39, more preferably from 0.15 to 0.35 can be produced.
A polymer compound (additive C) having a molecular weight of 1000 or more and a molecular weight of 5000 or less and having a relatively small molecular weight is easily taken into the foil during foil formation, and these incorporated impurity components have a pinning effect at the grain boundaries. Thus, the strength of the foil is increased, and further, the foil is softened during heating and the strength is suppressed from being lowered. Patent Document 2 discloses an electrolytic copper foil having a normal tensile strength of 700 MPa or more and a glossiness Gs (60 °) of 80 or more. However, since the surface of such a foil is very smooth, the coefficient of dynamic friction is less than 0.11, and slipping of the foil occurs in the active material coating process, resulting in a problem in handling properties. I found out. Patent Document 3 discloses an electrolytic copper foil having a normal tensile strength of 700 MPa or more and a glossiness Gs (60 °) of 100 or more. However, as in the case of Patent Document 2, since the surface is very smooth, the coefficient of dynamic friction becomes less than 0.11, and slipping of the foil occurs in the active material coating process, which causes a problem in handling properties. Occurred. Generally, when the strength of the foil is increased, the crystal grains become finer and the smoothness of the surface increases, so that the coefficient of dynamic friction is lowered, and the handling property during active material coating tends to be difficult.
In this embodiment, in addition to the additive C, additives A and B having a larger molecular weight are used. These additives having a large molecular weight are adsorbed on the surface of the copper film during copper foil production, and have the effect of making the surface shape rougher by inhibiting the precipitation of copper. If only additive A having a molecular weight of 100,000 or more is added, the surface becomes too rough and the coefficient of dynamic friction exceeds 0.39. Therefore, the additive has a relatively low molecular weight and functions to suppress the effect of additive A. Addition of additive B that is relatively smaller than A and not larger than 10,000 and not larger than 50,000 makes the dynamic friction coefficient 0.11 or larger and 0.39 or smaller so that the handling during application of the active material becomes good. be able to.

上記添加剤A、BおよびCは、それぞれ30mg/L、10〜20mg/L、5〜20mg/Lの範囲で使用することができる。
製造された電解銅箔(未処理銅箔)に対して、例えば、クロメート処理、あるいはNi又はNi合金めっき、Co又はCo合金めっき、Zn又はZn合金めっき、Sn又はSn合金めっき、上記各種めっき層上にさらにクロメート処理を施す等の無機防錆処理、あるいは、ベンゾトリアゾール等の有機防錆処理を施す。
さらに、例えばシランカップリング剤処理等が施されて、リチウムイオン二次電池負極集電体用電解銅箔とする。
上記無機防錆処理、有機防錆処理、シランカップリング剤処理は、負極集電体と活物質との密着強度を高め、電池の充放電サイクル効率の低下を防ぐ役割を果たす。
The additives A, B and C can be used in the ranges of 30 mg / L, 10 to 20 mg / L and 5 to 20 mg / L, respectively.
For the produced electrolytic copper foil (untreated copper foil), for example, chromate treatment, Ni or Ni alloy plating, Co or Co alloy plating, Zn or Zn alloy plating, Sn or Sn alloy plating, the above various plating layers Further, an inorganic rust prevention treatment such as a chromate treatment or an organic rust prevention treatment such as benzotriazole.
Furthermore, for example, a silane coupling agent treatment or the like is performed to obtain an electrolytic copper foil for a negative electrode current collector of a lithium ion secondary battery.
The inorganic rust-proofing treatment, organic rust-proofing treatment, and silane coupling agent treatment serve to increase the adhesion strength between the negative electrode current collector and the active material and prevent the battery charge / discharge cycle efficiency from being lowered.

また、上記の防錆処理を施す前に、例えば、電解銅箔表面に粗化処理を行うことも可能である。粗化処理としては、例えば、めっき法、エッチング法等が好適に採用できる。   Moreover, before performing said rust prevention process, it is also possible to perform a roughening process, for example to the electrolytic copper foil surface. As the roughening treatment, for example, a plating method or an etching method can be suitably employed.

めっき法は、未処理電解銅箔の表面に凹凸を有する薄膜層を形成することにより表面を粗化する方法である。めっき法としては、電解めっき法及び無電解めっき法を採用することができる。めっき法による粗化としては、銅や銅合金などの銅を主成分とするめっき膜を、未処理電解銅箔表面に形成することが好ましい。   The plating method is a method of roughening the surface by forming a thin film layer having irregularities on the surface of the untreated electrolytic copper foil. As the plating method, an electrolytic plating method and an electroless plating method can be employed. As roughening by the plating method, it is preferable to form a plating film mainly composed of copper such as copper or copper alloy on the surface of the untreated electrolytic copper foil.

エッチング法による粗化としては、例えば、物理的エッチングや化学的エッチングによる方法が適している。物理的エッチングにはサンドブラスト等でエッチングする方法があり、化学エッチングには処理液として、無機または有機酸と酸化剤と添加剤を含有する液が多数提案されている。   As the roughening by the etching method, for example, a method by physical etching or chemical etching is suitable. For physical etching, there is a method of etching by sandblasting or the like, and for chemical etching, many liquids containing an inorganic or organic acid, an oxidizing agent, and an additive have been proposed.

[リチウムイオン二次電池用集電体を用いたリチウムイオン二次電池の構成と製造方法]
本実施形態のリチウムイオン二次電池負極電極は、上記の本実施形態のリチウムイオン二次電池負極集電体用電解銅箔を負極集電体とし、該集電体の前記防錆処理層等表面処理が施された面に活物質層が形成された構成である。
[Configuration and production method of lithium ion secondary battery using current collector for lithium ion secondary battery]
The negative electrode of the lithium ion secondary battery of this embodiment uses the above-described electrolytic copper foil for the negative electrode current collector of the lithium ion secondary battery of the present embodiment as a negative electrode current collector, and the anticorrosion treatment layer of the current collector, etc. In this configuration, an active material layer is formed on the surface subjected to the surface treatment.

例えば、上記の活物質層は、活物質、バインダー、溶媒を混練しスラリー状としたものを負極集電体に塗布、乾燥、プレスしたものである。 For example, the active material layer is obtained by applying a slurry obtained by kneading an active material, a binder, and a solvent to a negative electrode current collector, drying, and pressing.

本実施形態における活物質は、リチウムを吸蔵・放出する物質であり、リチウムを合金化することにより吸蔵する活物質であることが好ましい。このような活物質材料としては、例えば、カーボンや、ケイ素、ゲルマニウム、スズ等の第14族元素等が挙げられる。   The active material in the present embodiment is a material that occludes / releases lithium, and is preferably an active material that occludes lithium by alloying. Examples of such an active material include group 14 elements such as carbon, silicon, germanium, and tin.

本実施形態においては、集電体の厚みは4〜10μmと薄いものであることが好ましく、活物質層は、集電体の片面または両面上に形成する。ドラムから形成した表面粗さRzが1.0μm以上2.0μm以下の銅箔の光沢面のみに活物質を塗布する場合、表面は平滑であり、活物質との密着性は良好であった。
集電体の厚みは、4μm未満では箔切れを生じ易く製造が困難であり、10μmよりも厚い場合、電池の軽量化・高エネルギー密度化の観点より好ましくない。また、動摩擦係数が0.11以下では、表面が平滑であるため、銅箔製造工程および電池製造工程における搬送ロールの表面でスリップして、皺になりやすい。そこで、例えば、銅箔の厚さ4〜10μmで動摩擦係数を0.11〜0.39の範囲とすることで、ハンドリング性がよく電池の軽量化・高エネルギー密度化に有効な集電体(銅箔)となる。
In the present embodiment, the current collector is preferably as thin as 4 to 10 μm, and the active material layer is formed on one side or both sides of the current collector. When the active material was applied only to the glossy surface of the copper foil having a surface roughness Rz of 1.0 μm or more and 2.0 μm or less formed from the drum, the surface was smooth and the adhesion with the active material was good.
If the thickness of the current collector is less than 4 μm, the foil is likely to break, and the production is difficult. If it is thicker than 10 μm, it is not preferable from the viewpoint of reducing the weight of the battery and increasing the energy density. Further, when the coefficient of dynamic friction is 0.11 or less, the surface is smooth, and therefore slips easily on the surface of the transport roll in the copper foil manufacturing process and the battery manufacturing process and becomes wrinkles. Therefore, for example, by making the dynamic friction coefficient within a range of 0.11 to 0.39 with a copper foil thickness of 4 to 10 μm, the current collector (which has good handling properties and is effective for reducing the weight and energy density of the battery) Copper foil).

カーボン系の負極活物質層を形成する場合は、負極活物質であるカーボン、バインダーであるポリフッ化ビニリデン樹脂、溶媒であるN−メチルピロリドンからなるペーストを作成し、集電体(銅箔)の片面または両面に塗布し、乾燥させる。
本実施形態における活物質層には、例えば、予めリチウムが吸蔵または添加されていてもよい。リチウムは活物質層を形成する際に添加してもよい。すなわち、リチウムを含有する活物質層を形成することにより、活物質層にリチウムを含有させる。また、活物質層を形成した後に、活物質層にリチウムを吸蔵または添加させてもよい。活物質層にリチウムを吸蔵または添加させる方法としては、電気化学的にリチウムを吸蔵または添加させる方法が挙げられる。
When forming a carbon-based negative electrode active material layer, a paste made of carbon as a negative electrode active material, polyvinylidene fluoride resin as a binder, and N-methylpyrrolidone as a solvent is prepared, and the current collector (copper foil) Apply to one or both sides and dry.
For example, lithium may be occluded or added to the active material layer in this embodiment in advance. Lithium may be added when forming the active material layer. That is, lithium is contained in the active material layer by forming an active material layer containing lithium. Further, after forming the active material layer, lithium may be occluded or added to the active material layer. Examples of a method for inserting or adding lithium into the active material layer include a method for electrochemically inserting or adding lithium.

また、本実施形態のリチウムイオン二次電池は、正極及び負極を備えるリチウムイオン二次電池であって、負極電極は上記の本実施形態のリチウムイオン二次電池負極電極で構成する。   Moreover, the lithium ion secondary battery of this embodiment is a lithium ion secondary battery provided with a positive electrode and a negative electrode, Comprising: A negative electrode is comprised by the lithium ion secondary battery negative electrode of said this embodiment.

[プリント配線板の構成]
本発明実施形態の電解銅箔は、リジッドプリント配線板やフレキシブルプリント配線板等のプリント配線板(本明細書ではリジッドプリント配線板、フレキシブルプリント配線板等を総称してプリント配線板と称することがある)、電磁波シールド材等種々の分野で使用することができる。
最近のプリント配線板は通常2種類に分けられる。一つは、絶縁フィルム(ポリイミド、ポリエステル等)に銅箔を接着樹脂で張り付け、エッチング処理してパターンを施した三層プリント配線板である。これに対してもう一つのタイプは、接着剤を使用せずに絶縁フィルム(ポリイミド、液晶ポリマー等)と直接銅箔を積層した二層プリント配線板である。
本発明実施形態の電解銅箔はこれらプリント配線板の導電体として絶縁フィルムと張り合わされる。
[Configuration of printed wiring board]
The electrolytic copper foil of the embodiment of the present invention is a printed wiring board such as a rigid printed wiring board and a flexible printed wiring board (in this specification, the rigid printed wiring board and the flexible printed wiring board are collectively referred to as a printed wiring board). Can be used in various fields such as electromagnetic shielding materials.
Recent printed wiring boards are usually divided into two types. One is a three-layer printed wiring board in which a copper foil is attached to an insulating film (polyimide, polyester, etc.) with an adhesive resin and etched to give a pattern. On the other hand, another type is a two-layer printed wiring board in which an insulating film (polyimide, liquid crystal polymer, etc.) and a copper foil are directly laminated without using an adhesive.
The electrolytic copper foil of the embodiment of the present invention is laminated with an insulating film as a conductor of these printed wiring boards.

プリント配線板の主な用途は、液晶ディスプレイ、プラズマディスプレイ等のフラットパネルディスプレイ用、或いはカメラ、AV機器、パソコン、コンピューター端末機器、HDD、携帯電話、カーエレクトロニクス機器等の内部配線用である。これらの配線は機器に折り曲げて装着し、或いは繰り返して曲げられるような箇所に使用されるため、プリント配線板用銅箔に対する要求特性として、屈曲性に優れていることが一つの重要な特性である。
本発明のプリント配線板は、実施形態の電解銅箔、すなわち、表面粗さRzが1.0μm以上2.0μm以下、光沢度Gs(60°)が20以上である電解銅箔を絶縁フィルムに貼り付けることで、銅箔表面に存在する微細な凹凸により、より高い銅箔と絶縁フィルム間の密着強度を有しながら、回路基板に要求される高周波特性に優れるプリント配線板とすることができる。
加えて、絶縁フィルムと張り合わせる銅箔の常温での引張り強度が、好ましくは450MPa以上であることから、薄箔でも強度があり、特にフレキシブルプリント配線板の製造工程において箔切れや皺等が発生し難い。
また、絶縁フィルムを張り合わせる銅箔の150℃、1時間加熱後の引張り強度が350MPa以上であることで、プリント配線板を製造する際にかかる熱履歴を経ても、高い強度を維持することができる。
The main uses of printed wiring boards are for flat panel displays such as liquid crystal displays and plasma displays, or for internal wiring of cameras, AV equipment, personal computers, computer terminal equipment, HDDs, mobile phones, car electronics equipment, and the like. One of the important characteristics of these wirings is that they are bent and attached to equipment, or used in places where they can be bent repeatedly. is there.
The printed wiring board of the present invention uses the electrolytic copper foil of the embodiment, that is, the electrolytic copper foil having a surface roughness Rz of 1.0 μm to 2.0 μm and a glossiness Gs (60 °) of 20 or more as an insulating film. By sticking, it is possible to obtain a printed wiring board having excellent high-frequency characteristics required for a circuit board while having higher adhesion strength between the copper foil and the insulating film due to fine unevenness present on the surface of the copper foil. .
In addition, the tensile strength at room temperature of the copper foil to be bonded to the insulating film is preferably 450 MPa or more, so even thin foils are strong. It is hard to do.
In addition, since the tensile strength after heating at 150 ° C. for 1 hour of the copper foil to which the insulating film is laminated is 350 MPa or more, high strength can be maintained even after passing through a heat history when manufacturing a printed wiring board. it can.

本発明の電解銅箔の優れた諸特性、例えば高周波特性、低抵抗値は電磁波シールドの効果にも優れ、絶縁基板と張り合わせることで優れた電磁波シールド材となる。   The excellent characteristics of the electrolytic copper foil of the present invention, such as high frequency characteristics and low resistance, are also excellent in the effect of electromagnetic shielding, and an excellent electromagnetic shielding material can be obtained by bonding to an insulating substrate.

いずれの用途においても、銅箔の光沢度Gs(60°)が150以下で動摩擦係数が0.11以上0.39以下であることで銅箔、表面の微細な凹凸が搬送ロール上の滑り止めとなり、箔がロール上でスリップすることを抑制するため、ハンドリング性が良好となる。   In any application, the copper foil has a gloss Gs (60 °) of 150 or less and a dynamic friction coefficient of 0.11 or more and 0.39 or less. Thus, since the foil is prevented from slipping on the roll, the handling property is improved.

以下、本発明を実施例に基づいてさらに詳細に説明するが、本発明は以下の実施例に何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能なものである。   Hereinafter, the present invention will be described in more detail based on examples. However, the present invention is not limited to the following examples, and can be implemented with appropriate modifications within a range not changing the gist thereof. Is.

[未処理銅箔の製造]
実施例1〜8
銅濃度を65g/L、硫酸濃度を45g/L、塩化物イオン濃度25ppmに調整し、表1に示す添加剤A、BおよびCを添加した電解液を用い、アノードには貴金属酸化物被覆チタン電極、カソードにはチタン製回転ドラムを用いて電流密度30A/dm、浴温50℃の条件下で、10μm厚みの未処理銅箔を電解製箔法によって製造した。
[Manufacture of untreated copper foil]
Examples 1-8
The electrolyte was adjusted to a copper concentration of 65 g / L, a sulfuric acid concentration of 45 g / L, and a chloride ion concentration of 25 ppm, and the additives A, B and C shown in Table 1 were used. An untreated copper foil having a thickness of 10 μm was produced by an electrolytic foil method under conditions of a current density of 30 A / dm 2 and a bath temperature of 50 ° C. using a titanium rotating drum as an electrode and a cathode.

Figure 2017014608
Figure 2017014608

比較例1〜8
比較例1〜8を表2に示す組成の電解液と電解条件により実施例と同様の設備で厚さが10μmとなるように未処理銅箔を製造した。なお、比較例5は特開2014−224321、比較例6は特許第3742144号、比較例8は特許第5255229号の手法により製造した。
Comparative Examples 1-8
The untreated copper foil was manufactured so that thickness might be set to 10 micrometers with the installation similar to an Example by the electrolyte solution and electrolysis conditions of the comparative examples 1-8 shown in Table 2. Comparative Example 5 was produced by the method of Japanese Patent Application Laid-Open No. 2014-224321, Comparative Example 6 was produced by Japanese Patent No. 3742144, and Comparative Example 8 was produced by Japanese Patent No. 5255229.

Figure 2017014608
Figure 2017014608

[電解銅箔の引張り強度及び伸び率の測定]
実施例1〜8,比較例1〜8の各電解銅箔の常温での引張り強度(MPa)、伸び率(%)を測定した結果を表3に示す。
また、引張り強度(MPa)及び伸び率(%)にいては、150℃で1時間の熱処理を施した後についても測定し、その結果を表3に併記した。
引張り強度、伸び率は引張強度(MPa)、伸び(%)については、引張試験機(インストロン社製1122型)を用いてIPC−TM−650に基づいて常温にて測定した。測定は、長手方向に切り出したサンプルを用いて実施した。
なお本実施例において、「常温」とは、上記のような150℃、1時間の熱処理を行う前の通常の湿度、例えば20℃程度の温度状態であることを表す。
[Measurement of tensile strength and elongation of electrolytic copper foil]
Table 3 shows the results of measuring the tensile strength (MPa) and the elongation rate (%) at room temperature of each of the electrolytic copper foils of Examples 1 to 8 and Comparative Examples 1 to 8.
The tensile strength (MPa) and elongation (%) were also measured after heat treatment at 150 ° C. for 1 hour, and the results are also shown in Table 3.
Tensile strength and elongation were measured at room temperature for tensile strength (MPa) and elongation (%) based on IPC-TM-650 using a tensile tester (Instron type 1122). The measurement was performed using a sample cut out in the longitudinal direction.
In this embodiment, “normal temperature” represents a normal humidity before the heat treatment at 150 ° C. for 1 hour as described above, for example, a temperature state of about 20 ° C.

[表面粗さRzの測定]
実施例1〜8,比較例1〜8の各電解銅箔のマット面の十点平均表面粗さRz(単位、μm)を測定した。測定は、JIS B 0601−1994)に定められた方法により測定し、その結果を表3に示す。
[Measurement of surface roughness Rz]
Ten-point average surface roughness Rz (unit: μm) of the mat surface of each electrolytic copper foil of Examples 1 to 8 and Comparative Examples 1 to 8 was measured. The measurement was performed by the method defined in JIS B 0601-1994), and the results are shown in Table 3.

[電解銅箔の動摩擦係数の測定]
実施例1〜8,比較例1〜8の各電解銅箔のマット面の動摩擦係数は表面製秤定機(新東科学(株)製 HEIDON 14FW)を用いて測定した。測定条件は、摺動子に10mm径の鋼球を使用し50gfの荷重を加えながら、摺動速度100mm/minで、摺動距離10mm片道1回で実施した。その結果を表3に示す。
[Measurement of dynamic friction coefficient of electrolytic copper foil]
The dynamic friction coefficients of the mat surfaces of the electrolytic copper foils of Examples 1 to 8 and Comparative Examples 1 to 8 were measured using a surface weighing machine (HEIDON 14FW manufactured by Shinto Kagaku Co., Ltd.). The measurement conditions were as follows: a 10 mm diameter steel ball was used for the slider, a 50 gf load was applied, the sliding speed was 100 mm / min, and the sliding distance was 10 mm once per way. The results are shown in Table 3.

[電解銅箔の光沢度の測定]
実施例1〜8,比較例1〜8の各電解銅箔のマット面の光沢度Gs(60°)は、光沢度計(日本電色工業株式会社製VG2000)をJIS Z 8741 に基づき、用いて投受光角60°にて測定した。長手方向に対して平行、直交の2方向に対して3回ずつ実施し、それら全ての値を平均した値を示した。その結果を表3に示す。
図1に光沢度Gs(60°)と動摩擦係数との関係を示す。
[Measurement of gloss of electrolytic copper foil]
The glossiness Gs (60 °) of the mat surface of each electrolytic copper foil of Examples 1 to 8 and Comparative Examples 1 to 8 is a gloss meter (VG2000 manufactured by Nippon Denshoku Industries Co., Ltd.) based on JIS Z8741. The measurement was made at a light projecting / receiving angle of 60 °. The measurement was carried out three times each in parallel to the longitudinal direction and in two orthogonal directions, and the average value of all these values was shown. The results are shown in Table 3.
FIG. 1 shows the relationship between the glossiness Gs (60 °) and the dynamic friction coefficient.

Figure 2017014608
Figure 2017014608

[クロメート処理]
実施例1〜8、比較例1〜8の各電解銅箔表面にクロメート処理を施して防錆処理層を形成し、集電体とした。
銅箔表面のクロメート処理の条件は以下の通りである。
クロメート処理条件:
重クロム酸カリウム 1〜10g/L
浸漬処理時間 2〜20秒
[Chromate treatment]
The surface of each electrolytic copper foil of Examples 1 to 8 and Comparative Examples 1 to 8 was subjected to chromate treatment to form a rust preventive treatment layer to obtain a current collector.
The conditions for the chromate treatment of the copper foil surface are as follows.
Chromate treatment conditions:
Potassium dichromate 1-10g / L
Immersion treatment time 2 to 20 seconds

[電池特性の評価]
1.正極の製造
LiCoO粉末90重量%、黒鉛粉末7重量%、ポリフッ化ビニリデン粉末3重量%を混合してN−メチルピロリドンをエタノールに溶解した溶液を添加して混練し、正極剤ペーストを調整した。このペーストを厚み15μmのアルミ箔に均一に塗着した後、窒素雰囲気中で乾燥してエタノールを揮散させ、次いでロール圧延を行って、全体の厚みが100μmであるシートを作成した。このシートを巾43mm、長さ290mmに切断した後、その一端にアルミ箔のリード端子を超音波溶接で取り付け、正極とした。
[Evaluation of battery characteristics]
1. Production of positive electrode 90% by weight of LiCoO 2 powder, 7% by weight of graphite powder and 3% by weight of polyvinylidene fluoride powder were mixed and a solution prepared by dissolving N-methylpyrrolidone in ethanol was added and kneaded to prepare a positive electrode agent paste. . After this paste was uniformly applied to a 15 μm thick aluminum foil, it was dried in a nitrogen atmosphere to evaporate ethanol, and then roll-rolled to prepare a sheet having a total thickness of 100 μm. The sheet was cut into a width of 43 mm and a length of 290 mm, and then an aluminum foil lead terminal was attached to one end thereof by ultrasonic welding to form a positive electrode.

2.負極の製造:
天然黒鉛粉末(平均粒径10μm)90重量%、ポリフッ化ビニリデン粉末10重量%を混合し、N−メチルピロリドンをエタノールに溶解した溶液を添加して混練し、ペーストを作成した。ついで、このペーストを実施例、比較例の各銅箔の両面に塗着した。塗着後の銅箔を窒素雰囲気中で乾燥してエタノールを揮散させ、次いで、ロール圧延して全体の厚みが110μmであるシートに成型した。このシートを巾43mm、長さ285mmに切断した後、その一端にニッケル箔のリード端子を超音波溶接で取り付け、負極とした。
2. Production of negative electrode:
90% by weight of natural graphite powder (average particle size: 10 μm) and 10% by weight of polyvinylidene fluoride powder were mixed, and a solution in which N-methylpyrrolidone was dissolved in ethanol was added and kneaded to prepare a paste. Next, this paste was applied to both surfaces of each of the copper foils of Examples and Comparative Examples. The coated copper foil was dried in a nitrogen atmosphere to evaporate ethanol, and then roll-rolled to form a sheet having an overall thickness of 110 μm. The sheet was cut to a width of 43 mm and a length of 285 mm, and then a nickel foil lead terminal was attached to one end thereof by ultrasonic welding to form a negative electrode.

3.電池の作製:
以上のようにして製造した正極と負極の間に厚み25μmのポリプロピレン製のセパレータを挟んで全体を巻き、これを軟鋼表面にニッケルめっきした電池缶に収容して負極のリード端子を缶底にスポット溶接した。ついで、絶縁材の上蓋を置き、ガスケットを挿入後、正極のリード端子とアルミ製安全弁とを超音波溶接して接続し、炭酸プロピレンと炭酸ジエチルと炭酸エチレンからなる非水電解液を電池缶の中に注入した後、前記安全弁に蓋を取り付け、外形14mm、高さ50mmの密閉構造型リチウムイオン二次電池を組み立てた。
3. Battery fabrication:
The whole was wound with a 25 μm thick polypropylene separator sandwiched between the positive electrode and negative electrode manufactured as described above, and this was accommodated in a nickel-plated battery can, and the lead terminal of the negative electrode was spotted on the bottom of the can Welded. Next, after placing the top cover of the insulating material and inserting the gasket, the lead terminal of the positive electrode and the aluminum safety valve were connected by ultrasonic welding, and a non-aqueous electrolyte consisting of propylene carbonate, diethyl carbonate and ethylene carbonate was added to the battery can. After injecting the inside, a lid was attached to the safety valve, and a sealed structure type lithium ion secondary battery having an outer shape of 14 mm and a height of 50 mm was assembled.

4.電池特性の測定
以上の電池に対して、充電電流50mAで4.2Vになるまで充電し、50mAで2.5Vになるまで放電するサイクルを1サイクルとする充放電サイクル試験を行った。初回充電時の電池容量とサイクル寿命を表3に示した。なお、サイクル寿命は、電池の放電容量が300mAhを割り込んだときのサイクル数である。
5.ハンドリングの良好性評価
活物質塗工ラインでの1000mの箔の塗工処理において、搬送ロール上での箔のスリップが生じず、さらに搬送ロール上に箔が引っかかることなくスムーズに搬送することできる箔をハンドリング性良好として○、スリップ生じたり、箔がロール上に引っかかり搬送が止まる現象が起こった箔はハンドリング性不良として×として、その結果を表3に示した。また、多少搬送上の問題が生じたものの、活物質の塗工に問題が生じるほどではなかったものには△を付した。
4). Measurement of Battery Characteristics A charge / discharge cycle test was performed on the above battery, in which the cycle of charging to 4.2 V at a charging current of 50 mA and discharging to 2.5 V at 50 mA was one cycle. Table 3 shows the battery capacity and cycle life at the first charge. The cycle life is the number of cycles when the discharge capacity of the battery is below 300 mAh.
5. Evaluation of good handling A foil that can be smoothly transported without any foil slip on the transport roll and without being caught on the transport roll in the coating process of 1000 m foil in the active material coating line. The results are shown in Table 3. The results are shown in Table 3 where the results indicate that the handling property is good and that the slip occurs or the foil is caught on the roll and the conveyance stops, and the handling property is poor. In addition, although a slight problem in conveyance occurred, a case where the problem did not occur in the application of the active material was marked with Δ.

表3より実施例1〜8は、150℃、1時間加熱前後の引張り強度が350MPa以上であり、光沢度Gs(60°)が20以上であるためサイクル寿命が500サイクル以上と良好な電池特性を示した。さらに、動摩擦係数が0.11以上0.39以下であり、ライン製造時のロールでの滑りが抑制されハンドリング性も良好であった。
ただし、実施例1については、動摩擦係数が0.38と高めであり、活物質の塗工に支障はないものの搬送上多少の引っかかりが確認されたためハンドリング性は△とした。
一方、実施例8の箔は、動摩擦係数が0.12と低めであるため、搬送ロール上で多少の箔滑りが確認されたものの、活物質の塗工に支障をきたすものではなかったため実施例1と同様に△を付した。
From Table 3, Examples 1 to 8 have good battery characteristics with a cycle life of 500 cycles or more because the tensile strength before and after heating at 150 ° C. for 1 hour is 350 MPa or more and the glossiness Gs (60 °) is 20 or more. showed that. Furthermore, the dynamic friction coefficient was 0.11 or more and 0.39 or less, slippage with a roll during line production was suppressed, and handling properties were good.
However, in Example 1, the coefficient of dynamic friction was as high as 0.38, and although there was no hindrance to the coating of the active material, it was confirmed that the handling property was Δ because some catching was confirmed during transportation.
On the other hand, the foil of Example 8 had a low coefficient of dynamic friction of 0.12, and although some foil slip was confirmed on the transport roll, it did not hinder the coating of the active material. A triangle was attached in the same manner as in 1.

比較例1の銅箔は、M面側のRzが2.0以上、光沢度Gs(60°)も20以下と非常に低いことから、活物質と集電体の接触性が悪く充放電時の活物質の膨張収縮による応力に耐え切れずマット面側に形成した活物質層の剥離などが生じたためサイクル寿命が500サイクル以下と非常に低かった。また、マット面側の動摩擦係数が0.38と比較的高いことから、搬送ロール上で箔が引っかかることがあるもの活物質塗工上問題となることはなかった。 The copper foil of Comparative Example 1 has a very low Rz on the M-plane side of 2.0 or more and a glossiness Gs (60 °) of 20 or less, so that the contact between the active material and the current collector is poor and during charging and discharging. Since the active material layer formed on the mat surface side could not withstand the stress due to the expansion and contraction of the active material, the cycle life was very low, 500 cycles or less. Further, since the dynamic friction coefficient on the mat surface side is relatively high at 0.38, there is no problem in coating the active material although the foil may be caught on the transport roll.

比較例2の銅箔は、加熱後の引張強度が350MPa以上であり、さらにマット面側の光沢度Gs(60°)も20以上150以下であるため、好ましいサイクル寿命を示したが、マット面側の動摩擦係数が0.11以下と低いことから活物質塗工工程における箔搬送時のスリップが生じてしまったためハンドリング性が不良であった。 The copper foil of Comparative Example 2 showed a preferable cycle life because the tensile strength after heating was 350 MPa or more and the glossiness Gs (60 °) on the mat surface side was 20 or more and 150 or less. Since the dynamic friction coefficient on the side was as low as 0.11 or less, a slip occurred during the conveyance of the foil in the active material coating process, resulting in poor handling.

比較例3の銅箔は、加熱後の引張り強度が350MPa以上であり、マット面側のRzが2.0以下、光沢度Gs(60°)も20以上であることから、マット面側に形成した活物質と集電体の接触性が良好で、サイクル寿命が500サイクル以上と良好な結果となった。しかしながら、ハンドリング性はマット面側の動摩擦係数が0.45と非常に高いことから、搬送ロール上で箔が引っかかりストップしてしまうことで活物質の塗工に問題がでたためハンドリング性が好ましくなかった。   The copper foil of Comparative Example 3 is formed on the mat surface side because the tensile strength after heating is 350 MPa or more, the Rz on the mat surface side is 2.0 or less, and the glossiness Gs (60 °) is 20 or more. The contact property between the active material and the current collector was good, and the cycle life was 500 cycles or more. However, since the dynamic friction coefficient on the mat surface side is very high at 0.45, the handling property is not preferable because the foil is caught on the transport roll and stops, causing a problem in the coating of the active material. It was.

また、比較例4の銅箔は、マット面側の動摩擦係数が0.13であり、活物質塗工時のハンドリング性は良好であるものの、光沢度Gs(60°)が150以上であるため、充放電における活物質膨張収縮により活物質の剥離が生じてしまい、サイクル寿命が500サイクル未満と好ましくなかった。   In addition, the copper foil of Comparative Example 4 has a kinetic friction coefficient of 0.13 on the mat surface side, and has good handling properties when coated with an active material, but has a gloss Gs (60 °) of 150 or more. The active material exfoliated due to the expansion and contraction of the active material during charge and discharge, and the cycle life was less than 500 cycles.

比較例5は、特許文献3に記載の実施例(試料8)の製造方法に基づいて製箔を行った箔である。
加熱後の引張強度が350MPa以上であり、マット面側の光沢度Gs(60°)も20以上150以下であるため、好ましいサイクル寿命を示したが、マット面側の動摩擦係数が0.11以下と低いことから活物質塗工工程における箔搬送時のスリップが生じてしまったためハンドリング性が好ましくなかった。
Comparative Example 5 is a foil that was manufactured based on the manufacturing method of the example (sample 8) described in Patent Document 3.
Since the tensile strength after heating is 350 MPa or more and the glossiness Gs (60 °) on the mat surface side is 20 or more and 150 or less, a preferable cycle life is shown, but the dynamic friction coefficient on the mat surface side is 0.11 or less. Therefore, since the slip occurred during the conveyance of the foil in the active material coating process, the handling property was not preferable.

また、比較例6は、特許文献1の実施例に記載の手法で製造した箔である。マット面側の動摩擦係数はそれぞれ0.11以上0.39以下の範囲に入っているため、活物質塗工工程でのハンドリングは好ましく、光沢度Gs(60°)も20以上150以下の範囲に入っているため活物質と集電体の密着性も好ましいが、加熱後の引張強度が320MPaで350MPa未満と低いため、充放電時の活物質の膨張収縮に耐え切れず箔の変形等が生じた影響でサイクル特性が乏しく×となった。
同様に比較例7についても、活物質塗工時のハンドリングは良好であったものの、加熱後の引張強度が350MPa未満と低いため、充放電時に箔の変形が生じてしまいサイクル特性が低かった。
比較例8は、特許文献2の実施例に記載の手法で製造した箔であるが、加熱後の引張強度が350MPa以上であり、マット面側の光沢度Gs(60°)も20以上150以下であることから、好ましいサイクル寿命を示したものの、マット面側の動摩擦係数が0.11以下となっていることから活物質塗工工程における箔搬送時のスリップが生じてしまったためハンドリング性が不良であった。
Moreover, the comparative example 6 is the foil manufactured by the method as described in the Example of patent document 1. FIG. Since the dynamic friction coefficient on the mat surface side is in the range of 0.11 to 0.39, handling in the active material coating process is preferable, and the glossiness Gs (60 °) is also in the range of 20 to 150. However, since the tensile strength after heating is as low as less than 350 MPa at 320 MPa, it cannot withstand the expansion and contraction of the active material during charge and discharge, and deformation of the foil occurs. As a result, the cycle characteristics were poor and the result was x.
Similarly, in Comparative Example 7, although the handling during active material coating was good, the tensile strength after heating was as low as less than 350 MPa. Therefore, the foil was deformed during charging and discharging, and the cycle characteristics were low.
Comparative Example 8 is a foil manufactured by the method described in the example of Patent Document 2, but the tensile strength after heating is 350 MPa or more, and the glossiness Gs (60 °) on the mat surface side is 20 or more and 150 or less. Therefore, although the preferable cycle life was shown, the mat frictional coefficient on the mat surface side was 0.11 or less, so that the slip during the conveyance of the foil in the active material coating process occurred and the handling property was poor. Met.

図1に比較例、実施例に示される銅箔の光沢度と動摩擦係数の関係性について示した。比較例について、活物質密着性およびハンドリング性が良好範囲に入っている電解銅箔であっても、150℃1時間加熱後の強度が350MPa未満であったため、電池特性評価NGとなった。一方、実施例の電解銅箔については、ハンドリング性・電池特性評価共に良好な評価結果を示した。 FIG. 1 shows the relationship between the glossiness and the dynamic friction coefficient of the copper foils shown in the comparative examples and examples. About the comparative example, even if it was the electrolytic copper foil whose active material adhesiveness and handling property were in the favorable range, since the intensity | strength after a 150 degreeC 1 hour heating was less than 350 Mpa, it became battery characteristic evaluation NG. On the other hand, the electrolytic copper foils of the examples showed good evaluation results for both handling properties and battery characteristics evaluation.

上述したように本発明の電解銅箔は、150℃、1時間加熱後の引張り強度が350MPa以上、好ましくは400MPa以上であり、マット面における光沢度Gs(60°)が20以上150以下、動摩擦係数が0.11以上0.39以下、好ましくは0.15以上0.35以下である電解銅箔を用いることで、良好なリチウムイオン二次電池特性を示しながら、製造ラインで滑り難く、ライン製造時のハンドリング性が良好な電解銅箔を提供することができる。
また、本発明の実施例の電解銅箔は150℃、1時間加熱後の引張り強度が350MPa以上あり、充放電時の活物質体積膨張収縮による応力に耐えることができ、良好なサイクル寿命の二次電池が得られる。
As described above, the electrolytic copper foil of the present invention has a tensile strength of 350 MPa or more, preferably 400 MPa or more after heating at 150 ° C. for 1 hour, a glossiness Gs (60 °) on the mat surface of 20 to 150, and dynamic friction. By using an electrolytic copper foil having a coefficient of 0.11 or more and 0.39 or less, preferably 0.15 or more and 0.35 or less, it is difficult to slip on the production line while exhibiting good lithium ion secondary battery characteristics. It is possible to provide an electrolytic copper foil having good handleability during production.
Moreover, the electrolytic copper foil of the embodiment of the present invention has a tensile strength of 350 MPa or more after heating at 150 ° C. for 1 hour, can withstand stress due to volume expansion / contraction of the active material during charge / discharge, and has a good cycle life. A secondary battery is obtained.

更に本発明の実施例の電解銅箔は、マット面における光沢度Gs(60°)が20以上であることで、活物質と集電体の接触性が良く、電気伝導度が高く、良好なサイクル寿命が得られる。
更に本発明の電解銅箔は、その光沢度Gs(60°)が150以下で動摩擦係数が0.11以上0.39以下であり、表面の微細な凹凸が搬送ロール上の滑り止めとなり、箔がロール上でスリップすることが抑制され、ハンドリング性が良好となる。
Furthermore, the electrolytic copper foil of the embodiment of the present invention has a gloss Gs (60 °) on the mat surface of 20 or more, so that the contact between the active material and the current collector is good, the electrical conductivity is high, and the good. Cycle life is obtained.
Furthermore, the electrolytic copper foil of the present invention has a gloss Gs (60 °) of 150 or less and a dynamic friction coefficient of 0.11 or more and 0.39 or less. Is suppressed from slipping on the roll, and handling properties are improved.

また本発明のリチウムイオン二次電池負極電極は、本発明の電解銅箔を集電体として用いることで、サイクル特性を高めたリチウムイオン二次電池負極電極となり、該電極を組み込んだリチウムイオン二次電池は優れたサイクル寿命を有する電池である。   Moreover, the lithium ion secondary battery negative electrode of the present invention becomes a lithium ion secondary battery negative electrode with improved cycle characteristics by using the electrolytic copper foil of the present invention as a current collector, and the lithium ion secondary battery incorporating the electrode. The secondary battery is a battery having an excellent cycle life.

[プリント配線板の作成と評価]
実施例5の電解銅箔をポリイミドフィルムと張り合わせ3層プリント配線板を製造し、製造工程、出来上がった配線板の性能を評価した。
(1)銅箔とフィルムの密着性
銅箔とフィルムの密着性は、銅箔表面に存在する微細な凹凸にポリイミドフィルムが食い込んでおり、満足できる強度を有していた。
(2)高周波特性
プリント配線板の高周波特性は、銅箔表面の粗さRzが2.0以下、光沢度Gs(60°)が90以上であり、銅箔表面の凹凸が微細であるため、満足できるものであった。
(3)銅箔の強度と皺の発生
銅箔の常温での引張り強度が668MPaであり、450MPa以上であることから、絶縁フィルムと張り合わせる強度が薄箔でも充分であり、プリント配線板の製造工程において箔切れや皺等の発生はなかった。
(4)熱履歴
銅箔と絶縁フィルムとを張り合わせる際の加熱において銅箔に熱履歴による強度の変化は殆どみられず、プリント配線板を製造する際にかかる熱履歴を経ても、高い強度を維持した。
[Creation and evaluation of printed wiring boards]
The electrolytic copper foil of Example 5 was laminated with a polyimide film to produce a three-layer printed wiring board, and the production process and the performance of the completed wiring board were evaluated.
(1) Adhesiveness between copper foil and film The adhesiveness between the copper foil and the film was such that the polyimide film bites into the fine irregularities present on the surface of the copper foil, and had satisfactory strength.
(2) High frequency characteristics The high frequency characteristics of the printed wiring board are as follows: the roughness Rz of the copper foil surface is 2.0 or less, the glossiness Gs (60 °) is 90 or more, and the unevenness of the copper foil surface is fine. It was satisfactory.
(3) Strength of copper foil and generation of wrinkles Since the tensile strength of copper foil at normal temperature is 668 MPa and is 450 MPa or more, the strength of bonding with an insulating film is sufficient even with a thin foil. There was no occurrence of foil breakage or wrinkles in the process.
(4) Thermal history There is almost no change in strength due to the thermal history in the copper foil during heating when the copper foil and the insulating film are bonded together, and even after passing through the thermal history when manufacturing a printed wiring board, the strength is high. Maintained.

本発明は上述したように、特に、サイクル寿命の長い二次電池集電体用銅箔として優れ、かつ、優れたハンドリング性を有するために活物質塗工ラインで銅箔に皺が生ぜず、このような特性からサイクル特性を高めたリチウムイオン二次電池負極電極を容易に提供でき、該リチウムイオン二次電池負極電極を組み込んだサイクル寿命の長いリチウムイオン二次電池を提供できる優れた効果を有するものである。
また本発明は上述したように、優れた特性を有するプリント配線板を、また、電磁波シールド材を提供できる優れた効果を有するものである。
As described above, the present invention is particularly excellent as a copper foil for a secondary battery current collector with a long cycle life, and in order to have excellent handling properties, no wrinkles are formed on the copper foil in the active material coating line, From these characteristics, it is possible to easily provide a negative electrode for a lithium ion secondary battery with improved cycle characteristics, and to provide a lithium ion secondary battery with a long cycle life incorporating the negative electrode for the lithium ion secondary battery. It is what you have.
In addition, as described above, the present invention has an excellent effect of providing a printed wiring board having excellent characteristics and an electromagnetic wave shielding material.

Claims (7)

マット面において、光沢度Gs(60°)が20以上150以下、動摩擦係数が0.11以上0.39以下であり、150℃で1時間加熱後の引張り強度が350MPa以上900MPa以下である電解銅箔。   On the matte surface, electrolytic copper having a gloss Gs (60 °) of 20 or more and 150 or less, a dynamic friction coefficient of 0.11 or more and 0.39 or less, and a tensile strength after heating for 1 hour at 150 ° C. of 350 MPa or more and 900 MPa or less. Foil. 150℃、1時間加熱後の引張り強度が400MPa以上である請求項1に記載の電解銅箔。   The electrolytic copper foil according to claim 1, wherein the tensile strength after heating at 150 ° C. for 1 hour is 400 MPa or more. 当該電解銅箔の厚さが4μm以上10μm以下である請求項1又は2に記載の電解銅箔。   The electrolytic copper foil according to claim 1 or 2, wherein the thickness of the electrolytic copper foil is 4 µm or more and 10 µm or less. 請求項1〜3のいずれかに記載の電解銅箔を集電体としたリチウムイオン二次電池用負極電極。   The negative electrode for lithium ion secondary batteries which used the electrolytic copper foil in any one of Claims 1-3 as a collector. 請求項4に記載の集電体としたリチウムイオン二次電池用負極電極を用いたリチウムイオン二次電池。   The lithium ion secondary battery using the negative electrode for lithium ion secondary batteries made into the electrical power collector of Claim 4. 請求項1〜3のいずれかに記載の電解銅箔と絶縁フィルムとを積層してなるプリント配線板。   The printed wiring board formed by laminating | stacking the electrolytic copper foil and insulating film in any one of Claims 1-3. 請求項1〜3のいずれかに記載の電解銅箔と絶縁基板とを積層してなる電磁波シールド材。   The electromagnetic wave shielding material formed by laminating | stacking the electrolytic copper foil and insulating substrate in any one of Claims 1-3.
JP2015135702A 2015-07-06 2015-07-06 Electrolytic copper foil, lithium ion secondary battery negative electrode and lithium ion secondary battery, printed wiring board, and electromagnetic wave-shielding material Pending JP2017014608A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015135702A JP2017014608A (en) 2015-07-06 2015-07-06 Electrolytic copper foil, lithium ion secondary battery negative electrode and lithium ion secondary battery, printed wiring board, and electromagnetic wave-shielding material
CN201610412852.0A CN106340668B (en) 2015-07-06 2016-06-13 Electrolytic copper foil, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
TW105120129A TWI609995B (en) 2015-07-06 2016-06-27 Electrolytic copper foil, negative electrode for lithium ion secondary battery, lithium ion secondary battery, printed circuit board and electromagnetic wave shielding material
KR1020160083586A KR101782737B1 (en) 2015-07-06 2016-07-01 Electrolytic copper foil, the negative electrode for a lithium ion secondary battery and a lithium ion secondary battery, printed circuit board and an electromagnetic shielding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015135702A JP2017014608A (en) 2015-07-06 2015-07-06 Electrolytic copper foil, lithium ion secondary battery negative electrode and lithium ion secondary battery, printed wiring board, and electromagnetic wave-shielding material

Publications (1)

Publication Number Publication Date
JP2017014608A true JP2017014608A (en) 2017-01-19

Family

ID=57826190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015135702A Pending JP2017014608A (en) 2015-07-06 2015-07-06 Electrolytic copper foil, lithium ion secondary battery negative electrode and lithium ion secondary battery, printed wiring board, and electromagnetic wave-shielding material

Country Status (4)

Country Link
JP (1) JP2017014608A (en)
KR (1) KR101782737B1 (en)
CN (1) CN106340668B (en)
TW (1) TWI609995B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190030987A (en) * 2017-09-15 2019-03-25 케이씨에프테크놀로지스 주식회사 Copper foil for high capacity secondary battery with improved handling property, electrode comprisng the same, secondary battery comprising the same and method for manufacturing the same
US10975487B1 (en) 2019-12-09 2021-04-13 Chang Chun Petrochemical Co., Ltd. Electrolytic copper foil and electrode and copper-clad laminate comprising the same
WO2022014668A1 (en) 2020-07-16 2022-01-20 東洋鋼鈑株式会社 Electrolytic iron foil
WO2022014669A1 (en) 2020-07-16 2022-01-20 東洋鋼鈑株式会社 Electrolytic iron foil

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102399930B1 (en) * 2017-08-29 2022-05-18 에스케이넥실리스 주식회사 Method for manufacturing copper foil having nodule layer, copper foil manufactured by the method, electrode for secondary battery the same and secondary battery
TWI791776B (en) * 2018-02-23 2023-02-11 日商古河電氣工業股份有限公司 Electrolytic copper foil, negative electrode for lithium ion secondary battery, lithium ion secondary battery, copper clad laminate, and printed circuit board using the electrolytic copper foil
US10854882B2 (en) * 2018-10-19 2020-12-01 GM Global Technology Operations LLC Negative electrode for a lithium-ion electrochemical cell and method of forming same
JP6778291B1 (en) * 2019-03-04 2020-10-28 ナミックス株式会社 Negative current collector of copper foil and lithium ion battery containing it and its manufacturing method
CN110093635B (en) * 2019-04-24 2021-07-02 福建清景铜箔有限公司 High-strength electrolytic copper foil and various products using the same
CN115198319B (en) * 2021-12-15 2023-11-17 长春石油化学股份有限公司 Electrolytic copper foil, electrode comprising same and lithium ion battery

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2076951A1 (en) 1992-02-18 1993-08-19 William D. Mcghee Preparation of urethane and carbonate products
JP3742144B2 (en) 1996-05-08 2006-02-01 ソニー株式会社 Nonaqueous electrolyte secondary battery and planar current collector for nonaqueous electrolyte secondary battery
US20060191798A1 (en) * 2003-04-03 2006-08-31 Fukuda Metal Foil & Powder Co., Ltd. Electrolytic copper foil with low roughness surface and process for producing the same
CN101146933B (en) * 2005-03-31 2010-11-24 三井金属矿业株式会社 Electrolytic copper foil and process for producing electrolytic copper foil, surface treated electrolytic copper foil using said electrolytic copper foil, and copper-clad laminate plate and printed ci
WO2007125994A1 (en) * 2006-04-28 2007-11-08 Mitsui Mining & Smelting Co., Ltd. Electrolytic copper foil, surface treated copper foil using the electrolytic copper foil, copper-clad laminated plate using the surface treated copper foil, and method for manufacturing the electrolytic copper foil
JP5090028B2 (en) * 2007-03-16 2012-12-05 福田金属箔粉工業株式会社 Copper foil for negative electrode current collector of lithium secondary battery and method for producing the same
JP5752301B2 (en) 2007-10-31 2015-07-22 三井金属鉱業株式会社 Electrolytic copper foil and method for producing the electrolytic copper foil
JP5588607B2 (en) 2007-10-31 2014-09-10 三井金属鉱業株式会社 Electrolytic copper foil and method for producing the electrolytic copper foil
EP2654111B1 (en) * 2010-12-27 2018-04-18 Furukawa Electric Co., Ltd. Lithium-ion secondary battery, electrode for secondary battery, and electrolytic copper foil for secondary battery electrode
JP5730742B2 (en) 2011-10-25 2015-06-10 古河電気工業株式会社 Electrolytic copper foil for lithium ion secondary battery and method for producing the same
TWI539033B (en) 2013-01-07 2016-06-21 Chang Chun Petrochemical Co Electrolytic copper foil and its preparation method
JP5705381B2 (en) * 2013-02-28 2015-04-22 三井金属鉱業株式会社 Blackened surface-treated copper foil, method for producing blackened surface-treated copper foil, copper-clad laminate and flexible printed wiring board

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190030987A (en) * 2017-09-15 2019-03-25 케이씨에프테크놀로지스 주식회사 Copper foil for high capacity secondary battery with improved handling property, electrode comprisng the same, secondary battery comprising the same and method for manufacturing the same
KR102492813B1 (en) 2017-09-15 2023-01-26 에스케이넥실리스 주식회사 Copper foil for high capacity secondary battery with improved handling property, electrode comprisng the same, secondary battery comprising the same and method for manufacturing the same
US10975487B1 (en) 2019-12-09 2021-04-13 Chang Chun Petrochemical Co., Ltd. Electrolytic copper foil and electrode and copper-clad laminate comprising the same
WO2022014668A1 (en) 2020-07-16 2022-01-20 東洋鋼鈑株式会社 Electrolytic iron foil
WO2022014669A1 (en) 2020-07-16 2022-01-20 東洋鋼鈑株式会社 Electrolytic iron foil
KR20230038641A (en) 2020-07-16 2023-03-21 도요 고한 가부시키가이샤 Electrolytic iron foil

Also Published As

Publication number Publication date
CN106340668A (en) 2017-01-18
TWI609995B (en) 2018-01-01
KR20170005764A (en) 2017-01-16
CN106340668B (en) 2020-10-23
KR101782737B1 (en) 2017-09-27
TW201702434A (en) 2017-01-16

Similar Documents

Publication Publication Date Title
JP5810249B1 (en) Electrolytic copper foil, negative electrode for lithium ion secondary battery, lithium ion secondary battery, printed wiring board, and electromagnetic shielding material
JP2017014608A (en) Electrolytic copper foil, lithium ion secondary battery negative electrode and lithium ion secondary battery, printed wiring board, and electromagnetic wave-shielding material
JP5916904B1 (en) Electrolytic copper foil, negative electrode for lithium ion secondary battery, lithium ion secondary battery, rigid printed wiring board and flexible printed wiring board
JP6582156B1 (en) Electrolytic copper foil, and negative electrode for lithium ion secondary battery, lithium ion secondary battery, copper clad laminate and printed wiring board using the electrolytic copper foil
JP5276158B2 (en) Lithium ion secondary battery, negative electrode for battery, and electrolytic copper foil for battery negative electrode current collector
CN103649378B (en) Electrolytic copper foil, the manufacture method of this electrolytic copper foil and using this electrolytic copper foil as the lithium rechargeable battery of collector body
JP6190980B2 (en) Electrolytic copper foil and various products using the electrolytic copper foil
JPWO2014010681A1 (en) Current collector, electrode structure, non-aqueous electrolyte battery or power storage component
WO2013080988A1 (en) Collector for electrodes, electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
JP2012038700A (en) Copper foil for current collector of lithium secondary battery
JP2020532653A (en) Electrolytic copper foil, its manufacturing method and cathode for high-capacity Li secondary batteries including it
JP6067256B2 (en) Electrolytic copper foil, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2022050471A (en) Electrolytic copper foil for secondary battery, having excellent flexural resistance, and method for producing the same
WO2017078125A1 (en) Electrolytic copper foil, and lithium ion secondary battery using same
JP6611751B2 (en) Rolled copper foil for lithium ion battery current collector and lithium ion battery
JP6861304B1 (en) Electrolytic copper foil, electrodes containing electrolytic copper foil, and copper-clad laminate containing electrolytic copper foil
WO2014002997A1 (en) Electrolytic copper foil, manufacturing method therefor, negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery
JP2013134934A (en) Copper foil, electrode of secondary battery, secondary battery, and printed circuit board
JP5117213B2 (en) Copper foil for negative electrode of lithium ion secondary battery and negative electrode for lithium ion secondary battery

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20171211

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20171212