JP6778291B1 - Negative current collector of copper foil and lithium ion battery containing it and its manufacturing method - Google Patents

Negative current collector of copper foil and lithium ion battery containing it and its manufacturing method Download PDF

Info

Publication number
JP6778291B1
JP6778291B1 JP2019038914A JP2019038914A JP6778291B1 JP 6778291 B1 JP6778291 B1 JP 6778291B1 JP 2019038914 A JP2019038914 A JP 2019038914A JP 2019038914 A JP2019038914 A JP 2019038914A JP 6778291 B1 JP6778291 B1 JP 6778291B1
Authority
JP
Japan
Prior art keywords
copper
copper foil
negative electrode
current collector
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019038914A
Other languages
Japanese (ja)
Other versions
JP2020194615A (en
Inventor
牧子 佐藤
牧子 佐藤
賢 大久保
賢 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Namics Corp
Original Assignee
Namics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Namics Corp filed Critical Namics Corp
Priority to JP2019038914A priority Critical patent/JP6778291B1/en
Priority to KR1020217021939A priority patent/KR20220002243A/en
Priority to PCT/JP2019/049161 priority patent/WO2020179181A1/en
Priority to CN201980088858.9A priority patent/CN113330611A/en
Priority to TW109101546A priority patent/TWI821504B/en
Application granted granted Critical
Publication of JP6778291B1 publication Critical patent/JP6778291B1/en
Publication of JP2020194615A publication Critical patent/JP2020194615A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/32Alkaline compositions
    • C23F1/34Alkaline compositions for etching copper or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Composite Materials (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】新規な銅箔並びにそれを含むリチウムイオン電池の負極集電体及びその製造方法を提供することを目的とする。【課題を解決するための手段】少なくとも表面の一部に高さが5nm以上の凸部があり、凸部の密度が3.8μmあたり15個以上100個以下の銅箔を製造し、この銅箔を用いて、負極集電体を製造する。【選択図】なしPROBLEM TO BE SOLVED: To provide a novel copper foil, a negative electrode current collector of a lithium ion battery containing the same, and a method for manufacturing the same. PROBLEM TO BE SOLVED: To manufacture 15 or more and 100 or less copper foils having a convex portion having a height of 5 nm or more on at least a part of the surface and a density of the convex portions of 3.8 μm. A negative electrode current collector is manufactured using the foil. [Selection diagram] None

Description

本発明は銅箔並びにそれを含むリチウムイオン電池の負極集電体及びその製造方法に関する。 The present invention relates to a copper foil, a negative electrode current collector of a lithium ion battery containing the same, and a method for manufacturing the same.

リチウムイオン電池(LIB)の負極集電体において、高出力、高エネルギー密度化のため、大容量の活物質を採用すると、充電時と放電時に活物質の体積の膨張率が大きくなる。そのため、充放電を繰り返すと、活物質と集電体をつなぐ結着材が破断したり、活物質界面、集電体界面から結着材が剥離したりして、サイクル特性が劣化する。それを防止するため、銅箔側の結着材量を多くし、銅箔と負極合剤層の密着性を向上させる発明が開示されている(特許文献1参照)。また、銅箔板表面にひげ状の銅酸化物を形成し表面積を増大させることによって、銅箔と活物質との密着性を向上させる発明が開示されている(特許文献2参照)。 When a large-capacity active material is used in the negative electrode current collector of a lithium ion battery (LIB) for high output and high energy density, the expansion coefficient of the volume of the active material increases during charging and discharging. Therefore, when charging and discharging are repeated, the binder connecting the active material and the current collector breaks, or the binder peels off from the active material interface and the current collector interface, and the cycle characteristics deteriorate. In order to prevent this, an invention is disclosed in which the amount of the binder on the copper foil side is increased to improve the adhesion between the copper foil and the negative electrode mixture layer (see Patent Document 1). Further, an invention is disclosed in which a whisker-shaped copper oxide is formed on the surface of a copper foil plate to increase the surface area to improve the adhesion between the copper foil and the active material (see Patent Document 2).

特開平10−284059号公報Japanese Unexamined Patent Publication No. 10-284059 特開平11−307102号公報Japanese Unexamined Patent Publication No. 11-307102

本発明は、新規な銅箔並びにそれを含むリチウムイオン電池の負極集電体及びその製造方法を提供することを目的とする。 An object of the present invention is to provide a novel copper foil, a negative electrode current collector for a lithium ion battery containing the same, and a method for manufacturing the same.

本発明の一実施態様は、少なくとも表面の一部に高さ5nm以上の凸部があり、前記一部において、前記凸部の密度が3.8μmあたり平均15個以上100個以下である銅箔である。前記一部において、前記凸部の密度が3.8μmあたり平均20個以上62個以下であってもよい。また、前記一部の表面粗さRzの3点標準偏差σが0.5以下であってもよく、0.3以下であってもよい。また、前記一部の表面粗さRzの平均が2μm以下であってもよく、1.54μm以下であってもよい。 In one embodiment of the present invention, at least a part of the surface has convex portions having a height of 5 nm or more, and in the partial portion, the density of the convex portions is 15 or more and 100 or less on average per 3.8 μm. Is. In the part, the density of the convex portions may be 20 or more and 62 or less on average per 3.8 μm. Further, the three-point standard deviation σ of the partial surface roughness Rz may be 0.5 or less, or 0.3 or less. Further, the average of the surface roughness Rz of the part thereof may be 2 μm or less, or 1.54 μm or less.

本発明の他の実施態様は、上記いずれかの銅箔を含む、リチウムイオン電池の負極集電体である。 Another embodiment of the present invention is a negative electrode current collector of a lithium ion battery containing any of the above copper foils.

本発明のさらなる実施形態は、上記いずれかの銅箔を含む、リチウムイオン電池の負極集電体の製造方法であって、銅箔の銅表面を酸化し、凸部を形成する第1の工程と、酸化した前記銅表面をめっき処理する第2の工程と、前記銅表面をめっき処理した前記銅箔を用いて負極集電体を製造する第3の工程と、を含む。前記第2の工程の前に、前記第1の工程で酸化した銅表面を溶解する工程および/または還元する第4の工程をさらに含んでもよい。 A further embodiment of the present invention is a method for manufacturing a negative electrode current collector of a lithium ion battery, which comprises any of the above copper foils, and is a first step of oxidizing the copper surface of the copper foil to form a convex portion. A second step of plating the oxidized copper surface and a third step of manufacturing a negative electrode current collector using the copper foil plated on the copper surface are included. Prior to the second step, a fourth step of melting and / or reducing the copper surface oxidized in the first step may be further included.

本発明によって、新規な銅箔並びにそれを含むリチウムイオン電池の負極集電体及びその製造方法を提供することができるようになった。 INDUSTRIAL APPLICABILITY According to the present invention, it has become possible to provide a novel copper foil, a negative electrode current collector of a lithium ion battery containing the same, and a method for manufacturing the same.

本発明の実施例1〜実施例7、比較例1〜比較例3における第1の工程及び第2の工程における処理条件をまとめた表である。It is a table summarizing the processing conditions in the 1st step and the 2nd step in Example 1 to Example 7 and Comparative Example 1 to Comparative Example 3 of this invention. 本発明の実施例1〜実施例7、比較例1〜比較例3において、各銅箔の断面を示した走査型電子顕微鏡(SEM)画像である。6 is a scanning electron microscope (SEM) image showing a cross section of each copper foil in Examples 1 to 7 and Comparative Examples 1 to 3 of the present invention. 本発明の実施例における溶剤系負極材の塗布安定性を示す図である。It is a figure which shows the coating stability of the solvent-based negative electrode material in the Example of this invention. 本発明の実施例における負極材残存率の測定方法を示す図である。It is a figure which shows the measuring method of the negative electrode material residual ratio in the Example of this invention.

以下、本発明の実施の形態を、実施例を挙げながら詳細に説明する。なお、本発明の目的、特徴、利点、及びそのアイデアは、本明細書の記載により、当業者には明らかであり、本明細書の記載から、当業者であれば、容易に本発明を再現できる。以下に記載された発明の実施の形態及び具体的な実施例などは、本発明の好ましい実施態様を示すものであり、例示又は説明のために示されているのであって、本発明をそれらに限定するものではない。本明細書で開示されている本発明の意図ならびに範囲内で、本明細書の記載に基づき、様々に修飾ができることは、当業者にとって明らかである。 Hereinafter, embodiments of the present invention will be described in detail with reference to examples. The object, feature, advantage, and idea thereof of the present invention will be apparent to those skilled in the art from the description of the present specification, and those skilled in the art can easily reproduce the present invention from the description of the present specification. it can. The embodiments and specific examples of the invention described below show preferred embodiments of the present invention and are shown for illustration or explanation purposes, and the present invention is described in them. It is not limited. It will be apparent to those skilled in the art that various modifications can be made based on the description of the present specification within the intent and scope of the present invention disclosed herein.

==銅箔==
本明細書に開示される銅箔は、圧延銅箔でも電解銅箔でもよく、銅合金箔でもよい。銅箔の厚みは特に限定されないが、リチウムイオン電池の負極集電体用として使用される厚みであることが好ましく、例えば、5μm〜100μmが挙げられ、その範囲から用途に応じた銅箔の厚みを選択できる。また、銅箔の表面粗度も特に限定されず、いずれの粗さの銅箔においても使用できるが、表面粗度が大きすぎると引っ張り強度が低下したり、負極材が凹凸の底まで充填されずに密着力が低下したりする。さらに表面素度が大きく、かつ凸部の数が少ないと凸部に電気が集中し、活物質の剥離により電池特性の劣化が生じるため、表面粗度は2μm以下が好ましい。
== Copper foil ==
The copper foil disclosed in the present specification may be a rolled copper foil, an electrolytic copper foil, or a copper alloy foil. The thickness of the copper foil is not particularly limited, but is preferably the thickness used for the negative electrode current collector of a lithium ion battery, for example, 5 μm to 100 μm, and the thickness of the copper foil according to the application is included in the range. Can be selected. Further, the surface roughness of the copper foil is not particularly limited, and any roughness of the copper foil can be used. However, if the surface roughness is too large, the tensile strength is lowered or the negative electrode material is filled to the bottom of the unevenness. The adhesion is reduced without it. Further, if the surface roughness is large and the number of convex portions is small, electricity is concentrated on the convex portions and the battery characteristics are deteriorated due to the peeling of the active material. Therefore, the surface roughness is preferably 2 μm or less.

この銅箔は、少なくとも表面の一部に高さ5nm以上の凸部があり、凸部の密度は、3.8μmあたり平均15個以上100個以下であることが好ましく、平均20個以上62個以下であることがより好ましい。凸部の数は走査電子顕微鏡の断面の撮影像において凸部の両端の凹部の極小点を結んだ線分と垂直に延ばした長さが5nm以上である場合に凸部として、その個数を数える。凸部の高さは、共焦点走査電子顕微鏡を用いてJIS B 0601:2001に定められたRzにより算出することができる。 This copper foil has convex portions having a height of 5 nm or more on at least a part of the surface, and the density of the convex portions is preferably 15 or more and 100 or less on average per 3.8 μm, and 20 or more and 62 on average. The following is more preferable. The number of convex parts is counted as a convex part when the length extending perpendicular to the line segment connecting the minimum points of the concave parts at both ends of the convex part is 5 nm or more in the photographed image of the cross section of the scanning electron microscope. .. The height of the convex portion can be calculated by Rz defined in JIS B 0601: 2001 using a confocal scanning electron microscope.

高さ5nm以上の凸部がある表面の一部の表面粗さRzの3点標準偏差σは、0.5以下であることが好ましく、0.3以下であることがより好ましい。Rzの3点標準偏差σが小さくなるほど、凹凸が均一になる。そして、Rzの平均は、2μm以下であることが好ましく、1.54μm以下であることがより好ましい。Rzの平均が小さくなるほど、凹凸が小さくなる。 The three-point standard deviation σ of the surface roughness Rz of a part of the surface having a convex portion having a height of 5 nm or more is preferably 0.5 or less, and more preferably 0.3 or less. The smaller the 3-point standard deviation σ of Rz, the more uniform the unevenness. The average Rz is preferably 2 μm or less, and more preferably 1.54 μm or less. The smaller the average of Rz, the smaller the unevenness.

これらの性質は、銅箔を負極集電体に用いるに際し、好ましい構成である。原理について特に拘泥するわけではないが、凸部の個数が少ないと銅箔の表面積が小さくなるため、銅箔の負極に対する密着性が悪くなり、その結果、保持容量が低くなる。凸部の個数が少ない場合に表面積を多くするためにはRzを大きくする必要があり、Rzが大きくなると、凸部に電流が集中するため、銅箔と活物質が剥離しやすくなり、容量維持率が小さくなる。また、表面粗さRzの3点標準偏差、つまりばらつきが大きい場合も、負極集電体に用いたときに電流の集中が生じやすくなり、その結果、容量維持率が低くなる。 These properties are preferable configurations when the copper foil is used in the negative electrode current collector. Although the principle is not particularly limited, if the number of convex portions is small, the surface area of the copper foil becomes small, so that the adhesion of the copper foil to the negative electrode becomes poor, and as a result, the holding capacity becomes low. When the number of convex parts is small, it is necessary to increase Rz in order to increase the surface area. When Rz is large, the current concentrates on the convex parts, so that the copper foil and the active material are easily separated and the capacity is maintained. The rate becomes smaller. Further, even when the three-point standard deviation of the surface roughness Rz, that is, the variation is large, the current tends to be concentrated when used in the negative electrode current collector, and as a result, the capacity retention rate becomes low.

==銅箔及びリチウムイオン電池の負極集電体の製造方法==
本明細書に開示される銅箔の製造方法は、銅箔の銅表面を酸化し微細な凸部を形成する第1の工程と、酸化した銅箔の表面に形成された凸部をさらに調整する第2の工程と、銅表面の凸部を調整した銅箔を用いて、リチウムイオン電池の負極集電体を製造する第3の工程と、を含む。また、第2の工程は、酸化した銅表面を、めっき処理、還元処理または溶解処理の少なくとも1つの工程を含む。以下、各工程について、詳細に説明する。
== Manufacturing method of negative electrode current collector for copper foil and lithium-ion battery ==
The method for producing a copper foil disclosed in the present specification further adjusts a first step of oxidizing the copper surface of the copper foil to form fine convex portions and a convex portion formed on the surface of the oxidized copper foil. The second step is to manufacture a negative electrode current collector for a lithium ion battery by using a copper foil having a convex portion on the copper surface adjusted. The second step includes at least one step of plating, reducing or dissolving the oxidized copper surface. Hereinafter, each step will be described in detail.

(1)第1の工程(酸化工程)
第1の工程では、まず、酸化剤を用いて銅箔の銅表面を酸化して、酸化銅を含む層を形成するとともに、表面に凸部を形成する。
(1) First step (oxidation step)
In the first step, first, the copper surface of the copper foil is oxidized with an oxidizing agent to form a layer containing copper oxide, and a convex portion is formed on the surface.

酸化剤は特に限定されず、例えば、亜塩素酸ナトリウム、次亜塩素酸ナトリウム、塩素酸カリウム、過塩素酸カリウム等の水溶液や緩衝液を用いることができるが、亜塩素酸ナトリウムまたは次亜塩素酸ナトリウムを含む水溶液を用いることが好ましい。これらを用いると好適な表面形状を形成することができる。酸化剤には、各種添加剤(たとえば、リン酸三ナトリウム十二水和物のようなリン酸塩や表面活性分子)を添加してもよい。表面活性分子としては、ポルフィリン、ポルフィリン大員環、拡張ポルフィリン、環縮小ポルフィリン、直鎖ポルフィリンポリマー、ポルフィリンサンドイッチ配位錯体、ポルフィリン配列、シラン、テトラオルガノ‐シラン、アミノエチル‐アミノプロピルートリメトキシシラン、(3‐アミノプロピル)トリメトキシシラン、(1‐[3‐(トリメトキシシリル)プロピル]ウレア)((l−[3−(Trimethoxysilyl)propyl]urea))、(3‐アミノプロピル)トリエトキシシラン、((3‐グリシジルオキシプロピル)トリメトキシシラン)、(3‐クロロプロピル)トリメトキシシラン、(3‐グリシジルオキシプロピル)トリメトキシシラン、ジメチルジクロロシラン、3‐(トリメトキシシリル)プロピルメタクリレート、エチルトリアセトキシシラン、トリエトキシ(イソブチル)シラン、トリエトキシ(オクチル)シラン、トリス(2‐メトキシエトキシ)(ビニル)シラン、クロロトリメチルシラン、メチルトリクロロシラン、四塩化ケイ素、テトラエトキシシラン、フェニルトリメトキシシラン、クロロトリエトキシシラン、エチレン‐トリメトキシシラン、アミン、糖などを例示できる。また、酸化剤以外に、水酸化ナトリウム、水酸化カリウム等のアルカリ性化合物を含有してもよい。 The oxidizing agent is not particularly limited, and for example, an aqueous solution or buffer solution of sodium chlorite, sodium hypochlorite, potassium chlorate, potassium perchlorate or the like can be used, but sodium chlorite or hypochlorite can be used. It is preferable to use an aqueous solution containing sodium chlorite. By using these, a suitable surface shape can be formed. Various additives (for example, phosphates such as trisodium phosphate dodecahydrate and surface active molecules) may be added to the oxidizing agent. Surface active molecules include porphyrin, porphyrin-membered ring, expanded porphyrin, ring-reduced porphyrin, linear porphyrin polymer, porphyrin sandwich coordination complex, porphyrin sequence, silane, tetraorgano-silane, aminoethyl-aminopropyl-trimethoxysilane. , (3-Aminopropyl) trimethoxysilane, (1- [3- (trimethoxysilyl) propyl] urea) ((l- [3- (Trimethoxysilyl) propyl] urea)), (3-aminopropyl) triethoxy Silane, ((3-glycidyloxypropyl) trimethoxysilane), (3-chloropropyl) trimethoxysilane, (3-glycidyloxypropyl) trimethoxysilane, dimethyldichlorosilane, 3- (trimethoxysilyl) propylmethacrylate, Ethyltriacetoxysilane, triethoxy (isobutyl) silane, triethoxy (octyl) silane, tris (2-methoxyethoxy) (vinyl) silane, chlorotrimethylsilane, methyltrichlorosilane, silicon tetrachloride, tetraethoxysilane, phenyltrimethoxysilane, Examples thereof include chlorotriethoxysilane, ethylene-trimethoxysilane, amines, and sugars. In addition to the oxidizing agent, an alkaline compound such as sodium hydroxide or potassium hydroxide may be contained.

この酸化工程において用いる添加剤としては、ケイ素化合物を含むシランカップリング剤のように、酸化による表面の凸部の形成を適度に抑制するものが好ましく、それによって、表面の凹凸がより微細になり、凸部の高さがより均一となる。表面の凸部の高さが均一な銅箔を用いてリチウムイオン電池の集電体を製造することで、凹凸に対する負極材の塗布量の部分的なばらつきを低減することが可能となる。これにより、電流の流れ方にムラがなくなり、電池特性も向上する。そして、生産性も向上する。 As the additive used in this oxidation step, an additive that appropriately suppresses the formation of convex portions on the surface due to oxidation, such as a silane coupling agent containing a silicon compound, is preferable, whereby the unevenness of the surface becomes finer. , The height of the convex portion becomes more uniform. By manufacturing the current collector of the lithium ion battery using a copper foil having a uniform height of the convex portion on the surface, it is possible to reduce a partial variation in the coating amount of the negative electrode material with respect to the unevenness. As a result, the flow of current is not uneven and the battery characteristics are improved. And productivity is also improved.

酸化反応条件は特に限定されないが、酸化剤の液温は40〜95℃であることが好ましく、45〜80℃であることがより好ましい。反応時間は0.5〜30分であることが好ましく、1〜10分であることがより好ましい。 The oxidation reaction conditions are not particularly limited, but the liquid temperature of the oxidizing agent is preferably 40 to 95 ° C, more preferably 45 to 80 ° C. The reaction time is preferably 0.5 to 30 minutes, more preferably 1 to 10 minutes.

なお、この酸化工程以前に、前処理としてアルカリ処理による脱脂や酸処理による洗浄を行ってもよい。アルカリ処理や酸処理の具体的な方法は特に限定されないが、アルカリ処理は、たとえば、好ましくは30〜50g/L、より好ましくは40g/Lのアルカリ水溶液、例えば水酸化ナトリウム水溶液で、30〜50℃、0.5〜2分間程度処理をした後、水洗することにより行うことができる。また、酸処理は、たとえば、銅表面を液温20〜50℃、5〜20重量%の硫酸に1〜5分間浸漬した後、水洗することにより行うことができる。酸処理の後、処理ムラを軽減し、洗浄処理に用いた酸の酸化剤への混入を防ぐため、さらに弱いアルカリ処理を行なってもよい。このアルカリ処理は特に限定されないが、好ましくは0.1〜10g/L、より好ましくは1〜2g/Lのアルカリ水溶液、例えば水酸化ナトリウム水溶液で、30〜50℃、0.5〜2分間程度処理することで行うことができる。また、前処理としてエッチングなどの物理的に銅表面を粗面化する処理を行なってもよいが、その時に銅表面に形成される凸部の形状は、一般的に処理対象である銅の結晶性に依存するため、物理的な粗面化処理だけでは微細な凹凸にはならず、微細な凹凸を有する銅箔を得るためには、本酸化工程を経る必要がある。 Prior to this oxidation step, degreasing by alkaline treatment or cleaning by acid treatment may be performed as a pretreatment. The specific method of alkali treatment or acid treatment is not particularly limited, but the alkali treatment is, for example, preferably 30 to 50 g / L, more preferably 40 g / L alkaline aqueous solution, for example, sodium hydroxide aqueous solution, 30 to 50. It can be carried out by washing with water after treating at ° C. for about 0.5 to 2 minutes. The acid treatment can be carried out, for example, by immersing the copper surface in sulfuric acid at a liquid temperature of 20 to 50 ° C. and 5 to 20% by weight for 1 to 5 minutes, and then washing with water. After the acid treatment, a weaker alkaline treatment may be performed in order to reduce uneven treatment and prevent the acid used in the cleaning treatment from being mixed into the oxidizing agent. This alkaline treatment is not particularly limited, but is preferably 0.1 to 10 g / L, more preferably 1 to 2 g / L alkaline aqueous solution, for example, sodium hydroxide aqueous solution at 30 to 50 ° C. for about 0.5 to 2 minutes. It can be done by processing. Further, as a pretreatment, a treatment such as etching may be performed to physically roughen the copper surface, but the shape of the convex portion formed on the copper surface at that time is generally a copper crystal to be treated. Since it depends on the properties, the physical roughening treatment alone does not result in fine irregularities, and in order to obtain a copper foil having fine irregularities, it is necessary to go through this oxidation step.

(2)第2の工程
第2の工程は、(2−1)めっき処理工程、(2−2)還元処理工程、(2−3)溶解処理工程の少なくとも1つの工程を含む。めっき処理工程は、還元処理工程の後に行ってもよいし、溶解処理の後に行ってもよい。第1の工程における酸化処理によって、銅表面は微細な凸部を有するように粗面化されているが、本発明の第2の工程により、銅表面に形成された凸部をさらに調整する。第2の工程の各処理について以下に説明する。
(2) Second Step The second step includes at least one step of (2-1) plating treatment step, (2-2) reduction treatment step, and (2-3) dissolution treatment step. The plating treatment step may be performed after the reduction treatment step or after the dissolution treatment. The copper surface is roughened so as to have fine protrusions by the oxidation treatment in the first step, but the protrusions formed on the copper surface are further adjusted by the second step of the present invention. Each process of the second step will be described below.

(2−1)めっき処理工程
本工程では、酸化した銅表面を銅以外の金属によりめっき処理して、酸化された銅表面の凸部を調整する。めっき処理方法は、公知の技術を使うことができるが、例えば、銅以外の金属として、スズ、銀、亜鉛、アルミニウム、チタン、ビスマス、クロム、鉄、コバルト、ニッケル、パラジウム、金、プラチナ、あるいは様々な合金を用いることができる。めっき方法も特に限定されず、電解めっき、無電解めっき、真空蒸着、化成処理などによってめっきすることができる。好ましくは電解めっきであり、無電解めっきと比較し金属銅まで還元されやすく、集電力に優れる。
(2-1) Plating Treatment Step In this step, the oxidized copper surface is plated with a metal other than copper to adjust the convex portion of the oxidized copper surface. As the plating method, known techniques can be used. For example, as a metal other than copper, tin, silver, zinc, aluminum, titanium, bismuth, chromium, iron, cobalt, nickel, palladium, gold, platinum, or Various alloys can be used. The plating method is not particularly limited, and plating can be performed by electrolytic plating, electroless plating, vacuum vapor deposition, chemical conversion treatment, or the like. Electrolytic plating is preferable, and as compared with electroless plating, metallic copper is easily reduced and excellent in power collection.

無電解ニッケルめっきの場合は触媒を用いた処理を行うことが好ましい。触媒としては鉄、コバルト、ニッケル、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウムおよびそれらの塩を用いることが好ましい。無電解ニッケルめっきの場合に使用する還元剤として、銅および酸化銅が触媒活性を有しない還元剤を用いることが好ましい。銅および酸化銅が触媒活性を有しない還元剤としては、次亜リン酸ナトリウムなどの次亜リン酸塩が挙げられる。 In the case of electroless nickel plating, it is preferable to perform treatment using a catalyst. As the catalyst, iron, cobalt, nickel, ruthenium, rhodium, palladium, osmium, iridium and salts thereof are preferably used. As the reducing agent used in the case of electroless nickel plating, it is preferable to use a reducing agent in which copper and copper oxide do not have catalytic activity. Examples of the reducing agent in which copper and copper oxide do not have catalytic activity include hypophosphates such as sodium hypophosphite.

このようにして、第1の工程で形成した微細な凹凸を維持した金属層を得ることで、表面が保護され、複合銅箔の経時安定性が向上する。めっきの厚みは特に限定されないが、厚すぎるとレベリングにより凸部の数が減少することでRSmが小さくなり、表面積が減少し、かつ集電力の低下により電池特性が悪化するため、1μm以下が望ましい。 In this way, by obtaining the metal layer that maintains the fine irregularities formed in the first step, the surface is protected and the stability of the composite copper foil with time is improved. The thickness of the plating is not particularly limited, but if it is too thick, the number of convex portions is reduced due to leveling, resulting in a smaller RSm, a reduced surface area, and a decrease in power collection, which deteriorates battery characteristics. Therefore, 1 μm or less is desirable. ..

めっき処理工程では、銅の純度を上げ、好ましくは純銅にしなければめっきを均一にすることが難しい。そのため表面の酸化膜を除去してめっき処理することが一般的である。本開示の方法では、酸化膜により好適な形状を形成し、その後めっき処理を行うことで、リチウムイオン電池の集電体を製造する際に必要な密着性や電池特性を得ることができる。 In the plating process, it is difficult to make the plating uniform unless the purity of copper is increased, preferably pure copper. Therefore, it is common to remove the oxide film on the surface and perform plating treatment. In the method of the present disclosure, by forming a suitable shape with an oxide film and then performing a plating treatment, it is possible to obtain the adhesion and battery characteristics required for manufacturing a current collector of a lithium ion battery.

(2−2)還元処理工程
本工程では、還元剤を含有する薬液(還元用薬液)を用いて銅箔に形成された酸化銅を還元させ、凹凸の数や長さを調整する。
(2-2) Reduction Treatment Step In this step, copper oxide formed on the copper foil is reduced using a chemical solution containing a reducing agent (reducing chemical solution), and the number and length of irregularities are adjusted.

還元剤としては、DMAB(ジメチルアミンボラン)、ジボラン、水素化ホウ素ナトリウム、ヒドラジン等を用いることができる。また、還元用薬液は、還元剤、アルカリ性化合物(水酸化ナトリウム、水酸化カリウム等)、及び溶媒(純水等)を含む液体である。 As the reducing agent, DMAB (dimethylamine borane), diborane, sodium borohydride, hydrazine and the like can be used. The chemical solution for reduction is a liquid containing a reducing agent, an alkaline compound (sodium hydroxide, potassium hydroxide, etc.), and a solvent (pure water, etc.).

(2−3)溶解処理工程
本工程では、酸化した銅表面を溶解剤で溶解して、酸化された銅表面の凸部を調整する。本工程で用いる溶解剤は特に限定されないが、キレート剤、生分解性キレート剤などが例示できる。具体的には、EDTA(エチレン次アミン四酢酸)、DHEG(ジエタノールグリシン)、GLDA(L−グルタミン酸二酢酸・四ナトリウム)、EDDS(エチレンジアミン−N,N’−ジコハク酸)、HIDS(3−ヒドロキシ−2,2’−イミノジコハク酸ナトリウム)、MGDA(メチルグリシン2酢酸3ナトリウム)、ASDA(アスパラギン酸ジ酢酸4Na)、HIDA(N−2−hydroxyethyliminodiacetic acid disodium salt)、グルコン酸ナトリウム、エチドロン酸(ヒドロキシエタンジホスホン酸)などである。
(2-3) Melting treatment step In this step, the oxidized copper surface is dissolved with a dissolving agent to adjust the convex portion of the oxidized copper surface. The dissolving agent used in this step is not particularly limited, and examples thereof include a chelating agent and a biodegradable chelating agent. Specifically, EDTA (ethylenediaminetetraacetic acid), DHEG (diethanolglycine), GLDA (L-glutamate diacetic acid / tetrasodium), EDDS (ethylenediamine-N, N'-disuccinic acid), HIDS (3-hydroxy) -2,2'-Sodium iminodisuccinate), MGDA (3 sodium methylglycine diacetate), ASDA (4Na aspartate diacetate), HIDA (N-2-hydroxythyliminodiacetic acid disodium salt), sodium gluconate, ethidronate (hydroxyl) Ethanediphosphonic acid) and the like.

溶解剤のpHは特に限定されないが、酸性では溶解量が大きいため、処理のコントロールが難しいこと、処理ムラが生じやすいことなどからアルカリ性であることが好ましく、pH9.0〜14.0であることがより好ましく、pH9.0〜10.5であることがさらに好ましく、pH9.8〜10.2であることがさらに好ましい。 The pH of the solubilizer is not particularly limited, but it is preferably alkaline, and the pH is 9.0 to 14.0 because the amount of dissolution is large when it is acidic, it is difficult to control the treatment, and uneven treatment is likely to occur. Is more preferable, the pH is more preferably 9.0 to 10.5, and the pH is even more preferably 9.8 to 10.2.

この工程において、酸化銅の溶解率が35〜99%、好ましくは50〜99%かつCuOの厚さが4〜300nm、好ましくは8〜200nmになるまで、銅表面を処理する。なお、ここでCuOの厚さはSERA(ECI社製)で測定することができる。この条件において、表面凹凸の数や長さが好適になり、処理ムラが低減されるため、予めパイロット実験を行い、このような酸化銅の層が得られるように、温度、時間などの条件を設定するのが好ましい。なお、溶解率とは、銅表面の酸化銅のうち、溶解して銅表面から除去された酸化銅の割合を意味する。 In this step, the copper surface is treated until the solubility of copper oxide is 35-99%, preferably 50-99% and the thickness of CuO is 4-300 nm, preferably 8-200 nm. Here, the thickness of CuO can be measured by SERA (manufactured by ECI). Under these conditions, the number and length of surface irregularities become suitable, and processing unevenness is reduced. Therefore, a pilot experiment is conducted in advance, and conditions such as temperature and time are set so that such a copper oxide layer can be obtained. It is preferable to set it. The dissolution rate means the ratio of copper oxide dissolved and removed from the copper surface to the copper oxide on the copper surface.

このように、銅箔に対して、第2の工程を行うことによって、表面の凸部が調整されたリチウムイオン電池の負極集電体に適した複合銅箔を製造することができる。 As described above, by performing the second step on the copper foil, it is possible to manufacture a composite copper foil suitable for the negative electrode current collector of the lithium ion battery in which the convex portion on the surface is adjusted.

これらの第2の工程で製造した銅箔に、シランカップリング剤などを用いたカップリング処理やクロメート処理、ベンゾトリアゾール類などを用いた防錆処理を行ってもよい。 The copper foil produced in these second steps may be subjected to a coupling treatment using a silane coupling agent or the like, a chromate treatment, or a rust prevention treatment using benzotriazoles or the like.

(3)第3の工程(負極集電体の製造工程)
上述のように処理した銅箔を用い、公知の方法に従ってリチウムイオン電池用の負極集電体を製造し負極を製造することができる。例えば、カーボン系活物質を含有する負極材料を調製し、溶剤もしくは水に分散させて活物質スラリーとする。この活物質スラリーを銅箔に塗布した後、溶剤や水を蒸発させるため乾燥させる。その後、プレスし、再度乾燥した後に所望の形になるよう負極集電体を成形する。なお、負極材には、カーボン系活物質よりも理論容量の大きいシリコンやシリコン化合物、ゲルマニウム、スズ、鉛などを含んでもよい。また、電解質として有機溶媒にリチウム塩を溶解させた有機電解液だけでなく、ポリエチレンオキシドやポリフッ化ビニリデンなどからなるポリマーを用いたものであってもよい。リチウムイオン電池だけでなく、リチウムイオンポリマー電池にも適用できる。
(3) Third step (manufacturing step of negative electrode current collector)
Using the copper foil treated as described above, a negative electrode current collector for a lithium ion battery can be manufactured according to a known method to manufacture a negative electrode. For example, a negative electrode material containing a carbon-based active material is prepared and dispersed in a solvent or water to prepare an active material slurry. After applying this active material slurry to the copper foil, it is dried to evaporate the solvent and water. Then, it is pressed, dried again, and then the negative electrode current collector is formed into a desired shape. The negative electrode material may contain silicon, a silicon compound, germanium, tin, lead, etc., which have a theoretical capacity larger than that of the carbon-based active material. Further, as the electrolyte, not only an organic electrolytic solution in which a lithium salt is dissolved in an organic solvent but also a polymer composed of polyethylene oxide, polyvinylidene fluoride or the like may be used. It can be applied not only to lithium-ion batteries but also to lithium-ion polymer batteries.

〔評価銅箔および銅箔の表面の粗面化処理〕
実施例及び比較例として、以下の銅箔を用い、記載の処理を行った。
[Evaluation copper foil and surface roughening treatment of copper foil]
As Examples and Comparative Examples, the following copper foils were used and the described treatments were carried out.

実施例1〜実施例3では、市販銅箔(Targray製 B−Foil)マット面の表面処理層を除去し、各種表面処理を施した。実施例4〜実施例7では、市販銅箔(古河電気工業(株)製 NC−WS)の表面処理層を除去し、後述する表面処理を施した。比較例1は、市販銅箔(Targray製 B−Foil)のマット面を、比較例2は、市販銅箔(古河電気工業(株)製 NC−WS)を、比較例3は、市販銅箔(Targray製 B−Foil)シャイニー面(カソード接触面)を用いた。 In Examples 1 to 3, the surface treatment layer on the matte surface of a commercially available copper foil (B-Foil manufactured by Targray) was removed, and various surface treatments were applied. In Examples 4 to 7, the surface treatment layer of a commercially available copper foil (NC-WS manufactured by Furukawa Electric Co., Ltd.) was removed, and the surface treatment described later was performed. Comparative Example 1 is a matte surface of a commercially available copper foil (B-Foil manufactured by Tarray), Comparative Example 2 is a commercially available copper foil (NC-WS manufactured by Furukawa Electric Co., Ltd.), and Comparative Example 3 is a commercially available copper foil. (B-Foil manufactured by Targray) A shiny surface (cathode contact surface) was used.

なお、第1の工程及び第2の工程における処理条件は、図1の表にまとめた。前処理条件および負極材料の塗布条件は、実施例と比較例で同じ条件を用いた。 The processing conditions in the first step and the second step are summarized in the table of FIG. The same pretreatment conditions and negative electrode material coating conditions were used in Examples and Comparative Examples.

(1)前処理
[アルカリ脱脂処理]
銅箔を、液温50℃、40g/Lの水酸化ナトリウム水溶液に1分間浸漬した後、水洗を行った。
(1) Pretreatment [Alkaline degreasing treatment]
The copper foil was immersed in a sodium hydroxide aqueous solution at a liquid temperature of 50 ° C. and 40 g / L for 1 minute, and then washed with water.

[酸洗浄処理]
アルカリ脱脂処理を行った銅箔を、液温25℃、10重量%の硫酸水溶液に2分間浸漬した後、水洗を行った。
[Acid cleaning treatment]
The copper foil subjected to the alkaline degreasing treatment was immersed in a sulfuric acid aqueous solution having a liquid temperature of 25 ° C. and 10% by weight for 2 minutes, and then washed with water.

[プレディップ処理]
酸洗浄処理を行った銅箔を、液温40℃、水酸化ナトリウム(NaOH)1.2g/Lのプレディップ用薬液に1分間浸漬した。
[Pre-dip processing]
The acid-washed copper foil was immersed in a chemical solution for predip at a solution temperature of 40 ° C. and 1.2 g / L of sodium hydroxide (NaOH) for 1 minute.

(2)第1の工程(酸化処理)
まず、第1の工程として実施例1、実施例2、実施例3、実施例4、実施例5、実施例7の銅箔に対し、アルカリ水溶液(20g/L水酸化ナトリウム、60g/L亜塩素酸ナトリウム、2g/L 3−グリシジルオキシプロピルトリメトキシシラン)で、酸化処理を行った。処理温度と処理時間は、実施例1が45℃で1分、実施例2、3,4,7が73℃で2分、実施例5が73℃で3分であった。
(2) First step (oxidation treatment)
First, as the first step, an alkaline aqueous solution (20 g / L sodium hydroxide, 60 g / L sub) is applied to the copper foils of Example 1, Example 2, Example 3, Example 4, Example 5, and Example 7. It was oxidized with sodium chlorite (2 g / L 3-glycidyloxypropyltrimethoxysilane). The treatment temperature and treatment time were 1 minute at 45 ° C. for Example 1, 2 minutes at 73 ° C. for Examples 2, 3, 4, and 7, and 3 minutes at 73 ° C. for Example 5.

実施例6の銅箔に対しては、アルカリ水溶液(20g/L水酸化ナトリウム、60g/L亜塩素酸ナトリウム)で73℃、8分酸化処理を行った。なお、比較例1〜比較例3の銅箔には、本発明の酸化処理などの表面処理は行っていない。 The copper foil of Example 6 was oxidized with an alkaline aqueous solution (20 g / L sodium hydroxide, 60 g / L sodium chlorite) at 73 ° C. for 8 minutes. The copper foils of Comparative Examples 1 to 3 are not subjected to surface treatment such as oxidation treatment of the present invention.

(3)第2の工程
次に、第2の工程として、第1の工程の酸化処理を行った銅箔に対して、(3−1)溶解処理、(3−2)めっき処理、(3−3)還元処理をそれぞれ1種以上の処理を行った。
(3) Second Step Next, as the second step, the copper foil subjected to the oxidation treatment of the first step is subjected to (3-1) dissolution treatment, (3-2) plating treatment, and (3). -3) One or more types of reduction treatment were performed.

(3−1)溶解処理
実施例2、実施例3、実施例7の銅箔に対しては、(2)の酸化処理後、溶剤L-グルタミン酸二酢酸四ナトリウム(38g/L)を用いて、55℃で溶解処理を行った。処理時間は、実施例2が1分、実施例3が2分、実施例7が3分であった。
(3-1) Dissolution Treatment For the copper foils of Examples 2, 3 and 7, after the oxidation treatment of (2), the solvent L-tetrasodium diglutamate (38 g / L) was used. , 55 ° C. was used for dissolution treatment. The treatment time was 1 minute for Example 2, 2 minutes for Example 3, and 3 minutes for Example 7.

(3−2)めっき処理
実施例1、実施例4の銅箔に対しては(2)の酸化処理後に、実施例2、実施例3の銅箔に対しては(3−1)の溶解処理後に、ニッケルめっき用電解液(450g/Lスルファミン酸ニッケル、40g/Lホウ酸)を用いて電解めっきを施した。電流密度は1(Å/dm2)、時間は15(秒)で行った。その他の銅箔には、めっき処理を行わなかった。
(3-2) Plating treatment After the oxidation treatment of (2) for the copper foils of Examples 1 and 4, the dissolution of (3-1) for the copper foils of Examples 2 and 3 After the treatment, electrolytic plating was performed using an electrolytic solution for nickel plating (450 g / L nickel sulfamate, 40 g / L boric acid). The current density was 1 (Å / dm2) and the time was 15 (seconds). The other copper foils were not plated.

(3−3)還元処理
実施例5、実施例6の銅箔に対しては、(2)の酸化処理後、溶剤(5g/Lジメチルアミンボラン、5g/L水酸化ナトリウム)を用いて室温で3分間静置することで、還元処理を行った。
(3-3) Reduction Treatment For the copper foils of Examples 5 and 6, after the oxidation treatment of (2), a solvent (5 g / L dimethylamine borane, 5 g / L sodium hydroxide) was used at room temperature. The reduction treatment was carried out by allowing the mixture to stand for 3 minutes.

(4)凸部の高さ及び数、並びに表面粗さの測定
(1)〜(3)の処理をした銅箔に対して、その断面を走査型顕微鏡(SEM)で観察したところ、図2の写真が得られた。この撮影像を用いて、断面の凸部の数を測定した。凸の数は走査電子顕微鏡の断面の撮影像において凸部の両端の凹部の極小点を結んだ線分と垂直に延ばした長さが5nm以上である場合に凸部として、その個数を数えた。
(4) Measurement of height and number of convex portions and surface roughness When the cross section of the copper foil treated in (1) to (3) was observed with a scanning microscope (SEM), FIG. 2 I got a picture of. Using this photographed image, the number of convex parts in the cross section was measured. The number of convexes is counted as a convex part when the length extending perpendicular to the line segment connecting the minimum points of the concave parts at both ends of the convex part is 5 nm or more in the photographed image of the cross section of the scanning electron microscope. ..

また、表面粗さRzを共焦点走査電子顕微鏡 OPTELICS H1200(レーザーテック株式会社製)を用いて測定し、JIS B 0601:2001に定められたRzにより算出した。測定条件として、スキャン幅は100μm、スキャンタイプはエリアとし、Light sourceはBlue、カットオフ値は1/5とした。オブジェクトレンズはx100、コンタクトレンズはx14、デジタルズームはx1、Zピッチは10nmの設定とし、3箇所のデータを取得し、標準偏差を計算した。また、Rzは3箇所の平均値とした。 Further, the surface roughness Rz was measured using a confocal scanning electron microscope OPTELICS H1200 (manufactured by Lasertec Co., Ltd.), and calculated by the Rz defined in JIS B 0601: 2001. As the measurement conditions, the scan width was 100 μm, the scan type was an area, the Light source was Blue, and the cutoff value was 1/5. The object lens was set to x100, the contact lens was set to x14, the digital zoom was set to x1, and the Z pitch was set to 10 nm. Data at three locations were acquired and the standard deviation was calculated. Moreover, Rz was set as the average value of three places.

このように、実施例のサンプルはいずれも、高さ5nm以上の凸部が3.8μm当たり平均10個以上であり、平均Rzが2.00μm以下で、その標準偏差は、0.3以下であった。 As described above, in each of the samples of the examples, the average number of convex portions having a height of 5 nm or more is 10 or more per 3.8 μm, the average Rz is 2.00 μm or less, and the standard deviation is 0.3 or less. there were.

(5)負極材料の塗布
(5−1)水系負極材の塗布
評価には、実施例1、実施例2、実施例3および比較例1の銅箔を用いた。
(5) Coating of negative electrode material (5-1) Coating of water-based negative electrode material The copper foils of Example 1, Example 2, Example 3, and Comparative Example 1 were used for evaluation.

グラファイト(MTI製 EQ−Lib−MCMB)、アセチレンブラック(デンカ製 Li−400)、CMC(カルボキシメチルセルロース ダイセルファインケム製 CMCダイセル2200)、SBR(スチレンブタジエンゴム 日本ゼオン製 BM−400B)、Si(Tekna Advanced Materials製)を所定の配合(グラファイト:86.5重量%、アセチレンブラック:1.5重量%、CMC:5.0重量%、SBR:2.5重量%、Si:4.5重量%)になるように秤量し、純水を用いて粘度を調整した。 Graphite (MTI EQ-Lib-MCMB), acetylene black (Denka Li-400), CMC (carboxymethyl cellulose Daicel Finechem CMC Daicel 2200), SBR (styrene butadiene rubber Nippon Zeon BM-400B), Si (Tekna Advanced) (Made by Materials) to the prescribed formulation (graphite: 86.5% by weight, acetylene black: 1.5% by weight, CMC: 5.0% by weight, SBR: 2.5% by weight, Si: 4.5% by weight) Weighed so that the viscosity was adjusted using pure water.

その後、遊星式攪拌装置にてグラファイト、アセチレンブラック、CMC、Siが均一になるまで攪拌し、最後にSBRを添加し、さらに攪拌を行った。バーコーターで塗布厚が150μm厚となるように設定し銅箔に塗布した。塗布後、水分を除去するため70℃で2時間乾燥させ、ロールプレスを用いて負極材の厚みが30μmとなるようにプレスを行い銅箔と負極材を密着させた。その後、真空、減圧した乾燥機で70℃12時間乾燥を行った。 Then, the mixture was stirred with a planetary stirrer until graphite, acetylene black, CMC, and Si became uniform, and finally SBR was added, and further stirring was performed. The coating thickness was set to 150 μm with a bar coater and applied to the copper foil. After the coating, the mixture was dried at 70 ° C. for 2 hours to remove water, and pressed using a roll press so that the thickness of the negative electrode material was 30 μm, and the copper foil and the negative electrode material were brought into close contact with each other. Then, it was dried at 70 ° C. for 12 hours in a vacuum and reduced pressure dryer.

(5−2)溶剤系負極材の塗布
評価には、実施例4、実施例5、実施例6、比較例1、比較例2および比較例3の銅箔を用いた。
(5-2) For the application evaluation of the solvent-based negative electrode material, the copper foils of Example 4, Example 5, Example 6, Comparative Example 1, Comparative Example 2 and Comparative Example 3 were used.

グラファイト(日本黒鉛製)、アセチレンブラック(デンカ製 Li−400)、PVDF(ポリフッ化ビニリデン クレハ製 L#1120)、を使用し、所定の配合(グラファイト:85重量%、アセチレンブラック:5重量%、PDVF:10重量%)となるように秤量した。溶媒としてNMPを用いて粘度を調整した。 Using graphite (manufactured by Nippon Graphite), acetylene black (manufactured by Denka Li-400), PVDF (manufactured by polyvinylidene fluoride Kureha L # 1120), a predetermined formulation (graphite: 85% by weight, acetylene black: 5% by weight, PDVF: 10% by weight) was weighed. The viscosity was adjusted using NMP as the solvent.

その後、遊星式攪拌装置にてグラファイト、アセチレンブラック、PVDFが均一になるまで攪拌し、バーコーターで塗布厚が150μm厚となるように設定し銅箔に塗布した。塗布後、溶媒を除去するため80℃で2時間乾燥させ、ロールプレスを用いて負極材の厚みが30μmとなるようにプレスを行い銅箔と負極材を密着させた。その後、真空、減圧した乾燥機で120℃、12時間乾燥を行った。 Then, graphite, acetylene black, and PVDF were stirred with a planetary stirrer until they became uniform, and the coating thickness was set to 150 μm with a bar coater and coated on the copper foil. After the coating, the mixture was dried at 80 ° C. for 2 hours to remove the solvent, and pressed using a roll press so that the thickness of the negative electrode material was 30 μm, and the copper foil and the negative electrode material were brought into close contact with each other. Then, it was dried at 120 ° C. for 12 hours in a vacuum and reduced pressure dryer.

図3は溶剤系負極剤の塗布安定性を示す図である。図3の左側が実施例4であり、凸部が多いため密着性が良好でかつ、毛管現象により均一に負極剤が塗布されている。一方、図3の右側は比較例1であり、凸部の数が少ないため密着力も毛管現象も得られず、部分的に剥離が多く生じている。 FIG. 3 is a diagram showing the coating stability of the solvent-based negative electrode agent. The left side of FIG. 3 is Example 4, in which the adhesion is good because there are many convex portions, and the negative electrode agent is uniformly applied due to the capillary phenomenon. On the other hand, the right side of FIG. 3 is Comparative Example 1, and since the number of convex portions is small, neither the adhesion force nor the capillary phenomenon can be obtained, and a large amount of peeling occurs partially.

(6)コインセル作製
コインセルの作製については負極には(5)負極材料の塗布で作製したサンプルを用いた。コインセルに電解液として1M LiPF6/EC−DEC(1:1)を使用し、負極、セパレーター、リチウム箔を用いてコインセルを作製した。
(6) Preparation of coin cell For the production of the coin cell, a sample prepared by coating the negative electrode material (5) was used as the negative electrode. A coin cell was prepared by using 1M LiPF6 / EC-DEC (1: 1) as an electrolytic solution in the coin cell and using a negative electrode, a separator, and a lithium foil.

(7)充放電特性の測定
0.2C、1サイクルで電解液の還元分解により負極表面上に形成される薄膜であるSEI(SolidElectrolyte Interphase)を作製後、ディスチャージはCC−CV(電圧10mV、電流0.1Cまで)モード、チャージはCC(電圧1500mVまで)モードで30℃で1C⇒3C⇒5C⇒1Cをそれぞれ3サイクルずつ繰り返した後、50℃で同様に1C⇒3C⇒5C⇒1Cをそれぞれ3サイクルずつ繰り返し、50℃の5Cの3サイクル目の特性を評価した。
(7) Measurement of charge / discharge characteristics After producing SEI (Solid Electrolyte Interphase), which is a thin film formed on the surface of the negative electrode by reduction decomposition of the electrolytic solution in one cycle of 0.2C, the discharge is CC-CV (voltage 10 mV, current). (Up to 0.1C) mode, charge is CC (voltage up to 1500 mV) mode, 1C⇒3C⇒5C⇒1C is repeated 3 cycles each at 30 ° C, and then 1C⇒3C⇒5C⇒1C is repeated at 50 ° C. The characteristics of the third cycle of 5C at 50 ° C. were evaluated by repeating 3 cycles each.

(8)負極材残存率の測定
密着性の評価として、(5)の負極材の塗布後の銅箔を使用して負極材残存率を算出した。まず、負極材が塗布してある銅箔の重さを測定する。その後、固定するための板に両面テープを貼り、その上にセロハンテープの粘着面が負極材に接するようにセロハンテープを貼り、その後、負極材を塗布した銅箔の負極材面をセロハンテープに接するように貼り、5kN/inch2の圧力を負荷後、ピール強度試験機(Imada製)で90°ピール強度試験条件(JIS 0237:2009)で剥離し、銅箔側に残存している負極材量を測定した。試験方法を図4に示す。
(8) Measurement of negative electrode material residual rate As an evaluation of adhesion, the negative electrode material residual rate was calculated using the copper foil after coating of the negative electrode material in (5). First, the weight of the copper foil coated with the negative electrode material is measured. After that, double-sided tape is attached to the plate for fixing, cellophane tape is attached on it so that the adhesive surface of the cellophane tape is in contact with the negative electrode material, and then the negative electrode material surface of the copper foil coated with the negative electrode material is attached to the cellophane tape. Adhesive so that they are in contact with each other, and after applying a pressure of 5 kN / inch2, they are peeled off under 90 ° peel strength test conditions (JIS 0237: 2009) with a peel strength tester (manufactured by Imada), and the amount of negative electrode material remaining on the copper foil side. Was measured. The test method is shown in FIG.

負極材残存率は以下の式を用いて算出した。 The negative electrode material residual ratio was calculated using the following formula.

負極材残存率[%]=(試験後の全重量−銅箔の重さ)/(試験前の全重量−銅箔の重さ)×100
水系負極材との評価結果を表2に示す。溶剤系負極材との評価結果を表3に示す。
Negative electrode material residual ratio [%] = (total weight after test-weight of copper foil) / (total weight before test-weight of copper foil) x 100
Table 2 shows the evaluation results with the water-based negative electrode material. Table 3 shows the evaluation results with the solvent-based negative electrode material.

このように、少なくとも表面の一部に高さ5nm以上の凸部を有し、凸部の密度が3.8μmあたり平均15個以上100個以下の銅箔を用いて、リチウムイオン電池の負極集電体を製造することによって、銅箔と負極との密着性や容量維持率が改善される。 As described above, a collection of negative electrodes of a lithium ion battery using copper foil having convex portions having a height of 5 nm or more on at least a part of the surface and an average of 15 or more and 100 or less convex portions per 3.8 μm. By manufacturing the electric body, the adhesion between the copper foil and the negative electrode and the capacity retention rate are improved.

Claims (8)

走査電子顕微鏡の断面の撮影像において、少なくとも表面の一部に、両端の凹部の極小点を結んだ線分と垂直に延ばした長さが5nm以上の凸部があり、
前記一部において、表面に平行な方向で測ったときの3.8μmあたり、前記凸部の密度が平均15個以上100個以下であり、
前記一部の表面粗さRzの平均が2μm以下であり、
前記表面が酸化銅を含む層を有し、前記層の表面が銅以外の金属によりめっき処理されている銅箔。
In the photographed image of the cross section of the scanning electron microscope, at least a part of the surface has a convex portion having a length of 5 nm or more extending perpendicular to the line segment connecting the minimum points of the concave portions at both ends.
In the above part, the density of the convex portions is 15 or more and 100 or less on average per 3.8 μm measured in the direction parallel to the surface.
The average of the surface roughness Rz of a part thereof is 2 μm or less.
A copper foil whose surface has a layer containing copper oxide, and the surface of the layer is plated with a metal other than copper.
前記一部において、前記凸部の密度が3.8μmあたり平均20個以上62個以下である、請求項1に記載の銅箔。 The copper foil according to claim 1, wherein in a part thereof, the density of the convex portions is 20 or more and 62 or less on average per 3.8 μm. 前記一部の表面粗さRzの3点標準偏差σが0.5以下である、請求項1または2に記載の銅箔。 The copper foil according to claim 1 or 2, wherein the three-point standard deviation σ of a part of the surface roughness Rz is 0.5 or less. 前記一部の表面粗さRzの3点標準偏差σが0.3以下である、請求項1または2に記載の銅箔。 The copper foil according to claim 1 or 2, wherein the three-point standard deviation σ of a part of the surface roughness Rz is 0.3 or less. 前記一部の表面粗さRzの平均が1.54μm以下である、請求項1〜4のいずれか1項に記載の銅箔。 The copper foil according to any one of claims 1 to 4, wherein the average of the surface roughness Rz of a part thereof is 1.54 μm or less. 請求項1〜5のいずれか1項に記載の銅箔を含む、リチウムイオン電池の負極集電体。 A negative electrode current collector for a lithium ion battery, comprising the copper foil according to any one of claims 1 to 5. 請求項6に記載のリチウムイオン電池の負極集電体の製造方法であって、
銅箔の銅表面を亜塩素酸ナトリウム、次亜塩素酸ナトリウム、塩素酸カリウム、過塩素酸カリウムから選択される1以上の酸化剤によって酸化し、凸部を形成する第1の工程と、
酸化した前記銅表面を前記銅以外の金属によりめっき処理する第2の工程と、
前記銅表面を前記銅以外の金属によりめっき処理した前記銅箔を用いて負極集電体を製造する第3の工程と、
を含む、製造方法。
The method for manufacturing a negative electrode current collector for a lithium ion battery according to claim 6.
The first step of oxidizing the copper surface of the copper foil with one or more oxidizing agents selected from sodium chlorite, sodium hypochlorite, potassium chlorate, and potassium perchlorate to form a convex portion, and
A second step of plating the oxidized copper surface with a metal other than copper , and
A third step of manufacturing a negative electrode current collector using the copper foil whose copper surface is plated with a metal other than copper.
Manufacturing method, including.
前記第2の工程の前に、前記第1の工程で酸化した銅表面を溶解する工程および/または還元する第4の工程をさらに含む、請求項7に記載の製造方法。 The production method according to claim 7, further comprising a step of dissolving the copper surface oxidized in the first step and / or a fourth step of reducing the copper surface before the second step.
JP2019038914A 2019-03-04 2019-03-04 Negative current collector of copper foil and lithium ion battery containing it and its manufacturing method Active JP6778291B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019038914A JP6778291B1 (en) 2019-03-04 2019-03-04 Negative current collector of copper foil and lithium ion battery containing it and its manufacturing method
KR1020217021939A KR20220002243A (en) 2019-03-04 2019-12-16 Copper foil and negative electrode current collector of lithium ion battery comprising same, and method for manufacturing the same
PCT/JP2019/049161 WO2020179181A1 (en) 2019-03-04 2019-12-16 Copper foil and lithium ion battery negative electrode current collector including said copper foil, and manufacturing method thereof
CN201980088858.9A CN113330611A (en) 2019-03-04 2019-12-16 Copper foil, negative electrode collector for lithium ion battery comprising same, and method for producing same
TW109101546A TWI821504B (en) 2019-03-04 2020-01-16 Copper foil, negative electrode current collector of lithium ion battery including the copper foil, and method of manufacturing the negative electrode current collector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019038914A JP6778291B1 (en) 2019-03-04 2019-03-04 Negative current collector of copper foil and lithium ion battery containing it and its manufacturing method

Publications (2)

Publication Number Publication Date
JP6778291B1 true JP6778291B1 (en) 2020-10-28
JP2020194615A JP2020194615A (en) 2020-12-03

Family

ID=72338548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019038914A Active JP6778291B1 (en) 2019-03-04 2019-03-04 Negative current collector of copper foil and lithium ion battery containing it and its manufacturing method

Country Status (5)

Country Link
JP (1) JP6778291B1 (en)
KR (1) KR20220002243A (en)
CN (1) CN113330611A (en)
TW (1) TWI821504B (en)
WO (1) WO2020179181A1 (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11167922A (en) * 1997-12-05 1999-06-22 Mitsubishi Materials Corp Surface-treated copper foil and battery electrode using the same
JPH11307102A (en) * 1998-04-24 1999-11-05 Hitachi Ltd Lithium secondary battery and manufacture thereof
US6228536B1 (en) * 1999-07-13 2001-05-08 Hughes Electronics Corporation Lithium-ion battery cell having an oxidized/reduced negative current collector
JP2008305781A (en) * 2007-05-09 2008-12-18 Mitsubishi Chemicals Corp Electrode, its manufacturing method, and nonaqueous electrolte secondary battery
JP2010205507A (en) * 2009-03-02 2010-09-16 Kobe Steel Ltd Lithium battery or copper alloy collector for capacitor and method of manufacturing the same
JP5363949B2 (en) * 2009-11-12 2013-12-11 株式会社神戸製鋼所 Negative electrode for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP6281154B2 (en) * 2013-09-30 2018-02-21 株式会社クラレ Negative electrode sheet of lithium ion secondary battery and lithium ion secondary battery
JP2017014608A (en) * 2015-07-06 2017-01-19 古河電気工業株式会社 Electrolytic copper foil, lithium ion secondary battery negative electrode and lithium ion secondary battery, printed wiring board, and electromagnetic wave-shielding material
KR20170085425A (en) * 2016-01-13 2017-07-24 엘에스엠트론 주식회사 Copper Foil, Method for Manufacturing The Same, Electrode Comprising The Same, and Secondary Battery Comprising The Same
JP7013003B2 (en) * 2017-11-10 2022-01-31 ナミックス株式会社 Objects with a roughened copper surface
EP3708696A4 (en) * 2017-11-10 2021-07-21 Namics Corporation Composite copper foil

Also Published As

Publication number Publication date
TWI821504B (en) 2023-11-11
CN113330611A (en) 2021-08-31
JP2020194615A (en) 2020-12-03
WO2020179181A1 (en) 2020-09-10
KR20220002243A (en) 2022-01-06
TW202034563A (en) 2020-09-16

Similar Documents

Publication Publication Date Title
JP5276158B2 (en) Lithium ion secondary battery, negative electrode for battery, and electrolytic copper foil for battery negative electrode current collector
JP5666839B2 (en) Negative electrode for secondary battery, negative electrode current collector, secondary battery, and production method thereof
JP5090028B2 (en) Copper foil for negative electrode current collector of lithium secondary battery and method for producing the same
KR20140023955A (en) Lithium ion secondary cell, current collector constituting negative electrode of secondary cell, and electrolytic copper foil constituting negative-electrode current collector
WO2022005999A1 (en) Anodes for lithium-based energy storage devices
EP3621133A1 (en) Anode for secondary battery, manufacturing method therefor, and lithium secondary battery manufactured using same
JP5437155B2 (en) Secondary battery negative electrode, electrode copper foil, secondary battery, and method for producing secondary battery negative electrode
JP6726780B1 (en) Copper foil, negative electrode current collector for lithium ion battery including the same, and method for producing the same
WO2013018898A1 (en) Negative-pole material manufacturing method for lithium ion secondary battery and negative-pole material for lithium ion secondary battery
TW201338238A (en) Lithium ion secondary battery, collector constituting negative electrode of lithium ion secondary battery, and electrolytic copper foil constituting negative electrode collector
JP2006202635A (en) Copper foil for lithium secondary battery electrode, manufacturing method of copper foil, electrode for lithium secondary battery using copper foil, and lithium secondary battery
JP2006155900A (en) Electrode for secondary battery, its manufacturing method and secondary battery
JP6778291B1 (en) Negative current collector of copper foil and lithium ion battery containing it and its manufacturing method
JP2013008540A (en) Collector for nonaqueous electrolyte secondary battery and electrode using the same
JP2003242983A (en) Positive electrode collector foil for lead acid storage battery
JP5356308B2 (en) Secondary battery negative electrode, electrode copper foil, secondary battery, and method for producing secondary battery negative electrode
JP2008041347A (en) Negative electrode for lithium ion secondary battery, and method for manufacturing the same
JP4460055B2 (en) Copper foil for lithium secondary battery electrode and method for producing the same, electrode for lithium secondary battery and lithium secondary battery using the copper foil
JP2006228652A (en) Copper foil for electrode of lithium secondary battery and its manufacturing method, and electrode for lithium secondary battery and lithium secondary battery using the copper foil
JP2951940B2 (en) Electrode for alkaline storage battery, method for producing the same, and alkaline storage battery
TWI829898B (en) Method for manufacturing metal components with metal layers
JP2013012450A (en) Metal foil for collector of lithium ion secondary battery electrode, method of manufacturing the metal foil, and lithium ion secondary battery using the metal foil as collector
JP2011187195A (en) Method of manufacturing negative electrode for secondary battery, negative electrode for secondary battery, and negative electrode copper foil for secondary battery
JP2005340028A (en) Activator particle for nonaqueous electrolyte secondary battery
WO2021217276A1 (en) Method for forming silicon anodes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190307

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190307

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190813

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201009

R150 Certificate of patent or registration of utility model

Ref document number: 6778291

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250