JPH11167922A - Surface-treated copper foil and battery electrode using the same - Google Patents

Surface-treated copper foil and battery electrode using the same

Info

Publication number
JPH11167922A
JPH11167922A JP9335551A JP33555197A JPH11167922A JP H11167922 A JPH11167922 A JP H11167922A JP 9335551 A JP9335551 A JP 9335551A JP 33555197 A JP33555197 A JP 33555197A JP H11167922 A JPH11167922 A JP H11167922A
Authority
JP
Japan
Prior art keywords
foil
copper foil
active material
needle
material layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9335551A
Other languages
Japanese (ja)
Inventor
Shigeyuki Gotou
習志 後藤
Sawako Takeuchi
さわ子 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP9335551A priority Critical patent/JPH11167922A/en
Publication of JPH11167922A publication Critical patent/JPH11167922A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/382Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize high capacity of a battery by firmly adhering an active material layer and a foil main body in making a needle-like body bite inside the active material layer formed on a surface of the foil main body, by protrusively forming the needle-like body from a foil surface at specific average density. SOLUTION: Surface-treated copper foil is formed on a foil surface by projecting a needle-like body 11 from a surface of a foil main body 10 in average density of 5 to 900 pieces/μm<2> . A thickness of the foil main body 10 is set to about 5 to 100 μm, preferably 10 to 30 μm. The needle-like body 11 is formed on the foil surface having the needle-like body 11 of copper oxide grown from the foil main body 10 by performing oxidizing processing on the copper foil in the first place. An oxidizing processing method is performed by heating it or soaking it in alkali containing an oxidizing agent such as chlorite and peroxodisulfate or a neutral aqueous solution. The needle-like body 11 composed of copper is formed by reducing copper oxide of the needle-like body 11 which is formed on a surface of the copper foil by performing electrolytic processing using the oxidizing processing performed copper foil as a cathode.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は表面処理された銅箔
及びこれを用いた電池用電極に関する。更に詳しくはリ
チウムイオン電池の集電体として用いられる電極に適す
る表面処理銅箔に関するものである。
The present invention relates to a surface-treated copper foil and a battery electrode using the same. More specifically, the present invention relates to a surface-treated copper foil suitable for an electrode used as a current collector of a lithium ion battery.

【0002】[0002]

【従来の技術】この種のリチウムイオン電池の負極は、
圧延銅箔、電解銅箔等の銅箔からなる集電体上に活物質
層を有する。この活物質層は黒鉛のような活物質とバイ
ンダを含むスラリーを塗布し乾燥することにより形成さ
れる。しかし単に活物質スラリーを銅箔の集電体上に塗
布し乾燥しただけでは活物質層の接着力が不十分であっ
て、活物質層が集電体から剥離し易い。このため接着剤
を活物質スラリーに添加混合したり、或はスラリー中の
バインダを接着剤として機能する物質に変えることによ
り、活物質層の集電体への接着力を高めていた。この接
着力を高めた活物質層において、電池の容量を増大させ
るためには活物質を多く配合する必要があるが、活物質
の量を多くすると、接着剤や接着剤として機能していた
バインダの量が相対的に低下して再び接着力が劣り、集
電体から活物質層が剥離する問題を生じる。そのため、
従来より箔状の集電体の表面をサンドブラスト法により
粗面化する方法(特開平9−22699)又は箔状の集
電体を凹凸が付いたガイドローラに通して粗面化する方
法(特開平8−195202)などにより、集電体から
の活物質層の剥離を抑制することが提案されている。
2. Description of the Related Art The negative electrode of this type of lithium ion battery is:
An active material layer is provided on a current collector made of a copper foil such as a rolled copper foil and an electrolytic copper foil. This active material layer is formed by applying and drying a slurry containing an active material such as graphite and a binder. However, simply applying the active material slurry on a copper foil current collector and drying it is insufficient in the adhesive force of the active material layer, and the active material layer is easily peeled off from the current collector. For this reason, the adhesive force of the active material layer to the current collector has been increased by adding and mixing the adhesive to the active material slurry or changing the binder in the slurry to a material that functions as an adhesive. In this active material layer with increased adhesive strength, it is necessary to mix a large amount of active material in order to increase the capacity of the battery. However, if the amount of active material is increased, the adhesive or the binder functioning as an adhesive is required. , The adhesive strength is again deteriorated and the active material layer is separated from the current collector. for that reason,
Conventionally, a method of roughening the surface of a foil-shaped current collector by a sandblast method (Japanese Patent Laid-Open No. 9-22699) or a method of roughening the surface of a foil-shaped current collector by passing it through a guide roller having irregularities (particularly, For example, Japanese Unexamined Patent Publication No. 8-195202) proposes to suppress the separation of the active material layer from the current collector.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記2つの公
報に開示された方法による粗面化では、集電体からの活
物質層の剥離の抑制効果が不十分で、活物質層中に活物
質を多く配合した場合には、活物質層が集電体から剥離
してしまう問題点が依然として残されていた。本発明の
目的は、活物質の配合を多くした活物質層を箔表面に形
成して電池の容量を増大させても、活物質層が剥離する
ことのない表面処理銅箔及びこれを用いた電池用電極を
提供することにある。
However, the surface roughening by the methods disclosed in the above two publications has an insufficient effect of suppressing the separation of the active material layer from the current collector, and the active material in the active material layer does not have sufficient effect. When many substances are blended, there still remains a problem that the active material layer is separated from the current collector. An object of the present invention is to use a surface-treated copper foil in which an active material layer is not peeled off even when an active material layer containing a large amount of an active material is formed on a foil surface to increase the capacity of a battery, and using the same. An object of the present invention is to provide a battery electrode.

【0004】[0004]

【課題を解決するための手段】請求項1に係る発明は、
図1に示すように、箔本体10の表面から針状体11が
前記表面に5〜900本/μm2の平均密度で前記表面
から突出して形成された表面処理銅箔である。請求項2
に係る発明は、請求項1に係る発明であって、針状体1
1の平均長さが0.05〜2.0μmである表面処理銅
箔である。請求項3に係る発明は、図4に示すように、
請求項1又は2記載の表面処理銅箔を集電体として用い
た電池用電極である。
The invention according to claim 1 is
As shown in FIG. 1, the surface-treated copper foil is formed by projecting needle-like bodies 11 from the surface of the foil main body 10 at an average density of 5 to 900 pieces / μm 2 from the surface. Claim 2
The invention according to claim 1 is the invention according to claim 1, wherein the needle-like body 1
1 is a surface-treated copper foil having an average length of 0.05 to 2.0 μm. The invention according to claim 3 is, as shown in FIG.
A battery electrode using the surface-treated copper foil according to claim 1 or 2 as a current collector.

【0005】この表面処理銅箔を電池用電極の集電体と
して用いる場合に、図4に示すように箔表面に活物質ス
ラリーを塗布し乾燥して活物質層12を形成すると、箔
本体10の表面に高密度で突出して形成された針状体1
1が活物質層12の内部に食込み、投錨効果を生じる。
この針状体11の投錨効果により活物質層12が箔本体
10と強固に接着する。従って活物質層12中の活物質
の配合量を多くしても箔本体10から活物質層12が剥
離することなく電池の高容量化が可能となる。
When this surface-treated copper foil is used as a current collector for a battery electrode, an active material slurry is applied to the foil surface and dried to form an active material layer 12 as shown in FIG. Needle-like body 1 protruding at high density on the surface of
1 penetrates into the active material layer 12 to produce an anchoring effect.
The active material layer 12 is firmly adhered to the foil main body 10 by the anchor effect of the needle-like body 11. Therefore, even if the amount of the active material in the active material layer 12 is increased, the capacity of the battery can be increased without the active material layer 12 peeling off from the foil body 10.

【0006】[0006]

【発明の実施の形態】本発明の銅箔は、純銅からなる箔
に限らず、銅を基とする合金からなる箔を包含する。ま
た銅の針状体も、純銅からなる針状体に限らず、銅を基
とする合金からなる針状体を包含する。この銅箔の厚さ
は、本発明の銅箔の用途に応じて決められる。電池の電
極とする場合には、図1に示す箔本体10の厚さは5〜
100μm、好ましくは10〜30μmである。5μm
未満の場合には、集電体としての強度が不足し、100
μmを超えると体積当りの容量が低下し好ましくない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The copper foil of the present invention is not limited to a foil made of pure copper, but includes a foil made of a copper-based alloy. The copper needles are not limited to the needles made of pure copper, but include needles made of an alloy based on copper. The thickness of the copper foil is determined according to the use of the copper foil of the present invention. When used as a battery electrode, the thickness of the foil body 10 shown in FIG.
It is 100 μm, preferably 10 to 30 μm. 5 μm
If less, the strength as a current collector is insufficient, and
If it exceeds μm, the capacity per volume is undesirably reduced.

【0007】図1に示すように、この表面処理された銅
箔は、箔本体10の表面の垂直方向に突出して形成され
る針状体11は以下のように形成される。先ず銅箔を酸
化処理することにより酸化銅の針状体を箔本体から成長
させて箔表面に形成する。この酸化処理の方法としては
加熱するか、或は亜塩素酸、ペルオキソ二硫酸塩等の酸
化剤を含むアルカリ又は中性の水溶液に浸漬して行われ
る。次いで酸化処理された銅箔を陰極に用いた電解処理
を行うことにより、銅箔の表面に形成されていた針状体
の酸化銅を還元して銅からなる針状体11を形成する。
この電解処理の電解液としてはNaOH、H2SO4、N
3PO4のようなアルカリ、酸、塩を1種類以上溶解さ
せた水溶液が挙げられる。電解液のpHは好ましくは7
以上である。
As shown in FIG. 1, this surface-treated copper foil has a needle-like body 11 formed so as to protrude in the vertical direction on the surface of a foil body 10 as follows. First, copper oxide needles are grown from the foil body by oxidizing the copper foil and formed on the foil surface. This oxidation treatment is carried out by heating or immersing in an alkali or neutral aqueous solution containing an oxidizing agent such as chlorous acid or peroxodisulfate. Next, by performing electrolytic treatment using the oxidized copper foil as a cathode, the acicular copper oxide formed on the surface of the copper foil is reduced to form the acicular body 11 made of copper.
As the electrolytic solution for this electrolytic treatment, NaOH, H 2 SO 4 , N
An aqueous solution in which one or more alkalis, acids, and salts such as a 3 PO 4 are dissolved is exemplified. The pH of the electrolyte is preferably 7
That is all.

【0008】上記銅箔の処理温度、処理時間、処理雰囲
気、処理液組成等の酸化条件を制御することにより、針
状体の密度及び長さを調整することができる。この箔本
体の表面に形成される針状体の好ましい平均密度は20
〜100本/μm2である。密度が5本/μm2未満の場
合には、後工程で箔本体10の表面に形成される活物質
層に対する投錨効果が不十分となり、900本/μm2
を超えると活物質層の箔本体への密着が困難になる。ま
たこの箔本体の表面に形成される針状体の好ましい平均
長さは0.1〜0.5μmである。長さが0.05μm
未満の場合及び2.0μmを超える場合にはいずれも上
記投錨効果が不十分となる。
The density and length of the needle-shaped body can be adjusted by controlling the oxidizing conditions such as the processing temperature, processing time, processing atmosphere, and processing solution composition of the copper foil. The preferred average density of the needles formed on the surface of the foil body is 20.
100100 / μm 2 . When the density is less than 5 / μm 2 , the anchoring effect on the active material layer formed on the surface of the foil body 10 in a later step becomes insufficient, and 900 / μm 2.
If it exceeds 300, it will be difficult to adhere the active material layer to the foil body. The preferred average length of the needle-shaped body formed on the surface of the foil body is 0.1 to 0.5 μm. Length is 0.05μm
When the diameter is less than 2.0 μm or less than 2.0 μm, the anchoring effect becomes insufficient.

【0009】[0009]

【実施例】次に本発明の具体的態様を示すために、本発
明の実施例を比較例とともに説明する。 <実施例1> (a) 銅箔の酸化 厚さ18μmの圧延銅箔をNaClO2を40g/l、
NaOHを15g/l、及びNa3PO4・12H2Oを
12g/lの割合で含む95℃の水溶液に3分間浸漬し
て表面に酸化銅の針状体を形成した後、20℃のイオン
交換水で1分間洗浄した。
EXAMPLES Next, examples of the present invention will be described together with comparative examples in order to show specific embodiments of the present invention. <Example 1> (a) Oxidation of copper foil A rolled copper foil having a thickness of 18 µm was prepared by adding 40 g / l of NaClO 2 ,
After immersing in a 95 ° C. aqueous solution containing 15 g / l of NaOH and 12 g / l of Na 3 PO 4 .12H 2 O for 3 minutes to form needles of copper oxide on the surface, ions at 20 ° C. Washed for 1 minute with exchanged water.

【0010】(b) 銅箔の電解 NaOHを40g/l含む25℃の水溶液中において、
上記工程(a)で酸化した銅箔を陰極とし、ステンレス鋼
(SUS304)を陽極として1.5Vの定電圧で電解
を行った。電流値が次第に減少して、一定値を示すよう
になったところで電解を終了し、電解処理した銅箔を2
0℃のイオン交換水で1分間洗浄し、乾燥した。電解し
た銅箔の一部を窒素で脱気した20℃の10%硫酸に浸
漬したが、変化は認められず、このことから表面の酸化
銅が銅に還元されたことが明らかとなった。電解後の銅
箔の走査型電子顕微鏡(SEM)写真を図2及び図3に
示す。
(B) Electrolysis of copper foil In a 25 ° C. aqueous solution containing 40 g / l of NaOH,
Electrolysis was performed at a constant voltage of 1.5 V using the copper foil oxidized in the above step (a) as a cathode and stainless steel (SUS304) as an anode. When the current value gradually decreases and reaches a constant value, the electrolysis is terminated, and the electrolytically treated copper foil is removed.
It was washed with ion exchanged water at 0 ° C. for 1 minute and dried. A part of the electrolyzed copper foil was immersed in 10% sulfuric acid at 20 ° C. degassed with nitrogen, but no change was observed. This revealed that copper oxide on the surface was reduced to copper. FIGS. 2 and 3 show scanning electron microscope (SEM) photographs of the copper foil after the electrolysis.

【0011】(c) 電池の負極の作製 平均粒径20μmの黒鉛粉末からなる活物質90重量%
と、ポリフッ化ビニリデンからなるバインダ10重量%
をN−メチルピロリドンからなる溶媒に分散させて活物
質スラリーを調製した。上記工程(b)で電解した銅箔の
表面にこのスラリーをドクターブレードを使用して塗
布、乾燥した後、80%の厚さまでロールプレスし、1
00μmの厚さにした。こうして、図4に示すように圧
延銅箔10の電解処理面に活物質層12が形成された厚
さ100μmの実施例1のリチウムイオン電池の負極を
作製した。
(C) Preparation of negative electrode for battery 90% by weight of active material comprising graphite powder having an average particle size of 20 μm
And 10% by weight of a binder made of polyvinylidene fluoride
Was dispersed in a solvent composed of N-methylpyrrolidone to prepare an active material slurry. This slurry was applied to the surface of the copper foil electrolyzed in the above step (b) using a doctor blade, dried, and then roll-pressed to a thickness of 80%.
The thickness was set to 00 μm. Thus, a negative electrode of the lithium ion battery of Example 1 having a thickness of 100 μm in which the active material layer 12 was formed on the electrolytically treated surface of the rolled copper foil 10 as shown in FIG. 4 was produced.

【0012】<比較例1>実施例1と同一の厚さ18μ
mの圧延銅箔を用い、この圧延銅箔に対し、上記工程
(a)及び上記工程(b)を実施しないで、これ以外は実質的
に実施例1の方法で圧延銅箔の表面に活物質層が形成さ
れた厚さ100μmの比較例1のリチウムイオン電池の
負極を作製した。ここで、実施例1及び比較例1のリチ
ウムイオン電池の負極の銅箔表面から活物質層表面まで
の電気抵抗値をデジタルマルチメータで測定したが、同
等の値であった。このことからも実施例1の銅箔表面に
酸化銅は残留していないことが明らかである。
<Comparative Example 1> The same thickness of 18 μm as in Example 1
m rolled copper foil and the above process
The lithium ion battery of Comparative Example 1 having a thickness of 100 μm and having the active material layer formed on the surface of the rolled copper foil by the method of Example 1 except that (a) and the step (b) were not performed Was produced. Here, the electric resistance value from the copper foil surface of the negative electrode of the lithium ion batteries of Example 1 and Comparative Example 1 to the surface of the active material layer was measured by a digital multimeter and found to be equivalent. From this, it is clear that no copper oxide remains on the copper foil surface of Example 1.

【0013】<比較評価>実施例1及び比較例1のリチ
ウムイオン電池の負極について、それぞれの負極を構成
する活物質層から銅箔を引き剥がす試験を実施した。こ
の引き剥がし試験では、先ず負極を10mm×180m
mの大きさに切断し、次いで両面テープで活物質層表面
を銅板に貼付けた。次に銅箔の10mm×10mm部分
を剥離させ、引張り試験器のつかみ具でつかみ、銅板に
対して垂直方向に毎分100mmで引上げ、引き剥がし
荷重を測定した。測定結果はJIS−K6854(接着
剤のはく離接着強さ試験方法)に準拠して処理した。そ
の結果を表1に示す。
<Comparative Evaluation> With respect to the negative electrodes of the lithium ion batteries of Example 1 and Comparative Example 1, a test was conducted in which a copper foil was peeled off from the active material layer constituting each negative electrode. In this peeling test, first, the negative electrode was 10 mm × 180 m
m, and the surface of the active material layer was attached to a copper plate with a double-sided tape. Next, a 10 mm × 10 mm portion of the copper foil was peeled off, gripped with a gripper of a tensile tester, pulled up in a direction perpendicular to the copper plate at 100 mm / min, and the peeling load was measured. The measurement results were processed in accordance with JIS-K6854 (test method for peel strength of adhesive). Table 1 shows the results.

【0014】[0014]

【表1】 [Table 1]

【0015】表1より明らかなように、本発明の銅箔を
用いて作製した実施例1のリチウムイオン電池の負極は
表面処理を施していない圧延銅箔を用いて作製した比較
例1のリチウムイオン電池の負極に比べて活物質層と銅
箔との接着力が大きい。比較例1のリチウムイオン電池
の負極においては界面破壊が生じたのに対し、実施例1
のリチウムイオン電池の負極においては活物質層の凝集
破壊が生じたことから、本発明の表面処理銅箔を用いる
ことにより、界面の相互作用が増大し、十分な界面にお
ける接着力が得られたことが明らかとなった。
As is clear from Table 1, the negative electrode of the lithium ion battery of Example 1 manufactured using the copper foil of the present invention was manufactured using the rolled copper foil having no surface treatment. The adhesive force between the active material layer and the copper foil is larger than that of the negative electrode of the ion battery. In the negative electrode of the lithium ion battery of Comparative Example 1, interfacial breakdown occurred.
In the negative electrode of the lithium ion battery, cohesive failure of the active material layer occurred, and thus, by using the surface-treated copper foil of the present invention, interaction at the interface was increased, and sufficient adhesive force at the interface was obtained. It became clear.

【0016】[0016]

【発明の効果】以上述べたように、本発明によれば、箔
本体の箔表面から針状体を5〜900本/μm2の平均
密度で表面から突出して形成するようにしたので、箔本
体の表面に形成される活物質層の内部に針状体が食込む
ことにより、活物質層が箔本体と強固に接着する。従っ
て活物質層中の活物質の量を相対的に多く配合しても、
活物質層の箔本体に対する接着力は低下せず、活物質層
が箔本体から活物質層が剥離することなく、電池を高容
量化することが可能となる。
As described above, according to the present invention, the needle-like bodies are formed so as to protrude from the foil surface of the foil body at an average density of 5 to 900 needles / μm 2 from the foil surface. The active material layer is firmly adhered to the foil main body when the needle-like body bites into the active material layer formed on the surface of the main body. Therefore, even if the amount of the active material in the active material layer is relatively large,
The adhesive strength of the active material layer to the foil main body does not decrease, and the active material layer does not peel off from the foil main body, so that the capacity of the battery can be increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の表面処理銅箔の要部の拡大して模式的
に示す断面図。
FIG. 1 is a cross-sectional view schematically showing an enlarged main part of a surface-treated copper foil of the present invention.

【図2】図3の銅箔表面を倍率を高めて撮影した走査型
電子顕微鏡写真図。
FIG. 2 is a scanning electron micrograph of the copper foil surface of FIG. 3 taken at an increased magnification.

【図3】電解処理後の実施例1の銅箔表面を斜めから撮
影した走査型電子顕微鏡写真図。
FIG. 3 is a scanning electron micrograph showing a surface of the copper foil of Example 1 after the electrolytic treatment, taken obliquely.

【図4】図1の表面処理銅箔の表面に活物質層を形成し
た状態を拡大して模式的に示す断面図。
FIG. 4 is an enlarged cross-sectional view schematically showing a state in which an active material layer is formed on the surface of the surface-treated copper foil of FIG. 1;

【符号の説明】[Explanation of symbols]

10 箔本体 11 針状体 12 活物質層 Reference Signs List 10 foil body 11 needle-shaped body 12 active material layer

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成9年12月5日[Submission date] December 5, 1997

【手続補正1】[Procedure amendment 1]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図2[Correction target item name] Figure 2

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図2】 FIG. 2

【手続補正2】[Procedure amendment 2]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図3[Correction target item name] Figure 3

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図3】 FIG. 3

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 箔本体(10)の表面から銅の針状体(11)が
前記表面に5〜900本/μm2の平均密度で前記表面
から突出して形成された表面処理銅箔。
1. A surface-treated copper foil formed by projecting copper needles (11) from the surface of the foil main body (10) at an average density of 5 to 900 wires / μm 2 from the surface.
【請求項2】 銅の針状体(11)の平均長さが0.05〜
2.0μmである請求項1記載の表面処理銅箔。
2. An average length of the copper acicular body (11) is 0.05 to
The surface-treated copper foil according to claim 1, which has a thickness of 2.0 µm.
【請求項3】 請求項1又は2記載の表面処理銅箔を集
電体として用いた電池用電極。
3. A battery electrode using the surface-treated copper foil according to claim 1 as a current collector.
JP9335551A 1997-12-05 1997-12-05 Surface-treated copper foil and battery electrode using the same Withdrawn JPH11167922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9335551A JPH11167922A (en) 1997-12-05 1997-12-05 Surface-treated copper foil and battery electrode using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9335551A JPH11167922A (en) 1997-12-05 1997-12-05 Surface-treated copper foil and battery electrode using the same

Publications (1)

Publication Number Publication Date
JPH11167922A true JPH11167922A (en) 1999-06-22

Family

ID=18289853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9335551A Withdrawn JPH11167922A (en) 1997-12-05 1997-12-05 Surface-treated copper foil and battery electrode using the same

Country Status (1)

Country Link
JP (1) JPH11167922A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999056332A1 (en) * 1998-04-24 1999-11-04 Hitachi, Ltd. Lithium secondary cell
EP1069635A1 (en) * 1999-07-13 2001-01-17 Hughes Electronics Corporation Lithium-ion battery cell having an oxidized/reduced negative current collector
JP2002313348A (en) * 2001-04-12 2002-10-25 Nec Corp Secondary battery
JP2006278882A (en) * 2005-03-30 2006-10-12 Furukawa Circuit Foil Kk Copper foil and copper foil for inner layer substrate
JP2008103118A (en) * 2006-10-17 2008-05-01 Nissan Motor Co Ltd Electrode for battery
CN111600036A (en) * 2020-06-01 2020-08-28 南开大学 Three-dimensional porous copper oxide modified copper foil for lithium metal battery current collector and preparation method and application thereof
WO2020179183A1 (en) * 2019-03-04 2020-09-10 ナミックス株式会社 Copper foil, negative electrode current collector for lithium ion battery including same, and production method therefor
WO2020179181A1 (en) * 2019-03-04 2020-09-10 ナミックス株式会社 Copper foil and lithium ion battery negative electrode current collector including said copper foil, and manufacturing method thereof

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999056332A1 (en) * 1998-04-24 1999-11-04 Hitachi, Ltd. Lithium secondary cell
JPH11307102A (en) * 1998-04-24 1999-11-05 Hitachi Ltd Lithium secondary battery and manufacture thereof
EP1069635A1 (en) * 1999-07-13 2001-01-17 Hughes Electronics Corporation Lithium-ion battery cell having an oxidized/reduced negative current collector
JP2004095537A (en) * 1999-07-13 2004-03-25 Hughes Electronics Corp Manufacturing method of lithium ion battery cell having oxidized/reduced negative current collector
JP2002313348A (en) * 2001-04-12 2002-10-25 Nec Corp Secondary battery
JP2006278882A (en) * 2005-03-30 2006-10-12 Furukawa Circuit Foil Kk Copper foil and copper foil for inner layer substrate
JP4532322B2 (en) * 2005-03-30 2010-08-25 古河電気工業株式会社 Copper foil for built-up board inner layer
JP2008103118A (en) * 2006-10-17 2008-05-01 Nissan Motor Co Ltd Electrode for battery
JP2020194615A (en) * 2019-03-04 2020-12-03 ナミックス株式会社 Copper foil and negative electrode collector of lithium ion battery including the same and manufacturing method thereof
WO2020179183A1 (en) * 2019-03-04 2020-09-10 ナミックス株式会社 Copper foil, negative electrode current collector for lithium ion battery including same, and production method therefor
WO2020179181A1 (en) * 2019-03-04 2020-09-10 ナミックス株式会社 Copper foil and lithium ion battery negative electrode current collector including said copper foil, and manufacturing method thereof
JP2020145002A (en) * 2019-03-04 2020-09-10 ナミックス株式会社 Copper foil and negative electrode current collector of lithium ion battery including the same, and method for manufacturing the same
CN113286917A (en) * 2019-03-04 2021-08-20 纳美仕有限公司 Copper foil, negative electrode collector of lithium ion battery containing copper foil, and method for producing same
CN113330611A (en) * 2019-03-04 2021-08-31 纳美仕有限公司 Copper foil, negative electrode collector for lithium ion battery comprising same, and method for producing same
TWI821504B (en) * 2019-03-04 2023-11-11 日商納美仕有限公司 Copper foil, negative electrode current collector of lithium ion battery including the copper foil, and method of manufacturing the negative electrode current collector
CN113286917B (en) * 2019-03-04 2024-03-01 纳美仕有限公司 Copper foil, negative electrode current collector for lithium ion battery containing copper foil, and method for producing same
CN113330611B (en) * 2019-03-04 2024-07-09 纳美仕有限公司 Copper foil, negative electrode current collector of lithium ion battery comprising same, and method for manufacturing same
CN111600036A (en) * 2020-06-01 2020-08-28 南开大学 Three-dimensional porous copper oxide modified copper foil for lithium metal battery current collector and preparation method and application thereof

Similar Documents

Publication Publication Date Title
US10597783B2 (en) Lithium cell electrode using surface-modified copper foil current collector
JP3850155B2 (en) Electrolytic copper foil, copper foil for current collector of secondary battery and secondary battery
JP3933573B2 (en) Aluminum foil for current collector of lithium ion battery, current collector of lithium ion battery and lithium ion battery
CN105304904A (en) Method of manufacturing negative electrode for solid-state battery, method of manufacturing solid-state battery, and negative electrode slurry
JP4616584B2 (en) Anode for non-aqueous electrolyte secondary battery
US11527760B2 (en) Aluminum member for electrodes and method of producing aluminum member for electrodes
JPH11167922A (en) Surface-treated copper foil and battery electrode using the same
JP2020057581A (en) Copper foil for current collector of lithium secondary battery and negative electrode including the same
CN109647397B (en) Method for preparing tungsten trioxide/Pt nano composite material by utilizing tungsten trioxide color-changing performance
JP2010103061A (en) Negative electrode copper alloy foil of secondary battery and manufacturing method for the same
JP2011249150A (en) Aluminum foil for power storage device collector and power storage device collector
WO2019077995A1 (en) Aluminum foil and aluminum member for electrodes
Ammar et al. Anodic oxidation of bismuth in H2SO4 solutions
KR20180038321A (en) Metal-coatable Graphene ink, method of fabricating the same, method of coating metal surface with metal-coatable graphene ink and metals coated with graphene
WO2022185778A1 (en) Aluminum substrate for collector, capacitor, secondary cell, and method for manufacturing aluminum substrate for collector
JP3850321B2 (en) Secondary battery
KR20130030891A (en) Method for forming hydroxyapatite coating layer on titanium implant surface and titanium implant having coating layer formed by the same
JP2009032429A (en) Lithium reaction electrode
JP7190582B2 (en) aluminum foil
JP6570168B2 (en) Surface-treated aluminum material and method for producing the same
CN116550160B (en) Electrochemical regulation and control method for microstructure of metal hollow fiber membrane
KR102280173B1 (en) Method of formation copper plating with improved emissivity
WO2022044624A1 (en) Aluminum member for collectors, lithium ion capacitor, electric double layer capacitor, semi-solid battery, solid-state battery and secondary battery using nonaqueous electrolyte solution
Chatelut et al. Electrochemical behaviour of zirconium electrodes in acidic medium and their applications to electrowinning of copper from dilute solutions
JPH11111275A (en) Manufacture of plate for lead-acid battery

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050301