WO2022185778A1 - Aluminum substrate for collector, capacitor, secondary cell, and method for manufacturing aluminum substrate for collector - Google Patents

Aluminum substrate for collector, capacitor, secondary cell, and method for manufacturing aluminum substrate for collector Download PDF

Info

Publication number
WO2022185778A1
WO2022185778A1 PCT/JP2022/002429 JP2022002429W WO2022185778A1 WO 2022185778 A1 WO2022185778 A1 WO 2022185778A1 JP 2022002429 W JP2022002429 W JP 2022002429W WO 2022185778 A1 WO2022185778 A1 WO 2022185778A1
Authority
WO
WIPO (PCT)
Prior art keywords
current collector
aluminum
aluminum substrate
base material
aluminum base
Prior art date
Application number
PCT/JP2022/002429
Other languages
French (fr)
Japanese (ja)
Inventor
宏和 澤田
浩之 野田
泰弘 川谷
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2023503626A priority Critical patent/JPWO2022185778A1/ja
Priority to CN202280018028.0A priority patent/CN116940717A/en
Publication of WO2022185778A1 publication Critical patent/WO2022185778A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/32Alkaline compositions
    • C23F1/36Alkaline compositions for etching aluminium or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing
    • C25D11/24Chemical after-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an aluminum base material for current collector, a capacitor and a secondary battery using this aluminum base material for current collector, and a method for producing the aluminum base material for current collector.
  • an aluminum base material can be used as an electrode current collector (hereinafter simply referred to as "current collector") used for the positive electrode and/or negative electrode of such an electricity storage device. It is also known that an active material, activated carbon, or the like as an electrode material can be applied to the surface of a current collector made of an aluminum base material, and used as a positive electrode or a negative electrode.
  • an aluminum substrate and an oxide film laminated on at least one main surface of the aluminum substrate are provided, and the oxide film has a density of 2.7 to 4.1 g/cm 3 .
  • an aluminum member for an electrode having a thickness of 5 nm or less.
  • Patent Document 2 discloses a conductive material comprising a positive electrode current collector, a positive electrode mixture layer, and an intermediate layer provided between the positive electrode current collector and the positive electrode mixture layer, wherein the intermediate layer is a non-oxide conductive material. a first intermediate layer containing a conductive inorganic compound and a positive electrode active material; and a second intermediate layer containing an insulating inorganic material and a non-oxide conductive inorganic compound, wherein the conductive inorganic compound contains 300 A positive electrode for a secondary battery is described which becomes an insulating oxide at °C or higher.
  • the current collector has high adhesion to the electrode material and low contact resistance with the electrode material. Although it is possible to improve the adhesion to the electrode material by roughening the surface of the aluminum base material, it has been difficult to achieve both a sufficient adhesion effect and a reduction in contact resistance. In addition, sufficient effect was not obtained with respect to the cost of surface roughening treatment, and it was almost never put into practical use.
  • the present invention provides an aluminum base material for a current collector, a capacitor, a secondary battery, and a method for producing an aluminum base material for a current collector, which have high adhesion to an electrode material and low contact resistance with the electrode material.
  • the task is to provide
  • the present invention solves the problem with the following configuration.
  • [3] The aluminum base material for a current collector according to [1] or [2], wherein the maximum surface height difference PV is 100 nm or more and 500 nm or less.
  • a capacitor comprising the aluminum substrate for current collector according to any one of [1] to [6].
  • a secondary battery comprising the aluminum substrate for current collector according to any one of [1] to [6].
  • the chemical etching step includes a step of contacting the anodized film with an alkaline solution at 25°C or higher and lower than 50°C for 1 second to 10 seconds.
  • an aluminum base material for a current collector, a capacitor, a secondary battery, and an aluminum base material for a current collector having high adhesion to an electrode material and low contact resistance with the electrode material can provide a method.
  • BRIEF DESCRIPTION OF THE DRAWINGS It is typical sectional drawing for demonstrating an example of the suitable manufacturing method of the aluminum base material for collectors of this invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS It is typical sectional drawing for demonstrating an example of the suitable manufacturing method of the aluminum base material for collectors of this invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS It is typical sectional drawing for demonstrating an example of the suitable manufacturing method of the aluminum base material for collectors of this invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS It is typical sectional drawing for demonstrating an example of the suitable manufacturing method of the aluminum base material for collectors of this invention.
  • FIG. 6 is an enlarged view of region R1 in FIG. 5;
  • FIG. FIG. 7 is an enlarged view of region R2 in FIG. 6;
  • BRIEF DESCRIPTION OF THE DRAWINGS It is a conceptual diagram which shows an example of the manufacturing apparatus which enforces the manufacturing method of the aluminum base material for current collectors of this invention. It is a figure which shows typically the apparatus which measures resistance.
  • 1 is an SEM image of an aluminum substrate for a current collector of an example. It is a SEM image of the aluminum base material for current collectors of a comparative example. It is a SEM image of the aluminum base material for current collectors of a comparative example. It is a figure which shows typically the measuring apparatus which measures peel strength.
  • the aluminum base material for a current collector of the present invention is A, B, C, and D represent peak area ratios of metal Al, Al2O3 , Al(OH) 3 , and AlO(OH) present within 10 nm of the surface layer when measured by X-ray photoelectron spectroscopy.
  • (C+D)/(A+B+C+D) is 0.5 or more and 1 or less, and C/D is 0.1 or more and 2 or less.
  • the aluminum base material for a current collector of the present invention contains metal Al, Al 2 O 3 , Al(OH) 3 , AlO present within 10 nm of the surface layer when measured by X-ray photoelectron spectroscopy (hereinafter also referred to as XPS).
  • XPS X-ray photoelectron spectroscopy
  • the aluminum substrate for a current collector of the present invention has, on at least one surface, two kinds of hydroxides, aluminum hydroxide Al(OH) 3 and aluminum oxide hydrate, in the surface layer of the aluminum substrate. (boehmite) and AlO(OH) at a certain level or more, and among the hydroxides, aluminum hydroxide Al(OH) 3 at a certain level or more.
  • the aluminum substrate for a current collector of the present invention is used as a current collector, and an active material (electrode material) is applied to the surface to be used as a positive electrode or a negative electrode of an electric storage device or the like.
  • the current collector is desired to have high adhesion to the electrode material and low contact resistance with the electrode material. Therefore, various configurations have been proposed for the aluminum base material for current collector in order to improve the adhesion with the electrode material and reduce the contact resistance with the electrode material.
  • Another known method is to form a conductive coating film containing carbon or other conductive particles on an aluminum substrate. It is known that this conductive coating film has fine irregularities formed on the surface by the conductive particles contained in the coating film, so that the adhesion with the electrode material provided thereon is improved and the difficulty of peeling off can be improved. It is However, the configuration in which the conductive coating film is applied in advance has the drawback that the manufacturing process is complicated and the manufacturing cost is increased.
  • the aluminum substrate usually has a natural oxide film formed on its surface, and the natural oxide film contains Al 2 O 3 and its hydrate Al 2 O 3 ⁇ nH 2 O. Since the natural oxide film itself is a material with poor conductivity, it is possible to reduce the contact resistance with the electrode material by making it thinner or by stipulating the density of the oxide film. It is also known to be possible.
  • the aluminum substrate for a current collector of the present invention contains metal Al, Al 2 O 3 , Al ( OH) 3 and AlO(OH) where the peak area ratios are A, B, C, and D in that order, (C+D)/(A+B+C+D) is 0.5 or more and 1 or less, and C/D is 0 .1 or more and 2 or less faces.
  • the hydroxide near the surface layer of the aluminum base material affects the interfacial resistance in addition to the thickness of the natural oxide film.
  • hydroxides there are two kinds of hydroxides, AlO(OH) and Al(OH) 3 , as hydroxides existing near the surface layer of the aluminum base material, and AlO(OH) (boehmite) adversely affects the interfacial resistance. and that even if AlO(OH) is present, the low resistance can be maintained if another hydroxide, Al(OH) 3 , is present to some extent.
  • the peak area ratio Al(OH) 3 /AlO(OH) of hydroxide present within 10 nm of the outermost layer is 0.1 or more, which is essential for achieving low resistance. If the peak area ratio is 2 or less, the adhesion at the time of joining is good, so the upper limit of the peak area ratio is set to 2.
  • the aluminum substrate for current collector having the hydroxide in the above ratio on the surface layer is formed with an anodized film under appropriate conditions, and then the anodized film is removed under appropriate conditions. It is made by At that time, fine unevenness is formed on the surface of the aluminum substrate due to the influence of fine unevenness having a diameter of about several 10 nm formed on the bottom of the anodized film. Therefore, it turned out that adhesiveness can also be improved.
  • the aluminum base material for a current collector of the present invention which has low contact resistance with electrode materials and high adhesion with electrode materials, can be used in secondary batteries such as lithium ion batteries and power storage devices such as capacitors.
  • secondary batteries such as lithium ion batteries and power storage devices such as capacitors.
  • partial separation between the electrode material and the current collector can be suppressed even when charging and discharging are performed many times over a long period of time.
  • the effect is exhibited in all-solid batteries and semi-solid batteries that require close contact and low resistance such as solid or semi-solid electrolytes.
  • X-ray photoelectron spectroscopy is an analysis method commonly called ESCA (Electron Spectroscopy for Chemical Analysis) or XPS (X-ray Photoelectron Spectroscopy). In the following, X-ray photoelectron spectroscopy is also referred to as XPS.
  • XPS is an analysis method that utilizes the fact that photoelectrons are emitted when the surface of a sample to be measured is irradiated with X-rays, and is widely used as a method for analyzing the surface layer of the sample to be measured. According to XPS, qualitative analysis and quantitative analysis can be performed using an X-ray photoelectron spectroscopy spectrum obtained by analysis on the surface of a sample to be measured.
  • detection depth is the depth at which 95% of the photoelectrons forming the X-ray photoelectron spectroscopy spectrum are generated
  • is the photoelectron extraction angle
  • the analysis position is usually a very superficial layer at a depth of about 10 nm from the sample surface. Therefore, according to the analysis performed by XPS on the surface of the aluminum base material for current collector at a photoelectron take-off angle of 45 degrees, the composition analysis of the very surface layer at a depth of about 10 nm from the surface of the aluminum base material for current collector can be performed. It can be carried out.
  • Peak shift correction was performed for each of Al 2 O 3 , Al(OH) 3 , and AlO(OH) based on the peak position of metallic Al, and then background correction was performed on the data.
  • peak heights By fitting peak heights to fixed peak positions and peak widths, peaks corresponding to Al, Al 2 O 3 , Al(OH) 3 , and AlO(OH) are obtained. Peak area ratios A, B, C, and D are obtained from each peak.
  • XPS measuring device for example, a commercially available measuring device such as Quantera SXM manufactured by Ulvac-PHI can be used.
  • the measurement conditions may be set as follows, for example.
  • ⁇ X-ray source Al K ⁇ ray (1486.6 ev, 25 W, 15 kV)
  • ⁇ Pass Energy 55 ev
  • Step 0.05 ev ⁇ Measurement area: 300 ⁇ m ⁇ 300 ⁇ m
  • Photoelectron extraction angle 45 degrees
  • (C+D)/(A+B+C+D) is preferably 0.55 or more and 1 or less, more preferably 0.6 or more and 0.7 or less, from the viewpoint of achieving both adhesion with the electrode material and low resistance.
  • C/D is preferably 0.12 or more and 2 or less, more preferably 0.15 or more and 1 or less.
  • metals Al, Al 2 O 3 , Al(OH) 3 , AlO(OH) existing within a surface layer of 5 nm measured by X-ray photoelectron spectroscopy. are, in order, A 2 , B 2 , C 2 , and D 2 , where (C 2 +D 2 )/(A 2 +B 2 +C 2 +D 2 ) is 0.5 or more and 1 or less, In addition, C 2 /D 2 is preferably 0.4 or more and 1 or less. ( C2 +D2)/( A2 +B2 + C2 + D2) is more preferably 0.6 or more and 1 or less, and more preferably 0.65 or more and 0.7 or less. Similarly, C 2 /D 2 is more preferably 0.5 or more and 2 or less, and more preferably 0.7 or more and 1 or less.
  • the photoelectron extraction angle may be set to 20 degrees in the above XPS measurement.
  • the surface roughness Ra of the surface of the aluminum substrate for current collector that satisfies the above-described peak area ratio is preferably 10 nm or more and 50 nm or less, and 11 nm or more. 40 nm or less is more preferable, and 11 nm or more and 36 nm or less is even more preferable.
  • the maximum height difference PV of the surface satisfying the above-described peak area ratio of the aluminum base material for current collector is 100 nm or more and 500 nm or less. It is preferably 120 nm or more and 200 nm or less, and even more preferably 120 nm or more and 160 nm or less.
  • the surface roughness Ra and the maximum height difference PV are measured as follows.
  • AFM5100N type SPM manufactured by Hitachi High-Tech Science Co., Ltd. can be used as an atomic force microscope (AFM).
  • AFM5100N type SPM manufactured by Hitachi High-Tech Science Co., Ltd. can be used as an atomic force microscope (AFM).
  • OMCL-AC200TS-R3 manufactured by Olympus Corporation is used as a cantilever, and three-dimensional data of the surface of the aluminum substrate is measured at a resolution of 256 ⁇ 256 pixels.
  • FFT Fast Fourier Transform
  • the three-dimensional data subjected to FFT processing means that the shape image obtained by performing fast Fourier transform (FFT) processing on the obtained data is converted into wavenumber space, subjected to high-pass filtering, and then reversed.
  • the shape image is reconstructed by Fourier transform (FFT) processing.
  • FFT fast Fourier transform
  • a large wave component originating from the aluminum foil having a wavelength of 0.2 ⁇ m or more is removed.
  • the surface roughness Ra reflecting short-period unevenness is preferably 5 nm or more and 10 nm or less, and 6 nm, from the viewpoint of achieving both adhesion with the electrode material and low resistance.
  • the maximum height difference PV reflecting short-period unevenness is preferably 50 nm or more and 200 nm or less, and 60 nm or more and 100 nm or less. is more preferable, and more preferably 70 nm or more and 100 nm or less.
  • the thickness of the aluminum substrate for current collector is preferably 5 ⁇ m to 100 ⁇ m, more preferably 10 ⁇ m to 30 ⁇ m. If the thickness of the aluminum substrate for current collector is too thin, there is a risk of breakage. On the other hand, the thickness of the current collector aluminum base material is preferably 100 ⁇ m or less in order to reduce the overall thickness when used in an electricity storage device or the like.
  • the aluminum substrate for a current collector of the present invention may have through-holes penetrating in the thickness direction of the aluminum substrate.
  • the aluminum base material for current collector has a plurality of through-holes penetrating in the thickness direction, so that when used as a current collector, the movement of charged particles can be facilitated.
  • the movement of charged particles can be facilitated.
  • by having a large number of through holes it is possible to improve the adhesion with the active material.
  • the average opening diameter of the through-holes is preferably 0.1 ⁇ m or more and 100 ⁇ m or less, more preferably 1 ⁇ m or more and 80 ⁇ m or less, even more preferably 3 ⁇ m or more and 40 ⁇ m or less, and particularly preferably 5 ⁇ m or more and 30 ⁇ m or less.
  • the average opening diameter of the through-holes within the above range, it is possible to prevent the occurrence of omissions when the active material or the like is applied to the aluminum base material for the current collector, and the adhesiveness to the applied active material is improved. can be improved. Moreover, even when the aluminum base material for current collector has a large number of through-holes, it can have sufficient tensile strength.
  • the average opening diameter of the through-holes is measured as follows. Parallel light is irradiated from one surface of the aluminum substrate for current collector, and the through-hole is photographed with a transmission optical microscope at a magnification of 200 times. The obtained data is binarized by image analysis software, and the average value of the circle-equivalent diameters of the through-holes is taken as the average opening diameter.
  • the average opening ratio of the through holes is preferably 0.5% to 30%, more preferably 0.6% to 20%, still more preferably 0.7% to 10%, and 0.8% to 5% is particularly preferred.
  • the average aperture ratio of the through-holes within the above range, it is possible to prevent the occurrence of voids when the active material is applied to the aluminum base material for current collector, and also to improve the adhesion with the applied active material. can improve. Moreover, even when the aluminum base material for current collector has a large number of through-holes, it can have sufficient tensile strength.
  • the average aperture ratio of through holes is measured as follows. Parallel light is irradiated from one surface of the aluminum substrate for current collector, and the through-hole is photographed with a transmission optical microscope at a magnification of 200 times. The obtained data is binarized by image analysis software, and calculated as the total area of the openings/observed area ⁇ 100(%).
  • the aluminum substrate for current collector has a large number of granular intermetallic compounds dispersed in the film on its surface.
  • the granular intermetallic compound is also simply referred to as "intermetallic compound”.
  • Aluminum oxide has a higher resistance than aluminum metal alone. On the other hand, if the aluminum base material contains an intermetallic compound, the aluminum oxide also contains the intermetallic compound, which lowers the insulating properties.
  • the intermetallic compound preferably has an element ratio O/Al of oxygen to aluminum of 2 or more and 4 or less. Also, the number density of the granular intermetallic compounds is preferably 500/mm 2 or more.
  • the intermetallic compound in the present invention is a compound containing aluminum element (Al) and at least one selected from Fe, Si, Mn, Mg, Ti, B and the like.
  • the intermetallic compounds include Al 3 Fe, Al 6 Fe, ⁇ AlFeSi, and AlFeMnSi. Since it contains Al, an aluminum oxide film is formed on the surface. Therefore, the surface layer of the intermetallic compound in the present invention contains an oxygen element (O).
  • the aluminum base material for a current collector of the present invention contains granular intermetallic compounds having an oxide film having an element ratio O/Al of 2 or more and 4 or less on the surface layer at a density of 500/mm 2 or more. If it has, it may have other granular intermetallic compounds. That is, the oxide film on the surface layer may have a granular intermetallic compound with an element ratio O/Al of less than 2 or more than 4.
  • the oxide film contains aluminum oxide (Al 2 O 3 ) as a main component and does not contain a hydrate
  • the element ratio O/Al in the portion other than the intermetallic compound of the oxide film is preferably less than 2. , about 1.3 to 1.5.
  • the average value of the element ratio O/Al of the oxide film on the surface layer of the intermetallic compound is preferably 2 or more and 4 or less. More preferably, it is 5 or more and 3.5 or less.
  • the element ratio O/Al of the surface layer of the intermetallic compound is measured as follows.
  • the intermetallic compound When observing the surface of the oxide film with a high-resolution scanning electron microscope (SEM), the intermetallic compound can be visually distinguished from the portion of the oxide film other than the intermetallic compound. Therefore, first, the surface of the oxide film is photographed using a high-resolution scanning electron microscope (SEM) at a magnification of, for example, 5000 times, and the position of the intermetallic compound is identified in the obtained SEM photograph. Next, elemental analysis is performed using field emission Auger electron spectroscopy (FE-AES) in the depth direction from the outermost surface at the position of the extracted intermetallic compound. Depth analysis is performed by repeating the measurement and surface removal by sputtering. From the result of the element distribution in the depth direction by FE-AES, the element ratio O/Al in the outermost layer is obtained.
  • SEM high-resolution scanning electron microscope
  • the number density of the granular intermetallic compound is preferably 1,000/mm 2 to 300,000/mm 2 , more preferably 5,000/mm 2 to 200,000 from the viewpoint of lowering the electric resistance of the aluminum substrate for current collector. pcs/mm 2 is more preferred.
  • the number density of granular intermetallic compounds is measured as follows.
  • the surface of the aluminum base material for current collector is photographed from directly above at a magnification of, for example, 5000 times to extract granular intermetallic compounds.
  • the elemental ratio O/Al of each intermetallic compound extracted by elemental analysis using FE-AES is obtained.
  • the average value of the number density of each photograph is calculated as the density.
  • the equivalent circle diameter of the granular intermetallic compound is preferably 1 ⁇ m or less.
  • An intermetallic compound having an equivalent circle diameter of 1 ⁇ m or less is likely to appear on the surface of the aluminum substrate for current collector.
  • the surface area to volume of the intermetallic compound increases.
  • the element ratio O/Al of the oxidized intermetallic compound tends to be 2 or more.
  • the oxide film of the intermetallic compound becomes a hydrate, the insulating property becomes lower than that of the surrounding aluminum oxide, which becomes a starting point for lowering the resistance.
  • the equivalent circle diameter of the granular intermetallic compound is obtained by extracting at least 20 intermetallic compounds whose element ratio O/Al is measured as described above, and using image analysis software or the like to determine the area of the intermetallic compound on the oxide film surface. , the equivalent circle diameter is obtained from this area, and the average value of these values is calculated as the equivalent circle diameter.
  • the shape of the aluminum substrate for current collector is not particularly limited as long as it can be used as a current collector, but it is preferably plate-like.
  • the aluminum base material is the base material of the aluminum base material for current collector, and for example, known aluminum base materials such as alloy numbers 1N30, 3003, and 1085 described in JIS H4000 can be used. can be done.
  • the use of aluminum containing a large amount of intermetallic compounds can be expected to have the aforementioned effect of reducing electrical resistance.
  • the present application is not limited to the aluminum material.
  • the aluminum base material is an alloy plate containing aluminum as a main component and a small amount of foreign elements.
  • a method for producing an aluminum substrate for a current collector for producing the aluminum substrate for a current collector of the present invention comprises: a film-forming step of forming an anodized film on the surface of the aluminum foil at a current of 10 to 100 C/dm 2 during anodic electrolysis; A method for producing an aluminum substrate for a current collector, comprising a removing step of removing the anodized film after the film forming step.
  • the removal of the anodized film in the removal step is preferably performed in the order of chemical etching with an alkaline solution, washing with water, washing with an acidic solution, and washing with water.
  • the method for manufacturing an aluminum substrate for a current collector may have a through-hole forming step of forming through-holes penetrating through the aluminum substrate.
  • the method for producing an aluminum base material for a current collector may include a roughening step of roughening the surface of the aluminum base material.
  • the through-hole forming step and/or surface roughening step may be performed simultaneously or sequentially with the film forming step of forming the anodized film.
  • FIGS. 1 to 5 are schematic cross-sectional views for explaining an example of a preferred embodiment of the method for producing an aluminum substrate for a current collector.
  • one example of a method for producing an aluminum base material for a current collector is to perform electrolytic treatment on at least one main surface of an aluminum base material 1 having a natural oxide film 2, thereby naturally oxidizing.
  • a film forming step (FIGS. 1 and 2) for forming the anodized film 3 between the film 2 and the aluminum substrate 1, and a removal step ( 2 to 5).
  • the aluminum base material 1 subjected to the film forming process may have rolling oil or the like on the natural oxide film 2 in some cases.
  • the removal step includes a step of removing the anodized film 3 and the natural oxide film 2 by chemical etching with an alkaline solution (FIGS. 2 and 3, also called chemical etching step), and a step of washing with water after the chemical etching step (also called water washing step). ), a step of removing the residue 5 (see FIG. 4) generated on the surface due to the chemical etching step by washing with an acid solution (FIGS. 4 and 5, also called a pickling step), and a pickling step. and a step of washing with water later (also referred to as a washing step).
  • Aluminum hydroxide is deposited on the surface of the aluminum base material by the chemical etching process and the water washing process (see FIG. 4).
  • the film forming step is a step of forming an anodized film on the surface of the aluminum base material. Since the anodized film is formed by changing the metal aluminum, when the surface of the aluminum base material has a natural oxide film, the anodized film is formed between the natural oxide film and the aluminum base material. . Therefore, it is less likely to be affected by the natural oxide film, rolling oil, etc. in the removal process described later.
  • the same treatment as the conventionally known anodizing treatment can be applied.
  • the anodizing treatment for example, the conditions and apparatus described in paragraphs [0063] to [0073] of JP-A-2012-216513 can be appropriately employed.
  • the conditions for the anodizing treatment vary depending on the electrolyte used and cannot be determined indiscriminately. °C, a current density of 0.5 to 60 A/dm 2 , a voltage of 1 to 100 V, and an electrolysis time of 1 second to 20 minutes.
  • the anodizing treatment it is preferable to perform the anodizing treatment using an aqueous solution containing nitric acid and sulfuric acid.
  • the amount of current applied during anode electrolysis is 10 C/dm 2 to 100 C/dm 2 , more preferably 30 C/dm 2 to 100 C/dm 2 , still more preferably 50 C/dm 2 to 100 C/dm 2 .
  • a thin anodized film is formed at this amount of energization.
  • a thin anodized film is formed on an aluminum base material, and a removal step (chemical etching step), which will be described later, is performed in a short time, thereby suppressing dissolution of the metal aluminum portion and AlO(OH). ), it is possible to produce an aluminum substrate for a current collector in which the proportion of hydroxide in the surface layer is within a predetermined range.
  • a direct current may be applied between the aluminum substrate and the counter electrode, or an alternating current may be applied.
  • the current density is preferably 0.5 to 60 A/dm 2 , more preferably 1 to 40 A/dm 2 .
  • the anodizing treatment is continuously performed, it is preferable to perform the anodizing treatment by a liquid feeding method in which the aluminum base material is fed with an electrolytic solution.
  • the through-hole forming step is a step of forming through-holes in the aluminum base material.
  • the method of forming the through-holes in the through-hole forming step is not particularly limited, and mechanical methods such as punching or electrochemical methods such as electrolytic dissolution can be used.
  • a method of forming through-holes by electrolytic dissolution treatment is preferable in that through-holes having an average opening diameter of 0.1 ⁇ m or more and less than 100 ⁇ m can be easily formed. Formation of through-holes by electrolytic dissolution treatment can be carried out simultaneously with or sequentially with anodizing treatment in the film forming step.
  • the electrolytic dissolution treatment is not particularly limited, and for example, the method described in paragraphs [0025] to [0032] of Japanese Patent No. 6199416 can be used.
  • the aluminum substrate is subjected to electrochemical graining treatment (hereinafter also abbreviated as "electrolytic graining treatment”) to roughen the surface and/or the back surface of the aluminum substrate. It is a process.
  • electrolytic graining treatment By roughening the surface of the aluminum base material by applying electrolytic graining treatment, the adhesion with the layer containing the active material is improved, and the contact area is increased by increasing the surface area, so it is suitable for current collectors. The capacity retention rate after long-term use of an electricity storage device using an aluminum base material is increased.
  • the electrolytic graining treatment for example, the conditions and apparatus described in paragraphs [0041] to [0050] of JP-A-2012-216513 can be appropriately adopted.
  • the chemical etching step is a step of removing an anodized film and a natural oxide film (hereinafter collectively referred to as an oxide film) formed on the surface of the aluminum base material.
  • the chemical etching process removes the oxide film by chemical dissolution treatment using an alkaline aqueous solution.
  • the chemical etching treatment is a treatment that removes the oxide film by bringing it into contact with an alkaline aqueous solution.
  • an alkaline aqueous solution When an alkaline aqueous solution is brought into contact with the oxide film, the alkaline aqueous solution permeates the oxide film and dissolves the aluminum metal, thereby peeling off the oxide film. Also, the oxide film itself can be dissolved. This removes the oxide film.
  • the anodized film is formed by forming a large number of fine uneven shapes on the bottom portion on the aluminum substrate side. Therefore, as shown in FIG. 6, a large number of fine irregularities are formed on the surface of the aluminum base material from which the anodized film has been removed.
  • aluminum hydroxide is deposited on the surface layer 4 of the aluminum base material 1 (see FIG. 4).
  • alkalis used in alkaline aqueous solutions include caustic alkalis and alkali metal salts.
  • caustic alkali include sodium hydroxide (caustic soda) and caustic potash.
  • alkali metal salts include alkali metal silicates such as sodium metasilicate, sodium silicate, potassium metasilicate and potassium silicate; alkali metal carbonates such as sodium carbonate and potassium carbonate; sodium aluminate and aluminum.
  • alkali metal aluminates such as acid potassium; alkali metal aldonic salts such as sodium gluconate and potassium gluconate; dibasic sodium phosphate, dibasic potassium phosphate, tribasic sodium phosphate, tribasic potassium phosphate Alkali metal hydrogen phosphates may be mentioned.
  • a solution of caustic alkali and a solution containing both caustic alkali and alkali metal aluminate are preferable from the viewpoint of high etching rate and low cost.
  • an aqueous sodium hydroxide solution containing aluminum ions is preferred.
  • the metal Al, Al 2 O 3 , Al(OH) existing within 10 nm of the surface layer 3 when the peak area ratios of AlO(OH) are A, B, C, and D in order, (C + D) / (A + B + C + D) is 0.5 or more and 1 or less, and C/D is 0.1 It can be set as the structure which is more than 2 or less.
  • the concentration of the alkaline aqueous solution is preferably 0.1-50% by mass, more preferably 0.2-10% by mass.
  • concentration of aluminum ions is preferably 0.01 to 10% by mass, more preferably 0.1 to 3% by mass.
  • the temperature of the alkaline solution is less than 50°C, preferably 25-45°C, more preferably 30-40°C.
  • the treatment time is 10 seconds or less, preferably 1 to 8 seconds, more preferably 3 to 6 seconds.
  • Examples of the method of bringing the oxide film into contact with the alkaline solution include a method of passing an aluminum base material having an oxide film through a tank containing an alkaline solution, and a method of passing an aluminum base material having an oxide film through a tank containing an alkaline solution. Examples include a method of immersing the material and a method of spraying an alkaline solution onto the surface of the oxide film.
  • a water washing step is preferably performed after the chemical etching treatment. By washing with water, the pH of the surface can be returned to neutral, and a hydroxide layer can be formed on the surface layer.
  • Pure water, well water, tap water, etc. can be used for washing.
  • a nip device, an air knife, or the like may be used to prevent the processing liquid from being brought into the next step.
  • a pickling step is preferably performed after the chemical etching step and the water washing step.
  • the pickling process is a process of removing the residue 5 (see FIG. 4) generated on the surface due to the chemical etching process by washing with an acid solution.
  • nitric acid for pickling, nitric acid, sulfuric acid, etc. can be used, and nitric acid is preferably used.
  • An air knife, a nip device, or the like may be used to prevent the processing liquid from being brought into the next step.
  • pickling with nitric acid is preferable because the natural oxide film formed after pickling is easily passivated.
  • a drying step may be provided after each washing step.
  • the drying method is not limited, and known drying methods such as a method of blowing off moisture with an air knife or the like, a method of heating, and the like can be used as appropriate. Moreover, you may carry out combining several drying methods.
  • Lubricants such as rolling oil used during rolling may remain on the surface when a natural oxide film of aluminum is formed in the course of rolling. Therefore, it may be difficult to control the hydroxide within 10 nm of the surface layer using the rolled aluminum substrate as it is.
  • the present inventors invented a method of removing the natural oxide film and rolling oil formed by rolling, and then controlling the hydroxide on the surface layer.
  • a simple method for removing the surface layer of aluminum a method of dissolving the surface with an alkaline solution or an acid solution is known.
  • alkaline solutions are effective in terms of production because of their excellent dissolution efficiency.
  • an alkaline solution By using an alkaline solution and taking a sufficient amount of time, it is possible to completely remove the residue on the surface layer.
  • the inventors have discovered
  • an anodic oxide film (anodic oxide film) is formed by causing an anodic reaction in aluminum in an acidic solution containing oxoacid.
  • the anodic oxide film is formed by changing the aluminum itself into an oxide film from the surface layer toward the inside, so the new oxide film is formed from the natural oxide film and residue (rolling oil) that originally existed on the outermost layer. Formed deep.
  • a very thin natural oxide film is formed on the surface of the exposed aluminum.
  • the formation of AlO(OH) on the surface layer is suppressed by using a very light cleaning with an alkaline solution, and Al(OH) 3 is formed. Since Al(OH) 3 is formed especially in the outermost layer, the interfacial resistance can be reduced even when AlO(OH) is present.
  • both AlO(OH) and Al(OH) 3 are used as insulating particles to provide insulation.
  • the inventors have found that the Al(OH) 3 obtained by the above process does not easily deteriorate the resistance. Although the reason for this is not yet clear, it is presumed that most of the hydroxides formed on the surface during the above process do not exist as particles, but are present on the film in the extreme surface layer.
  • the fine protrusions formed at the beginning of the growth of the anodic oxide film are left as fine concave shapes on the surface of the aluminum. It has been found that this is a recess having a diameter of several tens of nanometers and is formed on almost the entire surface of the aluminum surface. This fine uneven shape exhibits an effect of improving adhesion when an electrode material or the like is applied. This fine uneven shape can be quantified as a surface roughness reflecting the uneven shape by using an atomic force microscope.
  • the thickness of the anodized film formed in the film forming process should preferably be thin considering efficiency and accuracy. With regard to efficiency, this is because an excessively thick anodized film increases the load of the subsequent removal process. Regarding accuracy, if it is too thin, it will be difficult to stably expose a pure aluminum surface inside the natural oxide film and obtain a fine irregular shape at the bottom of the anodized film. In this case, it becomes necessary to prolong the chemical etching time with the alkaline solution. At this time, the dissolution of the metal aluminum further progresses in the places where the film partially dissolves quickly, and AlO ( This is because the ratio of OH) increases and becomes a disadvantageous portion for low resistance.
  • the amount of aluminum dissolved in the chemical etching step is preferably 0.5 g/m 2 or less, more preferably 0.3 g/m 2 or less.
  • FIG. 8 shows a schematic diagram of an example of a manufacturing apparatus for carrying out such a manufacturing method.
  • a manufacturing apparatus 50 shown in FIG. 8 feeds out the aluminum base material 1 from a base material roll 70 formed by winding a long aluminum base material 1, and carries out each step while conveying the aluminum base material 1 in the longitudinal direction. It is a manufacturing apparatus for manufacturing an aluminum base material for a current collector. That is, the manufacturing apparatus 50 is a manufacturing apparatus that performs each step in a roll-to-roll (RtoR) manner to manufacture an aluminum substrate for a current collector.
  • RtoR roll-to-roll
  • the manufacturing apparatus 50 includes a rotating shaft 52 loaded with a substrate roll 70, a film forming process section 56 that performs a film forming process, and a removing process section 58 that performs a removing process. and a winding shaft 54 for winding the current collector aluminum substrate 10 into a roll 72 .
  • the film formation process section 56 and the film removal process section 58 are arranged on the path along which the aluminum base material 1 is transported from the rotating shaft 52 to the winding shaft 54 . It is desirable to place a drying device (not shown) between the removal process section 58 and the winding shaft 54 .
  • a hot air type, a heater type, or the like can be used as the drying device.
  • feeding of the aluminum base material 1 from the base material roll 70 and winding of the current collector aluminum base material 10 on the winding shaft 54 are performed in synchronism to produce a long aluminum base material.
  • 1 is transported in the longitudinal direction along a predetermined transport path, the aluminum substrate 1 is subjected to each of the above-described treatments in each process section.
  • the processing performed in each process section is as described above.
  • a through-hole forming process section for performing the through-hole forming process and/or a roughening process section for performing the roughening process may be provided on the upstream side or downstream side of the film forming process section 56 .
  • the coating forming process unit 56 may perform a through-hole forming process and/or a surface roughening process in addition to the coating forming process.
  • each step is performed by RtoR using the long aluminum base material 1, but it is not limited to this, and each step is performed using the sheet-shaped aluminum base material 1. You may Also, each step may be performed by a separate device.
  • the aluminum base material for a current collector of the present invention can be used as a current collector for an electric storage device (hereinafter also referred to as "current collector”). Since the current collector has the above ratio of aluminum hydroxide, it is possible to achieve both improved adhesion to the electrode material and low resistance. Partial peeling between the electrode material (active material) and the current collector can be suppressed even when charging and discharging are performed a number of times.
  • the active material is not particularly limited, and known active materials used in conventional electricity storage devices can be used. Specifically, when an aluminum base material for current collector is used as a current collector for a positive electrode, the conductive material, binder, solvent, etc. that may be contained in the active material and the active material layer are disclosed in JP-A-2003-200113. 2012-216513, paragraphs [0077] to [0088] can be employed as appropriate, the contents of which are incorporated herein by reference. Further, when the aluminum base material for current collector is used as the current collector of the negative electrode, the material described in paragraph [0089] of JP-A-2012-216513 can be appropriately employed as the active material. The contents of which are incorporated herein by reference.
  • a positive electrode using the aluminum base material for current collector of the present invention as a current collector comprises a positive electrode current collector using the aluminum base material for current collector and a positive electrode active material formed on the surface of the positive electrode current collector.
  • the positive electrode active material and the conductive material, binder, solvent, etc. that may be contained in the positive electrode active material layer are described in paragraphs [0077] to [0088] of JP-A-2012-216513. The materials described can be employed as appropriate, the contents of which are incorporated herein by reference.
  • a negative electrode using the aluminum base material for current collector of the present invention as a current collector comprises a negative electrode current collector using the aluminum base material for current collector and a negative electrode active material formed on the surface of the negative electrode current collector.
  • a negative electrode having a layer comprising:
  • materials described in paragraph [0089] of JP-A-2012-216513 can be appropriately employed, the contents of which are incorporated herein by reference.
  • Electrodes using the aluminum substrate for current collector of the present invention as a current collector include lithium ion capacitors, electric double layer capacitors, semi-solid batteries, solid batteries, and secondary batteries using a non-aqueous electrolyte. It can be used as a positive electrode or a negative electrode of an electric storage device.
  • the materials and applications described in paragraphs [0090] to [0123] of JP-A-2012-216513 may be used as appropriate. can be adopted, the contents of which are incorporated herein by reference.
  • An electric double layer capacitor is a capacitor having a capacitor structure of facing electrodes in which an electric double layer is used as a dielectric.
  • An electric double layer is spontaneously generated between a solid and a liquid, and is a state in which electrons or holes are attracted to each other and aligned due to charging.
  • a specific configuration of the electric double layer capacitor is described, for example, in Japanese Unexamined Patent Application Publication No. 2020-064971.
  • the aluminum substrate for current collector of the present invention can be used as a current collector for a positive electrode and/or a negative electrode of an electric double layer capacitor.
  • a lithium ion capacitor uses a positive electrode of an electric double layer capacitor as a positive electrode, uses a negative electrode of a lithium ion battery as a negative electrode, and furthermore, the negative electrode is doped with lithium ions.
  • a specific configuration of the lithium ion capacitor is described, for example, in International Publication No. 2016/084704.
  • the aluminum substrate for current collector of the present invention can be used as a current collector for a positive electrode and/or a negative electrode of a lithium ion capacitor.
  • a solid-state battery is a battery in which a solid-state electrolyte is responsible for ionic conduction between the anode and cathode.
  • a specific configuration of the solid-state battery is described, for example, in Japanese Patent Application Laid-Open No. 2020-123538.
  • the current collector aluminum substrate of the present invention can be used as a current collector for a positive electrode and/or a negative electrode of a solid battery.
  • a semi-solid battery is a battery in which a semi-solid (gel-like or clay-like) electrolyte is responsible for ionic conduction between an anode and a cathode.
  • a specific configuration of the semi-solid battery is described in US Pat. No. 9,484,569 and the like.
  • the current collector aluminum substrate of the present invention can be used as a current collector for a positive electrode and/or a negative electrode of a semi-solid battery.
  • a secondary battery using a non-aqueous electrolyte is a secondary battery that uses a non-aqueous electrolyte as an electrolyte between an anode and a cathode.
  • Li-ion batteries, Na-ion batteries, K-ion batteries, or multivalent ion batteries using Mg ions, Ca ions, and the like are included.
  • a specific configuration of a secondary battery using a non-aqueous electrolyte is described in JP-A-2017-068978 and the like.
  • the aluminum substrate for current collector of the present invention can be used as a current collector for a positive electrode and/or a negative electrode of a secondary battery using a non-aqueous electrolyte.
  • Electrolytic treatment Using an aqueous solution containing 20 g/l of nitric acid and 20 g/l of sulfuric acid (liquid temperature: 50° C.), electrolytic treatment was performed using the aluminum substrate as the anode to form an anodized film on the surface of the aluminum substrate. Note that the electrolytic treatment was performed with a DC power supply. In addition, the treatment was performed by changing the amount of electric current applied in the electrolytic treatment as follows.
  • the amount of electricity in the electrolytic treatment ⁇ 1 is 5 C/dm 2
  • the amount of electricity in the electrolytic treatment ⁇ 2 is 10 C/dm 2
  • the amount of electricity in the electrolytic treatment ⁇ 3 is 100 C/dm 2
  • the amount of electricity in the electrolytic treatment ⁇ 4 is 135 C/dm 2
  • the removal treatment was performed after washing with water.
  • the removal treatment consists of spraying an alkaline aqueous solution (5% NaOH aqueous solution, containing 0.3-0.5% Al ions) on the surface to remove the oxide film, followed by chemical etching, followed by washing with water and nitric acid. I washed.
  • the chemical etching process was performed by changing the conditions as follows.
  • ⁇ Removal treatment ⁇ 1 NaOH concentration 5%, Al ion concentration 0.5%, liquid temperature 35°C
  • treatment time 5 seconds ⁇ Removal treatment ⁇ 2: NaOH concentration 5%, Al ion concentration 0.5%, liquid temperature 35°C
  • Treatment time 3 seconds Removal treatment ⁇ 3: NaOH concentration 5%, Al ion concentration 0.3%, liquid temperature 37 ° C.
  • Table 1 shows the treatment conditions for the aluminum base material for each current collector.
  • the current collector G is an untreated aluminum base material. That is, it is an aluminum base material having a natural oxide film on its surface formed during rolling.
  • the current collector J is an aluminum substrate having an undercoat layer formed by applying conductive carbon particles together with a binder to the surface of an untreated aluminum substrate and drying the resultant.
  • the number of intermetallic compounds in the aluminum substrate was 460/mm 2 for the 1085 material and 7800/mm 2 for the 1N30 material.
  • the measurement conditions by XPS are as follows.
  • ⁇ Peak area ratio Peak areas for a total of four types of metal Al, aluminum oxide Al 2 O 3 , aluminum hydroxide Al (OH) 3 , and boehmite AlO (OH) for which peaks were obtained after performing the above fitting I asked for a ratio.
  • Photoelectron extraction angle 45 degrees
  • Table 2 shows the results of XPS analysis performed at a photoelectron extraction angle of 45 degrees.
  • Three of G, H, and I are comparative examples.
  • Table 3 shows the results of XPS analysis with a photoelectron extraction angle of 20 degrees. This is the peak area ratio of aluminum hydroxide existing within 5 nm in depth from the surface layer.
  • a carbon material (Bunny Height T602 manufactured by Nippon Graphite Co., Ltd.) was applied as an electrode material layer to an aluminum substrate for a current collector so that the dry coating thickness was 10 ⁇ m, and as shown in FIG. 9, an electrode material layer 106 was formed.
  • the initial resistance evaluation was performed after storing in the DRYBOX for 24 hours or more before evaluation.
  • Each aluminum base material for a current collector was stored in an environment with a temperature of 30° C. and a humidity of 80%. Two weeks later, an electrode material layer was formed by the method described above, and resistance was evaluated. Similarly, after storage for 4 weeks at a temperature of 30° C. and a humidity of 80%, an electrode material layer was formed by the method described above, and resistance was evaluated. Table 4 shows the results.
  • Examples 1 to 6 of the present application are superior to Comparative Examples 1 and 2 in that the resistance values are small from the initial stage to after high-humidity storage.
  • Example 6 since Example 6 uses an aluminum base material containing a large amount of intermetallic compounds, it can be seen that deterioration in resistance after high-humidity storage is less than other examples, and is superior.
  • Comparative Example 3 has a lower initial resistance than the Examples, but the range of deterioration in resistance after high-humidity storage is better than the other Comparative Examples because it uses an aluminum base material containing a large amount of intermetallic compounds.
  • Comparative Example 4 is a substrate undercoated with conductive carbon, and the initial resistance and the resistance up to 2 weeks after high humidity storage are excellent as in Examples, but the resistance value increases after 4 weeks of high humidity storage. rice field. The cause of this is not clear, but it is presumed that the resistance deteriorated due to changes such as bleeding of the binder for fixing the undercoat material.
  • FIG. 10 is a surface SEM image of Example 3
  • FIGS. 11 and 12 are surface SEM images of Comparative Example 1 and Comparative Example 2, respectively. From FIG. 10, it can be seen that the surface of the aluminum base material for current collector of Example 3 has a fine uneven structure on the order of several tens of nanometers. On the other hand, it can be seen that such a structure is not formed in the current collector aluminum substrates of Comparative Examples 1 and 2.
  • the measurement conditions for the atomic force microscope are as follows. ⁇ Measurement area: 1 ⁇ m ⁇ 1 ⁇ m ⁇ Equipment: Hitachi High-Tech Science AFM5100N type SPM (used in tapping mode) ⁇ Cantilever: OMCL-AC200TS-R3 manufactured by Olympus ⁇ Resolution: 256 x 256 pixels
  • the current collectors A to F of Examples 1 to 6 have fine irregularities on the surface, when measured with an atomic force microscope under the above measurement conditions, the average surface reflecting the irregularities Roughness is measured. Since the current collector G of Comparative Example 1 is an aluminum foil that is not surface-treated, Ra is small. In the current collector H of Comparative Example 2, since the anodized film was partially left on the surface, fine unevenness remained only partially, and Ra was a small value. Since there is a difference in the presence or absence of an oxide film, the maximum height difference: PV was a relatively large value. Since current collector I of Comparative Example 3 had a large amount of dissolution in the alkaline solution, no fine irregularities remained, and Ra was a small value. However, as shown in FIG. 12, since the undulation component exists on the surface, the maximum height difference: PV has a relatively large value. In the FFT-processed data, the difference between the example and the comparative example was particularly clear in the PV value.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

Provided are: an aluminum substrate for a collector having a high adhesion performance with respect to an electrode material and a low contact resistance with an electrode material; a capacitor; a secondary cell; and a method for manufacturing the aluminum substrate for a collector. The present invention has a face in which (C + D)/(A + B + C + D) is 0.5 to 1 inclusive and C/D is 0.1 to 2 inclusive, where A, B, C, and D respectively represent the peak area ratios of Al, Al2O3, Al(OH)3, and AlO(OH) present within 10 nm of the surface layer when measured by X-ray photoelectron spectroscopy.

Description

集電体用アルミニウム基材、キャパシタ、二次電池、および、集電体用アルミニウム基材の製造方法Aluminum substrate for current collector, capacitor, secondary battery, and method for producing aluminum substrate for current collector
 本発明は、集電体用アルミニウム基材、この集電体用アルミニウム基材を用いるキャパシタおよび二次電池、ならびに、集電体用アルミニウム基材の製造方法に関する。 The present invention relates to an aluminum base material for current collector, a capacitor and a secondary battery using this aluminum base material for current collector, and a method for producing the aluminum base material for current collector.
 近年、パーソナルコンピュータ、携帯電話等のポータブル機器や、ハイブリッド自動車、電気自動車等の開発に伴い、その電源としての蓄電デバイス、特に、リチウムイオンキャパシタ、リチウムイオン二次電池、電気二重層キャパシタ等の需要が増大している。 In recent years, with the development of portable equipment such as personal computers and mobile phones, hybrid automobiles, electric automobiles, etc., there is a demand for power storage devices, especially lithium ion capacitors, lithium ion secondary batteries, electric double layer capacitors, etc. is increasing.
 このような蓄電デバイスの正極および/または負極に用いられる電極用集電体(以下、単に「集電体」という。)としては、アルミニウム基材を用いることができることが知られている。また、このアルミニウム基材からなる集電体の表面に、電極材料として活物質や活性炭などを塗布し、正極または負極の電極として用いることができることも知られている。 It is known that an aluminum base material can be used as an electrode current collector (hereinafter simply referred to as "current collector") used for the positive electrode and/or negative electrode of such an electricity storage device. It is also known that an active material, activated carbon, or the like as an electrode material can be applied to the surface of a current collector made of an aluminum base material, and used as a positive electrode or a negative electrode.
 例えば、特許文献1には、アルミニウム基材と、アルミニウム基材の少なくとも一方の主面に積層された酸化膜とを有し、酸化膜の密度が2.7~4.1g/cm3であり、厚みが5nm以下である電極用アルミニウム部材が記載されている。 For example, in Patent Document 1, an aluminum substrate and an oxide film laminated on at least one main surface of the aluminum substrate are provided, and the oxide film has a density of 2.7 to 4.1 g/cm 3 . , an aluminum member for an electrode having a thickness of 5 nm or less.
 特許文献2には、正極集電体と、正極合材層と、正極集電体と正極合材層との間に設けられる中間層と、を備え、中間層は、非酸化物である導電性無機化合物と正極活物質とを含む第1中間層と、絶縁性無機材料と非酸化物である導電性無機化合物とを含む第2中間層と、を有し、導電性無機化合物は、300℃以上で絶縁性酸化物となる、二次電池用正極が記載されている。 Patent Document 2 discloses a conductive material comprising a positive electrode current collector, a positive electrode mixture layer, and an intermediate layer provided between the positive electrode current collector and the positive electrode mixture layer, wherein the intermediate layer is a non-oxide conductive material. a first intermediate layer containing a conductive inorganic compound and a positive electrode active material; and a second intermediate layer containing an insulating inorganic material and a non-oxide conductive inorganic compound, wherein the conductive inorganic compound contains 300 A positive electrode for a secondary battery is described which becomes an insulating oxide at ℃ or higher.
国際公開第2018/062046号WO2018/062046 国際公開第2018/220991号WO2018/220991
 集電体は、電極材料との密着性が高いこと、および、電極材料との接触抵抗が小さいことが望ましい。アルミニウム基材の表面を粗面化することで、電極材料との密着性を向上することは可能であるが、十分な密着効果と接触抵抗の低減とを両立することは困難であった。また、粗面化処理のコストに対して十分な効果が得られず、実用化されることはほとんどなかった。 It is desirable that the current collector has high adhesion to the electrode material and low contact resistance with the electrode material. Although it is possible to improve the adhesion to the electrode material by roughening the surface of the aluminum base material, it has been difficult to achieve both a sufficient adhesion effect and a reduction in contact resistance. In addition, sufficient effect was not obtained with respect to the cost of surface roughening treatment, and it was almost never put into practical use.
 また、市販の集電体用アルミニウム箔は表面に圧延工程で形成された自然酸化皮膜と、微量の圧延油が残っているため、接触抵抗および電極材料との密着性に課題があった。 In addition, since the surface of commercially available aluminum foil for current collectors has a natural oxide film formed during the rolling process and a small amount of rolling oil, there are problems with contact resistance and adhesion with electrode materials.
 本発明は、電極材料との密着性が高く、かつ、電極材料との接触抵抗が小さい集電体用アルミニウム基材、キャパシタ、二次電池、および、集電体用アルミニウム基材の製造方法を提供することを課題とする。 The present invention provides an aluminum base material for a current collector, a capacitor, a secondary battery, and a method for producing an aluminum base material for a current collector, which have high adhesion to an electrode material and low contact resistance with the electrode material. The task is to provide
 本発明は、以下の構成によって課題を解決する。 The present invention solves the problem with the following configuration.
 [1] X線光電子分光で測定した場合の、表層10nm以内に存在する金属Al、Al23、Al(OH)3、AlO(OH)のピーク面積比を、順に、A、B、C、Dとしたとき、(C+D)/(A+B+C+D)が0.5以上1以下であり、かつC/Dが0.1以上2以下である面を有する、集電体用アルミニウム基材。
 [2] 面の表面粗さRaが10nm以上50nm以下である、[1]に記載の集電体用アルミニウム基材。
 [3] 面の最大高低差P-Vが100nm以上500nm以下である、[1]または[2]に記載の集電体用アルミニウム基材。
 [4] 面が粒状の金属間化合物を有する、[1]~[3]のいずれかに記載の集電体用アルミニウム基材。
 [5] 粒状の金属化合物の数密度が500個/mm2以上である、[4]に記載の集電体用アルミニウム基材。
 [6] 厚さが5μm~100μmである、[1]~[5]のいずれかに記載の集電体用アルミニウム基材。
 [7] [1]~[6]のいずれかに記載の集電体用アルミニウム基材を有するキャパシタ。
 [8] [1]~[6]のいずれかに記載の集電体用アルミニウム基材を有する二次電池。
 [9] [1]~[6]のいずれかに記載の集電体用アルミニウム基材を作製する集電体用アルミニウム基材の製造方法であって、
 アノード電解時の通電量が10~100C/dm2で陽極酸化皮膜をアルミニウム箔の表面に形成する皮膜形成工程、および、
 陽極酸化皮膜を除去する除去工程、を有する、集電体用アルミニウム基材の製造方法。
 [10] 除去工程が、アルカリ性溶液による化学エッチング工程、水洗工程、酸性溶液による洗浄工程、および、水洗工程をこの順に含む、[9]に記載の集電体用アルミニウム基材の製造方法。
 [11] 化学エッチング工程が、25℃以上50℃未満のアルカリ性溶液に陽極酸化皮膜を1秒~10秒接触させる工程を含む、[10]に記載の集電体用アルミニウム基材の製造方法。
[1] The peak area ratios of metals Al, Al 2 O 3 , Al(OH) 3 and AlO(OH) existing within 10 nm of the surface layer when measured by X-ray photoelectron spectroscopy are indicated by A, B, and C in that order. , and D, (C+D)/(A+B+C+D) is 0.5 or more and 1 or less, and C/D is 0.1 or more and 2 or less.
[2] The aluminum substrate for a current collector according to [1], wherein the surface roughness Ra of the surface is 10 nm or more and 50 nm or less.
[3] The aluminum base material for a current collector according to [1] or [2], wherein the maximum surface height difference PV is 100 nm or more and 500 nm or less.
[4] The aluminum substrate for a current collector according to any one of [1] to [3], which has a granular intermetallic compound on the surface.
[5] The aluminum substrate for a current collector according to [4], wherein the number density of the granular metal compounds is 500/mm 2 or more.
[6] The aluminum substrate for current collector according to any one of [1] to [5], which has a thickness of 5 μm to 100 μm.
[7] A capacitor comprising the aluminum substrate for current collector according to any one of [1] to [6].
[8] A secondary battery comprising the aluminum substrate for current collector according to any one of [1] to [6].
[9] A method for producing an aluminum substrate for a current collector for producing the aluminum substrate for a current collector according to any one of [1] to [6], comprising:
a film-forming step of forming an anodized film on the surface of the aluminum foil at a current of 10 to 100 C/dm 2 during anodic electrolysis;
A method for producing an aluminum base material for a current collector, comprising a removing step of removing the anodized film.
[10] The method for producing an aluminum base material for current collector according to [9], wherein the removing step includes, in this order, a chemical etching step with an alkaline solution, a water washing step, a washing step with an acid solution, and a water washing step.
[11] The method for producing an aluminum substrate for a current collector according to [10], wherein the chemical etching step includes a step of contacting the anodized film with an alkaline solution at 25°C or higher and lower than 50°C for 1 second to 10 seconds.
 本発明によれば、電極材料との密着性が高く、かつ、電極材料との接触抵抗が小さい集電体用アルミニウム基材、キャパシタ、二次電池、および、集電体用アルミニウム基材の製造方法を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, production of an aluminum base material for a current collector, a capacitor, a secondary battery, and an aluminum base material for a current collector having high adhesion to an electrode material and low contact resistance with the electrode material. can provide a method.
本発明の集電体用アルミニウム基材の好適な製造方法の一例を説明するための模式的な断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is typical sectional drawing for demonstrating an example of the suitable manufacturing method of the aluminum base material for collectors of this invention. 本発明の集電体用アルミニウム基材の好適な製造方法の一例を説明するための模式的な断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is typical sectional drawing for demonstrating an example of the suitable manufacturing method of the aluminum base material for collectors of this invention. 本発明の集電体用アルミニウム基材の好適な製造方法の一例を説明するための模式的な断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is typical sectional drawing for demonstrating an example of the suitable manufacturing method of the aluminum base material for collectors of this invention. 本発明の集電体用アルミニウム基材の好適な製造方法の一例を説明するための模式的な断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is typical sectional drawing for demonstrating an example of the suitable manufacturing method of the aluminum base material for collectors of this invention. 本発明の集電体用アルミニウム基材の好適な製造方法の一例を説明するための模式的な断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is typical sectional drawing for demonstrating an example of the suitable manufacturing method of the aluminum base material for collectors of this invention. 図5の領域R1の拡大図である。6 is an enlarged view of region R1 in FIG. 5; FIG. 図6の領域R2の拡大図である。FIG. 7 is an enlarged view of region R2 in FIG. 6; 本発明の集電体用アルミニウム基材の製造方法を実施する製造装置の一例を示す概念図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a conceptual diagram which shows an example of the manufacturing apparatus which enforces the manufacturing method of the aluminum base material for current collectors of this invention. 抵抗の測定を行う装置を模式的に示す図である。It is a figure which shows typically the apparatus which measures resistance. 実施例の集電体用アルミニウム基材のSEM画像である。1 is an SEM image of an aluminum substrate for a current collector of an example. 比較例の集電体用アルミニウム基材のSEM画像である。It is a SEM image of the aluminum base material for current collectors of a comparative example. 比較例の集電体用アルミニウム基材のSEM画像である。It is a SEM image of the aluminum base material for current collectors of a comparative example. 剥離強度の測定を行う測定装置を模式的に示す図である。It is a figure which shows typically the measuring apparatus which measures peel strength.
 以下、本発明について詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
The present invention will be described in detail below.
The description of the constituent elements described below may be made based on representative embodiments of the present invention, but the present invention is not limited to such embodiments.
In this specification, a numerical range represented by "-" means a range including the numerical values before and after "-" as lower and upper limits.
[集電体用アルミニウム基材]
 本発明の集電体用アルミニウム基材は、
 X線光電子分光で測定した場合の、表層10nm以内に存在する金属Al、Al23、Al(OH)3、AlO(OH)のピーク面積比を、順に、A、B、C、Dとしたとき、(C+D)/(A+B+C+D)が0.5以上1以下であり、かつC/Dが0.1以上2以下である面を有する、集電体用アルミニウム基材である。
[Aluminum base material for current collector]
The aluminum base material for a current collector of the present invention is
A, B, C, and D represent peak area ratios of metal Al, Al2O3 , Al(OH) 3 , and AlO(OH) present within 10 nm of the surface layer when measured by X-ray photoelectron spectroscopy. (C+D)/(A+B+C+D) is 0.5 or more and 1 or less, and C/D is 0.1 or more and 2 or less.
 本発明の集電体用アルミニウム基材の構成について説明する。 The structure of the aluminum base material for current collector of the present invention will be described.
 本発明の集電体用アルミニウム基材は、X線光電子分光(以下、XPSともいう)で測定した場合の、表層10nm以内に存在する金属Al、Al23、Al(OH)3、AlO(OH)のピーク面積比を、順に、A、B、C、Dとしたとき、(C+D)/(A+B+C+D)が0.5以上1以下であり、かつC/Dが0.1以上2以下である面を有する、構成を有する。 The aluminum base material for a current collector of the present invention contains metal Al, Al 2 O 3 , Al(OH) 3 , AlO present within 10 nm of the surface layer when measured by X-ray photoelectron spectroscopy (hereinafter also referred to as XPS). When the peak area ratios of (OH) are A, B, C, and D in order, (C + D) / (A + B + C + D) is 0.5 or more and 1 or less, and C/D is 0.1 or more and 2 or less has a configuration that has a surface that is
 すなわち、本発明の集電体用アルミニウム基材は、少なくとも一面において、アルミニウム基材の表層において、2種の水酸化物である、水酸化アルミニウムAl(OH)3と、酸化アルミニウムの水和物(ベーマイト)AlO(OH)とを一定以上含み、かつ、水酸化物のうち、水酸化アルミニウムAl(OH)3を一定以上含むものである。 That is, the aluminum substrate for a current collector of the present invention has, on at least one surface, two kinds of hydroxides, aluminum hydroxide Al(OH) 3 and aluminum oxide hydrate, in the surface layer of the aluminum substrate. (boehmite) and AlO(OH) at a certain level or more, and among the hydroxides, aluminum hydroxide Al(OH) 3 at a certain level or more.
 本発明の集電体用アルミニウム基材は、集電体として用いられ、表面に活物質(電極材料)を適用されて蓄電デバイス等の正極または負極として用いられる。 The aluminum substrate for a current collector of the present invention is used as a current collector, and an active material (electrode material) is applied to the surface to be used as a positive electrode or a negative electrode of an electric storage device or the like.
 前述のとおり、集電体は、電極材料との密着性が高いこと、および、電極材料との接触抵抗が小さいことが望まれる。そのため、集電体用アルミニウム基材について、電極材料との密着性向上、および、電極材料との接触抵抗の低減のため、種々の構成が提案されている。 As described above, the current collector is desired to have high adhesion to the electrode material and low contact resistance with the electrode material. Therefore, various configurations have been proposed for the aluminum base material for current collector in order to improve the adhesion with the electrode material and reduce the contact resistance with the electrode material.
 例えば、アルミニウム基材の表面に粗面を形成することで、電極材料との密着を向上し、抵抗を改善することが提案されている。しかしながら、電極材料との密着性を向上させるため、アルミニウム基材の表面を粗面化しても、十分な密着効果が得られず、密着性と低抵抗とを十分に両立することができなかった。また、アルミニウム基材の表面を粗面化することは、製造工程が複雑であり、製造コストを引き上げる欠点があった。 For example, by forming a rough surface on the surface of the aluminum base material, it has been proposed to improve the adhesion with the electrode material and improve the resistance. However, even if the surface of the aluminum substrate is roughened in order to improve the adhesion to the electrode material, a sufficient adhesion effect cannot be obtained, and both adhesion and low resistance cannot be satisfactorily achieved. . Further, roughening the surface of the aluminum base material has the drawback of complicating the manufacturing process and increasing the manufacturing cost.
 また、アルミニウム基材の表面に、微細なポアを有する陽極酸化皮膜を形成することで、密着性を向上することが提案されている。しかしながら、陽極酸化皮膜は導電性が劣るため、表面に陽極酸化皮膜を有すると電極材料との接触抵抗が大きくなってしまい、密着性と低抵抗とを両立することができなかった。 In addition, it has been proposed to improve adhesion by forming an anodized film with fine pores on the surface of the aluminum substrate. However, since the anodized film has poor conductivity, the contact resistance with the electrode material increases when the anodized film is formed on the surface, and it is impossible to achieve both adhesion and low resistance.
 また、別の方法として、アルミニウム基材に、カーボン、あるいは、ほかの導電性粒子を含む導電性の塗膜を形成することも知られている。この導電性塗膜は、塗膜が含む導電性粒子により表面に微小な凹凸が形成されるため、その上に設けられる電極材材料との密着が向上し、剥離しにくさを向上できることが知られている。しかしながら、導電性塗膜をあらかじめ塗布する構成は、製造工程が複雑であり、製造コストを引き上げる欠点があった。 Another known method is to form a conductive coating film containing carbon or other conductive particles on an aluminum substrate. It is known that this conductive coating film has fine irregularities formed on the surface by the conductive particles contained in the coating film, so that the adhesion with the electrode material provided thereon is improved and the difficulty of peeling off can be improved. It is However, the configuration in which the conductive coating film is applied in advance has the drawback that the manufacturing process is complicated and the manufacturing cost is increased.
 また、アルミニウム基材は、通常、表面に自然酸化皮膜が形成されており、自然酸化皮膜はAl23、および、その水和物Al23・nH2Oを含んでいる。自然酸化皮膜はそれ自体が導電性が良くない材料であるため、これを薄くすること、あるいは、酸化皮膜の密度を規定することで、低抵抗にして電極材料との接触抵抗を低減することができることも知られている。 Further, the aluminum substrate usually has a natural oxide film formed on its surface, and the natural oxide film contains Al 2 O 3 and its hydrate Al 2 O 3 ·nH 2 O. Since the natural oxide film itself is a material with poor conductivity, it is possible to reduce the contact resistance with the electrode material by making it thinner or by stipulating the density of the oxide film. It is also known to be possible.
 しかしながら、本発明者らの検討によれば、電極材料との密着性、および、電極材料との接触抵抗に関して、自然酸化皮膜の厚み、および、密度の制御等だけでは改善が不十分な場合があることを見出した。 However, according to the studies of the present inventors, there are cases where the adhesion with the electrode material and the contact resistance with the electrode material are not sufficiently improved only by controlling the thickness and density of the natural oxide film. I found something.
 これに対して、本発明の集電体用アルミニウム基材は、X線光電子分光(以下、XPSともいう)で測定した場合の、表層10nm以内に存在する金属Al、Al23、Al(OH)3、AlO(OH)のピーク面積比を、順に、A、B、C、Dとしたとき、(C+D)/(A+B+C+D)が0.5以上1以下であり、かつC/Dが0.1以上2以下である面を有する構成を有する。 On the other hand, the aluminum substrate for a current collector of the present invention contains metal Al, Al 2 O 3 , Al ( OH) 3 and AlO(OH) where the peak area ratios are A, B, C, and D in that order, (C+D)/(A+B+C+D) is 0.5 or more and 1 or less, and C/D is 0 .1 or more and 2 or less faces.
 本発明者らの検討によれば、自然酸化皮膜の厚み以外に界面抵抗に影響を及ぼすものが、アルミニウム基材の表層付近の水酸化物であることを見出した。具体的には、アルミニウム基材の表層付近に存在する水酸化物として、AlO(OH)とAl(OH)3の2種が存在し、AlO(OH)(ベーマイト)が界面抵抗に悪影響を及ぼすこと、及び、たとえAlO(OH)が存在しても、別の水酸化物である、Al(OH)3がある程度存在すれば低抵抗を維持できることを見出した。従って、表層10nm内に存在する、これら2種の水酸化物についてAl(OH)3の比率を一定以上に保つことで低抵抗が可能となることを見出した。具体的には、最表層10nm以内に存在する水酸化物について、ピーク面積比Al(OH)3/AlO(OH)が0.1以上であることが低抵抗を実現するうえで必須である。ピーク面積比が2以下であると接合時の密着性が良好となるため、ピーク面積比の上限は2とした。 According to the studies of the present inventors, it was found that the hydroxide near the surface layer of the aluminum base material affects the interfacial resistance in addition to the thickness of the natural oxide film. Specifically, there are two kinds of hydroxides, AlO(OH) and Al(OH) 3 , as hydroxides existing near the surface layer of the aluminum base material, and AlO(OH) (boehmite) adversely affects the interfacial resistance. and that even if AlO(OH) is present, the low resistance can be maintained if another hydroxide, Al(OH) 3 , is present to some extent. Therefore, it has been found that a low resistance can be achieved by keeping the ratio of Al(OH) 3 in these two kinds of hydroxides within 10 nm of the surface layer at a certain level or higher. Specifically, the peak area ratio Al(OH) 3 /AlO(OH) of hydroxide present within 10 nm of the outermost layer is 0.1 or more, which is essential for achieving low resistance. If the peak area ratio is 2 or less, the adhesion at the time of joining is good, so the upper limit of the peak area ratio is set to 2.
 また、後に詳述するが、上記の比率で水酸化物を表層に有する集電体用アルミニウム基材は、適切な条件で陽極酸化皮膜を形成した後に、適切な条件で陽極酸化皮膜を除去することで作製される。その際、陽極酸化皮膜の底部に形成されていた直径数10nm程度の微細な凹凸の影響によって、アルミニウム基材の表面に微細な凹凸が形成される。そのため、密着性も向上できることがわかった。 In addition, as will be described in detail later, the aluminum substrate for current collector having the hydroxide in the above ratio on the surface layer is formed with an anodized film under appropriate conditions, and then the anodized film is removed under appropriate conditions. It is made by At that time, fine unevenness is formed on the surface of the aluminum substrate due to the influence of fine unevenness having a diameter of about several 10 nm formed on the bottom of the anodized film. Therefore, it turned out that adhesiveness can also be improved.
 電極材料との接触抵抗が低く、電極材料との密着が高い本発明の集電体用アルミニウム基材は、リチウムイオン電池などの二次電池、および、キャパシタなどの蓄電デバイスに使用することで、内部抵抗削減に寄与するとともに、長期間、多くの回数の充放電を行った場合でも、電極材料と集電体との部分的な剥離を抑制できる。特に、リチウムイオン電池の中でも、電解質が固体や半固体のように密着と低抵抗を必要とする全個体電池および半固体電池において効果を発揮する。 The aluminum base material for a current collector of the present invention, which has low contact resistance with electrode materials and high adhesion with electrode materials, can be used in secondary batteries such as lithium ion batteries and power storage devices such as capacitors. In addition to contributing to the reduction of internal resistance, partial separation between the electrode material and the current collector can be suppressed even when charging and discharging are performed many times over a long period of time. In particular, among lithium-ion batteries, the effect is exhibited in all-solid batteries and semi-solid batteries that require close contact and low resistance such as solid or semi-solid electrolytes.
 ここで、表層10nm以内に存在する金属Al、Al23、Al(OH)3、AlO(OH)のピーク面積比A、B、C、Dの測定方法について説明する。 Here, a method for measuring the peak area ratios A, B, C, and D of metal Al, Al 2 O 3 , Al(OH) 3 , and AlO(OH) existing within 10 nm of the surface layer will be described.
 「X線光電子分光」は、一般にESCA(Electron Spectroscopy for Chemical Analysis)またはXPS(X-ray Photoelectron Spectroscopy)とも呼ばれる分析法である。以下において、X線光電子分光を、XPSとも記載する。XPSは、測定対象試料表面にX線を照射すると光電子が放出されることを利用する分析法であり、測定対象試料の表層部の分析法として広く用いられている。XPSによれば、測定対象の試料表面における分析により取得されるX線光電子分光スペクトルを用いて定性分析および定量分析を行うことができる。試料表面から分析位置までの深さ(以下、「検出深さ」とも記載する。)と光電子取り出し角(take-offangle)との間には、一般に次の式:検出深さ≒電子の平均自由行程×3×sinθ、が成立する。式中、検出深さは、X線光電子分光スペクトルを構成する光電子の95%が発生する深さであり、θは光電子取り出し角である。上記の式から、光電子取り出し角が小さいほど試料表面からの深さが浅い部分が分析でき、光電子取り出し角が大きいほど深い部分が分析できることがわかる。そして光電子取り出し角45度でのXPSによって行われる分析では、通常、試料表面から深さ10nm程度のごく表層部が分析位置になる。したがって、集電体用アルミニウム基材の表面において、光電子取り出し角45度でXPSによって行われる分析によれば、集電体用アルミニウム基材の表面から深さ10nm程度のごく表層部の組成分析を行うことができる。 "X-ray photoelectron spectroscopy" is an analysis method commonly called ESCA (Electron Spectroscopy for Chemical Analysis) or XPS (X-ray Photoelectron Spectroscopy). In the following, X-ray photoelectron spectroscopy is also referred to as XPS. XPS is an analysis method that utilizes the fact that photoelectrons are emitted when the surface of a sample to be measured is irradiated with X-rays, and is widely used as a method for analyzing the surface layer of the sample to be measured. According to XPS, qualitative analysis and quantitative analysis can be performed using an X-ray photoelectron spectroscopy spectrum obtained by analysis on the surface of a sample to be measured. Between the depth from the sample surface to the analysis position (hereinafter also referred to as “detection depth”) and the photoelectron take-off angle, the following formula generally holds: detection depth≈electron mean freedom A formula of stroke×3×sin θ is established. In the formula, the detection depth is the depth at which 95% of the photoelectrons forming the X-ray photoelectron spectroscopy spectrum are generated, and θ is the photoelectron extraction angle. From the above formula, it can be seen that the smaller the photoelectron take-off angle, the shallower the sample surface can be analyzed, and the larger the photoelectron take-off angle, the deeper the sample can be analyzed. In the analysis performed by XPS at a photoelectron take-off angle of 45 degrees, the analysis position is usually a very superficial layer at a depth of about 10 nm from the sample surface. Therefore, according to the analysis performed by XPS on the surface of the aluminum base material for current collector at a photoelectron take-off angle of 45 degrees, the composition analysis of the very surface layer at a depth of about 10 nm from the surface of the aluminum base material for current collector can be performed. It can be carried out.
 XPSによって得られたAl2pスペクトルについて、金属Alのピーク位置を基準に、Al23、Al(OH)3、AlO(OH)それぞれのピークシフト補正を行ってから、データにバックグラウンド補正をしたうえで固定のピーク位置およびピーク幅に対しピーク高さのフィッティングを行うことで、Al、Al23、Al(OH)3、AlO(OH)それぞれに対応するピークが得られる。各ピークからピーク面積比A、B、C、Dが得られる。 For the Al2p spectrum obtained by XPS, peak shift correction was performed for each of Al 2 O 3 , Al(OH) 3 , and AlO(OH) based on the peak position of metallic Al, and then background correction was performed on the data. By fitting peak heights to fixed peak positions and peak widths, peaks corresponding to Al, Al 2 O 3 , Al(OH) 3 , and AlO(OH) are obtained. Peak area ratios A, B, C, and D are obtained from each peak.
 XPSの測定装置としては、例えば、Ulvac-PHI製QuanteraSXM等の市販の測定装置を用いることができる。また、測定条件は、例えば、以下のようにすればよい。
・X線源:AlKα線(1486.6ev、25W、15kV)
・Pass Energy=55ev、Step=0.05ev
・測定領域:300μm×300μm
・光電子取り出し角度:45度
As an XPS measuring device, for example, a commercially available measuring device such as Quantera SXM manufactured by Ulvac-PHI can be used. Moreover, the measurement conditions may be set as follows, for example.
・X-ray source: Al Kα ray (1486.6 ev, 25 W, 15 kV)
・Pass Energy = 55 ev, Step = 0.05 ev
・Measurement area: 300 μm × 300 μm
・Photoelectron extraction angle: 45 degrees
 ここで、電極材料との密着性および低抵抗の両立の観点から、(C+D)/(A+B+C+D)は、0.55以上1以下が好ましく、0.6以上0.7以下がより好ましい。同様に、C/Dは、0.12以上2以下が好ましく、0.15以上1以下がより好ましい。 Here, (C+D)/(A+B+C+D) is preferably 0.55 or more and 1 or less, more preferably 0.6 or more and 0.7 or less, from the viewpoint of achieving both adhesion with the electrode material and low resistance. Similarly, C/D is preferably 0.12 or more and 2 or less, more preferably 0.15 or more and 1 or less.
 ここで、電極材料との密着性および低抵抗の両立の観点から、X線光電子分光で測定した、表層5nm以内に存在する金属Al、Al23、Al(OH)3、AlO(OH)のピーク面積比を、順に、A2、B2、C2、D2としたとき、(C2+D2)/(A2+B2+C2+D2)が0.5以上1以下であり、かつ、C2/D2が0.4以上1以下であることが好ましい。また、(C2+D2)/(A2+B2+C2+D2)は、0.6以上1以下がより好ましく、0.65以上0.7以下がさらに好ましい。同様に、C2/D2は、0.5以上2以下がより好ましく、0.7以上1以下がさらに好ましい。 Here, from the viewpoint of achieving both adhesion with the electrode material and low resistance, metals Al, Al 2 O 3 , Al(OH) 3 , AlO(OH) existing within a surface layer of 5 nm measured by X-ray photoelectron spectroscopy. are, in order, A 2 , B 2 , C 2 , and D 2 , where (C 2 +D 2 )/(A 2 +B 2 +C 2 +D 2 ) is 0.5 or more and 1 or less, In addition, C 2 /D 2 is preferably 0.4 or more and 1 or less. ( C2 +D2)/( A2 +B2 + C2 + D2) is more preferably 0.6 or more and 1 or less, and more preferably 0.65 or more and 0.7 or less. Similarly, C 2 /D 2 is more preferably 0.5 or more and 2 or less, and more preferably 0.7 or more and 1 or less.
 なお、集電体用アルミニウム基材の表面から深さ5nm表層部の組成分析を行う場合には、上述のXPS測定において、光電子取り出し角度を20度とすればよい。 In addition, in the case of performing composition analysis of the surface layer portion at a depth of 5 nm from the surface of the aluminum substrate for current collector, the photoelectron extraction angle may be set to 20 degrees in the above XPS measurement.
 また、電極材料との密着性および低抵抗の両立の観点から、集電体用アルミニウム基材の、上述したピーク面積比を満たす面の表面粗さRaは、10nm以上50nm以下が好ましく、11nm以上40nm以下がより好ましく、11nm以上36nm以下がさらに好ましい。 Further, from the viewpoint of achieving both adhesion to the electrode material and low resistance, the surface roughness Ra of the surface of the aluminum substrate for current collector that satisfies the above-described peak area ratio is preferably 10 nm or more and 50 nm or less, and 11 nm or more. 40 nm or less is more preferable, and 11 nm or more and 36 nm or less is even more preferable.
 また、電極材料との密着性および低抵抗の両立の観点から、集電体用アルミニウム基材の、上述したピーク面積比を満たす面の最大高低差P-Vは100nm以上500nm以下であることが好ましく、120nm以上200nm以下であることがより好ましく、120nm以上160nm以下であることがさらに好ましい。 In addition, from the viewpoint of achieving both adhesion with the electrode material and low resistance, the maximum height difference PV of the surface satisfying the above-described peak area ratio of the aluminum base material for current collector is 100 nm or more and 500 nm or less. It is preferably 120 nm or more and 200 nm or less, and even more preferably 120 nm or more and 160 nm or less.
 なお、表面粗さRa、および、最大高低差P-Vは、以下のように測定する。 The surface roughness Ra and the maximum height difference PV are measured as follows.
 原子間力顕微鏡(AFM)を用いて、アルミニウム基材の1μm四方の表面形状を測定し、得られた3次元データから、以下の式を用いて表面粗さRa、および、最大高低差P-Vをそれぞれ算出する。
・平均表面粗さRa(nm)=1/n×Σ|Z(i)-Zc|   (Zcは中心面のZ座標(高さ方向))
・最大高低差P-V(nm)=測定面内におけるZ座標の最大値―最小値
Using an atomic force microscope (AFM), the surface shape of a 1 μm square of the aluminum substrate is measured, and from the obtained three-dimensional data, the surface roughness Ra and the maximum height difference P- Calculate V respectively.
· Average surface roughness Ra (nm) = 1/n × Σ|Z (i) - Zc| (Zc is the Z coordinate of the center plane (height direction))
・Maximum height difference PV (nm) = maximum value of Z coordinate in measurement plane - minimum value
 原子間力顕微鏡(AFM)としては、例えば、日立ハイテクサイエンス社製AFM5100N型SPMを用いることができる。この装置をタッピングモードで使用し、カンチレバーとしてオリンパス社製OMCL-AC200TS-R3を用い、分解能256×256ピクセルで、アルミニウム基材の表面の3次元データを測定すればよい。
 得られたデータにFFT(Fast Fourier Transform)処理をすることで、例えば、周期0.2μm以上の3次元データを除くことができ、短周期の凹凸を反映した表面粗さおよび最大高低差P-Vを算出することができる。
 ここで、FFT処理を行った3次元データとは、得られたデータに高速フーリエ変換(FFT)処理を行って得られる形状像を、波数空間に変換してハイパスフィルター処理を行った後に、逆フーリエ変換(FFT)処理を行って形状像を再構築したものである。ハイパスフィルター処理を行うことで、波長0.2μm以上のアルミニウム箔に由来する大きなうねり成分を除去する。
 周期0.2μm以上の3次元データを除いた、短周期の凹凸を反映した表面粗さRaに関しては、電極材料との密着性および低抵抗の両立の観点から、5nm以上10nm以下が好ましく、6nm以上10nm以下がより好ましく、6nm以上9nm以下がさらに好ましい。
 同様に、F周期0.2μm以上の3次元データを除いた、短周期の凹凸を反映した最大高低差P-Vに関しては、50nm以上200nm以下であることが好ましく、60nm以上100nm以下であることがより好ましく、70nm以上100nm以下であることがさらに好ましい。
As an atomic force microscope (AFM), for example, AFM5100N type SPM manufactured by Hitachi High-Tech Science Co., Ltd. can be used. Using this apparatus in the tapping mode, OMCL-AC200TS-R3 manufactured by Olympus Corporation is used as a cantilever, and three-dimensional data of the surface of the aluminum substrate is measured at a resolution of 256×256 pixels.
By subjecting the obtained data to FFT (Fast Fourier Transform) processing, for example, three-dimensional data with a period of 0.2 μm or more can be removed, and the surface roughness and maximum height difference P- V can be calculated.
Here, the three-dimensional data subjected to FFT processing means that the shape image obtained by performing fast Fourier transform (FFT) processing on the obtained data is converted into wavenumber space, subjected to high-pass filtering, and then reversed. The shape image is reconstructed by Fourier transform (FFT) processing. By performing high-pass filter processing, a large wave component originating from the aluminum foil having a wavelength of 0.2 μm or more is removed.
Except for three-dimensional data with a period of 0.2 μm or more, the surface roughness Ra reflecting short-period unevenness is preferably 5 nm or more and 10 nm or less, and 6 nm, from the viewpoint of achieving both adhesion with the electrode material and low resistance. 10 nm or less is more preferable, and 6 nm or more and 9 nm or less is even more preferable.
Similarly, except for three-dimensional data with an F period of 0.2 μm or more, the maximum height difference PV reflecting short-period unevenness is preferably 50 nm or more and 200 nm or less, and 60 nm or more and 100 nm or less. is more preferable, and more preferably 70 nm or more and 100 nm or less.
 また、集電体用アルミニウム基材の厚さは、5μm~100μmが好ましく、10μm~30μmがより好ましい。集電体用アルミニウム基材の厚さが薄すぎると、破損するおそれが生じる。一方、蓄電デバイス等に用いた際の全体の厚さを薄型化するために、集電体用アルミニウム基材の厚さは、100μm以下とすることが好ましい。 Further, the thickness of the aluminum substrate for current collector is preferably 5 μm to 100 μm, more preferably 10 μm to 30 μm. If the thickness of the aluminum substrate for current collector is too thin, there is a risk of breakage. On the other hand, the thickness of the current collector aluminum base material is preferably 100 μm or less in order to reduce the overall thickness when used in an electricity storage device or the like.
 本発明の集電体用アルミニウム基材は、アルミニウム基材の厚さ方向に貫通する貫通孔を有していてもよい。 The aluminum substrate for a current collector of the present invention may have through-holes penetrating in the thickness direction of the aluminum substrate.
 集電体用アルミニウム基材が、厚み方向に貫通する複数の貫通孔を有することで、集電体として用いる場合に、荷電粒子の移動を容易にすることができる。また、多数の貫通孔を有することで、活物質との密着性を向上することができる。 The aluminum base material for current collector has a plurality of through-holes penetrating in the thickness direction, so that when used as a current collector, the movement of charged particles can be facilitated. In addition, by having a large number of through holes, it is possible to improve the adhesion with the active material.
 貫通孔の平均開口径は、0.1μm以上100μm以下であることが好ましく、1μm以上80μm以下がより好ましく、3μm以上40μm以下がさらに好ましく、5μm以上30μm以下が特に好ましい。 The average opening diameter of the through-holes is preferably 0.1 μm or more and 100 μm or less, more preferably 1 μm or more and 80 μm or less, even more preferably 3 μm or more and 40 μm or less, and particularly preferably 5 μm or more and 30 μm or less.
 貫通孔の平均開口径を上記範囲とすることで、集電体用アルミニウム基材に活物質等を塗布する際に抜け等が発生するのを防止でき、また、塗布した活物質との密着性を向上できる。また、集電体用アルミニウム基材が多数の貫通孔を有するものとした場合でも、十分な引張強度を有するものとすることができる。 By setting the average opening diameter of the through-holes within the above range, it is possible to prevent the occurrence of omissions when the active material or the like is applied to the aluminum base material for the current collector, and the adhesiveness to the applied active material is improved. can be improved. Moreover, even when the aluminum base material for current collector has a large number of through-holes, it can have sufficient tensile strength.
 なお、貫通孔の平均開口径は、以下のようにして測定される。
 集電体用アルミニウム基材の一方の面から、平行光を照射し、透過式の光学顕微鏡で貫通孔を倍率200倍で撮影する。得られたデータを画像解析ソフトで2値化し、貫通孔部の円相当径の平均値を平均開口径とする。
In addition, the average opening diameter of the through-holes is measured as follows.
Parallel light is irradiated from one surface of the aluminum substrate for current collector, and the through-hole is photographed with a transmission optical microscope at a magnification of 200 times. The obtained data is binarized by image analysis software, and the average value of the circle-equivalent diameters of the through-holes is taken as the average opening diameter.
 また、貫通孔の平均開口率は、0.5%~30%であるのが好ましく、0.6%~20%がより好ましく、0.7%~10%がさらに好ましく、0.8%~5%が特に好ましい。 Further, the average opening ratio of the through holes is preferably 0.5% to 30%, more preferably 0.6% to 20%, still more preferably 0.7% to 10%, and 0.8% to 5% is particularly preferred.
 貫通孔の平均開口率を上記範囲とすることで、集電体用アルミニウム基材に活物質を塗布する際に抜け等が発生するのを防止でき、また、塗布した活物質との密着性を向上できる。また、集電体用アルミニウム基材が多数の貫通孔を有するものとした場合でも、十分な引張強度を有するものとすることができる。 By setting the average aperture ratio of the through-holes within the above range, it is possible to prevent the occurrence of voids when the active material is applied to the aluminum base material for current collector, and also to improve the adhesion with the applied active material. can improve. Moreover, even when the aluminum base material for current collector has a large number of through-holes, it can have sufficient tensile strength.
 なお、貫通孔の平均開口率は、以下のようにして測定される。
 集電体用アルミニウム基材の一方の面から、平行光を照射し、透過式の光学顕微鏡で貫通孔を倍率200倍で撮影する。得られたデータを画像解析ソフトで2値化し、開口部面積の総和/観察面積×100(%)として算出する。
The average aperture ratio of through holes is measured as follows.
Parallel light is irradiated from one surface of the aluminum substrate for current collector, and the through-hole is photographed with a transmission optical microscope at a magnification of 200 times. The obtained data is binarized by image analysis software, and calculated as the total area of the openings/observed area×100(%).
 ここで、本発明において、集電体用アルミニウム基材は、その表面に、膜中に分散された粒状の金属間化合物を多数有することが好ましい。なお、以下の説明では、粒状の金属間化合物を単に「金属間化合物」ともいう。 Here, in the present invention, it is preferable that the aluminum substrate for current collector has a large number of granular intermetallic compounds dispersed in the film on its surface. In the following description, the granular intermetallic compound is also simply referred to as "intermetallic compound".
 酸化アルミニウムは、アルミニウム金属単体に比べると抵抗が大きい。これに対して、アルミニウム基材が金属間化合物を有すると、酸化アルミニウム中にも金属間化合物が含有され絶縁性を低下させる。  Aluminum oxide has a higher resistance than aluminum metal alone. On the other hand, if the aluminum base material contains an intermetallic compound, the aluminum oxide also contains the intermetallic compound, which lowers the insulating properties.
 金属間化合物はアルミニウムに対する酸素の元素比率O/Alが2以上4以下であることが好ましい。また、粒状の金属間化合物の数密度は500個/mm2以上であることが好ましい。 The intermetallic compound preferably has an element ratio O/Al of oxygen to aluminum of 2 or more and 4 or less. Also, the number density of the granular intermetallic compounds is preferably 500/mm 2 or more.
 ここで、本発明における金属間化合物とは、アルミニウム元素(Al)と、Fe、Si、Mn、Mg、Ti、B等から選択される少なくとも1種とを含む化合物である。具体的には、金属間化合物としては、Al3Fe、Al6Fe、αAlFeSi、AlFeMnSiが挙げられる。Alを含むので、表面にアルミニウムの酸化皮膜が形成される。そのため、本発明における金属間化合物の表層は酸素元素(O)を含む。 Here, the intermetallic compound in the present invention is a compound containing aluminum element (Al) and at least one selected from Fe, Si, Mn, Mg, Ti, B and the like. Specifically, the intermetallic compounds include Al 3 Fe, Al 6 Fe, αAlFeSi, and AlFeMnSi. Since it contains Al, an aluminum oxide film is formed on the surface. Therefore, the surface layer of the intermetallic compound in the present invention contains an oxygen element (O).
 なお、本発明の集電体用アルミニウム基材は、表層の酸化膜が元素比率O/Alが2以上4以下である酸化膜を有する粒状の金属間化合物を500個/mm2以上の密度で有していれば、それ以外の粒状の金属間化合物を有していてもよい。すなわち、表層の酸化膜が元素比率O/Alが2未満、あるいは4超の粒状の金属間化合物を有していてもよい。 The aluminum base material for a current collector of the present invention contains granular intermetallic compounds having an oxide film having an element ratio O/Al of 2 or more and 4 or less on the surface layer at a density of 500/mm 2 or more. If it has, it may have other granular intermetallic compounds. That is, the oxide film on the surface layer may have a granular intermetallic compound with an element ratio O/Al of less than 2 or more than 4.
 また、酸化膜が酸化アルミニウム(Al23)を主成分とし、水和物を含有しない場合は、酸化膜の金属間化合物以外の部分における元素比率O/Alは2未満であることが好ましく、1.3~1.5程度であることが好ましい。 Further, when the oxide film contains aluminum oxide (Al 2 O 3 ) as a main component and does not contain a hydrate, the element ratio O/Al in the portion other than the intermetallic compound of the oxide film is preferably less than 2. , about 1.3 to 1.5.
 集電体用アルミニウム基材の電気抵抗をより低くできる等の観点から、金属間化合物の表層の酸化膜の元素比率O/Alの平均値は、2以上4以下であるのが好ましく、2.5以上3.5以下であるのがさらに好ましい。 From the viewpoint of lowering the electric resistance of the aluminum base material for current collector, the average value of the element ratio O/Al of the oxide film on the surface layer of the intermetallic compound is preferably 2 or more and 4 or less. More preferably, it is 5 or more and 3.5 or less.
 なお、金属間化合物の表層の元素比率O/Alは、以下のようにして測定する。 The element ratio O/Al of the surface layer of the intermetallic compound is measured as follows.
 金属間化合物は、酸化膜の表面を高分解能走査型電子顕微鏡(Scanning Electron Microscope:SEM)で観察した際に、酸化膜の金属間化合物以外の部分と区別して視認することができる。したがって、まず、高分解能走査型電子顕微鏡(Scanning Electron Microscope:SEM)を用いて酸化膜の表面を例えば、倍率5000倍で撮影し、得られたSEM写真において、金属間化合物の位置を同定する。次に、抽出した金属間化合物の位置で、最表面から深さ方向に、電界放射型オージェ電子分光分析(FE-AES)を用いて元素分析を行う。深さ方向の分析は、測定とスパッタリングによる表面削除を繰り返すことで行う。FE-AESによる深さ方向の元素分布の結果から、最表層における元素比率O/Alを求める。 When observing the surface of the oxide film with a high-resolution scanning electron microscope (SEM), the intermetallic compound can be visually distinguished from the portion of the oxide film other than the intermetallic compound. Therefore, first, the surface of the oxide film is photographed using a high-resolution scanning electron microscope (SEM) at a magnification of, for example, 5000 times, and the position of the intermetallic compound is identified in the obtained SEM photograph. Next, elemental analysis is performed using field emission Auger electron spectroscopy (FE-AES) in the depth direction from the outermost surface at the position of the extracted intermetallic compound. Depth analysis is performed by repeating the measurement and surface removal by sputtering. From the result of the element distribution in the depth direction by FE-AES, the element ratio O/Al in the outermost layer is obtained.
 集電体用アルミニウム基材の電気抵抗をより低くできる等の観点から、粒状の金属間化合物の数密度は、1000個/mm2~300000個/mm2が好ましく、5000個/mm2~200000個/mm2がより好ましい。 The number density of the granular intermetallic compound is preferably 1,000/mm 2 to 300,000/mm 2 , more preferably 5,000/mm 2 to 200,000 from the viewpoint of lowering the electric resistance of the aluminum substrate for current collector. pcs/mm 2 is more preferred.
 なお、粒状の金属間化合物の数密度は、以下のようにして測定する。 The number density of granular intermetallic compounds is measured as follows.
 まず、高分解能走査型電子顕微鏡(SEM)を用いて集電体用アルミニウム基材の表面を真上から例えば、倍率5000倍で撮影し、粒状の金属間化合物を抽出する。次に、FE-AESを用いた元素分析によって抽出した各金属間化合物の元素比率O/Alを求める。元素比率O/Alが2以上4以下の粒状の金属間化合物の数を計数して、視野内の粒状の金属間化合物の数と、視野の面積(幾何学的面積)とから数密度を算出する。複数枚のSEM写真を用いる場合は各写真の数密度の平均値を密度として算出する。 First, using a high-resolution scanning electron microscope (SEM), the surface of the aluminum base material for current collector is photographed from directly above at a magnification of, for example, 5000 times to extract granular intermetallic compounds. Next, the elemental ratio O/Al of each intermetallic compound extracted by elemental analysis using FE-AES is obtained. Count the number of granular intermetallic compounds having an element ratio O/Al of 2 or more and 4 or less, and calculate the number density from the number of granular intermetallic compounds in the field of view and the area of the field of view (geometric area). do. When using a plurality of SEM photographs, the average value of the number density of each photograph is calculated as the density.
 ここで、粒状の金属間化合物の円相当直径は1μm以下とするのが好ましい。円相当直径が1μm以下の金属間化合物は、集電体用アルミニウム基材の表面に表出しやすい。小さい金属間化合物が集電体用アルミニウム基材の表面に表出すると、金属間化合物の体積に対する表面積が大きくなる。その結果、局所的に水分子が吸着しやすくなると考えられ、酸化された金属間化合物の元素比率O/Alが2以上になりやすい。その結果、金属間化合物の酸化皮膜は水和物となるため、周囲の酸化アルミニウムに比べ絶縁性が低くなり、抵抗を下げる基点となる。 Here, the equivalent circle diameter of the granular intermetallic compound is preferably 1 μm or less. An intermetallic compound having an equivalent circle diameter of 1 μm or less is likely to appear on the surface of the aluminum substrate for current collector. When a small intermetallic compound appears on the surface of the aluminum base material for current collector, the surface area to volume of the intermetallic compound increases. As a result, it is considered that water molecules are easily adsorbed locally, and the element ratio O/Al of the oxidized intermetallic compound tends to be 2 or more. As a result, since the oxide film of the intermetallic compound becomes a hydrate, the insulating property becomes lower than that of the surrounding aluminum oxide, which becomes a starting point for lowering the resistance.
 なお、粒状の金属間化合物の円相当直径は、上述のようにして元素比率O/Alを測定した金属間化合物を少なくとも20個抽出し、画像解析ソフト等で金属間化合物の酸化膜表面における面積を求め、この面積から円相当直径を求めて、これらの平均値を円相当直径として算出する。 The equivalent circle diameter of the granular intermetallic compound is obtained by extracting at least 20 intermetallic compounds whose element ratio O/Al is measured as described above, and using image analysis software or the like to determine the area of the intermetallic compound on the oxide film surface. , the equivalent circle diameter is obtained from this area, and the average value of these values is calculated as the equivalent circle diameter.
 集電体用アルミニウム基材の形状は、集電体として用いることができれば、特に制限はないが、板状であることが好ましい。 The shape of the aluminum substrate for current collector is not particularly limited as long as it can be used as a current collector, but it is preferably plate-like.
 <アルミニウム基材>
 集電体用アルミニウム基材の母材となるアルミニウム基材は、特に限定はされず、例えば、JIS規格H4000に記載されている合金番号1N30、3003、1085等の公知のアルミニウム基材を用いることができる。金属間化合物を多く含むアルミニウムを使用すると前述の電気抵抗低減の効果が期待できる。但し、本願はアルミニウム材に限定されない。なお、アルミニウム基材は、アルミニウムを主成分とし、微量の異元素を含む合金板である。
<Aluminum substrate>
There is no particular limitation on the aluminum base material that is the base material of the aluminum base material for current collector, and for example, known aluminum base materials such as alloy numbers 1N30, 3003, and 1085 described in JIS H4000 can be used. can be done. The use of aluminum containing a large amount of intermetallic compounds can be expected to have the aforementioned effect of reducing electrical resistance. However, the present application is not limited to the aluminum material. The aluminum base material is an alloy plate containing aluminum as a main component and a small amount of foreign elements.
[集電体用アルミニウム基材の製造方法]
 次に、本発明の集電体用アルミニウム基材の製造方法について説明する。
[Method for producing aluminum substrate for current collector]
Next, the method for producing the aluminum base material for current collector of the present invention will be described.
 本発明の集電体用アルミニウム基材を作製する集電体用アルミニウム基材の製造方法は、
 アルミニウム箔の表面に、アノード電解時の通電量が10~100C/dm2で陽極酸化皮膜を形成する皮膜形成工程と、
 皮膜形成工程の後に、陽極酸化皮膜を除去する除去工程と、を有する、集電体用アルミニウム基材の製造方法である。
A method for producing an aluminum substrate for a current collector for producing the aluminum substrate for a current collector of the present invention comprises:
a film-forming step of forming an anodized film on the surface of the aluminum foil at a current of 10 to 100 C/dm 2 during anodic electrolysis;
A method for producing an aluminum substrate for a current collector, comprising a removing step of removing the anodized film after the film forming step.
 また、集電体用アルミニウム基材の製造方法において、除去工程における陽極酸化皮膜の除去を、アルカリ性溶液による化学エッチング、水洗、酸性溶液による洗浄、水洗の順で行うことが好ましい。 In addition, in the method for producing an aluminum base material for a current collector, the removal of the anodized film in the removal step is preferably performed in the order of chemical etching with an alkaline solution, washing with water, washing with an acidic solution, and washing with water.
 また、集電体用アルミニウム基材の製造方法は、アルミニウム基材を貫通する貫通孔を形成する貫通孔形成工程を有していてもよい。また、集電体用アルミニウム基材の製造方法は、アルミニウム基材の表面を粗面化する粗面化工程を有していてもよい。貫通孔形成工程および/または粗面化工程は、陽極酸化皮膜を形成する皮膜形成工程と同時または順次に実施してもよい。 In addition, the method for manufacturing an aluminum substrate for a current collector may have a through-hole forming step of forming through-holes penetrating through the aluminum substrate. Moreover, the method for producing an aluminum base material for a current collector may include a roughening step of roughening the surface of the aluminum base material. The through-hole forming step and/or surface roughening step may be performed simultaneously or sequentially with the film forming step of forming the anodized film.
 以下、集電体用アルミニウム基材の製造方法の各工程を図1~図5を用いて説明し、集電体用アルミニウム基材の製造方法の各工程を説明した後に、各工程について詳述する。 Hereinafter, each step of the method for producing an aluminum base material for a current collector will be described with reference to FIGS. do.
 図1~図5は、集電体用アルミニウム基材の製造方法の好適な実施態様の一例を説明するための模式的な断面図である。
 集電体用アルミニウム基材の製造方法の一例は、図1~図5に示すように、自然酸化皮膜2を有するアルミニウム基材1の少なくとも一方の主面に対して電解処理を施し、自然酸化皮膜2とアルミニウム基材1との間に陽極酸化皮膜3を形成する皮膜形成工程(図1および図2)と、皮膜形成工程の後に陽極酸化皮膜3および自然酸化皮膜2を除去する除去工程(図2~図5)と、を有する製造方法である。また、図示は省略するが、皮膜形成工程に供するアルミニウム基材1は、圧延油等が自然酸化皮膜2上に存在する場合もある。
1 to 5 are schematic cross-sectional views for explaining an example of a preferred embodiment of the method for producing an aluminum substrate for a current collector.
As shown in FIGS. 1 to 5, one example of a method for producing an aluminum base material for a current collector is to perform electrolytic treatment on at least one main surface of an aluminum base material 1 having a natural oxide film 2, thereby naturally oxidizing. A film forming step (FIGS. 1 and 2) for forming the anodized film 3 between the film 2 and the aluminum substrate 1, and a removal step ( 2 to 5). Although not shown, the aluminum base material 1 subjected to the film forming process may have rolling oil or the like on the natural oxide film 2 in some cases.
 除去工程は、アルカリ性溶液による化学エッチングによって陽極酸化皮膜3および自然酸化皮膜2を除去する工程(図2および図3、化学エッチング工程ともいう)と、化学エッチング工程の後に水洗する工程(水洗工程ともいう)と、化学エッチング工程を行ったことにより表面に生じる残渣5(図4参照)を酸性溶液による洗浄で除去する工程(図4および図5、酸洗工程ともいう)と、酸洗工程の後に水洗する工程(水洗工程ともいう)と、を有する。化学エッチング工程および水洗工程により、アルミニウム基材の表面にアルミニウムの水酸化物が析出する(図4参照)。 The removal step includes a step of removing the anodized film 3 and the natural oxide film 2 by chemical etching with an alkaline solution (FIGS. 2 and 3, also called chemical etching step), and a step of washing with water after the chemical etching step (also called water washing step). ), a step of removing the residue 5 (see FIG. 4) generated on the surface due to the chemical etching step by washing with an acid solution (FIGS. 4 and 5, also called a pickling step), and a pickling step. and a step of washing with water later (also referred to as a washing step). Aluminum hydroxide is deposited on the surface of the aluminum base material by the chemical etching process and the water washing process (see FIG. 4).
 〔皮膜形成工程〕
 皮膜形成工程は、アルミニウム基材の表面に陽極酸化皮膜を形成する工程である。陽極酸化皮膜は、金属アルミニウムを変化させることにより形成されるため、アルミニウム基材の表面に自然酸化皮膜を有する場合には、陽極酸化皮膜は自然酸化皮膜とアルミニウム基材との間に形成される。そのため、後述する除去工程で自然酸化皮膜および圧延油等の影響を受けにくい。
[Coating process]
The film forming step is a step of forming an anodized film on the surface of the aluminum base material. Since the anodized film is formed by changing the metal aluminum, when the surface of the aluminum base material has a natural oxide film, the anodized film is formed between the natural oxide film and the aluminum base material. . Therefore, it is less likely to be affected by the natural oxide film, rolling oil, etc. in the removal process described later.
 陽極酸化皮膜を形成する陽極酸化処理の処理方法としては、従来公知の陽極酸化処理と同様の処理を施すことができる。陽極酸化処理としては、例えば、特開2012-216513号公報の[0063]~[0073]段落に記載された条件や装置を適宜採用することができる。 As for the anodizing treatment method for forming the anodized film, the same treatment as the conventionally known anodizing treatment can be applied. For the anodizing treatment, for example, the conditions and apparatus described in paragraphs [0063] to [0073] of JP-A-2012-216513 can be appropriately employed.
 本発明においては、陽極酸化処理の条件は、使用される電解液によって種々変化するので一概に決定され得ないが、一般的には電解液濃度0.2~80質量%、液温5~70℃、電流密度0.5~60A/dm2、電圧1~100V、電解時間1秒~20分であるのが適当であり、所望の酸化膜量となるように調整される。 In the present invention, the conditions for the anodizing treatment vary depending on the electrolyte used and cannot be determined indiscriminately. °C, a current density of 0.5 to 60 A/dm 2 , a voltage of 1 to 100 V, and an electrolysis time of 1 second to 20 minutes.
 本発明においては、硝酸と硫酸とを含有する水溶液を用いて陽極酸化処理を行うことが好ましい。また、アノード電解時の通電量は、10C/dm2~100C/dm2であり、30C/dm2~100C/dm2がより好ましく、50C/dm2~100C/dm2がさらに好ましい。この通電量では、薄い陽極酸化皮膜が形成される。本発明の製造方法においては、アルミニウム基材上に薄い陽極酸化皮膜を形成し、後述する除去工程(化学エッチング工程)を短時間で行うことによって、金属アルミニウム部分の溶解を抑制してAlO(OH)の割合が多くなることを抑制することで、上述した表層における水酸化物の割合が所定の範囲の集電体用アルミニウム基材を作製することができる。 In the present invention, it is preferable to perform the anodizing treatment using an aqueous solution containing nitric acid and sulfuric acid. Also, the amount of current applied during anode electrolysis is 10 C/dm 2 to 100 C/dm 2 , more preferably 30 C/dm 2 to 100 C/dm 2 , still more preferably 50 C/dm 2 to 100 C/dm 2 . A thin anodized film is formed at this amount of energization. In the production method of the present invention, a thin anodized film is formed on an aluminum base material, and a removal step (chemical etching step), which will be described later, is performed in a short time, thereby suppressing dissolution of the metal aluminum portion and AlO(OH). ), it is possible to produce an aluminum substrate for a current collector in which the proportion of hydroxide in the surface layer is within a predetermined range.
 また、陽極酸化処理において、アルミニウム基材と対極との間に直流電流を印加してもよく、交流電流を印加してもよい。アルミニウム基材に直流を印加する場合においては、電流密度は、0.5~60A/dm2であるのが好ましく、1~40A/dm2であるのがより好ましい。連続的に陽極酸化処理を行う場合には、アルミニウム基材に、電解液を介して給電する液給電方式により行うのが好ましい。 In addition, in the anodizing treatment, a direct current may be applied between the aluminum substrate and the counter electrode, or an alternating current may be applied. When direct current is applied to the aluminum substrate, the current density is preferably 0.5 to 60 A/dm 2 , more preferably 1 to 40 A/dm 2 . When the anodizing treatment is continuously performed, it is preferable to perform the anodizing treatment by a liquid feeding method in which the aluminum base material is fed with an electrolytic solution.
 〔貫通孔形成工程〕
 貫通孔形成工程は、アルミニウム基材に貫通孔を形成する工程である。
 貫通孔形成工程における貫通孔の形成方法には特に制限はなく、パンチング加工等の機械的な方法、あるいは、電解溶解処理等の電気化学的な方法が利用可能である。平均開口径が0.1μm以上100μm未満の貫通孔を容易に形成できる点で、電解溶解処理による貫通孔の形成方法が好適である。
 また、電解溶解処理による貫通孔の形成は、上記皮膜形成工程において、陽極酸化処理と同時あるいは順次に実施することができる。
[Through hole forming step]
The through-hole forming step is a step of forming through-holes in the aluminum base material.
The method of forming the through-holes in the through-hole forming step is not particularly limited, and mechanical methods such as punching or electrochemical methods such as electrolytic dissolution can be used. A method of forming through-holes by electrolytic dissolution treatment is preferable in that through-holes having an average opening diameter of 0.1 μm or more and less than 100 μm can be easily formed.
Formation of through-holes by electrolytic dissolution treatment can be carried out simultaneously with or sequentially with anodizing treatment in the film forming step.
 電解溶解処理は特に限定されず、例えば、特許第6199416号公報の段落[0025]~[0032]に記載の方法を用いることができる。 The electrolytic dissolution treatment is not particularly limited, and for example, the method described in paragraphs [0025] to [0032] of Japanese Patent No. 6199416 can be used.
 〔粗面化工程〕
 粗面化工程は、アルミニウム基材に対して電気化学的粗面化処理(以下、「電解粗面化処理」とも略す。)を施し、アルミニウム基材の表面および/または裏面を粗面化する工程である。
 電解粗面化処理を施し、アルミニウム基材の表面を粗面化することにより、活物質を含む層との密着性が向上するとともに、表面積が増えることによって接触面積が増えるため、集電体用アルミニウム基材を用いた蓄電デバイスの長期間使用後の容量維持率が高くなる。
 上記電解粗面化処理としては、例えば、特開2012-216513号公報の[0041]~[0050]段落に記載された条件および装置を適宜採用することができる。
[Roughening process]
In the roughening step, the aluminum substrate is subjected to electrochemical graining treatment (hereinafter also abbreviated as "electrolytic graining treatment") to roughen the surface and/or the back surface of the aluminum substrate. It is a process.
By roughening the surface of the aluminum base material by applying electrolytic graining treatment, the adhesion with the layer containing the active material is improved, and the contact area is increased by increasing the surface area, so it is suitable for current collectors. The capacity retention rate after long-term use of an electricity storage device using an aluminum base material is increased.
For the electrolytic graining treatment, for example, the conditions and apparatus described in paragraphs [0041] to [0050] of JP-A-2012-216513 can be appropriately adopted.
 〔化学エッチング工程〕
 化学エッチング工程は、アルミニウム基材の表面に形成された陽極酸化皮膜および自然酸化皮膜(以下、まとめて酸化皮膜ともいう)を除去する工程である。化学エッチング工程は、アルカリ性水溶液を用いた化学的溶解処理によって酸化皮膜を除去する。
[Chemical etching process]
The chemical etching step is a step of removing an anodized film and a natural oxide film (hereinafter collectively referred to as an oxide film) formed on the surface of the aluminum base material. The chemical etching process removes the oxide film by chemical dissolution treatment using an alkaline aqueous solution.
 化学エッチング処理は、酸化皮膜をアルカリ性水溶液に接触させることにより、酸化皮膜を除去する処理である。酸化皮膜にアルカリ性水溶液を接触させると、アルカリ性水溶液が酸化皮膜に浸み込んでアルミニウム金属を溶解することで、酸化皮膜を剥離させることができる。また、酸化皮膜自体も溶解することができる。これにより、酸化皮膜が除去される。 The chemical etching treatment is a treatment that removes the oxide film by bringing it into contact with an alkaline aqueous solution. When an alkaline aqueous solution is brought into contact with the oxide film, the alkaline aqueous solution permeates the oxide film and dissolves the aluminum metal, thereby peeling off the oxide film. Also, the oxide film itself can be dissolved. This removes the oxide film.
 ここで、陽極酸化皮膜は、アルミニウム基材側の底部に微細な凹凸形状を多数形成してなる。そのため、陽極酸化皮膜を除去したアルミニウム基材の表面には、図6に示すように、多数の微細な凹凸が形成される。 Here, the anodized film is formed by forming a large number of fine uneven shapes on the bottom portion on the aluminum substrate side. Therefore, as shown in FIG. 6, a large number of fine irregularities are formed on the surface of the aluminum base material from which the anodized film has been removed.
 また、化学エッチング処理およびその後の水洗処理によって、アルミニウム基材1の表層4には、アルミニウムの水酸化物が析出する(図4参照)。 Also, due to the chemical etching treatment and subsequent water washing treatment, aluminum hydroxide is deposited on the surface layer 4 of the aluminum base material 1 (see FIG. 4).
 アルカリ性水溶液に用いられるアルカリとしては、例えば、苛性アルカリ、アルカリ金属塩が挙げられる。具体的には、苛性アルカリとしては、例えば、水酸化ナトリウム(苛性ソーダ)、苛性カリが挙げられる。また、アルカリ金属塩としては、例えば、メタケイ酸ソーダ、ケイ酸ソーダ、メタケイ酸カリ、ケイ酸カリ等のアルカリ金属ケイ酸塩;炭酸ソーダ、炭酸カリ等のアルカリ金属炭酸塩;アルミン酸ソーダ、アルミン酸カリ等のアルカリ金属アルミン酸塩;グルコン酸ソーダ、グルコン酸カリ等のアルカリ金属アルドン酸塩;第二リン酸ソーダ、第二リン酸カリ、第三リン酸ソーダ、第三リン酸カリ等のアルカリ金属リン酸水素塩が挙げられる。中でも、エッチング速度が速い点および安価である点から、苛性アルカリの溶液、および、苛性アルカリとアルカリ金属アルミン酸塩との両者を含有する溶液が好ましい。特に、アルミニウムイオンを含有させた水酸化ナトリウムの水溶液が好ましい。 Examples of alkalis used in alkaline aqueous solutions include caustic alkalis and alkali metal salts. Specifically, examples of caustic alkali include sodium hydroxide (caustic soda) and caustic potash. Examples of alkali metal salts include alkali metal silicates such as sodium metasilicate, sodium silicate, potassium metasilicate and potassium silicate; alkali metal carbonates such as sodium carbonate and potassium carbonate; sodium aluminate and aluminum. alkali metal aluminates such as acid potassium; alkali metal aldonic salts such as sodium gluconate and potassium gluconate; dibasic sodium phosphate, dibasic potassium phosphate, tribasic sodium phosphate, tribasic potassium phosphate Alkali metal hydrogen phosphates may be mentioned. Among them, a solution of caustic alkali and a solution containing both caustic alkali and alkali metal aluminate are preferable from the viewpoint of high etching rate and low cost. In particular, an aqueous sodium hydroxide solution containing aluminum ions is preferred.
 ここで、本発明の製造方法において、アルカリ性水溶液の濃度(アルミニウムイオン濃度)、温度、および、処理時間を調整することで、表層10nm以内に存在する金属Al、Al23、Al(OH)3、AlO(OH)のピーク面積比を、順に、A、B、C、Dとしたとき、(C+D)/(A+B+C+D)が0.5以上1以下であり、かつC/Dが0.1以上2以下である構成とすることができる。 Here, in the production method of the present invention, by adjusting the concentration (aluminum ion concentration), temperature, and treatment time of the alkaline aqueous solution, the metal Al, Al 2 O 3 , Al(OH) existing within 10 nm of the surface layer 3 , when the peak area ratios of AlO(OH) are A, B, C, and D in order, (C + D) / (A + B + C + D) is 0.5 or more and 1 or less, and C/D is 0.1 It can be set as the structure which is more than 2 or less.
 アルカリ性水溶液の濃度は、0.1~50質量%であるのが好ましく、0.2~10質量%であるのがより好ましい。アルカリ性水溶液中にアルミニウムイオンが溶解している場合には、アルミニウムイオンの濃度は、0.01~10質量%であるのが好ましく、0.1~3質量%であるのがより好ましい。アルカリ溶液の温度は50℃未満であり、25~45℃であるのが好ましく、30~40℃であるのがより好ましい。処理時間は10秒以下であり、1~8秒であるのが好ましく、3~6秒であるのがより好ましい。 The concentration of the alkaline aqueous solution is preferably 0.1-50% by mass, more preferably 0.2-10% by mass. When aluminum ions are dissolved in the alkaline aqueous solution, the concentration of aluminum ions is preferably 0.01 to 10% by mass, more preferably 0.1 to 3% by mass. The temperature of the alkaline solution is less than 50°C, preferably 25-45°C, more preferably 30-40°C. The treatment time is 10 seconds or less, preferably 1 to 8 seconds, more preferably 3 to 6 seconds.
 酸化皮膜をアルカリ溶液に接触させる方法としては、例えば、アルカリ溶液を入れた槽の中に酸化皮膜を有するアルミニウム基材を通過させる方法、アルカリ溶液を入れた槽の中に酸化皮膜を有するアルミニウム基材を浸せきさせる方法、アルカリ溶液を酸化皮膜の表面に噴きかける方法が挙げられる。 Examples of the method of bringing the oxide film into contact with the alkaline solution include a method of passing an aluminum base material having an oxide film through a tank containing an alkaline solution, and a method of passing an aluminum base material having an oxide film through a tank containing an alkaline solution. Examples include a method of immersing the material and a method of spraying an alkaline solution onto the surface of the oxide film.
 (水洗工程)
 化学エッチング処理の後には水洗工程を行うことが好ましい。水洗を行うことで、表面のPHを中性に戻し、表層に水酸化物の層を形成することができる。
(Washing process)
A water washing step is preferably performed after the chemical etching treatment. By washing with water, the pH of the surface can be returned to neutral, and a hydroxide layer can be formed on the surface layer.
 水洗には、純水、井水、水道水等を用いることができる。処理液の次工程への持ち込みを防ぐためにニップ装置およびエアナイフ等を用いてもよい。 Pure water, well water, tap water, etc. can be used for washing. A nip device, an air knife, or the like may be used to prevent the processing liquid from being brought into the next step.
 (酸洗工程)
 化学エッチング工程および水洗工程の後には酸洗工程を行うことが好ましい。
 酸洗工程は、化学エッチング工程を行ったことにより表面に生じる残渣5(図4参照)を酸性溶液による洗浄で除去する工程である。
(Pickling process)
A pickling step is preferably performed after the chemical etching step and the water washing step.
The pickling process is a process of removing the residue 5 (see FIG. 4) generated on the surface due to the chemical etching process by washing with an acid solution.
 酸洗には、硝酸、硫酸等を用いることができ、硝酸を用いることが好ましい。処理液の次工程への持ち込みを防ぐためにエアナイフおよびニップ装置等を用いてもよい。特に硝酸による酸洗は、酸洗後に形成される自然酸化皮膜を不働態化しやすいため好ましい。 For pickling, nitric acid, sulfuric acid, etc. can be used, and nitric acid is preferably used. An air knife, a nip device, or the like may be used to prevent the processing liquid from being brought into the next step. In particular, pickling with nitric acid is preferable because the natural oxide film formed after pickling is easily passivated.
 酸洗工程の後にも上記と同様の水洗工程を実施することが好ましい。 It is preferable to carry out a water washing process similar to the above after the pickling process.
 (乾燥工程)
 また、各水洗工程の後には、乾燥工程を有していてもよい。乾燥の方法には限定はなく、エアナイフ等により水分を吹き飛ばす方法、加熱による方法等の公知の乾燥方法が適宜利用可能である。また、複数の乾燥方法を組み合わせて行なってもよい。
(Drying process)
A drying step may be provided after each washing step. The drying method is not limited, and known drying methods such as a method of blowing off moisture with an air knife or the like, a method of heating, and the like can be used as appropriate. Moreover, you may carry out combining several drying methods.
 通常のアルミニウム基材は、所定の厚みになるように圧延加工が施されている。圧延加工の過程でアルミニウムの自然酸化皮膜が形成される際に、圧延加工中に使用される圧延油などの潤滑剤が表面に残存することがある。そのため、圧延されたアルミニウム基材をそのまま使って表層10nm以内の水酸化物を制御することは困難な場合がある。 Ordinary aluminum base materials are rolled to a predetermined thickness. Lubricants such as rolling oil used during rolling may remain on the surface when a natural oxide film of aluminum is formed in the course of rolling. Therefore, it may be difficult to control the hydroxide within 10 nm of the surface layer using the rolled aluminum substrate as it is.
 そこで、本発明者らは、圧延加工で形成された自然酸化皮膜および圧延油等を除去したうえで、表層の水酸化物を制御する方法を発明した。アルミニウムの表面層を簡易な方法で除去する方法として、アルカリ溶液あるいは酸性溶液で表面を溶解する方法が知られる。特にアルカリ液は溶解効率が優れるため生産上有効である。ところが、アルカリ溶液を使用してアルミニウムの最表面を安定的に除去することには難しさがあった。それは、最表面に残存している圧延時の自然酸化皮膜や圧延油などの残存物が存在するためである。アルカリ溶液を使い、十分な時間をかけることで、表層の残存物を完全に除去できるが、その場合、表面には副産物として、抵抗に悪影響を及ぼすAlO(OH)が多く形成されることを本発明者らは発見した。 Therefore, the present inventors invented a method of removing the natural oxide film and rolling oil formed by rolling, and then controlling the hydroxide on the surface layer. As a simple method for removing the surface layer of aluminum, a method of dissolving the surface with an alkaline solution or an acid solution is known. In particular, alkaline solutions are effective in terms of production because of their excellent dissolution efficiency. However, it is difficult to stably remove the outermost surface of aluminum using an alkaline solution. This is because there are residuals such as a natural oxide film during rolling and rolling oil remaining on the outermost surface. By using an alkaline solution and taking a sufficient amount of time, it is possible to completely remove the residue on the surface layer. The inventors have discovered
 そこで本発明者らは、圧延加工で形成された最表層の自然酸化皮膜および残存する圧延油を、除去する方法として、電気化学的な方法を利用することを考えた。まずオキソ酸を含む酸性溶液内で、アルミニウムにアノード反応を起こさせることで、アノード酸化皮膜(陽極酸化皮膜)を形成する。ここでアノード酸化皮膜は、アルミニウム自体を表層から内部に向かって酸化皮膜に変えることで形成されるため、新たな酸化皮膜は、元々最表層に存在した自然酸化皮膜および残存物(圧延油)より深い位置に形成される。その後で、アノード酸化皮膜を除去することで、最表層に存在した元々の自然酸化皮膜等が排除されるとともに、新たに形成したアノード酸化皮膜の下からはアルミニウム基材内部の無垢なアルミニウムが露出され、露出したアルミニウムには表面に極薄い自然酸化皮膜が形成される。アノード酸化皮膜を除去する工程で、アルカリ溶液による極軽微な洗浄を用いることで、表層のAlO(OH)の形成を抑制し、Al(OH)3が形成される。Al(OH)3は特に最表層に形成されるため、AlO(OH)が存在した場合でも界面抵抗を低減できる。 Therefore, the present inventors considered using an electrochemical method as a method of removing the natural oxide film on the outermost surface formed by rolling and the remaining rolling oil. First, an anodic oxide film (anodic oxide film) is formed by causing an anodic reaction in aluminum in an acidic solution containing oxoacid. Here, the anodic oxide film is formed by changing the aluminum itself into an oxide film from the surface layer toward the inside, so the new oxide film is formed from the natural oxide film and residue (rolling oil) that originally existed on the outermost layer. Formed deep. After that, by removing the anodic oxide film, the original natural oxide film, etc. existing on the outermost layer is eliminated, and the pure aluminum inside the aluminum substrate is exposed from under the newly formed anodic oxide film. A very thin natural oxide film is formed on the surface of the exposed aluminum. In the step of removing the anodic oxide film, the formation of AlO(OH) on the surface layer is suppressed by using a very light cleaning with an alkaline solution, and Al(OH) 3 is formed. Since Al(OH) 3 is formed especially in the outermost layer, the interfacial resistance can be reduced even when AlO(OH) is present.
 なお、AlO(OH)とAl(OH)3は従来知見(例えばWO18/220991)によると、いずれも絶縁性粒子として絶縁性を付与するために用いられている。しかし本発明者らは、上記のプロセスを行った際に得られるAl(OH)3は抵抗を悪化させにくいことを見出した。その理由はまだ定かではないが、上記プロセスを行った際に表面に形成される水酸化物の多くは粒子としては存在せず、極表層に皮膜上に存在するためと推定される。 According to conventional knowledge (for example, WO18/220991), both AlO(OH) and Al(OH) 3 are used as insulating particles to provide insulation. However, the inventors have found that the Al(OH) 3 obtained by the above process does not easily deteriorate the resistance. Although the reason for this is not yet clear, it is presumed that most of the hydroxides formed on the surface during the above process do not exist as particles, but are present on the film in the extreme surface layer.
 上記で説明したプロセスを行うことの副産物として、アノード酸化皮膜が成長する際の先頭部に形成される微細な突状の形状が、アルミニウムの表面には微細な凹状の形状として残される。これは、直径にして数10nmの凹部であり、アルミニウム表面のほぼ全面に形成されることを見出した。この微細な凹凸形状は、電極材料等を塗工された際に密着を向上する効果を示す。この微細な凹凸形状は、原子間力顕微鏡を用いることで、凹凸形状を反映した表面粗さとして数値化することができる。 As a by-product of the process described above, the fine protrusions formed at the beginning of the growth of the anodic oxide film are left as fine concave shapes on the surface of the aluminum. It has been found that this is a recess having a diameter of several tens of nanometers and is formed on almost the entire surface of the aluminum surface. This fine uneven shape exhibits an effect of improving adhesion when an electrode material or the like is applied. This fine uneven shape can be quantified as a surface roughness reflecting the uneven shape by using an atomic force microscope.
 なお、皮膜形成工程で形成される陽極酸化皮膜の厚みは、効率と精度を考えると薄いほうが望ましい。効率に関しては、厚すぎる陽極酸化皮膜は、次の除去工程の負荷を増す不具合があるためである。精度に関しては、薄すぎると、自然酸化皮膜の内側で、安定して無垢なアルミニウム表面を出すことや陽極酸化皮膜底部の微細凹凸形状を得ることが困難になる不具合が発生し、逆に厚すぎる場合、アルカリ溶液での化学エッチング時間を長くする必要が生じ、その際、部分的に早く皮膜が溶解した箇所は、更に金属アルミニウムの溶解が進み、水洗後に生じる表面の水酸化物の内AlO(OH)の割合が多くなり低抵抗に不利な部分となるためである。 It should be noted that the thickness of the anodized film formed in the film forming process should preferably be thin considering efficiency and accuracy. With regard to efficiency, this is because an excessively thick anodized film increases the load of the subsequent removal process. Regarding accuracy, if it is too thin, it will be difficult to stably expose a pure aluminum surface inside the natural oxide film and obtain a fine irregular shape at the bottom of the anodized film. In this case, it becomes necessary to prolong the chemical etching time with the alkaline solution. At this time, the dissolution of the metal aluminum further progresses in the places where the film partially dissolves quickly, and AlO ( This is because the ratio of OH) increases and becomes a disadvantageous portion for low resistance.
 また、化学エッチング工程におけるアルミニウムの溶解量は、0.5g/m2以下が好ましく、0.3g/m2以下がより好ましい。 Also, the amount of aluminum dissolved in the chemical etching step is preferably 0.5 g/m 2 or less, more preferably 0.3 g/m 2 or less.
 アルミニウム基材1の最表面をXPSで解析を行うことで、表層10nm以内に存在する、金属Al、酸化アルミニウムAl23、Al水酸化物のピーク面積比を求めることができる(図7参照)。この方法で検出できるAl水酸化物としては、Al(OH)3とAlO(OH)の2種がある。また、XPSの光電子取り出し角度を小さくすることで、より表層の情報を得ることができる。例えば光電子取り出し角度を45度で測定することで、表層10nm内の情報を得ることができ、光電子取り出し角度を20度にすることで表層5nm以内の情報を得ることができる。 By analyzing the outermost surface of the aluminum substrate 1 by XPS, it is possible to obtain the peak area ratio of metal Al, aluminum oxide Al 2 O 3 , and Al hydroxide existing within 10 nm of the surface layer (see FIG. 7). ). There are two types of Al hydroxides that can be detected by this method: Al(OH) 3 and AlO(OH). Further, by reducing the photoelectron extraction angle of XPS, it is possible to obtain more surface information. For example, by measuring at a photoelectron extraction angle of 45 degrees, information within a surface layer of 10 nm can be obtained, and by setting the photoelectron extraction angle to 20 degrees, information within a surface layer of 5 nm can be obtained.
 このような製造方法を実施する製造装置の一例の模式図を図8に示す。
 図8に示す製造装置50は、長尺なアルミニウム基材1を巻き回してなる基材ロール70から、アルミニウム基材1を送り出して、アルミニウム基材1を長手方向に搬送しつつ各工程を実施して集電体用アルミニウム基材を作製する製造装置である。すなわち、製造装置50は、ロールツーロール(RtoR)で各工程を実施して集電体用アルミニウム基材を作製する製造装置である。
FIG. 8 shows a schematic diagram of an example of a manufacturing apparatus for carrying out such a manufacturing method.
A manufacturing apparatus 50 shown in FIG. 8 feeds out the aluminum base material 1 from a base material roll 70 formed by winding a long aluminum base material 1, and carries out each step while conveying the aluminum base material 1 in the longitudinal direction. It is a manufacturing apparatus for manufacturing an aluminum base material for a current collector. That is, the manufacturing apparatus 50 is a manufacturing apparatus that performs each step in a roll-to-roll (RtoR) manner to manufacture an aluminum substrate for a current collector.
 製造装置50は、基材ロール70を装填される回転軸52と、皮膜形成工程を実施する皮膜形成工程部56と、除去工程を実施する除去工程部58と、各処理を施されて作製された集電体用アルミニウム基材10をロール72状に巻き取る巻取り軸54とを有する。皮膜形成工程部56、および、除去工程部58は、アルミニウム基材1が回転軸52から巻取り軸54に搬送される経路上に配置される。除去工程部58と巻取り軸54の間には図示しないが乾燥装置を置くことが望ましい。乾燥装置は熱風式、ヒーター式などが使用できる。 The manufacturing apparatus 50 includes a rotating shaft 52 loaded with a substrate roll 70, a film forming process section 56 that performs a film forming process, and a removing process section 58 that performs a removing process. and a winding shaft 54 for winding the current collector aluminum substrate 10 into a roll 72 . The film formation process section 56 and the film removal process section 58 are arranged on the path along which the aluminum base material 1 is transported from the rotating shaft 52 to the winding shaft 54 . It is desirable to place a drying device (not shown) between the removal process section 58 and the winding shaft 54 . A hot air type, a heater type, or the like can be used as the drying device.
 製造装置50においては、基材ロール70からのアルミニウム基材1の送り出しと、巻取り軸54における集電体用アルミニウム基材10の巻き取りとを同期して行なって、長尺なアルミニウム基材1を所定の搬送経路で長手方向に搬送しつつ、各工程部において、アルミニウム基材1に上述した各処理を行なう。各工程部において実施される処理は上述のとおりである。 In the manufacturing apparatus 50, feeding of the aluminum base material 1 from the base material roll 70 and winding of the current collector aluminum base material 10 on the winding shaft 54 are performed in synchronism to produce a long aluminum base material. 1 is transported in the longitudinal direction along a predetermined transport path, the aluminum substrate 1 is subjected to each of the above-described treatments in each process section. The processing performed in each process section is as described above.
 なお、皮膜形成工程部56の上流側または下流側に、貫通孔形成工程を行う貫通孔形成工程部、および/または、粗面化工程を行う粗面化工程部を有していてもよい。あるいは、皮膜形成工程部56は、皮膜形成工程に加えて、貫通孔形成工程、および/または、粗面化工程を実施してもよい。 It should be noted that a through-hole forming process section for performing the through-hole forming process and/or a roughening process section for performing the roughening process may be provided on the upstream side or downstream side of the film forming process section 56 . Alternatively, the coating forming process unit 56 may perform a through-hole forming process and/or a surface roughening process in addition to the coating forming process.
 また、製造装置50においては、長尺なアルミニウム基材1を用いて各工程をRtoRで実施するものとしたが、これに限定されず、枚葉状のアルミニウム基材1を用いて各工程を実施してもよい。また、各工程を別の装置で実施してもよい。 In addition, in the manufacturing apparatus 50, each step is performed by RtoR using the long aluminum base material 1, but it is not limited to this, and each step is performed using the sheet-shaped aluminum base material 1. You may Also, each step may be performed by a separate device.
[集電体]
 上述のとおり、本発明の集電体用アルミニウム基材は、蓄電デバイス用集電体(以下、「集電体」ともいう)として利用可能である。
 集電体は、アルミニウムの水酸化物の比率が上記のとおりであるため、電極材料との密着向上と低抵抗を両立可能になるため、内部抵抗の削減に寄与するとともに、長期間、多くの回数の充放電を行った場合でも、電極材料(活物質)と集電体との部分的な剥離を抑制できる。
[Current collector]
As described above, the aluminum base material for a current collector of the present invention can be used as a current collector for an electric storage device (hereinafter also referred to as "current collector").
Since the current collector has the above ratio of aluminum hydroxide, it is possible to achieve both improved adhesion to the electrode material and low resistance. Partial peeling between the electrode material (active material) and the current collector can be suppressed even when charging and discharging are performed a number of times.
<電極材料(活物質)>
 活物質としては特に限定はなく、従来の蓄電デバイスにおいて用いられる公知の活物質が利用可能である。
 具体的には、集電体用アルミニウム基材を正極の集電体として用いる場合の、活物質および活物質層に含有していてもよい導電材、結着剤、溶媒等については、特開2012-216513号公報の[0077]~[0088]段落に記載された材料を適宜採用することができ、その内容は本明細書に参照として取り込まれる。
 また、集電体用アルミニウム基材を負極の集電体として用いる場合の、活物質については、特開2012-216513号公報の[0089]段落に記載された材料を適宜採用することができ、その内容は本明細書に参照として取り込まれる。
<Electrode material (active material)>
The active material is not particularly limited, and known active materials used in conventional electricity storage devices can be used.
Specifically, when an aluminum base material for current collector is used as a current collector for a positive electrode, the conductive material, binder, solvent, etc. that may be contained in the active material and the active material layer are disclosed in JP-A-2003-200113. 2012-216513, paragraphs [0077] to [0088] can be employed as appropriate, the contents of which are incorporated herein by reference.
Further, when the aluminum base material for current collector is used as the current collector of the negative electrode, the material described in paragraph [0089] of JP-A-2012-216513 can be appropriately employed as the active material. The contents of which are incorporated herein by reference.
[正極]
 本発明の集電体用アルミニウム基材を集電体として用いた正極は、集電体用アルミニウム基材を用いた正極集電体と、正極集電体の表面に形成される正極活物質を含む層(正極活物質層)とを有する正極である。
 ここで、上記正極活物質や、上記正極活物質層に含有していてもよい導電材、結着剤、溶媒等については、特開2012-216513号公報の[0077]~[0088]段落に記載された材料を適宜採用することができ、その内容は本明細書に参照として取り込まれる。
[Positive electrode]
A positive electrode using the aluminum base material for current collector of the present invention as a current collector comprises a positive electrode current collector using the aluminum base material for current collector and a positive electrode active material formed on the surface of the positive electrode current collector. A positive electrode having a layer (positive electrode active material layer) containing
Here, the positive electrode active material and the conductive material, binder, solvent, etc. that may be contained in the positive electrode active material layer are described in paragraphs [0077] to [0088] of JP-A-2012-216513. The materials described can be employed as appropriate, the contents of which are incorporated herein by reference.
[負極]
 本発明の集電体用アルミニウム基材を集電体として用いた負極は、集電体用アルミニウム基材を用いた負極集電体と、負極集電体の表面に形成される負極活物質を含む層とを有する負極である。
 ここで、上記負極活物質については、特開2012-216513号公報の[0089]段落に記載された材料を適宜採用することができ、その内容は本明細書に参照として取り込まれる。
[Negative electrode]
A negative electrode using the aluminum base material for current collector of the present invention as a current collector comprises a negative electrode current collector using the aluminum base material for current collector and a negative electrode active material formed on the surface of the negative electrode current collector. A negative electrode having a layer comprising:
Here, for the negative electrode active material, materials described in paragraph [0089] of JP-A-2012-216513 can be appropriately employed, the contents of which are incorporated herein by reference.
[蓄電デバイス]
 本発明の集電体用アルミニウム基材を集電体として利用する電極は、リチウムイオンキャパシタ、電気二重層キャパシタ、半固体電池、固体電池、および、非水電解液を使用する二次電池等の蓄電デバイスの正極あるいは負極として用いることができる。
 ここで、蓄電デバイス(特に、二次電池)の具体的な構成や適用される用途については、特開2012-216513号公報の[0090]~[0123]段落に記載された材料や用途を適宜採用することができ、その内容は本明細書に参照として取り込まれる。
[Power storage device]
Electrodes using the aluminum substrate for current collector of the present invention as a current collector include lithium ion capacitors, electric double layer capacitors, semi-solid batteries, solid batteries, and secondary batteries using a non-aqueous electrolyte. It can be used as a positive electrode or a negative electrode of an electric storage device.
Here, regarding the specific configuration and application of the electric storage device (especially, the secondary battery), the materials and applications described in paragraphs [0090] to [0123] of JP-A-2012-216513 may be used as appropriate. can be adopted, the contents of which are incorporated herein by reference.
 〔電気二重層キャパシタ〕
 電気二重層キャパシタは、電気二重層を誘電体とした、対面電極のコンデンサ構造をしたキャパシタである。電気二重層は、固体と液体との間で自発的に生じ、充電によって、電子またはホールが互いに引き合って整列している状態である。電気二重層キャパシタの具体的な構成については、例えば、特開2020-064971号公報等に記載されている。
 電気二重層キャパシタの正極および/または負極の集電体として本発明の集電体用アルミニウム基材を用いることができる。
[Electric double layer capacitor]
An electric double layer capacitor is a capacitor having a capacitor structure of facing electrodes in which an electric double layer is used as a dielectric. An electric double layer is spontaneously generated between a solid and a liquid, and is a state in which electrons or holes are attracted to each other and aligned due to charging. A specific configuration of the electric double layer capacitor is described, for example, in Japanese Unexamined Patent Application Publication No. 2020-064971.
The aluminum substrate for current collector of the present invention can be used as a current collector for a positive electrode and/or a negative electrode of an electric double layer capacitor.
 〔リチウムイオンキャパシタ〕
 リチウムイオンキャパシタは、正極に電気二重層キャパシタの正極を使い、負極にリチウムイオン電池の負極を使用し、更に負極にリチウムイオンをドープして使用される。リチウムイオンキャパシタの具体的な構成については、例えば、国際公開第2016/084704号等に記載されている。
 リチウムイオンキャパシタの正極および/または負極の集電体として本発明の集電体用アルミニウム基材を用いることができる。
[Lithium ion capacitor]
A lithium ion capacitor uses a positive electrode of an electric double layer capacitor as a positive electrode, uses a negative electrode of a lithium ion battery as a negative electrode, and furthermore, the negative electrode is doped with lithium ions. A specific configuration of the lithium ion capacitor is described, for example, in International Publication No. 2016/084704.
The aluminum substrate for current collector of the present invention can be used as a current collector for a positive electrode and/or a negative electrode of a lithium ion capacitor.
 〔固体電池〕
 固体電池は、陽極と陰極間のイオンの伝導を固体の電解質が担う電池である。固体電池の具体的な構成については、例えば、特開2020-123538号公報等に記載されている。
 固体電池の正極および/または負極の集電体として本発明の集電体用アルミニウム基材を用いることができる。
[Solid battery]
A solid-state battery is a battery in which a solid-state electrolyte is responsible for ionic conduction between the anode and cathode. A specific configuration of the solid-state battery is described, for example, in Japanese Patent Application Laid-Open No. 2020-123538.
The current collector aluminum substrate of the present invention can be used as a current collector for a positive electrode and/or a negative electrode of a solid battery.
 〔半固体電池〕
 半固体電池は、陽極と陰極間のイオンの伝導を半固体(ゲル状、粘土状)の電解質が担う電池である。半固体電池の具体的な構成については、米国特許第9484569号等に記載されている。
 半固体電池の正極および/または負極の集電体として本発明の集電体用アルミニウム基材を用いることができる。
[Semi-solid battery]
A semi-solid battery is a battery in which a semi-solid (gel-like or clay-like) electrolyte is responsible for ionic conduction between an anode and a cathode. A specific configuration of the semi-solid battery is described in US Pat. No. 9,484,569 and the like.
The current collector aluminum substrate of the present invention can be used as a current collector for a positive electrode and/or a negative electrode of a semi-solid battery.
 〔非水電解液を使用する二次電池〕
 非水電解液を使用する二次電池は、陽極と陰極間の電解液として非水形の電解液を使用する二次電池である。Liイオン電池、Naイオン電池、Kイオン電池、あるいは、MgイオンおよびCaイオン等を使った多価イオン電池が含まれる。非水電解液を使用する二次電池の具体的な構成については、特開2017-068978号公報等に記載されている。
 非水電解液を使用する二次電池の正極および/または負極の集電体として本発明の集電体用アルミニウム基材を用いることができる。
[Secondary battery using non-aqueous electrolyte]
A secondary battery using a non-aqueous electrolyte is a secondary battery that uses a non-aqueous electrolyte as an electrolyte between an anode and a cathode. Li-ion batteries, Na-ion batteries, K-ion batteries, or multivalent ion batteries using Mg ions, Ca ions, and the like are included. A specific configuration of a secondary battery using a non-aqueous electrolyte is described in JP-A-2017-068978 and the like.
The aluminum substrate for current collector of the present invention can be used as a current collector for a positive electrode and/or a negative electrode of a secondary battery using a non-aqueous electrolyte.
 以下に実施例に基づいて本発明をさらに詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す実施例により限定的に解釈されるべきものではない。 The present invention will be described in more detail below based on examples. The materials, amounts used, proportions, treatment details, treatment procedures, etc. shown in the following examples can be changed as appropriate without departing from the gist of the present invention. Therefore, the scope of the present invention should not be construed to be limited by the examples shown below.
[集電体用アルミニウム基材の作製]
 アルミニウム基材として厚み20μmの合金番号1085または1N30のアルミニウム基材を用いて、以下に示す電解処理(皮膜形成工程)ならびに除去処理(除去工程)を実施して集電体用アルミニウム基材である集電体A~集電体Jを作製した。集電体A~集電体Fが本発明の実施例に相当するものである。
[Preparation of aluminum substrate for current collector]
Using an aluminum substrate of alloy number 1085 or 1N30 with a thickness of 20 μm as an aluminum substrate, the following electrolytic treatment (film formation step) and removal treatment (removal step) are performed to obtain an aluminum substrate for a current collector. Current collectors A to J were produced. Current collectors A to F correspond to examples of the present invention.
 <電解処理α>
 硝酸20g/l、硫酸20g/l含有の水溶液(液温50℃)を用いて、アルミニウム基材を陽極として電解処理を施し、アルミニウム基材の表面に陽極酸化皮膜を形成した。なお、電解処理は直流電源で行った。また、電解処理の通電量を以下のように変えて処理を行った。
・電解処理α1での通電量は5C/dm2
・電解処理α2での通電量は10C/dm2
・電解処理α3での通電量は100C/dm2
・電解処理α4での通電量は135C/dm2
<Electrolytic treatment α>
Using an aqueous solution containing 20 g/l of nitric acid and 20 g/l of sulfuric acid (liquid temperature: 50° C.), electrolytic treatment was performed using the aluminum substrate as the anode to form an anodized film on the surface of the aluminum substrate. Note that the electrolytic treatment was performed with a DC power supply. In addition, the treatment was performed by changing the amount of electric current applied in the electrolytic treatment as follows.
・The amount of electricity in the electrolytic treatment α1 is 5 C/dm 2
・The amount of electricity in the electrolytic treatment α2 is 10 C/dm 2
・The amount of electricity in the electrolytic treatment α3 is 100 C/dm 2
・The amount of electricity in the electrolytic treatment α4 is 135 C/dm 2
 <除去処理β>
 電解処理の後、水洗を行った後に、除去処理を行った。除去処理は、表面にアルカリ水溶液液(NaOH5%の水溶液、Alイオンを0.3-0.5%含有)をスプレーし酸化皮膜を除去する化学エッチング処理の後、水洗、硝酸液での洗浄、水洗を行った。化学エッチング処理の条件を以下のように変えて処理を行った。
・除去処理β1:NaOH濃度5%、Alイオン濃度0.5%、液温35℃、処理時間5秒
・除去処理β2:NaOH濃度5%、Alイオン濃度0.5%、液温35℃、処理時間3秒
・除去処理β3:NaOH濃度5%、Alイオン濃度0.3%、液温37℃、処理時間5秒
・除去処理β4:NaOH濃度5%、Alイオン濃度0.3%、液温37℃、処理時間40秒
<Removal process β>
After the electrolysis treatment, the removal treatment was performed after washing with water. The removal treatment consists of spraying an alkaline aqueous solution (5% NaOH aqueous solution, containing 0.3-0.5% Al ions) on the surface to remove the oxide film, followed by chemical etching, followed by washing with water and nitric acid. I washed. The chemical etching process was performed by changing the conditions as follows.
・Removal treatment β1: NaOH concentration 5%, Al ion concentration 0.5%, liquid temperature 35°C, treatment time 5 seconds ・Removal treatment β2: NaOH concentration 5%, Al ion concentration 0.5%, liquid temperature 35°C, Treatment time 3 seconds Removal treatment β3: NaOH concentration 5%, Al ion concentration 0.3%, liquid temperature 37 ° C. Treatment time 5 seconds Removal treatment β4: NaOH concentration 5%, Al ion concentration 0.3%, liquid Temperature 37°C, processing time 40 seconds
 各集電体用アルミニウム基材の処理条件を表1に示す。なお、集電体Gは、未処理のアルミニウム基材である。すなわち、圧延処理の際に形成された自然酸化皮膜を表面に有するアルミニウム基材である。また、集電体Jは、未処理のアルミニウム基材の表面に導電性のカーボン粒子をバインダーと共に塗布し、乾燥させた下塗り層を有するアルミニウム基材である。 Table 1 shows the treatment conditions for the aluminum base material for each current collector. In addition, the current collector G is an untreated aluminum base material. That is, it is an aluminum base material having a natural oxide film on its surface formed during rolling. The current collector J is an aluminum substrate having an undercoat layer formed by applying conductive carbon particles together with a binder to the surface of an untreated aluminum substrate and drying the resultant.
 なお、アルミニウム基材中の金属間化合物は、1085材が460個/mm2、1N30材が7800個/mm2であった。 The number of intermetallic compounds in the aluminum substrate was 460/mm 2 for the 1085 material and 7800/mm 2 for the 1N30 material.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 各集電体用アルミニウム基材の作製後、XPSを用いて表層から深さ10nm以内に存在するアルミ水酸化物のピーク面積比を調べた。集電体Jはアルミニウム基材の全面にあらかじめカーボン導電材とバインダーが塗布されているため、この測定は行わなかった。 After the production of each aluminum base material for current collector, the peak area ratio of aluminum hydroxide present within a depth of 10 nm from the surface layer was examined using XPS. This measurement was not performed for current collector J because the carbon conductive material and the binder were applied in advance to the entire surface of the aluminum base material.
 XPSによる測定条件は以下の通りである。
・装置:Ulvac-PHI製 QuanteraSXM
・X線源:AlKα線(1486.6ev、25W、15kv)
・Pass Energy=55ev、Step=0.05ev
・測定領域:300μm×300μm
・得られたAl2Pスペクトルについて、金属Alのピーク位置を基準にピークシフト補正を行ってから、フィッティングを行った。
・ピーク面積比:上記フィッティングを行ったうえで、ピークが得られた、金属Al、酸化アルミニウムAl23、水酸化アルミニウムAl(OH)3、ベーマイトAlO(OH)の計4種についてピーク面積比を求めた。
・光電子取り出し角度:45度
 光電子取り出し角度45度でXPS解析を行った結果を表2に示す。Al(OH)3/AlO(OH)のピーク面積比=C/Dが0.1以上1以下である集電体A、B、C、D、E、Fの6つが実施例、集電体G、H、Iの3つが比較例となる。
The measurement conditions by XPS are as follows.
・Apparatus: Quantera SXM manufactured by Ulvac-PHI
・X-ray source: Al Kα ray (1486.6 ev, 25 W, 15 kv)
・Pass Energy = 55 ev, Step = 0.05 ev
・Measurement area: 300 μm × 300 μm
- Fitting was performed after performing peak shift correction on the obtained Al2P spectrum based on the peak position of metal Al.
・Peak area ratio: Peak areas for a total of four types of metal Al, aluminum oxide Al 2 O 3 , aluminum hydroxide Al (OH) 3 , and boehmite AlO (OH) for which peaks were obtained after performing the above fitting I asked for a ratio.
Photoelectron extraction angle: 45 degrees Table 2 shows the results of XPS analysis performed at a photoelectron extraction angle of 45 degrees. Current collectors A, B, C, D, E, and F having a peak area ratio of Al(OH) 3 /AlO(OH)=C/D of 0.1 or more and 1 or less are examples. Three of G, H, and I are comparative examples.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 同様に、光電子取り出し角度を20度としてXPS解析を行った結果を表3に示す。これは表層から深さ5nm以内に存在するアルミニウム水酸化物のピーク面積比である。 Similarly, Table 3 shows the results of XPS analysis with a photoelectron extraction angle of 20 degrees. This is the peak area ratio of aluminum hydroxide existing within 5 nm in depth from the surface layer.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 集電体Gは、未処理のアルミニウム基材であるため、圧延を行った直後に形成されるAl23が検出されたが水酸化物は検出されなかった。 Since current collector G was an untreated aluminum substrate, Al 2 O 3 formed immediately after rolling was detected, but hydroxide was not detected.
[実施例1~6、比較例1~4]
 作製した集電体用アルミニウム基材(集電体A~集電体J)をそれぞれ実施例1~6、比較例1~4として、密着性および抵抗を評価した。
[Examples 1 to 6, Comparative Examples 1 to 4]
Adhesion and resistance were evaluated using the produced aluminum substrates for current collectors (current collectors A to J) as Examples 1 to 6 and Comparative Examples 1 to 4, respectively.
<抵抗>
 集電体用アルミニウム基材に電極材層としてカーボン材料(日本黒鉛製 バニーハイトT602)を乾燥塗布厚みが10μmになるように塗布を行い、図9に示すように、電極材層106を形成した集電体用アルミニウム基材を、加圧式導電専用端子と加圧式絶縁端子で挟んで、抵抗測定機(日置株式会社製 HIOKI3541)で抵抗を1サンプルN=7で測定した。測定端子間の距離は50mmに固定した。
<Resistance>
A carbon material (Bunny Height T602 manufactured by Nippon Graphite Co., Ltd.) was applied as an electrode material layer to an aluminum substrate for a current collector so that the dry coating thickness was 10 μm, and as shown in FIG. 9, an electrode material layer 106 was formed. The aluminum base material for an electric body was sandwiched between a pressurized conductive terminal and a pressurized insulating terminal, and the resistance was measured with a resistance measuring machine (HIOKI 3541 manufactured by Hioki Co., Ltd.) with N=7 samples. The distance between the measurement terminals was fixed at 50 mm.
 初期抵抗評価は、評価前に、DRYBOXで24時間以上保管してから評価を行った。 The initial resistance evaluation was performed after storing in the DRYBOX for 24 hours or more before evaluation.
 次に強制経時抵抗評価を行った。各集電体用アルミニウム基材を、温度30℃湿度80%環境で保管し、2週間後に前述の方法で電極材層を形成した後、抵抗評価を行なった。同様に温度30℃湿度80%環境で4週間保管後に前述の方法で電極材層を形成した後、抵抗評価を行った。
 結果を表4に示す。
Next, forced aging resistance evaluation was performed. Each aluminum base material for a current collector was stored in an environment with a temperature of 30° C. and a humidity of 80%. Two weeks later, an electrode material layer was formed by the method described above, and resistance was evaluated. Similarly, after storage for 4 weeks at a temperature of 30° C. and a humidity of 80%, an electrode material layer was formed by the method described above, and resistance was evaluated.
Table 4 shows the results.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、本願の実施例1~6は比較例1~2に対し、初期から高湿保管後のいずれも抵抗値が小さく、優れている。
 また、実施例6は金属間化合物を多く含むアルミ基材を使用しているため、他の実施例に比べ、高湿保管後の抵抗悪化が少なく、より優れていることが分かる。
 比較例3は初期抵抗が実施例に比べて悪いが、金属間化合物を多く含むアルミニウム基材を使用しているため、高湿保管後の抵抗悪化幅は他の比較例よりは良い。
 比較例4は、導電性カーボンを下塗りした基材で、初期抵抗、高湿保管2週間後までの抵抗は実施例同様優れているが、高湿保管期間が4週間になると抵抗値が大きくなった。この原因は定かではないが、下塗り材を固定するためのバインダーのブリーディングなどの変化を伴い、抵抗を悪化させたと推定される。
As shown in Table 4, Examples 1 to 6 of the present application are superior to Comparative Examples 1 and 2 in that the resistance values are small from the initial stage to after high-humidity storage.
In addition, since Example 6 uses an aluminum base material containing a large amount of intermetallic compounds, it can be seen that deterioration in resistance after high-humidity storage is less than other examples, and is superior.
Comparative Example 3 has a lower initial resistance than the Examples, but the range of deterioration in resistance after high-humidity storage is better than the other Comparative Examples because it uses an aluminum base material containing a large amount of intermetallic compounds.
Comparative Example 4 is a substrate undercoated with conductive carbon, and the initial resistance and the resistance up to 2 weeks after high humidity storage are excellent as in Examples, but the resistance value increases after 4 weeks of high humidity storage. rice field. The cause of this is not clear, but it is presumed that the resistance deteriorated due to changes such as bleeding of the binder for fixing the undercoat material.
 次に、各集電体用アルミニウム基材の表面形状を観察した。
 図10は実施例3の表面SEM画像、図11、図12はそれぞれ比較例1比較例2の表面SEM画像である。図10から、実施例3の集電体用アルミニウム基材の表面には、数10nmオーダーの微細な凹凸構造が形成されていることが分かる。一方、比較例1および比較例2の集電体用アルミニウム基材にはそのような構造は形成されていないことが分かる。
Next, the surface shape of each aluminum substrate for current collector was observed.
10 is a surface SEM image of Example 3, and FIGS. 11 and 12 are surface SEM images of Comparative Example 1 and Comparative Example 2, respectively. From FIG. 10, it can be seen that the surface of the aluminum base material for current collector of Example 3 has a fine uneven structure on the order of several tens of nanometers. On the other hand, it can be seen that such a structure is not formed in the current collector aluminum substrates of Comparative Examples 1 and 2.
 各実施例、比較例の集電体用アルミニウム基材(集電体A~I)について、表面の形状を表す物性値を、原子間力顕微鏡(AFM)を用いて求めた。1μm四方の表面形状を測定し、得られた3次元データから表面物性値を求めた結果を表5に示す。 For the current collector aluminum substrates (current collectors A to I) of each example and comparative example, physical property values representing the shape of the surface were obtained using an atomic force microscope (AFM). Table 5 shows the results obtained by measuring the surface shape of 1 μm square and obtaining the surface physical property values from the obtained three-dimensional data.
 原子間力顕微鏡による測定条件は以下の通りである。
・測定面積:1μm×1μm
・装置:日立ハイテクサイエンス社製AFM5100N型SPM(タッピングモードで使用)
・カンチレバー:Olympus社製OMCL-AC200TS-R3
・分解能:256×256ピクセル
The measurement conditions for the atomic force microscope are as follows.
・Measurement area: 1 μm × 1 μm
・Equipment: Hitachi High-Tech Science AFM5100N type SPM (used in tapping mode)
・ Cantilever: OMCL-AC200TS-R3 manufactured by Olympus
・Resolution: 256 x 256 pixels
 得られた3次元データより以下の物性値2種を求めた。
・平均表面粗さ:
Figure JPOXMLDOC01-appb-I000005

(Zcは中心面のZ座標(高さ方向))
・最大高低差:P-V(nm):測定面内におけるZ座標の最大値―最小値
 また、特にピッチの短い凹凸にフォーカスした物性値として、上記方法で取得した3次元データを使い、FFT処理を行い周期が0.2μmを超える凹凸を除去する方法でも表面粗さRaと最大高低差P-Vを求めた。
 結果を合わせて表5に示す。なお、表5中、FFT処理を行い周期が0.2μmを超える凹凸を除去する方法で求めた表面粗さRaおよび最大高低差P-Vは、「FFT処理あり」と表した。
The following two physical property values were obtained from the obtained three-dimensional data.
・Average surface roughness:
Figure JPOXMLDOC01-appb-I000005

(Zc is the Z coordinate of the central plane (height direction))
・Maximum height difference: PV (nm): maximum value - minimum value of Z coordinate in the measurement plane. The surface roughness Ra and the maximum height difference PV were also obtained by a method of removing irregularities with a period exceeding 0.2 μm by processing.
The results are shown in Table 5 together. In Table 5, the surface roughness Ra and the maximum height difference PV obtained by the method of removing irregularities with a period exceeding 0.2 μm by performing FFT processing are indicated as “with FFT processing”.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 実施例1~6である集電体A~Fは、表面に微細な凹凸形状が形成されているため、原子間力顕微鏡で上記のような測定条件で測定をすると凹凸形状を反映した平均表面粗さが測定される。比較例1である集電体Gは表面処理を行わないアルミニウム箔であるため、Raが小さい。比較例2である集電体Hは、表面に陽極酸化皮膜が部分的に残っているため、微細な凹凸形状が部分的にしか残っておらずRaは小さい値となったが、場所により陽極酸化皮膜の有無の差が有るため、最大高低差:P-Vは比較的大きい値となった。比較例3である集電体Iはアルカリ溶液による溶解量が多いため、微細な凹凸形状が残っておらず、Raは小さい値になった。しかし、図12に示すように表面にうねりの成分が存在するので、最大高低差:P-Vは比較的大きい値となった。FFT処理を行ったデータは特にP-Vの値が実施例と比較例でその差がより明確になった。 Since the current collectors A to F of Examples 1 to 6 have fine irregularities on the surface, when measured with an atomic force microscope under the above measurement conditions, the average surface reflecting the irregularities Roughness is measured. Since the current collector G of Comparative Example 1 is an aluminum foil that is not surface-treated, Ra is small. In the current collector H of Comparative Example 2, since the anodized film was partially left on the surface, fine unevenness remained only partially, and Ra was a small value. Since there is a difference in the presence or absence of an oxide film, the maximum height difference: PV was a relatively large value. Since current collector I of Comparative Example 3 had a large amount of dissolution in the alkaline solution, no fine irregularities remained, and Ra was a small value. However, as shown in FIG. 12, since the undulation component exists on the surface, the maximum height difference: PV has a relatively large value. In the FFT-processed data, the difference between the example and the comparative example was particularly clear in the PV value.
<密着性>
 実施例および比較例の集電体用アルミニウム基材について、密着力を評価するため、2通りの評価を行った。
<Adhesion>
In order to evaluate the adhesion strength of the aluminum substrates for current collectors of Examples and Comparative Examples, two types of evaluation were performed.
<<密着力評価1>>
 実施例1~6および比較例1~3の各集電体用アルミニウム基材の表面に、剥離試験用の粘着テープ((株)ジェー・ティー・エス製テープ 「PS1」:幅25mm)158を直接貼り付け、各集電体用アルミニウム基材Sを90度剥離試験用スライドテーブル152上の貼り付け台154に、表面を上にして両面テープ156で固定し、張り付けた粘着テープ158を引きはがす際の荷重を測定する方法で行った。剥離強度は(株)イマダ製の剥離試験機162を使用し、剥離中の最大力(N/25mm)を評価した。図13に剥離試験評価装置の模式図を示す。
<<Adhesion evaluation 1>>
On the surface of each of the aluminum substrates for current collectors of Examples 1 to 6 and Comparative Examples 1 to 3, an adhesive tape (tape "PS1" manufactured by JTS Co., Ltd.: width 25 mm) 158 for peeling test was applied. Directly pasted, each aluminum base material S for current collector is fixed to the pasting table 154 on the slide table 152 for 90 degree peeling test with the surface facing up with double-sided tape 156, and the pasted adhesive tape 158 is peeled off. It was carried out by a method of measuring the load at the time. The peel strength was evaluated using a peel tester 162 manufactured by Imada Co., Ltd., and the maximum force (N/25 mm) during peeling was evaluated. FIG. 13 shows a schematic diagram of a peel test evaluation apparatus.
<<密着力評価2>>
 実施例1~6および比較例1~3の各集電体用アルミニウム基材の表面に、活性炭95%、水4%、CMC0.5%を混錬した電極材を厚さ約15μm塗布し、電極材の乾燥後集電体用アルミニウム基材を100mm×20mmに切りそろえ、直径20mmのステンレス製の丸棒に、電極材が外側になるよう巻き付け、巻き戻し、電極材と集電体用アルミニウム基材との間の剥離状況を目視で観察し、以下の基準で評価した。
・A:電極材と集電体用アルミニウム基材の界面で剥離が起こらなかった
・B:1~2か所で剥離が起こった
・C:3か所以上で剥離が起こった
 結果を表6に示す。
<<Adhesion evaluation 2>>
An electrode material kneaded with 95% activated carbon, 4% water, and 0.5% CMC was applied to a thickness of about 15 μm on the surface of each of the aluminum substrates for current collectors of Examples 1 to 6 and Comparative Examples 1 to 3, After drying the electrode material, the aluminum base material for the current collector was cut to 100 mm × 20 mm, wound around a stainless steel round bar with a diameter of 20 mm so that the electrode material was on the outside, and unwound. The state of peeling from the material was visually observed and evaluated according to the following criteria.
・A: No delamination occurred at the interface between the electrode material and the aluminum substrate for the current collector ・B: Delamination occurred at 1 to 2 locations ・C: Delamination occurred at 3 or more locations Table 6 shown in
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表6から本願の実施例は比較例に比べて、密着力が高く、電極材塗布後の剥離が発生しにくいことがわかる。実施例において、表面の微細構造が密着力に有効であると考えられる。 From Table 6, it can be seen that the examples of the present application have higher adhesion than the comparative examples, and peeling after application of the electrode material is less likely to occur. In the examples, the surface microstructure is believed to be effective for adhesion.
 以上の結果から、本発明の実施例は、比較例に比べて高い密着性と低い抵抗とを両立できることがわかる。
 以上より本発明の効果は明らかである。
From the above results, it can be seen that the examples of the present invention can achieve both high adhesion and low resistance compared to the comparative examples.
From the above, the effect of the present invention is clear.
 1 アルミニウム基材
 2 自然酸化皮膜
 3 陽極酸化皮膜
 4 水酸化アルミニウムが析出した表層部
 5 残渣
 50 製造装置
 52 回転軸
 54 巻取り軸
 58 除去工程部
 70 基材ロール
 72 ロール
 74 化学エッチング工程部
 76 水洗工程部
 78 酸洗工程部
 80 水洗工程部
 100 抵抗測定器
 102 加圧式導電専用端子
 104 加圧式絶縁端子
 106 活物質層
 150 スライドレール
 152 スライドテーブル
 154 貼り付け台
 156 両面テープ
 158 粘着テープ
 160 クランプ
 162 デジタルフォースゲージ
 164 引張装置
 S 評価用サンプル
1 aluminum base material 2 natural oxide film 3 anodized film 4 surface layer portion where aluminum hydroxide is deposited 5 residue 50 manufacturing apparatus 52 rotating shaft 54 winding shaft 58 removing process unit 70 base roll 72 roll 74 chemical etching process unit 76 washing with water Process part 78 Pickling process part 80 Water washing process part 100 Resistance measuring device 102 Pressurized conductive dedicated terminal 104 Pressurized insulated terminal 106 Active material layer 150 Slide rail 152 Slide table 154 Attachment table 156 Double-sided tape 158 Adhesive tape 160 Clamp 162 Digital Force gauge 164 Tensile device S Sample for evaluation

Claims (11)

  1.  X線光電子分光で測定した場合の、表層10nm以内に存在する金属Al、Al23、Al(OH)3、AlO(OH)のピーク面積比を、順に、A、B、C、Dとしたとき、(C+D)/(A+B+C+D)が0.5以上1以下であり、かつC/Dが0.1以上2以下である面を有する、集電体用アルミニウム基材。 A, B, C, and D represent peak area ratios of metal Al, Al2O3 , Al(OH) 3 , and AlO(OH) present within 10 nm of the surface layer when measured by X-ray photoelectron spectroscopy. and (C+D)/(A+B+C+D) is 0.5 or more and 1 or less, and C/D is 0.1 or more and 2 or less.
  2.  面の表面粗さRaが10nm以上50nm以下である、請求項1に記載の集電体用アルミニウム基材。 The aluminum substrate for current collector according to claim 1, wherein the surface roughness Ra of the surface is 10 nm or more and 50 nm or less.
  3.  面の最大高低差P-Vが100nm以上500nm以下である、請求項1または2に記載の集電体用アルミニウム基材。 3. The aluminum base material for a current collector according to claim 1, wherein the maximum height difference PV of the surface is 100 nm or more and 500 nm or less.
  4.  面が粒状の金属間化合物を有する、請求項1~3のいずれか一項に記載の集電体用アルミニウム基材。 The aluminum substrate for a current collector according to any one of claims 1 to 3, wherein the surface has a granular intermetallic compound.
  5.  粒状の金属化合物の数密度が500個/mm2以上である、請求項4に記載の集電体用アルミニウム基材。 The aluminum substrate for current collector according to claim 4, wherein the number density of the particulate metal compound is 500/ mm2 or more.
  6.  厚さが5μm~100μmである、請求項1~5のいずれか一項に記載の集電体用アルミニウム基材。 The aluminum substrate for current collector according to any one of claims 1 to 5, which has a thickness of 5 µm to 100 µm.
  7.  請求項1~6のいずれか一項に記載の集電体用アルミニウム基材を有するキャパシタ。 A capacitor comprising the aluminum substrate for current collector according to any one of claims 1 to 6.
  8.  請求項1~6のいずれか一項に記載の集電体用アルミニウム基材を有する二次電池。 A secondary battery comprising the aluminum substrate for current collector according to any one of claims 1 to 6.
  9.  請求項1~6のいずれか一項に記載の集電体用アルミニウム基材を作製する集電体用アルミニウム基材の製造方法であって、
     アノード電解時の通電量が10~100C/dm2で陽極酸化皮膜をアルミニウム箔の表面に形成する皮膜形成工程、および、
     陽極酸化皮膜を除去する除去工程、を有する、集電体用アルミニウム基材の製造方法。
    A method for producing an aluminum substrate for a current collector for producing the aluminum substrate for a current collector according to any one of claims 1 to 6,
    a film-forming step of forming an anodized film on the surface of the aluminum foil at a current of 10 to 100 C/dm 2 during anodic electrolysis;
    A method for producing an aluminum base material for a current collector, comprising a removing step of removing the anodized film.
  10.  除去工程が、アルカリ性溶液による化学エッチング工程、水洗工程、酸性溶液による洗浄工程、および、水洗工程をこの順に含む、請求項9に記載の集電体用アルミニウム基材の製造方法。 The method for producing an aluminum base material for a current collector according to claim 9, wherein the removal step includes, in this order, a chemical etching step with an alkaline solution, a water washing step, a washing step with an acid solution, and a water washing step.
  11.  化学エッチング工程が、25℃以上50℃未満のアルカリ性溶液に陽極酸化皮膜を1秒~10秒接触させる工程を含む、請求項10に記載の集電体用アルミニウム基材の製造方法。 The method for producing an aluminum substrate for a current collector according to claim 10, wherein the chemical etching step includes a step of contacting the anodized film with an alkaline solution at 25°C or higher and lower than 50°C for 1 to 10 seconds.
PCT/JP2022/002429 2021-03-02 2022-01-24 Aluminum substrate for collector, capacitor, secondary cell, and method for manufacturing aluminum substrate for collector WO2022185778A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023503626A JPWO2022185778A1 (en) 2021-03-02 2022-01-24
CN202280018028.0A CN116940717A (en) 2021-03-02 2022-01-24 Aluminum base material for current collector, capacitor, secondary battery, and method for producing aluminum base material for current collector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-032572 2021-03-02
JP2021032572 2021-03-02

Publications (1)

Publication Number Publication Date
WO2022185778A1 true WO2022185778A1 (en) 2022-09-09

Family

ID=83155335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/002429 WO2022185778A1 (en) 2021-03-02 2022-01-24 Aluminum substrate for collector, capacitor, secondary cell, and method for manufacturing aluminum substrate for collector

Country Status (4)

Country Link
JP (1) JPWO2022185778A1 (en)
CN (1) CN116940717A (en)
TW (1) TW202235635A (en)
WO (1) WO2022185778A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113646460A (en) * 2019-03-29 2021-11-12 富士胶片株式会社 Aluminum foil, method for producing aluminum foil, current collector, lithium ion capacitor, and lithium ion battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007016318A (en) * 2000-07-31 2007-01-25 Mitsubishi Plastics Ind Ltd Method for manufacturing aluminum plate with thermoplastic resin coating and formed article comprising the same manufactured by the manufacturing method
WO2016051976A1 (en) * 2014-09-30 2016-04-07 富士フイルム株式会社 Aluminum plate
WO2017163913A1 (en) * 2016-03-25 2017-09-28 富士フイルム株式会社 Aluminum sheet manufacturing method and aluminum sheet manufacturing apparatus
WO2019087516A1 (en) * 2017-10-31 2019-05-09 富士フイルム株式会社 Planographic printing plate original plate, method for manufacturing planographic printing plate, printing method, and method for manufacturing aluminum support body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007016318A (en) * 2000-07-31 2007-01-25 Mitsubishi Plastics Ind Ltd Method for manufacturing aluminum plate with thermoplastic resin coating and formed article comprising the same manufactured by the manufacturing method
WO2016051976A1 (en) * 2014-09-30 2016-04-07 富士フイルム株式会社 Aluminum plate
WO2017163913A1 (en) * 2016-03-25 2017-09-28 富士フイルム株式会社 Aluminum sheet manufacturing method and aluminum sheet manufacturing apparatus
WO2019087516A1 (en) * 2017-10-31 2019-05-09 富士フイルム株式会社 Planographic printing plate original plate, method for manufacturing planographic printing plate, printing method, and method for manufacturing aluminum support body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113646460A (en) * 2019-03-29 2021-11-12 富士胶片株式会社 Aluminum foil, method for producing aluminum foil, current collector, lithium ion capacitor, and lithium ion battery
CN113646460B (en) * 2019-03-29 2023-08-15 富士胶片株式会社 Aluminum foil, method for producing aluminum foil, current collector, lithium ion capacitor, and lithium ion battery

Also Published As

Publication number Publication date
JPWO2022185778A1 (en) 2022-09-09
TW202235635A (en) 2022-09-16
CN116940717A (en) 2023-10-24

Similar Documents

Publication Publication Date Title
CN111801444B (en) Electrolytic copper foil, electrode and lithium ion secondary battery comprising same
JP5306418B2 (en) Copper-coated steel foil, negative electrode and battery
JP2008103132A (en) Aluminum foil for collector of lithium ion cell, and lithium ion cell using it
WO2015115531A1 (en) Method for manufacturing aluminum plate, aluminum plate, current collector for electric storage device, and electric storage device
WO2016051976A1 (en) Aluminum plate
JP6592506B2 (en) Aluminum plate and current collector for electricity storage device
US11527760B2 (en) Aluminum member for electrodes and method of producing aluminum member for electrodes
US11527758B2 (en) Aluminum foil and aluminum member for electrodes
WO2022185778A1 (en) Aluminum substrate for collector, capacitor, secondary cell, and method for manufacturing aluminum substrate for collector
JP5726216B2 (en) Copper-coated steel foil, negative electrode and battery
JP5142254B2 (en) Positive electrode plate of lithium ion battery, method for producing the same, and lithium ion battery using the same
WO2022044624A1 (en) Aluminum member for collectors, lithium ion capacitor, electric double layer capacitor, semi-solid battery, solid-state battery and secondary battery using nonaqueous electrolyte solution
JP7183395B2 (en) Aluminum foil, method for producing aluminum foil, current collector, lithium ion capacitor, and lithium ion battery
Yasmin et al. Effect of Sodium Dodecyl Sulphate (SDS) and Electrochemical Behavior of Electrodeposited PbO2 on Nickel Substrate for Lead Acid Battery Application

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22762837

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023503626

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280018028.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22762837

Country of ref document: EP

Kind code of ref document: A1