JP5142254B2 - Positive electrode plate of lithium ion battery, method for producing the same, and lithium ion battery using the same - Google Patents

Positive electrode plate of lithium ion battery, method for producing the same, and lithium ion battery using the same Download PDF

Info

Publication number
JP5142254B2
JP5142254B2 JP2007168761A JP2007168761A JP5142254B2 JP 5142254 B2 JP5142254 B2 JP 5142254B2 JP 2007168761 A JP2007168761 A JP 2007168761A JP 2007168761 A JP2007168761 A JP 2007168761A JP 5142254 B2 JP5142254 B2 JP 5142254B2
Authority
JP
Japan
Prior art keywords
positive electrode
aluminum foil
ion battery
lithium ion
acid solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007168761A
Other languages
Japanese (ja)
Other versions
JP2009009778A (en
Inventor
本川幸翁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Sky Aluminum Corp
Original Assignee
Furukawa Sky Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Sky Aluminum Corp filed Critical Furukawa Sky Aluminum Corp
Priority to JP2007168761A priority Critical patent/JP5142254B2/en
Publication of JP2009009778A publication Critical patent/JP2009009778A/en
Application granted granted Critical
Publication of JP5142254B2 publication Critical patent/JP5142254B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、耐アルカリ性に優れたリチウムイオン電池の正極板及びその製造方法、ならびに、それを用いたリチウムイオン電池及びその製造方法に関する。   The present invention relates to a positive electrode plate of a lithium ion battery excellent in alkali resistance and a manufacturing method thereof, and a lithium ion battery using the positive electrode plate and a manufacturing method thereof.

リチウムイオン電池は、鉛電池やニッケル水素電池などに比べて重量や体積当たりのエネルギー密度が大きいため、電源として採用することで搭載機器の軽量化、小型化が図れる。このため最近では、携帯電子機器用だけでなく、EVやHEVなどの電気自動車用の電源として利用しようとする動向もあり、その重要性は今後ますます高まってくると予想される。   Lithium-ion batteries have a higher energy density per weight and volume than lead batteries and nickel metal hydride batteries, and so can be used as a power source to reduce the weight and size of installed devices. For this reason, recently, there is a trend to use it as a power source not only for portable electronic devices but also for electric vehicles such as EVs and HEVs, and its importance is expected to increase in the future.

リチウムイオン電池は、リチウムイオンが正極と負極との間を移動する反応で充放電を行う電池であり、正極、セパレータ、負極の3層構造からなる。正極活物質にはリチウム/遷移金属複合酸化物、負極活物質には炭素系材料が主に用いられる。また、正極と負極を分離するセパレータにはポリマー多孔膜、電解液には非水溶媒が用いられる。   A lithium ion battery is a battery that charges and discharges by a reaction in which lithium ions move between a positive electrode and a negative electrode, and has a three-layer structure of a positive electrode, a separator, and a negative electrode. A lithium / transition metal composite oxide is mainly used for the positive electrode active material, and a carbon-based material is mainly used for the negative electrode active material. Moreover, a polymer porous membrane is used for the separator that separates the positive electrode and the negative electrode, and a non-aqueous solvent is used for the electrolyte.

リチウムイオン電池の正極板の製造方法は、正極活物質、結着剤、導電助剤を溶媒に分散、混練したペーストを調製し、このペーストを集電体となるアルミニウム箔に塗工後、溶媒を乾燥させてアルミニウム箔上に正極合材層を形成させるものである。   A method for producing a positive electrode plate of a lithium ion battery is to prepare a paste in which a positive electrode active material, a binder, and a conductive additive are dispersed and kneaded in a solvent, and the paste is applied to an aluminum foil as a current collector. Is dried to form a positive electrode mixture layer on the aluminum foil.

従来は、上記ペーストの溶媒としてN−メチルピロリドン(NMP)などの有機溶剤が用いられてきたが、原料コスト削減や環境負荷低減を目的として水が用いられるようになってきている。溶媒に水を用いると、正極活物質中のリチウムイオンの一部が溶出して水のプロトンと交換するのでペーストがアルカリ性になる。そのため、アルミニウム箔にアルカリ性ペーストを塗工して乾燥する際に、アルミニウム箔の腐食と水素ガスの発生が起こる。図3に示すように、正極板1において、水素ガス4の発生によって正極合材層3が膨張して電極密度の低下を来たす。また、正極合材層3と集電体であるアルミニウム箔2との間の密着度が減少し、電池容量や内部抵抗などの電池性能が低下するという問題もあった。   Conventionally, an organic solvent such as N-methylpyrrolidone (NMP) has been used as a solvent for the paste. However, water has been used for the purpose of reducing raw material costs and environmental loads. When water is used as the solvent, a part of the lithium ions in the positive electrode active material is eluted and exchanged with protons of water, so that the paste becomes alkaline. Therefore, corrosion of the aluminum foil and generation of hydrogen gas occur when an alkaline paste is applied to the aluminum foil and dried. As shown in FIG. 3, in the positive electrode plate 1, the positive electrode mixture layer 3 expands due to the generation of hydrogen gas 4, resulting in a decrease in electrode density. In addition, there is a problem that the degree of adhesion between the positive electrode mixture layer 3 and the aluminum foil 2 as a current collector is reduced, and battery performance such as battery capacity and internal resistance is lowered.

特許文献1には、正極活物質のペーストによるアルミニウム集電体箔の腐食の防止、ならびに、乾燥後の正極合剤層と正極集電体箔の密着性を向上させることを目的とするリチウムイオン電池用正極板の製造方法が開示されている。この製造方法では、アルミニウムや銅などの集電体箔の表面に予めベーマイト皮膜又はクロム酸化物皮膜を形成してから、正極活物質のペーストを塗布して乾燥する。
:特開2000−48822号公報
Patent Document 1 discloses lithium ion intended to prevent corrosion of an aluminum current collector foil by a positive electrode active material paste and to improve the adhesion between the positive electrode mixture layer and the positive electrode current collector foil after drying. A method for manufacturing a positive electrode plate for a battery is disclosed. In this manufacturing method, a boehmite film or a chromium oxide film is formed in advance on the surface of a current collector foil such as aluminum or copper, and then a positive electrode active material paste is applied and dried.
: JP 2000-48822 A

特許文献2には、正極活物質ペーストによる集電体アルミニウム箔の腐食防止を目的として、アルミニウムより成る集電体箔の表面に予めベーマイト皮膜を形成させておいてから、正極活物質のペーストを塗布、乾燥するリチウムイオン電池用正極板の製造方法が開示されている。
:特開2003−157852号公報
In Patent Document 2, for the purpose of preventing corrosion of the current collector aluminum foil by the positive electrode active material paste, a boehmite film is formed in advance on the surface of the current collector foil made of aluminum, and then the positive electrode active material paste is added. A method for producing a positive electrode plate for a lithium ion battery to be applied and dried is disclosed.
: JP 2003-157852 A

特許文献3には、正極活物質ペーストによる集電体アルミニウム箔の腐食防止を目的として、アルミニウムより成る集電体箔の表面に予め耐電圧2.1〜3.0Vの酸化皮膜を形成させておいてから、正極活物質のペーストを塗布、乾燥するリチウムイオン電池用正極板の製造方法が開示されている。
:特開2005−259682号公報
In Patent Document 3, an oxide film having a withstand voltage of 2.1 to 3.0 V is formed in advance on the surface of a current collector foil made of aluminum for the purpose of preventing corrosion of the current collector aluminum foil by the positive electrode active material paste. Then, a method for producing a positive electrode plate for a lithium ion battery in which a positive electrode active material paste is applied and dried is disclosed.
: JP 2005-259682 A

特許文献4には、正極活物質ペーストに対する耐アルカリ性向上が目的ではないものの、有機電解液に対する耐食性を付与するために集電体アルミニウム箔を高純度化することが記載されている。特許文献5にも、有機電解液に対する耐食性を与えるため集電体アルミニウム箔を高純度化することが記載されている。
:特開平11−97032号公報 :特開平6−267542号公報
Patent Document 4 describes that, although the purpose is not to improve the alkali resistance with respect to the positive electrode active material paste, the current collector aluminum foil is highly purified in order to impart corrosion resistance to the organic electrolyte. Patent Document 5 also describes that the current collector aluminum foil is highly purified to provide corrosion resistance to the organic electrolyte.
: JP-A-11-97032 : JP-A-6-267542

特許文献1〜3の方法は、アルミニウム箔に耐アルカリ性を付与する方法として有効である。しかしながら、従来のアルミニウム集電体箔製造工程に、複数の工程から成る表面処理を追加する必要があるため、製造コストの増加は否めない。また、特許文献4、5の方法は、有機電解液に対する耐食性を向上する方法として有効ではあるが、アルカリ性正極活物質ペーストとの化学反応性や気泡発生を抑制する方法として有効であるか否かに関しては何らの記載も示唆もない。   The methods of Patent Documents 1 to 3 are effective as methods for imparting alkali resistance to an aluminum foil. However, since it is necessary to add a surface treatment consisting of a plurality of steps to the conventional aluminum current collector foil manufacturing process, an increase in manufacturing cost cannot be denied. Moreover, although the method of patent document 4, 5 is effective as a method of improving the corrosion resistance with respect to organic electrolyte solution, it is effective as a method of suppressing chemical reactivity with an alkaline positive electrode active material paste and bubble generation | occurrence | production. There is no description or suggestion regarding.

本発明は、高純度のアルミニウム箔から成る集電体表面に、正極活物質ペーストから形成される正極合材層を設けたリチウム電池の正極板及びその製造方法を提供するものである。本発明に係る正極板は、塗布した正極活物質ペーストがアルカリ性であっても、アルミニウム箔の耐アルカリ性を維持しつつ、アルミニウム箔と正極合材層との密着性に優れるという格別の効果を奏する。また、本発明に係る正極板を用いたリチウムイオン電池は、電池容量、内部抵抗、充放電サイクル特性において優れた電池性能を有する。   The present invention provides a positive electrode plate for a lithium battery in which a positive electrode mixture layer formed of a positive electrode active material paste is provided on the surface of a current collector made of high-purity aluminum foil, and a method for manufacturing the same. The positive electrode plate according to the present invention has a special effect of being excellent in the adhesion between the aluminum foil and the positive electrode mixture layer while maintaining the alkali resistance of the aluminum foil even if the applied positive electrode active material paste is alkaline. . Moreover, the lithium ion battery using the positive electrode plate according to the present invention has excellent battery performance in battery capacity, internal resistance, and charge / discharge cycle characteristics.

本発明は請求項1において、Al純度が99.9重量%以上で、Si、Fe、Cu、Mn、Mg、Zn、Ti、Cr、Zr及びVから成る群の1種以上を少なくとも不純物として含有し、前記不純物における各元素の含有量が0.03重量%未満であり、かつ、当該各元素の合計量が0.1重量%未満であるアルミニウム箔から成る集電体と;当該集電体の少なくとも一方の表面に設けられ、pH10以上の水性活物質ペーストから形成される正極合材層と;を備え、前記アルミニウム箔中に存在する晶析出物が、0.08〜0.13μmの平均粒径と0.5〜0.7%の面積率を有し、前記アルミニウム箔が、アルカリ脱脂処理及び酸処理を含む表面処理によって形成される酸化皮膜を備えることを特徴とする耐アルカリ腐食性を備えるリチウムイオン電池の正極板とした。 The present invention according to claim 1, wherein the Al purity is 99.9% by weight or more, and at least one of the group consisting of Si, Fe, Cu, Mn, Mg, Zn, Ti, Cr, Zr and V is contained as an impurity And a current collector made of an aluminum foil in which the content of each element in the impurities is less than 0.03% by weight and the total amount of each of the elements is less than 0.1% by weight; And a positive electrode mixture layer formed from an aqueous active material paste having a pH of 10 or more , wherein crystal precipitates present in the aluminum foil have an average of 0.08 to 0.13 μm. Alkali corrosion resistance characterized by having an oxide film having a particle size and an area ratio of 0.5 to 0.7%, and wherein the aluminum foil is formed by a surface treatment including an alkaline degreasing treatment and an acid treatment Li with a Ion was a positive electrode plate of the battery.

本発明は請求項2において、硝酸溶液、硫酸溶液又は塩酸溶液の酸溶液を用いて酸処理が施されるものとした。 According to the second aspect of the present invention, the acid treatment is performed using an acid solution of a nitric acid solution, a sulfuric acid solution, or a hydrochloric acid solution .

本発明は請求項3において、請求項1又は2に記載の耐アルカリ腐食性を備えるリチウムイオン電池の正極板の製造方法であって、前記アルミニウム箔の少なくとも一方の表面を、アルカリ脱脂溶液を用いてアルカリ脱脂処理を施して水洗処理し、当該水洗処理したアルミニウム箔を、酸溶液を用いて酸処理を施して水洗処理し、当該水洗処理したアルミニウム箔を乾燥することにより、アルミニウム箔の前記少なくとも一方の表面に酸化皮膜を形成する工程と;酸化皮膜が形成されたアルミニウム箔の表面に、pH10以上の水性活物質ペーストを塗布し乾燥することによって正極合材層を形成する工程と;を含むことを特徴とする耐アルカリ腐食性を備えるリチウムイオン電池の正極板の製造方法とした。 The present invention provides a method for producing a positive electrode plate of a lithium ion battery having alkali corrosion resistance according to claim 1 or claim 2, wherein at least one surface of the aluminum foil is used with an alkaline degreasing solution. The aluminum foil subjected to the alkaline degreasing treatment and washed with water, and subjected to the acid treatment using an acid solution and washed with water, and drying the washed aluminum foil, the at least the aluminum foil forming an oxide film on one surface; the front surface of the aluminum foil oxide film has been formed, forming a positive-electrode mixture layer by drying by applying a pH10 or more aqueous active material paste; the It was set as the manufacturing method of the positive electrode plate of the lithium ion battery provided with the alkali corrosion resistance characterized by including.

本発明は請求項4において、前記酸溶液が、硝酸溶液、硫酸溶液又は塩酸溶液であるものとした。更に本発明は請求項5において、前記アルカリ脱脂溶液のpHを12〜14としその温度を50〜60℃とし、アルカリ脱脂処理時間を3〜30秒とした。更に、前記酸溶液の濃度を10〜40重量%としその温度を10〜35℃とし、酸処理時間を10秒〜1分とした。 According to the present invention, in claim 4, the acid solution is a nitric acid solution, a sulfuric acid solution, or a hydrochloric acid solution. Furthermore, in the present invention, the alkaline degreasing solution has a pH of 12 to 14, a temperature of 50 to 60 ° C., and an alkaline degreasing time of 3 to 30 seconds. Furthermore, the concentration of the acid solution was 10 to 40% by weight, the temperature was 10 to 35 ° C., and the acid treatment time was 10 seconds to 1 minute.

本発明は請求項において、請求項1又は2に記載の正極板を備えたリチウムイオン電池とした。 According to a sixth aspect of the present invention, there is provided a lithium ion battery including the positive electrode plate according to the first or second aspect.

集電体であるアルミニウム箔表面の耐アルカリ性を阻害する不純物(Si、Fe、Cu、Mn、Mg、Zn、Ti、Cr、Zr、V等)の各元素の含有量、ならびに、不純物元素の合計含有量を所定範囲に規制することによって、正極活物質ペースト塗布工程におけるアルミニウム箔のアルカリ腐食を抑制できる。更に、アルミニウム箔表面をアルカリ脱脂処理と酸処理によって一旦清浄化して乾燥することにより、新規の自然酸化皮膜をアルミニウム箔表面に形成することができる。このような新規な自然酸化皮膜によって、アルミニウム箔表面の耐アルカリ性が増加し、水素などの気泡発生が抑制される。その結果、正極合材層の密度が向上するので、電池容量、内部抵抗、充放電サイクル特性に優れたリチウムイオン電池を提供することができる。   Content of each element of impurities (Si, Fe, Cu, Mn, Mg, Zn, Ti, Cr, Zr, V, etc.) impairing alkali resistance on the surface of the aluminum foil as a current collector, and the total of impurity elements By regulating the content within a predetermined range, alkaline corrosion of the aluminum foil in the positive electrode active material paste coating step can be suppressed. Furthermore, a new natural oxide film can be formed on the surface of the aluminum foil by once cleaning and drying the surface of the aluminum foil by alkali degreasing treatment and acid treatment. Such a novel natural oxide film increases the alkali resistance of the surface of the aluminum foil and suppresses the generation of bubbles such as hydrogen. As a result, since the density of the positive electrode mixture layer is improved, a lithium ion battery excellent in battery capacity, internal resistance, and charge / discharge cycle characteristics can be provided.

以下、本発明を詳細に説明する。図1に示すように、本発明に係る正極板1は、アルミニウム箔から成る集電体2の少なくとも一方の表面上に正極合材層3を設けた構造を成す(図1では、集電体2の一方の表面上に正極合材層3が設けられている)。   Hereinafter, the present invention will be described in detail. As shown in FIG. 1, a positive electrode plate 1 according to the present invention has a structure in which a positive electrode mixture layer 3 is provided on at least one surface of a current collector 2 made of aluminum foil (in FIG. 1, the current collector is shown in FIG. 1). 2 is provided with a positive electrode mixture layer 3 on one surface).

A.アルミニウム箔
本発明で用いる集電体は、高純度アルミニウム箔から成る。すなわち、Al純度が99.9重量%以上で、Si、Fe、Cu、Mn、Mg、Zn、Ti、Cr、Zr及びVから成る群の1種以上を少なくとも不純物として含有するものである。ここで、不純物元素としては、Si、Fe、Cu、Mn、Mg、Zn、Ti、Cr、Zr、Vの1種以上を少なくとも含有していれば、これら以外の他の元素を含有していてもよい。不純物における各元素の含有量は0.03重量%未満であり、かつ、当該各元素の合計量が0.1重量%未満であることが必要である。
A. Aluminum foil The current collector used in the present invention comprises a high-purity aluminum foil. That is, the Al purity is 99.9% by weight or more, and at least one of the group consisting of Si, Fe, Cu, Mn, Mg, Zn, Ti, Cr, Zr and V is contained as an impurity. Here, as an impurity element, if it contains at least one of Si, Fe, Cu, Mn, Mg, Zn, Ti, Cr, Zr, and V, it contains other elements other than these. Also good. The content of each element in the impurities is less than 0.03% by weight, and the total amount of each element is required to be less than 0.1% by weight.

不純物における各元素の含有量が0.03重量%以上の場合や、不純物元素の合計含有量が0.1重量%以上となってAl純度が99.9重量%未満の場合には、pH10以上の水性正極活物質ペースト塗布工程においてアルミニウム箔に腐食が生じ易くなり、その結果、水素ガスが発生して正極合材層が膨潤する。これによって、正極合材層の電極密度の低下を招くと共に、正極合材層とアルミニウム箔間の密着度の低減を招く。このような正極合材層を用いると、電池容量、内部抵抗、充放電特性などの電池性能の低下を来す。   When the content of each element in the impurity is 0.03% by weight or more, or when the total content of the impurity elements is 0.1% by weight or more and the Al purity is less than 99.9% by weight, the pH is 10 or more. In the aqueous positive electrode active material paste coating step, corrosion easily occurs in the aluminum foil, and as a result, hydrogen gas is generated and the positive electrode mixture layer swells. This causes a decrease in the electrode density of the positive electrode mixture layer and a decrease in the degree of adhesion between the positive electrode mixture layer and the aluminum foil. When such a positive electrode mixture layer is used, battery performance such as battery capacity, internal resistance, and charge / discharge characteristics is deteriorated.

本発明に用いるアルミニウム箔は、常法にしたがってアルミニウム鋳塊を、面削、均質化処理、熱間圧延、冷間圧延、箔圧延を行なってアルミニウム箔に加工したものである。なお、必要に応じて、冷間圧延と箔圧延との間に中間焼鈍を行なっても、箔圧延の後に最終焼鈍を行ってよい。   The aluminum foil used in the present invention is formed into an aluminum foil by subjecting an aluminum ingot to chamfering, homogenization treatment, hot rolling, cold rolling, and foil rolling according to a conventional method. If necessary, intermediate annealing may be performed between cold rolling and foil rolling, and final annealing may be performed after foil rolling.

B.アルミニウム箔のアルカリ脱脂処理と水洗処理
アルミニウム箔は、アルカリ脱脂溶液を用いてアルカリ脱脂処理を施してもよい。アルカリ脱脂溶液のpHは12〜14が好ましく、また、50〜60℃の温度で用いるのが好ましい。アルカリ脱脂溶液としは、例えば日本ペイント社製サーフクリーナー420N−2を用いることができる。アルカリ脱脂溶液のpHが12未満の場合や、使用温度が50℃未満の場合には、脱脂作用が不十分で脱脂が不完全又は不安定になり易い。pHが14を超える場合や、温度が60℃を超える場合には、逆に脱脂の作用が十分過ぎて脱脂量の制御が困難となり製造効率も低下する。アルカリ脱脂処理は、通常、アルカリ脱脂溶液をアルミニウム箔にスプレー噴射し、又は、アルカリ脱脂溶液中にアルミニウム箔を浸漬することによって行なわれる。アルカリ脱脂の処理時間は、アルカリ脱脂溶液のpH、濃度、温度等によって適宜選択されるが、通常、3秒〜30秒である。
B. Alkaline degreasing treatment and water-washing treatment of aluminum foil The aluminum foil may be subjected to alkali degreasing using an alkaline degreasing solution. The pH of the alkaline degreasing solution is preferably 12 to 14, and is preferably used at a temperature of 50 to 60 ° C. As the alkaline degreasing solution, for example, Surf Cleaner 420N-2 manufactured by Nippon Paint Co., Ltd. can be used. When the pH of the alkaline degreasing solution is less than 12 or when the use temperature is less than 50 ° C., the degreasing action is insufficient and the degreasing tends to be incomplete or unstable. When the pH exceeds 14 or when the temperature exceeds 60 ° C., the degreasing action is excessively sufficient, and the control of the degreasing amount becomes difficult and the production efficiency is also lowered. The alkaline degreasing treatment is usually performed by spraying an alkaline degreasing solution onto the aluminum foil or immersing the aluminum foil in the alkaline degreasing solution. The treatment time for alkaline degreasing is appropriately selected depending on the pH, concentration, temperature, etc. of the alkaline degreasing solution, but is usually 3 seconds to 30 seconds.

アルカリ脱脂処理したアルミニウム箔は、水洗処理される。水洗処理は、例えば電気伝導度1μS/cm以下で10〜35℃の水をアルミニウム箔にスプレー噴射し、又は、この水中にアルミニウム箔を浸漬することによって行なわれる。水洗処理時間や水洗量は、試料表面に残存するアルカリ成分量に応じて適宜選択される。   The alkali degreased aluminum foil is washed with water. The water washing treatment is performed, for example, by spraying water of 10 to 35 ° C. with an electric conductivity of 1 μS / cm or less onto the aluminum foil or immersing the aluminum foil in this water. The water washing time and the amount of water washing are appropriately selected according to the amount of alkali components remaining on the sample surface.

C.アルミニウム箔の酸処理と水洗処理
アルカリ脱脂処理後に水洗処理されたアルミニウム箔は、酸溶液を用いて酸処理が施される。酸溶液としては、通常、硝酸溶液、塩酸溶液、硫酸溶液等が用いられ、硝酸溶液が好適に用いられ、硝酸水溶液が最も好適に用いられる。また、酸溶液の濃度は、10〜
40重量%、好ましくは25〜35重量%である。酸溶液の温度は、10〜35℃、好ましくは15〜25℃である。酸溶液の濃度が10重量%未満の場合や、温度が10℃未満の場合には、酸処理による作用が不十分でスマット除去の効果が不十分となり易い。酸溶液の濃度が40重量%を超える場合や、温度が35℃を超える場合には、逆に酸処理の作用が十分過ぎて表面処理量の制御が困難となり製造効率も低下する。酸処理時間は、酸溶液の濃度や温度によって適宜選択されるが、通常、10秒〜1分である。
C. The aluminum foil subjected to the water washing treatment after the acid treatment and water washing treatment alkali degreasing treatment of the aluminum foil is subjected to acid treatment using an acid solution. As the acid solution, a nitric acid solution, a hydrochloric acid solution, a sulfuric acid solution or the like is usually used, a nitric acid solution is preferably used, and a nitric acid aqueous solution is most preferably used. The concentration of the acid solution is 10 to 10
40% by weight, preferably 25 to 35% by weight. The temperature of the acid solution is 10 to 35 ° C, preferably 15 to 25 ° C. When the concentration of the acid solution is less than 10% by weight or when the temperature is less than 10 ° C., the effect of the acid treatment is insufficient and the effect of removing the smut tends to be insufficient. When the concentration of the acid solution exceeds 40% by weight or when the temperature exceeds 35 ° C., on the contrary, the action of the acid treatment is too sufficient to control the surface treatment amount and the production efficiency is lowered. The acid treatment time is appropriately selected depending on the concentration and temperature of the acid solution, but is usually 10 seconds to 1 minute.

酸処理したアルミニウム箔は、水洗処理される。水洗処理は、例えば電気伝導度1μS/cm以下で10〜35℃の水をアルミニウム箔にスプレー噴射し、又は、この水中にアルミニウム箔を浸漬することによって行なわれる。水洗処理時間や水洗量は、試料表面に残存するアルカリ成分量に応じて適宜選択される。このようにして水洗処理されたアルミニウム箔は乾燥されるが、通常、30〜60℃で風乾することによって乾燥される。以上のような表面処理、すなわち、アルカリ脱脂処理、水洗処理、酸処理、水洗処理、乾燥処理を経て、アルミニウム箔表面には自然酸化皮膜に加えて新たな酸化皮膜が形成される。   The acid-treated aluminum foil is washed with water. The water washing treatment is performed, for example, by spraying water of 10 to 35 ° C. with an electric conductivity of 1 μS / cm or less onto the aluminum foil or immersing the aluminum foil in this water. The water washing time and the amount of water washing are appropriately selected according to the amount of alkali components remaining on the sample surface. The aluminum foil thus washed with water is dried, but is usually dried by air drying at 30 to 60 ° C. Through the above surface treatment, that is, alkali degreasing treatment, water washing treatment, acid treatment, water washing treatment and drying treatment, a new oxide film is formed on the aluminum foil surface in addition to the natural oxide film.

本発明では、アルカリ脱脂処理、水洗処理、酸処理、水洗処理、乾燥処理を施さない、すなわち、自然酸化皮膜のみを有するアルミニウム箔を用いることもできるが、このような表面処理によって新たな酸化皮膜が形成されたアルミニウム箔を用いることもできる。表面処理による酸化皮膜によって耐食効果を更に強化する必要がある場合には、このような表面処理したタイプを用いるのが好ましい。   In the present invention, an alkali degreasing treatment, a water washing treatment, an acid treatment, a water washing treatment, and a drying treatment are not performed, that is, an aluminum foil having only a natural oxide film can be used. An aluminum foil formed with can also be used. When the corrosion resistance needs to be further strengthened by the oxide film by the surface treatment, it is preferable to use such a surface-treated type.

D.Al純度と耐食性の関係
本発明者はAl純度と耐食性の関係について鋭意研究の結果、以下の知見を得た。すなわち、本発明で用いる99.9重量%以上の高純度アルミニウム材では、数nm程度の薄い自然酸化皮膜のみを有するものであっても、短時間であれば有効な耐アルカリ性を発揮できるというものである。
D. Relationship between Al purity and corrosion resistance As a result of intensive studies on the relationship between Al purity and corrosion resistance, the present inventors have obtained the following knowledge. That is, in the high purity aluminum material of 99.9% by weight or more used in the present invention, even if it has only a thin natural oxide film of about several nm, it can exhibit effective alkali resistance in a short time. It is.

このような知見は以下のように解釈することができる。一般に、アルミニウム合金の添加元素は、固溶している場合は表面酸化皮膜の形成や耐食性にほとんど影響を与えない。しかしながら、アルミニウム合金中には晶析出物が通常存在する。これらはマトリクスとの界面に不連続部を生じさせて表面酸化皮膜に欠陥を発生させ、耐食性に悪影響を及ぼす。また、これらの晶析出物はマトリクスと局部電池を形成して腐食の起点となり得る。   Such knowledge can be interpreted as follows. In general, an additive element of an aluminum alloy hardly affects the formation of a surface oxide film and the corrosion resistance when dissolved in a solid solution. However, crystal precipitates are usually present in aluminum alloys. These cause discontinuities at the interface with the matrix and cause defects in the surface oxide film, which adversely affects the corrosion resistance. Moreover, these crystal precipitates can form a matrix and a local battery, and can become a starting point of corrosion.

本発明に用いる高純度アルミニウム材料では、晶析出物を形成する不純物元素の含有量が極めて少ない。したがって、このような高純度アルミニウム材料では、酸化皮膜の欠陥や、腐食の起点となる局部電池形成サイトが非常に少なく、酸化皮膜が破壊され難くなっている。したがって、アルカリ溶解が開始するまでの猶予期間が長くなるなど、耐アルカリ性等の耐食性に優れている。   In the high-purity aluminum material used in the present invention, the content of impurity elements that form crystal precipitates is extremely small. Therefore, in such a high-purity aluminum material, there are very few defects in the oxide film and local battery formation sites that become the starting point of corrosion, and the oxide film is difficult to be destroyed. Therefore, it has excellent corrosion resistance such as alkali resistance, such as a longer grace period until alkali dissolution starts.

E.正極合材層を形成した正極板
まず、正極活物質としてコバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム等のリチウム/遷移金属複合酸化物を用い、結着剤としてPVDF(ポリフッ化ビニリデン)、SBR(スチレンブタジエンラバー)、PTFE(ポリテトラフルオロエチレン)等を用い、導電助剤としてカーボンブラック、アセチレンブラック、グラファイト等を用いた混合物を、水に分散、混練してペーストを調製する。このようにして調製した正極活物質ペーストは、pH10以上の水性ペーストである。
E. Positive electrode plate on which a positive electrode mixture layer is formed First, lithium / transition metal composite oxide such as lithium cobaltate, lithium nickelate and lithium manganate is used as a positive electrode active material, PVDF (polyvinylidene fluoride), SBR as a binder (Styrene butadiene rubber), PTFE (polytetrafluoroethylene) or the like, and a mixture using carbon black, acetylene black, graphite or the like as a conductive additive is dispersed in water and kneaded to prepare a paste. The positive electrode active material paste thus prepared is an aqueous paste having a pH of 10 or higher.

この正極活物質ペーストを、上記アルミニウム箔の少なくとも一方の表面に塗工し、これを乾燥することによって正極合材層を形成する。このようにして塗工された正極活物質ペーストは、通常、90〜150℃の雰囲気あるいは風乾にて乾燥される。
以上のようにして、アルミニウム箔の集電体上に正極合材層を設けた正極板が製作される。
The positive electrode active material paste is applied to at least one surface of the aluminum foil and dried to form a positive electrode mixture layer. The positive electrode active material paste thus applied is usually dried in an atmosphere of 90 to 150 ° C. or air drying.
As described above, a positive electrode plate in which a positive electrode mixture layer is provided on an aluminum foil current collector is manufactured.

F.リチウムイオン電池
本発明に係るアルミニウム箔を集電体とするリチウムイオン電池を、図2に示す。リチウムイオン電池5は、以下のようにして製作される。まず、プロピレンカーボネート/ジメトキシエタンの混合溶媒等に六フッ化リン酸リチウム等を溶解した電解液6をポリエチレン製等のセパレータ7に含浸させ、このセパレータ7を介して正極板8と黒鉛等の負極板9を組み合わせたものである。図2において、10は正極端子、11はケースである負極端子、12は安全弁である。このようなリチウムイオン電池は、集電体用アルミニウム箔の表面に高度の耐アルカリ性が付与されているので、電池容量、内部抵抗、充放電サイクル等の電池特性に優れている。
F. Lithium Ion Battery A lithium ion battery using the aluminum foil according to the present invention as a current collector is shown in FIG. The lithium ion battery 5 is manufactured as follows. First, an electrolytic solution 6 in which lithium hexafluorophosphate or the like is dissolved in a mixed solvent of propylene carbonate / dimethoxyethane or the like is impregnated into a separator 7 made of polyethylene or the like, and a positive electrode plate 8 and a negative electrode such as graphite are interposed through the separator 7. The plate 9 is combined. In FIG. 2, 10 is a positive terminal, 11 is a negative terminal which is a case, and 12 is a safety valve. Since such a lithium ion battery has high alkali resistance on the surface of the current collector aluminum foil, it has excellent battery characteristics such as battery capacity, internal resistance, and charge / discharge cycle.

以下に、実施例及び比較例に基づいて本発明の好適な実施態様を具体的に説明する。
実施例1〜4及び比較例1〜2
表1に示す組成の溶湯から、半連続鋳造法により厚さ500mmの鋳塊を得、上下面を10mm面削した。次いで、各鋳塊に530℃×3時間の均質化処理を施し、開始温度530℃の熱間圧延を上がり板厚3mmまで施した後、冷間圧延及び温度330℃で中間焼鈍を施し0.2mm厚の圧延板(箔地)を得た。その後、箔圧延を経て厚さ20μmの集電体用アルミニウム箔を得た。
In the following, preferred embodiments of the present invention will be specifically described based on examples and comparative examples.
Examples 1-4 and Comparative Examples 1-2
From the molten metal having the composition shown in Table 1, an ingot having a thickness of 500 mm was obtained by a semi-continuous casting method, and the upper and lower surfaces were chamfered by 10 mm. Next, each ingot was subjected to a homogenization treatment at 530 ° C. for 3 hours, subjected to hot rolling at a starting temperature of 530 ° C. to a plate thickness of 3 mm, and then subjected to cold rolling and intermediate annealing at a temperature of 330 ° C. A 2 mm thick rolled plate (foil) was obtained. Then, the aluminum foil for collectors with a thickness of 20 μm was obtained through foil rolling.

実施例2、4及び比較例2では、得られたアルミニウム箔に、日本ペイント製サーフクリーナー420N−2をpH13に調整したアルカリ脱脂液を使用して温度60℃にて30秒間アルカリ脱脂処理を施した。その後、電気伝導度1μS/cm以下で10〜35℃の水で水洗した。次いで、30重量%硝酸水溶液中に1分間浸漬して酸処理を施した。更に、これを電気伝導度1μS/cm以下で10〜35℃の水で水洗し、30〜60℃で風乾して乾燥した。実施例1、3、及び比較例1の試料については、アルカリ脱脂、水洗、酸処理及び水洗による表面処理を行なっていない。このようにして、表面処理を施した又は施していない試料を作製した。   In Examples 2 and 4 and Comparative Example 2, the obtained aluminum foil was subjected to an alkaline degreasing treatment for 30 seconds at a temperature of 60 ° C. using an alkaline degreasing solution in which Nippon Paint Surf Cleaner 420N-2 was adjusted to pH 13. did. Thereafter, it was washed with water at 10 to 35 ° C. with an electric conductivity of 1 μS / cm or less. Subsequently, it was immersed in a 30% by weight nitric acid aqueous solution for 1 minute for acid treatment. Further, this was washed with water having an electric conductivity of 1 μS / cm or less at 10 to 35 ° C., air dried at 30 to 60 ° C. and dried. The samples of Examples 1 and 3 and Comparative Example 1 were not subjected to surface treatment by alkali degreasing, water washing, acid treatment and water washing. In this way, samples with or without surface treatment were produced.

以上のようにして作製した各試料について、下記の反応抵抗値測定を行った。反応抵抗値(Rct)は、アルカリ腐食の等価回路と交流インピーダンス測定結果とのフィッティングから求めるものであり、材料と試験液の化学反応の起こり易さの指標となる。抵抗値が大きいほど化学反応が起こり難い、すなわち耐食性が良いことを示す。   The following reaction resistance values were measured for each sample produced as described above. The reaction resistance value (Rct) is obtained from fitting of an equivalent circuit of alkali corrosion and an AC impedance measurement result, and is an index of the likelihood of a chemical reaction between the material and the test solution. A larger resistance value indicates that the chemical reaction is less likely to occur, that is, the corrosion resistance is better.

反応抵抗値測定
各試料から2cm×5cmの試験片を切り出した。この試験片の裏面に支持板を貼り、1cm×1cm窓を残してマスキングテープでマスキングして試料電極を作成した。対極には白金板を、参照極にはAg/AgCl電極を用いた。pH13に調整したLiOH水溶液を試験液とした。測定温度を25±1℃とし、振幅を±10mVとし、周波数範囲を100kHz〜100Hzとし、サンプリングを5点/decadeとした測定条件において、自然電位にて抵抗値を測定した。結果をナイキストプロットに表し、アルカリ腐食の等価回路とのフィッティングから反応抵抗値(Rct)を求めた。
Measurement of reaction resistance A test piece of 2 cm × 5 cm was cut out from each sample. A sample plate was prepared by attaching a support plate to the back surface of the test piece and masking with a masking tape leaving a 1 cm × 1 cm window. A platinum plate was used as the counter electrode, and an Ag / AgCl electrode was used as the reference electrode. A LiOH aqueous solution adjusted to pH 13 was used as a test solution. The resistance value was measured at a natural potential under the measurement conditions where the measurement temperature was 25 ± 1 ° C., the amplitude was ± 10 mV, the frequency range was 100 kHz to 100 Hz, and the sampling was 5 points / decade. The results were expressed in a Nyquist plot, and the reaction resistance value (Rct) was determined from fitting with an equivalent circuit of alkaline corrosion.

次に、アルミニウム箔に表面処理を施した又は施していない試料表面に正極合剤層を形成した正極板の試料を作製して、電極密度試験を行なった。   Next, a sample of a positive electrode plate in which a positive electrode mixture layer was formed on the surface of a sample that was or was not subjected to surface treatment on an aluminum foil was prepared, and an electrode density test was performed.

まず、正極合剤ペーストを調製した。活物質としてニッケル酸リチウム、導電材としてアセチレンブラック、バインダとしてPTFE分散液、溶媒として水を使用した。組成としては、活物質を87部、導電材を10部、バインダを3部とした。溶媒の水は、これら固形分の合計量に対し75部とした。また、必要に応じて、増粘剤(カルボキシメチルセルロースなど)を固形分の合計量に対し1〜2部添加した。これら各成分を混合し、ディスパーで十分混練して、正極合剤ペーストを調製した。pHメーターにて確認したところ、該ペーストのpHは12.1であった。次いで、以上のようにして調製した正極合剤ペーストを、表面処理を施した又は施していない前記アルミニウム箔試料に所定量塗布後、直ちに100℃で乾燥を開始し、10秒以内に乾燥を終了して正極板試料を作製した。   First, a positive electrode mixture paste was prepared. Lithium nickelate was used as the active material, acetylene black as the conductive material, PTFE dispersion as the binder, and water as the solvent. The composition was 87 parts of active material, 10 parts of conductive material, and 3 parts of binder. The solvent water was 75 parts relative to the total amount of these solids. Moreover, 1-2 parts of thickeners (carboxymethylcellulose etc.) were added with respect to the total amount of solid content as needed. These components were mixed and sufficiently kneaded with a disper to prepare a positive electrode mixture paste. When confirmed with a pH meter, the pH of the paste was 12.1. Next, after applying a predetermined amount of the positive electrode mixture paste prepared as described above to the aluminum foil sample with or without the surface treatment, drying is immediately started at 100 ° C., and the drying is finished within 10 seconds. Thus, a positive electrode plate sample was produced.

このようにして作製した正極板の各試料について、下記の電極密度比率の測定を行なった。電極密度は、腐食による水素発生量に対応する正極合材層の厚さから求めるので、材料の耐アルカリ性の指標となる。すなわち、材料の耐アルカリ性が良好であれば、腐食による水素発生が無いので合材層は薄く密になる。逆に耐アルカリ性が不良であれば、腐食による水素発生により合材層が膨潤して厚く疎になる。   The following electrode density ratio was measured for each sample of the positive electrode plate thus produced. Since the electrode density is obtained from the thickness of the positive electrode mixture layer corresponding to the amount of hydrogen generated by corrosion, it is an index of the alkali resistance of the material. That is, if the alkali resistance of the material is good, there is no generation of hydrogen due to corrosion, so the composite layer becomes thin and dense. On the other hand, if the alkali resistance is poor, the composite material layer swells and becomes thick due to hydrogen generation due to corrosion.

電極密度測定
まず、正極板試料を樹脂包埋し、研磨して断面観察用試料を作成し、光学顕微鏡による断面観察により正極合剤層の厚さを測定した。次いで、参照試料として、プラスチックフィルム(ポリプロピレン、フッ素樹脂等)に、各実施例及び比較例と同様にして正極合剤ペーストを塗布、乾燥して断面観察を行い、合剤層厚さを測定した。
各実施例及び比較例試料、ならびに、参照試料において、測定した厚さの逆数を電極密度の指標とし、参照試料の電極密度指標に対する各実施例及び比較例の電極密度指標の比率を求め、この比率をもって、各実施例及び比較例試料の電極密度比率とした。すなわち、この電極密度比率は、各実施例及び比較例の正極合剤層の厚さに対する参照試料の合剤層の厚さによって表される。この電極密度比率は、下記の基準によって耐アルカリ性の指標とした。
◎:電極密度比率=90以上100%以下
○:電極密度比率=80以上90%未満
△:電極密度比率=70以上80%未満
×:電極密度比率=70%未満
上記記号が◎及び○を、リチウムイオン電池用正極板として問題なく使用できる合格とし、△及び×を不合格とした。
Electrode density measurement First, a positive electrode plate sample was embedded in a resin and polished to prepare a cross-sectional observation sample, and the thickness of the positive electrode mixture layer was measured by cross-sectional observation using an optical microscope. Next, as a reference sample, a positive electrode mixture paste was applied to a plastic film (polypropylene, fluororesin, etc.) in the same manner as in each Example and Comparative Example, dried, cross-sectional observation was performed, and the mixture layer thickness was measured. .
In each example and comparative example sample and reference sample, the reciprocal of the measured thickness was used as an electrode density index, and the ratio of the electrode density index of each example and comparative example to the electrode density index of the reference sample was determined. The ratio was used as the electrode density ratio of each example and comparative sample. That is, this electrode density ratio is represented by the thickness of the mixture layer of the reference sample with respect to the thickness of the positive electrode mixture layer of each example and comparative example. This electrode density ratio was used as an index of alkali resistance according to the following criteria.
◎: Electrode density ratio = 90 or more and 100% or less ○: Electrode density ratio = 80 or more and less than 90% Δ: Electrode density ratio = 70 or more and less than 80% ×: Electrode density ratio = 70% or less It was set as the pass which can be used as a positive electrode plate for lithium ion batteries without any problem, and Δ and X were set as rejected.

各試料の成分元素組成、表面処理の有無、反応抵抗値及び電極密度比率を表1に示す。   Table 1 shows the component element composition, presence / absence of surface treatment, reaction resistance value, and electrode density ratio of each sample.

Figure 0005142254
Figure 0005142254

表1の結果から、実施例1〜4の集電体用アルミニウム箔では、いずれも10Ω以上の反応抵抗値を示した。これは、用いたアルミニウム箔が、表面の自然酸化皮膜の保護能を阻害する不純物を殆ど含有していないので、良好な耐アルカリ性を示すものである。一方、比較例1、2では、用いたアルミニウム合金(1N30)が含有する多量の不純物成分によって自然酸化皮膜の保護能が損なわれ、耐アルカリ性が劣ったものである。   From the results of Table 1, all of the aluminum foils for current collectors of Examples 1 to 4 showed a reaction resistance value of 10Ω or more. This shows good alkali resistance because the aluminum foil used contains almost no impurities that hinder the protective ability of the natural oxide film on the surface. On the other hand, in Comparative Examples 1 and 2, the protective ability of the natural oxide film is impaired by a large amount of impurity components contained in the used aluminum alloy (1N30), and the alkali resistance is inferior.

同じく表1の結果から、実施例1〜4の正極板では、いずれも電極密度比率が大きく合格であった。これは、用いたアルミニウム箔が、含有する不純物成分が極めて少量なので良好な耐アルカリ性を示す結果、水素の発生が殆ど無く合剤層が密であることを示す。一方、比較例1、2では、用いたアルミニウム合金(1N30)が含有する多量の不純物成分によって耐アルカリ性が劣っているので、水素の発生が多く合剤層が疎であることを示す。   Similarly, from the results in Table 1, the positive electrode plates of Examples 1 to 4 all passed the electrode density ratio and passed. This indicates that since the used aluminum foil contains a very small amount of impurity components and exhibits good alkali resistance, there is almost no generation of hydrogen and the mixture layer is dense. On the other hand, in Comparative Examples 1 and 2, since the alkali resistance is inferior due to a large amount of impurity components contained in the used aluminum alloy (1N30), hydrogen generation is large and the mixture layer is sparse.

実施例5及び比較例3〜9
Al純度と表面処理の関係を検討した。用いた試料は、本発明において用いる高純度のアルミニウム箔(実施例5、Al純度99.99重量%、Fe含有量0.0011重量%、Si含有量0.0011重量%、Cu含有量0.0043重量%、Mg含有量0.0001重量%、Cr含有量0.0001重量%)、JIS規格アルミニウム合金の1050(比較例3)、1N30(比較例4)、1100(比較例5)、3004(比較例6)、5052(比較例7)、5182(比較例8)、6061(比較例9)から加工したアルミニウム箔を用いた。
Example 5 and Comparative Examples 3-9
The relationship between Al purity and surface treatment was examined. The sample used was a high-purity aluminum foil used in the present invention (Example 5, Al purity 99.99% by weight, Fe content 0.0011% by weight, Si content 0.0011% by weight, Cu content 0. 0043 wt%, Mg content 0.0001 wt%, Cr content 0.0001 wt%), JIS standard aluminum alloy 1050 (Comparative Example 3), 1N30 (Comparative Example 4), 1100 (Comparative Example 5), 3004 Aluminum foil processed from (Comparative Example 6), 5052 (Comparative Example 7), 5182 (Comparative Example 8), and 6061 (Comparative Example 9) was used.

まず、これら各試料を、pH13に調整したアルカリ脱脂液(日本ペイント製サーフクリーナー420N−2)を用いて温度60℃にて30秒間アルカリ脱脂処理を行った。その後、伝導度1μS/cm以下で10〜35℃の水で水洗した。次いで、30重量%硝酸水溶液に1分間浸漬して酸処理を施した。更に、これを伝導度1μS/cm以下で10〜35℃の水で水洗し、30〜60℃で風乾して乾燥した。そして、これら試料を、pH13のアルカリ水溶液(LiOH水溶液)に浸漬し、試料表面に発泡が発生するまでの時間を測定した。結果を表2に示す。   First, each of these samples was subjected to an alkaline degreasing treatment for 30 seconds at a temperature of 60 ° C. using an alkaline degreasing solution (Nippon Paint Surf Cleaner 420N-2) adjusted to pH 13. Thereafter, it was washed with water having a conductivity of 1 μS / cm or less and 10 to 35 ° C. Subsequently, it was immersed in a 30% by weight nitric acid aqueous solution for 1 minute for acid treatment. Further, this was washed with water having a conductivity of 1 μS / cm or less at 10 to 35 ° C., air-dried at 30 to 60 ° C. and dried. Then, these samples were immersed in an alkaline aqueous solution (LiOH aqueous solution) having a pH of 13, and the time until foaming occurred on the sample surface was measured. The results are shown in Table 2.

Figure 0005142254
Figure 0005142254

表2から明らかなように、本発明で用いる高純度のアルミニウム箔は、高純度でない他のAl合金に比べて発泡するまでの時間が長いことが示された。このような本発明で用いる99.9重量%以上の高純度アルミニウム材では、形成される自然酸化皮膜の厚さが数nm程度の薄いものであっても、20秒以下の短時間であればアルカリ性に対して有効な耐性を発揮できることが判明した。   As is clear from Table 2, it was shown that the high-purity aluminum foil used in the present invention has a longer time to foam than other Al alloys not having high purity. In such a high-purity aluminum material of 99.9% by weight or more used in the present invention, even if the natural oxide film to be formed is as thin as several nanometers, it can be used for a short time of 20 seconds or less. It has been found that effective resistance against alkalinity can be exhibited.

このように、発泡が発生するまでの時間に差異が生じるのは、アルミニウム合金中に存在する晶析出物の量によるものと考えられる。すなわり、この晶析出物によってマトリクスとの界面に不連続部を生じさせて表面酸化皮膜に欠陥を発生させたり、マトリクスと局部電池を形成することにより、耐食性が低減するからである。そこで、上記実施例1、2及び比較例1、2において用いた表面処理を施していないアルミニウム箔試料(以下、「アルミニウム箔基材」と記す)に存在する晶析出物を観察した。   Thus, the difference in the time until foaming occurs is considered to be due to the amount of crystal precipitates present in the aluminum alloy. In other words, this crystal precipitate causes a discontinuous portion at the interface with the matrix to cause defects in the surface oxide film, or the formation of a matrix and a local battery reduces the corrosion resistance. Accordingly, the crystal precipitates present in the aluminum foil samples not subjected to the surface treatment used in Examples 1 and 2 and Comparative Examples 1 and 2 (hereinafter referred to as “aluminum foil base material”) were observed.

(1)SEMを使用し、反射電子像を撮影した。観察倍率1000倍で10視野を撮影した。撮影像を画像解析装置にて、化合物とマトリックスを二値化し、化合物の粒径と分布状態を調べた。実施例1及び2のアルミニウム箔基材では、平均粒径が0.08μm〜0.13μm、化合物面積率は0.5〜0.7%、比較例1及び2のアルミニウム箔基材では平均粒径が1.9μm〜2.0μm、化合物面積率は1.1〜1.2%であった。
(2)これらアルミニウム箔基材を熱フェノールに溶解しろ過後のフィルター残渣をフッ酸に溶解した。溶解物元素の濃度をICPによって求めた。上記フィルターには、孔径1μm及び0.1μmのものを使用した。実施例1及び2のアルミニウム箔基材では、Fe=0.3ppm、Si=0.6ppm、Cu=0.1ppmであった。比較例1及び2のアルミニウム箔基材では、Fe=140ppm、Si=13ppm、Cu=3ppmであった。
(1) A reflected electron image was taken using an SEM. Ten fields of view were photographed at an observation magnification of 1000 times. The photographed image was binarized from the compound and matrix using an image analyzer, and the particle size and distribution state of the compound were examined. In the aluminum foil base materials of Examples 1 and 2, the average particle size is 0.08 μm to 0.13 μm, the compound area ratio is 0.5 to 0.7%, and in the aluminum foil base materials of Comparative Examples 1 and 2, the average particle size is The diameter was 1.9 μm to 2.0 μm, and the compound area ratio was 1.1 to 1.2%.
(2) These aluminum foil base materials were dissolved in hot phenol, and the filter residue after filtration was dissolved in hydrofluoric acid. The concentration of dissolved element was determined by ICP. A filter having a pore size of 1 μm and 0.1 μm was used. In the aluminum foil base materials of Examples 1 and 2, Fe = 0.3 ppm, Si = 0.6 ppm, and Cu = 0.1 ppm. In the aluminum foil base materials of Comparative Examples 1 and 2, Fe = 140 ppm, Si = 13 ppm, and Cu = 3 ppm.

以上の結果により、本発明で用いる高純度のアルミニウム箔は、従来のアルミニウム合金からなるアルミニウム箔に比べて、晶析出物の粒径が小さく、かつ、分布領域も狭いことが判明した。更に、本発明で用いる高純度のアルミニウム箔は、従来のアルミニウム合金からなるアルミニウム箔に比べて、晶析出物となる不純物元素の含有量が少ないことが判明した。   From the above results, it was found that the high-purity aluminum foil used in the present invention has a crystal grain size smaller than that of a conventional aluminum foil made of an aluminum alloy and a narrow distribution region. Furthermore, it has been found that the high-purity aluminum foil used in the present invention has a lower content of impurity elements that become crystal precipitates than an aluminum foil made of a conventional aluminum alloy.

このように、本発明に用いる高純度アルミニウム材料には晶析出物となる不純物が極めて少量しか含有されていないので、酸化皮膜の欠陥発生が低減され、また、腐食の起点となる局部電池形成サイトが殆ど存在せず、酸化皮膜が破壊され難い。その結果、アルカリ溶解が開始するまでの猶予期間が長くなり、耐アルカリ性に優れるという有利な効果を奏する。   As described above, since the high-purity aluminum material used in the present invention contains a very small amount of impurities that become crystal precipitates, the generation of defects in the oxide film is reduced, and the local battery formation site that is the starting point of corrosion Is hardly present, and the oxide film is hardly broken. As a result, there is an advantageous effect that the grace period until alkali dissolution starts becomes longer and the alkali resistance is excellent.

本発明に係る正極板に用いるアルミニウム箔は耐アルカリ性に優れているので、水性正極活物質ペーストによる腐食反応を抑制できる。その結果、リチウムイオン電池の正極に求められる重要な物性の電極密度が密で優れたものとなる。本発明に係るリチウムイオン電池は、電池容量、内部抵抗、充放電リサイクル特性に優れる。   Since the aluminum foil used for the positive electrode plate according to the present invention is excellent in alkali resistance, the corrosion reaction due to the aqueous positive electrode active material paste can be suppressed. As a result, the electrode density of important physical properties required for the positive electrode of the lithium ion battery becomes dense and excellent. The lithium ion battery according to the present invention is excellent in battery capacity, internal resistance, and charge / discharge recycling characteristics.

図1は、本発明に係る正極板の断面図である。FIG. 1 is a cross-sectional view of a positive electrode plate according to the present invention. 図2は、本発明に係るリチウムイオン電池の内部を示す斜視図である。FIG. 2 is a perspective view showing the inside of the lithium ion battery according to the present invention. 図3は、正極合剤層に発生する水素ガスによって正極合剤層が膨潤する状態を示す説明図である。FIG. 3 is an explanatory diagram illustrating a state in which the positive electrode mixture layer swells due to hydrogen gas generated in the positive electrode mixture layer.

符号の説明Explanation of symbols

1‥‥‥正極板
2‥‥‥アルミニウム箔
3‥‥‥正極合剤層
4‥‥‥水素ガス
5‥‥‥リチウムイオン電池
6‥‥‥電解液(含浸状態)
7‥‥‥セパレータ
8‥‥‥正極板
9‥‥‥負極板
10‥‥‥正極端子
11‥‥‥負極端子
12‥‥‥安全弁
DESCRIPTION OF SYMBOLS 1 ......... Positive electrode plate 2 ..... Aluminum foil 3 ..... Positive electrode mixture layer 4 ....... Hydrogen gas 5 ....... Lithium ion battery 6 ........ Electrolyte (impregnation state)
7 ... Separator 8 ... Positive electrode plate 9 ... Negative electrode plate 10 ... Positive electrode terminal 11 ... Negative electrode terminal 12 ... Safety valve

Claims (6)

Al純度が99.9重量%以上で、Si、Fe、Cu、Mn、Mg、Zn、Ti、Cr、Zr及びVから成る群の1種以上を少なくとも不純物として含有し、前記不純物における各元素の含有量が0.03重量%未満であり、かつ、当該各元素の合計量が0.1重量%未満であるアルミニウム箔から成る集電体と;当該集電体の少なくとも一方の表面に設けられ、pH10以上の水性活物質ペーストから形成される正極合材層と;を備え
前記アルミニウム箔中に存在する晶析出物が、0.08〜0.13μmの平均粒径と0.5〜0.7%の面積率を有し、
前記アルミニウム箔が、アルカリ脱脂処理及び酸処理を含む表面処理によって形成される酸化皮膜を備えることを特徴とする耐アルカリ腐食性を備えるリチウムイオン電池の正極板。
Al purity is 99.9% by weight or more, and at least one of the group consisting of Si, Fe, Cu, Mn, Mg, Zn, Ti, Cr, Zr and V is contained as an impurity. A current collector made of an aluminum foil having a content of less than 0.03% by weight and a total amount of each element of less than 0.1% by weight; provided on at least one surface of the current collector A positive electrode mixture layer formed from an aqueous active material paste having a pH of 10 or more ,
Crystal precipitates present in the aluminum foil have an average particle size of 0.08 to 0.13 μm and an area ratio of 0.5 to 0.7%.
The aluminum foil, the positive electrode plate of a lithium-ion battery comprising the alkali resistance corrosion, characterized in Rukoto with the oxide film formed by surface treatment comprising an alkali degreasing treatment and acid treatment.
硝酸溶液、硫酸溶液又は塩酸溶液の酸溶液を用いて酸処理が施される、請求項1に記載の耐アルカリ腐食性を備えるリチウムイオン電池の正極板。 The positive electrode plate of a lithium ion battery having alkali-corrosion resistance according to claim 1, wherein the acid treatment is performed using an acid solution of a nitric acid solution, a sulfuric acid solution, or a hydrochloric acid solution . 請求項1又は2に記載の耐アルカリ腐食性を備えるリチウムイオン電池の正極板の製造方法であって、前記アルミニウム箔の少なくとも一方の表面を、アルカリ脱脂溶液を用いてアルカリ脱脂処理を施して水洗処理し、当該水洗処理したアルミニウム箔を、酸溶液を用いて酸処理を施して水洗処理し、当該水洗処理したアルミニウム箔を乾燥することにより、アルミニウム箔の前記少なくとも一方の表面に酸化皮膜を形成する工程と;酸化皮膜が形成されたアルミニウム箔の表面に、pH10以上の水性活物質ペーストを塗布し乾燥することによって正極合材層を形成する工程と;を含むことを特徴とする耐アルカリ腐食性を備えるリチウムイオン電池の正極板の製造方法。 It is a manufacturing method of the positive electrode plate of the lithium ion battery provided with the alkali corrosion resistance of Claim 1 or 2, Comprising: At least one surface of the said aluminum foil is subjected to an alkali degreasing process using an alkaline degreasing solution, and is washed with water The aluminum foil that has been treated and washed with water is subjected to an acid treatment using an acid solution and washed with water, and the washed aluminum foil is dried to form an oxide film on the at least one surface of the aluminum foil. process and that; alkali resistant, characterized in that it comprises a; on the front surface of the aluminum foil oxide film has been formed, forming a positive-electrode mixture layer by applying and drying the pH10 or more aqueous active material paste A method for producing a positive electrode plate of a lithium ion battery having corrosive properties . 前記酸溶液が、硝酸溶液、硫酸溶液又は塩酸溶液である、請求項3に記載の耐アルカリ腐食性を備えるリチウムイオン電池の正極板の製造方法。 The manufacturing method of the positive electrode plate of the lithium ion battery provided with the alkali corrosion resistance of Claim 3 whose said acid solution is a nitric acid solution, a sulfuric acid solution, or a hydrochloric acid solution . 前記アルカリ脱脂溶液のpHが12〜14で温度が50〜60℃であり、アルカリ脱脂処理時間が3〜30秒であり、前記酸溶液の濃度が10〜40重量%で温度が10〜35℃であり、酸処理時間が10秒〜1分である、請求項3又は4に記載の耐アルカリ腐食性を備えるリチウムイオン電池の正極板の製造方法。The pH of the alkaline degreasing solution is 12 to 14, the temperature is 50 to 60 ° C., the alkaline degreasing time is 3 to 30 seconds, the concentration of the acid solution is 10 to 40% by weight and the temperature is 10 to 35 ° C. The method for producing a positive electrode plate of a lithium ion battery having alkali corrosion resistance according to claim 3 or 4, wherein the acid treatment time is 10 seconds to 1 minute. 請求項1又は2に記載の正極板を備えるリチウムイオン電池。A lithium ion battery comprising the positive electrode plate according to claim 1.
JP2007168761A 2007-06-27 2007-06-27 Positive electrode plate of lithium ion battery, method for producing the same, and lithium ion battery using the same Expired - Fee Related JP5142254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007168761A JP5142254B2 (en) 2007-06-27 2007-06-27 Positive electrode plate of lithium ion battery, method for producing the same, and lithium ion battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007168761A JP5142254B2 (en) 2007-06-27 2007-06-27 Positive electrode plate of lithium ion battery, method for producing the same, and lithium ion battery using the same

Publications (2)

Publication Number Publication Date
JP2009009778A JP2009009778A (en) 2009-01-15
JP5142254B2 true JP5142254B2 (en) 2013-02-13

Family

ID=40324672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007168761A Expired - Fee Related JP5142254B2 (en) 2007-06-27 2007-06-27 Positive electrode plate of lithium ion battery, method for producing the same, and lithium ion battery using the same

Country Status (1)

Country Link
JP (1) JP5142254B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102971898B (en) * 2011-02-10 2015-10-07 昭和电工株式会社 Collector body
EP2724405B1 (en) 2011-06-21 2015-05-13 Hydro Aluminium Rolled Products GmbH Chemically treated current collector foil produced of aluminum or an aluminum alloy
JP6055814B2 (en) * 2012-03-29 2016-12-27 株式会社Uacj Aluminum alloy foil for electrode current collector and method for producing the same
JP5709024B2 (en) * 2012-12-17 2015-04-30 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery and current collector for secondary battery
KR20220075856A (en) * 2020-11-30 2022-06-08 삼성전자주식회사 Battery and electronic device including thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IN167995B (en) * 1985-07-26 1991-01-19 Alcan Int Ltd
JPH1197032A (en) * 1997-09-18 1999-04-09 Nippon Foil Mfg Co Ltd Current collector made of aluminum foil for secondary cell
JP3444769B2 (en) * 1997-11-25 2003-09-08 東洋アルミニウム株式会社 Aluminum foil for current collector and manufacturing method thereof, current collector, secondary battery and electric double layer capacitor
JP3959708B2 (en) * 2001-11-19 2007-08-15 株式会社デンソー Method for producing positive electrode for lithium battery and positive electrode for lithium battery
JP3933573B2 (en) * 2002-12-26 2007-06-20 東洋アルミニウム株式会社 Aluminum foil for current collector of lithium ion battery, current collector of lithium ion battery and lithium ion battery
JP2005259682A (en) * 2004-02-10 2005-09-22 Matsushita Electric Ind Co Ltd Collector for non-aqueous electrolyte secondary battery, electrode plate for non-aqueous electrolyte secondary battery comprising the same and method of manufacturing electrode plate for non-aqueous electrolyte secondary battery
JP2007018883A (en) * 2005-07-07 2007-01-25 Toshiba Corp Negative electrode active material, nonaqueous electrolyte battery and battery pack
JP4993258B2 (en) * 2006-03-16 2012-08-08 日本製箔株式会社 Aluminum foil for current collector of lithium ion battery and lithium ion battery using the same

Also Published As

Publication number Publication date
JP2009009778A (en) 2009-01-15

Similar Documents

Publication Publication Date Title
EP3121885B1 (en) Electrolytic copper foil, and collector, negative electrode, and lithium battery comprising same
JP5666839B2 (en) Negative electrode for secondary battery, negative electrode current collector, secondary battery, and production method thereof
JP3933573B2 (en) Aluminum foil for current collector of lithium ion battery, current collector of lithium ion battery and lithium ion battery
JP5696179B2 (en) Electrolytic copper foil for lithium ion secondary battery
JP4993258B2 (en) Aluminum foil for current collector of lithium ion battery and lithium ion battery using the same
JP6527219B2 (en) Electrodeposited copper foil having optimized peak roughness, electrode containing the same, secondary battery containing the same, and method of manufacturing the same
TWI516642B (en) Electrolytic copper foil and secondary battery with negative current collector
JP2008103132A (en) Aluminum foil for collector of lithium ion cell, and lithium ion cell using it
EP3121884B1 (en) Electrolytic copper foil, and collector, negative electrode, and lithium battery comprising same
EP2816645B1 (en) Energy storage device and energy storage module
EP3288101A1 (en) Electrolytic copper foil capable of improving capacity retention rate of secondary battery, electrode including the same, secondary battery including the same, and method of manufacturing the same
JP2010043333A (en) Aluminum foil for positive electrode collector
TWI596827B (en) Method for producing negative electrode material of lithium ion secondary cell and negative electrode material for lithium ion secondary cell
JP2005259682A (en) Collector for non-aqueous electrolyte secondary battery, electrode plate for non-aqueous electrolyte secondary battery comprising the same and method of manufacturing electrode plate for non-aqueous electrolyte secondary battery
JP5142254B2 (en) Positive electrode plate of lithium ion battery, method for producing the same, and lithium ion battery using the same
JP7008128B2 (en) Electrolyzed copper foil, its manufacturing method and cathode for high-capacity Li secondary batteries including it
JP2007087789A (en) Negative electrode for lithium ion secondary battery and its manufacturing method
JP2010027304A (en) Aluminum foil for positive current collector
JP2019502243A (en) Copper foil, manufacturing method thereof, electrode including the same, and secondary battery including the same
CN111225997B (en) Aluminum foil and aluminum member for electrode
JP6495009B2 (en) Secondary battery positive electrode, secondary battery, and method for producing secondary battery positive electrode
TWI684651B (en) Electrolytic copper foil, method for manufacturing the same, and anode for lithium secondary battery of high capacity
EP3978654A1 (en) Electrolytic copper foil of high strength, electrode comprising the same, secondary battery comprising the same, and method of manufacturing the same
JP2020030994A (en) Positive electrode current collector for lithium ion secondary battery and lithium ion secondary battery
KR102314065B1 (en) Method for manufacturing leaf-like CuO nanostructures using in-situ solution precipitation and their lithium ion battery application

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120910

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121114

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5142254

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees