WO2022044624A1 - Aluminum member for collectors, lithium ion capacitor, electric double layer capacitor, semi-solid battery, solid-state battery and secondary battery using nonaqueous electrolyte solution - Google Patents

Aluminum member for collectors, lithium ion capacitor, electric double layer capacitor, semi-solid battery, solid-state battery and secondary battery using nonaqueous electrolyte solution Download PDF

Info

Publication number
WO2022044624A1
WO2022044624A1 PCT/JP2021/027114 JP2021027114W WO2022044624A1 WO 2022044624 A1 WO2022044624 A1 WO 2022044624A1 JP 2021027114 W JP2021027114 W JP 2021027114W WO 2022044624 A1 WO2022044624 A1 WO 2022044624A1
Authority
WO
WIPO (PCT)
Prior art keywords
current collector
aluminum
oxide film
aluminum member
anodic oxide
Prior art date
Application number
PCT/JP2021/027114
Other languages
French (fr)
Japanese (ja)
Inventor
宏和 澤田
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN202180051856.XA priority Critical patent/CN116097478A/en
Priority to JP2022545540A priority patent/JPWO2022044624A1/ja
Publication of WO2022044624A1 publication Critical patent/WO2022044624A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/68Current collectors characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/70Current collectors characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

The present invention addresses the problem of providing: an aluminum member for collectors, said aluminum member exhibiting high adhesion to an electrode material, while having low contact resistance with respect to the electrode material; a lithium ion capacitor; an electric double layer capacitor; a semi-solid battery; a solid-state battery; and a secondary battery which uses a nonaqueous electrolyte solution. An aluminum member for collectors, said aluminum member comprising an aluminum substrate and an anodic oxide coating on the aluminum substrate. With respect to this aluminum member for collectors, the anodic oxide coating has a plurality of micropores; the anodic oxide coating is present on the aluminum substrate in the form of an island; the coverage of the aluminum substrate surface by the anodic oxide coating is from 1% to 80%; and the number density of the micropores in the anodic oxide coating is 600/μm2 or more.

Description

集電体用アルミニウム部材、ならびに、リチウムイオンキャパシタ、電気二重層キャパシタ、半固体電池、固体電池、および、非水電解液を使用する二次電池Aluminum members for collectors, as well as secondary batteries that use lithium ion capacitors, electric double layer capacitors, semi-solid-state batteries, solid-state batteries, and non-aqueous electrolytes.
 本発明は、集電体用アルミニウム部材、ならびに、この集電体用アルミニウム部材を有するリチウムイオンキャパシタ、電気二重層キャパシタ、半固体電池、固体電池、および、非水電解液を使用する二次電池に関する。 The present invention comprises an aluminum member for a current collector, a lithium ion capacitor having the aluminum member for the current collector, an electric double layer capacitor, a semi-solid battery, a solid battery, and a secondary battery using a non-aqueous electrolyte solution. Regarding.
 近年、パーソナルコンピュータ、携帯電話等のポータブル機器、ハイブリッド自動車、および、電気自動車等の開発に伴い、その電源としての蓄電デバイス、特に、リチウムイオンキャパシタ、リチウムイオン二次電池、および、電気二重層キャパシタ等の需要が増大している。 In recent years, with the development of portable devices such as personal computers and mobile phones, hybrid vehicles, and electric vehicles, storage devices as power sources thereof, particularly lithium ion capacitors, lithium ion secondary batteries, and electric double layer capacitors. The demand for such equipment is increasing.
 このような蓄電デバイスの正極および/または負極に用いられる電極用集電体(以下、単に「集電体」という。)としては、アルミニウム板を用いることができることが知られている。また、このアルミニウム板からなる集電体の表面に、電極材料として活物質や活性炭などを塗布し、正極または負極の電極として用いることができることも知られている。 It is known that an aluminum plate can be used as an electrode current collector (hereinafter, simply referred to as "current collector") used for a positive electrode and / or a negative electrode of such a power storage device. It is also known that an active material, activated carbon, or the like can be coated on the surface of a current collector made of an aluminum plate as an electrode material and used as an electrode for a positive electrode or a negative electrode.
 例えば、特許文献1には、厚み方向に複数の貫通孔を有するアルミニウム基材を有するアルミニウム板の製造方法であって、厚さ5~1000μmのアルミニウム基材の表面に酸化膜形成処理を施し、酸化膜を形成する酸化膜形成工程と、酸化膜形成工程の後に、電気化学的溶解処理を施し、貫通孔を形成する貫通孔形成工程を有する、アルミニウム板の製造方法が記載されている。 For example, Patent Document 1 is a method for manufacturing an aluminum plate having an aluminum base material having a plurality of through holes in the thickness direction, wherein an oxide film forming treatment is applied to the surface of the aluminum base material having a thickness of 5 to 1000 μm. A method for producing an aluminum plate is described, which comprises an oxide film forming step of forming an oxide film and a through hole forming step of subjecting an electrochemical dissolution treatment to form a through hole after the oxide film forming step.
 特許文献2には、厚み方向に貫通する複数の貫通孔を有するアルミニウム板において、
貫通孔の平均開口径が1μm~100μmであり、貫通孔の密度が50個/mm2~2000個/mm2であり、隣接する貫通孔の孔間距離が300μm以下であるアルミニウム板が記載されている。
Patent Document 2 describes in an aluminum plate having a plurality of through holes penetrating in the thickness direction.
An aluminum plate having an average opening diameter of 1 μm to 100 μm, a density of through holes of 50 pieces / mm 2 to 2000 pieces / mm 2 , and a distance between adjacent through holes of 300 μm or less is described. ing.
 特許文献3には、表面に平均ピット径:0.05~0.10μmの範囲内のピットが平均密度:100~500個/μm2で形成されているリチウムイオン二次電池の集電体膜用アルミニウム箔が記載されている。 Patent Document 3 describes a collector film of a lithium ion secondary battery in which pits having an average pit diameter in the range of 0.05 to 0.10 μm are formed on the surface having an average density of 100 to 500 pieces / μm 2 . Aluminum foil is listed.
 特許文献4には、表面に厚さ5~1000nmのバリア型の陽極酸化皮膜が形成されているリチウムイオン電池の集電体用アルミニウム箔が記載されている。 Patent Document 4 describes an aluminum foil for a current collector of a lithium ion battery in which a barrier-type anodic oxide film having a thickness of 5 to 1000 nm is formed on the surface.
国際公開第2015/115531号International Publication No. 2015/115531 国際公開第2016/051976号International Publication No. 2016/05/1976 特開2000-113892号公報Japanese Unexamined Patent Publication No. 2000-113892 特開2007-250376号公報Japanese Unexamined Patent Publication No. 2007-250376
 集電体は、電極材料との密着性が高いこと、および、電極材料との接触抵抗が小さいことが望ましい。電極材料との密着性を向上させるため、特許文献1~3には、アルミニウム板を粗面化することが記載されている。しかしながら、十分な密着効果と接触抵抗の低減とを両立することは困難であった。また、粗面化処理のコストに対して十分な効果が得られず、実用化されることはほとんどなかった。 It is desirable that the current collector has high adhesion to the electrode material and has low contact resistance with the electrode material. In order to improve the adhesion to the electrode material, Patent Documents 1 to 3 describe roughening the aluminum plate. However, it has been difficult to achieve both a sufficient adhesion effect and a reduction in contact resistance. In addition, a sufficient effect on the cost of the roughening treatment was not obtained, and it was rarely put into practical use.
 また、特許文献4では、アルミニウム箔の表面に、微細なポアを有する陽極酸化皮膜を形成することで、密着性が向上することが記載されている。しかしながら、陽極酸化皮膜は導電性が劣るため、表面に陽極酸化皮膜を有すると電極材料との接触抵抗が大きくなってしまうという問題があった。 Further, Patent Document 4 describes that the adhesion is improved by forming an anodic oxide film having fine pores on the surface of the aluminum foil. However, since the anodic oxide film is inferior in conductivity, there is a problem that the contact resistance with the electrode material increases when the anodic oxide film is provided on the surface.
 そこで、本発明は、電極材料との密着性が高く、かつ、電極材料との接触抵抗が小さい集電体用アルミニウム部材、ならびに、リチウムイオンキャパシタ、電気二重層キャパシタ、半固体電池、固体電池、および、非水電解液を使用する二次電池を提供することを課題とする。 Therefore, the present invention relates to an aluminum member for a current collector having high adhesion to the electrode material and low contact resistance to the electrode material, as well as a lithium ion capacitor, an electric double layer capacitor, a semi-solid battery, and a solid battery. Another object of the present invention is to provide a secondary battery using a non-aqueous electrolyte solution.
 本発明は、以下の構成によって課題を解決する。 The present invention solves the problem by the following configuration.
 [1] アルミニウム基材およびアルミニウム基材上の陽極酸化皮膜を有する集電体用アルミニウム部材であって、
 陽極酸化皮膜は、多数の微細孔を有し、
 アルミニウム基材の少なくとも一方の表面における、陽極酸化皮膜の被覆率が1~80%であり、
 陽極酸化皮膜が有する微細孔の数密度が600個/μm2以上である集電体用アルミニウム部材。
 [2] 陽極酸化皮膜は、アルミニウム基材上に島状に存在する、[1]に記載の集電体用アルミニウム部材。
 [3] 微細孔の平均径が1nm~100nmである、[1]または[2]に記載の集電体用アルミニウム部材。
 [4] 陽極酸化皮膜の厚みが1nm~30nmである、[1]~[3]のいずれかに記載の集電体用アルミニウム部材。
 [5] アルミニウム基材が、表面に粒状の金属間化合物を有する、[1]~[4]のいずれかに記載の集電体用アルミニウム部材。
 [6] 粒状の金属間化合物をアルミニウム基材の表面が、500個/mm2以上有する、[5]に記載の集電体用アルミニウム部材。
 [7] アルミニウム基材の厚さが、5μm~100μmである、[1]~[6]のいずれかに記載の集電体用アルミニウム部材。
 [8] 集電体用アルミニウム部材が板状である、[1]~[7]のいずれかに記載の集電体用アルミニウム部材。
 [9] [1]~[8]のいずれかに記載の集電体用アルミニウム部材を有するリチウムイオンキャパシタ。
 [10] [1]~[8]のいずれかに記載の集電体用アルミニウム部材を有する電気二重層キャパシタ。
 [11] [1]~[8]のいずれかに記載の集電体用アルミニウム部材を有する半固体電池。
 [12] [1]~[8]のいずれかに記載の集電体用アルミニウム部材を有する固体電池。
 [13] [1]~[8]のいずれかに記載の集電体用アルミニウム部材を有する、非水電解液を使用する二次電池。
[1] An aluminum member for a current collector having an aluminum base material and an anodic oxide film on the aluminum base material.
The anodic oxide film has a large number of micropores and has a large number of micropores.
The coverage of the anodic oxide film on at least one surface of the aluminum substrate is 1-80%.
An aluminum member for a current collector having a number density of 600 micropores / μm 2 or more in the anodic oxide film.
[2] The aluminum member for a current collector according to [1], wherein the anodic oxide film exists in an island shape on an aluminum base material.
[3] The aluminum member for a current collector according to [1] or [2], wherein the average diameter of the micropores is 1 nm to 100 nm.
[4] The aluminum member for a current collector according to any one of [1] to [3], wherein the anodic oxide film has a thickness of 1 nm to 30 nm.
[5] The aluminum member for a current collector according to any one of [1] to [4], wherein the aluminum base material has a granular intermetallic compound on the surface.
[6] The aluminum member for a current collector according to [5], wherein the surface of the aluminum base material has 500 pieces / mm 2 or more of granular intermetallic compounds.
[7] The aluminum member for a current collector according to any one of [1] to [6], wherein the thickness of the aluminum base material is 5 μm to 100 μm.
[8] The aluminum member for a current collector according to any one of [1] to [7], wherein the aluminum member for the current collector is plate-shaped.
[9] The lithium ion capacitor having the aluminum member for a current collector according to any one of [1] to [8].
[10] The electric double layer capacitor having the aluminum member for a current collector according to any one of [1] to [8].
[11] A semi-solid-state battery having the aluminum member for a current collector according to any one of [1] to [8].
[12] A solid-state battery having the aluminum member for a current collector according to any one of [1] to [8].
[13] A secondary battery using a non-aqueous electrolytic solution having the aluminum member for a current collector according to any one of [1] to [8].
 本発明によれば、電極材料との密着性が高く、かつ、電極材料との接触抵抗が小さい集電体用アルミニウム部材、ならびに、リチウムイオンキャパシタ、電気二重層キャパシタ、半固体電池、固体電池、および、非水電解液を使用する二次電池を提供することができる。 According to the present invention, an aluminum member for a collector having high adhesion to an electrode material and a small contact resistance with the electrode material, a lithium ion capacitor, an electric double layer capacitor, a semi-solid battery, a solid battery, and the like. And a secondary battery using a non-aqueous electrolyte can be provided.
本発明の集電体用アルミニウム部材の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the aluminum member for a current collector of this invention. 図1に示す集電体用アルミニウム部材の上面図である。It is a top view of the aluminum member for a current collector shown in FIG. 1. 本発明の集電体用アルミニウム部材の他の一例を模式的に示す断面図である。It is sectional drawing which shows typically another example of the aluminum member for a current collector of this invention. 本発明の集電体用アルミニウム部材の好適な製造方法の一例を説明するための模式的な断面図である。It is a schematic sectional drawing for demonstrating an example of the preferable manufacturing method of the aluminum member for a current collector of this invention. 本発明の集電体用アルミニウム部材の好適な製造方法の一例を説明するための模式的な断面図である。It is a schematic sectional drawing for demonstrating an example of the preferable manufacturing method of the aluminum member for a current collector of this invention. 本発明の集電体用アルミニウム部材の好適な製造方法の一例を説明するための模式的な断面図である。It is a schematic sectional drawing for demonstrating an example of the preferable manufacturing method of the aluminum member for a current collector of this invention. 本発明の集電体用アルミニウム部材の好適な製造方法の他の一例を説明するための模式的な断面図である。It is a schematic sectional drawing for demonstrating another example of the preferable manufacturing method of the aluminum member for a current collector of this invention. 本発明の集電体用アルミニウム部材の好適な製造方法の他の一例を説明するための模式的な断面図である。It is a schematic sectional drawing for demonstrating another example of the preferable manufacturing method of the aluminum member for a current collector of this invention. 本発明の集電体用アルミニウム部材の好適な製造方法を実施する製造装置の一例を説明するための概念図である。It is a conceptual diagram for demonstrating an example of the manufacturing apparatus which carries out the preferable manufacturing method of the aluminum member for a current collector of this invention. 実施例の集電体用アルミニウム部材のSEM画像である。It is an SEM image of the aluminum member for a current collector of an Example. 実施例の集電体用アルミニウム部材のSEM画像の部分拡大図である。It is a partially enlarged view of the SEM image of the aluminum member for a current collector of an Example. 比較例の集電体用アルミニウム部材のSEM画像の部分拡大図である。It is a partially enlarged view of the SEM image of the aluminum member for a current collector of a comparative example. 剥離強度の測定を行う測定装置を模式的に示す図である。It is a figure which shows typically the measuring apparatus which performs the measurement of the peel strength. 抵抗の測定を行う装置を模式的に示す図である。It is a figure which shows typically the apparatus which performs the resistance measurement.
 以下、本発明について詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
Hereinafter, the present invention will be described in detail.
The description of the constituent elements described below may be based on the representative embodiments of the present invention, but the present invention is not limited to such embodiments.
In the present specification, the numerical range represented by using "-" means a range including the numerical values before and after "-" as the lower limit value and the upper limit value.
[集電体用アルミニウム部材]
 本発明の集電体用アルミニウム部材は、
 アルミニウム基板およびアルミニウム基板上の陽極酸化皮膜を有する集電体用アルミニウム部材であって、
 陽極酸化皮膜は、多数の微細孔を有し、
 アルミニウム基材の少なくとも一方の表面における、陽極酸化皮膜の被覆率が1~80%であり、
 陽極酸化皮膜が有する微細孔の数密度が600個/μm2以上である集電体用アルミニウム部材である。
[Aluminum member for current collector]
The aluminum member for a current collector of the present invention is
An aluminum member for a current collector having an aluminum substrate and an anodic oxide film on the aluminum substrate.
The anodic oxide film has a large number of micropores and has a large number of micropores.
The coverage of the anodic oxide film on at least one surface of the aluminum substrate is 1-80%.
It is an aluminum member for a current collector having a number density of 600 micropores / μm 2 or more in the anodic oxide film.
 本発明の集電体用アルミニウム部材の構成について、図1および図2を用いて説明する。 The configuration of the aluminum member for a current collector of the present invention will be described with reference to FIGS. 1 and 2.
 図1は、本発明の集電体用アルミニウム部材の好適な実施態様の一例を示す模式的な断面図である。図2は、図1に示す集電体用アルミニウム部材の上面図である。なお、図2は、後述する実施例における集電体用アルミニウム部材の表面を走査型電子顕微鏡(SEM)で観察した画像において、アルミニウム基材と陽極酸化皮膜との輪郭線を描いた図である。
 図1および図2に示すように、集電体用アルミニウム部材10は、アルミニウム基材1の両主面それぞれに島状に存在する陽極酸化皮膜(以下、島状の陽極酸化皮膜ともいう)14が形成されている。なお、主面とは、板状(シート状)の部材における最大面である。
FIG. 1 is a schematic cross-sectional view showing an example of a preferred embodiment of the aluminum member for a current collector of the present invention. FIG. 2 is a top view of the aluminum member for a current collector shown in FIG. Note that FIG. 2 is a diagram depicting contour lines between the aluminum base material and the anodic oxide film in an image obtained by observing the surface of the aluminum member for a current collector in an embodiment described later with a scanning electron microscope (SEM). ..
As shown in FIGS. 1 and 2, the current collector aluminum member 10 has an island-shaped anodic oxide film (hereinafter, also referred to as an island-shaped anodic oxide film) 14 existing on both main surfaces of the aluminum base material 1. Is formed. The main surface is the maximum surface of a plate-shaped (sheet-shaped) member.
 島状の陽極酸化皮膜14は、陽極酸化処理によって形成された、酸化アルミニウム(Al23)等のアルミニウム酸化物を含有するアルミニウム酸化皮膜である。 The island-shaped anodized film 14 is an aluminum oxide film containing an aluminum oxide such as aluminum oxide (Al 2 O 3 ) formed by anodizing treatment.
 本発明において、島状の陽極酸化皮膜14は、後述する図11に示す実施例のSEM(走査型電子顕微鏡)画像に示すように、多数の微細孔(ポア)を有している。この微細孔の数密度は600個/μm2以上である。また、陽極酸化皮膜14は、アルミニウム基材1上に島状に存在している。ここで、島状に存在するとは、一様な層ではなく、図2に示すように無数に分割された不定形な構造をいう。陽極酸化皮膜の被覆率が高い場合は、陽極酸化皮膜が無い部分が無数に分割された不定形な構造となる。また、アルミニウム基材1の表面における、島状の陽極酸化皮膜14による被覆率は、1~80%である。 In the present invention, the island-shaped anodized film 14 has a large number of micropores (pores) as shown in the SEM (scanning electron microscope) image of the example shown in FIG. 11 described later. The number density of these micropores is 600 / μm 2 or more. Further, the anodic oxide film 14 exists in an island shape on the aluminum base material 1. Here, "island-like" means not a uniform layer but an irregular structure divided into innumerable pieces as shown in FIG. When the coverage of the anodic oxide film is high, the portion without the anodic oxide film is innumerably divided into an amorphous structure. The coverage of the island-shaped anodic oxide film 14 on the surface of the aluminum base material 1 is 1 to 80%.
 本発明の集電体用アルミニウム部材は、集電体として用いられ、表面に活物質(電極材料)を塗布されて蓄電デバイスの正極または負極として用いられる。 The aluminum member for a current collector of the present invention is used as a current collector, and an active material (electrode material) is coated on the surface thereof to be used as a positive electrode or a negative electrode of a power storage device.
 前述のとおり、集電体は、電極材料との密着性が高いこと、および、電極材料との接触抵抗が小さいことが望まれる。しかしながら、電極材料との密着性を向上させるため、アルミニウム基材の表面を粗面化しても、十分な密着効果が得られず、密着性と低抵抗とを両立することができなかった。
 また、アルミニウム基材の表面に、微細なポアを有する陽極酸化皮膜を形成することで、密着性を向上することが提案されているが、陽極酸化皮膜は導電性が劣るため、表面に陽極酸化皮膜を有すると電極材料との接触抵抗が大きくなってしまい、密着性と低抵抗とを両立することができなかった。
As described above, it is desired that the current collector has high adhesion to the electrode material and low contact resistance with the electrode material. However, in order to improve the adhesion to the electrode material, even if the surface of the aluminum base material is roughened, a sufficient adhesion effect cannot be obtained, and both adhesion and low resistance cannot be achieved at the same time.
Further, it has been proposed to improve the adhesion by forming an anodic oxide film having fine pores on the surface of the aluminum base material. However, since the anodic oxide film has poor conductivity, anodic oxidation is performed on the surface. Having a film increases the contact resistance with the electrode material, making it impossible to achieve both adhesion and low resistance.
 これに対して、本発明の集電体用アルミニウム部材は、アルミニウム基材1上に陽極酸化皮膜14を島状に有する。アルミニウム基材1が、数密度が600個/μm2以上の微細孔を有する陽極酸化皮膜14で覆われた部分では、電極材料との密着性を向上できる。一方、アルミニウム基材1が陽極酸化皮膜14で覆われていない部分では、電極材料との接触抵抗を小さくすることができる。アルミニウム基材1の表面における、島状の陽極酸化皮膜14による被覆率を1~80%とすることで、電極材料との密着性と低抵抗とを両立することができる。 On the other hand, the aluminum member for a current collector of the present invention has an anodic oxide film 14 in an island shape on the aluminum base material 1. In the portion where the aluminum base material 1 is covered with the anodic oxide film 14 having micropores having a number density of 600 pieces / μm 2 or more, the adhesion to the electrode material can be improved. On the other hand, in the portion where the aluminum base material 1 is not covered with the anodic oxide film 14, the contact resistance with the electrode material can be reduced. By setting the coverage of the island-shaped anodic oxide film 14 on the surface of the aluminum base material 1 to 1 to 80%, it is possible to achieve both adhesion to the electrode material and low resistance.
 ここで、電極材料との密着性および低抵抗の両立の観点から、アルミニウム基材1の表面における、島状の陽極酸化皮膜14による被覆率は、1~65%が好ましく、3~50%がより好ましく、3~30%がさらに好ましい。 Here, from the viewpoint of achieving both adhesion to the electrode material and low resistance, the coverage of the surface of the aluminum base material 1 by the island-shaped anodic oxide film 14 is preferably 1 to 65%, preferably 3 to 50%. More preferably, 3 to 30% is even more preferable.
 なお、アルミニウム基材1の表面における、島状の陽極酸化皮膜14による被覆率は、以下のようにして測定される。
 集電体用アルミニウム部材の表面を、SEMを用いて10000倍で撮影し、画像解析ソフトで陽極酸化皮膜の部分とアルミニウム基材の部分とを二値化し、陽極酸化皮膜の面積率を求める。画像解析ソフトは一般的なものが使用でき、例えば、ImageJ、イメージファクトリーなどが使用できる。後述する図2は実施例で作製した集電体用アルミニウム部材のSEM写真であり、図2は、ImageJを使用して求めた輪郭線図である。
The coverage of the island-shaped anodic oxide film 14 on the surface of the aluminum base material 1 is measured as follows.
The surface of the aluminum member for the current collector is photographed at 10000 times using SEM, the anodic oxide film portion and the aluminum base material portion are binarized with image analysis software, and the area ratio of the anodic oxide film is obtained. General image analysis software can be used, for example, ImageJ, image factory, etc. can be used. FIG. 2 to be described later is an SEM photograph of the aluminum member for a current collector produced in the examples, and FIG. 2 is a contour diagram obtained by using ImageJ.
 なお、集電体用アルミニウム部材が貫通孔を有する場合には、貫通孔を除いた、アルミニウム基材の表面における陽極酸化皮膜の面積率を被覆率とする。 When the current collector aluminum member has through holes, the area ratio of the anodic oxide film on the surface of the aluminum base material excluding the through holes is used as the coverage ratio.
 また、電極材料との密着性の観点から、陽極酸化皮膜14が有する微細孔の数密度は600~1100個/μm2が好ましく、800~1100個/μm2がより好ましく、900~1100個/μm2がさらに好ましい。 Further, from the viewpoint of adhesion to the electrode material, the number density of the micropores of the anodic oxide film 14 is preferably 600 to 1100 / μm 2 , more preferably 800 to 1100 / μm 2 , and 900 to 1100 / μm 2. μm 2 is more preferred.
 また、電極材料との密着性の観点から、陽極酸化皮膜14が有する微細孔の平均径は、1nm~100nmが好ましく、10nm~30nmがより好ましく、20nm~30nmがさらに好ましい。 Further, from the viewpoint of adhesion to the electrode material, the average diameter of the fine pores of the anodic oxide film 14 is preferably 1 nm to 100 nm, more preferably 10 nm to 30 nm, and even more preferably 20 nm to 30 nm.
 なお、陽極酸化皮膜14が有する微細孔の数密度および平均径は、以下のようにして測定される。
 集電体用アルミニウム部材の表面を、SEMを用いて50000倍で撮影することで、微細孔の有無を判断できる。微細孔がある場合には、陽極酸化皮膜の面積内に、微細孔が何個あるかを画像解析ソフトで測定し、陽極酸化皮膜の単位面積あたりの個数、つまり陽極酸化皮膜の面積1μm2あたりの微細孔の個数を求めることができる。また、平均径は、陽極酸化皮膜の面積内に存在する微細孔の径を測定して平均して求めることができる。
The number density and average diameter of the fine pores of the anodic oxide film 14 are measured as follows.
The presence or absence of micropores can be determined by photographing the surface of the aluminum member for a current collector at a magnification of 50,000 using an SEM. If there are micropores, measure how many micropores are in the area of the anodized film with image analysis software, and measure the number of micropores per unit area of the anodized film, that is, per 1 μm 2 of the area of the anodized film. The number of micropores can be obtained. Further, the average diameter can be obtained by measuring the diameters of the micropores existing in the area of the anodic oxide film and averaging them.
 また、電極材料との接触抵抗を低減する観点から、陽極酸化皮膜14の厚みは、1nm~30nmが好ましく、5nm~30nmがより好ましく、10nm~30nmがさらに好ましい。 Further, from the viewpoint of reducing the contact resistance with the electrode material, the thickness of the anodic oxide film 14 is preferably 1 nm to 30 nm, more preferably 5 nm to 30 nm, and even more preferably 10 nm to 30 nm.
 なお、陽極酸化皮膜14の厚みは、以下のようにして測定される。
 SEMで観察試料を75度傾斜させて取り付け可能な試料台を使い、集電体用アルミニウム部材の表面を50000倍で撮影した写真の、陽極酸化皮膜の部分とアルミニウム基材の部分の境界から、陽極酸化皮膜の厚みを求めることができる。
The thickness of the anodic oxide film 14 is measured as follows.
From the boundary between the anodic oxide film part and the aluminum base material part in the photograph of the surface of the aluminum member for the current collector taken at 50,000 times using a sample table that can be attached by tilting the observation sample by 75 degrees with SEM. The thickness of the anodic oxide film can be determined.
 ここで、図1に示す例においては、陽極酸化皮膜14は、アルミニウム基材1の両主面に形成される構成としたが、これに限定はされず、一方の主面のみに形成される構成であってもよい。 Here, in the example shown in FIG. 1, the anodic oxide film 14 is configured to be formed on both main surfaces of the aluminum base material 1, but is not limited to this, and is formed only on one main surface. It may be configured.
 また、本発明の集電体用アルミニウム部材において、アルミニウム基材の、陽極酸化皮膜で覆われていない部分は、自然酸化皮膜で覆われていてもよい。自然酸化皮膜は、陽極酸化皮膜に比べて、電極材料との接触抵抗が小さい。そのため、アルミニウム基材の、陽極酸化皮膜で覆われていない部分が自然酸化皮膜で覆われた構成でも電極材料との密着性および低抵抗を両立することが可能である。
 なお、自然酸化皮膜は、基本的に多数の微細孔を有さない。そのため、SEMを用いて微細孔の有無を観察することで、陽極酸化皮膜か自然酸化皮膜かを判断できる。
Further, in the aluminum member for a current collector of the present invention, the portion of the aluminum base material that is not covered with the anodic oxide film may be covered with the natural oxide film. The natural oxide film has a smaller contact resistance with the electrode material than the anodic oxide film. Therefore, even if the portion of the aluminum base material that is not covered with the anodic oxide film is covered with the natural oxide film, it is possible to achieve both adhesion to the electrode material and low resistance.
The natural oxide film basically does not have a large number of micropores. Therefore, by observing the presence or absence of micropores using SEM, it is possible to determine whether it is an anodic oxide film or a natural oxide film.
 また、電極材料との接触抵抗を低減する観点から、自然酸化皮膜の厚みは、10nm以下が好ましく、1nm~5nmがより好ましく、1nm~3nmがさらに好ましい。 Further, from the viewpoint of reducing the contact resistance with the electrode material, the thickness of the natural oxide film is preferably 10 nm or less, more preferably 1 nm to 5 nm, still more preferably 1 nm to 3 nm.
 本発明の集電体用アルミニウム部材は、貫通孔を有していてもよい。
 図3に本発明の集電体用アルミニウム部材の他の一例を模式的に示す断面図を示す。
 図3に示す集電体用アルミニウム部材10bは、貫通孔5を有するアルミニウム基材3の両主面それぞれに島状に存在する陽極酸化皮膜14が形成されている。
The aluminum member for a current collector of the present invention may have a through hole.
FIG. 3 shows a cross-sectional view schematically showing another example of the aluminum member for a current collector of the present invention.
In the aluminum member 10b for a current collector shown in FIG. 3, an anodic oxide film 14 existing in an island shape is formed on both main surfaces of an aluminum base material 3 having a through hole 5.
 貫通孔5は、アルミニウム基材3ならびに陽極酸化皮膜14を厚さ方向に貫通する貫通孔である。 The through hole 5 is a through hole that penetrates the aluminum base material 3 and the anodic oxide film 14 in the thickness direction.
 集電体用アルミニウム部材が、厚み方向に貫通する複数の貫通孔を有することで、集電体として用いる場合に、リチウムイオンの移動を容易にすることができる。また、多数の貫通孔を有することで、活物質との密着性を向上することができる。 Since the aluminum member for the current collector has a plurality of through holes penetrating in the thickness direction, it is possible to facilitate the movement of lithium ions when used as a current collector. Further, by having a large number of through holes, it is possible to improve the adhesion with the active material.
 貫通孔の平均開口径は、0.1μm以上100μm未満であることが好ましく、1μm超80μm以下がより好ましく、3μm超40μm以下がさらに好ましく、5μm以上30μm以下が特に好ましい。
 貫通孔の平均開口径を上記範囲とすることで、集電体用アルミニウム部材に活物質等を塗布する際に抜け等が発生するのを防止でき、また、塗布した活物質との密着性を向上できる。また、集電体用アルミニウム部材が多数の貫通孔を有するものとした場合でも、十分な引張強度を有するものとすることができる。
The average opening diameter of the through hole is preferably 0.1 μm or more and less than 100 μm, more preferably more than 1 μm and 80 μm or less, further preferably more than 3 μm and 40 μm or less, and particularly preferably 5 μm or more and 30 μm or less.
By setting the average opening diameter of the through hole to the above range, it is possible to prevent the active material from coming off when the active material or the like is applied to the aluminum member for the current collector, and the adhesion with the applied active material can be improved. Can be improved. Further, even when the current collector aluminum member has a large number of through holes, it can have sufficient tensile strength.
 なお、貫通孔の平均開口径は、以下のようにして測定される。
 集電体用アルミニウム部材の一方の面から、平行光を照射し、透過式の光学顕微鏡で貫通孔を倍率200倍で撮影する。得られたデータを画像解析ソフトで2値化し、貫通孔部の円相当径の平均値を平均開口径とする。
The average opening diameter of the through hole is measured as follows.
Parallel light is irradiated from one surface of the aluminum member for the current collector, and the through hole is photographed with a transmission type optical microscope at a magnification of 200 times. The obtained data is binarized with image analysis software, and the average value of the circle-equivalent diameters of the through holes is defined as the average opening diameter.
 また、貫通孔の平均開口率は、0.5%~30%であるのが好ましく、1%~30%がより好ましく、2%~20%がさらに好ましく、3%~10%が特に好ましい。
 貫通孔の平均開口率を上記範囲とすることで、集電体用アルミニウム部材に活物質を塗布する際に抜け等が発生するのを防止でき、また、塗布した活物質との密着性を向上できる。また、集電体用アルミニウム部材が多数の貫通孔を有するものとした場合でも、十分な引張強度を有するものとすることができる。
The average aperture ratio of the through holes is preferably 0.5% to 30%, more preferably 1% to 30%, further preferably 2% to 20%, and particularly preferably 3% to 10%.
By setting the average aperture ratio of the through holes to the above range, it is possible to prevent the active material from coming off when the active material is applied to the aluminum member for the current collector, and the adhesion with the applied active material is improved. can. Further, even when the current collector aluminum member has a large number of through holes, it can have sufficient tensile strength.
 なお、貫通孔の平均開口率は、以下のようにして測定される。
 集電体用アルミニウム部材の一方の面から、平行光を照射し、透過式の光学顕微鏡で貫通孔を倍率200倍で撮影する。得られたデータを画像解析ソフトで2値化し、開口部面積の総和/観察面積×100(%)として算出する。
The average aperture ratio of the through hole is measured as follows.
Parallel light is irradiated from one surface of the aluminum member for the current collector, and the through hole is photographed with a transmission type optical microscope at a magnification of 200 times. The obtained data is binarized by image analysis software and calculated as the total opening area / observation area × 100 (%).
 また、集電体用アルミニウム部材は、表面に粗面化を行ってもよい。粗面を有することにより、アルミニウム基材、陽極酸化皮膜部共に、表面積が増加し、活物質層と密着する面積が増加することで、密着性がより向上する。 Further, the surface of the current collector aluminum member may be roughened. By having a rough surface, the surface area of both the aluminum base material and the anodic oxide film portion is increased, and the area in contact with the active material layer is increased, so that the adhesion is further improved.
 ここで、本発明において、アルミニウム基材は、その表面に、膜中に分散された粒状の金属間化合物を多数有することが好ましい。なお、以下の説明では、粒状の金属間化合物を単に「金属間化合物」ともいう。
 陽極酸化皮膜は、アルミニウム基材に比べて絶縁性が高い。また、自然酸化皮膜は陽極酸化皮膜に比べ絶縁性は低いものの、アルミニウム金属単体に比べると抵抗が大きい。なお、以下の説明では、陽極酸化皮膜と自然酸化皮膜とをまとめて酸化膜ともいう。これに対して、アルミニウム基材が金属間化合物を有すると、その表面に形成される酸化膜にも金属間化合物が含有される。金属間化合物は、酸化膜において絶縁性を低下させる起点となることがわかった。絶縁性を低下させる起点となる金属間化合物を有することで、酸化膜の絶縁性を低下させて、酸化膜の接触抵抗を低下させることができる。
Here, in the present invention, it is preferable that the aluminum base material has a large number of granular intermetallic compounds dispersed in the film on its surface. In the following description, the granular intermetallic compound is also simply referred to as "intermetallic compound".
The anodic oxide film has higher insulating properties than the aluminum base material. In addition, although the natural oxide film has a lower insulating property than the anodized film, it has a higher resistance than the aluminum metal alone. In the following description, the anodic oxide film and the natural oxide film are collectively referred to as an oxide film. On the other hand, when the aluminum base material has an intermetallic compound, the oxide film formed on the surface thereof also contains the intermetallic compound. It was found that the intermetallic compound serves as a starting point for reducing the insulating property in the oxide film. By having an intermetallic compound that serves as a starting point for lowering the insulating property, the insulating property of the oxide film can be lowered and the contact resistance of the oxide film can be lowered.
 酸化膜の金属間化合物はアルミニウムに対する酸素の元素比率O/Alが2以上4以下であることが好ましい。また、粒状の金属間化合物の数密度は500個/mm2以上であることが好ましい。 The intermetallic compound of the oxide film preferably has an oxygen element ratio O / Al to aluminum of 2 or more and 4 or less. Further, the number density of the granular intermetallic compound is preferably 500 pieces / mm 2 or more.
 ここで、本発明における金属間化合物とは、アルミニウム元素(Al)と、Fe、Si、Mn、Mg、Ti、B等から選択される少なくとも1種とを含む化合物である。具体的には、金属間化合物としては、Al3Fe、Al6Fe、αAlFeSi、AlFeMnSi、MgSi、TiBが挙げられる。このうち、Alを含む金属間化合物は、Alを含むので、表面にアルミニウムの酸化皮膜が形成される。そのため、Alを含む金属間化合物の表層は酸素元素(O)を含む。 Here, the intermetallic compound in the present invention is a compound containing an aluminum element (Al) and at least one selected from Fe, Si, Mn, Mg, Ti, B and the like. Specifically, examples of the intermetallic compound include Al 3 Fe, Al 6 Fe, αAlFeSi, AlFeMnSi, Mg 2 Si, and TiB 2 . Of these, the intermetallic compound containing Al contains Al, so that an aluminum oxide film is formed on the surface. Therefore, the surface layer of the intermetallic compound containing Al contains an oxygen element (O).
 なお、本発明の集電体用アルミニウム部材は、金属間化合物表面の酸化膜が、元素比率O/Alが2以上4以下である酸化膜を有する粒状の金属間化合物を500個/mm2以上の密度で有していれば、最表層の酸化膜が元素比率O/Alが2以上4以下以外の粒状の金属間化合物を有していてもよい。すなわち、最表層の酸化膜が元素比率O/Alが2未満、あるいは4超の粒状の金属間化合物を有していてもよい。 In the aluminum member for a current collector of the present invention, the oxide film on the surface of the metal-to-metal compound contains 500 pieces / mm 2 or more of granular intermetal compounds having an oxide film having an element ratio O / Al of 2 or more and 4 or less. The oxide film on the outermost layer may have a granular intermetal compound having an element ratio O / Al of 2 or more and 4 or less. That is, the oxide film on the outermost layer may have a granular intermetallic compound having an element ratio O / Al of less than 2 or more than 4.
 また、酸化膜が酸化アルミニウム(Al23)を主成分とし、水和物を含有しない場合は、酸化膜の金属間化合物以外の部分における元素比率O/Alは2未満であり、1.3~1.5程度である。 When the oxide film contains aluminum oxide (Al 2 O 3 ) as a main component and does not contain hydrate, the element ratio O / Al in the portion of the oxide film other than the intermetallic compound is less than 2. It is about 3 to 1.5.
 集電体用アルミニウム部材の電気抵抗をより低くできる等の観点から、金属間化合物の表層の酸化膜の元素比率O/Alの平均値は、2以上4以下であるのが好ましく、2.5以上3.5以下であるのがさらに好ましい。 From the viewpoint of lowering the electrical resistance of the aluminum member for the current collector, the average value of the element ratio O / Al of the oxide film on the surface layer of the intermetallic compound is preferably 2 or more and 4 or less, preferably 2.5. It is more preferably 3.5 or less.
 なお、金属間化合物の最表層の元素比率O/Alは、以下のようにして測定する。
 金属間化合物は、酸化膜の表面を高分解能走査型電子顕微鏡(Scanning Electron Microscope:SEM)で観察した際に、酸化膜の金属間化合物以外の部分と区別して視認することができる。
 したがって、まず、高分解能走査型電子顕微鏡(Scanning Electron Microscope:SEM)を用いて酸化膜の表面を倍率5000倍で撮影し、得られたSEM写真において、金属間化合物を少なくとも20個抽出する。
 次に、抽出した金属間化合物の位置で、最表面から深さ方向に、電界放射型オージェ電子分光分析(FE-AES)を用いて元素分析を行う。深さ方向の分析は、測定とスパッタリングによる表面削除を繰り返すことで行う。FE-AESによる深さ方向の元素分布の結果から、最表層における元素比率O/Alを求める。
The element ratio O / Al of the outermost layer of the intermetallic compound is measured as follows.
When the surface of the oxide film is observed with a high-resolution scanning electron microscope (SEM), the intermetallic compound can be visually recognized separately from the portion of the oxide film other than the intermetallic compound.
Therefore, first, the surface of the oxide film is photographed at a magnification of 5000 times using a high-resolution scanning electron microscope (SEM), and at least 20 intermetallic compounds are extracted from the obtained SEM photograph.
Next, elemental analysis is performed at the position of the extracted intermetallic compound in the depth direction from the outermost surface using field emission Auger electron spectroscopy (FE-AES). Analysis in the depth direction is performed by repeating measurement and surface removal by sputtering. From the result of the element distribution in the depth direction by FE-AES, the element ratio O / Al in the outermost layer is obtained.
 集電体用アルミニウム部材の電気抵抗をより低くできる等の観点から、粒状の金属間化合物の密度は、1000個/mm2~300000個/mm2が好ましく、5000個/mm2~200000個/mm2がより好ましい。 From the viewpoint of lowering the electrical resistance of the aluminum member for the current collector, the density of the granular intermetallic compound is preferably 1000 / mm 2 to 300,000 / mm 2 , and is preferably 5000 / mm 2 to 200,000 / mm. mm 2 is more preferred.
 なお、粒状の金属間化合物の密度は、以下のようにして測定する。
 まず、高分解能走査型電子顕微鏡(SEM)を用いて集電体用アルミニウム部材の表面を真上から倍率5000倍で撮影し、得られたSEM写真の1.2mm×1.2mmの視野(5箇所)について、粒状の金属間化合物を抽出する。
 次に、FE-AESを用いた元素分析によって抽出した各金属間化合物の元素比率O/Alを求める。元素比率O/Alが2以上4以下の粒状の金属間化合物の数を計数して、視野内の粒状の金属間化合物の数と、視野の面積(幾何学的面積)とから数密度を算出して、5箇所の視野の平均値を密度として算出する。
The density of the granular intermetallic compound is measured as follows.
First, the surface of the aluminum member for a current collector was photographed from directly above at a magnification of 5000 times using a high-resolution scanning electron microscope (SEM), and the obtained SEM photograph had a field of view (5) of 1.2 mm × 1.2 mm. For the location), granular intermetallic compounds are extracted.
Next, the elemental ratio O / Al of each intermetallic compound extracted by elemental analysis using FE-AES is determined. Count the number of granular intermetallic compounds with an element ratio O / Al of 2 or more and 4 or less, and calculate the number density from the number of granular intermetallic compounds in the visual field and the area of the visual field (geometric area). Then, the average value of the five visual fields is calculated as the density.
 ここで、粒状の金属間化合物の円相当直径は1μm以下とするのが好ましい。円相当直径が1μm以下の金属間化合物は、集電体用アルミニウム部材の表面に表出しやすい。小さい金属間化合物が集電体用アルミニウム部材の表面に表出すると、金属間化合物の体積に対する表面積が大きくなる。その結果、局所的に水分子が吸着しやすくなると考えられ、酸化された金属間化合物の元素比率O/Alが2以上になりやすい。 Here, it is preferable that the diameter equivalent to the circle of the granular intermetallic compound is 1 μm or less. An intermetallic compound having a diameter equivalent to a circle of 1 μm or less is easily exposed on the surface of an aluminum member for a current collector. When a small intermetallic compound appears on the surface of the aluminum member for a current collector, the surface area of the intermetallic compound with respect to the volume increases. As a result, it is considered that water molecules are easily adsorbed locally, and the element ratio O / Al of the oxidized intermetallic compound tends to be 2 or more.
 なお、粒状の金属間化合物の円相当直径は、上述のようにして元素比率O/Alを測定した金属間化合物を少なくとも20個抽出し、画像解析ソフト等で金属間化合物の酸化膜表面における面積を求め、この面積から円相当直径を求めて、これらの平均値を円相当直径として算出する。 The circle-equivalent diameter of the granular intermetallic compound is the area on the surface of the oxide film of the intermetallic compound by extracting at least 20 intermetallic compounds whose element ratio O / Al was measured as described above and using image analysis software or the like. Is obtained, the circle-equivalent diameter is obtained from this area, and the average value of these is calculated as the circle-equivalent diameter.
 最表層の酸化膜は、酸化アルミニウム(Al23)を70質量%以上含むことが好ましく、80質量%~100質量%含むことがより好ましく、90質量%~100質量%含むことがさらに好ましい。
 酸化膜中の非水和物の酸化アルミニウム(Al23)の含有量を70質量%以上とすることで、酸化膜の密度を高くすることができるため、経時によって酸化膜が厚くなることを抑制できる。従って、酸化膜が厚くなって電気抵抗が増加することを抑制できる点で好ましい。
The oxide film on the outermost layer preferably contains 70% by mass or more of aluminum oxide (Al 2 O 3 ), more preferably 80% by mass to 100% by mass, and further preferably 90% by mass to 100% by mass. ..
By setting the content of the non-hydrated aluminum oxide (Al 2 O 3 ) in the oxide film to 70% by mass or more, the density of the oxide film can be increased, so that the oxide film becomes thicker with time. Can be suppressed. Therefore, it is preferable in that the oxide film becomes thick and the increase in electrical resistance can be suppressed.
 なお、酸化膜中の酸化アルミニウム(Al23)の割合は、以下のように酸化膜の膜密度を測定して算出することができる。
 酸化膜の膜密度は、株式会社神戸製鋼所製、高分解能RBS分析装置 HRBS500(High Resolution Rutherford Backscattering Spectrometry;HR-RBS)を使用して測定する。エネルギー450keVのHe+イオンを試料面(電極用アルミニウム部材の酸化膜の表面)の法線に対し62.5度で試料に入射させ、散乱されたHe+イオンを散乱角55度の位置で偏向磁場型エネルギー分析器により検出して面密度を得る。得られた面密度(atoms/cm2)から質量面密度(g/cm2)に換算し、この値と透過型電子顕微鏡(TEM)により測定した膜厚から酸化膜の密度(g/cm3)を算出する。
 アルミニウムの酸化膜は、非水和物の酸化アルミニウム、及び水和物の酸化アルミニウム(1水和物と3水和物が存在)し、それぞれ密度が異なることから、水和物の密度を便宜的に1水和物と3水和物の平均とし、非水和物の密度との加重平均が、上記で求めた密度と考え、そこから非水和物酸化アルミニウムの割合を求める。
The ratio of aluminum oxide (Al 2 O 3 ) in the oxide film can be calculated by measuring the film density of the oxide film as follows.
The film density of the oxide film is measured using a high resolution RBS analyzer HRBS500 (High Resolution Rutherford Backscattering Spectrometry; HR-RBS) manufactured by Kobe Steel, Ltd. He + ions with an energy of 450 keV are incident on the sample at 62.5 degrees with respect to the normal of the sample surface (the surface of the oxide film of the aluminum member for electrodes), and the scattered He + ions are deflected at a position of a scattering angle of 55 degrees. The surface density is obtained by detecting with an energy analyzer. The obtained surface density (atoms / cm 2 ) is converted into mass surface density (g / cm 2 ), and the density of the oxide film (g / cm 3 ) is calculated from this value and the film thickness measured by a transmission electron microscope (TEM). ) Is calculated.
The oxide film of aluminum consists of non-hydrated aluminum oxide and hydrated aluminum oxide (monohydrate and trihydrate exist), and the hydrate density is convenient because the hydrates have different densities. Therefore, the average of monohydrate and trihydrate is taken, and the weighted average of the density of non-hydrate is considered to be the density obtained above, and the ratio of non-hydrate aluminum oxide is obtained from it.
 集電体用アルミニウム部材の形状は、集電体として用いることができれば、特に制限はないが、板状であることが好ましい。 The shape of the aluminum member for the current collector is not particularly limited as long as it can be used as the current collector, but it is preferably plate-shaped.
 <アルミニウム基材>
 集電体用アルミニウム部材の母材となるアルミニウム基材は、特に限定はされず、例えば、JIS規格H4000に記載されている合金番号1N30、3003、1085等の公知のアルミニウム基材を用いることができる。金属間化合物を多く含むアルミニウムを使用すると前述の電気抵抗低減の効果が期待できる。但し、本願はアルミニウム材に限定されない。なお、アルミニウム基材は、アルミニウムを主成分とし、微量の異元素を含む合金板である。
<Aluminum base material>
The aluminum base material used as the base material of the aluminum member for the current collector is not particularly limited, and for example, known aluminum base materials such as alloy numbers 1N30, 3003, and 1085 described in JIS standard H4000 may be used. can. If aluminum containing a large amount of intermetallic compounds is used, the above-mentioned effect of reducing electrical resistance can be expected. However, the present application is not limited to the aluminum material. The aluminum base material is an alloy plate containing aluminum as a main component and containing a trace amount of foreign elements.
[集電体用アルミニウム部材の製造方法]
 次に、本発明の集電体用アルミニウム部材の製造方法について説明する。
 本発明の集電体用アルミニウム部材を作製する集電体用アルミニウム部材の製造方法の一例は、
 アルミニウム基材の表面に陽極酸化皮膜を形成する電解工程と、
 陽極酸化皮膜を部分除去して陽極酸化皮膜を島状にする部分除去工程と、
を有する集電体用アルミニウム部材の製造方法である。
[Manufacturing method of aluminum member for current collector]
Next, a method for manufacturing the aluminum member for a current collector of the present invention will be described.
An example of a method for manufacturing an aluminum member for a current collector for producing an aluminum member for a current collector of the present invention is as follows.
An electrolysis process that forms an anodic oxide film on the surface of an aluminum substrate,
A partial removal process that partially removes the anodic oxide film to form an island-like anodic oxide film,
It is a method of manufacturing an aluminum member for a current collector having.
 また、集電体用アルミニウム部材の製造方法は、アルミニウム基材および陽極酸化皮膜を貫通する貫通孔を形成する貫通孔形成工程を有していてもよい。
 また、集電体用アルミニウム部材の製造方法は、アルミニウム基材の表面を粗面化する粗面化工程を有していてもよい。
 貫通孔形成工程および/または粗面化工程は、陽極酸化皮膜を形成する電解工程と同時に実施してもよい。
Further, the method for manufacturing an aluminum member for a current collector may include a through hole forming step of forming a through hole penetrating the aluminum base material and the anodic oxide film.
Further, the method for manufacturing an aluminum member for a current collector may include a roughening step of roughening the surface of an aluminum base material.
The through hole forming step and / or the roughening step may be carried out at the same time as the electrolytic step of forming the anodic oxide film.
 また、部分除去工程の後には、集電体用アルミニウム部材の洗浄および乾燥を行う洗浄乾燥工程を実施するのが好ましい。 Further, after the partial removal step, it is preferable to carry out a washing and drying step of cleaning and drying the aluminum member for the current collector.
 また、各工程終了後には水洗処理を行う水洗工程および乾燥処理を行う乾燥工程を有するのが好ましい。 Further, it is preferable to have a water washing step of performing a water washing treatment and a drying step of performing a drying treatment after the completion of each step.
 以下、図1に示す集電体用アルミニウム部材、および、図3に示す貫通孔を有する集電体用アルミニウム部材を例にして、集電体用アルミニウム部材の製造方法の各工程を図4~図8を用いて説明し、集電体用アルミニウム部材の製造方法の各工程を説明した後に、各工程について詳述する。 Hereinafter, each step of the method for manufacturing the aluminum member for a current collector will be described in FIGS. 4 to 4 by taking the aluminum member for the current collector shown in FIG. 1 and the aluminum member for a current collector having a through hole shown in FIG. 3 as an example. FIG. 8 will be used to explain each step of the method for manufacturing the aluminum member for a current collector, and then each step will be described in detail.
 図4~図6は、図1に示す集電体用アルミニウム部材の製造方法の好適な実施態様の一例を示す模式的な断面図である。
 集電体用アルミニウム部材の製造方法の一例は、図4~図6に示すように、アルミニウム基材1の両方の主面に対して電解処理を施し、一様な陽極酸化皮膜2を形成する電解工程(図4および図5)と、電解工程の後に陽極酸化皮膜を部分除去して島状の陽極酸化皮膜14を形成する部分除去工程(図5および図6)と、を有する製造方法である。
4 to 6 are schematic cross-sectional views showing an example of a preferred embodiment of the method for manufacturing an aluminum member for a current collector shown in FIG. 1.
As an example of a method for manufacturing an aluminum member for a current collector, as shown in FIGS. 4 to 6, both main surfaces of the aluminum base material 1 are subjected to electrolytic treatment to form a uniform anodic oxide film 2. A manufacturing method comprising an electrolysis step (FIGS. 4 and 5) and a partial removal step (FIGS. 5 and 6) in which the anodic oxide film is partially removed after the electrolysis step to form an island-shaped anodic oxide film 14. be.
 図4~図5および図7~図8は、図3に示す集電体用アルミニウム部材の製造方法の好適な実施態様の一例を示す模式的な断面図である。
 集電体用アルミニウム部材の製造方法の一例は、図4~図5および図7~図8に示すように、アルミニウム基材1の両方の主面に対して電解処理を施し、一様な陽極酸化皮膜2を形成する電解工程(図4および図5)と、陽極酸化皮膜2およびアルミニウム基材1を貫通する貫通孔を形成する貫通孔形成工程(図5および図7)と、陽極酸化皮膜を部分除去して島状の陽極酸化皮膜14を形成する部分除去工程(図7および図8)と、を有する製造方法である。
4 to 5 and 7 to 8 are schematic cross-sectional views showing an example of a preferred embodiment of the method for manufacturing an aluminum member for a current collector shown in FIG.
As an example of a method for manufacturing an aluminum member for a current collector, as shown in FIGS. 4 to 5 and 7 to 8, both main surfaces of the aluminum base material 1 are electrolyzed and a uniform anode is applied. An electrolytic step of forming the oxide film 2 (FIGS. 4 and 5), a through hole forming step of forming a through hole penetrating the anodic oxide film 2 and the aluminum substrate 1 (FIGS. 5 and 7), and an anodic oxide film. Is a manufacturing method comprising a partial removal step (FIGS. 7 and 8) of partially removing the above to form an island-shaped anodic oxide film 14.
 〔電解工程〕
 電解工程は、アルミニウム基材の表面に一様な陽極酸化皮膜を形成する工程である。
 本発明において、陽極酸化皮膜が有する微細孔の数密度が600個/μm2以上である陽極酸化皮膜を形成するために、硝酸と硫酸とを含有する水溶液を用いて陽極酸化処理を行うことが好ましい。
[Electrolysis process]
The electrolysis step is a step of forming a uniform anodic oxide film on the surface of the aluminum base material.
In the present invention, in order to form an anodized film having a number density of 600 micropores / μm 2 or more in the anodized film, anodizing treatment can be performed using an aqueous solution containing nitric acid and sulfuric acid. preferable.
 陽極酸化処理の処理方法としては、硝酸と硫酸とを含有する水溶液を用いる以外は、従来公知の陽極酸化処理と同様の処理を施すことができる。陽極酸化処理としては、例えば、特開2012-216513号公報の[0063]~[0073]段落に記載された条件や装置を適宜採用することができる。 As a treatment method for anodizing, the same treatment as the conventionally known anodizing treatment can be performed except that an aqueous solution containing nitric acid and sulfuric acid is used. As the anodizing treatment, for example, the conditions and devices described in paragraphs [0063] to [0073] of JP2012-216513A can be appropriately adopted.
 本発明においては、陽極酸化処理の条件は、使用される電解液によって種々変化するので一概に決定され得ないが、一般的には電解液濃度0.2~80質量%、液温5~70℃、電流密度0.5~60A/dm2、電圧1~100V、電解時間1秒~20分であるのが適当であり、所望の酸化膜量となるように調整される。 In the present invention, the conditions of the anodizing treatment cannot be unconditionally determined because they vary depending on the electrolytic solution used, but generally, the electrolytic solution concentration is 0.2 to 80% by mass and the liquid temperature is 5 to 70. It is appropriate that the temperature, the current density is 0.5 to 60 A / dm 2 , the voltage is 1 to 100 V, and the electrolysis time is 1 second to 20 minutes, and the amount of the oxide film is adjusted to be desired.
 また、陽極酸化処理において、アルミニウム基材と対極との間に直流を印加してもよく、交流を印加してもよい。アルミニウム基材に直流を印加する場合においては、電流密度は、0.5~60A/dm2であるのが好ましく、1~40A/dm2であるのがより好ましい。連続的に陽極酸化処理を行う場合には、アルミニウム基材に、電解液を介して給電する液給電方式により行うのが好ましい。 Further, in the anodizing treatment, a direct current may be applied between the aluminum base material and the counter electrode, or an alternating current may be applied. When direct current is applied to the aluminum substrate, the current density is preferably 0.5 to 60 A / dm 2 , and more preferably 1 to 40 A / dm 2 . When the anodizing treatment is continuously performed, it is preferable to use a liquid feeding method in which the aluminum base material is fed via an electrolytic solution.
 〔貫通孔形成工程〕
 貫通孔形成工程は、アルミニウム基材に貫通孔を形成する工程である。
 貫通孔形成工程における貫通孔の形成方法には特に制限はなく、パンチング加工等の機械的な方法、あるいは、電解溶解処理等の電気化学的な方法が利用可能である。平均開口径が0.1μm以上100μm未満の貫通孔を容易に形成できる点で、電解溶解処理による貫通孔の形成方法が好適である。
 また、電解溶解処理による貫通孔の形成は、上記電解工程において、陽極酸化処理と同時あるいは順次に実施することができる。
[Through hole forming process]
The through hole forming step is a step of forming a through hole in the aluminum base material.
The method for forming the through hole in the through hole forming step is not particularly limited, and a mechanical method such as punching or an electrochemical method such as electrolytic dissolution treatment can be used. A method for forming a through hole by electrolytic dissolution treatment is suitable because a through hole having an average opening diameter of 0.1 μm or more and less than 100 μm can be easily formed.
Further, the formation of the through holes by the electrolytic dissolution treatment can be carried out simultaneously or sequentially with the anodizing treatment in the above electrolytic step.
 <電解溶解処理>
 電解溶解処理は特に限定されず、直流または交流を用い、酸性溶液を電解液に用いることができる。中でも、硝酸を主体とする電解液を用いるのが好ましく、これらの酸に加えて硫酸、燐酸、シュウ酸の少なくとも1以上の混酸を用いて電気化学的処理を行うのが更に好ましい。
<Electrolytic dissolution treatment>
The electrolytic dissolution treatment is not particularly limited, and a direct current or an alternating current can be used, and an acidic solution can be used as the electrolytic solution. Among them, it is preferable to use an electrolytic solution mainly composed of nitric acid, and it is more preferable to carry out the electrochemical treatment using a mixed acid of at least one of sulfuric acid, phosphoric acid and oxalic acid in addition to these acids.
 本発明においては、電解液である酸性溶液としては、上記酸のほかに、米国特許第4,671,859号、同第4,661,219号、同第4,618,405号、同第4,600,482号、同第4,566,960号、同第4,566,958号、同第4,566,959号、同第4,416,972号、同第4,374,710号、同第4,336,113号、同第4,184,932号の各明細書等に記載されている電解液を用いることもできる。 In the present invention, as the acidic solution which is an electrolytic solution, in addition to the above acids, US Pat. Nos. 4,671,859, 4,661,219, 4,618,405, and No. 4 4,600,482, 4,566,960, 4,566,958, 4,566,959, 4,416,972, 4,374,710 No. 4,336,113, No. 4,184,932, and the like described in each specification can also be used.
 酸性溶液の濃度は0.1~2.5質量%であるのが好ましく、0.2~2.0質量%であるのが特に好ましい。また、酸性溶液の液温は20~80℃であるのが好ましく、30~60℃であるのがより好ましい。 The concentration of the acidic solution is preferably 0.1 to 2.5% by mass, and particularly preferably 0.2 to 2.0% by mass. The temperature of the acidic solution is preferably 20 to 80 ° C, more preferably 30 to 60 ° C.
 また、上記酸を主体とする水溶液は、濃度1~100g/Lの酸の水溶液に、硝酸アルミニウム、硝酸ナトリウム、硝酸アンモニウム等の硝酸イオンを有する硝酸化合物または塩化アルミニウム、塩化ナトリウム、塩化アンモニウム等の塩酸イオンを有する塩酸化合物、硫酸アルミニウム、硫酸ナトリウム、硫酸アンモニウム等の硫酸イオンを有する硫酸化合物の少なくとも一つを1g/Lから飽和するまでの範囲で添加して使用することができる。
 また、上記酸を主体とする水溶液には、鉄、銅、マンガン、ニッケル、チタン、マグネシウム、シリカ等のアルミニウム合金中に含まれる金属が溶解していてもよい。好ましくは、酸の濃度0.1~2質量%の水溶液にアルミニウムイオンが1~100g/Lとなるように、塩化アルミニウム、硝酸アルミニウム、硫酸アルミニウム等を添加した液を用いることが好ましい。
The acid-based aqueous solution is a nitrate compound having nitrate ions such as aluminum nitrate, sodium nitrate and ammonium nitrate or hydrochloric acid such as aluminum chloride, sodium chloride and ammonium chloride in an acid aqueous solution having a concentration of 1 to 100 g / L. At least one of a hydrochloric acid compound having an ion, an aluminum sulfate, sodium sulfate, ammonium sulfate and the like and a sulfuric acid compound having a sulfate ion can be added and used in the range from 1 g / L to saturation.
Further, the metal contained in the aluminum alloy such as iron, copper, manganese, nickel, titanium, magnesium and silica may be dissolved in the aqueous solution mainly containing an acid. It is preferable to use a solution obtained by adding aluminum chloride, aluminum nitrate, aluminum sulfate or the like to an aqueous solution having an acid concentration of 0.1 to 2% by mass so that aluminum ions are 1 to 100 g / L.
 電気化学的溶解処理には、主に直流電流が用いられるが、交流電流を使用する場合にはその交流電源波は特に限定されず、サイン波、矩形波、台形波、三角波等が用いられ、中でも、矩形波または台形波が好ましく、台形波が特に好ましい。 A DC current is mainly used for the electrochemical dissolution treatment, but when an AC current is used, the AC power wave is not particularly limited, and a sine wave, a square wave, a trapezoidal wave, a triangular wave, or the like is used. Of these, a square wave or a trapezoidal wave is preferable, and a trapezoidal wave is particularly preferable.
 (硝酸電解)
 本発明においては、硝酸を主体とする電解液を用いた電気化学的溶解処理(以下、「硝酸溶解処理」とも略す。)により、容易に、平均開口径が0.1μm以上100μm未満であり、平均開口率が0.5%~30%となる貫通孔を形成することができる。
 ここで、硝酸溶解処理は、貫通孔形成の溶解ポイントを制御しやすい理由から、直流電流を用い、平均電流密度を1A/dm2以上とし、かつ、電気量を50C/dm2以上とする条件で施す電解処理であるのが好ましい。なお、平均電流密度は100A/dm2以下であるのが好ましく、電気量は10000C/dm2以下であるのが好ましい。
 また、硝酸電解における電解液の濃度や温度は特に限定されず、高濃度、例えば、硝酸濃度15~35質量%の硝酸電解液を用いて30~60℃で電解を行ったり、硝酸濃度0.7~2質量%の硝酸電解液を用いて高温、例えば、80℃以上で電解を行ったりすることできる。
 また、上記硝酸電解液に濃度0.1~50質量%の硫酸、シュウ酸、燐酸の少なくとも1つを混ぜた電解液を用いて電解を行うことができる。
(Nitric acid electrolysis)
In the present invention, the average opening diameter is easily 0.1 μm or more and less than 100 μm by the electrochemical dissolution treatment (hereinafter, also abbreviated as “nitric acid dissolution treatment”) using an electrolytic solution mainly composed of nitric acid. Through holes having an average opening ratio of 0.5% to 30% can be formed.
Here, in the nitric acid dissolution treatment, a direct current is used, the average current density is 1 A / dm 2 or more, and the amount of electricity is 50 C / dm 2 or more because it is easy to control the dissolution point of the through hole formation. It is preferable that the electrolytic treatment is performed in 1. The average current density is preferably 100 A / dm 2 or less, and the amount of electricity is preferably 10000 C / dm 2 or less.
Further, the concentration and temperature of the electrolytic solution in nitric acid electrolysis are not particularly limited, and electrolysis may be performed at a high concentration, for example, a nitric acid electrolytic solution having a nitric acid concentration of 15 to 35% by mass at 30 to 60 ° C., or the nitric acid concentration may be 0. Electrolysis can be performed at a high temperature, for example, 80 ° C. or higher, using a nitric acid electrolytic solution of 7 to 2% by mass.
Further, electrolysis can be performed using an electrolytic solution in which at least one of sulfuric acid, oxalic acid and phosphoric acid having a concentration of 0.1 to 50% by mass is mixed with the nitric acid electrolytic solution.
 〔粗面化工程〕
 粗面化工程は、アルミニウム基材に対して電気化学的粗面化処理(以下、「電解粗面化処理」とも略す。)を施し、アルミニウム基材の表面ないし裏面を粗面化する工程である。
 電解粗面化処理を施し、アルミニウム基材の表面を粗面化することにより、活物質を含む層との密着性が向上するとともに、表面積が増えることによって接触面積が増えるため、集電体用アルミニウム部材を用いた蓄電デバイスの容量維持率が高くなる。
 上記電解粗面化処理としては、例えば、特開2012-216513号公報の[0041]~[0050]段落に記載された条件や装置を適宜採用することができる。
[Roughening process]
The roughening step is a step of subjecting an aluminum base material to an electrochemical roughening treatment (hereinafter, also abbreviated as "electrolytic roughening treatment") to roughen the front surface or the back surface of the aluminum base material. be.
By applying electrolytic roughening treatment to roughen the surface of the aluminum base material, the adhesion to the layer containing the active material is improved, and the contact area increases due to the increased surface area, so it is used for collectors. The capacity retention rate of the power storage device using the aluminum member is increased.
As the electrolytic roughening treatment, for example, the conditions and devices described in paragraphs [0041] to [0050] of JP2012-216513A can be appropriately adopted.
 <硝酸電解>
 本発明においては、硝酸を主体とする電解液を用いた電気化学的粗面化処理(以下、「硝酸電解」とも略す。)により、容易に平均開口径0.5μm~100μmの凹部を面積率1%以上で形成することができる。
 ここで、硝酸電解は、均一で密度の高い凹部形成が可能となる理由から、交流電流を用い、ピーク電流密度を30A/dm2以上とし、平均電流密度を13A/dm2以上とし、かつ、電気量を150C/dm2以上とする条件で施す電解処理であるのが好ましい。なお、ピーク電流密度は100A/dm2以下であるのが好ましく、平均電流密度は40A/dm2以下であるのが好ましく、電気量は400C/dm2以下であるのが好ましい。
 また、硝酸電解における電解液の濃度や温度は特に限定されず、高濃度、例えば、硝酸濃度15~35質量%の硝酸電解液を用いて30~60℃で電解を行ったり、硝酸濃度0.7~2質量%の硝酸電解液を用いて高温、例えば、80℃以上で電解を行ったりすることができる。
<Nitric acid electrolysis>
In the present invention, a recess having an average opening diameter of 0.5 μm to 100 μm can be easily formed in an area ratio by an electrochemical roughening treatment using an electrolytic solution mainly composed of nitric acid (hereinafter, also abbreviated as “nitric acid electrolysis”). It can be formed at 1% or more.
Here, the nitrate electrolysis uses an AC current to set the peak current density to 30 A / dm 2 or more, the average current density to 13 A / dm 2 or more, and the average current density to 13 A / dm 2 or more, because it enables the formation of uniform and dense recesses. It is preferable that the electrolytic treatment is performed under the condition that the amount of electricity is 150 C / dm 2 or more. The peak current density is preferably 100 A / dm 2 or less, the average current density is preferably 40 A / dm 2 or less, and the amount of electricity is preferably 400 C / dm 2 or less.
Further, the concentration and temperature of the electrolytic solution in nitrate electrolysis are not particularly limited, and electrolysis may be performed at a high concentration, for example, a nitrate electrolytic solution having a nitrate concentration of 15 to 35% by mass at 30 to 60 ° C., or the nitrate concentration may be 0. Electrolysis can be performed at a high temperature, for example, 80 ° C. or higher, using 7 to 2% by mass of a nitrate electrolytic solution.
 <塩酸電解>
 本発明においては、塩酸を主体とする電解液を用いた電気化学的粗面化処理(以下、「塩酸電解」とも略す。)によっても、平均開口径0.05μm~100μmの凹部を面積率1%以上で形成することができる。
 ここで、塩酸電解においては、均一で密度の高い凹部形成が可能となる理由から、交流電流を用い、ピーク電流密度を30A/dm2以上とし、平均電流密度を13A/dm2以上とし、かつ、電気量を30C/dm2以上とする条件で施す電解処理であるのが好ましい。なお、ピーク電流密度は100A/dm2以下であるのが好ましく、平均電流密度は40A/dm2以下であるのが好ましく、電気量は400C/dm2以下であるのが好ましい。
<Hydrochloric acid electrolysis>
In the present invention, even by electrochemical roughening treatment using an electrolytic solution mainly composed of hydrochloric acid (hereinafter, also abbreviated as “hydrochloric acid electrolysis”), recesses having an average opening diameter of 0.05 μm to 100 μm have an area ratio of 1. It can be formed in% or more.
Here, in hydrochloric acid electrolysis, an alternating current is used, the peak current density is set to 30 A / dm 2 or more, the average current density is set to 13 A / dm 2 or more, and the average current density is set to 13 A / dm 2 or more, because it is possible to form uniform and dense recesses. It is preferable that the electrolytic treatment is performed under the condition that the amount of electricity is 30 C / dm 2 or more. The peak current density is preferably 100 A / dm 2 or less, the average current density is preferably 40 A / dm 2 or less, and the amount of electricity is preferably 400 C / dm 2 or less.
 〔部分除去工程〕
 部分除去工程は、アルミニウム基材の表面に形成された陽極酸化皮膜を部分除去して陽極酸化皮膜の被覆率を1~80%にする工程である。
 陽極酸化皮膜を部分除去する方法としては特に制限はないが、アルカリ性水溶液を用いた化学的溶解処理(以下、「アルカリエッチング処理」ともいう)によって陽極酸化皮膜を部分除去する方法、陽極酸化皮膜を有するアルミニウム基材を金属ロールに通過させた後、表面をブラシロールでこすること(以下、「機械的部分除去処理」ともいう)によって陽極酸化皮膜を部分除去する方法、が例示される。
[Partial removal process]
The partial removal step is a step of partially removing the anodizing film formed on the surface of the aluminum base material to increase the coverage of the anodized film to 1 to 80%.
The method for partially removing the anodic oxide film is not particularly limited, but a method for partially removing the anodic oxide film by a chemical dissolution treatment using an alkaline aqueous solution (hereinafter, also referred to as "alkali etching treatment"), an anodic oxide film is used. An example is a method of partially removing the anodic oxide film by passing the aluminum base material to be passed through a metal roll and then rubbing the surface with a brush roll (hereinafter, also referred to as “mechanical partial removal treatment”).
 <アルカリエッチング処理>
 アルカリエッチング処理は、陽極酸化皮膜をアルカリ性水溶液に接触させることにより、陽極酸化皮膜を部分除去する処理である。
 陽極酸化皮膜にアルカリ性水溶液を接触させると、アルカリ性水溶液が陽極酸化皮膜に浸み込んでアルミニウム金属を溶解することで、陽極酸化皮膜を部分的に剥離させることができる。また、陽極酸化皮膜自体も溶解することができる。これにより、島状の陽極酸化皮膜が形成される。また、アルカリエッチング処理は陽極酸化皮膜の微細孔を拡大することもできる。
<Alkaline etching treatment>
The alkaline etching treatment is a treatment for partially removing the anodic oxide film by bringing the anodic oxide film into contact with an alkaline aqueous solution.
When the alkaline aqueous solution is brought into contact with the anodic oxide film, the alkaline aqueous solution permeates the anodic oxide film and dissolves the aluminum metal, whereby the anodic oxide film can be partially peeled off. In addition, the anodic oxide film itself can be dissolved. As a result, an island-shaped anodic oxide film is formed. In addition, the alkaline etching treatment can also enlarge the fine pores of the anodic oxide film.
 アルカリ性水溶液に用いられるアルカリとしては、例えば、苛性アルカリ、アルカリ金属塩が挙げられる。具体的には、苛性アルカリとしては、例えば、水酸化ナトリウム(苛性ソーダ)、苛性カリが挙げられる。また、アルカリ金属塩としては、例えば、メタケイ酸ソーダ、ケイ酸ソーダ、メタケイ酸カリ、ケイ酸カリ等のアルカリ金属ケイ酸塩;炭酸ソーダ、炭酸カリ等のアルカリ金属炭酸塩;アルミン酸ソーダ、アルミン酸カリ等のアルカリ金属アルミン酸塩;グルコン酸ソーダ、グルコン酸カリ等のアルカリ金属アルドン酸塩;第二リン酸ソーダ、第二リン酸カリ、第三リン酸ソーダ、第三リン酸カリ等のアルカリ金属リン酸水素塩が挙げられる。中でも、エッチング速度が速い点および安価である点から、苛性アルカリの溶液、および、苛性アルカリとアルカリ金属アルミン酸塩との両者を含有する溶液が好ましい。特に、水酸化ナトリウムの水溶液が好ましい。 Examples of the alkali used in the alkaline aqueous solution include caustic alkali and alkali metal salts. Specifically, examples of the caustic alkali include sodium hydroxide (caustic soda) and caustic potash. Examples of the alkali metal salt include alkali metal silicates such as sodium metasilicate, sodium silicate, potassium metasilicate and potassium silicate; alkali metal carbonates such as sodium carbonate and potassium carbonate; sodium aluminate and alumin. Alkali metal aluminates such as potassium acid; alkali metal aldonates such as sodium gluconate, potassium gluconate; Examples include alkali metal hydrogen phosphate. Among them, a solution of caustic alkali and a solution containing both caustic alkali and alkali metal aluminate are preferable from the viewpoint of high etching rate and low cost. In particular, an aqueous solution of sodium hydroxide is preferable.
 アルカリ性水溶液の濃度は、0.1~50質量%であるのが好ましく、0.2~10質量%であるのがより好ましい。アルカリ性水溶液中にアルミニウムイオンが溶解している場合には、アルミニウムイオンの濃度は、0.01~10質量%であるのが好ましく、0.1~3質量%であるのがより好ましい。アルカリ溶液の温度は10~90℃であるのが好ましい。処理時間は0.5~30秒であるのが好ましい。 The concentration of the alkaline aqueous solution is preferably 0.1 to 50% by mass, more preferably 0.2 to 10% by mass. When the aluminum ion is dissolved in the alkaline aqueous solution, the concentration of the aluminum ion is preferably 0.01 to 10% by mass, more preferably 0.1 to 3% by mass. The temperature of the alkaline solution is preferably 10 to 90 ° C. The treatment time is preferably 0.5 to 30 seconds.
 陽極酸化皮膜をアルカリ溶液に接触させる方法としては、例えば、陽極酸化皮膜を有するアルミニウム基材をアルカリ溶液を入れた槽の中を通過させる方法、陽極酸化皮膜を有するアルミニウム基材をアルカリ溶液を入れた槽の中に浸せきさせる方法、アルカリ溶液を陽極酸化皮膜の表面に噴きかける方法が挙げられる。 As a method of bringing the anodic oxide film into contact with the alkaline solution, for example, a method of passing an aluminum base material having an anodic oxide film through a tank containing an alkaline solution, or a method of putting an aluminum base material having an anodic oxide film into an alkaline solution. Examples include a method of immersing in a tank and a method of spraying an alkaline solution on the surface of the anodic oxide film.
 <機械的部分除去処理>
 機械的部分除去処理は、機械的に陽極酸化皮膜を部分除去する処理である。
 機械的部分除去処理としては、例えば、陽極酸化皮膜を押圧して陽極酸化皮膜に亀裂を生じさせた後、亀裂を起点として、陽極酸化皮膜を部分的に除去する方法が挙げられる。
<Mechanical partial removal process>
The mechanical partial removal process is a process for mechanically partially removing the anodic oxide film.
Examples of the mechanical partial removal treatment include a method of pressing the anodic oxide film to generate a crack in the anodic oxide film and then partially removing the anodic oxide film starting from the crack.
 陽極酸化皮膜を押圧する方法としては、ロール対の間に陽極酸化皮膜を有するアルミニウム基材を通過させる方法等が挙げられる。その際、複数のロール対を通過させてもよい。また、ロール対としては金属ロールが好ましい。 Examples of the method of pressing the anodic oxide film include a method of passing an aluminum substrate having an anodic oxide film between roll pairs. At that time, a plurality of roll pairs may be passed. Further, as the roll pair, a metal roll is preferable.
 亀裂が生じた陽極酸化皮膜を部分的に除去する方法としては、回転するブラシロールで表面をこする方法等が挙げられる。 Examples of a method for partially removing the cracked anodic oxide film include a method of rubbing the surface with a rotating brush roll.
 〔洗浄乾燥工程〕
 洗浄乾燥工程は、陽極酸化皮膜を部分除去したアルミニウム基材の表面を洗浄し、乾燥する工程である。
 洗浄乾燥工程においては、水洗、酸洗、水洗の順に洗浄を行うことが好ましい。また、洗浄が終わった後には乾燥工程を行う。
[Washing and drying process]
The washing and drying step is a step of washing and drying the surface of the aluminum base material from which the anodic oxide film has been partially removed.
In the washing / drying step, it is preferable to perform washing in the order of water washing, pickling washing, and water washing. In addition, after cleaning is completed, a drying step is performed.
 (水洗工程)
 水洗には、純水、井水、水道水等を用いることができる。処理液の次工程への持ち込みを防ぐためにニップ装置を用いてもよい。
(Washing process)
Pure water, well water, tap water, or the like can be used for washing with water. A nip device may be used to prevent the treatment liquid from being brought into the next process.
 (酸洗工程)
 酸洗には、硝酸、硫酸等を用いることができる。処理液の次工程への持ち込みを防ぐためにニップ装置を用いてもよい。硝酸、硫酸による酸洗は、酸洗後に形成される自然酸化皮膜を不働態化しやすいため好ましい。
(Pickling process)
Nitric acid, sulfuric acid and the like can be used for pickling. A nip device may be used to prevent the treatment liquid from being brought into the next process. Pickling with nitric acid or sulfuric acid is preferable because it tends to passivate the natural oxide film formed after pickling.
 (乾燥工程)
 乾燥の方法には限定はなく、エアナイフ等により水分を吹き飛ばす方法、加熱による方法等の公知の乾燥方法が適宜利用可能である。また、複数の乾燥方法を行なってもよい。
(Drying process)
The drying method is not limited, and known drying methods such as a method of blowing off water with an air knife and a method of heating can be appropriately used. Moreover, you may perform a plurality of drying methods.
 このような製造方法を実施する製造装置の一例の模式図を図9に示す。
 図9に示す製造装置50は、長尺なアルミニウム基材1を巻き回してなる基材ロール70から、アルミニウム基材1を送り出して、アルミニウム基材1を長手方向に搬送しつつ各工程を実施して集電体用アルミニウム部材を作製する製造装置である。すなわち、製造装置50は、ロールツーロール(RtoR)で各工程を実施して集電体用アルミニウム部材を作製する製造装置である。
FIG. 9 shows a schematic diagram of an example of a manufacturing apparatus that implements such a manufacturing method.
In the manufacturing apparatus 50 shown in FIG. 9, the aluminum base material 1 is sent out from the base material roll 70 formed by winding a long aluminum base material 1, and each step is carried out while transporting the aluminum base material 1 in the longitudinal direction. It is a manufacturing apparatus for manufacturing an aluminum member for a current collector. That is, the manufacturing apparatus 50 is a manufacturing apparatus that carries out each step by roll-to-roll (RtoR) to manufacture an aluminum member for a current collector.
 製造装置50は、基材ロール70を装填される回転軸52と、電解工程を実施する電解工程部56と、部分除去工程を実施する部分除去工程部58と、洗浄乾燥工程を実施する洗浄乾燥工程部60と、各処理を施されて作製された集電体用アルミニウム部材10をロール72状に巻き取る巻取り軸54とを有する。電解工程部56、部分除去工程部58および洗浄乾燥工程部60は、アルミニウム基材1が回転軸52から巻取り軸54に搬送される経路上に配置される。 The manufacturing apparatus 50 includes a rotary shaft 52 loaded with a base material roll 70, an electrolysis process unit 56 for performing an electrolysis process, a partial removal process unit 58 for performing a partial removal process, and a cleaning / drying process for performing a cleaning / drying process. It has a process unit 60 and a take-up shaft 54 that winds up the aluminum member 10 for a current collector manufactured by each treatment into a roll 72 shape. The electrolysis process unit 56, the partial removal process unit 58, and the washing / drying process unit 60 are arranged on a path in which the aluminum base material 1 is conveyed from the rotary shaft 52 to the take-up shaft 54.
 製造装置50においては、基材ロール70からのアルミニウム基材1の送り出しと、巻取り軸54における集電体用アルミニウム部材10の巻き取りとを同期して行なって、長尺なアルミニウム基材1を所定の搬送経路で長手方向に搬送しつつ、各工程部において、アルミニウム基材1に上述した各処理を行なう。 In the manufacturing apparatus 50, the delivery of the aluminum base material 1 from the base material roll 70 and the winding of the current collector aluminum member 10 on the take-up shaft 54 are performed in synchronization with each other to perform the long aluminum base material 1. The aluminum base material 1 is subjected to the above-mentioned treatments in each process section while the aluminum substrate 1 is transported in the longitudinal direction by a predetermined transport path.
 なお、電解工程部56の上流側または下流側に、貫通孔形成工程を行う貫通孔形成工程部、および/または、粗面化工程を行う粗面化工程部を有していてもよい。また、電解工程部56は、電解工程に加えて、貫通孔形成工程、および/または、粗面化工程を実施してもよい。 Note that, on the upstream side or the downstream side of the electrolytic process unit 56, a through hole forming process unit for performing a through hole forming step and / or a roughening process unit for performing a roughening process may be provided. Further, the electrolysis step unit 56 may carry out a through hole forming step and / or a roughening step in addition to the electrolysis step.
 また、製造装置50においては、長尺なアルミニウム基材1を用いて各工程をRtoRで実施するものとしたが、これに限定されず、枚葉状のアルミニウム基材1を用いて各工程を実施してもよい。また、各工程を別の装置で実施してもよい。 Further, in the manufacturing apparatus 50, each step is carried out by RtoR using a long aluminum base material 1, but the present invention is not limited to this, and each step is carried out using a single-wafer-shaped aluminum base material 1. You may. Moreover, each step may be carried out by another apparatus.
[集電体]
 上述のとおり、本発明の集電体用アルミニウム部材は、蓄電デバイス用集電体(以下、「集電体」ともいう)として利用可能である。
 集電体は、島状の陽極酸化皮膜を有することにより、電極材料との密着向上と低抵抗を両立可能になるため、内部抵抗の削減に寄与するとともに、長期間、多くの回数の充放電を行った場合でも、電極材料(活物質)と集電体との部分的な剥離を抑制できる。
[Current collector]
As described above, the aluminum member for a current collector of the present invention can be used as a current collector for a power storage device (hereinafter, also referred to as a “current collector”).
By having an island-shaped anodic oxide film, the current collector can achieve both improved adhesion to the electrode material and low resistance, which contributes to the reduction of internal resistance and is charged and discharged many times over a long period of time. Even when the above is performed, partial peeling between the electrode material (active material) and the current collector can be suppressed.
<電極材料(活物質)>
 活物質としては特に限定はなく、従来の蓄電デバイスにおいて用いられる公知の活物質が利用可能である。
 具体的には、集電体用アルミニウム部材を正極の集電体として用いる場合の、活物質および活物質層に含有していてもよい導電材、結着剤、溶媒等については、特開2012-216513号公報の[0077]~[0088]段落に記載された材料を適宜採用することができ、その内容は本明細書に参照として取り込まれる。
 また、集電体用アルミニウム部材を負極の集電体として用いる場合の、活物質については、特開2012-216513号公報の[0089]段落に記載された材料を適宜採用することができ、その内容は本明細書に参照として取り込まれる。
<Electrode material (active material)>
The active material is not particularly limited, and known active materials used in conventional power storage devices can be used.
Specifically, when the aluminum member for a current collector is used as the current collector of the positive electrode, the conductive material, the binder, the solvent and the like which may be contained in the active material and the active material layer are described in JP-A-2012. The materials described in paragraphs [0077] to [0088] of the publication No. 216513 can be appropriately adopted, and the contents thereof are incorporated herein by reference.
Further, when the aluminum member for a current collector is used as the current collector of the negative electrode, the material described in paragraph [089] of JP2012-216513A can be appropriately adopted as the active material. The content is incorporated herein by reference.
[正極]
 本発明の集電体用アルミニウム部材を集電体として用いた正極は、集電体用アルミニウム部材を正極に用いた正極集電体と、正極集電体の表面に形成される正極活物質を含む層(正極活物質層)とを有する正極である。
 ここで、上記正極活物質や、上記正極活物質層に含有していてもよい導電材、結着剤、溶媒等については、特開2012-216513号公報の[0077]~[0088]段落に記載された材料を適宜採用することができ、その内容は本明細書に参照として取り込まれる。
[Positive electrode]
The positive electrode using the aluminum member for a current collector of the present invention as a current collector is a positive electrode current collector using the aluminum member for a current collector as a positive electrode and a positive electrode active material formed on the surface of the positive electrode current collector. It is a positive electrode having a layer containing (positive electrode active material layer).
Here, the positive electrode active material, the conductive material, the binder, the solvent and the like which may be contained in the positive electrode active material layer are described in paragraphs [0077] to [0088] of JP2012-216513A. The materials described may be adopted as appropriate and their contents are incorporated herein by reference.
[負極]
 本発明の集電体用アルミニウム部材を集電体として用いた負極は、集電体用アルミニウム部材を負極に用いた負極集電体と、負極集電体の表面に形成される負極活物質を含む層とを有する負極である。
 ここで、上記負極活物質については、特開2012-216513号公報の[0089]段落に記載された材料を適宜採用することができ、その内容は本明細書に参照として取り込まれる。
[Negative electrode]
The negative electrode using the aluminum member for the current collector of the present invention as the current collector is a negative electrode current collector using the aluminum member for the current collector as the negative electrode and a negative electrode active material formed on the surface of the negative electrode current collector. It is a negative electrode having a layer containing it.
Here, as the negative electrode active material, the material described in paragraph [089] of JP2012-216513A can be appropriately adopted, and the content thereof is incorporated as a reference in the present specification.
[蓄電デバイス]
 本発明の集電体用アルミニウム部材を集電体として利用する電極は、リチウムイオンバッテリー、リチウムイオンキャパシタ、電気二重層キャパシタ、半固体電池、固体電池、および、非水電解液を使用する二次電池等の蓄電デバイスの正極あるいは負極として用いることができる。
 ここで、蓄電デバイス(特に、二次電池)の具体的な構成や適用される用途については、特開2012-216513号公報の[0090]~[0123]段落に記載された材料や用途を適宜採用することができ、その内容は本明細書に参照として取り込まれる。
[Power storage device]
The electrode using the aluminum member for the current collector of the present invention as a current collector is a secondary using a lithium ion battery, a lithium ion capacitor, an electric double layer capacitor, a semi-solid battery, a solid battery, and a non-aqueous electrolyte solution. It can be used as a positive electrode or a negative electrode of a power storage device such as a battery.
Here, regarding the specific configuration of the power storage device (particularly, the secondary battery) and the applicable use, the materials and uses described in paragraphs [0090] to [0123] of JP2012-216513A can be appropriately used. It can be adopted and its contents are incorporated herein by reference.
 〔電気二重層キャパシタ〕
 電気二重層キャパシタは、電気二重層を誘電体とした、対面電極のコンデンサ構造をしたキャパシタである。電気二重層は、固体と液体との間で自発的に生じ、充電によって、電子またはホールが互いに引き合って整列している状態である。電気二重層キャパシタの具体的な構成については、例えば、特開2020-064971号公報等に記載されている。
 電気二重層キャパシタの正極および/または負極の集電体として本発明の集電体用アルミニウム部材を用いることができる。
[Electric double layer capacitor]
The electric double layer capacitor is a capacitor having an electric double layer as a dielectric and having a capacitor structure of facing electrodes. An electric double layer is a state in which electrons or holes are attracted to each other and aligned by charging, which occurs spontaneously between a solid and a liquid. A specific configuration of the electric double layer capacitor is described in, for example, Japanese Patent Application Laid-Open No. 2020-064971.
The aluminum member for a current collector of the present invention can be used as the current collector of the positive electrode and / or the negative electrode of the electric double layer capacitor.
 〔リチウムイオンキャパシタ〕
 リチウムイオンキャパシタは、一般的な電気二重層キャパシタの原理を使いながら負極にリチウムイオンをドープしたものである。リチウムイオンキャパシタの具体的な構成については、例えば、国際公開第2016/084704号等に記載されている。
 リチウムイオンキャパシタの正極および/または負極の集電体として本発明の集電体用アルミニウム部材を用いることができる。
[Lithium-ion capacitor]
A lithium ion capacitor is a negative electrode doped with lithium ions while using the principle of a general electric double layer capacitor. The specific configuration of the lithium ion capacitor is described in, for example, International Publication No. 2016/084704 and the like.
The aluminum member for a current collector of the present invention can be used as the current collector of the positive electrode and / or the negative electrode of the lithium ion capacitor.
 〔固体電池〕
 固体電池は、陽極と陰極間のイオンの伝導を固体の電解質が担う電池である。固体電池の具体的な構成については、例えば、特開2020-123538号公報等に記載されている。
 固体電池の正極および/または負極の集電体として本発明の集電体用アルミニウム部材を用いることができる。
[Solid-state battery]
A solid-state battery is a battery in which a solid electrolyte is responsible for conducting ions between the anode and the cathode. The specific configuration of the solid-state battery is described in, for example, Japanese Patent Application Laid-Open No. 2020-1235338.
The aluminum member for a current collector of the present invention can be used as the positive electrode and / or the current collector of the negative electrode of the solid-state battery.
 〔半固体電池〕
 半固体電池は、陽極と陰極間のイオンの伝導を半固体(ゲル状、粘土状)の電解質が担う電池である。半固体電池の具体的な構成については、米国特許第9484569号等に記載されている。
 半固体電池の正極および/または負極の集電体として本発明の集電体用アルミニウム部材を用いることができる。
[Semi-solid state battery]
A semi-solid state battery is a battery in which a semi-solid (gel-like or clay-like) electrolyte is responsible for the conduction of ions between the anode and the cathode. The specific configuration of the semi-solid state battery is described in US Pat. No. 4,948,569 and the like.
The aluminum member for a current collector of the present invention can be used as the positive electrode and / or the current collector of the negative electrode of the semi-solid state battery.
 〔非水電解液を使用する二次電池〕
 非水電解液を使用する二次電池は、陽極と陰極間の電解液として非水形の電解液を使用する二次電池である。非水電解液を使用する二次電池の具体的な構成については、特開2017-068978号公報等に記載されている。
 非水電解液を使用する二次電池の正極および/または負極の集電体として本発明の集電体用アルミニウム部材を用いることができる。
[Secondary battery using non-aqueous electrolyte]
A secondary battery that uses a non-aqueous electrolytic solution is a secondary battery that uses a non-aqueous electrolytic solution as the electrolytic solution between the anode and the cathode. A specific configuration of a secondary battery using a non-aqueous electrolytic solution is described in Japanese Patent Application Laid-Open No. 2017-068978 and the like.
The aluminum member for a current collector of the present invention can be used as a current collector for the positive electrode and / or the negative electrode of a secondary battery using a non-aqueous electrolytic solution.
 以下に実施例に基づいて本発明をさらに詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す実施例により限定的に解釈されるべきものではない。 The present invention will be described in more detail below based on examples. The materials, amounts used, ratios, treatment contents, treatment procedures, etc. shown in the following examples can be appropriately changed as long as they do not deviate from the gist of the present invention. Therefore, the scope of the present invention should not be construed as limiting by the examples shown below.
[集電体用アルミニウム部材の作製]
 アルミニウム基材として厚み20μmの合金番号1085または1N30のアルミニウム基材を用いて、以下に示す電解処理ならびに部分除去処理または皮膜除去処理のいずれかを実施して集電体用アルミニウム部材である集電体A~集電体Sを作製した。集電体F~集電体Oが本発明の実施例に相当するものである。
[Manufacturing of aluminum members for current collectors]
Using an aluminum base material having an alloy number of 1085 or 1N30 having a thickness of 20 μm as the aluminum base material, one of the following electrolytic treatments and partial removal treatments or film removal treatments is carried out to collect electricity, which is an aluminum member for a current collector. Body A to current collector S were produced. The current collector F to the current collector O correspond to the embodiment of the present invention.
 <電解処理A>
 硝酸20g/l、硫酸20g/l含有の水溶液(液温50℃)を用いて、アルミニウム基材を陽極として電解処理を施し、アルミニウム基材の表面に陽極酸化皮膜を形成した。なお、電解処理は直流電源で行った。また、電解処理の条件は、直流電流密度5A/dm2、直流電圧8V、印加時間30秒とした。この電解処理により形成される陽極酸化皮膜は直径1~30nmの微細孔を有する。
<Electrolysis treatment A>
An aqueous solution containing 20 g / l of nitric acid and 20 g / l of sulfuric acid (liquid temperature 50 ° C.) was subjected to electrolytic treatment using an aluminum substrate as an anode to form an anodic oxide film on the surface of the aluminum substrate. The electrolytic treatment was performed with a DC power supply. The conditions for the electrolytic treatment were a direct current density of 5 A / dm 2 , a direct current voltage of 8 V, and an application time of 30 seconds. The anodic oxide film formed by this electrolytic treatment has fine pores having a diameter of 1 to 30 nm.
 <電解処理B>
 塩酸10g/l含有の水溶液(液温35℃)中で交流電解を行い、表面に粗面を形成した。水洗後、硝酸20g/l、硫酸20g/l含有の水溶液(液温50℃)を用いて、アルミニウム基材を陽極として電解処理を施し、アルミニウム基材の表面に陽極酸化皮膜を形成した。なお、電解処理は直流電源で行った。また、電解処理の条件は、直流電流密度5A/dm2、直流電圧8V、印加時間120秒とした。この電解処理により形成される陽極酸化皮膜は直径1~30nmの微細孔を有する。
<Electrolysis treatment B>
AC electrolysis was performed in an aqueous solution containing 10 g / l of hydrochloric acid (liquid temperature 35 ° C.) to form a rough surface on the surface. After washing with water, an aqueous solution containing 20 g / l of nitric acid and 20 g / l of sulfuric acid (liquid temperature 50 ° C.) was used to perform electrolytic treatment using the aluminum base material as an anode to form an anodic oxide film on the surface of the aluminum base material. The electrolytic treatment was performed with a DC power supply. The conditions for the electrolytic treatment were a direct current density of 5 A / dm 2 , a direct current voltage of 8 V, and an application time of 120 seconds. The anodic oxide film formed by this electrolytic treatment has fine pores having a diameter of 1 to 30 nm.
 <電解処理C>
 硝酸20g/l、硫酸20g/l含有の水溶液(液温50℃)を用いて、アルミニウム基材を陽極として電解処理を施し、アルミニウム基材の表面に陽極酸化皮膜を形成し、アルミニウム基材を貫通する貫通孔を形成した。なお、電解処理は直流電源で行った。また、電解処理の条件は、直流電流密度5A/dm2、直流電圧8V、印加時間120秒とした。この電解処理により形成される陽極酸化皮膜は直径1~30nmの微細孔を有する。
<Electrolysis treatment C>
Using an aqueous solution containing 20 g / l of nitric acid and 20 g / l of sulfuric acid (liquid temperature 50 ° C.), electrolytic treatment is performed using the aluminum base material as an anode to form an anodic oxide film on the surface of the aluminum base material, and the aluminum base material is formed. A through hole was formed to penetrate. The electrolytic treatment was performed with a DC power supply. The conditions for the electrolytic treatment were a direct current density of 5 A / dm 2 , a direct current voltage of 8 V, and an application time of 120 seconds. The anodic oxide film formed by this electrolytic treatment has fine pores having a diameter of 1 to 30 nm.
 <電解処理D>
 硫酸170g/l、Alイオン濃度5%の溶液(液温50℃)を用いて、アルミニウム基材を陽極として電解処理を施し、アルミニウム基材の表面に陽極酸化皮膜を形成した。なお、電解処理は直流電源で行った。また、電解処理の条件は、直流電流密度25A/dm2、直流電圧15V、印加時間16秒とした。
<Electrolysis treatment D>
Using a solution of 170 g / l of sulfuric acid and an Al ion concentration of 5% (liquid temperature 50 ° C.), electrolytic treatment was performed using an aluminum substrate as an anode to form an anodic oxide film on the surface of the aluminum substrate. The electrolytic treatment was performed with a DC power supply. The conditions for the electrolytic treatment were a direct current density of 25 A / dm 2 , a direct current voltage of 15 V, and an application time of 16 seconds.
 <電解処理E>
 硫酸170g/l、Alイオン濃度5%の溶液(液温50℃)を用いて、アルミニウム基材を陽極として電解処理を施し、アルミニウム基材の表面に陽極酸化皮膜を形成した。なお、電解処理は直流電源で行った。また、電解処理の条件は、直流電流密度5A/dm2、直流電圧3V、印加時間27秒とした。なお、電解処理後、部分除去処理を行わない場合は、水洗および乾燥を行った。
<Electrolysis treatment E>
Using a solution of 170 g / l of sulfuric acid and an Al ion concentration of 5% (liquid temperature 50 ° C.), electrolytic treatment was performed using an aluminum substrate as an anode to form an anodic oxide film on the surface of the aluminum substrate. The electrolytic treatment was performed with a DC power supply. The conditions for the electrolytic treatment were a direct current density of 5 A / dm 2 , a direct current voltage of 3 V, and an application time of 27 seconds. After the electrolytic treatment, when the partial removal treatment was not performed, washing with water and drying were performed.
 <電解処理F>
 硫酸濃度30%の溶液(液温0℃)を用いて、アルミニウム基材を陽極として電解処理を施し、アルミニウム基材の表面に陽極酸化皮膜を形成した。なお、電解処理は直流電源で行った。また、電解処理の条件は、直流電流密度3A/dm2、直流電圧50V、印加時間30分を2回とした。なお、電解処理後、水洗および乾燥を行った。
<Electrolysis treatment F>
Using a solution having a sulfuric acid concentration of 30% (liquid temperature 0 ° C.), electrolytic treatment was performed using an aluminum substrate as an anode to form an anodic oxide film on the surface of the aluminum substrate. The electrolytic treatment was performed with a DC power supply. The conditions for the electrolytic treatment were a direct current density of 3 A / dm 2 , a direct current voltage of 50 V, and an application time of 30 minutes twice. After the electrolytic treatment, it was washed with water and dried.
 <部分除去処理A>
 NaOHを75g/l含有する水溶液(液温35℃)で表面を5秒間洗浄した。その後、水洗、酸洗および水洗を行って乾燥した。
<Partial removal process A>
The surface was washed for 5 seconds with an aqueous solution containing 75 g / l of NaOH (liquid temperature 35 ° C.). Then, it was washed with water, pickled and washed with water and dried.
 <部分除去処理B>
 NaOHを75g/l含有する水溶液(液温35℃)で表面を10秒間洗浄した。その後、水洗、酸洗および水洗を行って乾燥した。
<Partial removal process B>
The surface was washed for 10 seconds with an aqueous solution containing 75 g / l of NaOH (liquid temperature 35 ° C.). Then, it was washed with water, pickled and washed with water and dried.
 <部分除去処理C>
 NaOHを75g/l含有する水溶液(液温25℃)で表面を5秒間洗浄した。その後、水洗、酸洗および水洗を行って乾燥した。
<Partial removal process C>
The surface was washed for 5 seconds with an aqueous solution containing 75 g / l of NaOH (liquid temperature 25 ° C.). Then, it was washed with water, pickled and washed with water and dried.
 <部分除去処理D>
 1組の金属ロール(ハードクロムメッキ仕上げ、直径50mm、通過速度10m/s)を通過させた後、表面を回転するブラシロールでこすって陽極酸化皮膜を部分除去した。その後、酸洗、水洗を行って乾燥した。
<Partial removal process D>
After passing through a set of metal rolls (hard chrome plated finish, diameter 50 mm, passing speed 10 m / s), the surface was rubbed with a rotating brush roll to partially remove the anodic oxide film. Then, it was pickled and washed with water and dried.
 <皮膜除去処理A>
 30℃のリン酸に30分間浸漬して陽極酸化皮膜を除去した。その後、水洗および乾燥した。
<Film removal treatment A>
The anodic oxide film was removed by immersing in phosphoric acid at 30 ° C. for 30 minutes. Then it was washed with water and dried.
 <皮膜除去処理B>
 NaOH5%(50g/l),アルミニウムイオン濃度0.5%(5g/l)の溶液(液温35℃)中に3秒間浸漬して陽極酸化皮膜を除去した。その後、水洗および乾燥した。
<Film removal treatment B>
The anodic oxide film was removed by immersing in a solution (liquid temperature 35 ° C.) of NaOH 5% (50 g / l) and aluminum ion concentration 0.5% (5 g / l) for 3 seconds. Then it was washed with water and dried.
 各集電体用アルミニウム部材の作製後、上述の方法で陽極酸化皮膜の被覆率、微細孔の数密度、平均径、および、陽極酸化皮膜の厚さを測定した。
 各集電体用アルミニウム部材における処理、ならびに、陽極酸化皮膜の被覆率、厚さ、微細孔の数密度および平均径を表1に示す。
 また、集電体FのSEM画像を図11に示し、集電体SのSEM画像を図12に示す。比較例である集電体Sの陽極酸化皮膜214は実施例である集電体Fの陽極酸化皮膜14に比べて微細孔が不均質であることがわかる。
After manufacturing the aluminum member for each current collector, the coverage of the anodic oxide film, the number density of micropores, the average diameter, and the thickness of the anodic oxide film were measured by the above-mentioned method.
Table 1 shows the treatment in each current collector aluminum member, the coverage, the thickness, the number density of micropores, and the average diameter of the anodic oxide film.
Further, the SEM image of the current collector F is shown in FIG. 11, and the SEM image of the current collector S is shown in FIG. It can be seen that the anodic oxide film 214 of the current collector S, which is a comparative example, has inhomogeneous micropores as compared with the anodic oxide film 14 of the current collector F, which is an example.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[実施例1~10、比較例1~9]
 作製した集電体用アルミニウム部材(集電体A~集電体S)に下記正極用スラリーを塗布して活物質層を形成し、密着性および抵抗を評価した。
[Examples 1 to 10, Comparative Examples 1 to 9]
The following slurry for a positive electrode was applied to the produced aluminum members for a current collector (current collectors A to S) to form an active material layer, and the adhesion and resistance were evaluated.
<正極用スラリーの作製>
 正極用スラリーとして下記材料を準備した。
・正極活物質:やし殻原料の粉末状活性炭(YP:(株)クラレ製)
                            88質量%
・バインダ:アクリル系樹脂(AZ-9129:日本ゼオン(株)製)
                             3質量%
・導電助剤:アセチレンブラック
(デンカブラック:電気化学工業(株)製)        15質量%
・増粘剤:CMC(ダイセルファインケム(株)製)      1質量%
・水                         220質量%
<Preparation of slurry for positive electrode>
The following materials were prepared as a slurry for the positive electrode.
・ Positive electrode active material: Powdered activated carbon as a raw material for coconut shell (YP: manufactured by Kuraray Co., Ltd.)
88% by mass
-Binder: Acrylic resin (AZ-9129: Made by Nippon Zeon Corporation)
3% by mass
・ Conductive aid: Acetylene Black (Denka Black: manufactured by Denki Kagaku Kogyo Co., Ltd.) 15% by mass
・ Thickener: CMC (manufactured by Daicel FineChem Co., Ltd.) 1% by mass
・ Water 220% by mass
 バインダ以外の材料と水を、自公転可変式撹拌機(マゼルスター:クラボウ(株)製)で攪拌した。次に、高速ホモジナイザーで攪拌した。最後にバインダーを添加し、再び自公転可変式撹拌機で攪拌し、正極用スラリーを得た。 Materials other than the binder and water were stirred with a self-revolving variable stirrer (Mazelstar: manufactured by Kurabo Industries Ltd.). Next, the mixture was stirred with a high-speed homogenizer. Finally, a binder was added, and the mixture was stirred again with a self-revolving variable stirrer to obtain a slurry for a positive electrode.
<正極用スラリーの塗布>
 正極用スラリーを集電体用アルミニウム部材の片面に、乾燥後の活性炭質量が3mg/cm2になるように塗布した。塗布乾燥後にカレンダーロールを通すことで表面を平滑化した。以上により、集電体用アルミニウム部材の片面に活物質層を形成した。
<Application of slurry for positive electrode>
The slurry for the positive electrode was applied to one side of the aluminum member for the current collector so that the mass of activated carbon after drying was 3 mg / cm 2 . The surface was smoothed by passing it through a calendar roll after application and drying. As a result, an active material layer was formed on one side of the current collector aluminum member.
 なお、比較例2については、正極用スラリーを塗布する前に、以下のようにして導電性材料の下塗り層を形成した。 In Comparative Example 2, the undercoat layer of the conductive material was formed as follows before applying the slurry for the positive electrode.
<下塗り層の形成>
 黒鉛材料(バニーハイト:日本黒鉛工業(株)製)をアプリケータで厚み3μmになるよう塗布を行い、乾燥温度100℃で10分間乾燥し、下塗り層を形成した。
<Formation of undercoat layer>
A graphite material (Bunny Height: manufactured by Nippon Graphite Industry Co., Ltd.) was applied with an applicator to a thickness of 3 μm, and dried at a drying temperature of 100 ° C. for 10 minutes to form an undercoat layer.
[評価]
<密着性>
 活物質層を形成した集電体用アルミニウム部材について、集電体用アルミニウム部材と活物質層の密着性評価を目的に、剥離試験を実施した。
 剥離試験は(株)イマダ製の剥離試験機を使用した。剥離試験は、デジタルフォースゲージ162を縦型試験台に取り付け、90度剥離試験用スライドテーブル152上の貼り付け台154に、活物質層側を上にして試料Sを両面テープ156で固定し、活物質層に張り付けた粘着テープ158を引きはがす際の荷重を測定する方法で行った。集電体用アルミニウム部材と活物質層との界面の密着性を評価するため、十分な粘着力を有する幅25mmの粘着テープを使用した。評価は、引きはがし中のデジタルフォースゲージ162で測定される荷重の平均値で行った。図13に剥離試験評価装置の模式図を示す。
[evaluation]
<Adhesion>
A peeling test was conducted on the current collector aluminum member on which the active material layer was formed for the purpose of evaluating the adhesion between the current collector aluminum member and the active material layer.
For the peeling test, a peeling tester manufactured by Imada Co., Ltd. was used. In the peeling test, the digital force gauge 162 was attached to a vertical test table, and the sample S was fixed to the sticking table 154 on the 90-degree peeling test slide table 152 with double-sided tape 156 with the active material layer side facing up. The method of measuring the load when peeling off the adhesive tape 158 attached to the active material layer was performed. In order to evaluate the adhesion of the interface between the aluminum member for the current collector and the active material layer, an adhesive tape having a width of 25 mm having sufficient adhesive strength was used. The evaluation was performed by the average value of the loads measured by the digital force gauge 162 during peeling. FIG. 13 shows a schematic diagram of the peeling test evaluation device.
<抵抗>
 抵抗評価は、図14に示すように、活物質層106を形成した各集電体用アルミニウム部材10を、加圧式導電専用端子102および加圧式絶縁端子104で挟んで、抵抗測定機100(日置株式会社製 HIOKI3541)で抵抗を1サンプルN=7で測定した。
 初期抵抗評価は、評価前に、DRYBOXで24時間以上保管してから評価を行った。
 次に強制経時抵抗評価を行った。各集電体用アルミニウム部材を、温度30℃湿度80%環境で保管し、2週間後に前述の方法で電極用スラリーの塗布、乾燥を行い抵抗評価を行った。同様に温度30℃湿度80%環境で4週間保管後の抵抗評価を行った。
 結果を表2に示す。
<Resistance>
In the resistance evaluation, as shown in FIG. 14, each current collector aluminum member 10 having the active material layer 106 formed thereof is sandwiched between the pressurized conductive dedicated terminal 102 and the pressurized insulating terminal 104, and the resistance measuring machine 100 (Hioki). The resistance was measured with 1 sample N = 7 with HIOKI3541) manufactured by HIOKI Co., Ltd.
The initial resistance evaluation was performed after storing in DRYBOX for 24 hours or more before the evaluation.
Next, forced time resistance evaluation was performed. Each current collector aluminum member was stored in an environment of temperature 30 ° C. and humidity 80%, and after 2 weeks, the electrode slurry was applied and dried by the above-mentioned method to evaluate the resistance. Similarly, resistance evaluation was performed after storage for 4 weeks in an environment of temperature 30 ° C. and humidity 80%.
The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2から本発明の実施例1~10は、比較例1~9に比べて高い密着性と低い抵抗とを両立できることがわかる。 From Table 2, it can be seen that Examples 1 to 10 of the present invention can achieve both high adhesion and low resistance as compared with Comparative Examples 1 to 9.
 比較例1、2、6は表面処理を行っていないため、集電箔の表面が平滑で、活物質層との密着が弱く、剥離強度が小さい。比較例2はカーボン下塗りを行ったことで、活物質層との密着が若干改善しているが十分ではない。比較例7は表面に凹凸が形成されているが、密着を向上できるレベルにはなかった。比較例7は、特許文献3に準じる方法で作製したものであるが、この方法で作製した集電体用アルミニウム部材は表面に凹凸が形成されるが、密着性に関しては陽極酸化皮膜の微細孔の効果には及ばないことを示している。 Since the surfaces of Comparative Examples 1, 2 and 6 were not treated, the surface of the current collector foil was smooth, the adhesion to the active material layer was weak, and the peel strength was small. In Comparative Example 2, the adhesion with the active material layer was slightly improved by applying the carbon undercoat, but it was not sufficient. In Comparative Example 7, unevenness was formed on the surface, but it was not at a level where adhesion could be improved. Comparative Example 7 was produced by a method according to Patent Document 3, and the aluminum member for a current collector produced by this method has irregularities on the surface, but the fine pores of the anodic oxide film are obtained in terms of adhesion. It shows that it does not reach the effect of.
 比較例3、4、5は表面全面に陽極酸化皮膜が残っている構成である。その表面にはマイクロポア構造があるため、密着性は、表面が平滑な集電箔に比べて優れるが、抵抗が非常に悪くなった。これは特許文献4が示す陽極酸化皮膜を設けた集電体用アルミニウム部材の抵抗が本発明の集電体用アルミニウム部材に及ばないことを意味する。 Comparative Examples 3, 4, and 5 have a configuration in which an anodic oxide film remains on the entire surface. Since the surface has a micropore structure, the adhesion is superior to that of the current collector foil having a smooth surface, but the resistance is very poor. This means that the resistance of the aluminum member for a current collector provided with the anodic oxide film shown in Patent Document 4 does not reach that of the aluminum member for a current collector of the present invention.
 比較例8は、SEM観察の結果、微細孔を持つ陽極酸化皮膜が全面に残っているため、剥離強度は高いが比較例3,4,5同様、抵抗が極端に悪い結果であった。比較例9はSEM観察の結果、微細孔を持たない陽極酸化皮膜が表面の約30%を覆っていた。微細孔を持たないため、密着性が低く、抵抗も劣ることが分かった。抵抗が劣る理由は自然酸化皮膜が厚いためと考えられる。 As a result of SEM observation, in Comparative Example 8, since the anodic oxide film having fine pores remained on the entire surface, the peel strength was high, but the resistance was extremely poor as in Comparative Examples 3, 4 and 5. As a result of SEM observation in Comparative Example 9, an anodic oxide film having no micropores covered about 30% of the surface. It was found that the adhesion was low and the resistance was inferior because it did not have micropores. The reason why the resistance is inferior is considered to be that the natural oxide film is thick.
 本発明の実施例は、各電解処理で形成した表面の陽極酸化皮膜を部分的に除去したことで、アルミニウム基材が露出するため、抵抗を低くすることができることがわかる。これらは表面処理無しの比較例1、6に比べても抵抗が小さく良好である。これは表面処理無しのアルミニウム基材の表面にはアルミニウム基材の圧延工程で形成された自然酸化皮膜が存在するため、抵抗が大きくなるものと考えられるが、本発明の実施例では、陽極酸化皮膜を部分除去した後に露出するアルミニウム基材の表面に形成される自然酸化皮膜が非常に薄いため、抵抗を低くできると考えられる。 In the embodiment of the present invention, it can be seen that the resistance can be lowered because the aluminum base material is exposed by partially removing the anodic oxide film on the surface formed by each electrolytic treatment. These have smaller resistance and are better than Comparative Examples 1 and 6 without surface treatment. This is because the natural oxide film formed in the rolling process of the aluminum base material is present on the surface of the aluminum base material without surface treatment, so that the resistance is considered to be large. Since the natural oxide film formed on the surface of the aluminum base material exposed after the film is partially removed is very thin, it is considered that the resistance can be lowered.
 実施例の抵抗は、一般的に活物質層と集電体用アルミニウム部材の間の抵抗を低減する目的で行われる導電性カーボンの下塗りを行った集電箔(比較例2)と同等のレベルであった。
 集電体用アルミニウム部材は高湿保管を行うことで、アルミニウム基材の最表面の自然酸化皮膜が成長し、抵抗が悪化する傾向があるが、本発明の実施例は比較例に比べ高湿保管による抵抗悪化は、同等からそれ以下に抑制できていた。
 なお、実施例7および10は貫通孔を形成しているため、活物質層の一部が孔に入り込み、実施例1に対して密着性がやや向上していると考えられる。
The resistance of the examples is at the same level as that of the current collector foil (Comparative Example 2) coated with conductive carbon, which is generally performed for the purpose of reducing the resistance between the active material layer and the aluminum member for the current collector. Met.
When the aluminum member for a current collector is stored at high humidity, the natural oxide film on the outermost surface of the aluminum base material tends to grow and the resistance tends to deteriorate. However, the examples of the present invention have higher humidity than the comparative examples. The deterioration of resistance due to storage could be suppressed from the same level to less than that.
Since the through holes are formed in Examples 7 and 10, it is considered that a part of the active material layer enters the holes and the adhesion is slightly improved with respect to Example 1.
[実施例11~16、比較例10]
 実施例11~16および比較例10は、活物質層として半固体電池の正極活物質を使ったものである。実施例11~16にはそれぞれ、集電体F~集電体Kを用い、比較例10には、集電体Aを用いた。
 集電体用アルミニウム部材に下記正極用材料を塗布して活物質層を形成し、密着性および抵抗を評価した。
[Examples 11 to 16, Comparative Example 10]
In Examples 11 to 16 and Comparative Example 10, the positive electrode active material of the semi-solid state battery is used as the active material layer. The current collectors F to K were used in Examples 11 to 16, and the current collector A was used in Comparative Example 10.
The following positive electrode material was applied to the aluminum member for the current collector to form an active material layer, and the adhesion and resistance were evaluated.
<正極用材料の作製>
 正極用材料として下記材料を準備した。
・正極活物質:コバルト酸リチウム(LiCoO2)      99質量%
・導電助剤:アセチレンブラック
(デンカブラック:電気化学工業(株)製)          1質量%
 電解液としては、エチレンカーボネートに電解質塩LiPF6を1.5mol/kg添加した電解液を用いた。
<Manufacturing of positive electrode material>
The following materials were prepared as materials for the positive electrode.
-Positive electrode active material: Lithium cobalt oxide (LiCoO 2 ) 99% by mass
・ Conductive aid: Acetylene Black (Denka Black: manufactured by Denki Kagaku Kogyo Co., Ltd.) 1% by mass
As the electrolytic solution, an electrolytic solution in which 1.5 mol / kg of the electrolyte salt LiPF 6 was added to ethylene carbonate was used.
 正極活物質と導電助剤とを混錬し、電解液を加え、更に混錬することで粘土状の正極用材料を用意した。 A clay-like positive electrode material was prepared by kneading the positive electrode active material and the conductive auxiliary agent, adding an electrolytic solution, and further kneading.
<正極用材料の塗布>
 正極用材料を集電体用アルミニウム部材の片面に塗布した。塗布は、長さ150mm、幅70mmに切った各集電体用アルミニウム部材の上に、長さ75m、幅50mmの四角い開口を設けた厚さ2mmのステンレス板を載置し、このステンレス板の開口部に活物質を入れ、スキージを使用し、塗布厚が約2mmになるようして行った。
<Application of positive electrode material>
The material for the positive electrode was applied to one side of the aluminum member for the current collector. For application, a stainless steel plate with a thickness of 2 mm and a square opening with a length of 75 m and a width of 50 mm is placed on each aluminum member for a current collector cut into a length of 150 mm and a width of 70 mm. The active material was put in the opening, and a squeegee was used so that the coating thickness was about 2 mm.
[評価]
<密着性>
 正極用材料を塗布した集電体用アルミニウム部材を、直径50mmのステンレス製の丸棒に、活物質層が外側になるよう巻き付け、巻き戻し、活物質層と集電体用アルミニウム部材との剥離の状況を目視で観察した。
 目視上、活物質層と集電体用アルミニウム部材の界面で剥離が起こらなかった場合をA、剥離が起こった場合をBと評価した。
 結果を表3に示す。
[evaluation]
<Adhesion>
The aluminum member for the current collector coated with the material for the positive electrode is wound around a round bar made of stainless steel having a diameter of 50 mm so that the active material layer is on the outside, rewound, and the active material layer and the aluminum member for the current collector are peeled off. The situation was visually observed.
Visually, the case where the peeling did not occur at the interface between the active material layer and the aluminum member for the current collector was evaluated as A, and the case where the peeling occurred was evaluated as B.
The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3の結果から、実施例は剥離が発生せず、密着性が高いことがわかる。 From the results in Table 3, it can be seen that in the examples, peeling did not occur and the adhesion was high.
[実施例17~19、比較例11]
 実施例17~19および比較例11は、半固体電池のセルを作製したものである。実施例17~19には、正極として、実施例11~13で作製した正極を用い、比較例11には、正極として、比較例10で作製した正極を用いた。また、負極は以下のようにして作製した。
[Examples 17 to 19, Comparative Example 11]
In Examples 17 to 19 and Comparative Example 11, cells of a semi-solid-state battery were produced. In Examples 17 to 19, the positive electrodes prepared in Examples 11 to 13 were used as the positive electrodes, and in Comparative Example 11, the positive electrodes prepared in Comparative Example 10 were used. The negative electrode was manufactured as follows.
<負極の作製>
 負極用材料として下記材料を準備した。
・負極活物質:グラファイト                99質量%
・導電助剤:アセチレンブラック
(デンカブラック 電気化学工業(株)製)          1質量%
 電解液としては、エチレンカーボネートに電解質塩LiPF6を1.5mol/kg添加した電解液を用いた。
<Manufacturing of negative electrode>
The following materials were prepared as materials for the negative electrode.
-Negative electrode active material: Graphite 99% by mass
-Conductive aid: Acetylene Black (manufactured by Denka Black Electrochemical Industry Co., Ltd.) 1% by mass
As the electrolytic solution, an electrolytic solution in which 1.5 mol / kg of the electrolyte salt LiPF 6 was added to ethylene carbonate was used.
 負極活物質と導電助剤とを混錬し、電解液を加え、更に混錬することで粘土状の負極用材料を用意した。 A clay-like negative electrode material was prepared by kneading the negative electrode active material and the conductive auxiliary agent, adding an electrolytic solution, and further kneading.
 負極用集電体として厚さ10μmの銅箔(電解銅箔を使用)を準備し、この銅箔の片面にスキージで負極用材料を塗布し厚さ約2mmの活物質層を形成して負極を作製した。 A copper foil with a thickness of 10 μm (using an electrolytic copper foil) is prepared as a current collector for the negative electrode, and a negative electrode material is applied to one side of the copper foil with a squeegee to form an active material layer with a thickness of about 2 mm to form a negative electrode. Was produced.
<半固体電池セルの作製>
 タブを溶接したうえで正極と負極を組み合わせパウチに封入し、半固体電池のセルを作製した。
<Manufacturing of semi-solid battery cell>
After welding the tabs, the positive and negative electrodes were combined and sealed in a pouch to prepare a semi-solid-state battery cell.
[評価]
<内部抵抗増加率および容量維持率>
 作製した半固体電池セルを用いて、20℃で1mAの定電流で4.2Vまで充電し、次に3Vまで放電した。この充放電を110回繰り返し、10回目と110回目の時の容量と内部抵抗を記録し、10回目の容量と抵抗をそれぞれ100%としたときの、110回目の内部抵抗増加率、容量維持率を評価した。
 結果を表4に示す。
[evaluation]
<Internal resistance increase rate and capacity maintenance rate>
Using the prepared semi-solid-state battery cell, the battery was charged to 4.2 V at a constant current of 1 mA at 20 ° C., and then discharged to 3 V. This charging / discharging is repeated 110 times, the capacity and internal resistance at the 10th and 110th times are recorded, and the 110th internal resistance increase rate and capacity maintenance rate when the 10th capacity and resistance are set to 100%, respectively. Was evaluated.
The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4から、本発明の実施例は、比較例に比べて、同等以上の容量維持率と内部抵抗増加率であることがわかる。
 以上より本発明の効果は明らかである。
From Table 4, it can be seen that the examples of the present invention have the same or higher capacity retention rate and internal resistance increase rate as compared with the comparative examples.
From the above, the effect of the present invention is clear.
 1 アルミニウム基材
 2 陽極酸化皮膜
 3 貫通孔を有するアルミニウム基材
 4 貫通孔を有する陽極酸化皮膜
 5 貫通孔
 10、10b 集電体用アルミニウム部材
 14 島状の陽極酸化皮膜
 50 製造装置
 52 回転軸
 54 巻取り軸
 56 電界工程部
 58 部分除去工程部
 60 洗浄乾燥工程部
 70 基材ロール
 72 ロール
 100 抵抗測定器
 102 加圧式導電専用端子
 104 加圧式絶縁端子
 106 活物質層
 150 スライドレール
 152 スライドテーブル
 154 貼り付け台
 156 両面テープ
 158 粘着テープ
 160 クランプ
 162 デジタルフォースゲージ
 164 引張装置
 201 アルミニウム基材
 214 陽極酸化皮膜
 S 評価用サンプル
1 Aluminum base material 2 Anodized film 3 Aluminum base material with through holes 4 Anodized film with through holes 5 Through holes 10, 10b Aluminum member for current collector 14 Island-shaped anodized film 50 Manufacturing equipment 52 Rotating shaft 54 Winding shaft 56 Electric field process part 58 Partial removal process part 60 Cleaning and drying process part 70 Base material roll 72 roll 100 Resistance measuring instrument 102 Pressurized conductive dedicated terminal 104 Pressurized insulating terminal 106 Active material layer 150 Slide rail 152 Slide table 154 pasted Attachment 156 Double-sided tape 158 Adhesive tape 160 Clamp 162 Digital force gauge 164 Pulling device 201 Aluminum base material 214 Anodized film S Evaluation sample

Claims (13)

  1.  アルミニウム基材および前記アルミニウム基材上の陽極酸化皮膜を有する集電体用アルミニウム部材であって、
     前記陽極酸化皮膜は、多数の微細孔を有し、
     前記アルミニウム基材の少なくとも一方の表面における、前記陽極酸化皮膜の被覆率が1~80%であり、
     前記陽極酸化皮膜が有する前記微細孔の数密度が600個/μm2以上である集電体用アルミニウム部材。
    An aluminum member for a current collector having an aluminum base material and an anodic oxide film on the aluminum base material.
    The anodic oxide film has a large number of micropores and has a large number of micropores.
    The coverage of the anodic oxide film on at least one surface of the aluminum substrate is 1 to 80%.
    An aluminum member for a current collector having a number density of 600 micropores / μm 2 or more in the anodic oxide film.
  2.  前記陽極酸化皮膜は、前記アルミニウム基材上に島状に存在する、請求項1に記載の集電体用アルミニウム部材。 The aluminum member for a current collector according to claim 1, wherein the anodic oxide film exists in an island shape on the aluminum base material.
  3.  前記微細孔の平均径が1nm~100nmである、請求項1または2に記載の集電体用アルミニウム部材。 The aluminum member for a current collector according to claim 1 or 2, wherein the micropores have an average diameter of 1 nm to 100 nm.
  4.  前記陽極酸化皮膜の厚みが1nm~30nmである、請求項1~3のいずれか一項に記載の集電体用アルミニウム部材。 The aluminum member for a current collector according to any one of claims 1 to 3, wherein the anodic oxide film has a thickness of 1 nm to 30 nm.
  5.  前記アルミニウム基材が、表面に粒状の金属間化合物を有する、請求項1~4のいずれか一項に記載の集電体用アルミニウム部材。 The aluminum member for a current collector according to any one of claims 1 to 4, wherein the aluminum base material has a granular intermetallic compound on the surface.
  6.  前記粒状の金属間化合物を前記アルミニウム基材の表面が、500個/mm2以上有する、請求項5に記載の集電体用アルミニウム部材。 The aluminum member for a current collector according to claim 5, wherein the surface of the aluminum base material has 500 pieces / mm 2 or more of the granular intermetallic compound.
  7.  前記アルミニウム基材の厚さが、5μm~100μmである、請求項1~6のいずれか一項に記載の集電体用アルミニウム部材。 The aluminum member for a current collector according to any one of claims 1 to 6, wherein the thickness of the aluminum base material is 5 μm to 100 μm.
  8.  前記集電体用アルミニウム部材が板状である、請求項1~7のいずれか一項に記載の集電体用アルミニウム部材。 The aluminum member for a current collector according to any one of claims 1 to 7, wherein the aluminum member for a current collector has a plate shape.
  9.  請求項1~8のいずれか一項に記載の集電体用アルミニウム部材を有するリチウムイオンキャパシタ。 A lithium ion capacitor having an aluminum member for a current collector according to any one of claims 1 to 8.
  10.  請求項1~8のいずれか一項に記載の集電体用アルミニウム部材を有する電気二重層キャパシタ。 An electric double layer capacitor having an aluminum member for a current collector according to any one of claims 1 to 8.
  11.  請求項1~8のいずれか一項に記載の集電体用アルミニウム部材を有する半固体電池。 A semi-solid battery having the aluminum member for a current collector according to any one of claims 1 to 8.
  12.  請求項1~8のいずれか一項に記載の集電体用アルミニウム部材を有する固体電池。 A solid-state battery having the aluminum member for a current collector according to any one of claims 1 to 8.
  13.  請求項1~8のいずれか一項に記載の集電体用アルミニウム部材を有する、非水電解液を使用する二次電池。 A secondary battery using a non-aqueous electrolytic solution having the aluminum member for a current collector according to any one of claims 1 to 8.
PCT/JP2021/027114 2020-08-25 2021-07-20 Aluminum member for collectors, lithium ion capacitor, electric double layer capacitor, semi-solid battery, solid-state battery and secondary battery using nonaqueous electrolyte solution WO2022044624A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180051856.XA CN116097478A (en) 2020-08-25 2021-07-20 Aluminum member for current collector, lithium ion capacitor, electric double layer capacitor, semi-solid battery, and secondary battery using nonaqueous electrolyte
JP2022545540A JPWO2022044624A1 (en) 2020-08-25 2021-07-20

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-141506 2020-08-25
JP2020141506 2020-08-25

Publications (1)

Publication Number Publication Date
WO2022044624A1 true WO2022044624A1 (en) 2022-03-03

Family

ID=80355083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/027114 WO2022044624A1 (en) 2020-08-25 2021-07-20 Aluminum member for collectors, lithium ion capacitor, electric double layer capacitor, semi-solid battery, solid-state battery and secondary battery using nonaqueous electrolyte solution

Country Status (3)

Country Link
JP (1) JPWO2022044624A1 (en)
CN (1) CN116097478A (en)
WO (1) WO2022044624A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000243383A (en) * 1999-02-22 2000-09-08 Toshiba Battery Co Ltd Manufacture of lithium secondary battery
KR101195081B1 (en) * 2011-04-29 2012-10-29 한국에너지기술연구원 Carbon coated aluminum current collector with high conductivity and durability and fabrication method thereof
JP2012216513A (en) * 2011-03-29 2012-11-08 Fujifilm Corp Aluminum base material for collector, collector, positive electrode, negative electrode, and secondary battery
JP2014211960A (en) * 2013-04-17 2014-11-13 進和工業株式会社 Current collector material
JP2015053240A (en) * 2013-09-09 2015-03-19 富士フイルム株式会社 Aluminum base material for collector, collector, positive electrode, negative electrode, and secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000243383A (en) * 1999-02-22 2000-09-08 Toshiba Battery Co Ltd Manufacture of lithium secondary battery
JP2012216513A (en) * 2011-03-29 2012-11-08 Fujifilm Corp Aluminum base material for collector, collector, positive electrode, negative electrode, and secondary battery
KR101195081B1 (en) * 2011-04-29 2012-10-29 한국에너지기술연구원 Carbon coated aluminum current collector with high conductivity and durability and fabrication method thereof
JP2014211960A (en) * 2013-04-17 2014-11-13 進和工業株式会社 Current collector material
JP2015053240A (en) * 2013-09-09 2015-03-19 富士フイルム株式会社 Aluminum base material for collector, collector, positive electrode, negative electrode, and secondary battery

Also Published As

Publication number Publication date
CN116097478A (en) 2023-05-09
JPWO2022044624A1 (en) 2022-03-03

Similar Documents

Publication Publication Date Title
JP4993258B2 (en) Aluminum foil for current collector of lithium ion battery and lithium ion battery using the same
JP3581784B2 (en) Copper foil for negative electrode current collector of non-aqueous solvent secondary battery
EP3202957B1 (en) Aluminum plate
JP6044546B2 (en) Method for producing porous aluminum foil, porous aluminum foil, positive electrode current collector for power storage device, electrode for power storage device, and power storage device
Shiraishi et al. Influence of initial surface condition of lithium metal anodes on surface modification with HF
JP2008103132A (en) Aluminum foil for collector of lithium ion cell, and lithium ion cell using it
EP2639341A1 (en) Method for producing aluminium foil
US9514887B2 (en) Aluminum foil with carbonaceous particles dispersed and supported therein
US11527760B2 (en) Aluminum member for electrodes and method of producing aluminum member for electrodes
Nurpeissova et al. Synergistic effect of 3D current collector structure and Ni inactive matrix on the electrochemical performances of Sn-based anodes for lithium-ion batteries
JP6822629B2 (en) Copper foil, its manufacturing method, electrodes containing it, and secondary batteries containing it
CN111225997B (en) Aluminum foil and aluminum member for electrode
WO2022185778A1 (en) Aluminum substrate for collector, capacitor, secondary cell, and method for manufacturing aluminum substrate for collector
WO2022044624A1 (en) Aluminum member for collectors, lithium ion capacitor, electric double layer capacitor, semi-solid battery, solid-state battery and secondary battery using nonaqueous electrolyte solution
Chen et al. Tuning the structures and conductivity of nanoporous TiO2―TiO films through anodizing electrolytes as LIB anodes with ultra-high capacity and excellent cycling performance
KR102534518B1 (en) Aluminum foil, manufacturing method of aluminum foil, current collector, lithium ion capacitor, and lithium ion battery
JP4460055B2 (en) Copper foil for lithium secondary battery electrode and method for producing the same, electrode for lithium secondary battery and lithium secondary battery using the copper foil
JP2006228652A (en) Copper foil for electrode of lithium secondary battery and its manufacturing method, and electrode for lithium secondary battery and lithium secondary battery using the copper foil
WO2021033537A1 (en) Aluminum foil

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21861053

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022545540

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21861053

Country of ref document: EP

Kind code of ref document: A1