KR101195081B1 - Carbon coated aluminum current collector with high conductivity and durability and fabrication method thereof - Google Patents

Carbon coated aluminum current collector with high conductivity and durability and fabrication method thereof Download PDF

Info

Publication number
KR101195081B1
KR101195081B1 KR1020110040872A KR20110040872A KR101195081B1 KR 101195081 B1 KR101195081 B1 KR 101195081B1 KR 1020110040872 A KR1020110040872 A KR 1020110040872A KR 20110040872 A KR20110040872 A KR 20110040872A KR 101195081 B1 KR101195081 B1 KR 101195081B1
Authority
KR
South Korea
Prior art keywords
carbon
aluminum
layer
current collector
pores
Prior art date
Application number
KR1020110040872A
Other languages
Korean (ko)
Inventor
김종휘
이재영
정범균
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Priority to KR1020110040872A priority Critical patent/KR101195081B1/en
Application granted granted Critical
Publication of KR101195081B1 publication Critical patent/KR101195081B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • H01G9/045Electrodes or formation of dielectric layers thereon characterised by the material based on aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Composite Materials (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

PURPOSE: A carbon-coated aluminum current collector is provided to minimize surface resistance between a surface of aluminum and carbon active material, and to able to maximize adhesive strength. CONSTITUTION: A carbon-coated aluminum current collector comprises an oxidation layer comprising a nanostructure with many pores through anode oxidation on a surface of aluminum, a electroplating layer formed by plating after activating the oxidation layer, and a carbon layer formed by a thermal decomposition on the coated layer. The diameter of the pores is 100±50 nm, and the depth is 1-50 micron. The aluminum having the oxidation layer extend the diameter of the pores to 300-500 nm by dipping in a chromic acid solution for 40-50 minutes. [Reference numerals] (AA, CC,FF,GG) Aluminum; (BB) Oxidation of a Positive electrode; (DD) Nickel catalyst electroless plating; (EE) Highly conductive carbon layer CVD

Description

고전기전도성, 고내구성을 갖는 탄소 코팅 알루미늄 집전체 및 그 제조방법 {Carbon coated aluminum current collector with high conductivity and durability and Fabrication Method thereof}Carbon coated aluminum current collector with high conductivity and durability and fabrication method

본 발명은 고전기전도성, 고내구성을 갖는 탄소 코팅 알루미늄 집전체 및 그 제조방법에 관한 것으로, 보다 상세하게는, 알루미늄과 탄소 표면이 서로 배타성을 보이는 문제를 극복하기 위해 두 물질 모두에 친화적일 수 있는 방법을 적용한 고전기전도성, 고내구성을 갖는 탄소 코팅 알루미늄 집전체 및 그 제조방법에 관한 것이다.The present invention relates to a carbon-coated aluminum current collector having a high electroconductivity, high durability, and a method of manufacturing the same, and more particularly, to overcome the problem of aluminum and carbon surfaces showing mutual exclusion. The present invention relates to a carbon coated aluminum current collector having high electroconductivity and high durability, and a method of manufacturing the same.

집전체는 전지 또는 전기화학 커패시터에서 활물질의 전기화학반응으로 생성된 전자를 외부 회로에 전달한다. 집전체는 활물질과의 접촉계면을 통해서 활물질에 생성되는 전자를 받아들이므로 집전체 표면의 모든 부분이 활물질에 강하게 밀착되어 있어야 한다. 다른 한편, 활물질로부터 받아 들인 전자를 최소한의 저항으로 외부 회로에 전달하기 위해서 집전체는 높은 전기전도성을 갖는 것이 바람직하다. 또한, 집전체는 커패시터에서 일어나는 전기화학반응에 대해서 안정적이어야 한다.The current collector transfers electrons generated by the electrochemical reaction of the active material in a battery or an electrochemical capacitor to an external circuit. Since the current collector receives electrons generated in the active material through a contact interface with the active material, all parts of the current collector surface must be strongly adhered to the active material. On the other hand, in order to transfer the electrons received from the active material to the external circuit with minimal resistance, it is preferable that the current collector has high electrical conductivity. In addition, the current collector must be stable to the electrochemical reactions occurring in the capacitor.

리튬이온전지의 양극 그리고 전기화학 커패시터에 사용되는 집전체는 일반적으로 알루미늄 박에 활성탄 분말, 결합제, 도전재를 혼합하여 만든 슬러리를 도포한 후 실온에서 건조하거나 압착하는 방법으로 제조한다. 그러나 현재 이러한 방법으로 제조되는 집전체는 알루미늄과 탄소의 표면에너지의 차이로 인해 상호에 대한 밀착성이 양호하지 않아 시간이 경과하면서 도포된 활물질이 알루미늄 박으로부터 박리되는 문제점이 있다. 또한, 사용되는 결합제가 일반적으로 비전도성이므로 집전체의 전도성을 저하시키는 문제점을 갖는다. 또한, 충전 방전이 일어나는 동안 알루미늄에 높은 산화 전압이 가해지는데 이 과정에서 알루미늄 표면에 부도체인 산화막이 생성되어 집전체의 전기전도성을 감소시키는 문제점이 있다.Current collectors used in the positive electrode and electrochemical capacitor of lithium ion batteries are generally manufactured by applying a slurry made of a mixture of activated carbon powder, a binder, and a conductive material to aluminum foil, followed by drying or pressing at room temperature. However, current collectors manufactured by such a method have a problem in that adhesion between each other is not good due to the difference in surface energy of aluminum and carbon, so that the applied active material is peeled from the aluminum foil over time. In addition, since the binder used is generally nonconductive, there is a problem of lowering the conductivity of the current collector. In addition, a high oxidation voltage is applied to the aluminum during charging and discharging. In this process, an oxide film, which is a non-conductor, is formed on the surface of the aluminum, thereby reducing the electrical conductivity of the current collector.

이러한 종래의 문제점을 해결하기 위하여 집전체에 관한 다음과 같은 발명들이 제시되었다.In order to solve this conventional problem, the following inventions related to the current collector have been proposed.

일본 공개특허공보 제2006-100477호에는 탄소를 피복한 알루미늄을 탄화수소 분위기에 배치하고, 알루미늄 용융온도 이하의 열을 가해 알루미늄 카바이드 개재층을 형성함으로써 탄소 활물질층과 알루미늄 박의 밀착성을 향상시키는 재조방법이 게시되어 있다. 게시된 내용에 따르면 알루미늄 카바이드 게재층으로부터 알루미늄층과 탄소층을 향해 뻗어있는 알루미늄 카바이드 섬모는 탄소층과 알루미늄 표면을 붙잡는 기능을 하며, 표면접착 강도를 향상시키며, 동시에 두 층 사이의 전기 전도통로의 역할을 하는 것으로 설명한다. 그러나, 이러한 종래 기술은 결착력과 전기전도도가 다소 우수하나 공정이 복잡하다는 문제점을 갖는다.Japanese Laid-Open Patent Publication No. 2006-100477 discloses a manufacturing method for improving the adhesion between the carbon active material layer and the aluminum foil by arranging aluminum coated with carbon in a hydrocarbon atmosphere and applying an aluminum melting temperature or less to form an aluminum carbide intervening layer. This is posted. According to the publication, the aluminum carbide cilia extending from the aluminum carbide deposition layer toward the aluminum layer and the carbon layer function to hold the carbon layer and the aluminum surface, improve the surface adhesion strength, and at the same time the electrical conduction path between the two layers Explain that it plays a role. However, this conventional technology has a problem that the binding process and the electrical conductivity are rather excellent but the process is complicated.

미국 등록특허 제5,777,428호에는 플라즈마 스프레이 방법으로 알루미늄을 카본섬유 천에 코팅한 후 코팅된 카본섬유 천을 알루미늄 포일에 300도 정도의 온도에서 열압착하는 방법으로 집전체를 제조하는 방법이 게시되어 있다.U.S. Patent No. 5,777,428 discloses a method of manufacturing a current collector by coating aluminum on a carbon fiber cloth by a plasma spray method and then thermally compressing the coated carbon fiber cloth on an aluminum foil at a temperature of about 300 degrees.

일본 공개특허공보 제2009-123664호에는 알루미늄 표면에 있는 산화물을 제거한 후 전도성이 있는 티타늄 카바이드를 알루미늅 박에 고속 스프레이하여 분자 규모로 알루미늄 속에 확산되어 있는 접합층을 형성함으로써 활물질과의 결합력이 우수하며, 표면 산화물의 형성을 억제시켜 내구성을 개선한 집전체의 제조방법이 개시되어 있다.Japanese Laid-Open Patent Publication No. 2009-123664 discloses excellent bonding strength with an active material by removing an oxide on an aluminum surface and then spraying conductive titanium carbide with aluminium foil at high speed to form a bonding layer diffused in aluminum on a molecular scale. In addition, a method of manufacturing a current collector that suppresses the formation of surface oxides and improves durability is disclosed.

또한, 한국 등록특허공보 제10-0511363호에는 탄소 나노튜브나 탄소 나노섬유와 금속 나노입자 또는 금속 산화물의 혼합물을 알루미늄에 부착한 후 이를 열압착하는 방식으로 제조된 집전체가 개시되어 있다.In addition, Korean Patent Publication No. 10-0511363 discloses a current collector manufactured by attaching a mixture of carbon nanotubes or carbon nanofibers and metal nanoparticles or metal oxides to aluminum and then thermocompressing them.

그러나, 이러한 종래기술에서도 알루미늄 표면과 탄소 표면이 상호 배타적이라는 문제점이 있다.However, such a prior art also has a problem that the aluminum surface and the carbon surface are mutually exclusive.

본 발명은 종래의 기술을 극복하기 위하여 고안된 것으로 기본적으로 화학기상증착(CVD, Chemical Vapor Deposition) 방법을 이용하여 탄소를 알루미늄의 표면에 증착하는 방법을 도입하였다. 알루미늄과 탄소 표면이 서로 배타성을 보이는 문제를 극복하기 위해 두 물질 모두에 친화적이며, 양극 산화를 통해 나노규모로 구조를 제어할 수 있는 양극 산화 알루미늄을 탄소 코팅을 위한 매개체로 사용하는 방법을, CVD 방법의 가장 큰 제한 요소인 알루미늄의 용융점 문제를 극복하기 위해 600℃ 정도의 비교적 낮은 온도에서도 탄소 증착이 일어날 수 있도록 니켈 촉매를 알루미늄 산화물의 표면에 부착하는 방안을 각각 도입하였다. 이 고안을 통해 알루미늄의 표면과 탄소 활물질 사이의 계면 저항을 최소화하고, 접착강도를 극대화할 수 있는 고전기전도성, 고내구성을 갖는 탄소 코팅 알루미늄 집전체 및 그 제조방법을 제공하고자 하였다.The present invention was devised to overcome the conventional technology and basically introduced a method of depositing carbon on the surface of aluminum using a chemical vapor deposition (CVD) method. In order to overcome the problem of aluminum and carbon surfaces being mutually exclusive, CVD method using anodic aluminum oxide as a medium for carbon coating, which is friendly to both materials and can control the structure on a nanoscale through anodization, CVD In order to overcome the melting point problem of aluminum, which is the biggest limitation of the method, a nickel catalyst is attached to the surface of aluminum oxide so that carbon deposition can occur even at a relatively low temperature such as 600 ° C. Through this design, a carbon coated aluminum current collector having high conductivity and high durability, which can minimize the interface resistance between the surface of aluminum and the carbon active material and maximize the adhesive strength, and a method of manufacturing the same.

또한, 본 발명의 목적은, 보다 향상된 전기전도성, 내구성을 갖는 탄소 코팅 알루미늄 집전체 및 그 제조방법을 제공하는 것이다.It is also an object of the present invention to provide a carbon-coated aluminum current collector having improved electrical conductivity and durability, and a method of manufacturing the same.

또한, 본 발명의 목적은, 양극 산화에 의해 표면에 형성된 나노구조물의 공극에 촉매를 부착하여 탄소층을 간단하고 편리하게 형성할 수 고전기전도성, 고내구성을 갖는 탄소 코팅 알루미늄 집전체 및 그 제조방법을 제공하는 것이다.It is also an object of the present invention to attach a catalyst to the pores of nanostructures formed on the surface by anodic oxidation to form a carbon layer simply and conveniently. A carbon coated aluminum current collector having high electroconductivity and high durability, and a method of manufacturing the same. To provide.

본 발명의 목적은, 알루미늄의 표면에 양극산화 방법으로 다수의 공극을 구비한 나노구조체를 포함하는 산화층과; 상기 산화층을 활성화시킨 후 도금에 의해 코팅 형성된 도금층과; 상기 도금층 표면에 열분해 방법에 의해 형성된 탄소층;을 포함하는 것을 특징으로 하는 탄소 코팅 알루미늄 집전체에 의해 달성된다.An object of the present invention, the oxide layer comprising a nanostructure having a plurality of pores on the surface of aluminum by anodizing; A plating layer coated by plating after activating the oxide layer; It is achieved by a carbon-coated aluminum current collector comprising a; carbon layer formed on the surface of the plating layer by a pyrolysis method.

또한, 상기 공극의 지름은 100±50㎚ 범위이며, 깊이는 1~5㎛인 것이 바람직하다.In addition, the diameter of the voids is in the range of 100 ± 50nm, the depth is preferably 1 ~ 5㎛.

또한, 상기 산화층을 갖는 알루미늄을 크롬산 용액에 40~50분 담가두어 상기 공극의 지름을 300~500㎚ 로 확장시킨 것이 바람직하다.Moreover, it is preferable to immerse the aluminum which has the said oxide layer in chromic acid solution for 40 to 50 minutes, and to expand the diameter of the said gap to 300-500 nm.

또한, 0.1~10mM의 염화팔라듐 용액에 1~5분 동안 담가두어 상기 알루미늄의 양극 산화물을 활성화시키는 것이 바람직하다.In addition, it is preferable to soak for 1 to 5 minutes in 0.1-10mM palladium chloride solution to activate the anode oxide of aluminum.

또한, 무전해 니켈 도금액에 담가두어 상기 알루미늄 산화물 표면에 0.05 ~ 0.1㎛ 두께로 상기 도금층을 형성하는 것이 바람직하다.In addition, it is preferable to form the plating layer in the thickness of 0.05 ~ 0.1㎛ on the surface of the aluminum oxide by immersing in an electroless nickel plating solution.

또한, 환원성 가스 분위기 하에서 상온에서 온도를 600~670℃ 범위로 상승시킨 후 4시간±30분 동안 유지시켜 상기 탄소층을 형성하는 것이 바람직하다.In addition, it is preferable to form the carbon layer by maintaining the temperature for 4 hours ± 30 minutes after raising the temperature to 600 ~ 670 ℃ range at room temperature under a reducing gas atmosphere.

또한, 상기 도금층을 이루는 금속은 니켈, 철, 코발트를 포함하는 전이금속 군 중에서 선택되는 것이 바람직하다.In addition, the metal forming the plating layer is preferably selected from the group of transition metals including nickel, iron, and cobalt.

또한, 상기 전이금속이 니켈이 아닌 경우에는 딥핑을 이용하여 상기 알루미늄 산화층에 상기 금속을 부착한 후 수소가 포함된 분위기하에서 열처리를 통해 환원하거나 전기도금을 이용하여 금속을 환원하는 것이 바람직하다.In addition, in the case where the transition metal is not nickel, the metal is attached to the aluminum oxide layer by dipping and then reduced by heat treatment under an atmosphere containing hydrogen, or the metal is reduced by electroplating.

한편, 본 발명의 목적은, (1) 알루미늄 표면에 양극산화 방법으로 다수의 공극을 구비한 나노구조체를 포함하는 산화층을 형성하는 단계와; (2) 상기 산화층을 활성화시킨 후 도금에 의해 도금층을 코팅 형성하는 단계와; (3) 상기 도금층 표면에 열분해 방법에 의해 탄소층을 형성하는 단계;를 포함하는 것을 특징으로 하는 탄소 코팅 알루미늄 집전체 제조 방법에 의해서도 달성된다.On the other hand, an object of the present invention, (1) forming an oxide layer comprising a nanostructure having a plurality of pores on the surface of the aluminum by anodizing; (2) coating the plating layer by plating after activating the oxide layer; (3) forming a carbon layer on the surface of the plating layer by a pyrolysis method; it is also achieved by the carbon coating aluminum current collector manufacturing method comprising a.

또한, 상기 (1)단계에서, 양극산화 방법으로 형성된 다수의 상기 공극을 크롬산 용액에 담가두어 상기 공극의 지름을 확장시키는 단계;를 더 포함하는 것이 바람직하다.In addition, in the step (1), immersing a plurality of the pores formed by the anodizing method in a chromic acid solution to expand the diameter of the pores; preferably further includes.

또한, 상기 (2)단계에서 염화팔라듐 용액에 담가두어 알루미늄 양극 산화층을 활성화시키는 단계;를 더 포함하는 것이 바람직하다.In addition, it is preferable to further include; immersing in a palladium chloride solution in step (2) to activate the aluminum anodized layer.

또한, 무전해 니켈 도금액에 담가두어 상기 알루미늄 산화물 표면에 0.05 ~ 0.1㎛ 두께로 상기 도금층을 형성하는 것이 바람직하다.In addition, it is preferable to form the plating layer in the thickness of 0.05 ~ 0.1㎛ on the surface of the aluminum oxide by immersing in an electroless nickel plating solution.

또한, 상기 (2) 단계에서, 상기 도금층을 이루는 금속은 니켈, 철, 코발트를 포함하는 전이금속 군 중에서 선택되는 것이 바람직하다.In addition, in the step (2), the metal constituting the plating layer is preferably selected from the group of transition metals including nickel, iron, cobalt.

또한, 상기 전이금속이 니켈이 아닌 경우에는 딥핑을 이용하여 상기 알루미늄 산화층에 상기 금속을 부착한 후 수소가 포함된 분위기하에서 열처리를 통해 환원하거나 전기도금을 이용하여 금속을 환원하는 단계;를 더 포함하는 것이 바람직하다.In addition, when the transition metal is not nickel, attaching the metal to the aluminum oxide layer by using dipping, and then reducing the metal by heat treatment in an atmosphere containing hydrogen or reducing the metal by electroplating. It is desirable to.

본 발명에 따르면, 알루미늄의 표면과 탄소 활물질 사이의 계면 저항을 최소화하고, 접착강도를 극대화할 수 있는 고전기전도성, 고내구성을 갖는 탄소 코팅 알루미늄 집전체 및 그 제조방법을 제공할 수 있다.According to the present invention, it is possible to provide a carbon-coated aluminum current collector having a high electroconductivity and high durability, which can minimize the interface resistance between the surface of aluminum and the carbon active material and maximize the adhesive strength, and a method of manufacturing the same.

또한, 보다 향상된 전기전도성, 내구성을 갖는 탄소 코팅 알루미늄 집전체 및 그 제조방법을 제공할 수 있다.In addition, it is possible to provide a carbon coated aluminum current collector having improved electrical conductivity and durability and a method of manufacturing the same.

또한, 양극 산화에 의해 표면에 형성된 나노구조물의 공극에 촉매를 부착하여 탄소층을 간단하고 편리하게 형성할 수 있는 고전기전도성, 고내구성을 갖는 탄소 코팅 알루미늄 집전체 및 그 제조방법을 제공할 수 있다.In addition, a carbon-coated aluminum current collector having high conductivity and high durability, which can easily and conveniently form a carbon layer by attaching a catalyst to pores of nanostructures formed on the surface by anodic oxidation, and a method of manufacturing the same can be provided. .

도 1은 본 발명의 일실시예에 따른 탄소 코팅 알루미늄 집전체의 제조 과정을 나타내는 개략도,
도 2(a) 내지 도 2(h)는 도 1의 제조 과정에 따른 SEM 형상을 나타낸 사진,
도 3은 다양한 실시예 및 비교예에 따른 접촉저항 평가 결과 그래프,
도 4는 실시예1 및 비교예1의 밀착 강도를 비교한 그래프이다.
1 is a schematic view showing a manufacturing process of a carbon coated aluminum current collector according to an embodiment of the present invention,
2 (a) to 2 (h) is a photograph showing the SEM shape according to the manufacturing process of FIG.
3 is a graph showing contact resistance evaluation results according to various examples and comparative examples;
4 is a graph comparing the adhesion strength of Example 1 and Comparative Example 1.

본 발명에 따른 고전기전도성, 고내구성을 갖는 탄소 코팅 알루미늄 집전체 및 그 제조방법에 대하여 구체적으로 도 1 내지 도 4를 참조하여 설명하면 다음과 같다.The carbon-coated aluminum current collector having high electroconductivity and high durability according to the present invention and a manufacturing method thereof will be described in detail with reference to FIGS. 1 to 4.

도 1은 본 발명의 일실시예에 따른 탄소 코팅 알루미늄 집전체의 제조 과정을 나타내는 개략도이고, 도 2(a) 내지 도 2(h)는 도 1의 제조 과정에 따른 SEM 형상을 나타낸 사진이며, 도 3은 다양한 실시예 및 비교예에 따른 접촉저항 평가 결과 그래프이고, 도 4는 실시예1 및 비교예1의 밀착 강도를 비교한 그래프이다.1 is a schematic view showing a manufacturing process of a carbon-coated aluminum current collector according to an embodiment of the present invention, Figure 2 (a) to Figure 2 (h) is a photograph showing the SEM shape according to the manufacturing process of Figure 1, 3 is a graph showing contact resistance evaluation results according to various examples and comparative examples, and FIG. 4 is a graph comparing adhesion strengths of Example 1 and Comparative Example 1. FIG.

본 발명에 따른 고전기전도성, 고내구성을 갖는 탄소 코팅 알루미늄 집전체 및 그 제조방법은 CVD 방법으로 다음 세 가지의 공정 요소들인 첫째, 양극 산화 (Anodization), 둘째, CVD 촉매 부착 (Catalyst Deposition), 셋째, 탄화 수소 분위기 하에서 CVD를 통한 탄소층 증착 (Heat-treatment in gaseous hydrocarbons)을 포함한다.The carbon coated aluminum current collector having high conductivity and high durability according to the present invention and a method for manufacturing the same are CVD methods, which are three process elements: first, anodization, second, CVD catalyst deposition, and third And heat-treatment in gaseous hydrocarbons through CVD under a hydrocarbon atmosphere.

전체적인 제조 공정은 도 1에 개략적으로 도시한 바와 같이, 먼저 양극 산화를 이용하여 300~500㎚ 크기의 공극과 1㎛ 이내의 깊이를 갖는 오목 구조를 갖는 알루미늄이나 알루미늄 산화물의 표면 나노구조체를 제조한다. 그 다음 표면의 공극을 니켈 전구체 용액으로 채우거나 공극 내부의 표면에 무전해 도금을 함으로써 니켈 촉매를 알루미늄에 부착시킨다. 그리고, 메탄 또는 아세틸렌 분위기에서 600~670℃의 온도로 탄소 CVD를 실시하여 알루미늄 구조체의 표면에 니켈 부착물을 촉매로 이용하여 탄소층을 형성시킨다.The overall manufacturing process, as schematically shown in FIG. 1, first uses surface anodic oxidation to produce surface nanostructures of aluminum or aluminum oxide having a concave structure with pores of 300-500 nm size and a depth within 1 μm. . The nickel catalyst is then attached to aluminum by filling the pores on the surface with a nickel precursor solution or by electroless plating the surface inside the pores. Then, carbon CVD is performed at a temperature of 600 to 670 ° C. in a methane or acetylene atmosphere to form a carbon layer using a nickel deposit as a catalyst on the surface of the aluminum structure.

알루미늄 오목 구조 또는 산화물의 나노구조체는 알루미늄박을 니켈 전구체 용액에 담구거나 니켈 무전해 도금시 촉매가 균일하게 도포될 수 있도록 돕는 역할을 하며 알루미늄 산화물이 여러 금속 나노 입자가 안정적으로 부착될 수 있는 담지체의 역할을 한다. 또한 알루미늄 산화물은 알루미늄과 접착성이 우수하며 니켈을 씨앗으로 성장하는 탄소 나노섬유층은 알루미늄 산화물에 잘 부착되어 있으므로 알루미늄 산화물은 서로 잘 붙지 않는 알루미늄과 탄소를 서로 접착시키는 매개물질로 작용한다.Aluminum concave structures or oxide nanostructures serve to immerse aluminum foil in a nickel precursor solution or to uniformly apply the catalyst during nickel electroless plating, and aluminum oxide can be stably attached to various metal nanoparticles. It acts as a delay. In addition, aluminum oxide has excellent adhesion with aluminum, and since the carbon nanofiber layer grown with nickel seeds is well attached to aluminum oxide, aluminum oxide acts as a medium for bonding aluminum and carbon that do not adhere well to each other.

비록 알루미늄 산화물은 부도체로 산화물층을 매개체로 사용할 경우 산화물에 의한 저항이 발생한다는 문제점이 있지만, 알루미늄 산화물의 두께가 얇을 경우, 알루미늄 산화물의 자체 저항에 비해 탄소층과 알루미늄 표면에서 발생하는 계면저항이 휠씬 큰 저항 요소로 작용하므로 알루미늄 산화물을 사용하더라도 위에서 언급한 장점으로 계면 저항의 향상을 기대할 수 있다.Although aluminum oxide has a problem that resistance due to oxide occurs when the oxide layer is used as a non-conductor, when the thickness of the aluminum oxide is thin, the interface resistance generated at the carbon layer and the aluminum surface is lower than that of aluminum oxide itself. Since it acts as a much larger resistance element, even if aluminum oxide is used, the above-mentioned advantages can be expected to improve the interface resistance.

이와 함께 Akinori et al.(한국특허공개 공보 제10-2005-118202, 2005.12.15 참조) 그리고 Wu et al.(Materials Chemistry and Physics, Vol. 117, (2009), p.294-300 참조)은 알루미늄박을 600 ℃의 메탄에 10시간 이상 두었을 경우 알루미늄 산화물층에 100 nm 정도의 탄소와 알루미늄 카바이드로 이루어진 층이 형성된다고 보고하였다. 알루미늄 카바이드는 부도체로써 그 자체로는 저항체로써 작용하나, 알루미늄과 카본을 서로 접착시키는 매개체로 작용함으로써 결과적으로 계면저항을 감소시키는 역할을 하는 것으로 생각된다. 여기서, 알루미늄 카바이드는 부도체로써 그 자체로는 저항체로 작용하나 알루미늄과 카본을 서로 접착시키는 매개체로 작용함으로써 결과적으로 계면저항을 감소시키는 역할을 하는 것으로 판단된다. 이 발명에서는 알루미늄 산화물을 계면저항을 감소시키고 계면 접착을 향상시키는 매개층으로 사용하고자 한다. 메탄을 사용하여 알루미늄 표면의 탄소층 CVD 성장을 시도하여 장시간 열처리를 시도하였을 경우 니켈 촉매에 의한 카본 나노튜브의 성장이외에도 알루미늄 산화물이 탄화되면서 CVD 탄소층과 알루미늄박 사이를 결착시키는 매개층이 형성될 것을 생각된다.Akinori et al. (See Korean Patent Publication No. 10-2005-118202, December 15, 2005) and Wu et al. (See Materials Chemistry and Physics, Vol. 117, (2009), p.294-300) When the aluminum foil was placed in 600 methane for 10 hours or more, a layer of about 100 nm of carbon and aluminum carbide was formed in the aluminum oxide layer. Aluminum carbide acts as a non-conductor as a resistor in itself, but acts as a medium for adhering aluminum and carbon to each other, and consequently, serves to reduce interfacial resistance. Here, aluminum carbide acts as a resistor in itself as a non-conductor, but acts as a medium for adhering aluminum and carbon to each other, and consequently, serves to reduce the interface resistance. In the present invention, aluminum oxide is intended to be used as an intermediate layer for reducing interfacial resistance and improving interfacial adhesion. When methane is used to CVD growth of the carbon layer on the aluminum surface and heat treatment is attempted for a long time, in addition to the growth of carbon nanotubes by the nickel catalyst, the aluminum oxide is carbonized and a mediator layer is formed between the CVD carbon layer and the aluminum foil. It is thought that

상기와 같이 기술한 발명의 구성을 통해 계면 전도성과 접착강도가 극대화된 탄소코팅 알루미늄 집전체를 제조할 수 있다.
Through the configuration of the invention described as described above it is possible to manufacture a carbon-coated aluminum current collector maximized interfacial conductivity and adhesive strength.

실시예 1Example 1

순도 99.9중량%이고 두께가 100㎛인 상용 알루미늄박을 인산 용액을 전해질로 3시간 정도 양극 산화하여 지름이 100㎚ 정도이며 깊이가 약 5㎛인 알루미늄 산화물 공극 채널 구조를 표면에 형성시킨다.Anodizing a commercial aluminum foil having a purity of 99.9% by weight and a thickness of 100 µm with an electrolyte for about 3 hours with an electrolyte to form an aluminum oxide pore channel structure having a diameter of about 100 nm and a depth of about 5 µm on the surface.

그런 다음, 수산화나트륨 또는 크롬산 용액에 50분 동안 담가두어 표면에 형성된 알루미늄 산화물의 공극을 300~400㎚ 정도로 확장시키고 알루미늄 산화물의 채널의 두께도 200㎚에서 100㎚이하로 줄였다.Then, it was immersed in a sodium hydroxide or chromic acid solution for 50 minutes to expand the pores of aluminum oxide formed on the surface to about 300 ~ 400nm and the thickness of the channel of aluminum oxide was also reduced from 200nm to less than 100nm.

알루미늄 표면에 형성된 알루미늄 산화물 공극 구조는 크롬산 용액에 용해되어 적당한 시간이 경과하면 알루미늄 산화물 공극 구조의 바닥부를 제거하고 공극 벽을 일부 제거할 수 있다. 이에, 공극의 크기를 100nm에서 약 300~400nm, 두께도 200nm에서 100nm 정도로 얇게 하여 촉매 형성에 적정한 크기로 조절할 수 있다. 이 경우, 용해 시간이 너무 오래 경과하면 산화물 구조가 아예 사라질 수 있다. 여기서, 공극의 크기를 약 300~500nm의 크기인 것이 바람직하다. 공극의 크기가 이 보다 크거나 작으면 촉매 형성에 적절하지 않기 때문이다.The aluminum oxide pore structure formed on the aluminum surface may be dissolved in the chromic acid solution to remove the bottom of the aluminum oxide pore structure and to remove a portion of the pore wall after a suitable time passes. Thus, the size of the pores can be adjusted to a size suitable for catalyst formation by making the size of the pore thin at about 300-400 nm and the thickness of 200 nm to 100 nm. In this case, if the dissolution time is too long, the oxide structure may disappear at all. Here, the size of the pores is preferably about 300 to 500nm. If the pore size is larger or smaller than this, it is not suitable for catalyst formation.

그리고 양극산화 처리한 알루미늄박을 염화팔라듐 용액에 2분간 담가두어 양극산화물 표면을 활성화시킨 후, 곧바로 니켈 무전해 도금액에 5분간 담가 알루미늄 산화물 채널 구조의 표면에 최대 0.1㎛ 두께의 니켈 무전해 도금층을 형성하였다.The anodized aluminum foil was immersed in a palladium chloride solution for 2 minutes to activate the surface of the anodic oxide, and then immediately immersed in a nickel electroless plating solution for 5 minutes to provide a nickel electroless plating layer having a thickness of 0.1 μm on the surface of the aluminum oxide channel structure. Formed.

여기서, 용액에 담가두는 시간을 너무 짧게 하면 탄소층 형성에 필요한 충분한 양의 촉매가 형성되지 않고, 너무 길게 하면 지나치게 많은 양의 탄소층이 형성될 수 있다. 촉매층의 두께도 0.05~0.1㎛ 범위가 바람직하다. 촉매층의 두께가 너무 얇으면 탄소층 형성에 필요한 충분한 양의 촉매가 형성되지 않고, 너무 두꺼우면 지나치게 촉매층에 너무 많은 양의 탄소층이 형성될 수 있기 때문이다.Here, if the time for immersion in the solution is too short, a sufficient amount of catalyst for forming the carbon layer is not formed, and if too long, too much carbon layer may be formed. The thickness of the catalyst layer is also preferably in the range of 0.05 to 0.1 µm. This is because when the thickness of the catalyst layer is too thin, a sufficient amount of catalyst necessary for forming the carbon layer is not formed, and when the catalyst layer is too thick, too much carbon layer may be formed in the catalyst layer.

양극산화 처리하고 니켈 무전해 도금을 한 후 알루미늄박을 석영 유리관에 넣고 그 내부를 질소:수소:메탄의 비율이 20:10:2가 되도록 채운 후 상온에서 600℃의 온도까지 상승시킨 후 상승된 온도에서 4시간 열처리하여 양극산화 알루미늄박의 표면에 열분해 탄소층을 형성시켰다. 여기서, 온도를 너무 높지 않도록 600~670℃ 범위에서 유지하는 것이 바람직하다.After anodizing and nickel electroless plating, aluminum foil was placed in a quartz glass tube, and the inside was filled so that the ratio of nitrogen: hydrogen: methane was 20: 10: 2. The pyrolysis carbon layer was formed on the surface of the anodized aluminum foil by heat treatment at a temperature of 4 hours. Here, it is preferable to keep in 600-670 degreeC range so that temperature may not be too high.

도 2(a) 내지 도 2(h)는 실시예 1에 따른 제조 과정의 SEM 표면 영상 및 그 단면 영상을 나타낸다.2 (a) to 2 (h) show SEM surface images and cross-sectional images of the manufacturing process according to Example 1;

여기서, 알루미늄 산화층의 깊이는 1~5㎛가 바람직하다. 이 범위보다 깊이가 더 얕은 경우 산화층에 공극이 형성되지 않고 산화막의 형태로 존재하지 않아 탄소층이 공극에 기초하여 뿌리를 내리는 구조를 만들기 어렵다. 또한, 이 범위보다 깊이가 깊어지면 탄소층이 지나치게 두터워져 탄소층에서 알루미늄으로 전류가 통과해야 하는 경로가 길어져 불필요한 저항을 발생시킨다.Here, as for the depth of an aluminum oxide layer, 1-5 micrometers is preferable. If the depth is shallower than this range, no pores are formed in the oxide layer and do not exist in the form of an oxide film, making it difficult to make a structure in which the carbon layer is rooted based on the pores. In addition, when the depth is deeper than this range, the carbon layer becomes excessively thick, and the path through which electric current passes from the carbon layer to aluminum becomes long, thereby generating unnecessary resistance.

다른 한편, 공극이 작을수록 뿌리를 내리는 위치(rooting point)가 늘어나서 보다 견고한 코팅층의 형성을 기대할 수 있다. 그러나, 수식 나노 미터의 지름을 갖는 공극 내부에 탄소층 형성을 위한 촉매층을 형성시키기가 어렵다는 문제점을 갖는다. 따라서, 공극의 크기는 100nm의 범위가 바람직하다.
On the other hand, the smaller the pores, the longer the rooting point (rooting point) can be expected to form a more robust coating layer. However, there is a problem that it is difficult to form a catalyst layer for forming a carbon layer inside the pores having a diameter of modified nanometers. Therefore, the pore size is preferably in the range of 100 nm.

실시예 2Example 2

순도 99.9중량%이고 두께가 100㎛인 상용 알루미늄박을 인산 용액을 전해질로 3시간 정도 양극 산화하여 지름이 100㎚ 정도이며 깊이가 약 5㎛인 알루미늄 산화물 공극 채널 구조를 표면에 형성시킨 다음, 수산화나트륨 또는 크롬산 용액에 50분 동안 담가두어 표면에 형성된 알루미늄 산화물의 공극을 300~400㎚ 정도로 확장시키고 알루미늄 산화물의 채널의 두께도 200㎚에서 100㎚이하로 줄였다.Anodizing a commercial aluminum foil having a purity of 99.9 wt% and a thickness of 100 μm with an electrolyte of phosphoric acid for about 3 hours to form an aluminum oxide pore channel structure having a diameter of about 100 nm and a depth of about 5 μm on the surface, and then Soaking in a sodium or chromic acid solution for 50 minutes to expand the pores of aluminum oxide formed on the surface to about 300 ~ 400nm and the thickness of the channel of aluminum oxide was also reduced from 200nm to less than 100nm.

그리고 양극산화 처리한 알루미늄박을 석영 유리관에 넣고 그 내부를 질소:수소:메탄의 비율이 20:10:2로 되도록 채운 후 600℃의 온도에서 4시간 열처리하였다.Anodized aluminum foil was placed in a quartz glass tube, and the inside thereof was filled with a nitrogen: hydrogen: methane ratio of 20: 10: 2, and then heat-treated at 600 ° C. for 4 hours.

그 결과 니켈 촉매가 없는 이유로 표면에 CVD 탄소층이 제대로 형성되지 않았으며, 양극산화로 형성된 산화물이 저항체 역할을 하여 알루미늄박을 그대로 사용했을 경우보다 오히려 계면 접촉저항이 더 큰 결과를 얻었다.
As a result, the CVD carbon layer was not properly formed on the surface due to the absence of the nickel catalyst, and the oxide formed by the anodization acted as a resistor, resulting in greater interfacial contact resistance than when aluminum foil was used as it is.

실시예 3Example 3

순도 99.9중량%이고 두께가 100㎛인 상용 알루미늄박을 인산 용액을 전해질로 3시간 정도 양극 산화하여 지름이 100㎚ 정도이며 깊이가 약 5㎛인 알루미늄 산화물 공극 채널 구조를 표면에 형성시킨 다음, 수산화나트륨 또는 크롬산 용액에 50분 동안 담가두어 표면에 형성된 알루미늄 산화물의 공극을 300~400㎚ 정도로 확장시키고 알루미늄 산화물의 채널의 두께도 200㎚에서 100㎚이하로 줄였다.Anodizing a commercial aluminum foil having a purity of 99.9 wt% and a thickness of 100 μm with an electrolyte of phosphoric acid for about 3 hours to form an aluminum oxide pore channel structure having a diameter of about 100 nm and a depth of about 5 μm on the surface, and then Soaking in a sodium or chromic acid solution for 50 minutes to expand the pores of aluminum oxide formed on the surface to about 300 ~ 400nm and the thickness of the channel of aluminum oxide was also reduced from 200nm to less than 100nm.

그리고 양극산화 처리한 알루미늄박을 염화팔라듐 용액에 2분간 담가두어 양극산화물 표면을 활성화시킨 후, 곧바로 니켈 무전해 도금액에 5분간 담가 알루미늄 산화물 채널 구조의 표면에 최대 0.1㎛ 두께의 니켈 무전해 도금층을 형성하였다.The anodized aluminum foil was immersed in a palladium chloride solution for 2 minutes to activate the surface of the anodic oxide, and then immediately immersed in a nickel electroless plating solution for 5 minutes to provide a nickel electroless plating layer having a thickness of 0.1 μm on the surface of the aluminum oxide channel structure. Formed.

니켈은 알루미늄보다 탄소에 대해 보다 친화적이므로 계면 접촉저항이 어느 정도 낮아지는 효과는 얻었으나 탄소 코팅을 해준 것보다 많이 부족했다.
Nickel was more friendly to carbon than aluminum, so the interface contact resistance was somewhat lowered, but it was much less than carbon coating.

실시예 4Example 4

순도 99.9중량%이고 두께가 100㎛인 상용 알루미늄박을 그대로 석영 유리관에 넣고 그 내부를 질소:수소:메탄의 비율이 20:10:2가 되도록 채운 후 600℃의 온도에서 4시간 열처리하여 양극산화 알루미늄박의 표면에 열분해 탄소층을 형성시켰다.A commercial aluminum foil with a purity of 99.9% by weight and a thickness of 100 μm is placed in a quartz glass tube as it is, and the inside thereof is filled with a ratio of nitrogen: hydrogen: methane to 20: 10: 2, and heat-treated at 600 ° C. for 4 hours for anodizing. A pyrolytic carbon layer was formed on the surface of the aluminum foil.

이 결과는 니켈 촉매가 없는 이유로 표면에 CVD 탄소층이 제대로 형성되지 않아 탄소 코팅층에 의한 카본페이퍼와 알루미늄박 사이의 계면 저항이 감소하는 효과를 얻지 못하였다.
This result is that the CVD carbon layer is not properly formed on the surface because there is no nickel catalyst, the interface resistance between the carbon paper and the aluminum foil by the carbon coating layer was not reduced.

실시예 5Example 5

순도 99.9중량%이고 두께가 100㎛인 상용 알루미늄박을 염화팔라듐 용액에 2분간 담가두어 양극산화물 표면을 활성화시킨 후, 곧바로 니켈 무전해 도금액에 5분간 담가두었다. 그러나 염화팔라듐필라듐에 의해 알루미늄 표면이 고르게 활성화되지 않아 알루미늄박의 표면에 균일하게 분포된 니켈 무전해 도금층을 얻을 수 없었다.A commercial aluminum foil having a purity of 99.9 wt% and a thickness of 100 µm was immersed in a palladium chloride solution for 2 minutes to activate the surface of the anodized oxide, and then immediately immersed in a nickel electroless plating solution for 5 minutes. However, the surface of aluminum was not evenly activated by palladium filadium, so a nickel electroless plating layer uniformly distributed on the surface of the aluminum foil could not be obtained.

니켈 무전해 도금처리한 알루미늄박을 석영 유리관에 넣고 그 내부를 질소:수소:메탄의 비율이 20:10:2가 되도록 채운 후 600℃의 온도에서 4시간 열처리하였다. 그러나, 니켈 촉매가 분포해 있는 곳에 대해서만 CVD 탄소층이 형성되었다. 그 결과, 비교예 1에 비해 아주 약간의 계면 저항 감소 효과만 얻을 수 있었으며, 표면에 CVD 탄소층이 단순히 얹혀 있는 구조로 인해 CVD 탄소층의 밀착 강도 또한 실시예 1의 경우보다 낮았다.
Nickel electroless plating aluminum foil was placed in a quartz glass tube, and the inside thereof was filled so that the ratio of nitrogen: hydrogen: methane was 20: 10: 2, and then heat-treated at 600 ° C. for 4 hours. However, the CVD carbon layer was formed only where the nickel catalyst was distributed. As a result, only a slight reduction in interfacial resistance was obtained compared to Comparative Example 1, and the adhesion strength of the CVD carbon layer was also lower than that of Example 1 due to the structure in which the CVD carbon layer was simply placed on the surface.

실시예 6Example 6

다른 한편, 본 발명에 따른 고전기전도성, 고내구성을 갖는 탄소 코팅 알루미늄 집전체는 니켈이 아닌 전이금속을 사용할 수 있다. On the other hand, the carbon coated aluminum current collector having high conductivity and high durability according to the present invention may use a transition metal other than nickel.

여기서, 니켈이 아닌 다른 전이금속인 경우에는 딥핑을 이용하여 상기 알루미늄 산화층에 상기 금속을 부착한 후 수소가 포함된 분위기하에서 열처리를 통해 환원하거나 전기도금을 이용하여 금속을 환원하는 것이 바람직하다. 즉, 실질적으로 탄소층의 성장만을 위해서라면 전이금속의 종류와 상관없이 무전해도금 또는 딥핑을 이용하는 것이 가능할 수 있다. 그러나 무전해도금을 하는 이유는 알루미늄 산화층이 세라믹 구조이므로 충격을 비롯한 기계적인 스트레스에 취약한 것을 보완하기 위한 목적을 포함하고 있다.
Here, in the case of a transition metal other than nickel, it is preferable to attach the metal to the aluminum oxide layer by dipping and then reduce the metal by heat treatment in an atmosphere containing hydrogen or reduce the metal by electroplating. That is, it may be possible to use electroless plating or dipping irrespective of the type of transition metal only for the growth of the carbon layer. However, the reason for electroless plating is that the aluminum oxide layer is a ceramic structure, which includes the purpose of supplementing the vulnerable to mechanical stress such as impact.

비교예 1Comparative Example 1

순소 99.9중량%이고 두께가 100㎛인 상용 알루미늄박을 그대로 집전체로 사용하였다.
A commercial aluminum foil having a purity of 99.9% by weight and a thickness of 100 µm was used as a current collector.

(계면 저항 평가)(Interface resistance evaluation)

제조한 전극을 2㎝×2㎝ 크기로 잘라 가상 활물질인 TGPG-060 카본페이퍼를 겹쳐 구리판 사이에 넣고 압착기를 이용해 10kgf/㎠의 압력을 가해준 후 포텐시오 스탯(Potentiostat)을 이용하여 전류-접압 직선을 얻었다. 그리고, 직선의 기울기를 계산하여 구리판 사이의 횡단 저항을 측정함으로써 각 시료들의 가상 활물질인 TGPH-060에 대한 계면저항을 평가하였다. 평가 결과는 도 3에 나타나 있다. 도 3에서 알 수 있듯이 실시예 1의 결과가 가장 낮은 계면저항을 나타내었다.
The prepared electrode was cut into 2cm × 2cm size, overlapped with TGPG-060 carbon paper, which is a virtual active material, sandwiched between copper plates, pressurized with a pressure of 10kgf / ㎠ using a pressurizer, and then a current-contacted pressure using a potentiostat. Got a straight line. In addition, the interfacial resistance to TGPH-060, a virtual active material of each sample, was evaluated by calculating the slope of the straight line and measuring the resistance between the copper plates. The evaluation results are shown in FIG. As can be seen in Figure 3 the results of Example 1 showed the lowest interfacial resistance.

(밀착성 평가)(Adhesive evaluation)

상기 실시예들에 따라 제조된 전극을 1㎝×2㎝ 크기로 잘라낸 다음, 스카치 매직 테이프를 부착하였다 떼어 내어 탈착된 코팅물의 질량을 측정하여 다음 식을 이용하여 밀착성을 평가하였다.The electrode prepared according to the above examples was cut out to a size of 1 cm × 2 cm, and then the Scotch Magic Tape was attached and detached to measure the mass of the detached coating to evaluate adhesion using the following equation.

밀착도 = (떼어낸 코팅물의 무게) / (원래 코팅물의 무게)Adhesion = (weight of stripped coating) / (weight of original coating)

평가 결과는 도 4에 나타나 있다. 도 4에서 알 수 있는 바와 같이 실시예 1이 가장 좋은 밀착성을 나타내었다.The evaluation results are shown in FIG. As can be seen in Figure 4 Example 1 showed the best adhesion.

전술한 여러 가지 실시예와 비교예를 비교하면 표1과 같다.Comparing the various examples and comparative examples described above is shown in Table 1.

구분division 실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 실시예 4Example 4 실시예 5Example 5 비교예Comparative example
공극air gap
채널channel
인산 용액
3시간
Phosphoric Acid Solution
3 hours
×× ×× ××
지름100㎚
깊이5㎛
100 nm in diameter
Depth 5㎛
×× ×× ××

공극air gap
확장expansion
수산화나트륨 또는 크롬산 용액
50분 담금
Sodium hydroxide or chromic acid solution
50 minutes soak
×× ×× ××
공극 300~400㎚확장 채널 / 두께 100㎚로 줄어 듬Void 300-400 nm Extended Channel / Reduced to 100 nm thick ×× ×× ×× 표면surface
활성화Activation
염화팔라듐
2분 담금
Palladium chloride
2 minutes soak
×× 염화팔라듐
2분 담금
Palladium chloride
2 minutes soak
×× 염화팔라듐
2분 담금
Palladium chloride
2 minutes soak
××

도금Plated
니켈 무전해 도금액
5분 담금
0.1㎛
Nickel Electroless Plating Solution
5 minutes soak
0.1 μm
×× 니켈 무전해 도금액
5분 담금
0.1㎛
Nickel Electroless Plating Solution
5 minutes soak
0.1 μm
×× 니켈 무전해 도금액
5분 담금
0.1㎛
Nickel Electroless Plating Solution
5 minutes soak
0.1 μm
××

열처리Heat treatment
석영 유리관
질소:수소:메탄=20:10:2
600℃
4시간
Quartz glass tube
Nitrogen: Hydrogen: Methane = 20: 10: 2
600 ℃
4 hours
×× 석영 유리관
질소:수소:메탄=20:10:2
600℃
4시간
Quartz glass tube
Nitrogen: Hydrogen: Methane = 20: 10: 2
600 ℃
4 hours
××
사용 소재Used material 순도99.9중량%, 두께 100㎛Purity 99.9 wt%, Thickness 100㎛ 순도99.9중량%, 두께 100㎛Purity 99.9 wt%, Thickness 100㎛

따라서, 본 발명에 따르면, 알루미늄의 표면과 탄소 활물질 사이의 계면 저항을 최소화하고, 접착강도를 극대화할 수 있고, 양극 산화에 의해 표면에 형성된 나노구조물의 공극에 촉매를 부착하여 탄소층을 간단하고 편리하게 형성할 수 있으며, 고전기전도성, 고내구성을 갖는 탄소 코팅 알루미늄 집전체 및 그 제조방법을 제공할 수 있다.Therefore, according to the present invention, it is possible to minimize the interface resistance between the surface of the aluminum and the carbon active material, to maximize the adhesive strength, and to attach the catalyst to the pores of the nanostructure formed on the surface by anodic oxidation to simplify the carbon layer. It can be conveniently formed, and can provide a carbon coated aluminum current collector having a high electroconductivity and high durability, and a method of manufacturing the same.

여기서, 본 발명의 여러 실시예를 도시하여 설명하였지만, 본 발명이 속하는 기술 분야의 통상의 지식을 가진 당업자라면 본 발명의 원칙이나 정신에서 벗어나지 않으면서 본 실시예를 변형할 수 있음을 알 수 있을 것이다. 발명의 범위는 첨부된 청구항과 그 균등물에 의해 정해질 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art without departing from the scope and spirit of the invention. will be. The scope of the invention will be determined by the appended claims and their equivalents.

Claims (14)

알루미늄의 표면에 양극산화 방법으로 다수의 공극을 구비한 나노구조체를 포함하는 산화층과;
상기 산화층을 활성화시킨 후 도금에 의해 코팅 형성된 도금층과;
상기 도금층 표면에 열분해 방법에 의해 형성된 탄소층;을 포함하는 것을 특징으로 하는 탄소 코팅 알루미늄 집전체.
An oxide layer comprising a nanostructure having a plurality of pores on the surface of aluminum by anodization;
A plating layer coated by plating after activating the oxide layer;
And a carbon layer formed on the surface of the plating layer by a pyrolysis method.
제1항에 있어서,
상기 공극의 지름은 100±50㎚ 범위이며, 깊이는 1~5㎛인 것을 특징으로 하는 탄소 코팅 알루미늄 집전체.
The method of claim 1,
The diameter of the pores is in the range of 100 ± 50nm, the depth is 1 to 5㎛ carbon coated aluminum current collector.
제1항 또는 제2항에 있어서,
상기 산화층을 갖는 알루미늄을 크롬산 용액에 40~50분 담가두어 상기 공극의 지름을 300~500㎚ 로 확장시킨 것을 특징으로 하는 탄소 코팅 알루미늄 집전체.
The method according to claim 1 or 2,
A carbon-coated aluminum current collector, wherein the aluminum having the oxide layer is immersed in a chromic acid solution for 40 to 50 minutes to extend the diameter of the pores to 300 to 500 nm.
제1항에 있어서,
0.1~10mM의 염화팔라듐 용액에 1~5분 동안 담가두어 상기 알루미늄의 양극 산화물을 활성화시키는 것을 특징으로 하는 탄소 코팅 알루미늄 집전체.
The method of claim 1,
A carbon-coated aluminum current collector, which is immersed in 0.1-10 mM palladium chloride solution for 1-5 minutes to activate the anode oxide of aluminum.
제1항에 대하여,
무전해 니켈 도금액에 담가두어 상기 알루미늄 산화물 표면에 0.05 ~ 0.1㎛ 두께로 상기 도금층을 형성하는 것을 특징으로 하는 탄소 코팅 알루미늄 집전체.
About claim 1
A carbon coated aluminum current collector, immersed in an electroless nickel plating solution, to form the plating layer on the surface of the aluminum oxide with a thickness of 0.05 to 0.1 μm.
제1항 또는 제5항에 있어서,
환원성 가스 분위기 하에서 상온에서 온도를 600~670℃ 범위로 상승시킨 후 4시간±30분 동안 유지시켜 상기 탄소층을 형성하는 것을 특징으로 하는 탄소 코팅 알루미늄 집전체.
6. The method according to claim 1 or 5,
The carbon-coated aluminum current collector, characterized in that to form the carbon layer by maintaining the temperature for 4 hours ± 30 minutes after raising the temperature to 600 ~ 670 ℃ range in a reducing gas atmosphere.
제1항에 있어서,
상기 도금층을 이루는 금속은 니켈, 철, 코발트를 포함하는 전이금속 군 중에서 선택되는 것을 특징으로 하는 탄소 코팅 알루미늄 집전체.
The method of claim 1,
The metal constituting the plating layer is a carbon-coated aluminum current collector, characterized in that selected from the group of transition metals including nickel, iron, cobalt.
제7항에 있어서,
상기 전이금속이 니켈이 아닌 경우에는 딥핑을 이용하여 상기 알루미늄 산화층에 상기 금속을 부착한 후 수소가 포함된 분위기하에서 열처리를 통해 환원하거나 전기도금을 이용하여 금속을 환원하는 것을 특징으로 하는 탄소 코팅 알루미늄 집전체.
The method of claim 7, wherein
When the transition metal is not nickel, carbon is coated with aluminum by dipping to attach the metal to the aluminum oxide layer and then reducing the metal by heat treatment in an atmosphere containing hydrogen or by electroplating. Current collector.
(1) 알루미늄 표면에 양극산화 방법으로 다수의 공극을 구비한 나노구조체를 포함하는 산화층을 형성하는 단계와;
(2) 상기 산화층을 활성화시킨 후 도금에 의해 도금층을 코팅 형성하는 단계와;
(3) 상기 도금층 표면에 열분해 방법에 의해 탄소층을 형성하는 단계;를 포함하는 것을 특징으로 하는 탄소 코팅 알루미늄 집전체 제조 방법.
(1) forming an oxide layer comprising a nanostructure having a plurality of pores on an aluminum surface by anodizing;
(2) coating the plating layer by plating after activating the oxide layer;
(3) forming a carbon layer on the surface of the plating layer by a pyrolysis method; a carbon coated aluminum current collector manufacturing method comprising a.
제9항에 있어서,
상기 (1)단계에서, 양극산화 방법으로 형성된 다수의 상기 공극을 크롬산 용액에 담가두어 상기 공극의 지름을 확장시키는 단계;를 더 포함하는 것을 특징으로 하는 탄소 코팅 알루미늄 집전체 제조 방법.
10. The method of claim 9,
In the step (1), immersing a plurality of the pores formed by the anodizing method in a solution of chromic acid to expand the diameter of the pores; carbon coating aluminum current collector manufacturing method further comprising.
제9항 또는 제10항에 있어서,
상기 (2)단계에서 염화팔라듐 용액에 담가두어 알루미늄 양극 산화층을 활성화시키는 단계;를 더 포함하는 것을 특징으로 하는 탄소 코팅 알루미늄 집전체 제조 방법.
11. The method according to claim 9 or 10,
And immersing in a palladium chloride solution in step (2) to activate the aluminum anodized layer.
제9항에 있어서,
무전해 니켈 도금액에 담가두어 상기 알루미늄 산화물 표면에 0.05 ~ 0.1㎛ 두께로 상기 도금층을 형성하는 것을 특징으로 하는 탄소 코팅 알루미늄 집전체 제조 방법.
10. The method of claim 9,
A method of manufacturing a carbon-coated aluminum current collector, immersed in an electroless nickel plating solution, to form the plating layer on the surface of the aluminum oxide with a thickness of 0.05 to 0.1 μm.
제9항에 있어서,
상기 (2) 단계에서, 상기 도금층을 이루는 금속은 니켈, 철, 코발트를 포함하는 전이금속 군 중에서 선택되는 것을 특징으로 하는 탄소 코팅 알루미늄 집전체 제조 방법.
10. The method of claim 9,
In the step (2), the metal forming the plating layer is a carbon-coated aluminum current collector manufacturing method, characterized in that selected from the group of transition metals including nickel, iron, cobalt.
제13항에 있어서,
상기 전이금속이 니켈이 아닌 경우에는 딥핑을 이용하여 상기 알루미늄 산화층에 상기 금속을 부착한 후 수소가 포함된 분위기하에서 열처리를 통해 환원하거나 전기도금을 이용하여 금속을 환원하는 단계;를 더 포함하는 것을 특징으로 하는 탄소 코팅 알루미늄 집전체 제조 방법.
The method of claim 13,
If the transition metal is not nickel, attaching the metal to the aluminum oxide layer using dipping, and then reducing the metal by heat treatment in an atmosphere containing hydrogen or reducing the metal by electroplating. A carbon coated aluminum current collector manufacturing method.
KR1020110040872A 2011-04-29 2011-04-29 Carbon coated aluminum current collector with high conductivity and durability and fabrication method thereof KR101195081B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110040872A KR101195081B1 (en) 2011-04-29 2011-04-29 Carbon coated aluminum current collector with high conductivity and durability and fabrication method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110040872A KR101195081B1 (en) 2011-04-29 2011-04-29 Carbon coated aluminum current collector with high conductivity and durability and fabrication method thereof

Publications (1)

Publication Number Publication Date
KR101195081B1 true KR101195081B1 (en) 2012-10-29

Family

ID=47288809

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110040872A KR101195081B1 (en) 2011-04-29 2011-04-29 Carbon coated aluminum current collector with high conductivity and durability and fabrication method thereof

Country Status (1)

Country Link
KR (1) KR101195081B1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101663904B1 (en) * 2015-07-08 2016-10-10 울산대학교 산학협력단 Current Collector Containing Carbon Deposited Layer And Method For Manufacturing The Same
KR101913842B1 (en) * 2016-10-12 2018-11-05 주식회사 세아테크놀러지 Method for forming via contact
KR101913843B1 (en) 2016-10-12 2018-11-05 주식회사 세아테크놀러지 Method for forming via contact
KR20190060587A (en) * 2017-11-24 2019-06-03 주식회사 엘지화학 Process for preparing current collector for pseudo capacitor
US10629892B2 (en) 2016-11-01 2020-04-21 Samsung Sdi Co., Ltd. Negative electrode for rechargeable lithium battery, and rechargeable lithium battery including same
CN113140733A (en) * 2021-03-29 2021-07-20 南通耐维特电源有限公司 Preparation process of lithium battery based on carbon-coated aluminum foil
US11108044B2 (en) 2016-11-02 2021-08-31 Samsung Sdi Co., Ltd. Rechargeable lithium battery
US11152607B2 (en) 2018-04-27 2021-10-19 Samsung Sdi Co., Ltd. Negative electrode for rechargeable lithium battery, and rechargeable lithium battery including the same
US11201329B2 (en) 2018-04-20 2021-12-14 Samsung Sdi Co., Ltd. Negative electrode for a rechargeable lithium battery and rechargeable lithium battery including the same
WO2022044624A1 (en) * 2020-08-25 2022-03-03 富士フイルム株式会社 Aluminum member for collectors, lithium ion capacitor, electric double layer capacitor, semi-solid battery, solid-state battery and secondary battery using nonaqueous electrolyte solution
CN117810459A (en) * 2024-03-01 2024-04-02 浙江煌能新能源科技有限公司 Stainless steel positive electrode current collector, preparation method thereof, positive plate and sodium ion battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100529108B1 (en) 2003-09-26 2005-11-15 삼성에스디아이 주식회사 Current collector for lithium-sulfur battery and lithium-sulfur battery comprising same
JP2007250376A (en) 2006-03-16 2007-09-27 Nippon Foil Mfg Co Ltd Aluminum foil for current collector of lithium ion battery, and lithium ion battery using same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100529108B1 (en) 2003-09-26 2005-11-15 삼성에스디아이 주식회사 Current collector for lithium-sulfur battery and lithium-sulfur battery comprising same
JP2007250376A (en) 2006-03-16 2007-09-27 Nippon Foil Mfg Co Ltd Aluminum foil for current collector of lithium ion battery, and lithium ion battery using same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101663904B1 (en) * 2015-07-08 2016-10-10 울산대학교 산학협력단 Current Collector Containing Carbon Deposited Layer And Method For Manufacturing The Same
KR101913842B1 (en) * 2016-10-12 2018-11-05 주식회사 세아테크놀러지 Method for forming via contact
KR101913843B1 (en) 2016-10-12 2018-11-05 주식회사 세아테크놀러지 Method for forming via contact
US10629892B2 (en) 2016-11-01 2020-04-21 Samsung Sdi Co., Ltd. Negative electrode for rechargeable lithium battery, and rechargeable lithium battery including same
US11108044B2 (en) 2016-11-02 2021-08-31 Samsung Sdi Co., Ltd. Rechargeable lithium battery
KR20190060587A (en) * 2017-11-24 2019-06-03 주식회사 엘지화학 Process for preparing current collector for pseudo capacitor
KR102364363B1 (en) * 2017-11-24 2022-02-16 주식회사 엘지에너지솔루션 Process for preparing current collector for pseudo capacitor
US11201329B2 (en) 2018-04-20 2021-12-14 Samsung Sdi Co., Ltd. Negative electrode for a rechargeable lithium battery and rechargeable lithium battery including the same
US11715830B2 (en) 2018-04-20 2023-08-01 Samsung Sdi Co., Ltd. Negative electrode for a rechargeable lithium battery and rechargeable lithium battery including the same
US11152607B2 (en) 2018-04-27 2021-10-19 Samsung Sdi Co., Ltd. Negative electrode for rechargeable lithium battery, and rechargeable lithium battery including the same
WO2022044624A1 (en) * 2020-08-25 2022-03-03 富士フイルム株式会社 Aluminum member for collectors, lithium ion capacitor, electric double layer capacitor, semi-solid battery, solid-state battery and secondary battery using nonaqueous electrolyte solution
CN113140733A (en) * 2021-03-29 2021-07-20 南通耐维特电源有限公司 Preparation process of lithium battery based on carbon-coated aluminum foil
CN117810459A (en) * 2024-03-01 2024-04-02 浙江煌能新能源科技有限公司 Stainless steel positive electrode current collector, preparation method thereof, positive plate and sodium ion battery

Similar Documents

Publication Publication Date Title
KR101195081B1 (en) Carbon coated aluminum current collector with high conductivity and durability and fabrication method thereof
Li et al. Recent advances in flexible aqueous zinc-based rechargeable batteries
JP6138007B2 (en) Conductive member, electrode, secondary battery, capacitor, and conductive member and electrode manufacturing method
KR101692687B1 (en) Thin film electrochemical energy storage device with three-dimensional anodic structure
KR101063443B1 (en) The carbon nanofiber coated aluminum current collector with improved adhesion strength and contact conductivity and the fabrication method thereof
TWI478185B (en) Super capacitor and method for manufacturing the same
KR101036164B1 (en) composite electrode and method for manufacturing the same
US20130202961A1 (en) Cathode unit for an alkali metal/sulfur battery
JP2010103051A (en) Composite electrode for power storage device, its manufacturing method, and power storage device
TWI407468B (en) Composite cathode foils and solid electrolytic capacitors comprising the same
JP2007527099A (en) Carbon nanotube or carbon nanofiber electrode containing sulfur or metal nanoparticles as an adhesive and method for producing the electrode
JP5271261B2 (en) Carbon-coated aluminum material and manufacturing method thereof
CN102414874A (en) Composite materials containing metallized carbon nanotubes and nanofibers
RU2465691C1 (en) Composite electrode for power accumulation device, method of its production and power accumulation device
WO2018120601A1 (en) Preparation method for self-supporting thin film of graphene-enhanced three-dimensional porous carbon
CN112864399B (en) Current collector and preparation method thereof, zinc anode and preparation method and application thereof
KR101623447B1 (en) Anode for Lithium Ion Secondary Battery and Method for Manufacturing the Same
JP2007087789A (en) Negative electrode for lithium ion secondary battery and its manufacturing method
Li et al. A nanoporous oxide interlayer makes a better Pt catalyst on a metallic substrate: Nanoflowers on a nanotube bed
KR101392932B1 (en) Nano-structure carbon layer foamed Aluminium Foil current collector with high electro-conductivity and Fabrication Method thereof
Fang et al. Conformal porous carbon coating on carbon fiber cloth/NiS2 composites by molecular layer deposition for durable supercapacitor electrodes
KR101057410B1 (en) Supercapacitor and manufacturing method thereof
CN115528202A (en) Composite current collector and preparation method thereof, electrode plate and battery
JP6945424B2 (en) Method of forming a conductive carbon film
Zhou et al. Electrocatalytic Oxidation of Formic Acid at Pt Modified Electrodes: Substrate Effect of Unsintered Au Nano‐Structure

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20161010

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170921

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180918

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20190909

Year of fee payment: 8