JP2011249150A - Aluminum foil for power storage device collector and power storage device collector - Google Patents

Aluminum foil for power storage device collector and power storage device collector Download PDF

Info

Publication number
JP2011249150A
JP2011249150A JP2010121196A JP2010121196A JP2011249150A JP 2011249150 A JP2011249150 A JP 2011249150A JP 2010121196 A JP2010121196 A JP 2010121196A JP 2010121196 A JP2010121196 A JP 2010121196A JP 2011249150 A JP2011249150 A JP 2011249150A
Authority
JP
Japan
Prior art keywords
aluminum foil
storage device
foil
power storage
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010121196A
Other languages
Japanese (ja)
Inventor
Akira Yoshii
章 吉井
Hideo Watanabe
英雄 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2010121196A priority Critical patent/JP2011249150A/en
Publication of JP2011249150A publication Critical patent/JP2011249150A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide an aluminum foil for a power storage device connector in which a through-hole can be easily formed by etching and stability with respect to fluorine is improved.SOLUTION: An aluminum foil for a power storage device collector has a composition where Ni is contained for 20 to 300 ppm in mass% and the remaining part is comprised of Al in 99% or more and inevitable impurities, and has a thickness of less than 50 μm. In the aluminum foil for power storage device collector, a through-hole is easily formed by etching by producing an Al-Ni sludge in a base, and stability with respect to fluorine is improved by making the concentration of Al 99% or more. It is preferable for the aluminum foil that a ratio of crystal grains through a cross section in a thickness direction is 10% or more and that the through-hole having a diameter of 0.5 to 500 μm is present in an area ratio of 5 to 50%.

Description

本発明は、Liイオンを用いた蓄電デバイスに用いられる集電体用アルミニウム箔に関する。   The present invention relates to an aluminum foil for a current collector used in an electricity storage device using Li ions.

二次電池等の蓄電デバイスは、基本的には、正極、負極、正極と負極とを絶縁するセパレーター及び正極と負極との間でイオンの移動を可能にするための電解液で構成されている。正極及び負極は、金属箔からなる集電体の表面に、各種の活物質が塗布されてなるものである。例えば、リチウム系二次電池においては、正極として、コバルト酸リチウム等を含む活物質がアルミニウム箔よりなる集電体に塗布されてなるものが用いられ、一方、負極としては、難黒鉛化カーボン等を含む活物質が銅箔よりなる集電体に塗布されてなるものが用いられている。そして、電解液としては、非水溶媒の中にリチウム系化合物を溶質として溶解したものが用いられている。   An electricity storage device such as a secondary battery is basically composed of a positive electrode, a negative electrode, a separator that insulates the positive electrode from the negative electrode, and an electrolyte solution that allows ions to move between the positive electrode and the negative electrode. . The positive electrode and the negative electrode are obtained by applying various active materials to the surface of a current collector made of a metal foil. For example, in a lithium secondary battery, a positive electrode in which an active material containing lithium cobaltate or the like is applied to a current collector made of an aluminum foil is used, while a non-graphitizable carbon or the like is used as a negative electrode. A material obtained by applying an active material containing copper to a current collector made of copper foil is used. And as electrolyte solution, what melt | dissolved the lithium compound as a solute in the nonaqueous solvent is used.

Liイオンを利用する蓄電デバイスは、エネルギ密度を向上させるため、金属リチウム箔と負極とを電気化学的に接触させるようにした蓄電デバイスが提案されている。金属リチウム箔と負極とを接触させることにより、負極に対してリチウムイオンをドーピングすることが可能となる。積層された電極に対するリチウムイオンのドーピングをスムーズに進行させるため、正極集電体や負極集電体に対して、直径が0.5〜500μmの貫通孔を形成することが重要となる(例えば、特許文献1参照)。
集電体に貫通孔を形成するには、通常、エッチング法を適用する。また、金属薄板に圧延加工を施して、すだれ様孔開き集電体を得る方法も提案されている(特許文献2)。
An electricity storage device using Li ions has been proposed in which a metal lithium foil and a negative electrode are brought into electrochemical contact in order to improve energy density. By bringing the metal lithium foil and the negative electrode into contact, it becomes possible to dope lithium ions into the negative electrode. It is important to form a through hole having a diameter of 0.5 to 500 μm for the positive electrode current collector and the negative electrode current collector in order to smoothly carry out doping of lithium ions to the stacked electrodes (for example, (See Patent Document 1).
In order to form a through hole in the current collector, an etching method is usually applied. In addition, a method has been proposed in which a thin metal plate is rolled to obtain a comb-like perforated current collector (Patent Document 2).

特許第3485935号公報Japanese Patent No. 3485935 特開平11−97035号公報JP-A-11-97035

しかしながら、エッチング法で貫通孔を作成するためには、直流又は交流電流を酸溶液中で通電する必要がある。直流電流の場合、アルミニウム箔に給電を行なうため、十分な箔厚を必要とし、50μm未満の箔厚では、給電による発熱により、しわ・切断等が発生するため、生産が困難である。交流電流の場合、電極に交流電流を印加し、その間をアルミニウム箔が搬送されるため、給電によるストレスは発生しない。しかしながら、カソード状態のとき、アルミニウム箔は酸化され皮膜を生成するため、貫通孔が生成しにくいという問題がある。
また、Liイオンを用いる蓄電デバイスの場合、蓄電容量の低下を抑えることを目的としてフッ素系の添加剤フルオロエチレンカーボネートが加えられた電解液を用いる場合には、フッ素に対する安定性が集電体に求められる。
本発明は、エッチングにより貫通孔を形成するのが容易であるとともに、フッ素に対する安定性の優れた蓄電デバイス集電体用アルミニウム箔を提供することを目的とする。
However, in order to create a through hole by an etching method, it is necessary to pass a direct current or an alternating current in an acid solution. In the case of direct current, power is supplied to the aluminum foil, so that a sufficient foil thickness is required. If the foil thickness is less than 50 μm, wrinkles, cutting, etc. occur due to heat generated by the power supply, making production difficult. In the case of an alternating current, an alternating current is applied to the electrodes, and the aluminum foil is transported between them, so that no stress due to power feeding occurs. However, in the cathode state, the aluminum foil is oxidized to form a film, so that there is a problem that it is difficult to form through holes.
In addition, in the case of an electricity storage device using Li ions, when an electrolytic solution to which a fluorine-based additive fluoroethylene carbonate is added for the purpose of suppressing a reduction in storage capacity is used, the current collector has stability against fluorine. Desired.
An object of the present invention is to provide an aluminum foil for an electricity storage device current collector that is easy to form a through hole by etching and is excellent in stability against fluorine.

本発明は、貫通孔の形成を促進するために、Niを含有させる。NiはAlとともにAl−Ni系析出物を基地中に生成させる。このAl−Ni系析出物はAlからなる基地よりも電気的に貴であるために、Al−Ni系析出物は、基地との間で局部電池を構成するので、電荷の放電サイトとして作用する。その結果として、基地を構成するAlの溶解性を向上し、酸によるエッチングで均一な貫通孔を形成することができる。
次に、フッ素系の添加剤(例えば、フルオロエチレンカーボネート)が加えられた電解液を用いると、添加剤中のフッ素と集電体を構成するAlとが反応して、集電体表面にフッ化アルミニウム(AlF)からなる皮膜を形成する。このフッ化アルミニウム皮膜が、集電体のフッ素に対する安定性を向上させる。ところが、集電体(アルミニウム箔)にAl−Fe系、Al−Ni系等の析出物が存在すると、フッ化アルミニウム皮膜に欠陥が生じ、集電体のフッ素に対する安定性が低下することを知見した。
以上に基づく本発明の蓄電デバイス集電体用アルミニウム箔は、質量比(以下、同じ)でNiを20〜300ppmを含有し、残部が99%以上のAlと不可避的不純物からなる組成を有し、厚さが50μm未満であることを特徴とする。
本発明の蓄電デバイス集電体用アルミニウム箔は、厚さ方向の断面を貫通する結晶粒の割合が10%以上であることが好ましく、また、直径0.5〜500μmの貫通孔が5〜50%の面積率で存在するアルミニウム箔が蓄電デバイス集電体として好ましい。
In the present invention, Ni is contained in order to promote the formation of through holes. Ni together with Al produces Al—Ni-based precipitates in the matrix. Since the Al—Ni-based precipitate is more noble than the base made of Al, the Al—Ni-based precipitate forms a local battery with the base, and thus acts as a discharge site for electric charges. . As a result, the solubility of Al constituting the base can be improved, and uniform through holes can be formed by etching with an acid.
Next, when an electrolytic solution to which a fluorine-based additive (for example, fluoroethylene carbonate) is added is used, fluorine in the additive reacts with Al constituting the current collector, and the current is collected on the surface of the current collector. A film made of aluminum fluoride (AlF 3 ) is formed. This aluminum fluoride film improves the stability of the current collector with respect to fluorine. However, it has been found that the presence of Al-Fe-based, Al-Ni-based precipitates in the current collector (aluminum foil) causes defects in the aluminum fluoride film and decreases the stability of the current collector to fluorine. did.
The aluminum foil for electricity storage device current collector of the present invention based on the above has a composition comprising 20 to 300 ppm of Ni in a mass ratio (hereinafter the same), with the balance being 99% or more of Al and inevitable impurities. The thickness is less than 50 μm.
In the aluminum foil for a power storage device current collector of the present invention, the ratio of crystal grains penetrating the cross section in the thickness direction is preferably 10% or more, and the through hole having a diameter of 0.5 to 500 μm is 5 to 50. An aluminum foil present in an area ratio of% is preferable as the electricity storage device current collector.

本発明によれば、Al−Ni系析出物を基地中に生成させることでエッチングにより貫通孔を形成するのが容易であるとともに、Alの濃度を99%以上にすることでフッ素に対する安定性の優れた蓄電デバイス集電体用アルミニウム箔が提供される。   According to the present invention, it is easy to form through-holes by etching by generating Al-Ni-based precipitates in the matrix, and stability to fluorine can be achieved by making the Al concentration 99% or more. An excellent aluminum foil for an electricity storage device current collector is provided.

実施例で得られた電流―電位曲線の一例を示す。An example of the current-potential curve obtained in the example is shown.

以下、本発明をさらに具体的に説明する。
[化学組成]
<Ni:20〜300ppm>
本発明は酸によるエッチングで貫通孔の形成を促進するために、Niを含有させる。しかし、Ni量が20ppm未満と少ないとAl−Ni系析出物の量が不足して溶解性が低下し、均一な貫通孔の形成を促進することが難しい。
一方で、Ni量が300ppmを超えて多くなると、生成されるAl−Ni系析出物が多くなる。このAl−Ni系析出物がアルミニウム箔の表面に露出していると、その部分はフッ化アルミニウム皮膜が形成されない欠陥となり、集電体のフッ素に対する安定性を低下させる要因となる。
望ましいNiの量は50〜200ppmであり、より望ましいNiの量は50〜100ppmである。
Hereinafter, the present invention will be described more specifically.
[Chemical composition]
<Ni: 20 to 300 ppm>
In the present invention, Ni is contained in order to promote formation of a through hole by etching with an acid. However, when the amount of Ni is less than 20 ppm, the amount of Al—Ni-based precipitates is insufficient, the solubility is lowered, and it is difficult to promote the formation of uniform through holes.
On the other hand, when the amount of Ni exceeds 300 ppm, the amount of generated Al—Ni-based precipitates increases. If this Al—Ni-based precipitate is exposed on the surface of the aluminum foil, that portion becomes a defect in which an aluminum fluoride film is not formed, which causes a decrease in the stability of the current collector to fluorine.
A desirable amount of Ni is 50 to 200 ppm, and a more desirable amount of Ni is 50 to 100 ppm.

<Al:99%以上>
Alは基地を構成するものであるが、上述のように、例えばFeと結びついて生成されるAl−Fe系の析出物は、前述したように、集電体のフッ素に対する安定性を向上させるフッ化アルミニウム皮膜に欠陥を生じさせる要因となる。したがって、不純物として含まれる特にFeを低減するために、本発明はAlの含有量(純度)を99%以上にする。望ましいAlの含有量は99.5%以上、より望ましいAlの含有量は99.7%以上である。
<Al: 99% or more>
Al constitutes a base, but as described above, for example, Al—Fe-based precipitates formed by being combined with Fe, as described above, improve the stability of the current collector against fluorine. This causes a defect in the aluminum fluoride film. Therefore, in order to reduce especially Fe contained as impurities, the present invention makes the Al content (purity) 99% or more. The desirable Al content is 99.5% or more, and the more desirable Al content is 99.7% or more.

<その他不純物元素>
本発明のアルミニウム箔において、Ni及びAlを除く元素、例えばSi、Fe、Cu、Mn、Mg、Zn及びTiは不純物として規制される。これらの不純物として扱われる元素は、Alが99%以上、Niが20〜300ppmであることを前提として、通常、Si≦0.25%、Fe≦0.4%、Cu≦0.05%、Mn≦0.05%、Mg≦0.05%、Zn≦0.05%及びTi≦0.03%(いずれも質量%)に規制される。この中では、Al−Fe系析出物となってフッ化アルミニウム皮膜の健全性を阻害するFeの量を0.2%以下、さらには0.1%以下に規制することが望ましい。
<Other impurity elements>
In the aluminum foil of the present invention, elements other than Ni and Al, such as Si, Fe, Cu, Mn, Mg, Zn and Ti, are regulated as impurities. These elements treated as impurities are usually Si ≦ 0.25%, Fe ≦ 0.4%, Cu ≦ 0.05%, assuming that Al is 99% or more and Ni is 20 to 300 ppm. Mn ≦ 0.05%, Mg ≦ 0.05%, Zn ≦ 0.05%, and Ti ≦ 0.03% (all by mass%) are regulated. In this, it is desirable to regulate the amount of Fe that becomes an Al—Fe-based precipitate and impairs the soundness of the aluminum fluoride film to 0.2% or less, more preferably 0.1% or less.

[結晶粒の貫通度合い]
本発明のアルミニウム箔は、酸溶液を用いてエッチングすることにより貫通孔を形成する。エッチングの際に貫通孔を成長させるために、アルミニウム箔内に存在する粒界が少ないことが望ましい。エッチングピットは粒界で成長が停止しやすいためである。したがって、本発明のアルミニウム箔は、箔の厚さ方向を貫通する程度まで成長している結晶粒がより多く存在していることが理想的である。
しかし、アルミニウム箔の厚さ方向の結晶粒の長さを特定することは容易ではない。そこで本発明は、アルミニウム箔表面の結晶粒のサイズを観察することにより、当該結晶粒が箔の厚さ方向に貫通していることを推測する。つまり、アルミニウム箔の表面を顕微鏡観察して測定される結晶粒の短径(Ds((μm))がアルミニウム箔の厚さ(tμm)以上であれば、当該結晶粒が箔の厚さ方向に貫通しているものとみなす。例えば、アルミニウム箔の厚さが50μmとすれば、Dsが50μm以上であれば当該結晶粒は箔の厚さ方向を貫通しているものとみなす。
本発明では、Ds>tを満足する結晶粒の面積率(貫通度合い)が10%以上であることが好ましく、20%以上であることがより好ましく、30%以上であることがさらに望ましい。
[Degree of penetration of crystal grains]
The aluminum foil of the present invention forms through holes by etching using an acid solution. In order to grow through holes during etching, it is desirable that there are few grain boundaries present in the aluminum foil. This is because the etching pits tend to stop growing at the grain boundaries. Therefore, it is ideal that the aluminum foil of the present invention has more crystal grains grown to the extent that it penetrates the thickness direction of the foil.
However, it is not easy to specify the length of crystal grains in the thickness direction of the aluminum foil. Therefore, the present invention estimates that the crystal grain penetrates in the thickness direction of the foil by observing the size of the crystal grain on the surface of the aluminum foil. That is, if the minor axis (Ds ((μm))) of the crystal grain measured by observing the surface of the aluminum foil with a microscope is equal to or greater than the thickness (tμm) of the aluminum foil, the crystal grain is in the thickness direction of the foil. For example, if the thickness of the aluminum foil is 50 μm, if Ds is 50 μm or more, the crystal grains are considered to penetrate the thickness direction of the foil.
In the present invention, the area ratio (degree of penetration) of crystal grains satisfying Ds> t is preferably 10% or more, more preferably 20% or more, and further preferably 30% or more.

[アルミニウム箔の厚さ]
本発明によるアルミニウム箔は、厚さが50μm未満であることが望ましい。厚さが50μm以上になると、集電体を積層し又は巻き取りをした場合、容積当たりの表面積が小さくなり、蓄電デバイスの容量が小さくなるからである。ただし、箔が薄すぎると、強度がなくなり、積層、又は巻き取り加工における切断等の不具合が多発する。より望ましい箔厚は10〜30μmであり、更に望ましくは15〜25μmである。
[Thickness of aluminum foil]
The aluminum foil according to the present invention desirably has a thickness of less than 50 μm. This is because when the thickness is 50 μm or more, when the current collector is stacked or wound, the surface area per volume becomes small, and the capacity of the electricity storage device becomes small. However, if the foil is too thin, the strength is lost, and defects such as cutting in lamination or winding processing frequently occur. A more desirable foil thickness is 10 to 30 μm, and even more desirably 15 to 25 μm.

[貫通孔]
本発明のアルミニウム箔は、集電体として使用される際には、エッチングにより貫通孔が形成される。
直径(以下、単に径)が0.5〜500μmの範囲内にある貫通孔が5〜50%の面積率で形成されていることが望ましい。
貫通孔になるまで穴を成長させるためには、一定サイズの径が必要になる。径が0.5μm未満であると、穴は発生するが、貫通孔に成長する割合が少なくなる。そのため、余分なエッチングが必要となり、生産効率が低下する。また、径が500μmを超えると強度低下が顕著になり、積層、又は巻き取り加工における切断等の不具合が多発するためである。より望ましい貫通孔の径は1.0〜200μmであり、さらに望ましい貫通孔の径は3.0〜50μmである。
上記径の貫通孔は、5〜50%の面積率で形成されていることが望ましい。5%未満では貫通孔が不足してリチウムイオンのドーピングをスムーズに進行させるという目的を果たすことが困難であり、50%を超えると集電体としての強度が低下するためである。より望ましい貫通孔の面積率は10〜40%、さらに望ましい貫通孔の面積率は20〜30%である。なお、本発明における貫通孔の面積率とは、集電体として機能する表面積に占める、径が0.5〜500μmの貫通孔の開口面積の合計の比率である。以下の実施例も同様である。
[Through hole]
When the aluminum foil of the present invention is used as a current collector, a through hole is formed by etching.
It is desirable that the through holes having a diameter (hereinafter simply referred to as a diameter) in the range of 0.5 to 500 μm are formed with an area ratio of 5 to 50%.
In order to grow a hole until it becomes a through hole, a certain size diameter is required. When the diameter is less than 0.5 μm, holes are generated, but the rate of growth into through holes is reduced. Therefore, extra etching is required, and the production efficiency is lowered. Further, when the diameter exceeds 500 μm, the strength is significantly lowered, and problems such as cutting in lamination or winding processing frequently occur. A more preferable diameter of the through hole is 1.0 to 200 μm, and a more preferable diameter of the through hole is 3.0 to 50 μm.
The through hole having the above diameter is desirably formed with an area ratio of 5 to 50%. If it is less than 5%, it is difficult to achieve the purpose of smoothly performing doping of lithium ions due to insufficient through holes, and if it exceeds 50%, the strength as a current collector is reduced. A more desirable through-hole area ratio is 10 to 40%, and a more desirable through-hole area ratio is 20 to 30%. In addition, the area ratio of the through-hole in this invention is a ratio of the sum total of the opening area of a through-hole with a diameter of 0.5-500 micrometers which occupies for the surface area which functions as a collector. The same applies to the following embodiments.

[製造方法]
本発明のアルミニウム箔は、常法に従って作製することができる。つまり、上述した組成を有するアルミニウム鋳塊を作製し、これに均質化処理を施した後に、熱間圧延、冷間圧延を経ることで、所望する厚さのアルミニウム箔を得る。この場合、熱間圧延の前に鋳塊を加熱することで均質化処理を兼ねることができる。また、連続鋳造圧延、冷間圧延を経ることで、所望する厚さのアルミニウム箔を得ることもできる。冷間圧延の途中で焼鈍(中間焼鈍)を行うことができ、また、冷間圧延終了後に焼鈍(最終焼鈍)を行うことができる。
[Production method]
The aluminum foil of the present invention can be produced according to a conventional method. That is, an aluminum ingot having the above-described composition is produced, subjected to homogenization treatment, and then subjected to hot rolling and cold rolling to obtain an aluminum foil having a desired thickness. In this case, the homogenization can be performed by heating the ingot before the hot rolling. Moreover, the aluminum foil of desired thickness can also be obtained through continuous casting rolling and cold rolling. Annealing (intermediate annealing) can be performed in the middle of cold rolling, and annealing (final annealing) can be performed after the end of cold rolling.

<Al−Ni系析出物の生成>
本発明において、貫通孔の形成を促進するためにAl−Ni系析出物を基地に生成させ、特に箔の表層部に存在させることが重要である。そのためにNiを箔の表層部に濃縮させることが望ましい。Niの表層部への濃縮は、以下に示す焼鈍により十分に実現できる。
<Generation of Al-Ni-based precipitate>
In the present invention, in order to promote the formation of through-holes, it is important that Al—Ni-based precipitates are generated based on the base, and particularly present in the surface layer portion of the foil. Therefore, it is desirable to concentrate Ni in the surface layer part of foil. Concentration of Ni to the surface layer part can be sufficiently realized by annealing shown below.

<結晶粒の貫通>
また、本発明において、箔の厚さ方向を貫通している結晶粒が多く存在していることが望ましいことは前述の通りである。これを実現するために、焼鈍による再結晶粒の成長を十分に促すことが重要である。
本発明が対象とする組成のアルミニウムの場合、200〜250℃の温度から再結晶が始まり、この焼鈍の温度が高いほど箔の厚さ方向を貫通する結晶粒を多く存在させることができる。しかし、焼鈍温度が高くなると、箔同士が付着するブロッキングが生じるおそれが大きい。特に、本発明が対象とする厚さが50μm未満のアルミニウム箔の場合、500℃を超える温度で最終焼鈍を行うと、巻き取られたアルミニウム箔同士にブロッキングが生じて、その後の製造工程に支障を招くおそれが大きい。一方で、焼鈍温度が低いと箔の厚さ方向を貫通する結晶粒の割合が少なくなる。以上により、本願発明のアルミニウム箔を製造するにあたって、焼鈍の温度は300℃を超え500℃未満の範囲から選択することが望ましい。この焼鈍の温度を採用することにより、Niを箔の表層部に濃縮させることもできる。より望ましい焼鈍の温度は350〜450℃である。
焼鈍の保持時間は、温度に加え、焼鈍が施されるアルミニウム箔の厚さにしたがって設定されるものであるが、概ね1〜10時間の範囲から選択することができる。
<Crystal grain penetration>
In addition, as described above, in the present invention, it is desirable that there are many crystal grains penetrating in the thickness direction of the foil. In order to realize this, it is important to sufficiently promote the growth of recrystallized grains by annealing.
In the case of aluminum having a composition targeted by the present invention, recrystallization starts from a temperature of 200 to 250 ° C., and the higher the annealing temperature, the more crystal grains that penetrate the thickness direction of the foil. However, when the annealing temperature is high, there is a high possibility that blocking occurs where the foils adhere to each other. In particular, in the case of an aluminum foil having a thickness of less than 50 μm, which is the subject of the present invention, when the final annealing is performed at a temperature exceeding 500 ° C., the wound aluminum foil is blocked, which hinders the subsequent manufacturing process. There is a high risk of inviting. On the other hand, when the annealing temperature is low, the proportion of crystal grains penetrating through the thickness direction of the foil decreases. As described above, in producing the aluminum foil of the present invention, it is desirable to select the annealing temperature from a range of more than 300 ° C. and less than 500 ° C. By adopting this annealing temperature, Ni can also be concentrated in the surface layer of the foil. A more desirable annealing temperature is 350 to 450 ° C.
The annealing holding time is set according to the thickness of the aluminum foil to be annealed in addition to the temperature, and can be selected from a range of approximately 1 to 10 hours.

箔の厚さ方向を貫通する結晶粒を多く存在させるためには、焼鈍の温度を特定することに加えて、焼鈍を行う際のアルミニウム箔の厚さが重要である。すなわち、同じ条件(温度、時間)で焼鈍を行っても、アルミニウム箔の厚さが異なれば、箔の厚さ方向を貫通する結晶粒の量も相違する。例えば、厚さが200μmのアルミニウム箔に400℃、4時間の条件の焼鈍を施しても、箔の厚さ方向を貫通するまで再結晶粒を成長させることはできない。本発明が対象とする集電体用のアルミニウム箔は厚さが50μm未満であり、以上のように厚さが厚い状態で中間焼鈍を施しても、箔の厚さ方向を貫通するまで再結晶粒を成長させることはできないので、中間焼鈍を行う場合にはこの点を考慮する必要がある。本発明において最も効率よく結晶粒をアルミニウム箔の厚さ方向に貫通させるには、50μm未満の厚さになるように冷間圧延を終了した後に、好ましくは300〜500℃、より好ましくは350〜450℃で最終焼鈍を行うことである。   In order to have many crystal grains penetrating through the thickness direction of the foil, in addition to specifying the annealing temperature, the thickness of the aluminum foil at the time of annealing is important. That is, even if annealing is performed under the same conditions (temperature, time), the amount of crystal grains penetrating through the thickness direction of the foil is different if the thickness of the aluminum foil is different. For example, even if an aluminum foil having a thickness of 200 μm is annealed at 400 ° C. for 4 hours, recrystallized grains cannot be grown until it penetrates the thickness direction of the foil. The aluminum foil for the current collector targeted by the present invention has a thickness of less than 50 μm, and even if it is subjected to intermediate annealing in a thick state as described above, it is recrystallized until it penetrates the thickness direction of the foil. Since the grains cannot be grown, this point needs to be taken into consideration when performing the intermediate annealing. In the present invention, in order to penetrate the crystal grains in the thickness direction of the aluminum foil most efficiently in the present invention, after the cold rolling is finished so as to have a thickness of less than 50 μm, preferably 300 to 500 ° C., more preferably 350 to The final annealing is performed at 450 ° C.

[実施例]
表1に示す成分のアルミニウム鋳塊を常法にしたがって圧延(熱間、冷間)を行い、厚さ20μmのアルミニウム箔を得た。このアルミニウム箔にN雰囲気中で表1に示す条件の焼鈍(最終焼鈍)を施して試料を得た。ただし、表1のNo.24については、冷間圧延により最終の箔厚を100μmとして表1に示す最終焼鈍を行い、また、表1のNo.25については、冷間圧延により最終の箔厚を200μmとして表1に示す最終焼鈍を行った。
これらの試料について、結晶粒が箔の厚さ方向を貫通する度合い、貫通孔の発生度合い、フッ素に対する安定性の評価を行った。その結果を表1に併せて示す。
[Example]
Aluminum ingots having the components shown in Table 1 were rolled (hot and cold) according to a conventional method to obtain an aluminum foil having a thickness of 20 μm. A sample was obtained by subjecting this aluminum foil to annealing (final annealing) under the conditions shown in Table 1 in an N 2 atmosphere. However, no. No. 24 was subjected to final annealing shown in Table 1 with a final foil thickness of 100 μm by cold rolling. For No. 25, the final annealing shown in Table 1 was performed with a final foil thickness of 200 μm by cold rolling.
These samples were evaluated for the degree of crystal grains penetrating through the thickness direction of the foil, the degree of occurrence of through holes, and the stability against fluorine. The results are also shown in Table 1.

貫通孔の発生度合いは、試料を1mol塩酸+3mol硫酸の混酸溶液60℃中に60秒間浸漬して貫通孔を形成し、貫通孔が形成された試料表面をSEM(走査型電子顕微鏡、Scanning Electron Microscope)で観察し、得られた画像より、径が0.5〜500μmの範囲内の貫通孔の面積率を算出することにより評価した。なお、観察された貫通孔の多くは径が0.5〜5μmの範囲であった。
結晶粒の貫通度合いについては、試料表面を過塩素酸エタノール(過塩素酸20vol%+エタノール80vol%)溶液中で40Vの定電圧電解を10秒行った後、5vol%−フッ酸溶液中で40Vの定電圧電解を60秒行い、試料表面をSEMで観察した。観察される結晶粒の短径が箔厚(50μm)以上である結晶粒は貫通粒であると判断し、短径≧50μmの結晶粒の面積率を画像解析により算出した。
The degree of occurrence of the through hole was determined by immersing the sample in a mixed acid solution of 1 mol hydrochloric acid + 3 mol sulfuric acid at 60 ° C. for 60 seconds to form a through hole. The area ratio of through-holes having a diameter in the range of 0.5 to 500 μm was calculated from the obtained image and evaluated. Most of the observed through holes had a diameter in the range of 0.5 to 5 μm.
Regarding the degree of penetration of crystal grains, the surface of the sample was subjected to constant voltage electrolysis at 40 V in a solution of ethanol perchlorate (20 vol% perchloric acid + 80 vol% ethanol) for 10 seconds, and then 40 V in a 5 vol% -hydrofluoric acid solution. Was conducted for 60 seconds, and the surface of the sample was observed with an SEM. A crystal grain having a minor axis of the observed crystal grain having a foil thickness (50 μm) or more was determined to be a through grain, and an area ratio of a crystal grain having a minor axis ≧ 50 μm was calculated by image analysis.

フッ素に対する安定性は、分極測定時に発生する電流値を漏れ電流を評価の指標とした。すなわち、上記に従って貫通孔を発生させた後、5vol%のフッ化水素酸溶液40℃溶液中に4時間浸漬後、水洗、乾燥を行い、表面にフッ化アルミニウムが生成された試料の漏れ電流を測定した。安定性が高く、均一性に優れたフッ化アルミニウム皮膜が形成されていると漏れ電流は小さくなる。
漏れ電流は、特級試薬を用い、ホウ酸40g/l(リットル)+四ホウ酸20g/l(リットル)の溶液を作成し、常温にて、試料を浸漬し、電気化学測定システム(北斗電工(株)HZ−3000)を用い、自然電位より、750mV/minで変化させ、その際発生する電流値を測定した。得られた電流―電位曲線の一例を図1に示すが、10μA/cm以上の電流が発生している電流を皮膜破壊電流とし、それ以前に急激に値が増えた時点の電流値を漏れ電流とした。
For the stability against fluorine, the current value generated during polarization measurement was used as an index for evaluation of leakage current. That is, after generating the through-hole according to the above, the sample was immersed in a 5 vol% hydrofluoric acid solution at 40 ° C. for 4 hours, washed with water and dried, and the leakage current of the sample in which aluminum fluoride was generated on the surface was measured. It was measured. When an aluminum fluoride film having high stability and excellent uniformity is formed, the leakage current is reduced.
For leakage current, a special grade reagent was used, a solution of boric acid 40 g / l (liter) + tetraboric acid 20 g / l (liter) was prepared, the sample was immersed at room temperature, and an electrochemical measurement system (Hokuto Denko ( HZ-3000) was used, and it was changed from the natural potential at 750 mV / min, and the current value generated at that time was measured. An example of the obtained current-potential curve is shown in FIG. 1. The current at which a current of 10 μA / cm 2 or more is generated is the film breaking current, and the current value at the time when the value suddenly increases is leaked. The current was used.

Figure 2011249150
Figure 2011249150

表1より、実施例に係るアルミニウム箔には極端に大きな径の貫通孔が形成されることなく、また、フッ化水素酸溶液中で生成したフッ化アルミニウム皮膜の漏れ電流が十分小さくフッ素に対する安定性に優れていることが分かる。
以上に対して、Niを含有しないか、Niの含有量が本発明よりも低い場合には、エッチングによる溶解性が低く、貫通孔の形成量が少ない(比較例No20,22)。アルミニウムの純度を低下させて溶解性を向上すれば貫通孔は形成されるが、漏れ電流が大きくなり、フッ酸に対する安定性が低下する(比較例No21)。Ni含有量を多くすると、十分な量の貫通孔を形成できるが、漏れ電流が大きくなり、フッ酸に対する安定性が低下する(比較例No23)。また、箔が厚すぎると、貫通粒を形成することができなくなる(比較例No24,25)。
From Table 1, the aluminum foil according to the example does not have an extremely large diameter through-hole, and the leakage current of the aluminum fluoride film formed in the hydrofluoric acid solution is sufficiently small and stable against fluorine. It turns out that it is excellent in property.
On the other hand, when Ni is not contained or when the content of Ni is lower than that of the present invention, the solubility by etching is low and the amount of through holes formed is small (Comparative Examples No. 20 and 22). If the purity of aluminum is lowered to improve the solubility, a through hole is formed, but the leakage current is increased and the stability against hydrofluoric acid is lowered (Comparative Example No. 21). When the Ni content is increased, a sufficient amount of through-holes can be formed, but the leakage current increases and the stability against hydrofluoric acid decreases (Comparative Example No. 23). On the other hand, if the foil is too thick, through grains cannot be formed (Comparative Examples No. 24 and 25).

Claims (3)

質量比率で、
Niを20〜300ppmを含有し、
残部が99%以上のAlと不可避的不純物からなる組成を有し、
厚さが50μm未満であることを特徴とする蓄電デバイス集電体用アルミニウム箔。
In mass ratio,
Containing 20 to 300 ppm of Ni,
The balance is composed of 99% or more of Al and inevitable impurities,
An aluminum foil for a power storage device current collector, wherein the thickness is less than 50 μm.
厚さ方向の断面を貫通する結晶粒の割合が10%以上である、
請求項1に記載の蓄電デバイス集電体用アルミニウム箔。
The proportion of crystal grains penetrating the cross section in the thickness direction is 10% or more.
The aluminum foil for electrical storage device electrical power collectors of Claim 1.
直径0.5〜500μmの貫通孔が5〜50%の面積率で存在する、
請求項1又は2に記載のアルミニウム箔を用いた蓄電デバイス集電体。
A through hole having a diameter of 0.5 to 500 μm exists at an area ratio of 5 to 50%.
The electrical storage device electrical power collector using the aluminum foil of Claim 1 or 2.
JP2010121196A 2010-05-27 2010-05-27 Aluminum foil for power storage device collector and power storage device collector Pending JP2011249150A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010121196A JP2011249150A (en) 2010-05-27 2010-05-27 Aluminum foil for power storage device collector and power storage device collector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010121196A JP2011249150A (en) 2010-05-27 2010-05-27 Aluminum foil for power storage device collector and power storage device collector

Publications (1)

Publication Number Publication Date
JP2011249150A true JP2011249150A (en) 2011-12-08

Family

ID=45414168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010121196A Pending JP2011249150A (en) 2010-05-27 2010-05-27 Aluminum foil for power storage device collector and power storage device collector

Country Status (1)

Country Link
JP (1) JP2011249150A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015115531A1 (en) * 2014-01-31 2015-08-06 富士フイルム株式会社 Method for manufacturing aluminum plate, aluminum plate, current collector for electric storage device, and electric storage device
WO2016051976A1 (en) * 2014-09-30 2016-04-07 富士フイルム株式会社 Aluminum plate
WO2016060037A1 (en) * 2014-10-14 2016-04-21 富士フイルム株式会社 Aluminum plate and method for producing aluminum plate
WO2017018462A1 (en) * 2015-07-30 2017-02-02 富士フイルム株式会社 Aluminum plate and method for producing aluminum plate
EP3279984A4 (en) * 2015-03-31 2018-08-29 FUJIFILM Corporation Aluminum plate, and current collector for power storage device
CN111430726A (en) * 2020-06-10 2020-07-17 河南绿动能源科技有限公司 Preparation method of aluminum current collector for lithium ion battery and aluminum current collector

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160294002A1 (en) * 2014-01-31 2016-10-06 Fujifilm Corporation Method for manufacturing aluminum plate, aluminum plate, collector for storage device, and storage device
US10593989B2 (en) 2014-01-31 2020-03-17 Fujifilm Corporation Method for manufacturing aluminum plate, aluminum plate, collector for storage device, and storage device
WO2015115531A1 (en) * 2014-01-31 2015-08-06 富士フイルム株式会社 Method for manufacturing aluminum plate, aluminum plate, current collector for electric storage device, and electric storage device
CN105934540A (en) * 2014-01-31 2016-09-07 富士胶片株式会社 Method for manufacturing aluminum plate, aluminum plate, collector for storage device, and storage device
KR101915483B1 (en) 2014-09-30 2018-11-06 후지필름 가부시키가이샤 Aluminum plate
CN110453204A (en) * 2014-09-30 2019-11-15 富士胶片株式会社 Aluminium sheet
CN110453204B (en) * 2014-09-30 2022-02-11 富士胶片株式会社 Aluminium plate
JPWO2016051976A1 (en) * 2014-09-30 2017-07-27 富士フイルム株式会社 Aluminum plate
WO2016051976A1 (en) * 2014-09-30 2016-04-07 富士フイルム株式会社 Aluminum plate
CN107075714A (en) * 2014-09-30 2017-08-18 富士胶片株式会社 Aluminium sheet
JPWO2016060037A1 (en) * 2014-10-14 2017-08-10 富士フイルム株式会社 Aluminum plate and method for manufacturing aluminum plate
WO2016060037A1 (en) * 2014-10-14 2016-04-21 富士フイルム株式会社 Aluminum plate and method for producing aluminum plate
CN106795646B (en) * 2014-10-14 2018-12-18 富士胶片株式会社 The manufacturing method of aluminium sheet and aluminium sheet
CN106795646A (en) * 2014-10-14 2017-05-31 富士胶片株式会社 The manufacture method of aluminium sheet and aluminium sheet
EP3279984A4 (en) * 2015-03-31 2018-08-29 FUJIFILM Corporation Aluminum plate, and current collector for power storage device
JPWO2017018462A1 (en) * 2015-07-30 2018-06-28 富士フイルム株式会社 Aluminum plate
WO2017018462A1 (en) * 2015-07-30 2017-02-02 富士フイルム株式会社 Aluminum plate and method for producing aluminum plate
CN111430726A (en) * 2020-06-10 2020-07-17 河南绿动能源科技有限公司 Preparation method of aluminum current collector for lithium ion battery and aluminum current collector

Similar Documents

Publication Publication Date Title
JP6993337B2 (en) Magnesium-lithium alloy and magnesium-air battery
Wu et al. Effects of indium, gallium, or bismuth additions on the discharge behavior of Al-Mg-Sn-based alloy for Al-air battery anodes in NaOH electrolytes
JP5816285B2 (en) Aluminum alloy foil for electrode current collector and method for producing the same
JP2011249150A (en) Aluminum foil for power storage device collector and power storage device collector
JP6290520B1 (en) Magnesium-lithium alloy and magnesium-air battery
JP5798128B2 (en) Aluminum alloy foil for electrode current collector and method for producing the same
KR101924250B1 (en) Rolled copper foil for secondary battery collector and production method therefor
CN102747251A (en) Aluminium alloy foil used for current collector of positive electrode of lithium ion battery, and manufacturing method thereof
JP2010043333A (en) Aluminum foil for positive electrode collector
JP6055814B2 (en) Aluminum alloy foil for electrode current collector and method for producing the same
JPWO2013125565A1 (en) Aluminum alloy foil for electrode current collector and method for producing the same
JP5791720B2 (en) Aluminum alloy foil for electrode current collector and method for producing the same
JP2006269361A (en) Negative electrode for lithium ion secondary battery and its manufacturing method
JP3649373B2 (en) Method for producing negative electrode current collector for secondary battery
JP2010236055A (en) Aluminum alloy foil for lithium ion secondary battery, and method for producing the same
WO2013018161A1 (en) Aluminum alloy foil for electrode collector and production method therefor
JP2016018653A (en) Negative electrode current collector, nonaqueous electrolyte battery negative electrode, and nonaqueous electrolyte battery
TWI255576B (en) An anode plate based on the zinc-aluminum alloy and a zinc-air battery containing the same
JP3920301B2 (en) Aluminum foil for electrolytic capacitors
JP2011006747A (en) Aluminum foil for electrolytic capacitor
JP4230691B2 (en) Secondary battery current collector
JP4793827B2 (en) Aluminum foil for electrolytic capacitor and manufacturing method thereof
JP5681397B2 (en) Aluminum foil for electrolytic capacitor and manufacturing method thereof
JP2010170901A (en) Negative-electrode active material, secondary battery and capacitor using the same
CN117558892A (en) Lamellar nanoporous Zn/Cu/Al 2 Cu alloy electrode and preparation method and application thereof