JP2010103061A - Negative electrode copper alloy foil of secondary battery and manufacturing method for the same - Google Patents

Negative electrode copper alloy foil of secondary battery and manufacturing method for the same Download PDF

Info

Publication number
JP2010103061A
JP2010103061A JP2008276034A JP2008276034A JP2010103061A JP 2010103061 A JP2010103061 A JP 2010103061A JP 2008276034 A JP2008276034 A JP 2008276034A JP 2008276034 A JP2008276034 A JP 2008276034A JP 2010103061 A JP2010103061 A JP 2010103061A
Authority
JP
Japan
Prior art keywords
copper alloy
alloy foil
negative electrode
copper
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008276034A
Other languages
Japanese (ja)
Inventor
Muneo Kodaira
宗男 小平
Hajime Sasaki
元 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2008276034A priority Critical patent/JP2010103061A/en
Publication of JP2010103061A publication Critical patent/JP2010103061A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a negative electrode copper alloy foil of a secondary battery which is excellent on an adhesive property to an active material, and a manufacturing method for a negative electrode copper alloy foil of a secondary battery. <P>SOLUTION: The negative electrode copper alloy foil 1 of a secondary battery functioned as a negative electrode for a secondary battery by preparing an active material layer 40 has a copper alloy foil 10 expanding and contracting in response to expansion and contraction in the plane direction of the active material layer 40, and a plating core 20 formed on the surface of the copper alloy foil 10 as a core of copper plating. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、二次電池用負極銅合金箔及び二次電池用負極銅合金箔の製造方法に関する。特に、本発明は、リチウムイオン二次電池用負極銅合金箔、及びリチウムイオン二次電池用負極銅合金箔の製造方法に関する。   The present invention relates to a negative electrode copper alloy foil for secondary batteries and a method for producing a negative electrode copper alloy foil for secondary batteries. In particular, the present invention relates to a negative electrode copper alloy foil for lithium ion secondary batteries and a method for producing a negative electrode copper alloy foil for lithium ion secondary batteries.

従来のリチウムイオン二次電池用負極として、集電体と、カーボン又はグラファイト材料からなり、集電体上に設けられる活物質及び熱可塑性樹脂からなるバインダーを含む層とを備え、活物質はSnを含む合金粉末からなると共に、バインダーは3.0GPa以上の弾性率を有する樹脂からなるリチウムイオン二次電池用負極が知られている(例えば、特許文献1参照)。   A conventional negative electrode for a lithium ion secondary battery includes a current collector and a layer made of a carbon or graphite material and including a binder made of an active material and a thermoplastic resin provided on the current collector. The active material is Sn There is known a negative electrode for a lithium ion secondary battery, which is made of an alloy powder containing bismuth and the binder is made of a resin having an elastic modulus of 3.0 GPa or more (see, for example, Patent Document 1).

特許文献1に記載のリチウムイオン二次電池用負極は、活物質としてSnを含む合金粉末を用いたので、良好な充放電サイクル特性を示すことができるリチウムイオン二次電池を提供できる。なお、Snを主体として活物質を形成した場合、カーボン材料又はグラファイト材料等の炭素材料からなる活物質の理論放電容量(最大容量)372mAh/g以上の理論放電容量(例えば、Li4.4Snにおいて約1000mAh/g)が期待できる。 Since the negative electrode for lithium ion secondary batteries described in Patent Document 1 uses an alloy powder containing Sn as an active material, a lithium ion secondary battery that can exhibit good charge / discharge cycle characteristics can be provided. When the active material is formed mainly of Sn, the theoretical discharge capacity (maximum capacity) of the active material made of a carbon material such as a carbon material or a graphite material is 372 mAh / g or more (for example, Li 4.4 Sn). About 1000 mAh / g) can be expected.

特開2007−149604号公報JP 2007-149604 A

しかし、特許文献1に係るリチウムイオン二次電池用負極は、リチウムイオンを吸蔵すると体積が約3.5倍に膨張するSnを用いており、Snを含む合金粉末をバインダーに添加した場合であっても、充放電サイクルの繰り返しに伴う集電体からの活物質の剥離、脱落を完全に避けることは困難である。また、特に、バインダー(炭素材料)の割合を低減してリチウムイオン二次電池を高容量化した場合、Snによる体積変化の増大は避けられず、充放電中に活物質と集電体との間で剥離が発生することによって電池特性が低下する場合がある。   However, the negative electrode for a lithium ion secondary battery according to Patent Document 1 uses Sn whose volume expands about 3.5 times when lithium ions are occluded, and this is a case where an alloy powder containing Sn is added to a binder. However, it is difficult to completely avoid peeling and dropping of the active material from the current collector due to repeated charge / discharge cycles. In particular, when the capacity of the lithium ion secondary battery is increased by reducing the ratio of the binder (carbon material), an increase in volume change due to Sn is inevitable, and the active material and the current collector are not charged during charging and discharging. In some cases, the battery characteristics may be deteriorated due to the occurrence of peeling.

したがって、本発明の目的は、活物質に対する密着性に優れた二次電池用負極銅合金箔、及び二次電池用負極銅合金箔の製造方法を提供することにある。   Therefore, the objective of this invention is providing the manufacturing method of the negative electrode copper alloy foil for secondary batteries excellent in the adhesiveness with respect to an active material, and the negative electrode copper alloy foil for secondary batteries.

本発明は、上記目的を達成するため、活物質層が設けられることにより二次電池用負極として機能する二次電池用負極銅合金箔であって、活物質層の平面方向の伸縮に応じて伸縮する銅合金箔と、銅合金箔の表面に形成され、銅めっきの核となるめっき核とを備える二次電池用負極銅合金箔が提供される。   In order to achieve the above object, the present invention is a negative electrode copper alloy foil for a secondary battery that functions as a negative electrode for a secondary battery by providing an active material layer, and according to expansion and contraction in the planar direction of the active material layer Provided is a negative electrode copper alloy foil for a secondary battery, which includes a copper alloy foil that expands and contracts and a plating nucleus that is formed on the surface of the copper alloy foil and serves as a nucleus of copper plating.

また、上記二次電池用負極銅合金箔は、銅合金箔は、0.01wt%以上0.06wt%以下のZrを含み、めっき核は、CuとZrとから形成されてもよい。   Moreover, the negative electrode copper alloy foil for a secondary battery may include 0.01 wt% or more and 0.06 wt% or less of Zr, and the plating nucleus may be formed of Cu and Zr.

また、上記二次電池用負極銅合金箔は、銅合金箔は、銅合金箔の最大引張り強度と銅合金箔の厚さとの積が、3600N/mm・μm以上であってもよい。 The negative electrode copper alloy foil for a secondary battery may have a product of the maximum tensile strength of the copper alloy foil and the thickness of the copper alloy foil of 3600 N / mm 2 · μm or more.

また、上記二次電池用負極銅合金箔は、めっき核を核として銅めっきすることによりめっき核上に形成され、1μm以上5μm未満の表面粗さを有する銅層を更に備えてもよい。   Moreover, the said negative electrode copper alloy foil for secondary batteries may further be provided with the copper layer which is formed on a plating nucleus by copper plating using a plating nucleus as a nucleus, and has the surface roughness of 1 micrometer or more and less than 5 micrometers.

また、上記二次電池用負極銅合金箔は、めっき核は、銅合金箔の表面に層状に形成されてもよい。   Moreover, as for the said negative electrode copper alloy foil for secondary batteries, a plating nucleus may be formed in layered form on the surface of copper alloy foil.

また、本発明は、上記目的を達するため、活物質層が設けられることにより二次電池用負極として機能する二次電池用負極銅合金箔の製造方法であって、活物質層の平面方向の伸縮に応じて伸縮する銅合金箔を準備する銅合金箔準備工程と、銅合金箔の表面に、銅めっきの核となるめっき核を形成するめっき核形成工程とを備える二次電池用負極銅合金箔の製造方法が提供される。   Moreover, in order to achieve the above object, the present invention provides a method for producing a negative electrode copper alloy foil for a secondary battery that functions as a negative electrode for a secondary battery by providing an active material layer, and is provided in the planar direction of the active material layer. A negative electrode copper for a secondary battery, comprising: a copper alloy foil preparation step for preparing a copper alloy foil that expands and contracts according to expansion and contraction; and a plating nucleus formation step for forming a plating nucleus as a core of copper plating on the surface of the copper alloy foil A method for producing an alloy foil is provided.

また、上記二次電池用負極銅合金箔の製造方法は、銅合金箔準備工程は、0.01wt%以上0.06wt%以下のZrを含む銅合金箔を準備し、めっき核形成工程は、銅合金箔の表面を電解エッチングしてCuとZrとからなるめっき核を形成してもよい。   Moreover, the manufacturing method of the said negative electrode copper alloy foil for secondary batteries prepares the copper alloy foil which contains 0.01 wt% or more and 0.06 wt% or less of Zr in the copper alloy foil preparation process, The surface of the copper alloy foil may be electrolytically etched to form a plating nucleus made of Cu and Zr.

また、上記二次電池用負極銅合金箔の製造方法は、めっき核を核として銅めっきすることによりめっき核上に銅層を形成する銅層形成工程を更に備えてもよい。   Moreover, the manufacturing method of the said negative electrode copper alloy foil for secondary batteries may further comprise the copper layer formation process which forms a copper layer on a plating nucleus by copper-plating by using a plating nucleus as a nucleus.

本発明に係る二次電池用負極銅合金箔、及び二次電池用負極銅合金箔の製造方法によれば、活物質に対する密着性に優れた二次電池用負極銅合金箔、及び二次電池用負極銅合金の製造方法を提供することができる。   According to the negative electrode copper alloy foil for the secondary battery and the method for producing the negative electrode copper alloy foil for the secondary battery according to the present invention, the negative electrode copper alloy foil for the secondary battery excellent in adhesion to the active material, and the secondary battery The manufacturing method of the negative electrode copper alloy can be provided.

[実施の形態]
図1及び図2は、本発明の実施の形態に係る二次電池用負極銅合金箔の断面の概要を示す。
[Embodiment]
FIG.1 and FIG.2 shows the outline | summary of the cross section of the negative electrode copper alloy foil for secondary batteries which concerns on embodiment of this invention.

(二次電池用負極銅合金箔1の構成)
本実施の形態に係る二次電池用負極銅合金箔1は、リチウムイオン二次電池の負極に用いる銅合金箔である。図1を参照すると、本実施の形態に係る二次電池用負極銅合金箔1は、銅合金箔10と、銅合金箔10の表面に形成されるめっき核20とを備える。めっき核20は、後述する銅層がめっき核20上に銅めっきにより形成される場合に、形成される銅層の核として機能する。また、銅合金箔10は、二次電池用負極銅合金箔1上に設けられる活物質層の平面方向の伸縮に応じて伸縮することのできる強度を有して形成される。
(Configuration of negative electrode copper alloy foil 1 for secondary battery)
A secondary battery negative electrode copper alloy foil 1 according to the present embodiment is a copper alloy foil used for a negative electrode of a lithium ion secondary battery. Referring to FIG. 1, the secondary battery negative electrode copper alloy foil 1 according to the present embodiment includes a copper alloy foil 10 and a plating nucleus 20 formed on the surface of the copper alloy foil 10. The plating nucleus 20 functions as a nucleus of the formed copper layer when a later-described copper layer is formed on the plating nucleus 20 by copper plating. Moreover, the copper alloy foil 10 is formed to have a strength capable of expanding and contracting according to the expansion and contraction in the planar direction of the active material layer provided on the negative electrode copper alloy foil 1 for a secondary battery.

(銅合金箔10)
本実施の形態に係る銅合金箔10は、耐熱性の確保及びリチウムイオン二次電池の製造時に銅合金箔10に加わる熱履歴によって銅合金箔10の軟化の進行を抑制することを目的として、0.01wt%以上のZrを含んで形成される。また、銅合金箔10は、実用上、十分な耐熱性を二次電池用負極銅合金箔1に付与すると共に低コスト化を実現することを目的として、0.06wt%以下のZrを含んで形成される。
(Copper alloy foil 10)
The purpose of the copper alloy foil 10 according to the present embodiment is to suppress the progress of softening of the copper alloy foil 10 by ensuring the heat resistance and heat history applied to the copper alloy foil 10 during the manufacture of the lithium ion secondary battery. It is formed including 0.01 wt% or more of Zr. Moreover, the copper alloy foil 10 contains 0.06 wt% or less of Zr for the purpose of providing practically sufficient heat resistance to the negative electrode copper alloy foil 1 for secondary batteries and realizing cost reduction. It is formed.

このように本実施の形態に係る銅合金箔10が、0.01wt%以上0.06wt%未満のZrを含んで形成されるのは、発明者が鋭意研究した結果得た、以下の知見による。   As described above, the copper alloy foil 10 according to the present embodiment is formed to contain 0.01 wt% or more and less than 0.06 wt% of Zr based on the following knowledge obtained as a result of earnest research by the inventors. .

すなわち、リチウムイオン二次電池は、銅箔からなる集電体と、集電体上に設けられる活物質とを備えて形成される。そして、リチウムイオン二次電池の充電時に集電体上の活物質の体積が膨張すると、集電体である銅箔も活物質の体積膨張に追従して伸長する。ここで、Zrを含んでいない通常の銅箔(電解銅箔又はタフピッチ銅箔)においては、銅箔の弾性変形の範囲を超えて伸長することにより塑性変形するので、リチウムイオン二次電池の放電時に活物質の体積が減少しても銅箔は収縮せずに伸長した状態のままとなる。これにより、活物質の銅箔からの剥離が発生する。リチウムイオン二次電池の充放電を繰り返すと、活物質が伸縮を繰り返す一方で、銅箔は収縮しないので、活物質の銅箔からの剥離はより顕著に発生する。   That is, the lithium ion secondary battery is formed by including a current collector made of copper foil and an active material provided on the current collector. When the volume of the active material on the current collector expands during charging of the lithium ion secondary battery, the copper foil that is the current collector also expands following the volume expansion of the active material. Here, in a normal copper foil (electrolytic copper foil or tough pitch copper foil) that does not contain Zr, plastic deformation occurs by extending beyond the range of elastic deformation of the copper foil, so the discharge of the lithium ion secondary battery Sometimes, even if the volume of the active material is reduced, the copper foil does not shrink and remains in an elongated state. Thereby, peeling of the active material from the copper foil occurs. When the charge and discharge of the lithium ion secondary battery is repeated, the active material repeatedly expands and contracts, while the copper foil does not contract. Therefore, the active material peels from the copper foil more significantly.

ここで、本発明者は、集電体を高強度の銅箔(つまり、高強度の銅合金箔)から形成すれば、活物質の体積膨張により発生する応力より集電体の耐力の方が勝るので、集電体の伸びは弾性変形内に留まるとの知見を得た。すなわち、リチウムイオン二次電池の充放電による活物質の体積変化に応じて伸縮する材料(層状の活物質の平面方向の伸縮に応じて伸縮する材料)から集電体を形成することにより、集電体からの活物質の剥離を抑制できるとの知見を得た。また、高強度の銅箔から集電体を形成すると、充電時にリチウムイオンは集電体の近傍までは進入できず、集電体近傍の体積膨張を小さく抑えられるとの知見を得た。   Here, if the current collector is formed of a high-strength copper foil (that is, a high-strength copper alloy foil), the proof stress of the current collector is greater than the stress generated by the volume expansion of the active material. It was found that the elongation of the current collector stays within the elastic deformation because it wins. That is, a current collector is formed by forming a current collector from a material that expands and contracts according to the volume change of the active material due to charge and discharge of the lithium ion secondary battery (a material that expands and contracts according to the expansion and contraction in the plane direction of the layered active material). The knowledge that peeling of the active material from the electric conductor can be suppressed was obtained. In addition, when the current collector is formed from a high-strength copper foil, it has been found that during charging, lithium ions cannot enter the vicinity of the current collector, and the volume expansion in the vicinity of the current collector can be suppressed small.

なお、集電体としての銅箔の強度は、銅箔の厚さを厚くすることで増加させることができるものの、二次電池用負極全体に占める集電体の体積の割合が増加することで、二次電池用負極全体に占める活物質の割合が減少する。この場合、銅箔の厚さの増加により二次電池のサイズも増大するので、二次電池の高容量化には限界がある。よって、集電体の銅箔の厚さは必要以上に増加させないことが好ましい。また、リチウムイオン二次電池等の電池の製造工程において、150℃〜300℃の熱処理が銅箔に施される場合がある。この熱処理は、合材溶剤の除去、水分の乾燥、活物質としてのSn−Cu合金の形成等の電池の製造工程に応じてなされる処理である。無酸素銅からなる銅箔(OFC銅箔)、又はタフピッチ銅からなる銅箔(TPC銅箔)は、130℃程度の熱処理が施されると軟化が進行して引張り強度が大幅に低下する。すなわち、OFC銅箔及びTPC銅箔は、熱処理が施される前の銅箔の強度が十分であっても、二次電池として製造された後においては熱処理が施された後であり、これらの銅箔の強度は低下するので本実施の形態においては好ましいと言えない。   Although the strength of the copper foil as the current collector can be increased by increasing the thickness of the copper foil, the ratio of the volume of the current collector to the entire negative electrode for the secondary battery is increased. The proportion of the active material in the entire secondary battery negative electrode is reduced. In this case, since the size of the secondary battery increases as the thickness of the copper foil increases, there is a limit to increasing the capacity of the secondary battery. Therefore, it is preferable that the thickness of the copper foil of the current collector is not increased more than necessary. Moreover, in the manufacturing process of a battery such as a lithium ion secondary battery, heat treatment at 150 ° C. to 300 ° C. may be performed on the copper foil. This heat treatment is a process performed in accordance with the battery manufacturing process such as removal of the solvent for the composite material, drying of the water, and formation of the Sn—Cu alloy as the active material. When a copper foil made of oxygen-free copper (OFC copper foil) or a copper foil made of tough pitch copper (TPC copper foil) is subjected to a heat treatment of about 130 ° C., the softening proceeds and the tensile strength is greatly reduced. That is, the OFC copper foil and the TPC copper foil are after the heat treatment after being manufactured as a secondary battery, even if the strength of the copper foil before the heat treatment is sufficient. Since the strength of the copper foil is lowered, it cannot be said to be preferable in the present embodiment.

以上より、本発明者は、リチウムイオン二次電池の高容量化を実現でき、活物質層の平面方向の伸縮に応じて伸縮すると共に、熱処理を施しても強度の低下を抑制できる銅箔として、0.01wt%以上0.06wt%以下のZrを含む銅合金箔10を見出したものである。   As described above, the present inventor can realize a high capacity of the lithium ion secondary battery, expands and contracts in accordance with the expansion and contraction in the planar direction of the active material layer, and can suppress a decrease in strength even when heat treatment is performed. The copper alloy foil 10 containing 0.01 wt% or more and 0.06 wt% or less of Zr has been found.

(めっき核20)
めっき核20は、CuとZrとから形成される微粒子である。この微粒子は数百nm以下の径を有して形成される。なお、図1において複数のめっき核20は銅合金箔10上に間隔をおいて形成されているが、銅合金箔10の表面を覆うように、すなわち、複数のめっき核20をすき間なく形成することにより、実質的に層状のめっき核20とすることもできる。
(Plating nucleus 20)
The plating nucleus 20 is a fine particle formed from Cu and Zr. The fine particles are formed with a diameter of several hundred nm or less. In FIG. 1, the plurality of plating nuclei 20 are formed on the copper alloy foil 10 at intervals, but the plurality of plating nuclei 20 are formed so as to cover the surface of the copper alloy foil 10, that is, without gaps. Accordingly, the layered plating nucleus 20 can be substantially formed.

(二次電池用負極銅合金箔1aの概要) (Outline of negative electrode copper alloy foil 1a for secondary battery)

図2を参照すると、二次電池用負極銅合金箔1aは、図1に示した二次電池用負極銅合金箔1上に銅層30を設けることにより形成される。銅層30は、めっき核20を核として銅めっき(粗化銅めっき)されることにより形成される粗化銅めっき層である。粗化銅めっき層は、例えば、複数のめっき核20のそれぞれにコブ形状を有した銅がめっきされることにより形成され、表面が粗面化された状態となっている。ここでめっき核20は、銅合金箔10上に点在して形成される場合、銅合金箔10上に略均一に分布するように形成される。あるいは、めっき核20は、銅合金箔10上に層状に形成される。よって、めっき核20を核として銅めっきにより形成される銅層30は、めっきがされない部分であるめっき欠陥を含まずにめっき核20上に形成される。したがって、銅層30は、表面の全域にわたって略均一な粗面化形状を有して形成される。   Referring to FIG. 2, the secondary battery negative electrode copper alloy foil 1a is formed by providing a copper layer 30 on the secondary battery negative electrode copper alloy foil 1 shown in FIG. The copper layer 30 is a roughened copper plating layer formed by copper plating (roughening copper plating) using the plating nucleus 20 as a nucleus. The roughened copper plating layer is formed, for example, by plating copper having a bump shape on each of the plurality of plating nuclei 20, and the surface is roughened. Here, when the plating nuclei 20 are scattered on the copper alloy foil 10, the plating nuclei 20 are formed so as to be distributed substantially uniformly on the copper alloy foil 10. Alternatively, the plating nucleus 20 is formed in layers on the copper alloy foil 10. Therefore, the copper layer 30 formed by copper plating using the plating nucleus 20 as a nucleus is formed on the plating nucleus 20 without including a plating defect that is a portion where plating is not performed. Therefore, the copper layer 30 is formed to have a substantially uniform roughened shape over the entire surface.

(二次電池用負極2の概要)
図3は、本発明の実施の形態に係る二次電池用負極の断面の概要を示す。
(Outline of negative electrode 2 for secondary battery)
FIG. 3: shows the outline | summary of the cross section of the negative electrode for secondary batteries which concerns on embodiment of this invention.

二次電池用負極2は、図2に示した二次電池用負極銅合金箔1a上に活物質層40を設けることにより形成される。活物質層40は、一例として、NiSn合金めっきにより銅層30上に形成される。本実施の形態において、活物質層40は、粗面を有する粗面化銅めっき層である銅層30上に形成される。銅層30の表面が粗面化された表面であるので、銅層40の表面の凹凸が活物質層40へ食い込む「アンカー効果」が発揮される。   The secondary battery negative electrode 2 is formed by providing an active material layer 40 on the secondary battery negative electrode copper alloy foil 1a shown in FIG. For example, the active material layer 40 is formed on the copper layer 30 by NiSn alloy plating. In the present embodiment, active material layer 40 is formed on copper layer 30 which is a roughened copper plating layer having a rough surface. Since the surface of the copper layer 30 is a roughened surface, the “anchor effect” in which the irregularities on the surface of the copper layer 40 bite into the active material layer 40 is exhibited.

ここで、銅層30は、活物質層40に対するアンカー効果を発揮させて銅層30と活物質層40との密着性を確保することを目的として、十点平均粗さ(以下、「表面粗さRz」又は「Rz」という)が1μm以上の粗面化表面を有して形成される。また、銅層30は、銅層30の脱落を抑制すると共に銅層30と活物質層40との密着性の低下を抑制することを目的として、表面粗さRzが5μm未満の粗面化表面を有して形成される。   Here, the copper layer 30 exhibits an anchor effect on the active material layer 40 to ensure adhesion between the copper layer 30 and the active material layer 40. Rz ”or“ Rz ”) is formed with a roughened surface of 1 μm or more. Further, the copper layer 30 is a roughened surface having a surface roughness Rz of less than 5 μm for the purpose of suppressing the drop-off of the copper layer 30 and suppressing a decrease in adhesion between the copper layer 30 and the active material layer 40. Formed.

なお、CuとZrとからなる微粒子であるめっき核20の有無は以下のように確認できる。まず、粗化銅めっき後の二次電池用負極銅合金箔1a、活物質層40を形成した後に得られる二次電極用負極2、又は本実施の形態に係る二次電池用負極2を備えるリチウム二次電池から取り出した当該二次電池用負極2の断面を、集束イオンビーム(Focused Ion Beam:FIB)、イオンミリング、又はミクロトームにより形成する。次に、銅合金箔10と銅層30との界面をSEM観察する。そして、SEM観察によって得られるSEM像から、めっき核20の有無を確認することができる。   In addition, the presence or absence of the plating nucleus 20 which is microparticles | fine-particles which consist of Cu and Zr can be confirmed as follows. First, the negative electrode copper alloy foil 1a for secondary batteries after roughening copper plating, the negative electrode 2 for secondary electrodes obtained after forming the active material layer 40, or the negative electrode 2 for secondary batteries which concerns on this Embodiment is provided. The cross section of the secondary battery negative electrode 2 taken out from the lithium secondary battery is formed by a focused ion beam (FIB), ion milling, or a microtome. Next, the interface between the copper alloy foil 10 and the copper layer 30 is observed with an SEM. And the presence or absence of the plating nucleus 20 can be confirmed from the SEM image obtained by SEM observation.

また、二次電池用負極2を用いたリチウムイオン二次電池の充放電時に銅合金箔10が塑性変形するか否かは、銅合金箔10の最大引張り強度と銅合金箔10の厚さとの積で規定できる。例えば、Sn又はSiを主材料とした活物質層40を用いる場合、銅合金箔10の塑性変形を抑制することを目的として、銅合金箔10の最大引張り強度と銅合金箔10の厚さとの積は、3600N/mm・μm以上であることが好ましい。 Whether or not the copper alloy foil 10 is plastically deformed during charging / discharging of the lithium ion secondary battery using the secondary battery negative electrode 2 depends on the maximum tensile strength of the copper alloy foil 10 and the thickness of the copper alloy foil 10. Can be defined by product. For example, when using the active material layer 40 mainly composed of Sn or Si, the maximum tensile strength of the copper alloy foil 10 and the thickness of the copper alloy foil 10 are set for the purpose of suppressing plastic deformation of the copper alloy foil 10. The product is preferably 3600 N / mm 2 · μm or more.

(二次電池用負極銅合金箔及び二次電池用負極の製造方法)
図4は、本発明の実施の形態に係る二次電池用負極銅合金箔、及び二次電池用負極の製造工程の流れを示す。
(Negative copper alloy foil for secondary battery and method for producing secondary battery negative electrode)
FIG. 4 shows a flow of manufacturing steps of the secondary battery negative electrode copper alloy foil and the secondary battery negative electrode according to the embodiment of the present invention.

まず、Zrを含む高強度の銅合金箔である銅合金箔10を準備する(銅合金箔準備工程:ステップ100。以下、ステップを「S」とする)。次に銅合金箔10をアルカリ性溶液中において陰極電解脱脂する(脱脂工程:S110)。これにより、銅合金箔10の表面を清浄化する。続いて、表面が清浄化された銅合金箔10を陽極電解酸洗する。すなわち、銅合金箔10を陽極にして銅合金箔10に電力を供給することにより、銅合金箔10の表面に電解エッチングを施す。これにより、銅合金箔10を構成するCuとZrとからなる微粒子が、銅合金箔10の表面に露出して形成され、本実施の形態に係る二次電池用負極銅合金箔1が製造される(めっき核形成工程:S120)。当該微粒子が、めっき核20となる。なお、銅合金箔10を陽極電解酸洗しているので、銅合金箔10の表面がエッチングされることにより、銅合金の清浄面が外部に露出する。   First, a copper alloy foil 10, which is a high-strength copper alloy foil containing Zr, is prepared (copper alloy foil preparation step: step 100, hereinafter, “step” is referred to as “S”). Next, the copper alloy foil 10 is subjected to cathode electrolytic degreasing in an alkaline solution (degreasing step: S110). Thereby, the surface of the copper alloy foil 10 is cleaned. Subsequently, the copper alloy foil 10 having a cleaned surface is subjected to anodic electrolytic pickling. That is, electrolytic etching is performed on the surface of the copper alloy foil 10 by supplying power to the copper alloy foil 10 using the copper alloy foil 10 as an anode. Thereby, the fine particles composed of Cu and Zr constituting the copper alloy foil 10 are formed to be exposed on the surface of the copper alloy foil 10, and the negative electrode copper alloy foil 1 for the secondary battery according to the present embodiment is manufactured. (Plating nucleus forming step: S120). The fine particles become the plating nucleus 20. In addition, since the copper alloy foil 10 is anodic electrolytic pickling, the clean surface of the copper alloy is exposed to the outside by etching the surface of the copper alloy foil 10.

続いて、めっき核20が形成された銅合金箔10の表面に、電気銅めっき(粗化銅めっき)により銅層30を形成する(銅層形成工程:S130)。これにより、本実施の形態に係る二次電池用負極銅合金箔1aが製造される。この場合において、銅層30は、めっき核20を核として当該核上に銅がめっきされることにより形成される。例えば、めっき核20の上に被せめっきを実施して、めっき核20を核としてコブ状を有する銅層30を形成することにより、粗面を有する銅層30を形成する。また、銅めっきは、複数の段階に分けて実施することもできる。   Subsequently, a copper layer 30 is formed on the surface of the copper alloy foil 10 on which the plating nucleus 20 is formed by electrolytic copper plating (roughening copper plating) (copper layer forming step: S130). Thereby, the negative electrode copper alloy foil 1a for secondary batteries which concerns on this Embodiment is manufactured. In this case, the copper layer 30 is formed by plating copper on the core using the plating core 20 as a core. For example, the copper layer 30 having a rough surface is formed by performing plating over the plating nucleus 20 and forming the copper layer 30 having a bump shape with the plating nucleus 20 as a nucleus. Moreover, copper plating can also be implemented in several steps.

なお、銅合金箔10の表面に電解エッチングを施している間にCuとZrとからなる微粒子の一部が銅合金箔10の表面から不可避的に脱落した場合、又は、超音波を銅合金箔10の表面に当てることにより意図的に微粒子の一部を除去した場合であっても、銅合金箔10の表面に微粒子、すなわち、めっき核20が存在している限り、めっき欠陥が実質的に存在しない銅層30を形成することができる。   In addition, when a part of microparticles | fine-particles which consist of Cu and Zr are inevitably dropped from the surface of the copper alloy foil 10 while performing the electrolytic etching on the surface of the copper alloy foil 10, or ultrasonic waves are applied to the copper alloy foil. Even when a part of the fine particles are intentionally removed by being applied to the surface of the copper alloy 10, as long as the fine particles, that is, the plating nucleus 20 exists on the surface of the copper alloy foil 10, the plating defect is substantially eliminated. A non-existing copper layer 30 can be formed.

次に、銅層30上に活物質層40を形成する(活物質層形成工程:S140)。例えば、NiSn合金メッキを銅層30上に施すことにより、NiSn合金からなる活物質層40を形成する。これにより、本実施の形態に係る二次電池用負極2が製造される。   Next, the active material layer 40 is formed on the copper layer 30 (active material layer forming step: S140). For example, the active material layer 40 made of a NiSn alloy is formed by performing NiSn alloy plating on the copper layer 30. Thereby, the negative electrode 2 for secondary batteries which concerns on this Embodiment is manufactured.

(実施の形態の効果)
本実施の形態に係る二次電池用負極銅合金箔1は、所定濃度のZrを含む高強度の銅合金箔10から集電体を形成するので、この二次電池用負極銅合金箔1を用いたリチウムイオン二次電池において充放電を繰り返しても、活物質層40の伸縮に合わせて銅合金箔10を伸縮させることができる。これにより、二次電池用負極銅合金箔1は、繰り返し充放電されたとしても銅合金箔10からの活物質層40の剥離を低減させることができる。
(Effect of embodiment)
Since the negative electrode copper alloy foil 1 for a secondary battery according to the present embodiment forms a current collector from a high strength copper alloy foil 10 containing a predetermined concentration of Zr, the negative electrode copper alloy foil 1 for a secondary battery is Even when charging and discharging are repeated in the used lithium ion secondary battery, the copper alloy foil 10 can be expanded and contracted in accordance with the expansion and contraction of the active material layer 40. Thereby, even if the negative electrode copper alloy foil 1 for secondary batteries is repeatedly charged and discharged, peeling of the active material layer 40 from the copper alloy foil 10 can be reduced.

また、本実施の形態に係る二次電池用負極銅合金箔1は、集電体である銅合金箔10の表面にめっき核20を設け、めっき核20上に銅めっきすることにより、めっき欠陥を有さないと共に表面が略均一に粗面化された銅層30が形成されるので、銅合金箔10と活物質層40との密着強度を、アンカー効果により向上させることができる。これにより、本実施の形態においては、カーボン系の活物質を利用した二次電池用負極に比べてエネルギー密度が高く、集電体である銅合金箔10から負極用の活物質としての活物質層40が充放電を繰り返しても剥離、脱落することがないので、サイクル特性に極めて優れたリチウムイオン二次電池用の二次電池用負極2を提供できる。   Moreover, the negative electrode copper alloy foil 1 for secondary batteries which concerns on this Embodiment provides the plating nucleus 20 on the surface of the copper alloy foil 10 which is a collector, and carries out copper plating on the plating nucleus 20, and thereby a plating defect Since the copper layer 30 having a substantially uniform surface is formed, the adhesion strength between the copper alloy foil 10 and the active material layer 40 can be improved by the anchor effect. Thereby, in this Embodiment, compared with the negative electrode for secondary batteries using a carbon type active material, energy density is high, and the active material as an active material for negative electrodes from the copper alloy foil 10 which is a collector Even if the layer 40 is repeatedly charged and discharged, the layer 40 is not peeled off or dropped off, so that the secondary battery negative electrode 2 for a lithium ion secondary battery having excellent cycle characteristics can be provided.

(二次電池用負極の製造)
実施例(実施例1〜3)に係る二次電池用負極を製作した。具体的には、18μm厚のZr含有高強度銅箔(日立電線(株)製、HCL02Z箔)を銅合金箔10として準備した。なお、HCL02ZのZr組成は、0.02wt%であった。続いて、銅合金箔10の表面の陰極電解脱脂を実施した。次に、銅合金箔10の表面を陽極電解酸洗した後、粗化銅めっき1及び粗化銅めっき2を実施した。そして、更に、NiSn合金めっきで活物質層を形成した。これにより、実施例に係る二次電池用負極を製作した。ここで、陰極電解脱脂、陽極電解酸洗、銅粗化めっき1、銅粗化めっき2、及びNiSn合金めっきの各条件は、表1に示すとおりである。
(Manufacture of negative electrode for secondary battery)
The negative electrode for secondary batteries which concerns on an Example (Examples 1-3) was manufactured. Specifically, an 18 μm thick Zr-containing high-strength copper foil (manufactured by Hitachi Cable Ltd., HCL02Z foil) was prepared as a copper alloy foil 10. The Zr composition of HCL02Z was 0.02 wt%. Subsequently, cathodic electrolytic degreasing of the surface of the copper alloy foil 10 was performed. Next, after the surface of the copper alloy foil 10 was subjected to anodic electrolytic pickling, roughened copper plating 1 and roughened copper plating 2 were performed. Further, an active material layer was formed by NiSn alloy plating. This produced the secondary battery negative electrode which concerns on an Example. Here, each condition of cathodic electrolytic degreasing, anodic electrolytic pickling, copper roughening plating 1, copper roughening plating 2, and NiSn alloy plating is as shown in Table 1.

実施例1〜3に係る二次電池用負極の相違は、陽極電解酸洗の条件である。すなわち、実施例1に係る二次電池用負極は、陽極電解酸洗の条件を、電流密度20A/dm、陽極電解酸洗の時間を5秒とした。また、実施例2に係る二次電池用負極は、陽極電解酸洗の時間を30秒にした点を除き、実施例1と同一条件とした。これにより、実施例2に係る二次電池用負極においては、銅合金箔10の表面にCuとZrとからなる微粒子が実施例1の場合に比べて6倍多く形成された。ただし、実施例2においては、微粒子の一部は自然に脱落した。 The difference between the negative electrodes for secondary batteries according to Examples 1 to 3 is the conditions for anodic electrolytic pickling. That is, in the negative electrode for a secondary battery according to Example 1, the conditions of anodic electrolytic pickling were set to a current density of 20 A / dm 2 and the anodic electrolytic pickling time was set to 5 seconds. The negative electrode for a secondary battery according to Example 2 was set to the same conditions as in Example 1 except that the time for anodic electrolytic pickling was set to 30 seconds. Thereby, in the negative electrode for secondary batteries which concerns on Example 2, 6 times as many microparticles | fine-particles which consist of Cu and Zr on the surface of the copper alloy foil 10 were formed compared with the case of Example 1. FIG. However, in Example 2, some of the fine particles dropped off naturally.

実施例3に係る二次電池用負極は、実施例2と同様にCuとZrとからなる微粒子を銅合金箔10の表面に形成した後、超音波を当該微粒子が形成された銅合金箔10の表面に照射した点を除き、実施例2と同一条件とした。実施例3においては、超音波の照射により微粒子の一部が銅合金箔10の表面から除去された。超音波照射後の銅合金箔10の表面を観察したところ、表面は薄茶色を呈していた。したがって、実施例3においては、超音波を照射した後も銅合金箔10の表面にCuとZrとからなる微粒子が残存していることが確認された。   The negative electrode for a secondary battery according to Example 3 is similar to Example 2, in which fine particles composed of Cu and Zr are formed on the surface of the copper alloy foil 10, and then ultrasonic waves are applied to the copper alloy foil 10 on which the fine particles are formed. The conditions were the same as in Example 2 except that the surface was irradiated. In Example 3, some of the fine particles were removed from the surface of the copper alloy foil 10 by irradiation with ultrasonic waves. When the surface of the copper alloy foil 10 after ultrasonic irradiation was observed, the surface was light brown. Therefore, in Example 3, it was confirmed that fine particles composed of Cu and Zr remained on the surface of the copper alloy foil 10 even after the ultrasonic wave irradiation.

なお、比較例として、陽極電解酸洗の代わりに、電解を実施せずに硫酸中に30秒間、浸漬する条件に代えて、比較例に係る二次電池用負極を製作した。比較例においては、浸漬後においても銅合金箔10の表面は銅色を呈しており、CuとZrとからなる微粒子層は形成されなかったことが確認された。また、実施例1〜3、及び比較例においては、NiSn合金めっきの厚さを通常の二次電池に用いられる活物質層の厚さよりも薄く形成することにより、体積膨張率が通常の二次電池に用いられる活物質層に対して相対的に小さい活物質層とした。   In addition, as a comparative example, instead of anodic electrolytic pickling, a negative electrode for a secondary battery according to a comparative example was manufactured in place of the condition of immersing in sulfuric acid for 30 seconds without performing electrolysis. In the comparative example, the surface of the copper alloy foil 10 exhibited a copper color even after immersion, and it was confirmed that a fine particle layer composed of Cu and Zr was not formed. Moreover, in Examples 1-3 and a comparative example, the volume expansion coefficient is normal secondary by forming the thickness of NiSn alloy plating thinner than the thickness of the active material layer used for a normal secondary battery. The active material layer was relatively small with respect to the active material layer used in the battery.

ここで、粗化銅めっき1及び粗化銅めっき2を施した後の二次電池用負極銅合金箔の表面を、SEM観察した。   Here, the surface of the negative electrode copper alloy foil for secondary batteries after roughening copper plating 1 and roughening copper plating 2 was observed with SEM.

図5(a)は、実施例に係る二次電池用負極銅合金箔のSEM写真であり、(b)は、比較例に係る二次電池用負極銅合金箔のSEM写真である。   Fig.5 (a) is a SEM photograph of the negative electrode copper alloy foil for secondary batteries which concerns on an Example, (b) is a SEM photograph of the negative electrode copper alloy foil for secondary batteries which concerns on a comparative example.

具体的に、図5(a)は、実施例1に係る二次電池用負極の製造工程において、粗化銅めっき1及び粗化銅めっき2を実施した後、NiSn合金めっきを施す前の表面(すなわち、二次電池用負極銅合金箔の表面)をSEM観察した結果である。また、図5(b)は、比較例に係る二次電池用負極の製造工程において、粗化銅めっき1及び粗化銅めっき2を実施した後、NiSn合金めっきを施す前の表面(すなわち、二次電池用負極銅合金箔の表面)をSEM観察した結果である。   Specifically, FIG. 5 (a) shows the surface before the NiSn alloy plating after the roughened copper plating 1 and the roughened copper plating 2 in the manufacturing process of the negative electrode for secondary battery according to Example 1. It is the result of having observed (namely, the surface of the negative electrode copper alloy foil for secondary batteries) by SEM. FIG. 5 (b) shows the surface before applying NiSn alloy plating after the roughened copper plating 1 and the roughened copper plating 2 in the manufacturing process of the negative electrode for secondary battery according to the comparative example (that is, It is the result of having observed SEM of the surface of the negative electrode copper alloy foil for secondary batteries.

図5(a)を参照すると、二次電池用負極銅合金箔の表面は、略均一に粗面化されている。すなわち、実施例1に係る二次電池用負極銅合金箔において、十数μm程度の凸部が略均一に銅合金箔の表面に形成された状態が観察された。一方、図5(b)を参照すると、図5(b)中の円で囲った領域に、銅めっきされていないめっき欠陥が多数存在していることが観察された。なお、実施例2及び3に係る二次電池用負極銅合金箔についても表面をSEM観察したが、実施例1と同様に、めっき欠陥は発生していないことが確認された。   Referring to FIG. 5 (a), the surface of the secondary battery negative electrode copper alloy foil is roughened substantially uniformly. That is, in the negative electrode copper alloy foil for secondary battery according to Example 1, it was observed that the protrusions of about a dozen μm were formed substantially uniformly on the surface of the copper alloy foil. On the other hand, referring to FIG. 5 (b), it was observed that many plating defects not plated with copper exist in the region surrounded by a circle in FIG. 5 (b). In addition, although the surface was also observed by SEM about the negative electrode copper alloy foil for secondary batteries which concerns on Example 2 and 3, like Example 1, it was confirmed that the plating defect has not generate | occur | produced.

図6は、実施例に係る二次電池用負極銅合金箔の断面BSE写真である。   FIG. 6 is a cross-sectional BSE photograph of a negative electrode copper alloy foil for a secondary battery according to an example.

具体的に、図6は、実施例1に係る二次電池用負極銅合金箔の反射電子(Backscattered Electron:BSE)像である。観察方法は、以下のとおりである。すなわち、実施例1に係る二次電池用負極銅合金箔について、日立製作所製Arイオンミリング装置E3500を用いて断面を形成した。続いて、日立製作所製SEM SU−70に装着したYAG反射電子検出器で形成した断面を観察した。   Specifically, FIG. 6 is a backscattered electron (BSE) image of the negative electrode copper alloy foil for a secondary battery according to Example 1. The observation method is as follows. That is, about the negative electrode copper alloy foil for secondary batteries which concerns on Example 1, the cross section was formed using the Hitachi Ltd. Ar ion milling apparatus E3500. Then, the cross section formed with the YAG backscattered electron detector with which Hitachi SEM SU-70 was mounted was observed.

図6を参照すると分かるように、円で包囲した領域に微粒子22が観察された。この微粒子は、300nm以下の径を有する微粒子であった。なお、銅合金箔10の表面を陽極電解酸洗した後の表面をEnergy Dispersive X−ray Spectroscopy(EDX)測定したところ、CuとZrとが検出されたことから、微粒子22はCuとZrとから形成されていると考えられる。   As can be seen with reference to FIG. 6, fine particles 22 were observed in the region surrounded by a circle. The fine particles were fine particles having a diameter of 300 nm or less. In addition, when the surface of the copper alloy foil 10 after anodic electrolytic pickling was measured by Energy Dispersive X-ray Spectroscopy (EDX), Cu and Zr were detected. It is thought that it is formed.

(充放電試験)
実施例1〜3、及び比較例に係る二次電池用負極のそれぞれを2cmの円形に打ち抜き、それぞれについて金属リチウムを対極とする試験セル(実施例に係る試験セル1〜3、及び比較例に係る試験セル)を製作して、充放電特性を評価した。なお、測定セルは(株)宝泉製HSセル、測定装置は北斗電工(株)製のHJ1001SM8A、セパレータはセルガード(株)製#2400、電解液は富山薬品工業(株)製LIPASTER−EDMC/PF1(1mol/LのLiPFを溶解したエチレンカーボネートとジエチルカーボネートとの混合溶液(1:1vol.))を用いた。これは、リチウムイオン2次電池においては、非プロトン系溶媒であって、高誘電率及び低粘度の電解液を用いることを要するからである。したがって電解液は、上記電解液のように、高誘電率かつ高粘度の溶媒(例えば、エチレンカーボネートのような環状エステル)と低誘電率かつ低粘度の溶媒(例えば、ジエチルカーボネートのような鎖状エステル)との混合液を用いることが好ましい。充放電は0.01〜1V vs Li/Liの範囲で0.25mA/cmの定電流密度で実施した。評価結果を表2に示す。
(Charge / discharge test)
Each of the negative electrodes for secondary batteries according to Examples 1 to 3 and the comparative example was punched into a 2 cm 2 circle, and each was a test cell having metallic lithium as a counter electrode (test cells 1 to 3 according to the example and comparative example) The test cell) was manufactured and the charge / discharge characteristics were evaluated. The measuring cell is an HS cell manufactured by Hosen Co., Ltd., the measuring device is HJ1001SM8A manufactured by Hokuto Denko Co., Ltd., the separator is # 2400 manufactured by Celgard Co., Ltd., and the electrolyte is LIPASTER-EDMC / manufactured by Toyama Pharmaceutical Co., Ltd. PF1 (a mixed solution of ethylene carbonate and diethyl carbonate (1: 1 vol.) In which 1 mol / L LiPF 6 was dissolved) was used. This is because a lithium ion secondary battery is an aprotic solvent and requires the use of an electrolytic solution having a high dielectric constant and low viscosity. Therefore, the electrolytic solution is a high dielectric constant and high viscosity solvent (for example, a cyclic ester such as ethylene carbonate) and a low dielectric constant and low viscosity solvent (for example, a chain shape such as diethyl carbonate). It is preferable to use a mixed solution with an ester. Charging / discharging was performed at a constant current density of 0.25 mA / cm 2 in the range of 0.01 to 1 V vs Li / Li + . The evaluation results are shown in Table 2.

表2を参照すると、実施例に係る試験セル1〜3において、20サイクル後の容量維持率は80%以上であった。一方、比較例に係る試験セルにおいては、20サイクル後の容量維持率は55%であった。充放電試験において、容量維持率が70%以上の場合に判定を合格「○」を示すと共に、容量維持率が70%未満の場合に判定を不合格「×」とした。実施例に係る試験セル1〜3の全てにおいて判定が「○」であり、実施例に係る試験セル1〜3において、充放電特性が改善されることが明らかになった。   Referring to Table 2, in test cells 1 to 3 according to the example, the capacity retention rate after 20 cycles was 80% or more. On the other hand, in the test cell according to the comparative example, the capacity retention rate after 20 cycles was 55%. In the charge / discharge test, when the capacity retention rate was 70% or more, the determination was “good”, and when the capacity retention rate was less than 70%, the determination was “failed”. In all of the test cells 1 to 3 according to the example, the determination was “◯”, and it was revealed that the charge / discharge characteristics were improved in the test cells 1 to 3 according to the example.

(銅合金箔の最大引っ張り強度と厚さとの積について)
厚さが8μm、12μm、18μmのZr含有高強度銅箔(日立電線(株)製HCL02Z箔)、及びタフピッチ銅(TPC)箔を準備した。TPC箔は180℃で12時間、加熱することにより、リチウムイオン二次電池の製造工程でTPC箔に加わる熱を模擬した。熱処理後のTPC箔の最大引っ張り強度は150N/mmであった。なお、HCL02Z箔においては、この温度、時間の熱処理によって物性は変化しない。
(About the product of maximum tensile strength and thickness of copper alloy foil)
Zr-containing high-strength copper foil (HCL02Z foil manufactured by Hitachi Cable Ltd.) having a thickness of 8 μm, 12 μm, and 18 μm, and tough pitch copper (TPC) foil were prepared. The TPC foil was heated at 180 ° C. for 12 hours to simulate the heat applied to the TPC foil in the manufacturing process of the lithium ion secondary battery. The maximum tensile strength of the TPC foil after the heat treatment was 150 N / mm 2 . In the HCL02Z foil, the physical properties are not changed by the heat treatment at this temperature and time.

続いて、厚さが8μm、12μm、18μmのHCL02Z箔それぞれに表1に示した実施例1の条件と同一条件の処理を施して二次電池用負極を製造した(実施例4〜6)。また、厚さが8μm、12μm、18μmのタフピッチ銅(TPC)箔それぞれに表1に示した実施例1の条件と同一条件の処理を施して二次電池用負極を製造した(比較例2〜4)。続いて、実施例4〜6、及び比較例2〜4のそれぞれに係る二次電池用負極について、上記「充放電試験」と同様にして、充放電試験を実施した。実施例4〜6、及び比較例2〜4のそれぞれに係る二次電池用負極についての充放電試験の結果を表3に示す。   Subsequently, the HCL02Z foil having a thickness of 8 μm, 12 μm, and 18 μm was processed under the same conditions as those of Example 1 shown in Table 1 to produce secondary battery negative electrodes (Examples 4 to 6). Moreover, the negative electrode for secondary batteries was manufactured by performing the process of the same conditions as the conditions of Example 1 shown in Table 1 on the tough pitch copper (TPC) foil having thicknesses of 8 μm, 12 μm, and 18 μm, respectively (Comparative Examples 2 to 2). 4). Then, the charge / discharge test was implemented similarly to the said "charge / discharge test" about the negative electrode for secondary batteries which concerns on each of Examples 4-6 and Comparative Examples 2-4. Table 3 shows the results of the charge / discharge test for the negative electrodes for secondary batteries according to Examples 4 to 6 and Comparative Examples 2 to 4.

表3を参照すると、実施例4〜6に係る二次電池用負極のそれぞれは、銅合金箔にZrを含有する材料を用いると共に、銅合金箔の厚さと銅合金箔の最大引っ張り強度との積の値が3600N/mm・μm以上である。そして、実施例4〜6に係る二次電池用負極の全てについて、充放電試験の判定は「○」であった。一方、比較例2〜4のそれぞれに係る二次電池用負極については、充放電試験の判定は「×」であった。したがって、銅合金箔にZrを含有する材料を用いると共に、銅合金箔の厚さと銅合金箔の最大引っ張り強度との積の値が3600N/mm・μm以上となる材料を用いることで、良好な容量維持率の二次電池用負極を提供できることが示された。 Referring to Table 3, each of the negative electrodes for secondary batteries according to Examples 4 to 6 uses a material containing Zr for the copper alloy foil, and the thickness of the copper alloy foil and the maximum tensile strength of the copper alloy foil. The product value is 3600 N / mm 2 μm or more. And the determination of the charging / discharging test was "(circle)" about all the negative electrodes for secondary batteries which concern on Examples 4-6. On the other hand, about the negative electrode for secondary batteries which concerns on each of Comparative Examples 2-4, determination of the charging / discharging test was "x". Therefore, by using a material containing Zr for the copper alloy foil and using a material in which the product of the thickness of the copper alloy foil and the maximum tensile strength of the copper alloy foil is 3600 N / mm 2 · μm or more, It was shown that a negative electrode for a secondary battery having a sufficient capacity retention rate can be provided.

(陽極電解酸洗及び粗化銅めっき2について)
18μm厚のZr含有高強度銅箔(日立電線(株)製HCL02Z箔)を用い、実施例1と同様に、陰極電解脱脂、陽極電解酸洗、粗化銅めっき1、及び粗化銅めっき2をした後、NiSn合金めっきによって活物質層を形成した二次電池用負極を製造した(実施例7〜12)。実施例7〜12に係る二次電池用負極の製造においては、実施例1に対して陽極電解酸洗の時間及び粗化銅めっき2の条件を変化させた。また、比較例として比較例5〜7に係る二次電池用負極を製造した。実施例7〜12、及び比較例5〜7に係る二次電池用負極の陽極電解酸洗及び粗化銅めっき2の条件、並びに充放電試験の判定結果を表4に示す。なお、充放電試験については、上記「(充放電試験)」において説明した手法を採用して実施した。
(About anodic electrolytic pickling and roughened copper plating 2)
Using an 18 μm-thick Zr-containing high-strength copper foil (HCL02Z foil manufactured by Hitachi Cable Ltd.), in the same manner as in Example 1, cathodic electrolytic degreasing, anodic electrolytic pickling, roughened copper plating 1, and roughened copper plating 2 Then, a negative electrode for a secondary battery in which an active material layer was formed by NiSn alloy plating was produced (Examples 7 to 12). In the production of the negative electrode for secondary battery according to Examples 7 to 12, the time for anodic electrolytic pickling and the conditions of roughened copper plating 2 were changed with respect to Example 1. Moreover, the negative electrode for secondary batteries which concerns on Comparative Examples 5-7 was manufactured as a comparative example. Table 4 shows the anodic electrolytic pickling and roughening copper plating 2 conditions of the negative electrodes for secondary batteries according to Examples 7 to 12 and Comparative Examples 5 to 7, and the determination results of the charge / discharge test. In addition, about the charging / discharging test, the method demonstrated in said "(charging / discharging test)" was employ | adopted and implemented.

表4を参照すると、粗化銅めっき2によって形成する銅層の表面粗さRzが1μm未満の場合、放電容量維持率が65%と低く(比較例5)、表面粗さRzが1μm以上5μm未満の場合、放電容量維持率が80%以上であった(実施例7〜12)。また、粗化銅めっき2によって形成する銅層の表面粗さRzが5μm以上であると、銅合金箔10上にめっきして形成された銅層の脱落が発生した。よって、銅層の表面粗さRzは、1μm以上5μm未満が好ましいことが示された。   Referring to Table 4, when the surface roughness Rz of the copper layer formed by the roughened copper plating 2 is less than 1 μm, the discharge capacity retention rate is as low as 65% (Comparative Example 5), and the surface roughness Rz is 1 μm or more and 5 μm. In the case of less than 80%, the discharge capacity retention rate was 80% or more (Examples 7 to 12). Further, when the surface roughness Rz of the copper layer formed by the roughened copper plating 2 was 5 μm or more, the copper layer formed by plating on the copper alloy foil 10 dropped off. Therefore, it was shown that the surface roughness Rz of the copper layer is preferably 1 μm or more and less than 5 μm.

なお、陽極電解酸洗を化学研磨に代えた比較例7においては、銅合金箔10の溶解量が0.01μmと微量であり、銅合金箔10の表面にCuとZrとからなる微粒子の形成が認められなかった。したがって、比較例7においては、銅合金箔10の表面に形成した粗化銅めっきの表面にめっき欠陥が発生した。このめっき欠陥によって、比較例7においては、充放電特性が良好ではなかった。陽極電解酸洗による銅合金箔10の表面の溶解量が0.1μm以上の場合(実施例7〜12)、充放電特性は、比較例7のように銅合金箔10の表面の溶解量が少ない場合に比べて大幅に改善されることが示された。   In Comparative Example 7 in which the anodic electrolytic pickling was replaced with chemical polishing, the dissolution amount of the copper alloy foil 10 was as small as 0.01 μm, and formation of fine particles composed of Cu and Zr on the surface of the copper alloy foil 10 Was not recognized. Therefore, in Comparative Example 7, plating defects occurred on the surface of the roughened copper plating formed on the surface of the copper alloy foil 10. Due to this plating defect, in Comparative Example 7, the charge / discharge characteristics were not good. When the amount of dissolution of the surface of the copper alloy foil 10 by anodic electrolytic pickling is 0.1 μm or more (Examples 7 to 12), the charge / discharge characteristics are such that the surface of the copper alloy foil 10 is dissolved as in Comparative Example 7. It was shown that it is greatly improved compared with the case of few.

以上、本発明の実施の形態及び実施例を説明したが、上記に記載した実施の形態及び実施例は特許請求の範囲に係る発明を限定するものではない。また、実施の形態及び実施例の中で説明した特徴の組合せの全てが発明の課題を解決するための手段に必須であるとは限らない点に留意すべきである。   While the embodiments and examples of the present invention have been described above, the embodiments and examples described above do not limit the invention according to the claims. It should be noted that not all combinations of features described in the embodiments and examples are necessarily essential to the means for solving the problems of the invention.

本発明の実施の形態に係る二次電池用負極銅合金箔の断面の概要図である。It is a schematic diagram of the cross section of the negative electrode copper alloy foil for secondary batteries which concerns on embodiment of this invention. 本発明の実施の形態に係る二次電池用負極銅合金箔の断面の概要図である。It is a schematic diagram of the cross section of the negative electrode copper alloy foil for secondary batteries which concerns on embodiment of this invention. 本発明の実施の形態に係る二次電池用負極の断面の概要図である。It is a schematic diagram of the cross section of the negative electrode for secondary batteries which concerns on embodiment of this invention. 本発明の実施の形態に係る二次電池用負極銅合金箔、及び二次電池用負極の製造工程の流れを示す図である。It is a figure which shows the flow of the manufacturing process of the negative electrode copper alloy foil for secondary batteries which concerns on embodiment of this invention, and the negative electrode for secondary batteries. (a)は、実施例に係る二次電池用負極銅合金箔のSEM写真の図であり、(b)は、比較例に係る二次電池用負極銅合金箔のSEM写真の図である。(A) is a figure of the SEM photograph of the negative electrode copper alloy foil for secondary batteries which concerns on an Example, (b) is a figure of the SEM photograph of the negative electrode copper alloy foil for secondary batteries which concerns on a comparative example. 実施例に係る二次電池用負極銅合金箔の断面BSE写真の図である。It is a figure of the cross-section BSE photograph of the negative electrode copper alloy foil for secondary batteries which concerns on an Example.

符号の説明Explanation of symbols

1、1a 二次電池用負極銅合金箔
2 二次電池用負極
10 銅合金箔
20 めっき核
22 微粒子
30 銅層
40 活物質層
DESCRIPTION OF SYMBOLS 1, 1a Negative electrode copper alloy foil for secondary batteries 2 Negative electrode for secondary batteries 10 Copper alloy foil 20 Plating nucleus 22 Fine particle 30 Copper layer 40 Active material layer

Claims (8)

活物質層が設けられることにより二次電池用負極として機能する二次電池用負極銅合金箔であって、
前記活物質層の平面方向の伸縮に応じて伸縮する銅合金箔と、
前記銅合金箔の表面に形成され、銅めっきの核となるめっき核と
を備える二次電池用負極銅合金箔。
A negative electrode copper alloy foil for a secondary battery that functions as a negative electrode for a secondary battery by providing an active material layer,
A copper alloy foil that expands and contracts in accordance with the expansion and contraction of the active material layer in the plane direction;
A negative electrode copper alloy foil for a secondary battery, which is formed on a surface of the copper alloy foil and includes a plating nucleus serving as a nucleus of copper plating.
前記銅合金箔は、0.01wt%以上0.06wt%以下のZrを含み、
前記めっき核は、CuとZrとからなる請求項1に記載の二次電池用負極銅合金箔。
The copper alloy foil includes 0.01 wt% or more and 0.06 wt% or less of Zr,
The negative electrode copper alloy foil for a secondary battery according to claim 1, wherein the plating nucleus is made of Cu and Zr.
前記銅合金箔は、前記銅合金箔の最大引張り強度と前記銅合金箔の厚さとの積が、3600N/mm・μm以上である請求項2に記載の二次電池用負極銅合金箔。 3. The negative electrode copper alloy foil for a secondary battery according to claim 2, wherein the copper alloy foil has a product of a maximum tensile strength of the copper alloy foil and a thickness of the copper alloy foil of 3600 N / mm 2 · μm or more. 前記めっき核を核として銅めっきすることにより前記めっき核上に形成され、1μm以上5μm未満の表面粗さを有する銅層を更に備える請求項3に記載の二次電池用負極銅合金箔。   The negative electrode copper alloy foil for secondary batteries according to claim 3, further comprising a copper layer formed on the plating nucleus by copper plating using the plating nucleus as a nucleus and having a surface roughness of 1 μm or more and less than 5 μm. 前記めっき核は、前記銅合金箔の表面に層状に形成される請求項4に記載の二次電池用負極銅合金箔。   The negative electrode copper alloy foil for a secondary battery according to claim 4, wherein the plating nucleus is formed in a layered manner on the surface of the copper alloy foil. 活物質層が設けられることにより二次電池用負極として機能する二次電池用負極銅合金箔の製造方法であって、
前記活物質層の平面方向の伸縮に応じて伸縮する銅合金箔を準備する銅合金箔準備工程と、
前記銅合金箔の表面に、銅めっきの核となるめっき核を形成するめっき核形成工程と
を備える二次電池用負極銅合金箔の製造方法。
A method for producing a negative electrode copper alloy foil for a secondary battery that functions as a negative electrode for a secondary battery by providing an active material layer,
A copper alloy foil preparation step of preparing a copper alloy foil that expands and contracts in accordance with the expansion and contraction of the active material layer in the plane direction;
The manufacturing method of the negative electrode copper alloy foil for secondary batteries provided with the plating nucleus formation process which forms the plating nucleus used as the nucleus of copper plating on the surface of the said copper alloy foil.
前記銅合金箔準備工程は、0.01wt%以上0.06wt%以下のZrを含む前記銅合金箔を準備し、
前記めっき核形成工程は、前記銅合金箔の表面を電解エッチングしてCuとZrとからなる前記めっき核を形成する請求項6に記載の二次電池用負極銅合金箔の製造方法。
In the copper alloy foil preparation step, the copper alloy foil containing 0.01 wt% or more and 0.06 wt% or less of Zr is prepared,
The said plating nucleus formation process is a manufacturing method of the negative electrode copper alloy foil for secondary batteries of Claim 6 which electrolytically etches the surface of the said copper alloy foil and forms the said plating nucleus which consists of Cu and Zr.
前記めっき核を核として銅めっきすることにより前記めっき核上に銅層を形成する銅層形成工程を更に備える請求項7に記載の二次電池用負極銅合金箔の製造方法。   The manufacturing method of the negative electrode copper alloy foil for secondary batteries of Claim 7 further equipped with the copper layer formation process which forms a copper layer on the said plating nucleus by copper plating using the said plating nucleus as a nucleus.
JP2008276034A 2008-10-27 2008-10-27 Negative electrode copper alloy foil of secondary battery and manufacturing method for the same Pending JP2010103061A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008276034A JP2010103061A (en) 2008-10-27 2008-10-27 Negative electrode copper alloy foil of secondary battery and manufacturing method for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008276034A JP2010103061A (en) 2008-10-27 2008-10-27 Negative electrode copper alloy foil of secondary battery and manufacturing method for the same

Publications (1)

Publication Number Publication Date
JP2010103061A true JP2010103061A (en) 2010-05-06

Family

ID=42293528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008276034A Pending JP2010103061A (en) 2008-10-27 2008-10-27 Negative electrode copper alloy foil of secondary battery and manufacturing method for the same

Country Status (1)

Country Link
JP (1) JP2010103061A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012066980A1 (en) * 2010-11-17 2012-05-24 三井金属鉱業株式会社 Copper foil for lithium ion secondary battery negative electrode collector, lithium ion secondary battery negative electrode material, and method for selecting lithium ion secondary battery negative electrode collector
JP2013069684A (en) * 2011-09-09 2013-04-18 Hitachi Cable Ltd Copper foil of negative electrode collector for lithium ion secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method for manufacturing copper foil of negative electrode collector for lithium ion secondary battery
WO2014080902A1 (en) * 2012-11-22 2014-05-30 日産自動車株式会社 Negative electrode for electric device and electric device using same
JP2015042776A (en) * 2013-07-24 2015-03-05 国立大学法人信州大学 Metal film and method for forming metal film
JP2015153495A (en) * 2014-02-12 2015-08-24 国立大学法人信州大学 Negative electrode material for silicon-based storage battery and manufacturing method of the same
JP2018125280A (en) * 2017-02-03 2018-08-09 Jx金属株式会社 Surface treated copper foil, and current collector, electrode, and battery using the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012066980A1 (en) * 2010-11-17 2012-05-24 三井金属鉱業株式会社 Copper foil for lithium ion secondary battery negative electrode collector, lithium ion secondary battery negative electrode material, and method for selecting lithium ion secondary battery negative electrode collector
JP2012109122A (en) * 2010-11-17 2012-06-07 Mitsui Mining & Smelting Co Ltd Lithium ion secondary battery negative electrode collector copper foil, lithium ion secondary battery negative electrode material, and lithium ion secondary battery negative electrode collector selection method
CN103210533A (en) * 2010-11-17 2013-07-17 三井金属矿业株式会社 Copper foil for lithium ion secondary battery negative electrode collector, lithium ion secondary battery negative electrode material, and method for selecting lithium ion secondary battery negative electrode collector
TWI456827B (en) * 2010-11-17 2014-10-11 Mitsui Mining & Smelting Co Copper foil for lithium ion secondary cell cathode collector, material for cathode of lithium ion secondary cell and selection method for lithium ion secondary cell
JP2013069684A (en) * 2011-09-09 2013-04-18 Hitachi Cable Ltd Copper foil of negative electrode collector for lithium ion secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method for manufacturing copper foil of negative electrode collector for lithium ion secondary battery
WO2014080902A1 (en) * 2012-11-22 2014-05-30 日産自動車株式会社 Negative electrode for electric device and electric device using same
JP2015042776A (en) * 2013-07-24 2015-03-05 国立大学法人信州大学 Metal film and method for forming metal film
JP2015153495A (en) * 2014-02-12 2015-08-24 国立大学法人信州大学 Negative electrode material for silicon-based storage battery and manufacturing method of the same
JP2018125280A (en) * 2017-02-03 2018-08-09 Jx金属株式会社 Surface treated copper foil, and current collector, electrode, and battery using the same
JP7193915B2 (en) 2017-02-03 2022-12-21 Jx金属株式会社 Surface-treated copper foil and current collector, electrode and battery using the same

Similar Documents

Publication Publication Date Title
JP5379928B2 (en) Electrolytic copper foil, method for producing the electrolytic copper foil, and lithium ion secondary battery using the electrolytic copper foil as a current collector
JP4823384B1 (en) Copper foil for current collector of lithium secondary battery
CN1275176A (en) Porous copper foil, use thereof and method for preparation thereof
TWI596827B (en) Method for producing negative electrode material of lithium ion secondary cell and negative electrode material for lithium ion secondary cell
JP2006269362A (en) Negative electrode for lithium ion secondary battery
JP2010103061A (en) Negative electrode copper alloy foil of secondary battery and manufacturing method for the same
JP4616584B2 (en) Anode for non-aqueous electrolyte secondary battery
KR20140051375A (en) Metal foil with coating layer and method for producing same, secondary cell electrode and method for producing same, and lithium ion secondary cell
KR20170018342A (en) Metal foil for current collector, current collector, and method for manufacturing metal foil for current collector
JP2007087789A (en) Negative electrode for lithium ion secondary battery and its manufacturing method
JP2014211960A (en) Current collector material
JP6256913B2 (en) Method for manufacturing battery electrode
JP2006269361A (en) Negative electrode for lithium ion secondary battery and its manufacturing method
JPWO2014112619A1 (en) Electrolytic copper foil, negative electrode for lithium ion battery, and lithium ion secondary battery
KR20170085425A (en) Copper Foil, Method for Manufacturing The Same, Electrode Comprising The Same, and Secondary Battery Comprising The Same
JP2009215604A (en) Copper foil and manufacturing method thereof
JP4493267B2 (en) Anode material for lithium secondary battery
JP4996053B2 (en) Method for producing coated expanded metal and use of the metal as a conductor in an electrochemical device
KR102643400B1 (en) Rolled copper foil for lithium ion battery current collector and lithium ion battery
JP2009272086A (en) Copper foil and method of manufacturing the same, and current collecting copper foil for lithium ion secondary battery and method of manufacturing the same
JP6067910B1 (en) Electrolytic copper foil and lithium ion secondary battery using the electrolytic copper foil
KR102299094B1 (en) Rolled copper foil for lithium ion battery current collector and lithium ion battery
JP2013008540A (en) Collector for nonaqueous electrolyte secondary battery and electrode using the same
JP5073403B2 (en) Lead-acid battery grid and lead-acid battery using the grid
JP2008041347A (en) Negative electrode for lithium ion secondary battery, and method for manufacturing the same