JP2013069684A - Copper foil of negative electrode collector for lithium ion secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method for manufacturing copper foil of negative electrode collector for lithium ion secondary battery - Google Patents

Copper foil of negative electrode collector for lithium ion secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method for manufacturing copper foil of negative electrode collector for lithium ion secondary battery Download PDF

Info

Publication number
JP2013069684A
JP2013069684A JP2012197039A JP2012197039A JP2013069684A JP 2013069684 A JP2013069684 A JP 2013069684A JP 2012197039 A JP2012197039 A JP 2012197039A JP 2012197039 A JP2012197039 A JP 2012197039A JP 2013069684 A JP2013069684 A JP 2013069684A
Authority
JP
Japan
Prior art keywords
negative electrode
lithium ion
copper foil
ion secondary
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012197039A
Other languages
Japanese (ja)
Inventor
Muneo Kodaira
宗男 小平
Kenichi Kato
賢一 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2012197039A priority Critical patent/JP2013069684A/en
Publication of JP2013069684A publication Critical patent/JP2013069684A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress falling of roughed particles while maintaining high adhesion to a negative electrode active material layer and also improve weld strength with a tab lead, in a copper foil of a negative electrode collector for a lithium ion secondary battery.SOLUTION: A copper foil of a negative electrode collector for a lithium ion secondary battery includes: a rolled copper foil made of copper or a copper alloy; and a first Cu plating layer, a roughed particle, and a second Cu plating layer which are at least provided in order on the rolled copper foil, and further includes one of a nickel-cobalt alloy plating layer, a nickel plating layer, and a cobalt plating layer. When Cb denotes a binder content Cb (wt.%) in a negative electrode active material layer, the surface roughness Ra of the copper foil satisfies a relation of Cb≥38×Ra×Ra-1.2×Ra (where, 0.10≤Ra≤0.72 and 2≤Cb≤20 are satisfied).

Description

本発明は、リチウムイオン二次電池用負極集電銅箔、それを備える負極及び電池並びにリチウムイオン二次電池用負極集電銅箔の製造方法に関する。   The present invention relates to a negative electrode current collector copper foil for a lithium ion secondary battery, a negative electrode and a battery including the same, and a method for producing a negative electrode current collector copper foil for a lithium ion secondary battery.

近年、リチウムイオン二次電池は、モバイル機器用途をはじめとして広く普及してきている。リチウムイオン二次電池の負極は、例えば銅箔又は銅合金箔からなる負極集電銅箔上に負極活物質層を形成してなる。負極集電銅箔の負極活物質層が形成されていない部分には、電池外挿缶と電気的接続を取るため、ニッケル(Ni)又はNiめっき銅等からなるタブリードが超音波溶接によって接続されている。   In recent years, lithium ion secondary batteries have been widely used for mobile device applications. The negative electrode of a lithium ion secondary battery is formed by forming a negative electrode active material layer on a negative electrode current collector copper foil made of, for example, a copper foil or a copper alloy foil. A tab lead made of nickel (Ni) or Ni-plated copper or the like is connected by ultrasonic welding to the portion of the negative electrode current collector copper foil where the negative electrode active material layer is not formed in order to establish electrical connection with the battery extrapolation can. ing.

負極活物質層にはこれまで炭素(C)系の材料が用いられてきたが、C系材料では放電容量(最大容量)の大幅な向上は困難である。このため、最近では更に放電容量の大きいスズ(Sn)やシリコン(Si)を主体とした負極活物質層が検討されている。   Until now, carbon (C) -based materials have been used for the negative electrode active material layer, but it is difficult to significantly improve discharge capacity (maximum capacity) with C-based materials. Therefore, recently, negative electrode active material layers mainly composed of tin (Sn) or silicon (Si) having a larger discharge capacity have been studied.

係る検討にあたっては、SnやSiがリチウム(Li+)イオンを吸蔵・放出する際の体積膨張・体積収縮が障害となっている。負極活物質層の膨張・収縮により負極集電銅箔が塑性変形してしまい、負極集電銅箔から負極活物質層が脱落したり、電池の寸法安定性を低下させたりしてしまう。そこで、SnやSiの単体ではなく、Li+イオンと反応しない物質や、Li+イオンを吸蔵しても体積変化が小さい物質等と合金化或いは混合して、体積変化を抑制する研究がなされている。 In such examination, volume expansion and contraction when Sn and Si occlude and release lithium (Li + ) ions are an obstacle. The negative electrode current collector copper foil is plastically deformed due to expansion and contraction of the negative electrode active material layer, and the negative electrode active material layer falls off from the negative electrode current collector copper foil, or the dimensional stability of the battery is lowered. Therefore, studies have been made to suppress the volume change by alloying or mixing with a substance that does not react with Li + ions, a substance that does not react with Li + ions, or with a small volume change even when Li + ions are occluded. Yes.

SnをSn合金薄膜やSn化合物薄膜として用いる例として、例えば特許文献1には、Sn合金であるCu6Sn5を負極活物質層に用いる手法が開示されている。また、SiをSi合金薄膜やSi化合物薄膜として用いる例としては、例えば特許文献2に、ケイ素(Si)粉末と導電性金属粉末とをバインダと混合して電解銅箔上に塗布する方法が開示されている。また、例えば特許文献3には、酸化シリコン(SiOx)粉体と炭素質物とをバインダと混合して負極集電体上に塗布する方法が開示されている。 As an example of using Sn as an Sn alloy thin film or an Sn compound thin film, for example, Patent Document 1 discloses a technique using Cu 6 Sn 5 , which is an Sn alloy, in the negative electrode active material layer. In addition, as an example of using Si as a Si alloy thin film or a Si compound thin film, for example, Patent Document 2 discloses a method in which silicon (Si) powder and conductive metal powder are mixed with a binder and applied onto an electrolytic copper foil. Has been. For example, Patent Document 3 discloses a method in which silicon oxide (SiOx) powder and carbonaceous material are mixed with a binder and applied onto a negative electrode current collector.

上記SnやSiを主体とした負極活物質層を用いる場合、400℃以上の温度で熱処理を行うことがあり、熱による軟化を抑制するため負極集電銅箔には高耐熱性が必要となる。そこで、例えば特許文献4には、400℃で10時間の熱処理に耐えるよう、銅箔の表面に、コバルト−ニッケル(Co−Ni)合金めっき層を0.5μm〜5μmの厚みに形成する手法について開示されている。   When the negative electrode active material layer mainly composed of Sn or Si is used, heat treatment may be performed at a temperature of 400 ° C. or higher, and the negative electrode current collector copper foil needs to have high heat resistance in order to suppress heat softening. . Therefore, for example, Patent Document 4 discloses a technique for forming a cobalt-nickel (Co—Ni) alloy plating layer on a surface of a copper foil to a thickness of 0.5 μm to 5 μm so as to withstand heat treatment at 400 ° C. for 10 hours. It is disclosed.

一方で、負極集電銅箔と負極活物質層との密着性を向上させる試みもなされている。例えば特許文献5には、銅箔からなる集電体を粗面化する方法が開示されている。特許文献5によれば、電解法によって得られた銅箔を、更に電解槽中に浸潰して表面に銅微粒子を析出させ、両面を粗面化する。   On the other hand, attempts have been made to improve the adhesion between the negative electrode current collector copper foil and the negative electrode active material layer. For example, Patent Document 5 discloses a method of roughening a current collector made of copper foil. According to Patent Document 5, the copper foil obtained by the electrolysis method is further immersed in an electrolytic bath to precipitate copper fine particles on the surface, and both surfaces are roughened.

特開2004−087232号公報JP 2004-087232 A 特許第4212263号公報Japanese Patent No. 4212263 特開2004−119175号公報JP 2004-119175 A 特許第4438541号公報Japanese Patent No. 4438541 特開2008−004462号公報JP 2008-004462 A

ところで、より多くの負極活物質層を電池内に収容して電池の高容量化を図るためには、負極集電銅箔はできるだけ薄いほうがよい。したがって、高耐熱性を得るためには、上述の特許文献4のように厚いめっき層を導入するのではなく、これに替わる解決手段が望まれる。   By the way, in order to accommodate more negative electrode active material layers in the battery and increase the capacity of the battery, the negative electrode current collector copper foil is preferably as thin as possible. Therefore, in order to obtain high heat resistance, instead of introducing a thick plating layer as in Patent Document 4 described above, an alternative solution is desired.

一方で、上記400℃以上の熱処理による弊害は、負極集電銅箔の軟化だけではない。つまり、高温・長時間の熱処理により負極集電銅箔の表面に酸化膜が形成され、タブリードを溶接する際、溶接強度の低下を招いてしまうことがある。溶接強度が不充分であると、タブリードの剥がれが生じて電池外部に電流が取り出せなくなってしまう。   On the other hand, the adverse effect of the heat treatment at 400 ° C. or higher is not only the softening of the negative electrode collector copper foil. That is, an oxide film is formed on the surface of the negative electrode current collector copper foil by heat treatment at a high temperature for a long time, and when the tab lead is welded, the welding strength may be reduced. If the welding strength is insufficient, the tab lead is peeled off and current cannot be taken out of the battery.

また、上述の特許文献5のように、銅微粒子等の粒状電着物を負極集電銅箔の表面に付加させて粗化面を得る手法では、ときに粒状電着物が脱落してしまうことがあり、正負極間で短絡を引き起こすおそれがある。   In addition, as described in Patent Document 5 described above, in the method of adding a granular electrodeposit such as copper fine particles to the surface of the negative electrode current collector copper foil to obtain a roughened surface, the granular electrodeposit may sometimes fall off. There is a possibility of causing a short circuit between the positive and negative electrodes.

本発明の目的は、負極活物質層に対して高い密着性を維持しつつ粒状電着物の脱落を抑制することができ、また、タブリードとの溶接強度を向上させることが可能なリチウムイオン二次電池用負極集電銅箔、それを備える負極及び電池並びにリチウムイオン二次電池用負極集電銅箔の製造方法を提供することである。   An object of the present invention is a lithium ion secondary that can suppress the dropping of the granular electrodeposit while maintaining high adhesion to the negative electrode active material layer, and can improve the welding strength with the tab lead. It is providing the manufacturing method of the negative electrode current collection copper foil for batteries, the negative electrode and battery provided with the same, and the negative electrode current collection copper foil for lithium ion secondary batteries.

本発明の第1の態様によれば、リチウムイオン二次電池用負極集電銅箔と、前記リチウムイオン二次電池用負極集電銅箔に設けられ、バインダを含む負極活物質層とを有するリチウムイオン二次電池用負極であって、
前記リチウムイオン二次電池用負極集電銅箔は、銅又は銅合金からなる圧延銅箔と、前記圧延銅箔の少なくとも順に設けられた第1Cuめっき層と、粗化粒子と、第2Cuめっき層と、を有し、さらに、ニッケル−コバルト合金めっき層、ニッケルめっき層、又はコバルトめっき層のいずれかと、を備えるとともに、
前記バインダ割合Cb(wt%)をCbとすると、表面粗さRaが、
Cb≧38×Ra×Ra−1.2×Ra・・・・(式1)
(ただし、0.10≦Ra≦0.72、かつ、2≦Cb≦20を満たす)
であることを特徴とするリチウムイオン二次電池用負極が提供される。
According to the 1st aspect of this invention, it has the negative electrode current collection copper foil for lithium ion secondary batteries, and the negative electrode active material layer which is provided in the said negative electrode current collection copper foil for lithium ion secondary batteries, and contains a binder. A negative electrode for a lithium ion secondary battery,
The negative electrode current collector copper foil for a lithium ion secondary battery includes a rolled copper foil made of copper or a copper alloy, a first Cu plating layer provided at least in order of the rolled copper foil, roughened particles, and a second Cu plating layer. And further comprising either a nickel-cobalt alloy plating layer, a nickel plating layer, or a cobalt plating layer,
When the binder ratio Cb (wt%) is Cb, the surface roughness Ra is
Cb ≧ 38 × Ra × Ra−1.2 × Ra (formula 1)
(However, 0.10 ≦ Ra ≦ 0.72 and 2 ≦ Cb ≦ 20 are satisfied)
A negative electrode for a lithium ion secondary battery is provided.

本発明の第2の態様によれば、バインダを含む負極活物質層とともに用いられることでリチウムイオン二次電池用負極となるリチウムイオン二次電池用負極集電銅箔であって、
銅又は銅合金からなる圧延銅箔と、
前記圧延銅箔の少なくとも順に設けられた第1Cuめっき層と、粗化粒子と、第2Cuめっき層と、を有し、さらに、
ニッケル−コバルト合金めっき層、ニッケルめっき層、又はコバルトめっき層のいずれかと、を備えるとともに、
前記バインダ割合Cb(wt%)をCbとすると、表面粗さRaが、
Cb≧38×Ra×Ra−1.2×Ra・・・・(式1)
(ただし、0.10≦Ra≦0.72、かつ、2≦Cb≦20を満たす)
であることを特徴とするリチウムイオン二次電池用負極集電銅箔が提供される。
According to a second aspect of the present invention, there is provided a negative electrode current collector copper foil for a lithium ion secondary battery that is used together with a negative electrode active material layer containing a binder to be a negative electrode for a lithium ion secondary battery,
Rolled copper foil made of copper or copper alloy;
A first Cu plating layer provided at least in order of the rolled copper foil, roughened particles, and a second Cu plating layer,
With a nickel-cobalt alloy plating layer, a nickel plating layer, or a cobalt plating layer,
When the binder ratio Cb (wt%) is Cb, the surface roughness Ra is
Cb ≧ 38 × Ra × Ra−1.2 × Ra (formula 1)
(However, 0.10 ≦ Ra ≦ 0.72 and 2 ≦ Cb ≦ 20 are satisfied)
A negative electrode current collector copper foil for a lithium ion secondary battery is provided.

本発明の第3の態様によれば、前記ニッケル−コバルト合金めっき層、前記ニッケルめっき層、及び前記コバルトめっき層の質量厚さは、20μg/cm2以上40μg/cm2以下である
ことを特徴とする第2の態様のリチウムイオン二次電池用負極集電銅箔が提供される。
According to a third aspect of the present invention, a mass thickness of the nickel-cobalt alloy plating layer, the nickel plating layer, and the cobalt plating layer is 20 μg / cm 2 or more and 40 μg / cm 2 or less. A negative electrode current collector copper foil for a lithium ion secondary battery according to the second aspect is provided.

本発明の第4の態様によれば、前記圧延銅箔を構成する前記銅合金は、高耐熱性銅合金である
ことを特徴とする第2又は3の態様のリチウムイオン二次電池用負極集電銅箔が提供される。
According to a fourth aspect of the present invention, the copper alloy constituting the rolled copper foil is a high heat-resistant copper alloy. The negative electrode collection for a lithium ion secondary battery according to the second or third aspect, An electrolytic copper foil is provided.

本発明の第5の態様によれば、前記第1Cuめっき層は、純銅からなる
ことを特徴とする第2〜4のいずれかの態様のリチウムイオン二次電池用負極集電銅箔が提供される。
According to a fifth aspect of the present invention, there is provided the negative electrode current collector copper foil for a lithium ion secondary battery according to any one of the second to fourth aspects, wherein the first Cu plating layer is made of pure copper. The

本発明の第6の態様によれば、第2の態様のリチウムイオン二次電池用負極集電銅箔と、
前記リチウムイオン二次電池用負極集電銅箔の少なくとも片面に形成された負極活物質層と、
前記リチウムイオン二次電池用負極集電銅箔に接続されたタブリードと、を備える
ことを特徴とするリチウムイオン二次電池用負極が提供される。
According to the sixth aspect of the present invention, the negative electrode current collector copper foil for the lithium ion secondary battery of the second aspect;
A negative electrode active material layer formed on at least one surface of the negative electrode current collector copper foil for the lithium ion secondary battery;
And a tab lead connected to the negative electrode current collector copper foil for the lithium ion secondary battery.

本発明の第7の態様によれば、第6の態様のリチウムイオン二次電池用負極と、
リチウムイオン二次電池用正極と、
前記リチウムイオン二次電池用負極及び前記リチウムイオン二次電池用正極の間に挿入されたセパレータと、
前記セパレータが間に挿入された前記リチウムイオン二次電池用負極及び前記リチウムイオン二次電池用正極が収容され、電解液が封入された容器と、を備える
ことを特徴とするリチウムイオン二次電池が提供される。
According to the seventh aspect of the present invention, the negative electrode for a lithium ion secondary battery of the sixth aspect;
A positive electrode for a lithium ion secondary battery;
A separator inserted between the negative electrode for lithium ion secondary battery and the positive electrode for lithium ion secondary battery;
A lithium ion secondary battery comprising: a negative electrode for a lithium ion secondary battery in which the separator is inserted; and a container in which the positive electrode for a lithium ion secondary battery is accommodated and an electrolyte is enclosed. Is provided.

本発明の第8の態様によれば 銅又は銅合金からなる圧延銅箔を陰極としてCuめっきを施し、前記圧延銅箔の少なくとも順に第1Cuめっき層と、粗化粒子と、第2Cuめっき層を設けるCuめっき工程と、
前記第2Cuめっき層上に、前記粗化粒子及び第2Cuめっき層を覆うようにニッケル−コバルト合金めっき層、ニッケルめっき層、又はコバルトめっき層のいずれかを形成する工程と、を有する
ことを特徴とするリチウムイオン二次電池用負極集電銅箔の製造方法が提供される。
According to the eighth aspect of the present invention, Cu plating is performed using a rolled copper foil made of copper or a copper alloy as a cathode, and a first Cu plating layer, a roughened particle, and a second Cu plating layer are provided at least in the order of the rolled copper foil. A Cu plating step to be provided;
Forming a nickel-cobalt alloy plating layer, a nickel plating layer, or a cobalt plating layer on the second Cu plating layer so as to cover the roughened particles and the second Cu plating layer. A method for producing a negative electrode current collector copper foil for a lithium ion secondary battery is provided.

本発明によれば、負極活物質層に対して高い密着性を維持しつつ粒状電着物の脱落を抑制することができ、また、タブリードとの溶接強度を向上させることができる。   ADVANTAGE OF THE INVENTION According to this invention, dropping of a granular electrodeposit can be suppressed, maintaining high adhesiveness with respect to a negative electrode active material layer, and weld strength with a tab lead can be improved.

本発明の一実施形態に係るリチウムイオン二次電池用負極集電銅箔の断面図である。It is sectional drawing of the negative electrode current collection copper foil for lithium ion secondary batteries which concerns on one Embodiment of this invention. 本発明の一実施形態に係るリチウムイオン二次電池用負極の平面図である。It is a top view of the negative electrode for lithium ion secondary batteries which concerns on one Embodiment of this invention. 本発明の一実施形態に係るリチウムイオン二次電池の斜視断面図である。It is a perspective sectional view of a lithium ion secondary battery concerning one embodiment of the present invention. 本発明の一実施形態に係るリチウムイオン二次電池用負極集電銅箔の表面粗さRa及びバインダ割合Cbと、負極活物質密着性の関係を示すグラフである。It is a graph which shows the surface roughness Ra and binder ratio Cb of the negative electrode current collection copper foil for lithium ion secondary batteries which concerns on one Embodiment of this invention, and the relationship of negative electrode active material adhesiveness.

<本発明の一実施形態>
(1)リチウムイオン二次電池の概略構成
まずは、本発明の一実施形態に係るリチウムイオン二次電池の概略構成について、 図2及び 図3を参照しながら説明する。図2は、本実施形態に係るリチウムイオン二次電池用負極1の平面図である。 図3は、本実施形態に係るリチウムイオン二次電池50の斜視断面図である。
<One Embodiment of the Present Invention>
(1) Schematic Configuration of Lithium Ion Secondary Battery First, a schematic configuration of a lithium ion secondary battery according to an embodiment of the present invention will be described with reference to FIG. 2 and FIG. FIG. 2 is a plan view of the negative electrode 1 for a lithium ion secondary battery according to this embodiment. FIG. 3 is a perspective sectional view of the lithium ion secondary battery 50 according to the present embodiment.

図3に示すように、リチウムイオン二次電池50は、図示しない電解液が封入された容器としての電池外挿缶5を備えている。電池外挿缶5には、タブリード16を備えたリチウムイオン二次電池用負極1(以下、単に「負極1」ともいう)と、タブリード26を備えたリチウムイオン二次電池用正極2(以下、単に「正極2」ともいう)とが、間にセパレータ3が挿入された状態で収容されている。    As shown in FIG. 3, the lithium ion secondary battery 50 includes a battery insertion can 5 as a container in which an electrolyte solution (not shown) is enclosed. The battery insertion can 5 includes a negative electrode 1 for a lithium ion secondary battery (hereinafter simply referred to as “negative electrode 1”) having a tab lead 16 and a positive electrode 2 for a lithium ion secondary battery (hereinafter referred to as “negative electrode 1”). (Also simply referred to as “positive electrode 2”) is accommodated with the separator 3 inserted therebetween.

また、図2に示すように、負極1は、リチウムイオン二次電池用負極集電銅箔10(以下、単に「負極集電銅箔10」ともいう)と、例えばその両面に形成された負極活物質層15a,15bとを備える。上述のタブリード16は、負極集電銅箔10の露出領域10sに直接接続されている。リチウムイオン二次電池50及びリチウムイオン二次電池用負極1の詳細の構成については後述する。   As shown in FIG. 2, the negative electrode 1 includes a negative electrode current collector copper foil 10 for a lithium ion secondary battery (hereinafter, also simply referred to as “negative electrode current collector copper foil 10”), for example, a negative electrode formed on both surfaces thereof. Active material layers 15a and 15b are provided. The tab lead 16 described above is directly connected to the exposed region 10 s of the negative electrode current collector copper foil 10. Detailed configurations of the lithium ion secondary battery 50 and the negative electrode 1 for a lithium ion secondary battery will be described later.

(2)リチウムイオン二次電池用負極集電銅箔の構成
以下に、本発明の一実施形態に係るリチウムイオン二次電池用負極集電銅箔10について、図1を用いて説明する。図1は、本実施形態に係るリチウムイオン二次電池用負極集電銅箔10の断面図である。
(2) Structure of negative electrode current collector copper foil for lithium ion secondary battery Hereinafter, a negative electrode current collector copper foil for lithium ion secondary battery 10 according to an embodiment of the present invention will be described with reference to FIG. FIG. 1 is a cross-sectional view of a negative electrode current collector copper foil 10 for a lithium ion secondary battery according to this embodiment.

図1に示すように、負極集電銅箔10は、例えば銅合金からなる圧延銅箔としての銅合金箔11と、銅合金箔11の両面にそれぞれ形成された純銅からなる銅(Cu)めっき層12a,12bとを備える。    As shown in FIG. 1, a negative electrode current collector copper foil 10 includes, for example, a copper alloy foil 11 as a rolled copper foil made of a copper alloy, and copper (Cu) plating made of pure copper formed on both surfaces of the copper alloy foil 11 respectively. Layers 12a and 12b.

銅合金箔11は、例えば高耐熱性の固溶型銅合金又は析出型銅合金等からなる。銅合金箔11の例としては、ジルコニウム(Zr)、クロム(Cr)、亜鉛(Zn)、リン(P)等を含有した圧延銅箔がある。より具体的には、日立電線株式会社製のHCL02Z箔(Zrを0.015質量%〜0.030質量%含有)等を用いることができる(HCLは登録商標)。   The copper alloy foil 11 is made of, for example, a high heat resistant solid solution type copper alloy or a precipitation type copper alloy. Examples of the copper alloy foil 11 include a rolled copper foil containing zirconium (Zr), chromium (Cr), zinc (Zn), phosphorus (P) and the like. More specifically, HCL02Z foil (containing 0.015 mass% to 0.030 mass% of Zr) manufactured by Hitachi Cable, Ltd. can be used (HCL is a registered trademark).

第1Cuめっき層12a,12bのそれぞれの表面には、粒状電着物としての粗化粒子13a,13bが付着しており、更に、図示しない第2Cuめっき層13a',13b'が粗化粒子13a,13bを被覆するように十分薄く設けられている。さらに、Ni−Co合金めっき層14a、14bが、粗化粒子13a,13b(及び第2Cuめっき層13a',13b')の粒子を被覆するような形態で、十分薄く設けられている。この負極集電銅箔10の表面粗さRa(μm)は、負極活物質層15a,15bにおける割合Cb(wt%)とすると、Cb≧38×Ra×Ra−1.2×Ra(式1)を満たしている。粗化粒子13a,13bは、例えばCuや鉄(Fe)等を含む金属粒子であり、粗化めっき等により形成される。ここで、表面粗さRaは、JIS B0601に規定の「算術平均粗さRa」であり、後述のNi−Co合金めっき層14a,14bの形成後に測定した値である。なお、Ni−Co合金めっき層14a,14bの形成後の負極集電銅箔10の算術平均粗さRa(μm)は、小数点第2位のオーダーにおいて、粗化粒子13a,13bの粗さとほぼ同等である。   Roughened particles 13a and 13b as granular electrodeposits are attached to the respective surfaces of the first Cu plated layers 12a and 12b, and further, second Cu plated layers 13a ′ and 13b ′ (not shown) are roughened particles 13a and 13b. It is provided sufficiently thin so as to cover 13b. Furthermore, the Ni—Co alloy plating layers 14a and 14b are provided sufficiently thin in such a form as to cover the particles of the roughened particles 13a and 13b (and the second Cu plating layers 13a ′ and 13b ′). When the surface roughness Ra (μm) of the negative electrode current collector copper foil 10 is a ratio Cb (wt%) in the negative electrode active material layers 15a and 15b, Cb ≧ 38 × Ra × Ra−1.2 × Ra (Formula 1) ) Is satisfied. The rough particles 13a and 13b are metal particles containing, for example, Cu, iron (Fe), and the like, and are formed by rough plating or the like. Here, the surface roughness Ra is an “arithmetic average roughness Ra” defined in JIS B0601, and is a value measured after forming Ni—Co alloy plating layers 14a and 14b described later. The arithmetic average roughness Ra (μm) of the negative electrode current collector copper foil 10 after the formation of the Ni—Co alloy plating layers 14a and 14b is almost equal to the roughness of the roughened particles 13a and 13b in the order of the second decimal place. It is equivalent.

Ni−Co合金めっき層14a,14bの質量厚さは、20μg/cm2以上40μg/cm2以下である。ここで、質量厚さは、Ni−Co合金層14a,14bの厚さを、負極集電銅箔10表面の単位面積あたりに存在するNi−Co合金の質量で表したものである。単位面積あたりの質量は、例えば高周波誘導結合プラズマ発光分光分析(ICP発光分光分析:Inductively Coupled Plasma Atomic Emission Spectroscopy)等を用いた定量分析により求めることができる。 The mass thickness of the Ni—Co alloy plating layers 14a and 14b is 20 μg / cm 2 or more and 40 μg / cm 2 or less. Here, the mass thickness represents the thickness of the Ni—Co alloy layers 14 a and 14 b by the mass of the Ni—Co alloy present per unit area of the surface of the negative electrode current collector copper foil 10. The mass per unit area can be obtained by quantitative analysis using, for example, high frequency inductively coupled plasma emission spectroscopy (ICP emission spectroscopy).

上記のように、本実施形態では、銅合金箔11として、例えば高耐熱性の銅合金からなる圧延銅箔を用いる。圧延による銅合金箔11を用いることで高耐力が得られ、例えば 図2に示す負極活物質層15a,15bが、Li+イオンの吸蔵・放出に伴う体積膨張・体積収縮を繰り返したとしても、負極集電銅箔10の塑性変形を抑制することができる。よって、負極活物質層15a,15bが負極集電銅箔10から脱落し難くなり、また、リチウムイオン二次電池50の寸法安定性を向上させることができる。 As described above, in the present embodiment, as the copper alloy foil 11, a rolled copper foil made of, for example, a high heat resistant copper alloy is used. High yield strength is obtained by using the copper alloy foil 11 by rolling, for example, even if the negative electrode active material layers 15a and 15b shown in FIG. 2 repeat volume expansion / contraction due to insertion and extraction of Li + ions, Plastic deformation of the negative electrode current collector copper foil 10 can be suppressed. Therefore, the negative electrode active material layers 15a and 15b are unlikely to drop off from the negative electrode current collector copper foil 10, and the dimensional stability of the lithium ion secondary battery 50 can be improved.

上記のような充放電による体積変化を抑えるべく、例えば上述のSnやSiの合金等を負極活物質層として用いたとしても、充放電容量の増大と充放電時の体積変化量の低減との両立は困難である。したがって、高容量のリチウムイオン二次電池を達成するためには、負極活物質層の体積変化をある程度許容する必要がある。体積変化の許容量は、銅箔等の負極集電銅箔の耐力及び厚さで決まる。銅箔には、電解銅箔と圧延銅箔とが知られているが、電解銅箔には高耐力を有する実用的な銅箔は見いだされていない。   In order to suppress the volume change due to charge / discharge as described above, for example, even if the above-described Sn or Si alloy or the like is used as the negative electrode active material layer, the increase in charge / discharge capacity and the decrease in volume change during charge / discharge Balancing is difficult. Therefore, in order to achieve a high-capacity lithium ion secondary battery, it is necessary to allow the volume change of the negative electrode active material layer to some extent. The allowable amount of volume change is determined by the yield strength and thickness of the negative electrode current collector copper foil such as a copper foil. As the copper foil, an electrolytic copper foil and a rolled copper foil are known, but no practical copper foil having a high yield strength has been found in the electrolytic copper foil.

一方、圧延銅箔は、加工硬化により容易に高耐力化が可能である。また、圧延の場合、添加元素を配合することで固溶型銅合金や析出型銅合金等を製造することが可能であり、比較的容易に銅合金からなる高耐力の圧延銅箔を製造することができる。   On the other hand, rolled copper foil can easily have high yield strength by work hardening. In addition, in the case of rolling, it is possible to produce a solid solution type copper alloy, a precipitation type copper alloy, etc. by blending additive elements, and relatively easily produce a high strength rolled copper foil made of a copper alloy. be able to.

また、本実施形態のように、銅合金箔11を高耐熱性の銅合金から構成することで、純銅等を用いた場合よりも耐熱性が増し、後述するように、高温かつ長時間の熱処理を含むリチウムイオン二次電池用負極1の製造工程において、負極集電銅箔10が軟化してしまうことを抑制し、或いは、軟化が起きたとしても、比較的、高耐力を維持することができる。   Further, as in the present embodiment, the copper alloy foil 11 is made of a highly heat-resistant copper alloy, so that the heat resistance is increased as compared with the case where pure copper or the like is used. In the manufacturing process of the negative electrode 1 for a lithium ion secondary battery containing, it is possible to suppress the negative electrode current collector copper foil 10 from being softened, or to maintain a relatively high yield strength even if softening occurs. it can.

例えば上記HCL02Z箔の場合、純銅箔を軟化させるような熱が加わった後においても、1%耐力が480MPaと、圧延直後と同等の状態を維持できる。また、上述の特許文献4にあるような400℃以上の高温・長時間での熱処理で軟化させた後であっても、電解銅箔や純銅箔に比べ、100MPa以上高い耐力を維持できる。ここで、1%耐力は、例えばJIS Z2241に規定の「全伸び法」により求めたものである。   For example, in the case of the HCL02Z foil, even after heat that softens the pure copper foil is applied, the 1% yield strength can be maintained at 480 MPa, which is equivalent to that immediately after rolling. In addition, even after softening by heat treatment at a high temperature of 400 ° C. or higher and for a long time as described in Patent Document 4 above, it is possible to maintain a yield strength that is 100 MPa or more higher than that of an electrolytic copper foil or pure copper foil. Here, the 1% proof stress is obtained by, for example, the “total elongation method” defined in JIS Z2241.

このように、複合箔(集電銅箔)の厚みを増すことで耐熱性を向上させる特許文献4の方法とは異なり、本実施形態では、銅合金箔11を用いることで、高耐力性および高耐熱性を確保しつつ、負極集電銅箔10を薄く形成することが可能となる。よって、リチウムイオン二次電池50内により多くの負極活物質層15a,15bを収容することができ、リチウムイオン二次電池50の高容量化に寄与することができる。   Thus, unlike the method of Patent Document 4 in which the heat resistance is improved by increasing the thickness of the composite foil (current collector copper foil), in this embodiment, by using the copper alloy foil 11, high strength resistance and The negative electrode current collector copper foil 10 can be thinly formed while ensuring high heat resistance. Therefore, more negative electrode active material layers 15 a and 15 b can be accommodated in the lithium ion secondary battery 50, which can contribute to an increase in capacity of the lithium ion secondary battery 50.

また、本実施形態では、負極集電銅箔10の表面粗さRa(μm)について、負極活物質層15a、15bにおけるバインダ割合Cb(wt%)との関係において、以下の式を満たす。
Cb≧38×Ra×Ra−1.2×Ra・・・・(式1)
ただし、0.10≦Ra≦0.72、かつ、2≦Cb≦20を満たす。
In the present embodiment, the surface roughness Ra (μm) of the negative electrode current collector copper foil 10 satisfies the following expression in relation to the binder ratio Cb (wt%) in the negative electrode active material layers 15a and 15b.
Cb ≧ 38 × Ra × Ra−1.2 × Ra (formula 1)
However, 0.10 ≦ Ra ≦ 0.72 and 2 ≦ Cb ≦ 20 are satisfied.

一例として、第1Cuめっき層12a,12b、粗化粒子13a,13b、第2Cuめっき層13a',13b'、Ni−Co合金めっき層14a,14bを順に付着させた負極集電銅箔10の表面粗さRa(μm)は、負極活物質層15a,15bにおけるバインダ割合(wt%)をCbとして、Cb≧38×Ra×Ra−1.2×Ra(式1)となっている。これにより、負極集電銅箔10上に形成される後述の負極活物質層15a,15bとの密着性を向上させることができる。   As an example, the surface of the negative electrode current collector copper foil 10 to which the first Cu plating layers 12a and 12b, the roughened particles 13a and 13b, the second Cu plating layers 13a ′ and 13b ′, and the Ni—Co alloy plating layers 14a and 14b are sequentially attached. The roughness Ra (μm) is Cb ≧ 38 × Ra × Ra−1.2 × Ra (Formula 1), where Cb is the binder ratio (wt%) in the negative electrode active material layers 15a and 15b. Thereby, adhesiveness with the below-mentioned negative electrode active material layers 15a and 15b formed on the negative electrode current collection copper foil 10 can be improved.

また、本実施形態では、第2Cuめっき層13a',13b’上に、例えばNi−Co合金めっき層14a,14bが20μg/cm2以上40μg/cm2以下の質量厚さで形成されている。これにより、負極集電銅箔10の表面が酸化され難くなる。すなわち、負極1の製造工程における熱処理によって負極集電銅箔10の表面に酸化膜が形成されてしまうことを抑制し、タブリード16との溶接強度を向上させることができる。 In the present embodiment, for example, Ni—Co alloy plating layers 14 a and 14 b are formed on the second Cu plating layers 13 a ′ and 13 b ′ with a mass thickness of 20 μg / cm 2 or more and 40 μg / cm 2 or less. Thereby, the surface of the negative electrode current collection copper foil 10 becomes difficult to be oxidized. That is, it is possible to suppress the formation of an oxide film on the surface of the negative electrode current collector copper foil 10 due to the heat treatment in the manufacturing process of the negative electrode 1 and to improve the welding strength with the tab lead 16.

また、第2Cuめっき層13a',13b’上にNi−Co合金めっき層14a,14bが形成されることで、粗化粒子13a,13bが脱落し難くなり、リチウムイオン二次電池50内への粗化粒子13a,13b等の金属粒子の混入によって、正負極間で短絡してしまうのを抑制することができる。   In addition, since the Ni—Co alloy plating layers 14 a and 14 b are formed on the second Cu plating layers 13 a ′ and 13 b ′, the roughened particles 13 a and 13 b are difficult to drop off, and the lithium ion secondary battery 50 enters the lithium ion secondary battery 50. It is possible to suppress a short circuit between the positive and negative electrodes due to the mixing of the metal particles such as the roughened particles 13a and 13b.

Ni−Co合金めっき層14a,14bが粗化粒子13a,13bの脱落を抑制する効果は、Cuめっき層等よりも高い。係る効果を得るために、Cuめっき層が例えば50nm程度必要であるのに対し、Ni−Co合金めっき層14a,14bであれば、例えば20nm以上(20μg/cm2弱に相当)の厚さがあればよい。一方で、Ni−Co合金めっき層14a,14bが例えば50nm以上(50μg/cm2弱に相当)とあまりにも厚いと、負極集電銅箔10の表面が平坦化されて負極活物質層15a,15bとの密着性が低下してしまう。本実施形態では、上記のように、Ni−Co合金めっき層14a,14bの質量厚さを20μg/cm2以上40μg/cm2以下としているので、Cuめっき後の負極集電銅箔10の表面粗さRaをほとんど変化させることがなく、粗化粒子13a,13bの脱落を抑制するのに必要かつ充分な厚さとなっている。 The effect of the Ni—Co alloy plating layers 14 a and 14 b suppressing the roughening particles 13 a and 13 b from dropping is higher than that of the Cu plating layer and the like. In order to obtain such an effect, the Cu plating layer needs to be about 50 nm, for example, whereas the Ni—Co alloy plating layers 14a and 14b have a thickness of 20 nm or more (corresponding to less than 20 μg / cm 2 ), for example. I just need it. On the other hand, if the Ni—Co alloy plating layers 14a and 14b are too thick, for example, 50 nm or more (corresponding to less than 50 μg / cm 2 ), the surface of the negative electrode current collector copper foil 10 is flattened, and the negative electrode active material layers 15a, 15b, Adhesiveness with 15b will fall. In the present embodiment, as described above, the mass thickness of the Ni—Co alloy plating layers 14a and 14b is set to 20 μg / cm 2 or more and 40 μg / cm 2 or less, so the surface of the negative electrode current collector copper foil 10 after Cu plating Roughness Ra is hardly changed, and the thickness is necessary and sufficient to suppress dropping of the roughened particles 13a and 13b.

この点においても、複合箔(集電銅箔)の耐熱性の向上のみを主眼として0.5μm〜5μmの厚みにCo−Ni合金めっき層を形成する上述の特許文献4と、40μg/cm2(数十nm程度)以下にNi−Co合金めっき層14a,14bを形成する本実施形態とでは、目的および構成を異にする。 Also in this respect, the above-mentioned Patent Document 4 in which the Co—Ni alloy plating layer is formed in a thickness of 0.5 μm to 5 μm mainly focusing on the improvement of heat resistance of the composite foil (current collector copper foil), and 40 μg / cm 2. The purpose and configuration are different from those of the present embodiment in which the Ni—Co alloy plating layers 14 a and 14 b are formed below (about several tens of nm).

このように、本実施形態においては、負極活物質層15a,15bに対して高い密着性を維持しつつ粗化粒子13a,13bの脱落を抑制することができ、また、タブリード16との溶接強度を向上させることができる。   As described above, in this embodiment, it is possible to suppress the falling off of the roughened particles 13a and 13b while maintaining high adhesion to the negative electrode active material layers 15a and 15b, and the welding strength with the tab lead 16 is increased. Can be improved.

(3)リチウムイオン二次電池用負極集電銅箔の製造方法
次に、図1を参照しながら、リチウムイオン二次電池用負極集電銅箔10の製造方法について説明する。
(3) Manufacturing method of negative electrode current collection copper foil for lithium ion secondary batteries Next, the manufacturing method of the negative electrode current collection copper foil 10 for lithium ion secondary batteries is demonstrated, referring FIG.

(圧延工程)
まず、例えば高耐熱性の固溶型銅合金又は析出型銅合金等を圧延し、図1に示す圧延銅箔としての銅合金箔11を製造する。すなわち、日立電線株式会社製のZrを含有するHCL02Z箔のような銅合金箔11を形成する場合、例えば無酸素銅鋳造設備等を使用し、Zr等の活性な金属が酸化しない環境で銅合金を溶解鋳造してケークとする。次に、このケークを熱間圧延した後、冷間圧延と焼鈍とを繰り返しながら所定厚さまで圧延し、溶剤による洗浄で圧延油を除去して銅合金箔11を得る。
(Rolling process)
First, for example, a highly heat-resistant solid solution type copper alloy or a precipitation type copper alloy is rolled to produce a copper alloy foil 11 as a rolled copper foil shown in FIG. That is, when forming a copper alloy foil 11 such as HCL02Z foil containing Zr made by Hitachi Cable, for example, an oxygen-free copper casting facility is used, and the copper alloy is used in an environment where active metals such as Zr are not oxidized. Is cast into a cake. Next, after hot rolling this cake, it is rolled to a predetermined thickness while repeating cold rolling and annealing, and the rolling oil is removed by washing with a solvent to obtain a copper alloy foil 11.

(Cuめっき工程)
次に、銅合金箔11を陰極としてCuめっきを施し、銅合金箔11の例えば両面に、第1Cuめっき層12a,12bを形成し、第1Cuめっき層12a,12bの表面に、粒状電着物としての粗化粒子13a,13bを付着させる。さらに、粗化粒子13a,13bを覆うように第2Cuめっき層13a',13b'を形成する。
(Cu plating process)
Next, Cu plating is performed using the copper alloy foil 11 as a cathode, the first Cu plating layers 12a and 12b are formed on, for example, both surfaces of the copper alloy foil 11, and the surface of the first Cu plating layers 12a and 12b is formed as a granular electrodeposit. The roughened particles 13a and 13b are attached. Further, second Cu plating layers 13a ′ and 13b ′ are formed so as to cover the roughened particles 13a and 13b.

すなわち、銅合金箔11をコイル・ツー・コイルで搬送しながら、電解脱脂及び酸洗浄した銅合金箔11の表面に対して電解Cuめっきによる粗化を3段階で行う。第1段階では、銅合金箔11の表面を平坦にするCuめっきを行って第1Cuめっき層12a,12bを形成する。次いで第2段階では、代表値にして例えば直径0.8μm程度の小さな粗化粒子13a,13bを付ける。第3段階では、粗化粒子13a,13bの周囲を覆うように第2Cuめっき層13a',13b'を付けて、代表値にして例えば直径1μm程度になるよう粗化粒子13a,13bを肥大化させる。具体的には、第1段階及び第3段階では、例えば硫酸銅(CuSO4)めっき液を用いて数A/dm2の電流密度で電解し、第2段階では、例えば硫酸銅めっき液に鉄(Fe2+)イオンを配合して20A/dm2以上40A/dm2以下の高電流密度で電解する。処理時間は、各段階とも例えば3秒以上12秒以下とする。 That is, roughening by electrolytic Cu plating is performed in three stages on the surface of the copper alloy foil 11 subjected to electrolytic degreasing and acid cleaning while the copper alloy foil 11 is conveyed in a coil-to-coil manner. In the first stage, Cu plating for flattening the surface of the copper alloy foil 11 is performed to form the first Cu plating layers 12a and 12b. Next, in the second stage, small rough particles 13a and 13b with a diameter of about 0.8 μm, for example, are attached as representative values. In the third stage, the second Cu plating layers 13a ′ and 13b ′ are attached so as to cover the periphery of the roughened particles 13a and 13b, and the roughened particles 13a and 13b are enlarged so as to have a representative value of, for example, about 1 μm in diameter. Let Specifically, in the first stage and the third stage, for example, electrolysis is performed using a copper sulfate (CuSO 4 ) plating solution at a current density of several A / dm 2. In the second stage, for example, iron is added to the copper sulfate plating solution. Electrolysis is performed at a high current density of 20 A / dm 2 or more and 40 A / dm 2 or less by blending (Fe 2+ ) ions. The processing time is, for example, not less than 3 seconds and not more than 12 seconds in each stage.

負極集電銅箔10の表面粗さRa(μm)について、負極活物質層15a、15bにおけるバインダの割合Cb(wt%)との関係において、以下の式を満たす。
Cb≧38×Ra×Ra−1.2×Ra・・・・(式1)
ただし、0.10≦Ra≦0.72、かつ、2≦Cb≦20を満たす。
About the surface roughness Ra (micrometer) of the negative electrode current collection copper foil 10, the following formula | equation is satisfy | filled in relation with the ratio Cb (wt%) of the binder in the negative electrode active material layers 15a and 15b.
Cb ≧ 38 × Ra × Ra−1.2 × Ra (formula 1)
However, 0.10 ≦ Ra ≦ 0.72 and 2 ≦ Cb ≦ 20 are satisfied.

例えば、銅合金箔11上に、第1Cuめっき層12a,12b、粗化粒子13a,13b、第2Cuめっき層13a',13b'、Ni−Co合金めっき層14a、14bを順に付着させた負極集電銅箔10の表面粗さRa(μm)は、負極活物質層15a、15bにおけるバインダ割合(wt%)をCbとして、Cb≧38×Ra×Ra−1.2×Ra(式1)となっている。このような表面粗さRaとすることで、後に負極集電銅箔10上に形成される負極活物質層15a,15bとの密着性を向上させることができる。   For example, the negative electrode collector in which the first Cu plating layers 12a and 12b, the roughened particles 13a and 13b, the second Cu plating layers 13a ′ and 13b ′, and the Ni—Co alloy plating layers 14a and 14b are sequentially attached on the copper alloy foil 11. The surface roughness Ra (μm) of the copper foil 10 is Cb ≧ 38 × Ra × Ra−1.2 × Ra (Formula 1), where Cb is the binder ratio (wt%) in the negative electrode active material layers 15a and 15b. It has become. By setting it as such surface roughness Ra, adhesiveness with the negative electrode active material layers 15a and 15b formed on the negative electrode current collection copper foil 10 later can be improved.

ここで、Cuめっきを施す前の銅合金箔11であっても、圧延後の状態で表面粗さRaは0.15μm程度である。しかし、この状態では、(式1)の関係を満たすバインダ割合となる負極活物質層を形成した場合であっても、負極活物質層15a,15bとの充分な密着性は得られない。上記のように、粗化粒子13a,13bを銅合金箔11の表面に付着させることで、凹凸面の空隙に材料が侵入することによるくさびのような働き(アンカー効果)により密着性が向上する。   Here, even if it is the copper alloy foil 11 before performing Cu plating, surface roughness Ra is about 0.15 micrometer in the state after rolling. However, in this state, sufficient adhesion to the negative electrode active material layers 15a and 15b cannot be obtained even when the negative electrode active material layer having a binder ratio satisfying the relationship of (Formula 1) is formed. As described above, by attaching the roughened particles 13a and 13b to the surface of the copper alloy foil 11, the adhesion is improved by a wedge-like function (anchor effect) due to the material entering the voids of the uneven surface. .

また、このとき、第3段階のCuめっき量が多すぎると、粗化粒子13a,13bのサイズが大きくなりすぎ、負極集電銅箔10の表面粗さRaが大きくなりすぎてしまう。このように、表面粗さRaが上限値を超えると、負極活物質層15a,15bとの密着性の向上効果が得られないばかりか、却って密着性が低下してしまう場合がある。一方、粗化粒子13a,13bを小さいままに留めるために、第3段階のめっき量を少なくしたり、又は第3段階の処理を省略したりすると、第2Cuめっき層13a',13b'を形成した場合に比べ、粗化粒子13a,13bの脱落が起こり易くなってしまう。   At this time, if the amount of Cu plating in the third stage is too large, the size of the roughened particles 13a and 13b becomes too large, and the surface roughness Ra of the negative electrode current collector copper foil 10 becomes too large. As described above, when the surface roughness Ra exceeds the upper limit, not only the effect of improving the adhesion to the negative electrode active material layers 15a and 15b can be obtained, but the adhesion may be lowered. On the other hand, in order to keep the coarse particles 13a and 13b small, the second Cu plating layers 13a ′ and 13b ′ are formed by reducing the third-stage plating amount or omitting the third-stage treatment. Compared to the case, the roughened particles 13a and 13b are more likely to fall off.

本実施形態においては、粗化粒子13a,13b(もしくは第2Cuめっき層13a',13b’)を覆うように、粗化粒子13a,13bの脱落抑制効果の高いNi−Co合金めっき層14a,14bをそれぞれ形成することで、上記Cuめっきにより所望の値とした表面粗さRaをほとんど変化させることなく、粗化粒子13a,13bの脱落を抑制する。Ni−Co合金めっき層14a,14bの形成方法について説明する。   In the present embodiment, the Ni—Co alloy plating layers 14a and 14b having a high effect of preventing the roughening particles 13a and 13b from falling off so as to cover the roughening particles 13a and 13b (or the second Cu plating layers 13a ′ and 13b ′). Are formed, and the drop of the roughened particles 13a and 13b is suppressed without substantially changing the surface roughness Ra set to a desired value by the Cu plating. A method of forming the Ni—Co alloy plating layers 14a and 14b will be described.

(ニッケル−コバルト合金めっき工程)
銅合金箔11をコイル・ツー・コイルで搬送しながら、上述のようにCuめっきを施した銅合金箔11の例えば両面に電解めっきを行って、Ni−Co合金めっき層14a,14bを形成する。係る電解めっきでは、例えば硫酸ニッケル(NiSO4)液、硫酸コバルト(CoSO4)液、及びクエン酸ナトリウム(Na3(C35O(COO)3)液を混合しためっき液を用い、数A/dm2の電流密度で電解する。処理時間は、例えば3秒以上12秒以下とする。
(Nickel-cobalt alloy plating process)
While transporting the copper alloy foil 11 in a coil-to-coil manner, electrolytic plating is performed on, for example, both surfaces of the copper alloy foil 11 subjected to Cu plating as described above to form the Ni—Co alloy plating layers 14 a and 14 b. . In such electrolytic plating, for example, a plating solution obtained by mixing a nickel sulfate (NiSO 4 ) solution, a cobalt sulfate (CoSO 4 ) solution, and a sodium citrate (Na 3 (C 3 H 5 O (COO) 3 ) solution is used. Electrolysis is performed at a current density of A / dm 2. The treatment time is, for example, 3 seconds or more and 12 seconds or less.

これにより、例えば質量厚さが20μg/cm2以上40μg/cm2以下のNi−Co合金めっき層14a,14bが形成される。Ni−Co合金めっき層14a,14bにより、粗化粒子13a,13bの脱落を抑制することができる。また、負極集電銅箔10の表面が酸化され難くなり、タブリード16との密着性を高めて溶接強度を向上させることができる。また、Ni−Co合金めっき層14a,14bの質量厚さを40μg/cm2以下としているので、負極集電銅箔10の平坦化を抑制して負極活物質層15a,15bとの密着性を充分に維持することができる。 Thereby, for example, Ni—Co alloy plating layers 14 a and 14 b having a mass thickness of 20 μg / cm 2 or more and 40 μg / cm 2 or less are formed. The Ni—Co alloy plating layers 14a and 14b can prevent the roughening particles 13a and 13b from falling off. In addition, the surface of the negative electrode current collector copper foil 10 is less likely to be oxidized, and the adhesion with the tab lead 16 can be improved to improve the welding strength. Moreover, since the mass thickness of the Ni—Co alloy plating layers 14a and 14b is set to 40 μg / cm 2 or less, the flatness of the negative electrode current collector copper foil 10 is suppressed, and the adhesion to the negative electrode active material layers 15a and 15b is improved. It can be maintained sufficiently.

以上により、銅合金箔11と、銅合金箔11の両面に形成された第1Cuめっき層12、12bと、第1Cuめっき層12a,12b上に形成された粗化粒子13a,13bと、粗化粒子13a,13bを覆い粗化粒子13a,13bを肥大させる第2Cuめっき層13a',13b'と、第2Cuめっき層13a',13b'を覆うNi−Co合金めっき層14a,14bとを備え、負極集電銅箔10の表面粗さRa(μm)について、負極活物質層15a,15bにおけるバインダ割合Cb(wt%)との関係において、以下の式を満たすリチウムイオン二次電池用負極集電銅箔10が製造される。
Cb≧38×Ra×Ra−1.2×Ra・・・・(式1)
ただし、0.10≦Ra≦0.72、かつ、2≦Cb≦20を満たす。
As described above, the copper alloy foil 11, the first Cu plated layers 12 and 12b formed on both surfaces of the copper alloy foil 11, the roughened particles 13a and 13b formed on the first Cu plated layers 12a and 12b, and the roughened A second Cu plating layer 13a ′, 13b ′ for covering the particles 13a, 13b and enlarging the roughened particles 13a, 13b; and a Ni—Co alloy plating layer 14a, 14b for covering the second Cu plating layers 13a ′, 13b ′. Regarding the surface roughness Ra (μm) of the negative electrode current collector copper foil 10, the negative electrode current collector for a lithium ion secondary battery that satisfies the following formula in relation to the binder ratio Cb (wt%) in the negative electrode active material layers 15 a and 15 b Copper foil 10 is manufactured.
Cb ≧ 38 × Ra × Ra−1.2 × Ra (formula 1)
However, 0.10 ≦ Ra ≦ 0.72 and 2 ≦ Cb ≦ 20 are satisfied.

(4)リチウムイオン二次電池用負極の製造方法
次に、図2に示す構成を備えるリチウムイオン二次電池用負極1の製造方法について説明する。
(4) Manufacturing method of negative electrode for lithium ion secondary battery Next, the manufacturing method of the negative electrode 1 for lithium ion secondary batteries provided with the structure shown in FIG. 2 is demonstrated.

(負極活物質層の形成工程)
まずは、負極集電銅箔10にスラリーを塗布して負極活物質層15a,15bを形成する方法について説明する。係る工程は、例えばコイル・ツー・コイル方式の連続ラインにより、負極集電銅箔10にスラリーを塗布するアプリケータ等の装置を用いて行う。
(Formation process of negative electrode active material layer)
First, a method for forming the negative electrode active material layers 15a and 15b by applying a slurry to the negative electrode current collector copper foil 10 will be described. Such a process is performed using an apparatus such as an applicator that applies slurry to the negative electrode current collector copper foil 10 by, for example, a continuous line of a coil-to-coil system.

具体的には、例えば負極活物質、バインダ溶液、及び必要に応じて導電助剤を混練したスラリーを、負極集電銅箔10の両面に塗布し、略均一の厚みに均して圧着し、例えば70℃〜130℃で数分間〜数十分間、乾燥する。   Specifically, for example, a negative electrode active material, a binder solution, and a slurry kneaded with a conductive aid as necessary, are applied to both surfaces of the negative electrode current collector copper foil 10, and are uniformly crimped to a substantially uniform thickness. For example, it is dried at 70 ° C. to 130 ° C. for several minutes to several tens of minutes.

スラリーに含まれる負極活物質としては、例えばSnやSi等の合金、或いは化合物等の粉末を用いることができる。個々の粉末の直径は、例えば数μm〜数十μmである。また、バインダ溶液としては、ポリイミド(PI)等のイミド系樹脂の前駆体やその他の樹脂等の溶液を用いることができる。   As the negative electrode active material contained in the slurry, for example, an alloy such as Sn or Si, or a powder such as a compound can be used. The diameter of each powder is, for example, several μm to several tens of μm. As the binder solution, a solution of a precursor of an imide resin such as polyimide (PI) or other resin can be used.

電池容量の観点から、負極活物質をできるだけ多く混入させたい場合、バインダ溶液は少量とすることが望ましい。乾燥工程等を経た後に負極集電銅箔10上に残った不揮発性成分のうち、バインダ成分が占める割合(以下、バインダ割合)(wt%)を例えば、2.1wt%などとすることができる。   From the viewpoint of battery capacity, when it is desired to mix as much negative electrode active material as possible, the amount of the binder solution is preferably small. Of the non-volatile components remaining on the negative electrode current collector copper foil 10 after the drying process or the like, the proportion of the binder component (hereinafter referred to as the binder proportion) (wt%) can be set to 2.1 wt%, for example. .

(式1)に規定される任意のバインダ割合Cb(wt%)に対して、負極集電銅箔10の表面粗さRaが、(式1)に規定されるRaより大きい値をとる場合、負極活物質層15a,15bとの密着性に向上がみられなかったり、却って密着性が低下してしまったりすることがある。係る密着性の挙動の原因として、負極活物質に対してバインダ溶液が少量であることが挙げられる。つまり、負極集電銅箔10の表面粗さRaが大きく、表面の凹凸が深いと、バインダ溶液が奥まで到達できないため、バインダ溶液は主に凸部近傍に留まることとなり、結果的に、バインダ成分と負極集電銅箔10の表面との接触面積が減り、密着性を高めることができないと考えられる。   When the surface roughness Ra of the negative electrode current collector copper foil 10 takes a value larger than Ra defined in (Expression 1) for an arbitrary binder ratio Cb (wt%) defined in (Expression 1), There may be cases where the adhesion with the negative electrode active material layers 15a and 15b is not improved or the adhesion is lowered. As a cause of the adhesion behavior, a small amount of the binder solution with respect to the negative electrode active material can be mentioned. That is, if the surface roughness Ra of the negative electrode current collector copper foil 10 is large and the surface irregularities are deep, the binder solution cannot reach the back, so that the binder solution mainly stays in the vicinity of the convex portion. As a result, the binder It is considered that the contact area between the component and the surface of the negative electrode current collector copper foil 10 is reduced, and the adhesion cannot be increased.

バインダ割合を大きくとることが可能な場合は、(式1)を満たす範囲内において、負極集電箔10の表面粗さRaを粗くすればよい。   When the binder ratio can be increased, the surface roughness Ra of the negative electrode current collector foil 10 may be increased within a range that satisfies (Equation 1).

本実施形態においては、負極集電銅箔10の表面粗さRaが、負極活物質層15a,15b中のバインダ割合Cbとの関係において、適正値となるようCuめっきを行って負極活物質層15a,15bとの高い密着性を維持しつつ、Ni−Co合金めっき層14a,14bを設けることで粗化粒子13a,13bの脱落を抑制することができる。   In the present embodiment, the negative electrode active material layer 10 is subjected to Cu plating so that the surface roughness Ra of the negative electrode current collector copper foil 10 becomes an appropriate value in relation to the binder ratio Cb in the negative electrode active material layers 15a and 15b. By providing the Ni—Co alloy plating layers 14 a and 14 b while maintaining high adhesion with 15 a and 15 b, it is possible to suppress the falling off of the roughened particles 13 a and 13 b.

次に、例えば赤外線加熱炉等を用い、スラリーが圧着された負極集電銅箔10に対し、高温かつ長時間の熱処理を施す。このとき、タブリード16と溶接される負極集電銅箔10の露出面の酸化を抑制するため、上記熱処理は、例えば窒素(N2)ガスやアルゴン(Ar)ガス等の非酸化性雰囲気下で行う。これにより、例えばイミド系樹脂等の前駆体からなるバインダ成分のイミド化反応が進行して固化し、負極集電銅箔10の両面に、負極活物質及びイミド化されたバインダ成分を含む負極活物質層15a,15bが形成される。 Next, for example, using an infrared heating furnace or the like, the negative electrode current collector copper foil 10 to which the slurry is pressure-bonded is subjected to heat treatment for a long time at a high temperature. At this time, in order to suppress oxidation of the exposed surface of the negative electrode current collector copper foil 10 welded to the tab lead 16, the heat treatment is performed in a non-oxidizing atmosphere such as nitrogen (N 2 ) gas or argon (Ar) gas. Do. Thereby, for example, an imidization reaction of a binder component made of a precursor such as an imide resin proceeds and solidifies, and the negative electrode active material containing the negative electrode active material and the imidized binder component on both surfaces of the negative electrode current collector copper foil 10. Material layers 15a and 15b are formed.

上記熱処理において、負極集電銅箔10の第2Cuめっき層13a',13b'が露出したままでは、たとえ上記のように非酸化性雰囲気下で熱処理を行ったとしても、残留酸素等の影響で表面が酸化される場合がある。そこで、本実施形態では、第2Cuめっき層13a',13b'の表面をNi−Co合金めっき層14a,14bで覆う構成としている。これにより、負極集電銅箔10に高温かつ長時間の熱処理を施しても表面が酸化され難くなる。   In the above heat treatment, if the second Cu plating layers 13a ′ and 13b ′ of the negative electrode current collector copper foil 10 are exposed, even if the heat treatment is performed in a non-oxidizing atmosphere as described above, it is affected by residual oxygen or the like. The surface may be oxidized. Therefore, in the present embodiment, the surface of the second Cu plating layers 13a ′ and 13b ′ is configured to be covered with the Ni—Co alloy plating layers 14a and 14b. Thereby, even if it heat-processes for a long time and high temperature to the negative electrode current collection copper foil 10, the surface becomes difficult to be oxidized.

このように、本実施形態においては、例えば負極活物質層15a,15bとしてSnやSiの合金等を用いてリチウムイオン二次電池50の高容量化を図りつつ、高温・長時間の熱処理を必要とする負極活物質層15a,15bの形成時には、Ni−Co合金めっき層14a,14bによりCuで形成される負極集電銅箔10の酸化を抑制する。よって、タブリードとの溶接強度を向上させてリチウムイオン二次電池50を長寿命化することが可能となる。   As described above, in this embodiment, for example, Sn or Si alloy or the like is used as the negative electrode active material layers 15a and 15b, and the lithium ion secondary battery 50 is required to have a high temperature and a long-time heat treatment. When forming the negative electrode active material layers 15a and 15b, the oxidation of the negative electrode current collector copper foil 10 formed of Cu is suppressed by the Ni—Co alloy plating layers 14a and 14b. Therefore, it is possible to improve the welding strength with the tab lead and extend the life of the lithium ion secondary battery 50.

(タブリードの溶接工程)
次に、図2を参照しながら、負極集電銅箔10にタブリード16を溶接する方法について説明する。
(Tab lead welding process)
Next, a method of welding the tab lead 16 to the negative electrode current collector copper foil 10 will be described with reference to FIG.

図2に示すように、両面に負極活物質層15a,15bが形成された負極集電銅箔10は、少なくとも片面或いは両面の一端に、負極活物質層15a,15bが形成されていない露出領域10sを有する。リチウムイオン二次電池50が備える電池外挿缶5と電気的接続を取るため、この負極集電銅箔10の露出領域10sにタブリード16を溶接する。    As shown in FIG. 2, the negative electrode current collector copper foil 10 having the negative electrode active material layers 15 a and 15 b formed on both sides thereof is an exposed region in which the negative electrode active material layers 15 a and 15 b are not formed on at least one side or one end of both sides. 10s. The tab lead 16 is welded to the exposed region 10 s of the negative electrode current collector copper foil 10 in order to establish electrical connection with the battery insertion can 5 provided in the lithium ion secondary battery 50.

すなわち、負極集電銅箔10の露出領域10sと、例えばNi又はNiめっき銅等からなるタブリード16とを重ね合わせ、例えば超音波溶接機にて、所定の加圧力、負荷エネルギーを加えつつ、所定の負荷時間で溶接処理を行う。これにより、負極集電銅箔10とタブリード16とが溶接される。本実施形態では、負極集電銅箔10の表面を覆うNi−Co合金めっき層14a,14bにより負極集電銅箔10表面の酸化が抑制されているので、高い溶接強度でタブリード16を溶接することができる。   That is, the exposed region 10 s of the negative electrode current collector copper foil 10 and the tab lead 16 made of, for example, Ni or Ni-plated copper are overlapped, and the predetermined pressure and load energy are applied, for example, with an ultrasonic welding machine. The welding process is performed with a load time of. Thereby, the negative electrode current collection copper foil 10 and the tab lead 16 are welded. In this embodiment, since the oxidation of the negative electrode current collector copper foil 10 surface is suppressed by the Ni—Co alloy plating layers 14 a and 14 b covering the surface of the negative electrode current collector copper foil 10, the tab lead 16 is welded with high welding strength. be able to.

このように、本実施形態では、タブリード16との溶接強度が向上するので、例えばリチウムイオン二次電池50の製造時、或いは使用時にタブリード16の剥がれが生じて電池外部に電流が取り出せなくなる等の不具合を低減することができる。   Thus, in this embodiment, since the welding strength with the tab lead 16 is improved, for example, the tab lead 16 is peeled off when the lithium ion secondary battery 50 is manufactured or used, so that current cannot be taken out from the battery. Problems can be reduced.

このようなタブリード16との溶接強度の向上は、例えばNi−Co合金めっき層14a,14bの質量厚さが20μg/cm2以上において得られる。質量厚さを20μg/cm2以上とすることで、高温・長時間の熱処理を行っても下層のCuがNi−Co合金めっき層14a,14bへと拡散し難くなり、超音波溶接時に新生面の露出を妨げるNiやCoのCuとの合金の形成を抑制することができるからである。 Such an improvement in the welding strength with the tab lead 16 is obtained, for example, when the mass thickness of the Ni—Co alloy plating layers 14a and 14b is 20 μg / cm 2 or more. By setting the mass thickness to 20 μg / cm 2 or more, the lower layer Cu hardly diffuses into the Ni—Co alloy plating layers 14a and 14b even when heat treatment is performed for a long time at a high temperature. This is because the formation of an alloy of Ni or Co with Cu that hinders exposure can be suppressed.

また、超音波を付加した際に新生面が露出し易くなることで、比較的短時間の溶接時間であってもタブリード16との充分な溶接強度が得られる。溶接時間が短縮されれば、製造スループットが上がるほか、溶接時の負極集電銅箔10へのダメージを低減することができる。よって、負極集電銅箔10が破れ易くなる等の不具合を低減することができる。   Further, since the new surface is easily exposed when ultrasonic waves are applied, sufficient welding strength with the tab lead 16 can be obtained even in a relatively short welding time. If the welding time is shortened, the manufacturing throughput is increased, and damage to the negative electrode current collector copper foil 10 during welding can be reduced. Accordingly, it is possible to reduce problems such as the negative electrode current collector copper foil 10 being easily broken.

また、Ni−Co合金めっき層14a,14bの質量厚さが例えば40μg/cm2よりも厚くなると、タブリード16との溶接強度の向上効果は飽和する。したがって、Ni−Co合金めっき層14a,14bの質量厚さを40μg/cm2以下とすることで、NiやCo等の高価な材料の浪費を抑え、製造コストを低減することができる。 Further, when the mass thickness of the Ni—Co alloy plating layers 14 a and 14 b is larger than, for example, 40 μg / cm 2 , the effect of improving the welding strength with the tab lead 16 is saturated. Therefore, by setting the mass thickness of the Ni—Co alloy plating layers 14a and 14b to 40 μg / cm 2 or less, waste of expensive materials such as Ni and Co can be suppressed, and the manufacturing cost can be reduced.

以上により、リチウムイオン二次電池用負極集電銅箔10と、負極集電銅箔10の例えば両面に形成された負極活物質層15a,15bと、負極集電銅箔10に接続されたタブリード16と、を備えるリチウムイオン二次電池用負極1が製造される。   As described above, the negative electrode current collector copper foil 10 for the lithium ion secondary battery, the negative electrode active material layers 15a and 15b formed on, for example, both surfaces of the negative electrode current collector copper foil 10, and the tab lead connected to the negative electrode current collector copper foil 10 16, and the negative electrode 1 for lithium ion secondary batteries is manufactured.

(5)リチウムイオン二次電池の製造方法
次に、図3を参照しながら、リチウムイオン二次電池50の製造方法について説明する。ここでは、図3に示す円筒型のリチウムイオン二次電池50を例にとって説明するが、リチウムイオン二次電池は、角型、ラミネート型等、他の形態を有していてもよい。
(5) Manufacturing Method of Lithium Ion Secondary Battery Next, a manufacturing method of the lithium ion secondary battery 50 will be described with reference to FIG. Here, the cylindrical lithium ion secondary battery 50 shown in FIG. 3 will be described as an example, but the lithium ion secondary battery may have other forms such as a square type and a laminate type.

まず、リチウムイオン二次電池用負極1とリチウムイオン二次電池用正極2とをセパレータ3を介して重ね合わせ、図示しない巻芯に巻き取った捲回体4を製作する。正極2は、リチウムイオン二次電池用正極集電金属箔と、正極集電金属箔の例えば両面に形成された正極活物質層と(いずれも図示せず)、正極集電金属箔に接続されたタブリード26と、を備える。正極集電金属箔を構成する金属は、例えばアルミニウム(Al)やその他の金属等である。正極活物質層は、例えばLiを含む金属複合酸化物等からなる。セパレータ3は、例えば多孔質の樹脂等からなる。   First, the negative electrode 1 for lithium ion secondary batteries and the positive electrode 2 for lithium ion secondary batteries are overlapped via the separator 3, and the winding body 4 wound around the core which is not shown in figure is manufactured. The positive electrode 2 is connected to a positive electrode current collector metal foil for a lithium ion secondary battery, a positive electrode active material layer formed on, for example, both surfaces of the positive electrode current collector metal foil (both not shown), and the positive electrode current collector metal foil A tab lead 26. The metal which comprises positive electrode current collection metal foil is aluminum (Al), another metal, etc., for example. The positive electrode active material layer is made of, for example, a metal composite oxide containing Li. The separator 3 is made of, for example, a porous resin.

次に、容器としての電池外挿缶5に、図示しない下部絶縁板と、捲回体4とをこの順に収容する。続いて、図示しないマンドレル(芯金)を捲回体4の中心に挿入し、上部絶縁板を電池外挿缶5に収容した後に、電池外挿缶5に溝6を形成(溝入れ)する。この後、乾燥を行って電池外挿缶5内の水分を飛ばす。電池外挿缶5内が充分に乾燥したら、図示しない電解液を注入する。次に、電池外挿缶5の溝6近傍にガスケット7を装着し、負極1のタブリード16を電池外挿缶5に、正極2のタブリード26をキャップ8の備える端子8tにそれぞれ溶接し、キャップ8を電池外挿缶5にクリンプ(圧着)して電解液を封入する。   Next, a lower insulating plate (not shown) and the wound body 4 are accommodated in this order in a battery extrapolation can 5 as a container. Subsequently, after inserting a mandrel (core metal) (not shown) into the center of the wound body 4 and housing the upper insulating plate in the battery outer can 5, the groove 6 is formed (grooved) in the battery outer can 5. . Thereafter, drying is performed to remove moisture in the battery extrapolation can 5. When the inside of the battery extra can 5 is sufficiently dried, an electrolyte solution (not shown) is injected. Next, the gasket 7 is mounted in the vicinity of the groove 6 of the battery outer can 5, the tab lead 16 of the negative electrode 1 is welded to the battery outer can 5, and the tab lead 26 of the positive electrode 2 is welded to the terminal 8 t provided in the cap 8. 8 is crimped (crimped) on the battery extrapolation can 5 to enclose the electrolyte.

以上により、セパレータ3が間に挿入されたリチウムイオン二次電池用負極1及びリチウムイオン二次電池用正極2が収容され、電解液が封入された電池外挿缶5を備えるリチウムイオン二次電池50が製造される。   As described above, the lithium ion secondary battery including the battery insertion can 5 in which the negative electrode 1 for the lithium ion secondary battery and the positive electrode 2 for the lithium ion secondary battery with the separator 3 interposed therebetween are accommodated and the electrolyte is enclosed. 50 is manufactured.

<本発明の他の実施形態>
以上、本発明の実施形態について具体的に説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
<Other Embodiments of the Present Invention>
As mentioned above, although embodiment of this invention was described concretely, this invention is not limited to the above-mentioned embodiment, It can change variously in the range which does not deviate from the summary.

例えば、上述の実施形態では、銅合金箔11の具体例として日立電線株式会社製のHCL02Z箔を挙げたが、銅合金からなる圧延銅箔はこれに限定されない。日立電線株式会社製品の中からさらにいくつかの具体例を示すと、HCL64T(Crを0.20質量%〜0.30質量%、Snを0.23質量%〜0.27質量%、Znを0.18質量%〜0.26質量%、それぞれ含有)、HCL305(Niを2.2質量%〜2.8質量%、Siを0.3質量%〜0.7質量%、Znを1.5質量%〜2.0質量%、Pを0.015質量%〜0.06質量%、それぞれ含有)等が挙げられる(HCLは登録商標)。また、これらのほか、純銅に、銀(Ag)、Sn、Fe等を添加した銅合金箔も用いることができる。   For example, in the above-described embodiment, the HCL02Z foil manufactured by Hitachi Cable, Ltd. was cited as a specific example of the copper alloy foil 11, but the rolled copper foil made of a copper alloy is not limited to this. When some specific examples are shown from Hitachi Cable, Ltd. products, HCL64T (Cr: 0.20 mass% to 0.30 mass%, Sn: 0.23 mass% to 0.27 mass%, Zn: 0.18 mass% to 0.26 mass%, each contained), HCL305 (2.2 mass% to 2.8 mass% of Ni, 0.3 mass% to 0.7 mass% of Si, and 1. 5 mass% to 2.0 mass%, P is contained 0.015 mass% to 0.06 mass%, respectively (HCL is a registered trademark). In addition to these, a copper alloy foil obtained by adding silver (Ag), Sn, Fe or the like to pure copper can also be used.

また、上述の実施形態では、圧延銅箔として銅合金箔11を用いたが、純銅からなる圧延銅箔を用いることも可能である。純銅からなる圧延銅箔は、例えば負極の製造工程に含まれる熱処理が比較的緩やかな場合等に好適である。   Moreover, in the above-mentioned embodiment, although the copper alloy foil 11 was used as a rolled copper foil, it is also possible to use the rolled copper foil which consists of pure copper. A rolled copper foil made of pure copper is suitable, for example, when the heat treatment included in the negative electrode manufacturing process is relatively gentle.

また、上述の実施形態では、負極集電銅箔10の両面に負極活物質層15a,15bを形成する構成としたが、負極活物質層は負極集電銅箔の少なくとも片面に形成されていればよく、この場合、Cuめっき層、粗化粒子、Ni−Co合金めっき層等も、銅合金箔或いは銅箔等の圧延銅箔の少なくとも片面に形成されていればよい。   In the above embodiment, the negative electrode active material layers 15a and 15b are formed on both surfaces of the negative electrode current collector copper foil 10. However, the negative electrode active material layer may be formed on at least one surface of the negative electrode current collector copper foil. In this case, the Cu plating layer, the roughened particles, the Ni—Co alloy plating layer, and the like may be formed on at least one side of a rolled copper foil such as a copper alloy foil or a copper foil.

また、上述の実施形態では、Cuめっきの際、粗化粒子13a,13bの上に更に第2Cuめっき層13a',13b'を設けたが、係る第2Cuめっき層13a',13b'を省略してもよい。この場合であっても、本願においては、圧延銅箔上にNi−Co合金めっく層14a,14b等を別途設けるので、粗化粒子13a,13bの脱落を充分に抑制することが可能である。   In the above-described embodiment, the second Cu plating layers 13a ′ and 13b ′ are further provided on the roughened particles 13a and 13b at the time of Cu plating. However, the second Cu plating layers 13a ′ and 13b ′ are omitted. May be. Even in this case, in the present application, since the Ni—Co alloy plating layers 14a, 14b and the like are separately provided on the rolled copper foil, it is possible to sufficiently suppress the dropping of the roughened particles 13a, 13b. is there.

また、上記実施形態では、銅合金箔11上にNi−Co合金めっき層14a,14bを形成したが、Niめっき層やCoめっき層等であっても、タブリードとの密着性を高め、かつ、粒状電着物の脱落を抑制するNi−Co合金めっき層14a,14bと略同等の効果が得られる。   Moreover, in the said embodiment, although Ni-Co alloy plating layer 14a, 14b was formed on the copper alloy foil 11, even if it is Ni plating layer, Co plating layer, etc., adhesiveness with a tab lead is improved, and An effect substantially equivalent to that of the Ni—Co alloy plating layers 14a and 14b, which suppresses the dropping of the granular electrodeposits, can be obtained.

本発明の実施例に係るリチウムイオン二次電池用負極集電銅箔の負極活物質層との密着性、タブリードとの溶接強度、及び粗化粒子の保持性の評価結果について以下に説明する。   The evaluation results of the adhesion with the negative electrode active material layer of the negative electrode current collector copper foil for a lithium ion secondary battery according to the example of the present invention, the welding strength with the tab lead, and the retention of the roughened particles will be described below.

(1)負極集電銅箔の製作
まずは、以下に述べる手順に従い、実施例1〜8、比較例1〜6、実施例9〜33、及び比較例7〜16に係る負極集電銅箔を製作した。
(1) Production of negative electrode current collector copper foil First, according to the procedure described below, negative electrode current collector copper foils according to Examples 1 to 8, Comparative Examples 1 to 6, Examples 9 to 33, and Comparative Examples 7 to 16 were prepared. Produced.

評価に用いる銅合金箔として、日立電線株式会社製のHCL02Z箔を、上述の実施形態と同様の手法により、厚さを12μm、Zrの含有量を0.02質量%に製作した。Zrの含有量は、溶解鋳造により得たケークの一部を採取し、固体発光分光分析により定量分析したものである。   As a copper alloy foil used for evaluation, an HCL02Z foil manufactured by Hitachi Cable Co., Ltd. was manufactured to a thickness of 12 μm and a Zr content of 0.02 mass% by the same method as in the above embodiment. The Zr content is obtained by collecting a part of the cake obtained by melt casting and quantitatively analyzing it by solid-state emission spectroscopy.

次に、上述の実施形態と同様の手法を用い、コイル・ツー・コイル方式の連続ラインにより、上記銅合金箔に対して、電解脱脂、酸洗浄、Cuめっき、Ni−Co合金めっきを施して負極集電銅箔を製作した。Cuめっき、Ni−Co合金めっきでは、以下の 表1に示す条件を中心として、所定ステップの省略、或いは電流密度、処理時間等の変更を行って、それぞれ実施例1〜33及び比較例1〜16とした。なお、Ni−Co合金めっきにおけるCo濃度は40%〜60%であった。   Next, electrolytic degreasing, acid cleaning, Cu plating, and Ni—Co alloy plating are performed on the copper alloy foil by a continuous line of a coil-to-coil method using the same method as in the above-described embodiment. A negative electrode current collector copper foil was produced. In Cu plating and Ni—Co alloy plating, centering on the conditions shown in Table 1 below, omission of predetermined steps or change of current density, processing time, etc. It was set to 16. The Co concentration in the Ni—Co alloy plating was 40% to 60%.

また、Ni−Co合金めっき層以外のめっき層の効果をみるため、Niめっき及びCoめっきを施したものを、それぞれ実施例7,8とした。係るめっきは、連続ラインで上記Cuめっきを施した後の銅合金箔に対し、ビーカー試験にて実施した。   Moreover, in order to see the effect of plating layers other than a Ni-Co alloy plating layer, what carried out Ni plating and Co plating was made into Example 7 and 8, respectively. The plating was performed by a beaker test on the copper alloy foil after the Cu plating was performed on a continuous line.

(2)負極集電銅箔の測定
上記のように製作した実施例1〜33及び比較例1〜16に係る負極集電銅箔に対し、以下に述べる手順に従って各種測定を行った。
(2) Measurement of negative electrode current collector copper foil Various measurements were performed on the negative electrode current collector copper foils according to Examples 1 to 33 and Comparative Examples 1 to 16 manufactured as described above according to the procedures described below.

(1%耐力の測定)
15mm×160mmに切り出した上記負極集電銅箔に対し、赤外線加熱炉によりN2ガス雰囲気下にて400℃で10時間の熱処理を施した。係る熱処理は、上述の実施形態における負極活物質層15a,15bの形成工程を模したものである。その後、各負極集電銅箔に対してJIS Z2241に規定の「金属材料引張試験」を行い、応力−歪み線図から「全伸び法」による1%耐力を求めた。
(Measurement of 1% yield strength)
The negative electrode collector copper foil cut out to 15 mm × 160 mm was heat-treated at 400 ° C. for 10 hours in an N 2 gas atmosphere by an infrared heating furnace. Such heat treatment simulates the step of forming the negative electrode active material layers 15a and 15b in the above-described embodiment. Thereafter, a “metallic material tensile test” defined in JIS Z2241 was performed on each negative electrode current collector copper foil, and 1% yield strength was determined from the stress-strain diagram by the “total elongation method”.

(表面粗さRaの測定)
Ni−Co合金めっきを行う前に、Cuめっき後の銅合金箔のうちの一部を25mm×400mmに切り出して質量を測定し、Cuめっき前の銅合金箔の質量と比較することで、Cuめっき量を測定した。また、Ni−Co合金めっき後の上記負極集電銅箔の表面粗さ測定器(Keyence Laser Scanning Microscope VK-8700)を用いて、対物レンズ100倍で測定し、データ処理として、傾き補正及びノイズ除去(高さカットを「通常」条件で設定し)を行い、JIS B0601に準拠した「算術平均粗さRa」を算出した。
(Measurement of surface roughness Ra)
Before performing the Ni-Co alloy plating, a part of the copper alloy foil after Cu plating is cut out to 25 mm x 400 mm, the mass is measured, and compared with the mass of the copper alloy foil before Cu plating. The amount of plating was measured. Moreover, using the surface roughness measuring instrument (Keyence Laser Scanning Microscope VK-8700) of the negative electrode current collector copper foil after Ni—Co alloy plating, measurement was performed with an objective lens 100 times, and as data processing, tilt correction and noise were measured. Removal (height cut was set under “normal” conditions) was performed, and “arithmetic mean roughness Ra” in accordance with JIS B0601 was calculated.

(ニッケル−コバルト合金めっき層の質量厚さ測定)
40mm×100mmに切り出した負極集電銅箔を希硝酸(HNO3)に浸漬してNi−Co合金めっき層を溶解させ、適宜希釈した後、ICP発光分光分析によりめっき量を定量分析した。係るめっき量から、Ni−Co合金めっき層の質量厚さを算出した。
(Measurement of mass thickness of nickel-cobalt alloy plating layer)
The negative electrode current collector copper foil cut out to 40 mm × 100 mm was immersed in dilute nitric acid (HNO 3 ) to dissolve the Ni—Co alloy plating layer, and after appropriate dilution, the plating amount was quantitatively analyzed by ICP emission spectroscopic analysis. From the plating amount, the mass thickness of the Ni—Co alloy plating layer was calculated.

(負極活物質層との密着性測定)
実施例1〜8及び比較例1〜6は、負極活物質層15a,15bにおけるバインダの割合(バインダ割合)を2.1wt%として、バインダ割合を一定としている。一方、実施例9〜33及び比較例7〜16については、バインダ割合を変化させている。
(Measurement of adhesion to negative electrode active material layer)
In Examples 1 to 8 and Comparative Examples 1 to 6, the binder ratio (binder ratio) in the negative electrode active material layers 15a and 15b is 2.1 wt%, and the binder ratio is constant. On the other hand, about Examples 9-33 and Comparative Examples 7-16, the binder ratio is changed.

一例として、バインダ割合2.1wt%とした実施例1について説明する。上述の実施形態に係る負極活物質層15a,15bを模して、負極集電銅箔上にSiを含む混合物を形成した。すなわち、直径が3μmの市販のSi粉末を、市販のポリイミド(PI)ワニス(PI前駆体のN−メチルピロリドン(NMP)溶液)に、重量比でSi:PI=9:1の割合で混合した後、上記負極集電銅箔上に100μm厚さに塗布した。次に、大気中にて100℃で30分乾燥して溶剤を蒸発させた後、赤外線加熱炉によりN2ガス雰囲気下にて400℃で10時間の熱処理を施して固化させた。なお、本実施の形態で使用したPIは、乾燥後に生成された負極活物質層15a,15bにおいて、2.1wt%となった。バインダ割合を変化させる場合は、実質的に形成されるPIの割合を加味して、配合を決定すればよい。 As an example, Example 1 in which the binder ratio is 2.1 wt% will be described. Simulating the negative electrode active material layers 15a and 15b according to the above-described embodiment, a mixture containing Si was formed on the negative electrode current collector copper foil. That is, a commercially available Si powder having a diameter of 3 μm was mixed with a commercially available polyimide (PI) varnish (an N-methylpyrrolidone (NMP) solution of a PI precursor) at a weight ratio of Si: PI = 9: 1. Then, it apply | coated to 100 micrometers thickness on the said negative electrode current collection copper foil. Next, after drying in the atmosphere at 100 ° C. for 30 minutes to evaporate the solvent, the solution was solidified by heat treatment at 400 ° C. for 10 hours in an N 2 gas atmosphere in an infrared heating furnace. Note that PI used in the present embodiment was 2.1 wt% in the negative electrode active material layers 15a and 15b generated after drying. When changing the binder ratio, the composition may be determined in consideration of the ratio of the PI that is substantially formed.

続いて、JIS K5600−5−6に規定の「クロスカット法」を実施してSi混合物との密着性を調べ、係る結果を模式的に負極活物質層との密着性とした。具体的には、Si混合物が形成された負極集電銅箔を2mm間隔でカットし、剥離によって下地が露出しなかったものの割合(%)を求め、72%以上を許容値とした。   Subsequently, the “cross-cut method” defined in JIS K5600-5-6 was conducted to examine the adhesion with the Si mixture, and the result was schematically taken as the adhesion with the negative electrode active material layer. Specifically, the negative electrode current collector copper foil on which the Si mixture was formed was cut at intervals of 2 mm, and the ratio (%) of the case where the base was not exposed by peeling was obtained, and 72% or more was set as the allowable value.

(タブリードとの溶接強度測定)
15mm×50mmに切り出した負極集電銅箔に対し、赤外線加熱炉によりN2ガス雰囲気下にて400℃で10時間の熱処理を施した。次に、上述の実施形態と同様に超音波溶接機を用い、厚さが0.1mm、サイズが4mm×50mmの純Ni製のタブリードを負極集電銅箔に溶接した。溶接条件は、加圧力が0.2MPa、負荷エネルギーが20J、負荷時間が0.29秒〜0.35秒である。タブリードが溶接された負極集電銅箔に対して引張試験を行って最大破断荷重(gf)を測定し、7gf以上を許容値とした。
(Measurement of weld strength with tab lead)
The negative electrode current collector copper foil cut out to 15 mm × 50 mm was subjected to heat treatment at 400 ° C. for 10 hours in an N 2 gas atmosphere by an infrared heating furnace. Next, a tab lead made of pure Ni having a thickness of 0.1 mm and a size of 4 mm × 50 mm was welded to the negative electrode current collector copper foil using an ultrasonic welder in the same manner as in the above embodiment. The welding conditions are a pressure of 0.2 MPa, a load energy of 20 J, and a load time of 0.29 seconds to 0.35 seconds. A tensile test was performed on the negative electrode current collector copper foil with the tab lead welded to measure the maximum breaking load (gf), and an allowable value was 7 gf or more.

(粗化粒子の保持性測定)
100重量グラム(gf)の加重で、負極集電銅箔に濾紙を押しつけながら1cm擦った後に、濾紙の着色の有無により、○(着色なし)、△(若干、着色あり)、×(着色あり)のいずれかに判別し、○のみを許容値とした。
(Measurement of retention of roughened particles)
After rubbing 1 cm while pressing the filter paper against the negative electrode current collector copper foil at a weight of 100 weight grams (gf), ○ (not colored), Δ (slightly colored), × (colored) depending on whether the filter paper is colored ), And only the ○ is the allowable value.

(3)負極集電銅箔の評価結果
上記の測定による評価結果を表2に示す。
(3) Evaluation results of negative electrode current collector copper foil Table 2 shows the evaluation results of the above measurements.

(圧延銅箔の評価)
表2に示す実施例1〜8及び比較例1〜6のいずれにおいても、400℃で10時間の熱処理後の1%耐力は300MPaであった。これは、純銅箔に比べ、100MPa以上高い耐力である。これにより、HCL02Z箔等の銅合金からなる圧延銅箔が、高耐力性と高耐熱性とを兼ね備えていることがわかった。
(Evaluation of rolled copper foil)
In each of Examples 1 to 8 and Comparative Examples 1 to 6 shown in Table 2, the 1% yield strength after heat treatment at 400 ° C. for 10 hours was 300 MPa. This is a yield strength that is 100 MPa or more higher than that of pure copper foil. Thereby, it turned out that the rolled copper foil which consists of copper alloys, such as HCL02Z foil, has high proof stress and high heat resistance.

(Cuめっきの評価)
表2に示す比較例1,2、実施例1〜3、及び比較例3は、Cuめっきの条件を種々に振って製作された負極集電銅箔の評価結果である。ここでは主に、Cuめっきの状態による影響を受け易い負極活物質との密着性(72%以上が許容値)に基づき、各実施例及び比較例の良否を判定した。
(Evaluation of Cu plating)
Comparative Examples 1 and 2, Examples 1 to 3, and Comparative Example 3 shown in Table 2 are evaluation results of negative electrode current collector copper foils manufactured by varying the conditions of Cu plating. Here, the quality of each example and comparative example was determined mainly based on adhesion with a negative electrode active material that is easily affected by the state of Cu plating (72% or more is an allowable value).

Cuめっきを一切行わなかった比較例1は、表面粗さRaが0.15μmであり、所定範囲内となっているが、粗化粒子を有さないため負極活物質層との密着性が不足している。このような密着性の不足は、Cuめっきの第2、第3段階を省略した比較例2(第2、第3段階の電流密度が0A/dm2)においてもみられる。 In Comparative Example 1 in which no Cu plating was performed, the surface roughness Ra was 0.15 μm and was within a predetermined range, but there was no roughening particles, so the adhesion with the negative electrode active material layer was insufficient. doing. Such a lack of adhesion is also observed in Comparative Example 2 (the current density of the second and third stages is 0 A / dm 2 ) in which the second and third stages of Cu plating are omitted.

実施例1〜3及び比較例3は、Cuめっき工程の処理時間を3秒〜12秒まで徐々に延ばして製作した負極集電銅箔である。表面粗さRaが所定範囲内の実施例1〜3では負極活物質層との密着性が充分得られ、表面粗さRaが0.15μmの実施例2において密着性が最大となった。一方、処理時間が最長の比較例3では、表面粗さRaが所定範囲を超える値となっており、密着性が急激に低下している。   Examples 1 to 3 and Comparative Example 3 are negative electrode current collector copper foils manufactured by gradually extending the processing time of the Cu plating process from 3 seconds to 12 seconds. In Examples 1 to 3 in which the surface roughness Ra is within the predetermined range, sufficient adhesion with the negative electrode active material layer was obtained, and in Example 2 in which the surface roughness Ra was 0.15 μm, the adhesion was maximized. On the other hand, in the comparative example 3 with the longest processing time, the surface roughness Ra is a value exceeding the predetermined range, and the adhesiveness is rapidly lowered.

以上の結果から、バインダ割合Cbが、2.1(wt%)の際には、負極集電銅箔の表面粗さRaが0.10μm以上0.30μm未満のときに、負極活物質層との密着性が良好となることがわかった。なお、実施例1〜3及び比較例1〜3においては、Ni−Co合金めっき層の質量厚さを適正値としているので、タブリードとの溶接強度及び粗化粒子の保持性においては、いずれも良好な結果が得られた。   From the above results, when the binder ratio Cb is 2.1 wt%, when the surface roughness Ra of the negative electrode current collector copper foil is 0.10 μm or more and less than 0.30 μm, the negative electrode active material layer It was found that the adhesiveness of the was improved. In Examples 1 to 3 and Comparative Examples 1 to 3, since the mass thickness of the Ni—Co alloy plating layer is set to an appropriate value, both the welding strength with the tab lead and the retention of the roughened particles are all. Good results were obtained.

(ニッケル−コバルト合金めっきの評価)
表2に示す比較例4,5、実施例4〜6、及び比較例6は、Ni−Co合金めっきの条件を種々に振って製作された負極集電銅箔の評価結果である。具体的には、Ni−Co合金めっきの電流密度を0A/dm2〜10A/dm2まで徐々に増大させた。ここでは主に、Ni−Co合金めっきの状態による影響を受け易いタブリードとの溶接強度(7gf以上が許容値)、粗化粒子の保持性(○のみが許容値)に基づき、各実施例及び比較例の良否を判定した。
(Evaluation of nickel-cobalt alloy plating)
Comparative Examples 4 and 5, Examples 4 to 6, and Comparative Example 6 shown in Table 2 are evaluation results of negative electrode current collector copper foils manufactured by variously changing the Ni-Co alloy plating conditions. Specifically, the current density of Ni—Co alloy plating was gradually increased from 0 A / dm 2 to 10 A / dm 2 . Here, based on the welding strength (7 gf or more is an allowable value) with a tab lead that is easily affected by the state of Ni—Co alloy plating, the retention of roughened particles (only ○ is an allowable value), The quality of the comparative example was determined.

Ni−Co合金めっき層を形成しなかった比較例4(電流密度が0A/dm2)、及び電流密度が小さくNi−Co合金めっき層の質量厚さが所定値未満の比較例5では、タブリードとの溶接強度が不足している。また、比較例1,2ともに、粗化粒子の若干の脱落が認められた。 In Comparative Example 4 in which the Ni—Co alloy plating layer was not formed (current density was 0 A / dm 2 ) and in Comparative Example 5 in which the current density was small and the mass thickness of the Ni—Co alloy plating layer was less than the predetermined value, tab lead The welding strength is insufficient. In addition, in both Comparative Examples 1 and 2, some loosening of the roughened particles was observed.

Ni−Co合金めっき層の質量厚さが所定範囲内の実施例4〜6では、タブリードとの溶接強度が充分得られ、質量厚さが30μg/cm2の実施例5において溶接強度が最大となった。また、実施例4〜6のいずれにおいても粗化粒子の脱落は認められなかった。 In Examples 4 to 6 in which the mass thickness of the Ni—Co alloy plating layer is within the predetermined range, sufficient welding strength with the tab lead is obtained, and in Example 5 in which the mass thickness is 30 μg / cm 2 , the welding strength is maximum. became. Further, in any of Examples 4 to 6, the roughened particles were not removed.

一方、比較例6ではNi−Co合金めっき層の質量厚さを50μg/cm2としたものの、タブリードとの溶接強度には実施例4〜6以上の向上はみられなかった。つまり、比較例6においては、NiやCo等の高価な材料が無駄に消費されたことになる。 On the other hand, in Comparative Example 6, although the mass thickness of the Ni—Co alloy plating layer was set to 50 μg / cm 2 , the weld strength with the tab lead was not improved over that of Examples 4-6. That is, in Comparative Example 6, expensive materials such as Ni and Co are wasted.

以上の結果から、Ni−Co合金めっき層の質量厚さが20μg/cm2以上40μg/cm2以下のときに、粗化粒子の保持性が良好となり、タブリードとの溶接強度を向上させるのに必要かつ充分な厚さとなっていることがわかった。なお、実施例4〜6及び比較例4〜6においては、Cuめっきによる表面粗さRaを適正値としているので、負極活物質層との密着性においては、いずれも良好な結果が得られた。 From the above results, when the mass thickness of the Ni—Co alloy plating layer is 20 μg / cm 2 or more and 40 μg / cm 2 or less, the retention of the roughened particles becomes good and the welding strength with the tab lead is improved. It was found that the thickness was necessary and sufficient. In Examples 4 to 6 and Comparative Examples 4 to 6, since the surface roughness Ra by Cu plating was set to an appropriate value, good results were obtained for the adhesion with the negative electrode active material layer. .

(Co−Ni合金めっき代替めっきによるめっき層の評価)
Niめっき層を有する実施例7及びCoめっき層を有する実施例8においても、Ni−Co合金めっき層の場合と同様、負極活物質層との密着性、タブリードとの溶接強度、及び粗化粒子の保持性のいずれについても良好な結果が得られた。
(Evaluation of plating layer by Co-Ni alloy plating alternative plating)
In Example 7 having a Ni plating layer and Example 8 having a Co plating layer, as in the case of the Ni—Co alloy plating layer, adhesion to the negative electrode active material layer, welding strength with the tab lead, and roughened particles Good results were obtained for any of the above retention properties.

(バインダ割合を変化させた場合の負極活物質密着性の評価)
表2に示す実施例9〜33及び比較例7〜16では、(1)Cuめっき時間について、第1〜3段のCuめっき毎に、それぞれ変化させる、(2)Cuめっき時の電流密度を変化させる、(3)第2又は/及び第3のCuめっきを複数回実施するなどして、0.12〜0.72(μm)の範囲内で、異なる表面粗さを有する負極集電銅箔を用意し、負極活物質層15a,15bにおけるバインダの割合Cbを2(wt%)以上20(wt%)以下の種々の値としている。
(Evaluation of adhesion of negative electrode active material when binder ratio is changed)
In Examples 9 to 33 and Comparative Examples 7 to 16 shown in Table 2, (1) Cu plating time is changed for each of the first to third stages of Cu plating. (2) Current density at the time of Cu plating is changed. (3) negative electrode current collector copper having different surface roughness within a range of 0.12 to 0.72 (μm) by performing (3) second or / and third Cu plating a plurality of times, etc. Foil is prepared, and the binder ratio Cb in the negative electrode active material layers 15a and 15b is set to various values of 2 (wt%) to 20 (wt%).

実施例9〜33は、負極活物質との密着性の評価において、72%以上の値を示し、密着性が十分得られていることが分かる。一方、比較例7〜16は、72%を下回っている。   Examples 9 to 33 show a value of 72% or more in the evaluation of adhesion with the negative electrode active material, and it can be seen that sufficient adhesion is obtained. On the other hand, Comparative Examples 7-16 is less than 72%.

なお、実施例9〜33及び比較例7〜16においては、Ni−Co合金めっき層の質量厚さを適正値としているので、上述した実施例タブリードとの溶接強度及び粗化粒子の保持性においては、いずれも良好な結果が得られた。   In Examples 9 to 33 and Comparative Examples 7 to 16, since the mass thickness of the Ni—Co alloy plating layer is set to an appropriate value, the welding strength with the above-described example tab lead and the retention of roughened particles are reduced. In either case, good results were obtained.

このように、負極活物質密着性が良好なものについて、バインダ割合Cb(wt%)と表面粗さRa(μm)は以下の関係をみたす。
Cb≧38×Ra×Ra−1.2×Ra・・・・(式1)
ただし、0.10≦Ra≦0.72、かつ、2≦Cb≦20を満たす。
As described above, the binder ratio Cb (wt%) and the surface roughness Ra (μm) satisfy the following relationship for those having good adhesion to the negative electrode active material.
Cb ≧ 38 × Ra × Ra−1.2 × Ra (formula 1)
However, 0.10 ≦ Ra ≦ 0.72 and 2 ≦ Cb ≦ 20 are satisfied.

また、図4に、実施例9〜33及び比較例7〜16を、横軸を表面粗さRa(μm)、縦軸をバインダ割合Cb(wt%)として、プロットしたものを示す。合わせて、負極活物質との密着性の評価が72%以上となる境界(閾値)を示す曲線も図4へ示す。   FIG. 4 shows plots of Examples 9 to 33 and Comparative Examples 7 to 16, with the horizontal axis representing the surface roughness Ra (μm) and the vertical axis representing the binder ratio Cb (wt%). In addition, a curve showing a boundary (threshold) at which the evaluation of adhesion with the negative electrode active material is 72% or more is also shown in FIG.

1 リチウムイオン二次電池用負極
2 リチウムイオン二次電池用正極
3 セパレータ
4 捲回体
5 電池外挿缶(容器)
6 溝
7 ガスケット
8 キャップ
8t 端子
10 リチウムイオン二次電池用負極集電銅箔
11 銅合金箔(圧延銅箔)
12a,12b 第1Cuめっき層
13a,13b 粗化粒子(粒状電着物)
13a',13b’ 第2Cuめっき層
14a,14b Ni−Co合金めっき層
15a,15b 負極活物質層
16,26 タブリード
50 リチウムイオン二次電池
DESCRIPTION OF SYMBOLS 1 Negative electrode for lithium ion secondary batteries 2 Positive electrode for lithium ion secondary batteries 3 Separator 4 Winding body 5 Battery extrapolation can (container)
6 groove 7 gasket 8 cap 8t terminal 10 negative electrode current collector copper foil for lithium ion secondary battery 11 copper alloy foil (rolled copper foil)
12a, 12b First Cu plating layer 13a, 13b Roughened particles (granular electrodeposits)
13a ', 13b' Second Cu plating layer 14a, 14b Ni-Co alloy plating layer 15a, 15b Negative electrode active material layer 16, 26 Tab lead 50 Lithium ion secondary battery

Claims (8)

リチウムイオン二次電池用負極集電銅箔と、前記リチウムイオン二次電池用負極集電銅箔に設けられ、バインダを含む負極活物質層とを有するリチウムイオン二次電池用負極であって、
前記リチウムイオン二次電池用負極集電銅箔は、銅又は銅合金からなる圧延銅箔と、前記圧延銅箔の少なくとも順に設けられた第1Cuめっき層と、粗化粒子と、第2Cuめっき層と、を有し、さらに、ニッケル−コバルト合金めっき層、ニッケルめっき層、又はコバルトめっき層のいずれかと、を備えるとともに、
前記バインダ割合Cb(wt%)をCbとすると、表面粗さRaが、
Cb≧38×Ra×Ra−1.2×Ra・・・・(式1)
(ただし、0.10≦Ra≦0.72、かつ、2≦Cb≦20を満たす)
であることを特徴とするリチウムイオン二次電池用負極。
A negative electrode for a lithium ion secondary battery comprising a negative electrode current collector copper foil for a lithium ion secondary battery, and a negative electrode current collector copper foil for the lithium ion secondary battery, and a negative electrode active material layer containing a binder,
The negative electrode current collector copper foil for a lithium ion secondary battery includes a rolled copper foil made of copper or a copper alloy, a first Cu plating layer provided at least in order of the rolled copper foil, roughened particles, and a second Cu plating layer. And further comprising either a nickel-cobalt alloy plating layer, a nickel plating layer, or a cobalt plating layer,
When the binder ratio Cb (wt%) is Cb, the surface roughness Ra is
Cb ≧ 38 × Ra × Ra−1.2 × Ra (formula 1)
(However, 0.10 ≦ Ra ≦ 0.72 and 2 ≦ Cb ≦ 20 are satisfied)
A negative electrode for a lithium ion secondary battery.
バインダを含む負極活物質層とともに用いられることでリチウムイオン二次電池用負極となるリチウムイオン二次電池用負極集電銅箔であって、
銅又は銅合金からなる圧延銅箔と、
前記圧延銅箔の少なくとも順に設けられた第1Cuめっき層と、粗化粒子と、第2Cuめっき層と、を有し、さらに、
ニッケル−コバルト合金めっき層、ニッケルめっき層、又はコバルトめっき層のいずれかと、を備えるとともに、
前記バインダ割合Cb(wt%)をCbとすると、表面粗さRaが、
Cb≧38×Ra×Ra−1.2×Ra・・・・(式1)
(ただし、0.10≦Ra≦0.72、かつ、2≦Cb≦20を満たす)
であることを特徴とするリチウムイオン二次電池用負極集電銅箔。
A negative electrode current collector copper foil for a lithium ion secondary battery, which is used as a negative electrode for a lithium ion secondary battery by being used together with a negative electrode active material layer containing a binder,
Rolled copper foil made of copper or copper alloy;
A first Cu plating layer provided at least in order of the rolled copper foil, roughened particles, and a second Cu plating layer,
With a nickel-cobalt alloy plating layer, a nickel plating layer, or a cobalt plating layer,
When the binder ratio Cb (wt%) is Cb, the surface roughness Ra is
Cb ≧ 38 × Ra × Ra−1.2 × Ra (formula 1)
(However, 0.10 ≦ Ra ≦ 0.72 and 2 ≦ Cb ≦ 20 are satisfied)
The negative electrode current collection copper foil for lithium ion secondary batteries characterized by the above-mentioned.
前記ニッケル−コバルト合金めっき層、前記ニッケルめっき層、及び前記コバルトめっき層の質量厚さは、20μg/cm2以上40μg/cm2以下である
ことを特徴とする請求項2に記載のリチウムイオン二次電池用負極集電銅箔。
3. The lithium ion secondary material according to claim 2, wherein a mass thickness of the nickel-cobalt alloy plating layer, the nickel plating layer, and the cobalt plating layer is 20 μg / cm 2 or more and 40 μg / cm 2 or less. Negative electrode current collector copper foil for secondary batteries.
前記圧延銅箔を構成する前記銅合金は、高耐熱性銅合金である
ことを特徴とする請求項2又は3に記載のリチウムイオン二次電池用負極集電銅箔。
The said copper alloy which comprises the said rolled copper foil is a high heat resistant copper alloy, The negative electrode current collection copper foil for lithium ion secondary batteries of Claim 2 or 3 characterized by the above-mentioned.
前記第1Cuめっき層は、純銅からなる
ことを特徴とする請求項2〜4のいずれかに記載のリチウムイオン二次電池用負極集電銅箔。
The negative electrode current collector copper foil for a lithium ion secondary battery according to any one of claims 2 to 4, wherein the first Cu plating layer is made of pure copper.
請求項2に記載のリチウムイオン二次電池用負極集電銅箔と、
前記リチウムイオン二次電池用負極集電銅箔の少なくとも片面に形成された負極活物質層と、
前記リチウムイオン二次電池用負極集電銅箔に接続されたタブリードと、を備える
ことを特徴とするリチウムイオン二次電池用負極。
A negative electrode current collector copper foil for a lithium ion secondary battery according to claim 2,
A negative electrode active material layer formed on at least one surface of the negative electrode current collector copper foil for the lithium ion secondary battery;
A negative electrode for a lithium ion secondary battery, comprising: a tab lead connected to the negative electrode current collector copper foil for the lithium ion secondary battery.
請求項6に記載のリチウムイオン二次電池用負極と、
リチウムイオン二次電池用正極と、
前記リチウムイオン二次電池用負極及び前記リチウムイオン二次電池用正極の間に挿入されたセパレータと、
前記セパレータが間に挿入された前記リチウムイオン二次電池用負極及び前記リチウムイオン二次電池用正極が収容され、電解液が封入された容器と、を備える
ことを特徴とするリチウムイオン二次電池。
A negative electrode for a lithium ion secondary battery according to claim 6,
A positive electrode for a lithium ion secondary battery;
A separator inserted between the negative electrode for lithium ion secondary battery and the positive electrode for lithium ion secondary battery;
A lithium ion secondary battery comprising: a negative electrode for a lithium ion secondary battery in which the separator is inserted; and a container in which the positive electrode for a lithium ion secondary battery is accommodated and an electrolyte is enclosed. .
銅又は銅合金からなる圧延銅箔を陰極としてCuめっきを施し、前記圧延銅箔の少なくとも順に第1Cuめっき層と、粗化粒子と、第2Cuめっき層を設けるCuめっき工程と、
前記第2Cuめっき層上に、前記粗化粒子及び第2Cuめっき層を覆うようにニッケル−コバルト合金めっき層、ニッケルめっき層、又はコバルトめっき層のいずれかを形成する工程と、を有する
ことを特徴とするリチウムイオン二次電池用負極集電銅箔の製造方法。
Cu plating step using a rolled copper foil made of copper or copper alloy as a cathode, and providing a first Cu plating layer, roughened particles, and a second Cu plating layer at least in order of the rolled copper foil,
Forming a nickel-cobalt alloy plating layer, a nickel plating layer, or a cobalt plating layer on the second Cu plating layer so as to cover the roughened particles and the second Cu plating layer. A method for producing a negative electrode current collector copper foil for a lithium ion secondary battery.
JP2012197039A 2011-09-09 2012-09-07 Copper foil of negative electrode collector for lithium ion secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method for manufacturing copper foil of negative electrode collector for lithium ion secondary battery Pending JP2013069684A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012197039A JP2013069684A (en) 2011-09-09 2012-09-07 Copper foil of negative electrode collector for lithium ion secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method for manufacturing copper foil of negative electrode collector for lithium ion secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011197315 2011-09-09
JP2011197315 2011-09-09
JP2012197039A JP2013069684A (en) 2011-09-09 2012-09-07 Copper foil of negative electrode collector for lithium ion secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method for manufacturing copper foil of negative electrode collector for lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JP2013069684A true JP2013069684A (en) 2013-04-18

Family

ID=48475103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012197039A Pending JP2013069684A (en) 2011-09-09 2012-09-07 Copper foil of negative electrode collector for lithium ion secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method for manufacturing copper foil of negative electrode collector for lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP2013069684A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018101633A (en) * 2018-02-07 2018-06-28 日立オートモティブシステムズ株式会社 Secondary battery and method of manufacturing the same
WO2023100498A1 (en) * 2021-11-30 2023-06-08 パナソニックIpマネジメント株式会社 Lithium ion secondary battery
WO2024042937A1 (en) * 2022-08-26 2024-02-29 パナソニックIpマネジメント株式会社 Nonaqueous electrolyte secondary battery
WO2024111323A1 (en) * 2022-11-22 2024-05-30 パナソニックIpマネジメント株式会社 Secondary battery

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004004031A1 (en) * 2002-06-26 2004-01-08 Sanyo Electric Co., Ltd. Negative electrode for lithium secondary cell and lithium secondary cell
JP2005350761A (en) * 2004-04-19 2005-12-22 Mitsui Mining & Smelting Co Ltd Composite foil for negative electrode current collector of nonaqueous electrolyte secondary battery, and method for producing the same, negative electrode current collector using the composite foil, electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2009238659A (en) * 2008-03-28 2009-10-15 Sanyo Electric Co Ltd Lithium secondary battery, and method of manufacturing the same
JP2009245773A (en) * 2008-03-31 2009-10-22 Sanyo Electric Co Ltd Lithium secondary battery and its manufacturing method
JP2009295422A (en) * 2008-06-05 2009-12-17 Sony Corp Anode collector, anode and secondary battery
JP2010103061A (en) * 2008-10-27 2010-05-06 Hitachi Cable Ltd Negative electrode copper alloy foil of secondary battery and manufacturing method for the same
JP2010238652A (en) * 2009-03-31 2010-10-21 Nippon Mining & Metals Co Ltd Copper foil for lithium secondary battery, and manufacturing method thereof
JP2010238562A (en) * 2009-03-31 2010-10-21 Shin-Etsu Chemical Co Ltd Lithium secondary battery, manufacturing method for the same, and binder precursor solution for lithium secondary battery used for its manufacturing method
JP2010282959A (en) * 2009-05-08 2010-12-16 Furukawa Electric Co Ltd:The Negative electrode for secondary battery, copper foil for electrode, secondary battery, and process for producing the negative electrode for secondary battery

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004004031A1 (en) * 2002-06-26 2004-01-08 Sanyo Electric Co., Ltd. Negative electrode for lithium secondary cell and lithium secondary cell
JP2005350761A (en) * 2004-04-19 2005-12-22 Mitsui Mining & Smelting Co Ltd Composite foil for negative electrode current collector of nonaqueous electrolyte secondary battery, and method for producing the same, negative electrode current collector using the composite foil, electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2009238659A (en) * 2008-03-28 2009-10-15 Sanyo Electric Co Ltd Lithium secondary battery, and method of manufacturing the same
JP2009245773A (en) * 2008-03-31 2009-10-22 Sanyo Electric Co Ltd Lithium secondary battery and its manufacturing method
JP2009295422A (en) * 2008-06-05 2009-12-17 Sony Corp Anode collector, anode and secondary battery
JP2010103061A (en) * 2008-10-27 2010-05-06 Hitachi Cable Ltd Negative electrode copper alloy foil of secondary battery and manufacturing method for the same
JP2010238652A (en) * 2009-03-31 2010-10-21 Nippon Mining & Metals Co Ltd Copper foil for lithium secondary battery, and manufacturing method thereof
JP2010238562A (en) * 2009-03-31 2010-10-21 Shin-Etsu Chemical Co Ltd Lithium secondary battery, manufacturing method for the same, and binder precursor solution for lithium secondary battery used for its manufacturing method
JP2010282959A (en) * 2009-05-08 2010-12-16 Furukawa Electric Co Ltd:The Negative electrode for secondary battery, copper foil for electrode, secondary battery, and process for producing the negative electrode for secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018101633A (en) * 2018-02-07 2018-06-28 日立オートモティブシステムズ株式会社 Secondary battery and method of manufacturing the same
WO2023100498A1 (en) * 2021-11-30 2023-06-08 パナソニックIpマネジメント株式会社 Lithium ion secondary battery
WO2024042937A1 (en) * 2022-08-26 2024-02-29 パナソニックIpマネジメント株式会社 Nonaqueous electrolyte secondary battery
WO2024111323A1 (en) * 2022-11-22 2024-05-30 パナソニックIpマネジメント株式会社 Secondary battery

Similar Documents

Publication Publication Date Title
CN105637106B (en) Copper alloy foil
JP5571616B2 (en) Rolled copper foil, and negative electrode current collector, negative electrode plate and secondary battery using the same
KR101953412B1 (en) Rolled copper foil for secondary battery collector and production method therefor
EP3473736B1 (en) Rolled copper foil for negative electrode current collector of secondary battery, negative electrode of secondary battery and secondary battery using the rolled copper, and method for manufacturing rolled copper foil for negative electrode current collector of secondary battery
JP2014136821A (en) Copper alloy film, anode for lithium ion secondary battery, lithium ion secondary battery, and manufacturing method of copper alloy film
JP5643732B2 (en) Negative electrode current collector copper foil for lithium ion secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method for producing negative electrode current collector copper foil for lithium ion secondary battery
JP2013069684A (en) Copper foil of negative electrode collector for lithium ion secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method for manufacturing copper foil of negative electrode collector for lithium ion secondary battery
JPWO2014112619A1 (en) Electrolytic copper foil, negative electrode for lithium ion battery, and lithium ion secondary battery
JP2009215604A (en) Copper foil and manufacturing method thereof
JP2021103697A (en) Rolled copper foil for lithium ion battery current collector and lithium ion battery
JP2010103061A (en) Negative electrode copper alloy foil of secondary battery and manufacturing method for the same
JP2006202635A (en) Copper foil for lithium secondary battery electrode, manufacturing method of copper foil, electrode for lithium secondary battery using copper foil, and lithium secondary battery
JP2013181206A (en) Current collector copper foil of negative electrode for lithium ion secondary battery, method of manufacturing the current collector copper foil of negative electrode for lithium ion secondary battery, negative electrode for lithium ion secondary battery, method of manufacturing the negative electrode for lithium ion secondary battery, and lithium ion secondary battery
KR101997428B1 (en) A foil for a negative electrode collector of a secondary battery and a manufacturing method thereof
JP2014032929A (en) Copper foil for current collector and negative electrode collector for lithium ion secondary battery using the same
JP5918623B2 (en) Method for producing negative electrode current collector copper foil for lithium ion secondary battery, method for producing negative electrode for lithium ion secondary battery, and method for producing lithium ion secondary battery
JP2009272086A (en) Copper foil and method of manufacturing the same, and current collecting copper foil for lithium ion secondary battery and method of manufacturing the same
EP2641292B1 (en) Alkaline collector anode
JP5130406B1 (en) Cu-Zn-Sn copper alloy strip
JP4546740B2 (en) Method for producing negative electrode for non-aqueous electrolyte secondary battery
JP7172311B2 (en) Negative electrode current collector foil for secondary battery and manufacturing method thereof, negative electrode for secondary battery and manufacturing method thereof
WO2022014668A1 (en) Electrolytic iron foil
JP2014060092A (en) Method for manufacturing negative electrode collector copper foil, negative electrode collector copper foil, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5555126B2 (en) Copper alloy foil, electrode for lithium ion secondary battery using the same, and method for producing copper alloy foil
JP2014060024A (en) Copper alloy foil, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method for manufacturing copper alloy foil

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130614

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130628

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150609

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151020