JP6281154B2 - Negative electrode sheet of lithium ion secondary battery and lithium ion secondary battery - Google Patents

Negative electrode sheet of lithium ion secondary battery and lithium ion secondary battery Download PDF

Info

Publication number
JP6281154B2
JP6281154B2 JP2013204912A JP2013204912A JP6281154B2 JP 6281154 B2 JP6281154 B2 JP 6281154B2 JP 2013204912 A JP2013204912 A JP 2013204912A JP 2013204912 A JP2013204912 A JP 2013204912A JP 6281154 B2 JP6281154 B2 JP 6281154B2
Authority
JP
Japan
Prior art keywords
secondary battery
ion secondary
lithium ion
negative electrode
electrode sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013204912A
Other languages
Japanese (ja)
Other versions
JP2015069902A (en
Inventor
裕樹 坂口
裕樹 坂口
洋行 薄井
洋行 薄井
友浩 早川
友浩 早川
川井 弘之
弘之 川井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Tottori University
Original Assignee
Kuraray Co Ltd
Tottori University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd, Tottori University filed Critical Kuraray Co Ltd
Priority to JP2013204912A priority Critical patent/JP6281154B2/en
Publication of JP2015069902A publication Critical patent/JP2015069902A/en
Application granted granted Critical
Publication of JP6281154B2 publication Critical patent/JP6281154B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemically Coating (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、リチウムイオン二次電池などの非水系電池に関する。より詳細には、酸化銅により被覆された多孔構造の支持体を備える電極シートを負極として使用する非水系電池に関する。   The present invention relates to a non-aqueous battery such as a lithium ion secondary battery. More specifically, the present invention relates to a non-aqueous battery using an electrode sheet provided with a porous support coated with copper oxide as a negative electrode.

非水系電池の負極は、一般的に金属箔などの集電体上にスラリー状の電極活物質層形成用塗工液を塗布し、熱風乾燥などにより乾燥させ、ロールプレスにより作成している。活物質としてカーボン負極が一般的に使用されているが、容量が低いのでより高容量で安全性に優れるものが求められている。
特許文献1には、真空蒸着法により、基板(銅板など)上にスズ薄膜を形成したリチウムイオン二次電池用負極材料の製造方法が開示されている。
特許文献2および特許文献3には、正極、負極及び非水系のイオン伝導体からなる電池において、前記負極が負極活物質の主成分としてリチウムイオンのインターカレーション・デインターカレーション可能な黒鉛よりなり、さらにこの電極内に酸化銅を含むリチウムイオン二次電池が開示されている。
The negative electrode of a non-aqueous battery is generally prepared by applying a slurry-like electrode active material layer-forming coating solution on a current collector such as a metal foil, drying it by hot air drying, and the like, and rolling it. A carbon negative electrode is generally used as an active material. However, since the capacity is low, a high capacity and excellent safety are required.
Patent Document 1 discloses a method for producing a negative electrode material for a lithium ion secondary battery in which a tin thin film is formed on a substrate (such as a copper plate) by a vacuum deposition method.
In Patent Document 2 and Patent Document 3, in a battery comprising a positive electrode, a negative electrode, and a non-aqueous ion conductor, the negative electrode is made of graphite capable of intercalation / deintercalation of lithium ions as a main component of the negative electrode active material. Further, a lithium ion secondary battery containing copper oxide in the electrode is disclosed.

特開2002−110151号公報JP 2002-110151 A 特開平6−325753号公報JP-A-6-325753 特開平8−124559号公報JP-A-8-124559

特許文献1においては、スズ膜が検討されているが、充放電の際の膨潤収縮で満足するものが得られていない。また、特許文献2および3では、金属酸化物(酸化銅)が、理論容量が高いことから負極の活物質に一部組み込むことが検討されているが、カーボン電極の一部の改良に留まっている。   In Patent Document 1, a tin film has been studied, but a film satisfying swelling and shrinkage at the time of charge / discharge has not been obtained. In Patent Documents 2 and 3, the metal oxide (copper oxide) has been studied to be partially incorporated into the active material of the negative electrode because of its high theoretical capacity. Yes.

本発明者らは、酸化銅の形状をコントロールすることにより、高容量化可能な電極が得られるのではないかと考え、酸化銅の形状コントロールによる高容量化を発明が解決しようとする課題に設定した。   The present inventors think that an electrode capable of increasing the capacity can be obtained by controlling the shape of the copper oxide, and setting the capacity by controlling the shape of the copper oxide is set as a problem to be solved by the invention. did.

本発明者等は、上記の課題について鋭意検討の結果、電極を構成する導電性支持体を多孔化するとともに、該支持体を酸化銅の先細薄片密集体で被覆することにより高容量化が達成されることを見出し、本発明に到達した。本発明第1の構成は、多孔構造の導電性支持体が酸化銅の先細薄片密集体により被覆された電極シートである。   As a result of intensive studies on the above problems, the inventors of the present invention achieved a high capacity by making the conductive support constituting the electrode porous and covering the support with a tapered thin piece of copper oxide. As a result, the present invention has been reached. The first configuration of the present invention is an electrode sheet in which a conductive support having a porous structure is covered with a tapered thin piece dense assembly of copper oxide.

上記の電極シートにおいて、前記多孔構造の導電性支持体が空隙率30〜90%であることが好ましい。   Said electrode sheet WHEREIN: It is preferable that the electroconductive support body of the said porous structure is 30 to 90% of porosity.

上記の電極シートにおいて、前記酸化銅の先細薄片の長さが0.6μm以上であることが好ましい。   Said electrode sheet WHEREIN: It is preferable that the length of the said copper oxide taper piece is 0.6 micrometer or more.

上記の電極シートにおいて、前記支持体が多孔構造の金属よりなることが好ましい。   In the above electrode sheet, the support is preferably made of a porous metal.

上記の電極シートにおいて、前記支持体が金属薄膜に覆われた有機繊維よりなることが好ましい。   Said electrode sheet WHEREIN: It is preferable that the said support body consists of organic fiber covered with the metal thin film.

上記の電極シートにおいて、前記金属薄膜がメッキ処理により形成されていることが好ましい。   In the electrode sheet, the metal thin film is preferably formed by a plating process.

上記の電極シートにおいて、前記酸化銅の先細薄片密集体が黒化層であることが好ましく、前記黒化層が水酸化ナトリウムと亜塩素酸ナトリウムによる黒化処理液含浸法によるのが好ましい。   In the above electrode sheet, it is preferable that the copper oxide tapered thin dense body is a blackening layer, and the blackening layer is preferably formed by a blackening treatment liquid impregnation method using sodium hydroxide and sodium chlorite.

本発明第2の構成は、前記の電極シートを負極として使用した非水系電池である。   The second configuration of the present invention is a non-aqueous battery using the electrode sheet as a negative electrode.

本発明第1の構成によれば、酸化銅を先細薄片の形状で密集体として支持体を被覆するので、特許文献2、3に開示されている、微粉末の酸化銅をバインダーとブレンドし、ペーストにして塗布したものよりも高容量化が可能であり、しかも、支持体を多孔体とすることで反応場が増大し酸化銅から取り出せる電気量が増加する。しかも、本発明においては、集電体と活物質が強く一体化しており活物質で生じる電気をスムーズに集電体へ取り出せる。また、本発明においては、活物質層が充放電により膨張収縮しても崩壊しにくいという特性を有する。   According to the first configuration of the present invention, since the copper oxide is coated as a dense body in the form of a thin thin piece and the support is coated, the fine powdered copper oxide disclosed in Patent Documents 2 and 3 is blended with a binder, The capacity can be increased as compared with the case where the paste is applied, and the reaction field is increased and the amount of electricity that can be extracted from the copper oxide is increased by making the support a porous body. In addition, in the present invention, the current collector and the active material are strongly integrated, and electricity generated by the active material can be smoothly taken out to the current collector. Moreover, in this invention, it has the characteristic that it is hard to collapse even if an active material layer expands and contracts by charging / discharging.

本発明第2の構成によれば、本発明に係る非水系電池は、酸化銅がリチウムよりも還元電位が高いので、リチウム析出による短絡発生がなく、安全性に優れる。また、同様の効果で使用されている負極活物質のチタン酸リチウムに比べて容量も大きいという特性がある。   According to the second configuration of the present invention, since the non-aqueous battery according to the present invention has a reduction potential higher than that of lithium, copper oxide does not cause a short circuit due to lithium deposition and is excellent in safety. Further, it has a characteristic that its capacity is larger than that of lithium titanate, which is a negative electrode active material used for the same effect.

実施例1で形成された酸化銅被覆表面の走査型電子顕微鏡写真(倍率20,000倍)を示す図である。2 is a view showing a scanning electron micrograph (magnification of 20,000 times) of the copper oxide-coated surface formed in Example 1. FIG.

本発明においては、非水系電池を構成する電極シートが、酸化銅の先細薄片密集体により被覆された、多孔構造の導電性支持体から構成されている。
本発明における非水系電池とは、リチウムイオン電池のほか、他のアルカリ金属を活物質とする電池を含み、また、一次電池および二次電池の両者を包含する。以下、リチウムイオン二次電池を中心にして記載する。
In this invention, the electrode sheet which comprises a non-aqueous battery is comprised from the electroconductive support body of the porous structure coat | covered with the taper-thin piece compact of copper oxide.
The non-aqueous battery in the present invention includes, in addition to a lithium ion battery, a battery using another alkali metal as an active material, and includes both a primary battery and a secondary battery. Hereinafter, description will be made focusing on the lithium ion secondary battery.

リチウムイオン二次電池は、負極層、電解質層、正極層とから構成される。負極層は、負極材料と固体電解質を含有する。本発明において、負極材料は、多孔構造の導電性支持体から構成される。   A lithium ion secondary battery includes a negative electrode layer, an electrolyte layer, and a positive electrode layer. The negative electrode layer contains a negative electrode material and a solid electrolyte. In the present invention, the negative electrode material is composed of a porous conductive support.

(多孔構造の導電性支持体)
本発明に係る電極シートは、多孔構造の導電性支持体から構成されている。本発明において、多孔構造とは、好ましくは、3次元網目状の多孔構造、または連結孔を有する多孔構造である。逆に、3次元網目状の多孔構造、または連結孔を有する多孔構造であれば、負極活物質の膨張収縮を効果的に抑制することができ、サイクル劣化を抑制することができるため好ましい。また、多孔構造とすることで酸化銅皮膜の表面積が増大するため、充放電に寄与しないロス分が減少し、より効率的な電極となる。本発明において支持体の導電性は、支持体を導電性金属で構成するか、支持体基材に導電性金属を被覆することにより付与されることができる。
(Electroconductive support with porous structure)
The electrode sheet according to the present invention is composed of a conductive support having a porous structure. In the present invention, the porous structure is preferably a three-dimensional network porous structure or a porous structure having connecting holes. Conversely, a three-dimensional network-like porous structure or a porous structure having connecting holes is preferable because expansion and shrinkage of the negative electrode active material can be effectively suppressed and cycle deterioration can be suppressed. In addition, since the surface area of the copper oxide film is increased by adopting a porous structure, the amount of loss that does not contribute to charging and discharging is reduced, resulting in a more efficient electrode. In the present invention, the conductivity of the support can be imparted by constituting the support with a conductive metal or coating the support substrate with the conductive metal.

支持体が導電性金属から形成される場合には、多数の小孔のある金属板あるいは金属箔、金属網状メッシュ、金属繊維からなる多孔体が挙げられる。
支持体を構成する導電性金属としては、アルミニウム、ニッケル、鉄、ステンレス鋼、チタン、銅などの金属材料が挙げられる。これらの金属材料は、1種単独で用いてもよいし、2種以上併用してもよい。なかでも、電子伝導性、電池作動電位という観点からは、銅、ニッケル、ステンレスが好ましく、特に銅が好ましい。
支持体の空隙率は、30〜90%であることが好ましく、40〜90%であることがより好ましい。空隙率が小さすぎると高容量化を得にくくなる傾向にあるので好ましくなく、空隙率が大きすぎると、支持体としての力学特性が不十分となり、また単位体積当たりの容量が低下する傾向にあることから好ましくない。
When the support is made of a conductive metal, a metal plate or metal foil having a large number of small holes, a metal mesh, and a porous body made of metal fibers can be used.
Examples of the conductive metal constituting the support include metal materials such as aluminum, nickel, iron, stainless steel, titanium, and copper. These metal materials may be used alone or in combination of two or more. Of these, copper, nickel, and stainless steel are preferable from the viewpoint of electron conductivity and battery operating potential, and copper is particularly preferable.
The porosity of the support is preferably 30 to 90%, more preferably 40 to 90%. If the porosity is too small, it tends to be difficult to obtain a high capacity. This is not preferable, and if the porosity is too large, the mechanical properties as a support are insufficient, and the capacity per unit volume tends to decrease. That is not preferable.

導電性金属を被覆する支持体基材としては、有機繊維から形成される支持体基材が挙げられる。該繊維表面に金属層を形成する場合には、有機繊維層として、織編物、不織布形状を用いて、メッキ、蒸着、金属粉末を塗布したものが好ましい。
本発明において支持体基材を形成するために、用いられる有機繊維としては、ポリプロピレン、ポリエチレン、ポリエチレンテレフタレート、ポリアミドなどからなる合成繊維やセルロース繊維などの有機繊維が挙げられ、電池の種類や電解液の種類に応じて適宜選定される。
上記の有機繊維は、編織布や乾式または湿式不織布(紙)などの多孔性の有機繊維層を形成し、その片面または両面に導電性金属を、メッキ、蒸着、金属粉末の塗布などのより有機繊維層の少なくとも一部、好ましくは全面に層状に付着させることにより導電性の多孔性支持体を形成することができる。
Examples of the support base material that covers the conductive metal include a support base material formed from organic fibers. When the metal layer is formed on the fiber surface, the organic fiber layer is preferably a woven or knitted fabric or non-woven fabric shape coated with plating, vapor deposition or metal powder.
In order to form the support substrate in the present invention, examples of the organic fibers used include synthetic fibers made of polypropylene, polyethylene, polyethylene terephthalate, polyamide, and the like, and organic fibers such as cellulose fibers. It is selected as appropriate according to the type.
The above organic fiber forms a porous organic fiber layer such as a woven fabric or a dry or wet nonwoven fabric (paper), and is coated with a conductive metal on one or both sides thereof, and more organic, such as plating, vapor deposition, or application of metal powder. A conductive porous support can be formed by adhering at least part of the fiber layer, preferably the entire surface, in a layered manner.

(有機繊維層の導電性金属層の形成)
有機繊維層の目付としては、10〜100g/m、より好ましくは、20〜80g/mの範囲内にあるのが好ましく、目付けが小さすぎると力学特性が劣り加工時の工程張力に耐えられなくなる場合があるので好ましくなく、大きすぎると一定厚みにした時に密度が高くなりすぎ、目標とする空間を保持できなくなる傾向にある点で好ましくない。有機繊維層の厚みとしては、0.02〜0.20mm、より好ましくは、0.05〜0.15mmの範囲内にあるのが好ましく、厚みが小さすぎると力学特性が不十分となり、工程で不具合が発生する場合があるので好ましくなく、厚みが大きすぎると電池内の容積を占有してしまい、密度当たりの容量として劣った電池になる場合があるので好ましくない。空隙率としては、30〜90%、より好ましくは、40〜90%の範囲内にあるのが好ましく、空隙率が小さすぎると高容量化しにくくなる場合があるので好ましくなく、空隙率が大きすぎると支持体としての力学特性が不十分となり、また単位体積あたりの容量が低下してしまう場合がある点で好ましくない。
(Formation of conductive metal layer of organic fiber layer)
The basis weight of the organic fiber layer is preferably in the range of 10 to 100 g / m 2 , more preferably 20 to 80 g / m 2. If the basis weight is too small, the mechanical properties are inferior and the process tension at the time of processing is tolerated. Since it may not be possible, it is not preferable. If it is too large, the density becomes too high when the thickness is made constant, which is not preferable in that the target space tends not to be maintained. The thickness of the organic fiber layer is preferably 0.02 to 0.20 mm, more preferably 0.05 to 0.15 mm. If the thickness is too small, the mechanical properties become insufficient. It is not preferable because a problem may occur, and if the thickness is too large, the volume in the battery is occupied, and the battery may be inferior in capacity per density. The porosity is preferably 30 to 90%, more preferably in the range of 40 to 90%. If the porosity is too small, it may be difficult to increase the capacity, which is not preferable, and the porosity is too large. In addition, the mechanical properties as a support are insufficient, and the capacity per unit volume may be reduced.

有機繊維層上への導電性金属被覆層を形成する金属としては、前記のアルミニウム、ニッケル、銅、チタン、鉄、ステンレス系金属、銅等の導電性金属を挙げることができる。上述の導電性金属の中でも、電気抵抗値が比較的低いものが好ましい。このような導電性金属としては、アルミニウム、銅等が挙げられる。
好ましくは、有機繊維層への導電性金属被覆層の形成は、公知の電解めっき法を利用することができる。なお、不織布に電解めっきを施す前に、有機繊維層表面に導電性を有する層を形成する。この導電性層を形成する手段として、無電解めっき法、スパッタリング法を利用することができる。上記の導電性層としては、4g/m2ないし9g/m2程度とすることが好ましい。そして、導電性を付与した有機繊維層に導電性金属のめっき浴を用いて電解メッキを施すことで、有機繊維表面に導電性金属の被覆層が形成された多孔性金属層を作製することができる。めっき浴としては、ワット浴、塩化浴、スルファミン酸浴が挙げられる。
上記の導電性金属の被覆量は、20〜100g/m、好ましくは30〜80g/mの範囲内にあるのが好ましく、被覆量が小さすぎると皮膜強度が弱くなり、部分剥離等が発生する場合があるので好ましくなく、被覆量が大きすぎると空隙の確保がしにくくなる場合があるので好ましくない。また、導電性金属層が形成された有機繊維層の空隙率は、30〜90%、より好ましくは、40〜80%の範囲内にあるのが好ましく、空隙率が小さすぎると高容量化をしにくくなる場合があるので好ましくなく、空隙率が大きすぎると力学特性が不十分となり、単位体積当たりの容量が低下する場合があるので好ましくない。
Examples of the metal that forms the conductive metal coating layer on the organic fiber layer include the above-described conductive metals such as aluminum, nickel, copper, titanium, iron, stainless steel, and copper. Among the conductive metals described above, those having a relatively low electrical resistance value are preferred. Examples of such conductive metals include aluminum and copper.
Preferably, the formation of the conductive metal coating layer on the organic fiber layer can utilize a known electrolytic plating method. In addition, before performing electroplating on a nonwoven fabric, the layer which has electroconductivity is formed in the organic fiber layer surface. As means for forming the conductive layer, an electroless plating method or a sputtering method can be used. The conductive layer is preferably about 4 g / m 2 to 9 g / m 2 . Then, by applying electroplating to the organic fiber layer imparted with conductivity using a plating bath of conductive metal, a porous metal layer having a conductive metal coating layer formed on the surface of the organic fiber can be produced. it can. Examples of the plating bath include a watt bath, a chloride bath, and a sulfamic acid bath.
The coating amount of the conductive metal is preferably in the range of 20 to 100 g / m 2 , preferably 30 to 80 g / m 2. If the coating amount is too small, the film strength becomes weak and partial peeling or the like occurs. Since it may occur, it is not preferable, and when the coating amount is too large, it may be difficult to secure voids, which is not preferable. The porosity of the organic fiber layer on which the conductive metal layer is formed is preferably in the range of 30 to 90%, more preferably 40 to 80%. If the porosity is too small, the capacity is increased. This is not preferable because it may be difficult to do so, and if the porosity is too large, the mechanical properties become insufficient, and the capacity per unit volume may decrease, which is not preferable.

(酸化銅被覆)
導電性多孔性支持体への酸化銅の先細薄片密集体被覆は、黒化処理により行われる。この黒化処理は、濃度55〜90g/l(より好ましくは65〜80g/l)のNaOHと、濃度70〜90g/l(より好ましくは75〜85g/l)のNaClOと、を含有する黒化処理液を70〜100℃(より好ましくは75〜95℃)に加熱し、当該黒化処理液に支持体を3〜5分浸漬して行なう。このような黒化処理を施した支持体上には、酸化銅からなる微細な先細薄片密集体からなる皮膜が形成される。
黒化処理の前には、導電性支持体の脱脂工程および酸洗工程を行うのが好ましい。脱脂工程は、支持体表面を65〜70℃の界面活性剤で30〜90秒間洗浄し、表面の脂成分が除去される。酸洗工程は、支持体を0.5mol/lの硫酸水溶液に30〜90秒間浸漬し、表面の酸化層を除去することが好ましい。
(Copper oxide coating)
The conductive porous support is coated with a taper-thin piece dense assembly of copper oxide by a blackening treatment. This blackening treatment contains NaOH having a concentration of 55 to 90 g / l (more preferably 65 to 80 g / l) and NaClO 2 having a concentration of 70 to 90 g / l (more preferably 75 to 85 g / l). The blackening treatment liquid is heated to 70 to 100 ° C. (more preferably 75 to 95 ° C.), and the support is immersed in the blackening treatment liquid for 3 to 5 minutes. On the support subjected to such a blackening treatment, a film made of a fine tapered thin piece dense body made of copper oxide is formed.
Prior to the blackening treatment, it is preferable to perform a degreasing step and a pickling step of the conductive support. In the degreasing step, the surface of the support is washed with a surfactant at 65 to 70 ° C. for 30 to 90 seconds to remove the fat component on the surface. In the pickling step, it is preferable to immerse the support in a 0.5 mol / l sulfuric acid aqueous solution for 30 to 90 seconds to remove the oxide layer on the surface.

先細薄片の長さとしては、0.6〜2.0μm、より好ましくは、0.7〜1.5μmの範囲内にあるのが好ましい。長さが小さすぎると高容量化を得にくくなるので好ましくなく、長さが大きすぎると集電体である銅との距離が離れすぎ効率が落ちる場合がある点で好ましくない。先細薄片の長さは、黒化処理液の濃度を変えることにより調整することができる。   The length of the tapered thin piece is preferably 0.6 to 2.0 μm, more preferably 0.7 to 1.5 μm. If the length is too small, it is difficult to obtain a high capacity, and it is not preferable, and if the length is too large, the distance from the current collector copper is too far away, which is not preferable because the efficiency may decrease. The length of the tapered thin piece can be adjusted by changing the concentration of the blackening treatment liquid.

(電解質層)
リチウムイオン二次電池を構成する電解質層は、特に限定はなく、本技術分野において公知の電解質が使用できる。
(Electrolyte layer)
The electrolyte layer constituting the lithium ion secondary battery is not particularly limited, and an electrolyte known in this technical field can be used.

(正極層)
本発明において、リチウムイオン二次電池に用いられる正極としては、例えば集電体上に正極活物質やバインダーを含む電極活物質層が形成された公知の正極を使用できる。正極の集電体の材料としては、導電性を有する材料であれば特に制限されないが、例えばアルミニウム、ニッケル、銅などが挙げられる。
正極活物質としては、例えば一般式LiM(ただし、Mは金属であり、xおよびy、は金属Mと酸素Oの組成比である)で表される金属酸リチウム化合物が用いられる。具体的には、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMn)、オリビン型リン酸鉄リチウム(LiFePO)などが挙げられる。なお、Mは複数の金属であってもよく、例えばLiM (ただし、p+q+r=xである)で表される化合物、具体的にはLiNi0.33Mn0.33Co0.33などを正極活物質として用いることもできる。
正極に用いられるバインダーとしては、PVDF、SBRなどが挙げられる。正極の電極活物質層は、導電助剤を含んでいてもよい。導電助剤を含むことにより、正極の導電性がより向上し、電池性能をより高めることができる。導電助剤としては、黒鉛、カーボンブラック、カーボンナノチューブ、グラフェン、フラーレンが挙げられる。これら導電助剤は、1種単独で用いてもよいし、2種以上を併用してもよい。2種以上併用する場合、その組み合わせや比率は目的に応じて適宜選択すればよい。
(Positive electrode layer)
In the present invention, as the positive electrode used in the lithium ion secondary battery, for example, a known positive electrode in which an electrode active material layer containing a positive electrode active material and a binder is formed on a current collector can be used. The material of the positive electrode current collector is not particularly limited as long as it is a conductive material, and examples thereof include aluminum, nickel, and copper.
As the positive electrode active material, for example, a metal acid lithium compound represented by the general formula LiM x O y (where M is a metal and x and y are composition ratios of the metal M and oxygen O) is used. Specifically, lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ), olivine type lithium iron phosphate (LiFePO 4 ), and the like can be given. M may be a plurality of metals, for example, a compound represented by LiM 1 p M 2 q M 3 r O y (where p + q + r = x), specifically, LiNi 0.33 Mn 0 .33 Co 0.33 O 2 or the like can also be used as the positive electrode active material.
Examples of the binder used for the positive electrode include PVDF and SBR. The electrode active material layer of the positive electrode may contain a conductive additive. By including a conductive additive, the conductivity of the positive electrode is further improved, and the battery performance can be further improved. Examples of the conductive aid include graphite, carbon black, carbon nanotube, graphene, and fullerene. These conductive assistants may be used alone or in combination of two or more. When using 2 or more types together, the combination and ratio may be appropriately selected according to the purpose.

例えば、リチウムイオン電池は、上述した負極層、電解質層及び正極層を貼り合せ、接合することで製造できる。接合する方法としては、各部材を積層し、加圧・圧着する方法や、2つのロール間を通して加圧する方法(rollto roll)等がある。また、接合面にイオン伝導性を有する活物質や、イオン伝導性を阻害しない接着物質を介して接合してもよい。   For example, a lithium ion battery can be manufactured by bonding and bonding the above-described negative electrode layer, electrolyte layer, and positive electrode layer. As a method of joining, there are a method of laminating each member, pressurizing and pressure bonding, a method of pressurizing between two rolls (rollto roll), and the like. Moreover, you may join to the joining surface through the active material which has ion conductivity, and the adhesive material which does not inhibit ion conductivity.

(用途)
本発明に係る非水系電池は、携帯情報端末、携帯電子機器、家庭用小型電力貯蔵装置、
モーターを電力源とする自動二輪車、電気自動車、ハイブリッド電気自動車等の電池として用いることができる。
(Use)
A non-aqueous battery according to the present invention includes a portable information terminal, a portable electronic device, a small electric power storage device for home use,
It can be used as a battery for a motorcycle, an electric vehicle, a hybrid electric vehicle or the like using a motor as a power source.

以下、実施例及び比較例を挙げて本発明を詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated in detail, this invention is not limited to these Examples.

(充放電特性の評価方法)
三極式ビーカーセルを用いて、対極及び参照極として金属リチウム板((株)レアメタリック製、厚さ1mm、純度99.9%)、電解液として1Mのリチウムビストリフルオロメタンスルホニルアミド(LiTFSA)を支持塩とするプロピレンカーボネート(PC)溶液((株)キシダ化学製)を用いた。電解液の温度としては、30℃とした。なお、充放電測定装置(北斗電工(株)製、HJ1001SM8A)により、電流密度0.34A/gで、0.005〜3.0Vvs.Li/Liの電位幅で充放電を繰り返し、5回目のサイクルにおける放電容量[酸化銅1g当たりの放電容量(mAh)]およびシート1m当たりの放電容量(mAh)を評価した。
(Evaluation method of charge / discharge characteristics)
Using a tripolar beaker cell, a metallic lithium plate (made by Rare Metallic, thickness 1 mm, purity 99.9%) as a counter electrode and a reference electrode, and 1M lithium bistrifluoromethanesulfonylamide (LiTFSA) as an electrolyte A propylene carbonate (PC) solution (manufactured by Kishida Chemical Co., Ltd.) was used. The temperature of the electrolyte was 30 ° C. In addition, with a charge / discharge measuring device (HJ1001SM8A, manufactured by Hokuto Denko Co., Ltd.), a current density of 0.34 A / g, 0.005 to 3.0 Vvs. Charging / discharging was repeated with a potential width of Li / Li + , and the discharge capacity [discharge capacity per 1 g of copper oxide (mAh)] and the discharge capacity per 1 m 2 of sheet (mAh) in the fifth cycle were evaluated.

(酸化銅の先細薄片体の長さの測定方法)
支持体上の先細薄片体の長さを走査電子顕微鏡[日本電子(株)、JSM−6701F]を用いて観察することにより測定した。
(Measuring method of the length of copper oxide taper piece)
The length of the tapered thin piece on the support was measured by observing using a scanning electron microscope [JEOL Ltd., JSM-6701F].

(空隙率)
本発明において、空隙率とは、シート全体の体積中に占める空隙の容積の割合である。
(Porosity)
In the present invention, the porosity is the ratio of the volume of the voids in the entire volume of the sheet.

<実施例1>
PP/PE紙(ダイワボウ社製:PP 0.5dr×5mm、NBF 1.5dr×5mm;目付29g/m;厚さ0.15mm:密度0.19g/cm:空隙率86%)に、通常の無電解メッキ法にて、銅付着量84g/m、付着後の空隙率79.5%の多孔構造の導電性支持体を作製した。
得られた支持体に下記のようにして酸化銅の先細薄片(長さ:1μm)の密集体からなる活物質を付着(付着量9.8g/m)させて電極シートを作製した。
黒化処理液[日立化成(株)製] HIST−500A、HIST−500B,HIST−500Cを1.7:0.6:1の割合でブレンドした80℃の浴で処理し、酸化銅膜を形成した。形成された酸化銅被覆面の走査型電子顕微鏡写真を図1に示し、得られた電極シートの放電容量の測定結果を表1に示す。
<Example 1>
PP / PE paper (Daiwabo Co., Ltd .: PP 0.5dr × 5mm, NBF 1.5dr × 5mm; basis weight 29g / m 2 ; thickness 0.15mm: density 0.19g / cm 3 : porosity 86%) A conductive support with a porous structure having a copper adhesion amount of 84 g / m 2 and a porosity of 79.5% after adhesion was produced by a normal electroless plating method.
An active material composed of a dense copper oxide thin piece (length: 1 μm) was adhered to the obtained support (attachment amount 9.8 g / m 2 ) as described below to prepare an electrode sheet.
Blackening treatment solution [manufactured by Hitachi Chemical Co., Ltd.] HIST-500A, HIST-500B, and HIST-500C were treated in an 80 ° C. bath blended at a ratio of 1.7: 0.6: 1 to form a copper oxide film. Formed. A scanning electron micrograph of the formed copper oxide-coated surface is shown in FIG. 1, and the measurement results of the discharge capacity of the obtained electrode sheet are shown in Table 1.

<実施例2>
実施例1におけるPP/PE紙の代わりに、銅網(目付569.6g/m:厚さ0.11mm:密度5.18g/cm3:空隙率41.9%)を用いて、該銅網上に 実施例1と同様にして黒化処理を行って、酸化銅の先細薄片(長さ1μm)密集体からなる活物質(付着量6.2g/m)が形成された電極シートを作製した。
得られた電極シートの放電容量の測定結果を表1に示す。
<Example 2>
In place of the PP / PE paper in Example 1, a copper net (569.6 g / m 2 per unit area: thickness 0.11 mm: density 5.18 g / cm 3 : porosity 41.9%) was used. A blackening treatment was performed on the net in the same manner as in Example 1 to form an electrode sheet on which an active material (attachment amount 6.2 g / m 2 ) composed of a dense copper oxide thin piece (length 1 μm) was formed. Produced.
Table 1 shows the measurement results of the discharge capacity of the obtained electrode sheet.

<実施例3>
実施例2と同じ銅網(目付569.6g/m:厚さ0.11mm:密度5.18g/cm:空隙率41.9%)を用いて、該銅網上に下記条件で黒化処理を行って、酸化銅の先細薄片(長さ0.8μm)からなる活物質(付着量5.9g/m)が形成された電極シートを作製した。
黒化処理液[日立化成(株)製] HIST−500A、HIST−500B、HIST−500Cを1.7:0.4:1の割合でブレンドした80℃の浴で処理し、酸化銅膜を形成した。得られた電極シートの放電容量の測定結果を表1に示す。
<Example 3>
Using the same copper mesh as in Example 2 (weight per unit: 569.6 g / m 2 : thickness 0.11 mm: density 5.18 g / cm 3 : porosity 41.9%), black was formed on the copper mesh under the following conditions. The electrode sheet in which the active material (adhesion amount 5.9 g / m 2 ) made of the tapered thin piece (length 0.8 μm) of copper oxide was formed was prepared.
Blackening treatment solution [manufactured by Hitachi Chemical Co., Ltd.] HIST-500A, HIST-500B, HIST-500C were treated in an 80 ° C. bath blended at a ratio of 1.7: 0.4: 1, and a copper oxide film was formed. Formed. Table 1 shows the measurement results of the discharge capacity of the obtained electrode sheet.

<比較例1>
実施例2における銅網と同じ銅網を用いて、酸化銅にPVDFを混合してペースト状にしたものからなる球状(径1μm)の活物質(付着量5.9g/m)が該銅網上に形成された電極シートを作製した。
得られた電極シートの放電容量の測定結果を表1に示す。
<Comparative Example 1>
Using the same copper mesh as the copper mesh in Example 2, a spherical active material (adhesion amount 5.9 g / m 2 ) composed of a paste formed by mixing PVDF with copper oxide is the copper mesh. An electrode sheet formed on a net was produced.
Table 1 shows the measurement results of the discharge capacity of the obtained electrode sheet.

<比較例2>
実施例2における銅網の代わりに銅板(厚み0.02mm、密度8.92g/cm)を用いて、該銅板上に 実施例1と同様にして黒化処理を行って、酸化銅の先細薄片(長さ1μm)密集体からなる活物質(付着量2.8g/m)が形成された電極シートを作製した。
得られた電極シートの放電容量の測定結果を表1に示す。
<Comparative example 2>
Using a copper plate (thickness 0.02 mm, density 8.92 g / cm 3 ) in place of the copper net in Example 2, blackening treatment was performed on the copper plate in the same manner as in Example 1 to taper the copper oxide. An electrode sheet on which an active material (attachment amount 2.8 g / m 2 ) composed of a dense piece (length: 1 μm) was formed was produced.
Table 1 shows the measurement results of the discharge capacity of the obtained electrode sheet.

Figure 0006281154
Figure 0006281154

実施例1では、PP/PE紙上に銅を84g/mメッキした支持体に、酸化銅の先細薄片(長さ1μm)密集体が被覆された電極では、高い放電容量が得られた。この結果から、実施例1の電極は、充放電容量が高く、充放電サイクル特性に優れたリチウムイオン二次電池を得ることができることが分かる。
実施例2および実施例3では、銅網(569.6g/m:空隙率41.9%)上に先細薄片(長さ1μm)の酸化銅または先細薄片(長さ0.8μm)の酸化銅を被覆した電極では、充放電容量がいずれも高く、充放電サイクル特性に優れたリチウムイオン二次電池を得ることができることが分かる。
In Example 1, a high discharge capacity was obtained with an electrode in which a copper oxide taped thin piece (length: 1 μm) was coated on a support obtained by plating 84 g / m 2 of copper on PP / PE paper. From this result, it can be seen that the electrode of Example 1 has a high charge / discharge capacity, and a lithium ion secondary battery excellent in charge / discharge cycle characteristics can be obtained.
In Example 2 and Example 3, the copper oxide (569.6 g / m 2 : porosity 41.9%) on the copper oxide or taper (length 0.8 μm) of taper flakes (length 1 μm) It can be seen that the electrode coated with copper has a high charge / discharge capacity, and a lithium ion secondary battery excellent in charge / discharge cycle characteristics can be obtained.

比較例1では、1μm径の球状の酸化銅であるために、放電容量が小さく、電池負極の容量の点で不十分である。
比較例2では、支持体が多孔体ではなく、厚さ0.02mmの銅板であるために、電極シート放電容量が小さく、電極負極として容量が不十分である。
In Comparative Example 1, since the spherical copper oxide having a diameter of 1 μm is used, the discharge capacity is small and the capacity of the battery negative electrode is insufficient.
In Comparative Example 2, since the support is not a porous body but a copper plate having a thickness of 0.02 mm, the electrode sheet discharge capacity is small and the capacity as an electrode negative electrode is insufficient.

本発明は、導電性のある多孔構造の支持体が酸化銅の先細薄片密集体により被覆された電極シートを提供することにより、この電極シートを負極に用いる非水系電池(リチウムイオン二次電池)の高容量化が図られるので、非水系電池を駆動電源として用いる電子機器に用いることができる。   The present invention provides a non-aqueous battery (lithium ion secondary battery) using the electrode sheet as a negative electrode by providing an electrode sheet in which a conductive porous structure support is coated with a taper thin piece of copper oxide. Therefore, it can be used for an electronic device that uses a non-aqueous battery as a drive power source.

Claims (8)

多孔構造の導電性支持体が酸化銅の先細薄片密集体により被覆され、前記酸化銅の先細薄片密集体が、黒化層であり、活物質であるリチウムイオン二次電池の負極シート。 A negative electrode sheet for a lithium ion secondary battery, in which a conductive support having a porous structure is coated with a copper oxide taper piece compact, and the copper oxide taper flake is a blackening layer and is an active material . 前記多孔構造の導電性支持体が空隙率30〜90%である、請求項1に記載のリチウムイオン二次電池の負極シート。 2. The negative electrode sheet for a lithium ion secondary battery according to claim 1, wherein the porous conductive support has a porosity of 30 to 90%. 前記酸化銅の先細薄片の長さが0.6μm以上である、請求項1または2に記載のリチウムイオン二次電池の負極シート。 3. The negative electrode sheet of a lithium ion secondary battery according to claim 1, wherein a length of the copper oxide taper piece is 0.6 μm or more. 前記支持体が多孔構造の金属よりなる、請求項1〜3のいずれか一項に記載のリチウムイオン二次電池の負極シート。 The negative electrode sheet of the lithium ion secondary battery according to claim 1, wherein the support is made of a porous metal. 前記支持体が金属薄膜に覆われた有機繊維よりなる請求項1〜3のいずれか一項に記載のリチウムイオン二次電池の負極シート。 The negative electrode sheet of a lithium ion secondary battery according to any one of claims 1 to 3, wherein the support is made of an organic fiber covered with a metal thin film. 前記金属薄膜がメッキ処理により形成された請求項5に記載のリチウムイオン二次電池の負極シート。 The negative electrode sheet for a lithium ion secondary battery according to claim 5, wherein the metal thin film is formed by plating. 前記黒化層が水酸化ナトリウムと亜塩素酸ナトリウムによる黒化処理液含浸法による請求項1〜6のいずれか一項に記載のリチウムイオン二次電池の負極シート。 The negative electrode sheet of a lithium ion secondary battery according to any one of claims 1 to 6, wherein the blackening layer is obtained by a blackening treatment liquid impregnation method using sodium hydroxide and sodium chlorite. 請求項1〜のいずれか一項に記載のリチウムイオン二次電池の負極シートを負極として使用したリチウムイオン二次電池 Lithium-ion secondary battery using the negative electrode sheet of the lithium ion secondary battery according as the negative electrode in any one of claims 1-7.
JP2013204912A 2013-09-30 2013-09-30 Negative electrode sheet of lithium ion secondary battery and lithium ion secondary battery Active JP6281154B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013204912A JP6281154B2 (en) 2013-09-30 2013-09-30 Negative electrode sheet of lithium ion secondary battery and lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013204912A JP6281154B2 (en) 2013-09-30 2013-09-30 Negative electrode sheet of lithium ion secondary battery and lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2015069902A JP2015069902A (en) 2015-04-13
JP6281154B2 true JP6281154B2 (en) 2018-02-21

Family

ID=52836355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013204912A Active JP6281154B2 (en) 2013-09-30 2013-09-30 Negative electrode sheet of lithium ion secondary battery and lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP6281154B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6778291B1 (en) * 2019-03-04 2020-10-28 ナミックス株式会社 Negative current collector of copper foil and lithium ion battery containing it and its manufacturing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5927755B2 (en) * 2010-09-30 2016-06-01 凸版印刷株式会社 Lithium ion battery and method for producing lithium ion battery

Also Published As

Publication number Publication date
JP2015069902A (en) 2015-04-13

Similar Documents

Publication Publication Date Title
JP6367390B2 (en) Production of large capacity prism lithium ion alloy anode
JP5975347B2 (en) ELECTRODE BODY FOR STORAGE ELEMENT AND STORAGE ELEMENT
WO2013140942A1 (en) All-solid-state lithium secondary battery
JP5119277B2 (en) ELECTRODE FOR LITHIUM SECONDARY BATTERY AND METHOD FOR PRODUCING THE SAME
JP5416128B2 (en) Non-aqueous secondary battery
JP5985137B2 (en) Manufacturing method of non-aqueous secondary battery
JP5372881B2 (en) Lithium secondary battery having a stress relaxation layer
WO2013125485A1 (en) All-solid-state lithium secondary battery
Im et al. Two-dimensional, P-doped Si/SiOx alternating veneer-like microparticles for high-capacity lithium-ion battery composite
KR20230050395A (en) Negative plate and secondary battery
JP2011233349A (en) Nonaqueous secondary battery
JPWO2017104583A1 (en) All-solid-state secondary battery, electrode sheet for all-solid-state secondary battery, and production method thereof
JP6672971B2 (en) Method of manufacturing electrode body
JP2016184484A (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP6567289B2 (en) Lithium ion secondary battery
JP2016046058A (en) Nonaqueous electrolyte secondary battery and separator therefor
JP4973892B2 (en) Capacitors
JP4973882B2 (en) Capacitors
JP2013077734A (en) Electrode and method of manufacturing the same
JP6844602B2 (en) electrode
JP6281154B2 (en) Negative electrode sheet of lithium ion secondary battery and lithium ion secondary battery
JP2003331823A (en) Nonaqueous electrolyte secondary battery and method of manufacturing the battery
KR102056455B1 (en) Negative electrode and secondary battery comprising the negative electrode
JP2015173030A (en) Porous collector and method for manufacturing porous collector
JP2019220357A (en) Electrode for lithium ion secondary battery, and lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171228

R150 Certificate of patent or registration of utility model

Ref document number: 6281154

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250