JP2003331823A - Nonaqueous electrolyte secondary battery and method of manufacturing the battery - Google Patents

Nonaqueous electrolyte secondary battery and method of manufacturing the battery

Info

Publication number
JP2003331823A
JP2003331823A JP2002136112A JP2002136112A JP2003331823A JP 2003331823 A JP2003331823 A JP 2003331823A JP 2002136112 A JP2002136112 A JP 2002136112A JP 2002136112 A JP2002136112 A JP 2002136112A JP 2003331823 A JP2003331823 A JP 2003331823A
Authority
JP
Japan
Prior art keywords
active material
material layer
binder
battery
conductive agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002136112A
Other languages
Japanese (ja)
Inventor
Koko Ryu
興江 劉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP2002136112A priority Critical patent/JP2003331823A/en
Publication of JP2003331823A publication Critical patent/JP2003331823A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery capable of suppressing the shortage of liquid in an active material layer by charging and discharging and the deposition of metallic lithium, and providing excellent cycle characteristics and large current discharging characteristics. <P>SOLUTION: In this nonaqueous electrolyte secondary battery, the active material layer contains active material particles, binder, and conductive agent. The surfaces of the active material particles are covered with the binder including the conductive agent. The active material layer can be formed by using a mixture processed by dispersing the conductive agent and the active material particles in the binder by ultrasonic treatment. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解質二次電
池、およびその製造方法に関する。
TECHNICAL FIELD The present invention relates to a non-aqueous electrolyte secondary battery and a method for manufacturing the same.

【0002】[0002]

【従来の技術】一般に、非水電解質二次電池は、正負一
対の電極板を交互に積層し、巻回することによって作製
された発電要素が、電解液とともに電池缶の内部へ封入
された構成となっている。
2. Description of the Related Art Generally, a non-aqueous electrolyte secondary battery has a structure in which a power generating element manufactured by alternately laminating a pair of positive and negative electrode plates and winding the electrode plate is enclosed inside a battery can together with an electrolytic solution. Has become.

【0003】ここで、電極板は、金属箔からなる集電体
の表面に活物質層が設けられたものである。この電極板
は、正極活物質または負極活物質と高分子材料からなる
結着剤とを混合し、必要に応じて導電剤等を加えてペー
スト状の合剤を調製した後、この合剤を集電体の表面に
塗布して活物質層を形成させることにより作製される。
このとき、結着剤は、活物質粒子同士を結合させるとと
もに、電解液を含むことによってゲル化し、活物質層に
電解液を保持する役割を果たしている。
[0003] Here, the electrode plate is one in which an active material layer is provided on the surface of a current collector made of a metal foil. This electrode plate is prepared by mixing a positive electrode active material or a negative electrode active material with a binder made of a polymer material, and adding a conductive agent if necessary to prepare a paste-like mixture, and then mixing this mixture. It is prepared by coating the surface of the current collector to form an active material layer.
At this time, the binder plays a role of binding the active material particles to each other and gelling by containing the electrolytic solution to retain the electrolytic solution in the active material layer.

【0004】[0004]

【発明が解決しようとする課題】ところが、上記のよう
な非水電解質二次電池においては、充放電時に活物質と
の反応により電解液が分解する。あるいは、金属リチウ
ムと電解液との反応により、活物質層表面にSEI(So
lid Electrolyte Interface:固体電解質界面)といわ
れる保護被膜の形成が行われる。これらのために電解液
が消費されてしまうと、活物質層中に局部的に電解液の
存在しない部分が生じてしまうこと(液枯れ現象)によ
り、充放電サイクル特性および高率放電特性が低下して
しまうという問題があった。
However, in the non-aqueous electrolyte secondary battery as described above, the electrolytic solution is decomposed by the reaction with the active material during charging and discharging. Alternatively, the SEI (So
Lid Electrolyte Interface: A protective film called a solid electrolyte interface is formed. If the electrolyte solution is consumed for these reasons, a part where the electrolyte solution does not exist locally occurs in the active material layer (liquid withdrawal phenomenon), and the charge / discharge cycle characteristics and high rate discharge characteristics deteriorate. There was a problem of doing.

【0005】本発明は上記のような事情に鑑みてなされ
たものであり、その目的は、サイクル特性および高率放
電特性に優れる非水電解質二次電池を提供することにあ
る。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a non-aqueous electrolyte secondary battery having excellent cycle characteristics and high rate discharge characteristics.

【0006】[0006]

【課題を解決するための手段】本発明者は、サイクル特
性および高率放電特性に優れる非水電解質二次電池を製
造可能な正極活物質を提供すべく鋭意研究したところ、
以下の知見を見出した。
Means for Solving the Problems The present inventor has earnestly studied to provide a positive electrode active material capable of producing a non-aqueous electrolyte secondary battery having excellent cycle characteristics and high rate discharge characteristics.
The following findings have been found.

【0007】上記のような非水電解質二次電池では、活
物質層は、活物質、結着剤および導電剤を混合したペー
ストにより形成されている。
In the non-aqueous electrolyte secondary battery as described above, the active material layer is formed of a paste obtained by mixing the active material, the binder and the conductive agent.

【0008】活物質層に使用される結着剤は非導電性で
あるので、活物質粒子間に結着剤が介在することによっ
て活物質粒子同士の接触面積が小さくなると、活物質層
内での電子伝導が妨げられる。したがって、結着剤が活
物質粒子表面で被膜を形成せず、粒子同士の電気的接触
がある程度保たれた状態とされていることが好ましいと
考えられている。
Since the binder used in the active material layer is non-conductive, when the contact area between the active material particles becomes small due to the interposition of the binder between the active material particles, the active material layer has a small contact area. Hinders electron conduction. Therefore, it is considered preferable that the binder does not form a film on the surface of the active material particles and the particles are kept in electrical contact with each other to some extent.

【0009】しかし、結着剤は、活物質層中で電解液の
保持という役割をも担っている。ここで、活物質層中で
結着剤が偏在した状態であると、結着剤が少ない部分で
は電解液の保持量が少ない状態となるために、充放電を
繰り返すことによって容易に液枯れが起こってしまうと
考えられる。また、局部的に電解液が不足すると、その
部分ではイオン伝導が妨げられた状態となり、このこと
が高率放電特性に影響を与えていると考えられる。
However, the binder also plays a role of holding the electrolytic solution in the active material layer. Here, when the binder is unevenly distributed in the active material layer, the amount of the electrolyte held is small in the portion where the binder is small, so that the liquid easily depletes by repeating charging and discharging. It is supposed to happen. Further, when the electrolyte solution is locally insufficient, ionic conduction is disturbed at that portion, which is considered to affect the high rate discharge characteristics.

【0010】このことから、イオン伝導性と電子伝導性
の双方を確保し、サイクル特性と高率放電特性とを改善
するためには、活物質粒子の表面全体を結着剤で被覆す
ることによって、活物質粒子の周囲に電解液を保持させ
るとともに、この結着剤被膜中に導電剤を含むようにす
ることで、活物質粒子同士の電気的接続を確保すること
が有効と考えられる。本発明は、かかる新規な知見に基
づいてなされたものである。
Therefore, in order to secure both ionic conductivity and electronic conductivity and to improve the cycle characteristics and the high rate discharge characteristics, it is necessary to coat the entire surface of the active material particles with a binder. It is considered effective to secure the electrical connection between the active material particles by holding the electrolytic solution around the active material particles and including the conductive agent in the binder film. The present invention has been made based on such novel findings.

【0011】すなわち、本発明は、活物質層を集電体上
に形成させてなる正負一対の電極を備えた非水電解質二
次電池であって、前記活物質層は、活物質粒子と、結着
剤と、導電剤とを含有し、かつ、前記活物質粒子の表面
が前記導電剤を含む前記結着剤で被覆されていることを
特徴とする。
That is, the present invention is a non-aqueous electrolyte secondary battery comprising a pair of positive and negative electrodes formed by forming an active material layer on a current collector, wherein the active material layer comprises active material particles, It is characterized in that it contains a binder and a conductive agent, and the surface of the active material particles is covered with the binder containing the conductive agent.

【0012】本発明の活物質のうち、正極側に使用され
る正極活物質としては、非水電解質二次電池の正極活物
質として通常使用されるものであれば特に制限はなく、
例えば遷移金属のリチウム含有酸化物であるコバルト酸
リチウム、ニッケル酸リチウム、スピネル系マンガン酸
リチウム、あるいはこれらの複合酸化物等が使用でき
る。また、負極側に使用される負極活物質としては、非
水電解質二次電池の負極活物質として通常使用されるも
のであれば特に制限はなく、例えばグラファイト、カー
ボンブラック、活性炭、炭素繊維、コークス等の炭素材
料が使用できる。活物質の平均粒子径は5μm〜30μ
mであることが好ましい。5μmより小さければ、活物
質の電解液に対する接触面積が大きくなりすぎるため
に、電解液の分解が起こりやすくなり、ひいては液枯れ
が起こりやすくなるため、好ましくない。また、30μ
mより大きければ、活物質層の形成の際に、厚みの調節
が困難となるとともに、表面を平滑にすることが困難と
なるため、好ましくない。
[0012] Of the active materials of the present invention, the positive electrode active material used on the positive electrode side is not particularly limited as long as it is one normally used as the positive electrode active material of non-aqueous electrolyte secondary batteries.
For example, lithium cobalt oxide, lithium nickel oxide, spinel-based lithium manganate, which is a lithium-containing oxide of a transition metal, or a composite oxide thereof can be used. Further, the negative electrode active material used on the negative electrode side is not particularly limited as long as it is usually used as a negative electrode active material of a non-aqueous electrolyte secondary battery, and examples thereof include graphite, carbon black, activated carbon, carbon fiber, and coke. Carbon materials such as The average particle size of the active material is 5 μm to 30 μm
It is preferably m. If it is less than 5 μm, the contact area of the active material with the electrolytic solution becomes too large, so that the electrolytic solution is prone to be decomposed, and the liquid is liable to be exhausted, which is not preferable. Also, 30μ
If it is larger than m, it becomes difficult to control the thickness when forming the active material layer and it becomes difficult to smooth the surface, which is not preferable.

【0013】本発明の結着剤としては、非水電解質二次
電池の活物質層に通常使用されるものであれば特に制限
はなく、例えばポリフッ化ビニリデン、フッ化ビニリデ
ン−テトラフルオロプロピレン共重合体、フッ化ビニリ
デンーヘキサフルオロエチレン共重合体、フッ化ビニリ
デン−テトラフルオロプロピレン−ヘキサフルオロエチ
レン共重合体、スチレン−ブタジエンゴム、ポリアクリ
ロニトリル、ポリエチレンオキサイド、低融点ポリエチ
レン、アクリル樹脂等の高分子材料が使用できる。これ
らの高分子材料は、単独で使用されてもよく、2種以上
が混合されて使用されてもよい。
The binder of the present invention is not particularly limited as long as it is usually used in the active material layer of a non-aqueous electrolyte secondary battery. For example, polyvinylidene fluoride, vinylidene fluoride-tetrafluoropropylene copolymer Polymer materials such as polymer, vinylidene fluoride-hexafluoroethylene copolymer, vinylidene fluoride-tetrafluoropropylene-hexafluoroethylene copolymer, styrene-butadiene rubber, polyacrylonitrile, polyethylene oxide, low melting point polyethylene, acrylic resin Can be used. These polymeric materials may be used alone or in combination of two or more.

【0014】特に、結着性と電解液の保持性との双方に
優れたフッ化ビニリデン・ヘキサフルオロプロピレン共
重合体を好適に使用することができる。フッ化ビニリデ
ン単位とヘキサフルオロプロピレン単位との組成比は、
モル比として98:2〜94:6であることが好まし
い。ヘキサフルオロプロピレン単位の比率が6mol%
よりも大きくなれば、活物質層が集電体から剥離しやす
くなるため、好ましくない。一方、ヘキサフルオロプロ
ピレン単位の比率が2mol%よりも小さくなれば、活
物質層を集電体に塗布する際には問題がないが、電解液
の保持性が低下するため、好ましくない。
Particularly, a vinylidene fluoride / hexafluoropropylene copolymer excellent in both the binding property and the electrolytic solution retention property can be preferably used. The composition ratio of the vinylidene fluoride unit and the hexafluoropropylene unit is
The molar ratio is preferably 98: 2 to 94: 6. Hexafluoropropylene unit ratio is 6 mol%
If it is larger than this, the active material layer is easily peeled off from the current collector, which is not preferable. On the other hand, if the ratio of hexafluoropropylene units is less than 2 mol%, there is no problem in applying the active material layer to the current collector, but the retention of the electrolytic solution is reduced, which is not preferable.

【0015】本発明の導電剤としては、非水電解質二次
電池の活物質層に通常使用されるものであれば特に制限
はなく、例えばアセチレンブラック、黒鉛、金属等の微
粒子を使用できる。導電剤は、活物質粒子の表面に形成
される結着剤被膜中に存在可能であることを要するた
め、その平均粒子径は1μm以下であることが好まし
い。また、導電剤の含有量は、結着剤に対して10重量
%〜70重量%であることが好ましい。導電剤の含有量
が10重量%未満であると、活物質粒子同士の電気的接
続を確保することができなくなり、集電性が低下するた
め、好ましくない。一方、導電剤の含有量が70%より
も大きくなると、結着力が低下し、活物質層が集電体か
ら剥がれやすくなるため、好ましくない。
The conductive agent of the present invention is not particularly limited as long as it is one normally used in the active material layer of a non-aqueous electrolyte secondary battery, and for example, fine particles of acetylene black, graphite, metal or the like can be used. Since the conductive agent needs to be able to exist in the binder coating formed on the surface of the active material particles, the average particle diameter thereof is preferably 1 μm or less. Further, the content of the conductive agent is preferably 10% by weight to 70% by weight with respect to the binder. If the content of the conductive agent is less than 10% by weight, electrical connection between the active material particles cannot be ensured and the current collecting property is reduced, which is not preferable. On the other hand, if the content of the conductive agent is more than 70%, the binding force is lowered and the active material layer is easily peeled off from the current collector, which is not preferable.

【0016】本発明において、表面が結着剤により被覆
された活物質粒子を調製する方法としては、例えば超音
波処理装置等を使用して、結着剤中に導電剤および活物
質粒子を分散させる方法が挙げられる。また、ジェット
ミル法を利用して、同様な目的を達成することができ
る。
In the present invention, as a method for preparing active material particles whose surface is coated with a binder, for example, an ultrasonic treatment device is used to disperse the conductive agent and the active material particles in the binder. There is a method of making it. In addition, the jet mill method can be used to achieve the same purpose.

【0017】[0017]

【発明の作用、及び発明の効果】本発明によれば、活物
質粒子の表面が、導電剤を含む結着剤で被覆されてい
る。このような構成によれば、活物質粒子の表面全体に
電解液を均一に保持させることができる。このため、活
物質層のイオン伝導性を確保できるとともに、局部的な
液枯れを防止することができる。また、結着剤中には導
電剤が含まれている。したがって、結着剤により活物質
粒子の表面が被覆されていても、導電剤を介して活物質
粒子同士を電気的に接続することが可能となり、電子伝
導性を確保することができる。これらにより、サイクル
特性および高率放電特性に優れた非水電解質二次電池を
提供できる。
According to the present invention, the surface of the active material particles is coated with a binder containing a conductive agent. With such a configuration, the electrolytic solution can be uniformly held on the entire surface of the active material particles. Therefore, it is possible to ensure the ionic conductivity of the active material layer and prevent local liquid depletion. Further, the binder contains a conductive agent. Therefore, even if the surface of the active material particles is covered with the binder, the active material particles can be electrically connected to each other through the conductive agent, and the electron conductivity can be secured. With these, a non-aqueous electrolyte secondary battery having excellent cycle characteristics and high rate discharge characteristics can be provided.

【0018】[0018]

【実施例】以下、実施例を挙げて本発明をさらに詳細に
説明する。
EXAMPLES The present invention will be described in more detail with reference to examples.

【0019】[充放電サイクル試験] <実施例1−1> 1.合剤の調製 1)原料 結着剤としては、ヘキサフルオロプロピレン単位の含有
率が3mol%であるフッ化ビニリデン−ヘキサフルオ
ロプロピレン共重合体(以下、単に「共重合体」という
ことがある)を使用した。導電剤としては、一次粒子径
35nm〜50nmのアセチレンブラックを使用した。
正極活物質としては、粒子径5μm〜25μmのLiC
oOを使用した。また、負極活物質としては、粒子径
5μm〜25μmのグラファイトを使用した。
[Charge / Discharge Cycle Test] <Example 1-1> 1. Preparation of Mixture 1) As the raw material binder, a vinylidene fluoride-hexafluoropropylene copolymer having a hexafluoropropylene unit content of 3 mol% (hereinafter sometimes simply referred to as “copolymer”) used. As the conductive agent, acetylene black having a primary particle diameter of 35 nm to 50 nm was used.
As the positive electrode active material, LiC having a particle size of 5 μm to 25 μm
oO 2 was used. As the negative electrode active material, graphite having a particle size of 5 μm to 25 μm was used.

【0020】2)正極用合剤の調製 フッ化ビニリデン−ヘキサフルオロプロピレン共重合体
をN−メチルピロリドンに溶解して、濃度が2.5重量
%の結着剤溶液を調製した。この結着剤溶液に、アセチ
レンブラックを、共重合体とアセチレンブラックとの重
量比が3:2となるように加えて、スラリーを調製し
た。このスラリーを超音波処理することによって、アセ
チレンブラックを共重合体中に分散させた。このスラリ
ーに、LiCoOを、共重合体とアセチレンブラック
との合計とLiCoOとの重量比が10:90となる
ように加えた。この混合物を、超音波撹拌装置(日本精
機製作所製 超音波分散装置 USDS−1型)内に投
入し、撹拌しつつ超音波処理を行って、LiCoO
スラリー中に分散させた。このようにして、ペースト状
の正極用合剤を調製した。
2) Preparation of positive electrode mixture A vinylidene fluoride-hexafluoropropylene copolymer was dissolved in N-methylpyrrolidone to prepare a binder solution having a concentration of 2.5% by weight. Acetylene black was added to this binder solution so that the weight ratio of the copolymer to the acetylene black was 3: 2 to prepare a slurry. By sonicating this slurry, acetylene black was dispersed in the copolymer. LiCoO 2 was added to this slurry so that the total weight ratio of the copolymer and acetylene black to LiCoO 2 was 10:90. This mixture was put into an ultrasonic stirrer (Ultrasonic Disperser USDS-1 manufactured by Nippon Seiki Seisakusho Ltd.), and ultrasonically treated while stirring to disperse LiCoO 2 in the slurry. In this way, a paste-like positive electrode mixture was prepared.

【0021】3)負極用合剤の調製 フッ化ビニリデン−ヘキサフルオロプロピレン共重合体
をN−メチルピロリドンに溶解して、濃度が2.5重量
%の結着剤溶液を調製した。この結着剤溶液に、アセチ
レンブラックを、共重合体とアセチレンブラックとの重
量比が8:1となるように加えて、スラリーを調製し
た。このスラリーに、グラファイトを、共重合体とアセ
チレンブラックとの合計とグラファイトとの重量比が1
5:85となるように加えた。この混合物を、上記2)
と同様に超音波撹拌装置内に投入し、撹拌しつつ超音波
処理を行って、グラファイトをスラリー中に分散させ
た。このようにして、ペースト状の負極用合剤を調製し
た。
3) Preparation of Negative Electrode Mixture A vinylidene fluoride-hexafluoropropylene copolymer was dissolved in N-methylpyrrolidone to prepare a binder solution having a concentration of 2.5% by weight. Acetylene black was added to this binder solution so that the weight ratio of the copolymer and acetylene black was 8: 1 to prepare a slurry. Graphite was added to this slurry so that the weight ratio of graphite to the total of the copolymer and acetylene black was 1.
It was added so that it might become 5:85. This mixture was added to the above 2)
In the same manner as above, the mixture was put into an ultrasonic stirrer and subjected to ultrasonic treatment while stirring to disperse graphite in the slurry. In this way, a paste-like negative electrode mixture was prepared.

【0022】2.リチウムイオン二次電池の作製 1)正極の作製 上記1.2)で調製された正極用合剤の所定量を、厚さ
20μmのアルミニウム箔からなる集電体の両面に均一
に塗布し、乾燥後、プレスを行い、さらに140℃で真
空乾燥した。このようにして、正極活物質層を備えた帯
状の正極シートを作製した。この正極シートの一端部
に、厚さ100μmのアルミニウム片からなる正極リー
ドを溶接した。また、形成された正極活物質層の断面
を、走査型電子顕微鏡(日立製作所製走査型電子顕微鏡
S−2150)により観察した。
2. Preparation of Lithium Ion Secondary Battery 1) Preparation of Positive Electrode A predetermined amount of the mixture for positive electrode prepared in 1.2) above is uniformly applied on both sides of a current collector made of an aluminum foil having a thickness of 20 μm and dried. After that, pressing was performed, and further vacuum drying was performed at 140 ° C. In this way, a strip-shaped positive electrode sheet having the positive electrode active material layer was produced. A positive electrode lead made of a 100 μm thick aluminum piece was welded to one end of this positive electrode sheet. The cross section of the formed positive electrode active material layer was observed with a scanning electron microscope (Hitachi scanning electron microscope S-2150).

【0023】2)負極の作製 上記1.3)で調製された負極用合剤の所定量を、厚さ
20μmの銅箔からなる集電体の両面に均一に塗布し、
乾燥後、プレスを行い、さらに140℃で真空乾燥し
た。このようにして、負極活物質層を備えた帯状の負極
シートを作製した。この負極シートの一端部に、厚さ1
00μmのニッケル片からなる負極リードを溶接した。
また、上記と同様に、負極活物質層の断面を走査型電子
顕微鏡により観察した。
2) Preparation of Negative Electrode A predetermined amount of the negative electrode mixture prepared in the above 1.3) was uniformly applied to both surfaces of a current collector made of a copper foil having a thickness of 20 μm,
After drying, pressing was performed and further vacuum drying was performed at 140 ° C. In this way, a strip-shaped negative electrode sheet provided with the negative electrode active material layer was produced. One end of this negative electrode sheet has a thickness of 1
A negative electrode lead made of a nickel piece of 00 μm was welded.
Further, as in the above, the cross section of the negative electrode active material layer was observed with a scanning electron microscope.

【0024】3)電解液の調製 エチレンカーボネート、およびジメチルカーボネート
を、体積比1:1の割合で混合して、非水溶媒を調整し
た。この非水溶媒に、電解質としてリチウム塩であるL
iPFを濃度1.2mol/lとなるように加え、非
水電解液を調製した。
3) Preparation of Electrolyte Solution Ethylene carbonate and dimethyl carbonate were mixed at a volume ratio of 1: 1 to prepare a non-aqueous solvent. L, which is a lithium salt as an electrolyte, is added to this non-aqueous solvent.
iPF 6 was added to a concentration of 1.2 mol / l to prepare a non-aqueous electrolytic solution.

【0025】4)電池の作製 正極シート、セパレータ、負極シート、セパレータを、
正極リードおよび負極リードが溶接された側の端部がと
もに同じ側となるようにしつつ、この順に積層し、積層
体とした。セパレータとしては、厚さ25μmのポリプ
ロピレン/ポリエチレン/ポリプロピレン三層膜を使用
した。この積層体を、ポリエチレン製の長方形状の巻芯
を中心として長円渦状に巻回し、発電素子を作製した。
この発電素子を、ラミネートフィルム製の袋状の電池ケ
ース内に収納し、正極リードおよび負極リードを、電池
ケースに固定した。そして、上記3)で調製した電解液
を、正極シート、負極シートおよびセパレータが充分に
湿潤し、かつ、電池ケース中に発電素子に保持されない
電解液が存在しない量だけ電池ケース内に注入した。そ
して、電池ケースの開口を加熱圧着することで封口し
た。このようにして、公称容量650mAhのラミネー
ト型非水電解質二次電池を作製した。
4) Preparation of battery A positive electrode sheet, a separator, a negative electrode sheet and a separator are
The positive electrode lead and the negative electrode lead were laminated in this order with the end portions on the welded side on the same side, to obtain a laminated body. As the separator, a polypropylene / polyethylene / polypropylene three-layer film having a thickness of 25 μm was used. This laminated body was wound in an elliptical spiral shape around a polyethylene rectangular core as a center to manufacture a power generation element.
This power generating element was housed in a bag-shaped battery case made of a laminate film, and the positive electrode lead and the negative electrode lead were fixed to the battery case. Then, the electrolytic solution prepared in the above 3) was injected into the battery case in an amount such that the positive electrode sheet, the negative electrode sheet and the separator were sufficiently wet and there was no electrolytic solution which was not retained by the power generating element in the battery case. Then, the opening of the battery case was sealed by heating and pressure bonding. In this way, a laminated non-aqueous electrolyte secondary battery having a nominal capacity of 650 mAh was produced.

【0026】3.サイクル試験 上記の方法で作成した電池について、室温雰囲気下、
0.5CAの定電流で4.2Vまで充電後、4.2Vの
定電圧で、充電開始後3時間まで充電を行った。その
後、この電池を0.5CAの定電流で2.7Vまで放電
を行い、初期放電容量を測定した。これを1サイクルと
して、所定のサイクル繰り返し、放電容量を測定した。
また、500サイクル終了後の電池を解体して、正極活
物質層および負極活物質層の断面を走査型電子顕微鏡に
より観察した。
3. Cycle test Regarding the battery created by the above method, in a room temperature atmosphere,
After charging to 4.2 V with a constant current of 0.5 CA, charging was performed at a constant voltage of 4.2 V for 3 hours after the start of charging. Then, this battery was discharged to 2.7 V with a constant current of 0.5 CA, and the initial discharge capacity was measured. This was set as one cycle, and a predetermined cycle was repeated to measure the discharge capacity.
Further, the battery after the completion of 500 cycles was disassembled, and the cross sections of the positive electrode active material layer and the negative electrode active material layer were observed with a scanning electron microscope.

【0027】<実施例1−2>超音波撹拌装置を使用せ
ず、通常の撹拌装置(小平製作所製 ポパードミキサー
LVT−A型)により撹拌を行うのみで負極用合剤を
調製した他は、実施例1−1と同様にして電池を作製
し、サイクル試験を行った。
<Example 1-2> Except that the mixture for the negative electrode was prepared only by stirring using an ordinary stirring device (Poppard mixer LVT-A type manufactured by Kodaira Seisakusho) without using an ultrasonic stirring device. A battery was prepared in the same manner as in Example 1-1, and a cycle test was performed.

【0028】<実施例1−3>超音波撹拌装置を使用せ
ず、実施例1−2の撹拌装置により撹拌を行うのみで正
極用合剤を調製した他は、実施例1−1と同様にして電
池を作製し、サイクル試験を行った。
<Example 1-3> The same as Example 1-1, except that the positive electrode mixture was prepared only by stirring with the stirring device of Example 1-2 without using an ultrasonic stirring device. Then, a battery was manufactured and a cycle test was performed.

【0029】<比較例1>超音波撹拌装置を使用せず、
実施例1−2の撹拌装置により撹拌を行うのみで正極用
合剤および負極用合剤を調製した他は、実施例1−1と
同様にして電池を作製し、サイクル試験を行った。
<Comparative Example 1> Without using an ultrasonic stirrer,
A battery was prepared and a cycle test was performed in the same manner as in Example 1-1, except that the positive electrode mixture and the negative electrode mixture were prepared only by stirring with the stirring device of Example 1-2.

【0030】[高率放電試験] <実施例2−1>上記実施例1−1と同様の方法で作製
した電池について、室温雰囲気下、0.5CAの定電流
で4.2Vまで充電後、4.2Vの定電圧で、充電開始
後3時間まで充電を行った。その後、この電池を0.5
CAの定電流で2.7Vまで放電を行い、初期放電容量
を測定した。次に、この電池について、室温雰囲気下、
0.5CAの定電流で4.2Vまで充電後、4.2Vの
定電圧で、充電開始後3時間まで充電を行った。その
後、この電池を5CAの定電流で2.7Vまで放電を行
い、高率放電容量を測定した。
[High Rate Discharge Test] <Example 2-1> A battery prepared by the same method as in Example 1-1 was charged to 4.2 V at a constant current of 0.5 CA in a room temperature atmosphere, Charging was performed at a constant voltage of 4.2 V for up to 3 hours after the start of charging. Then add 0.5
A constant current of CA was discharged to 2.7 V, and the initial discharge capacity was measured. Next, regarding this battery, in a room temperature atmosphere,
After charging to 4.2 V with a constant current of 0.5 CA, charging was performed at a constant voltage of 4.2 V for 3 hours after the start of charging. Then, this battery was discharged to 2.7 V at a constant current of 5 CA, and the high rate discharge capacity was measured.

【0031】<実施例2−2>上記実施例1−2と同様
の方法で作成した電池について、実施例2−1と同様に
して放電試験を行った。
<Example 2-2> A discharge test was conducted on a battery prepared by the same method as in Example 1-2, in the same manner as in Example 2-1.

【0032】<実施例2−3>上記実施例1−3と同様
の方法で作成した電池について、実施例2−1と同様に
して放電試験を行った。
<Example 2-3> A discharge test was conducted on a battery prepared by the same method as in Example 1-3, in the same manner as in Example 2-1.

【0033】<比較例2>上記比較例1と同様の方法で
作成した電池について、実施例2−1と同様にして放電
試験を行った。
<Comparative Example 2> A discharge test was conducted on a battery prepared by the same method as in Comparative Example 1 in the same manner as in Example 2-1.

【0034】[結果と考察] 1.走査型電子顕微鏡による観察 超音波撹拌処理を行って調製した合剤を使用して形成し
た正極活物質層(実施例1−1)の走査型電子顕微鏡に
よる写真を図1に、撹拌処理のみで調製した合剤を使用
して形成した正極活物質層(実施例1−3)の走査型電
子顕微鏡による写真を図2に示した。また、超音波撹拌
処理を行って調製した合剤を使用して形成した負極活物
質層(実施例1−1)の走査型電子顕微鏡による写真を
図3に、撹拌処理のみで調製した合剤を使用して形成し
た負極活物質層(実施例1−2)の走査型電子顕微鏡に
よる写真を図4に示した。
[Results and Discussion] 1. Observation with Scanning Electron Microscope A photograph of the positive electrode active material layer (Example 1-1) formed by using the mixture prepared by performing ultrasonic agitation treatment by a scanning electron microscope is shown in FIG. A photograph of the positive electrode active material layer (Example 1-3) formed by using the prepared mixture is shown in FIG. 2 by a scanning electron microscope. In addition, FIG. 3 shows a photograph of a negative electrode active material layer (Example 1-1) formed by using the mixture prepared by performing the ultrasonic stirring treatment by a scanning electron microscope in FIG. A scanning electron microscope photograph of the negative electrode active material layer (Example 1-2) formed by using is shown in FIG.

【0035】図1および図3に示すように、超音波撹拌
処理を行って調製した合剤を使用して活物質層を形成さ
せた場合では、活物質粒子の表面全体が結着剤により被
覆されており、この結着剤被膜中に導電剤が分散されて
いる様子が観察された。一方、図2および図4に示すよ
うに、撹拌処理のみで調整した合剤を使用して形成させ
た活物質層においては、活物質層中で結着剤および導電
剤が局在している様子が観察された。
As shown in FIGS. 1 and 3, when the active material layer is formed by using the mixture prepared by performing the ultrasonic stirring treatment, the entire surface of the active material particles is coated with the binder. It was observed that the conductive agent was dispersed in this binder film. On the other hand, as shown in FIGS. 2 and 4, in the active material layer formed by using the mixture prepared only by the stirring treatment, the binder and the conductive agent are localized in the active material layer. The situation was observed.

【0036】また、詳細に図示はしないが、500サイ
クル終了後に電池を解体して活物質層を観察したとこ
ろ、超音波撹拌処理を行って調製した合剤を使用して形
成させた活物質層(実施例1−1の正極、負極、実施例
1−2の正極、および実施例1−3の負極)では、50
0サイクル終了後においても、液枯れ現象が観察されな
かった。一方、撹拌のみで調整した合剤を使用して形成
させた活物質層(実施例1−2の負極、および実施例1
−3の正極、および比較例1の正極、負極)において
は、500サイクル終了後において、液枯れ現象が観察
された。また、負極活物質層上には金属リチウムの析出
が観察された。
Although not shown in detail, when the battery was disassembled after 500 cycles and the active material layer was observed, the active material layer formed by using the mixture prepared by ultrasonic agitation treatment was observed. In the case of (the positive electrode of Example 1-1, the negative electrode, the positive electrode of Example 1-2, and the negative electrode of Example 1-3), 50
Even after the completion of 0 cycle, the liquid withdrawal phenomenon was not observed. On the other hand, the active material layer formed by using the mixture prepared by only stirring (the negative electrode of Example 1-2, and Example 1
-3, the positive electrode of Comparative Example 1, and the positive electrode and the negative electrode of Comparative Example 1) were observed to run out of liquid after 500 cycles. Further, deposition of metallic lithium was observed on the negative electrode active material layer.

【0037】2.充放電サイクル試験 図5には、実施例1−1〜実施例1−3、および比較例
1における、サイクル数と放電容量との関係を示すグラ
フを示した。
2. Charge / Discharge Cycle Test FIG. 5 shows a graph showing the relationship between the number of cycles and the discharge capacity in Examples 1-1 to 1-3 and Comparative Example 1.

【0038】正極、負極とも超音波撹拌処理を行って調
製した合剤を使用して活物質層を形成させた場合(実施
例1−1)では、900サイクル終了後の放電容量は、
初期放電容量の75.2%であり、容量の低下はあまり
見られなかった。また、正極のみ超音波撹拌処理を行っ
て調製した合剤を使用して活物質層を形成させた場合
(実施例1−2)では、900サイクル終了後の放電容
量は、初期放電容量の70.3%であり、負極のみ超音
波撹拌処理を行って調製した合剤を使用して活物質層を
形成させた場合(実施例1−2)では、700サイクル
終了後の放電容量は、初期放電容量の78.0%であっ
た。これらの電池では、実施例1−1に比べてやや放電
容量の低下がみられたものの、良好なサイクル特性を示
した。一方、正極、負極とも撹拌処理のみで調製した合
剤を使用して活物質層を形成させた場合(比較例1)で
は、700サイクル終了後の放電容量は、初期放電容量
の65.0%であり、サイクル特性が劣っていた。
When an active material layer was formed using a mixture prepared by subjecting both the positive electrode and the negative electrode to ultrasonic agitation (Example 1-1), the discharge capacity after 900 cycles was
It was 75.2% of the initial discharge capacity, and the decrease in capacity was not so much seen. Further, when the active material layer was formed using the mixture prepared by subjecting only the positive electrode to ultrasonic agitation treatment (Example 1-2), the discharge capacity after 900 cycles was 70% of the initial discharge capacity. In the case where an active material layer was formed using a mixture prepared by subjecting only the negative electrode to ultrasonic agitation treatment (Example 1-2), the discharge capacity after 700 cycles was the initial value. The discharge capacity was 78.0%. In these batteries, although the discharge capacity was slightly reduced as compared with Example 1-1, good cycle characteristics were shown. On the other hand, in the case where the active material layer was formed using the mixture prepared only by the stirring treatment for both the positive electrode and the negative electrode (Comparative Example 1), the discharge capacity after 700 cycles was 65.0% of the initial discharge capacity. And the cycle characteristics were inferior.

【0039】3.高率放電試験 正極、負極とも超音波撹拌処理を行って調製した合剤を
使用して活物質層を形成させた場合(実施例2−1)で
は、高率放電容量は、初期放電容量の82%であり、良
好な高率放電特性を示した。また、正極のみ超音波撹拌
処理を行って調製した合剤を使用して活物質層を形成さ
せた場合(実施例2−2)では、高率放電容量は、初期
放電容量の78%であり、負極のみ超音波撹拌処理を行
って調製した合剤を使用して活物質層を形成させた場合
(実施例2−3)では、高率放電容量は、初期放電容量
の79%であった。これらの電池では、実施例2−1に
比べて僅かに放電容量の低下がみられたものの、良好な
高率放電特性を示した。一方、正極、負極とも撹拌処理
のみで調製した合剤を使用して活物質層を形成させた場
合(比較例2)では、高率放電容量は、初期放電容量の
70%まで低下していた。
3. High Rate Discharge Test When the active material layer was formed using the mixture prepared by subjecting the positive electrode and the negative electrode to ultrasonic agitation treatment (Example 2-1), the high rate discharge capacity was the initial discharge capacity. It was 82%, showing a good high rate discharge characteristic. When the active material layer was formed using the mixture prepared by subjecting only the positive electrode to ultrasonic agitation treatment (Example 2-2), the high rate discharge capacity was 78% of the initial discharge capacity. In the case where the active material layer was formed using the mixture prepared by ultrasonically stirring only the negative electrode (Example 2-3), the high rate discharge capacity was 79% of the initial discharge capacity. . These batteries exhibited good high rate discharge characteristics, although the discharge capacity was slightly reduced as compared with Example 2-1. On the other hand, in the case where the active material layer was formed using the mixture prepared only by the stirring treatment for both the positive electrode and the negative electrode (Comparative Example 2), the high rate discharge capacity was reduced to 70% of the initial discharge capacity. .

【0040】4.まとめ 以上のように、超音波撹拌処理を行って調製した合剤を
使用して活物質層を形成した場合には、活物質粒子の表
面全体が結着剤により被覆されており、この結着剤被膜
中に導電剤が分散されていた。また、このような活物質
層を備えた電池は、充放電に伴う活物質層の液枯れ、お
よび金属リチウムの析出が抑制され、良好なサイクル特
性および高率放電特性を示すことが分かった。
4. Summary As described above, when the active material layer is formed using the mixture prepared by performing the ultrasonic stirring treatment, the entire surface of the active material particles is covered with the binder, The conductive agent was dispersed in the agent film. Further, it has been found that the battery provided with such an active material layer suppresses liquid depletion of the active material layer due to charging and discharging and deposition of metallic lithium, and exhibits favorable cycle characteristics and high rate discharge characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】 超音波撹拌処理を行って調製した合剤を使用
して形成した正極活物質層の様子を走査型電子顕微鏡に
より観察した写真
FIG. 1 is a photograph obtained by observing with a scanning electron microscope the appearance of a positive electrode active material layer formed by using a mixture prepared by ultrasonic agitation treatment.

【図2】 撹拌処理のみで調製した合剤を使用して形成
した正極活物質層の様子を走査型電子顕微鏡により観察
した写真
FIG. 2 is a photograph of a state of a positive electrode active material layer formed by using a mixture prepared only by stirring treatment, observed by a scanning electron microscope.

【図3】 超音波撹拌処理を行って調製した合剤を使用
して形成した負極活物質層の様子を走査型電子顕微鏡に
より観察した写真
FIG. 3 is a photograph obtained by observing a state of a negative electrode active material layer formed by using a mixture prepared by performing ultrasonic agitation treatment with a scanning electron microscope.

【図4】 撹拌処理のみで調製した合剤を使用して形成
した負極活物質層の様子を走査型電子顕微鏡により観察
した写真
FIG. 4 is a photograph of the state of a negative electrode active material layer formed by using a mixture prepared only by stirring treatment, observed by a scanning electron microscope.

【図5】 超音波撹拌処理を行った場合、および行わな
い場合における、電池の充放電サイクル数と放電容量と
の関係を示すグラフ
FIG. 5 is a graph showing the relationship between the number of charge / discharge cycles and the discharge capacity of a battery with and without ultrasonic agitation.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H029 AJ03 AJ05 AK03 AL06 AM03 AM07 BJ04 CJ08 CJ22 DJ08 EJ12 HJ12 5H050 AA07 AA08 BA17 CA08 CA09 CB07 DA02 DA03 DA11 EA23 FA18 GA10 GA22 HA12    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 5H029 AJ03 AJ05 AK03 AL06 AM03                       AM07 BJ04 CJ08 CJ22 DJ08                       EJ12 HJ12                 5H050 AA07 AA08 BA17 CA08 CA09                       CB07 DA02 DA03 DA11 EA23                       FA18 GA10 GA22 HA12

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 活物質層を集電体上に形成させてなる正
負一対の電極を備えた非水電解質二次電池であって、 前記活物質層は、活物質粒子と、結着剤と、導電剤とを
含有し、 かつ、前記活物質粒子の表面が前記導電剤を含む前記結
着剤で被覆されていることを特徴とする非水電解質二次
電池。
1. A non-aqueous electrolyte secondary battery comprising a pair of positive and negative electrodes formed by forming an active material layer on a current collector, wherein the active material layer comprises active material particles, a binder and A non-aqueous electrolyte secondary battery containing a conductive agent, wherein the surface of the active material particles is coated with the binder containing the conductive agent.
【請求項2】 活物質層を集電体上に積層させてなる正
負一対の電極を備えた非水電解質二次電池の製造方法で
あって、 導電剤と活物質粒子とを超音波処理により結着剤中に分
散させて合剤を調製する工程と、 前記合剤を前記集電体の表面に塗布して前記活物質層を
形成させる工程とを経ることを特徴とする非水電解質二
次電池の製造方法。
2. A method for manufacturing a non-aqueous electrolyte secondary battery comprising a pair of positive and negative electrodes in which an active material layer is laminated on a current collector, wherein a conductive agent and active material particles are ultrasonically treated. A non-aqueous electrolyte two, characterized by undergoing a step of preparing a mixture by dispersing it in a binder, and a step of applying the mixture on the surface of the current collector to form the active material layer. Next battery manufacturing method.
JP2002136112A 2002-05-10 2002-05-10 Nonaqueous electrolyte secondary battery and method of manufacturing the battery Pending JP2003331823A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002136112A JP2003331823A (en) 2002-05-10 2002-05-10 Nonaqueous electrolyte secondary battery and method of manufacturing the battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002136112A JP2003331823A (en) 2002-05-10 2002-05-10 Nonaqueous electrolyte secondary battery and method of manufacturing the battery

Publications (1)

Publication Number Publication Date
JP2003331823A true JP2003331823A (en) 2003-11-21

Family

ID=29698254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002136112A Pending JP2003331823A (en) 2002-05-10 2002-05-10 Nonaqueous electrolyte secondary battery and method of manufacturing the battery

Country Status (1)

Country Link
JP (1) JP2003331823A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008034376A (en) * 2006-06-27 2008-02-14 Kao Corp Composite positive electrode material for lithium ion battery and battery using the same
JP2008311217A (en) * 2007-05-16 2008-12-25 Hitachi Chem Co Ltd Binder resin composition for nonaqueous electrolyte energy device electrode, nonaqueous electrolyte energy device electrode using the composition, and nonaqueous electrolyte energy device
US8241525B2 (en) 2006-06-27 2012-08-14 Kao Corporation Method for producing composite material for positive electrode of lithium battery
WO2016104679A1 (en) * 2014-12-26 2016-06-30 日産自動車株式会社 Nonaqueous electrolyte rechargeable battery and manufacturing method therefor
JPWO2016068258A1 (en) * 2014-10-29 2017-06-29 株式会社東芝 Positive electrode and non-aqueous electrolyte battery
JP2017130323A (en) * 2016-01-19 2017-07-27 株式会社クレハ Binder composition, binder fluid dispersion, electrode mixture, electrode, nonaqueous electrolyte secondary battery, and method for manufacturing binder composition
CN111229100A (en) * 2018-11-28 2020-06-05 成都市银隆新能源有限公司 Preparation method of negative electrode slurry

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8241525B2 (en) 2006-06-27 2012-08-14 Kao Corporation Method for producing composite material for positive electrode of lithium battery
JP2008034376A (en) * 2006-06-27 2008-02-14 Kao Corp Composite positive electrode material for lithium ion battery and battery using the same
JP2008311217A (en) * 2007-05-16 2008-12-25 Hitachi Chem Co Ltd Binder resin composition for nonaqueous electrolyte energy device electrode, nonaqueous electrolyte energy device electrode using the composition, and nonaqueous electrolyte energy device
JPWO2016068258A1 (en) * 2014-10-29 2017-06-29 株式会社東芝 Positive electrode and non-aqueous electrolyte battery
CN107112596A (en) * 2014-12-26 2017-08-29 日产自动车株式会社 Rechargeable nonaqueous electrolytic battery and its manufacture method
WO2016104679A1 (en) * 2014-12-26 2016-06-30 日産自動車株式会社 Nonaqueous electrolyte rechargeable battery and manufacturing method therefor
JPWO2016104679A1 (en) * 2014-12-26 2017-11-16 日産自動車株式会社 Nonaqueous electrolyte secondary battery and manufacturing method thereof
CN107112596B (en) * 2014-12-26 2019-06-28 日产自动车株式会社 Non-aqueous electrolyte secondary battery and its manufacturing method
US10431851B2 (en) 2014-12-26 2019-10-01 Nissan Motor Co., Ltd. Non-aqueous electrolyte secondary battery and method for manufacturing the same
US11063295B2 (en) 2014-12-26 2021-07-13 Nissan Motor Co., Ltd. Non-aqueous electrolyte secondary battery and method for manufacturing the same
JP2017130323A (en) * 2016-01-19 2017-07-27 株式会社クレハ Binder composition, binder fluid dispersion, electrode mixture, electrode, nonaqueous electrolyte secondary battery, and method for manufacturing binder composition
US10938034B2 (en) 2016-01-19 2021-03-02 Kureha Corporation Binder composition, binder dispersion liquid, electrode mixture, electrode, non-aqueous electrolyte secondary battery, and method for producing binder composition
CN111229100A (en) * 2018-11-28 2020-06-05 成都市银隆新能源有限公司 Preparation method of negative electrode slurry

Similar Documents

Publication Publication Date Title
EP2592674B1 (en) Electrode assembly for electric storage device and electric storage device
JP5219387B2 (en) Nonaqueous electrolyte secondary battery
JP3585122B2 (en) Non-aqueous secondary battery and its manufacturing method
JP7254875B2 (en) Positive electrode active material for lithium secondary battery and lithium secondary battery containing the same
JP4433329B2 (en) Positive electrode of lithium secondary battery and method for producing the same
JP5259662B2 (en) Electrode assembly and secondary battery including the same
WO2013094100A1 (en) Positive electrode for secondary batteries, and secondary battery using same
JP4988169B2 (en) Lithium secondary battery
JP2005259682A (en) Collector for non-aqueous electrolyte secondary battery, electrode plate for non-aqueous electrolyte secondary battery comprising the same and method of manufacturing electrode plate for non-aqueous electrolyte secondary battery
WO2020111201A1 (en) Lithium ion secondary battery positive electrode composition, lithium ion secondary battery positive electrode, and lithium ion secondary battery
WO2015121731A1 (en) Nonaqueous electrolyte secondary battery
JP2014211945A (en) Electrode plate for nonaqueous secondary battery and nonaqueous secondary battery using the same
KR101390548B1 (en) Electropositive plate, battery, and electropositive plate manufacturing method
JP2011028898A (en) Positive electrode for lithium secondary battery and method of manufacturing the same
JP2003249223A (en) Lithium ion secondary battery and its manufacturing method
JP2008027879A (en) Lithium secondary battery and electrode therefor
JP7088969B2 (en) Lithium ion separator for secondary batteries and lithium ion secondary batteries
JP3501113B2 (en) Non-aqueous secondary battery and method of manufacturing the same
NL2024177B1 (en) Solid ionic conductive additive in electrodes for lithium-ion batteries using liquid electrolyte
JP2007273313A (en) Electrode plate for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery
JP3508455B2 (en) Negative electrode plate for lithium ion battery and method for producing the same
JP2003331823A (en) Nonaqueous electrolyte secondary battery and method of manufacturing the battery
JP2018113220A (en) Method for manufacturing lithium ion secondary battery
JP3582823B2 (en) Positive electrode for non-aqueous secondary battery and non-aqueous secondary battery
JP4843842B2 (en) Method for manufacturing positive electrode plate for lithium secondary battery